WO2012070392A1 - 液圧シリンダシステム - Google Patents

液圧シリンダシステム Download PDF

Info

Publication number
WO2012070392A1
WO2012070392A1 PCT/JP2011/075904 JP2011075904W WO2012070392A1 WO 2012070392 A1 WO2012070392 A1 WO 2012070392A1 JP 2011075904 W JP2011075904 W JP 2011075904W WO 2012070392 A1 WO2012070392 A1 WO 2012070392A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
motors
hydraulic cylinder
drive
drive system
Prior art date
Application number
PCT/JP2011/075904
Other languages
English (en)
French (fr)
Inventor
岡本 弘文
政世志 奥田
Original Assignee
株式会社 島津製作所
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 島津製作所, 三菱重工業株式会社 filed Critical 株式会社 島津製作所
Priority to EP11842572.7A priority Critical patent/EP2644907B1/en
Priority to US13/989,481 priority patent/US9587658B2/en
Priority to JP2012545676A priority patent/JP5426037B2/ja
Publication of WO2012070392A1 publication Critical patent/WO2012070392A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/505Transmitting means with power amplification using electrical energy having duplication or stand-by provisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/504Transmitting means with power amplification using electrical energy using electro-hydrostatic actuators [EHA's]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B18/00Parallel arrangements of independent servomotor systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7107Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being mechanically linked
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • F15B2211/8757Control measures for coping with failures using redundant components or assemblies

Definitions

  • the present invention is used in an aircraft control system or the like, and includes a plurality of cylinders, a valve provided for each cylinder for supplying hydraulic fluid to the cylinder, and a motor for driving the valve provided for each valve.
  • the present invention relates to a hydraulic cylinder system having a drive system.
  • a hydraulic cylinder system used in an aircraft or vehicle control system or the like has a configuration with electrical redundancy (see, for example, Patent Document 1). Therefore, in the hydraulic cylinder system having the conventional configuration, in order to realize high electrical redundancy, it is necessary to provide a drive system motor with a large number of coils. Along with this, there has been a problem that the motor of the drive system is enlarged, and the hydraulic cylinder system itself is also enlarged, resulting in a large mass.
  • the present invention focuses on the above points and aims at realizing high redundancy while preventing an increase in the size and mass of the hydraulic cylinder.
  • the hydraulic cylinder system includes a plurality of cylinders, a valve provided for each cylinder for adjusting the amount of hydraulic fluid to be taken in and out, and a valve provided for each valve for driving the valve. And a connecting member for connecting the motors of the driving system so as to be interlocked with each other.
  • the motors of the drive systems are connected to each other by the connecting member, for example, in a system having two drive systems, a motor having double redundancy in each drive system.
  • the system as a whole can be configured to have four levels of redundancy.
  • the motor can be reduced in size as compared with the conventional one.
  • the motors of the drive systems are connected to each other by a connecting member so that the output of the motor Can be halved compared to the conventional one. That is, even with such a configuration, the motor can be reduced in size as compared with the conventional one.
  • the pistons of a plurality of cylinders are connected so as to be integrally operable. Since each motor of the plurality of drive systems is connected, by operating each motor, the valves of each drive system are driven by each motor to supply hydraulic fluid to the cylinder and drive the piston of this cylinder Driving a driving object connected to the piston connecting portion, or operating only one driving system motor of the plurality of driving systems, from a valve driven by the driving system motor There is one that drives a driving object connected to the piston connecting portion by supplying hydraulic fluid to a cylinder and driving a piston of the cylinder.
  • pistons of a plurality of cylinders are connected so as to be integrally operable. Connected to the piston connection by operating each motor of the plurality of drive systems, supplying hydraulic fluid to each cylinder from a valve driven by the motor of each drive system, and driving the piston of each cylinder There is a hydraulic cylinder system that drives the driven object.
  • a cutting mechanism is provided between the connecting member and each motor to cut off the transmission of power between the connecting member and each motor, and this disconnection is performed when a failure of the motor is detected. Since the mechanism is operated to cut off the transmission of power between the connection member and the motor in which the failure is detected, even if a malfunction occurs in one drive system, a malfunction has occurred. Other drive systems that are not present can continue the operation of the hydraulic cylinder on the drive system side without being affected by the malfunction.
  • the hydraulic cylinder system 1 is mainly used in an aircraft control system such as a helicopter, and first and second hydraulic fluids are supplied from first and second hydraulic fluid sources 2a and 2b, respectively.
  • the connecting member 8 for connecting the motors 6a and 6b of the second drive systems 5a and 5b so as to be interlocked with each other, and the pistons 9a and 9b of the first and second cylinders 3a and 3b can be integrally operated.
  • the piston connection part 10 connected as much as possible and the output shaft 11 connected to this piston connection part 10 are provided.
  • the output shaft 11 is connected to a drive target of the hydraulic cylinder system 1.
  • the first and second cylinders 3a and 3b have the same shape, and those conventionally known as those used in this type of hydraulic cylinder system can be used.
  • the first and second valves 4a and 4b are connected to passages for flowing hydraulic fluid into and out of the cylinder chambers of the first and second cylinders 3a and 3b, respectively, and the opening degree is continuously changed. Is possible. More specifically, although not shown in the figure, the servo valve is configured to move the internal valve body by power from the first and second drive systems 5a and 5b, more specifically from the motors 6a and 6b. .
  • the motors 6a and 6b of the first and second drive systems 5a and 5b are servo motors connected to the first and second valves 4a and 4b, respectively, and receive signals from the controllers 7a and 7b.
  • the valves 4a and 4b are driven.
  • these motors 6a and 6b have two sets of coils 12a and 12b, respectively. That is, the motors 6a and 6b each have double electrical redundancy.
  • controllers 7a and 7b are microcomputer systems having a CPU, a memory, an input / output interface, and the like.
  • the controllers 7a and 7b have the same configurations as those widely used in this type of hydraulic cylinder system. Have.
  • the output shaft of the motor 6a of the first drive system 5a and the output shaft of the motor 6b of the second drive system 5b are connected to each other by the connecting member 8. ing.
  • the valves 4a and 4b are driven by interlocking the output shafts of the motors 6a and 6b of the first and second drive systems 5a and 5b, thereby functioning as a drive system having a quadruple electrical redundancy as a whole. I am letting. Further, one of the motors 6a and 6b of the first and second drive systems 5a and 5b is energized, and the output shafts of the motors 6a and 6b of the first and second drive systems 5a and 5b are interlocked. The valves 4a and 4b are driven to function as a drive system having a quadruple electrical redundancy as a whole.
  • control device when the drive target connected to the output shaft 11 is driven using the hydraulic cylinder system 1, the control device performs the following control.
  • the coils 12a and 12b of the motors 6a and 6b of the first and second drive systems 5a and 5b are energized by the controllers 7a and 7b.
  • the output of the motor 6a by the two coils 12a is transmitted to the motor 6b via the connecting member 8, and the valve 4b of the drive system 5b is driven by the driving force of the motor 6a and the motor 6b.
  • the valve 4a of the drive system 5a is driven by the driving force of the motor 6b and the motor 6a, with the output of the motor 6b from the two coils 12b being transmitted to the motor 6a via the connecting member 8.
  • the controllers 7a, 7b When the controller 7a, 7b detects a failure in the electrical system, the controllers 7a, 7b shut off the energization of the coil that detected the failure in the electrical system of the coils 12a, 12b, and the drive system 5a, The driving of the valves 4a and 4b of 5b is continued.
  • a motor to be energized is selected.
  • the motor 6a of the first drive system 5a it is selected which of the coils 12a included in the motor 6a is energized.
  • the motor 6b of the second drive system 5b When the motor 6b of the second drive system 5b is selected, it is selected which of the coils 12b provided in the motor 6b is energized.
  • a predetermined energization coil switching condition such as when the temperature of the energized coils 12a and 12b becomes equal to or higher than a predetermined threshold
  • the motors 6a and 6b including the coils 12a and 12b are transferred to. And the other motors 6a and 6b are energized.
  • a detection element that detects that the predetermined energization coil switching condition is satisfied for example, a temperature sensor that detects the temperature of a coil connected to the control device is used. The determination that the predetermined energization coil switching condition is satisfied is made based on signals output from the detection elements to the controllers 7a and 7b.
  • the first and second drive systems 5a and 5b are provided with the motors 6a and 6b having double redundancy.
  • the motor 6a and 6b function as a drive system having a quadruple electrical redundancy as a whole. Accordingly, a liquid having high electrical redundancy can be obtained without causing an increase in the size of the motors 6a and 6b, and thus without causing an increase in the size and mass of the entire hydraulic cylinder system 1.
  • the pressure cylinder system 1 can be realized.
  • the motors 14a and 14b of the first and second drive systems 5a and 5b of the present embodiment have four sets of coils 15a and 15b, respectively. That is, each of the motors 14a and 14b has a quadruple electrical redundancy. Moreover, in this embodiment, the output of each motor 14a, 14b is set to the half which concerns on 1st embodiment. In addition, in this embodiment, the motors 14a and 14b of the first and second drive systems 5a and 5b are energized simultaneously to drive the first and second cylinders 3a and 3b simultaneously.
  • the output shaft of the motor 14a of the first drive system 5a and the output shaft of the motor 14b of the second drive system 5b are connected to each other by the connecting member 8. ing.
  • the motors 14a and 14b of the first and second drive systems 5a and 5b are energized at the same time, and the output shafts of the motors 14a and 14b of the first and second drive systems 5a and 5b are linked by the connecting member 8.
  • the valves 4a and 4b are driven in conjunction with each other in a connected state so as to function as a drive system having a quadruple electrical redundancy as a whole.
  • the controllers 7a and 7b are respectively connected to the drive systems 5a and 5b in a normal quadruple.
  • a well-known control is performed as a control for a drive system having electrical redundancy.
  • driving force is output from the output shafts of the motors 14a and 14b of the first and second drive systems 5a and 5b to the first and second valves 4a and 4b.
  • the outputs of the motors 14a and 14b of the first and second drive systems 5a and 5b are half of the outputs of the motors 6a and 6b according to the first embodiment.
  • the driving force output to the second valves 4a and 4b is the same as that according to the first embodiment.
  • each of the drive systems 5a, 5b has a motor 14a capable of outputting half of a desired output while having a fourfold redundancy.
  • the output shafts of the motors 14a and 14b are connected to each other by the connecting member 8 and interlocked with each other, so that a desired output can be obtained as a whole, and quadruple electrical redundancy can be obtained.
  • It functions as a drive system. Accordingly, even with such a configuration, a desired output can be obtained without increasing the size of the motor, and without increasing the size of the entire hydraulic cylinder system and increasing the mass, and high electrical redundancy.
  • the equipped hydraulic cylinder system can be realized.
  • the hydraulic cylinder system 16 according to the third embodiment is different from the hydraulic cylinder system 1 according to the first embodiment in the following points, and has the same configuration as the hydraulic cylinder system 1 according to the first embodiment in other points. Have.
  • symbol are attached
  • the connecting member 8 and the motor 6a between the connecting member 8 and the motors 6a and 6b, which connect the motors 6a and 6b of the first and second drive systems 5a and 5b so as to be interlocked with each other.
  • Cutting mechanisms 17a and 17b are provided for cutting the transmission of power to and from 6b, respectively.
  • the cutting mechanisms 17a and 17b are configured using a clutch mechanism using a spring.
  • the connection member 8 and the motors 6a and 6b are broken and the motors 6a and 6b are interlocked with each other, it is not obstructed to adopt a configuration in which these are connected to each other via a clutch member.
  • the controller 7a activates the cutting mechanism 17a to cut off the transmission of power between the connecting member 8 and the motor 6a. To do.
  • the second valve 4b continues to operate, and accordingly The second cylinder 3b continues to operate.
  • the controller 7b operates the cutting mechanism 17b to cut off the transmission of power between the connecting member 8 and the motor 6b.
  • the motor 6a of the first drive system 5a continues to operate without being affected by the malfunction of the motor 6b of the second drive system 5b, the first valve 4a continues to operate, and accordingly The first cylinder 3a continues to operate.
  • a temperature sensor for detecting the temperature of a coil connected to the control device is used as a detection element for detecting a malfunction such as malfunction of the motors 6a and 6b.
  • the determination that a failure such as a malfunction of the motors 6a and 6b has been detected is made based on the signals output from the detection elements to the controllers 7a and 7b.
  • the following effects can be obtained. That is, between the connecting member 8 and the motors 6a and 6b, which connect the motors 6a and 6b of the first and second drive systems 5a and 5b so as to be interlocked, the connecting member 8 and the motors 6a and 6b are connected. Cutting mechanisms 17a and 17b for cutting power transmission between the motors 6a and 6b, and when the malfunctions such as malfunctions of the motors 6a and 6b are detected, the cutting mechanisms 17a and 17b are operated. Therefore, even if an operation failure occurs in one drive system, the other drive system side where the operation failure has not occurred is not affected by the operation failure, and the hydraulic cylinder on the drive system side operates. Can continue.
  • two motors having double electrical redundancy are connected by connecting members, but two motors having single or triple electrical redundancy are connected members. It is also possible to connect the two or more motors by connecting members.
  • the controller also controls the motor by two, but it may be controlled by one or three or more.
  • two motors having quadruple electrical redundancy are connected by a connecting member.
  • the motor 2 having double, triple, or five or more electrical redundancy.
  • the individual members may be connected by a connecting member, or three or more motors may be connected by a connecting member and the three or more motors may be energized simultaneously.
  • the controller also controls the motor by two, but it may be controlled by one or three or more.
  • a cutting mechanism for cutting off the transmission of power between the connecting member and the motor is operated. Even if an operation failure occurs in one drive system, other drive systems in which no operation failure has occurred can continue the operation of the hydraulic cylinder on the drive system side without being affected by the operation failure. This can improve vulnerability to drive system malfunction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

 液圧シリンダシステム1を、複数のシリンダ3a、3bと、シリンダ3a、3bごとに設けられ該シリンダ3a、3bへの作動液の出し入れの量を調節するためのバルブ4a、4bと、バルブ4a、4bごとに設けられ該バルブ4a、4bを駆動するためのモータ6a、6bを有する駆動系5a、5bと、前記駆動系5a、5bのモータ6a、6b同士を連動可能に接続する接続部材8とを具備するものとする。

Description

液圧シリンダシステム
 本発明は、航空機の操縦システム等に用いられ、複数のシリンダと、シリンダごとに設けられ該シリンダに作動液を供給するためのバルブと、バルブごとに設けられ該バルブを駆動するためのモータを有する駆動系とを有する液圧シリンダシステムに関する。
 従来より、航空機や車両の操縦システム等において用いられる液圧シリンダシステムにおいては、電気冗長度を備えた構成が採用されている(例えば、特許文献1を参照)。しかして、従来の構成の液圧シリンダシステムにおいては、高い電気冗長度を実現する場合、駆動系のモータに多数のコイルを備えさせる必要があった。これに伴い、駆動系のモータが大型化し、ひいては液圧シリンダシステム自体も大型化して質量が大きなものとなるという問題があった。
特開昭53-76276号公報
 本発明は以上の点に着目し、液圧シリンダの大型化及び質量の増大を防ぎつつ高い冗長度を実現することを所期の目的とする。
 すなわち本発明に係る液圧シリンダシステムは、複数のシリンダと、シリンダごとに設けられ該シリンダへの作動液の出し入れの量を調節するためのバルブと、バルブごとに設けられ該バルブを駆動するためのモータを有する駆動系と、前記駆動系のモータ同士を連動可能に接続する接続部材とを具備することを特徴とする。
 このような構成であれば、接続部材により前記駆動系のモータ同士が連動可能に接続されているので、例えば2つの駆動系を有するシステムにおいて、各駆動系に2重の冗長度を有するモータを備えた場合、システム全体としては4重の冗長度を有する構成を実現できる。すなわち、コイルを2つのみ備えるモータにより4重の冗長度を有する構成を実現できるので、従来のものと比較してモータを小型化できる。また、2つの駆動系を有するシステムにおいて、各駆動系に4重の冗長度を有するモータを備えた場合、接続部材により前記駆動系のモータ同士が連動可能に接続されているので、モータの出力を従来のものと比較して半分にすることができる。すなわち、このような構成であっても、従来のものと比較してモータを小型化できる。
 上述したような、各駆動系のモータの冗長度を低くすることによりモータの小型化を図る効果を得るための構成の一例として、複数のシリンダのピストン同士を一体的に動作可能に接続してなり、前記複数の駆動系の各モータが接続されているため、各モータを運転することで、各駆動系のバルブは各モータにより駆動され作動液をシリンダに供給し、このシリンダのピストンを駆動することにより前記ピストン接続部に接続した駆動対象を駆動するもの、また、前記複数の駆動系のうちいずれか1つの駆動系のモータのみを運転し、この駆動系のモータにより駆動されるバルブからシリンダに作動液を供給し、このシリンダのピストンを駆動することにより前記ピストン接続部に接続した駆動対象を駆動するものが挙げられる。
 一方、上述したような、各駆動系のモータに低出力のものを用いることにより小型化を図る効果を得るための構成の一例として、複数のシリンダのピストン同士を一体的に動作可能に接続してなり、前記複数の駆動系の各モータを運転し、各駆動系のモータにより駆動されるバルブから各シリンダに作動液を供給し、各シリンダのピストンを駆動することにより前記ピストン接続部に接続した駆動対象を駆動する液圧シリンダシステムが挙げられる。
 また、前記接続部材と前記各モータとの間に、前記接続部材と各モータとの間の動力の伝達をそれぞれ切断するための切断機構を設け、前記モータの故障が検知された際にこの切断機構を作動させて前記接続部材と故障が検知されたモータとの間の動力の伝達を切断するようにしているので、一つの駆動系に作動不良が発生しても、作動不良が発生していない他の駆動系は前記作動不良の影響を受けることなく、該駆動系側の液圧シリンダの作動を継続させることができる。
 本発明の液圧シリンダシステムの構成によれば、液圧シリンダの大型化及び質量の増大を防ぎつつ高い冗長度を実現することができる。
 また、前記モータの故障が検知された際に接続部材とモータとの間の動力の伝達を切断するための切断機構を作動させるようにしているものであれば、一つの駆動系に作動不良が発生しても、作動不良が発生していない他の駆動系は前記作動不良の影響を受けることなく、該駆動系側の液圧シリンダの作動を継続させることができ、駆動系の作動不良に対する脆弱性を改善できる。
本発明の第一実施形態に係る液圧シリンダシステムを概略的に示す図。 本発明の第二実施形態に係る液圧シリンダシステムを概略的に示す図。 本発明の第三実施形態に係る液圧シリンダシステムを概略的に示す図。
 以下、本発明の第一実施形態を、図1を参照して説明する。
 本実施形態に係る液圧シリンダシステム1は、主にヘリコプタ等航空機の操縦系に用いられ、第1及び第2の作動液の供給源2a、2bからそれぞれ作動液の供給を受ける第1及び第2のシリンダ3a、3bと、第1及び第2のシリンダ3a、3bにそれぞれ設けられこれらのシリンダ3a、3bに前記供給源2a、2bからの作動液の出し入れの量を調節するための第1及び第2のバルブ4a、4bと、第1及び第2のバルブ4a、4bにそれぞれ設けられ、これらバルブ4a、4bを駆動するための第1及び第2のモータ6a、6b、及び前記モータ6a、6bをそれぞれ有する第1及び第2の駆動系5a、5bと、前記第1及び第2の駆動系5a、5bをそれぞれ制御するための第1及び第2のコントローラ7a、7bと、前記第1及び第2の駆動系5a、5bのモータ6a、6b同士を連動可能に接続する接続部材8と、前記第1及び第2のシリンダ3a、3bのピストン9a、9b同士を一体的に動作可能にすべく連結するピストン接続部10と、このピストン接続部10に接続してなる出力軸11とを具備する。出力軸11は、この液圧シリンダシステム1の駆動対象に接続している。
 第1及び第2のシリンダ3a、3bは、いずれも同一形状をなし、この種の油圧シリンダシステムに用いられるものとして従来知られているものを用いることができる。
 第1及び第2のバルブ4a、4bは、それぞれ第1及び第2のシリンダ3a、3bのシリンダ室に作動液をそれぞれ流出入させるための通路に接続してなり、開度を連続的に変更可能である。より具体的には、図示は省略するが、内部の弁体を第1及び第2の駆動系5a、5b、より具体的にはモータ6a、6bからの動力により移動させる構成のサーボ弁である。
 第1及び第2の駆動系5a、5bのモータ6a、6bは、前記第1及び第2のバルブ4a,4bにそれぞれ接続してなるサーボモータであり、コントローラ7a、7bからの信号を受けてバルブ4a,4bを駆動するものである。また、本実施形態では、これらのモータ6a、6bは、それぞれ、コイル12a、12bを2組ずつ有する。すなわち、前記モータ6a、6bは、それぞれ2重の電気冗長度を有する。
 前記コントローラ7a、7bは、図示は省略するが、CPU、メモリ、入出力インタフェース等を有するマイクロコンピュータシステムであり、この種の液圧シリンダシステムに広く用いられるものとして周知のものと同様の構成を有する。
 しかして本実施形態では、上述したように、第1の駆動系5aのモータ6aの出力軸と、第2の駆動系5bのモータ6bの出力軸とを、接続部材8により連動可能に接続している。そして、これら第1及び第2の駆動系5a、5bのモータ6a、6bの出力軸を連動させてバルブ4a、4bを駆動することにより、全体として4重の電気冗長度を有する駆動系として機能させている。また、これら第1及び第2の駆動系5a、5bのモータ6a、6bのうち一方に通電し、これら第1及び第2の駆動系5a、5bのモータ6a、6bの出力軸を連動させてバルブ4a、4bを駆動することにより、全体として4重の電気冗長度を有する駆動系として機能させている。
 すなわち、この液圧シリンダシステム1を利用して出力軸11に接続した駆動対象を駆動する際には、前記制御装置は、以下のような制御を行う。
 まず、第1及び第2の駆動系5a、5bのモータ6a、6bのそれぞれのコイル12a、12bはコントローラ7a、7bで通電される。コイル12aの2つのコイルによるモータ6aの出力は、接続部材8を介してモータ6bに伝達され駆動系5bのバルブ4bはモータ6aとモータ6bの駆動力で駆動される。この逆に駆動系5aのバルブ4aは、コイル12bの2つのコイルによるモータ6bの出力が接続部材8を介してモータ6aに伝達され、モータ6bとモータ6aの駆動力で駆動される。電気系の故障をコントローラ7a、7bが検知したとき、コントローラ7a、7bはコイル12a、12bの電気系の故障を検知したコイルの通電を遮断し、正常であるコイル12a、12bで駆動系5a、5bのバルブ4a、4bの駆動を継続する。また、まず、第1及び第2の駆動系5a、5bのモータ6a、6bのうち、通電する側のモータを選択する。次いで、第1の駆動系5aのモータ6aが選択された場合には、このモータ6aに備えたコイル12aのいずれに通電するのかを選択する。また、第2の駆動系5bのモータ6bが選択された場合には、このモータ6bに備えたコイル12bのいずれに通電するのかを選択する。その後、通電したコイル12a、12bの温度が所定の閾値以上となった場合等、所定の通電コイル切り替え条件を満たしていることが検知されたときには、このコイル12a、12bを含むモータ6a、6bへの通電を遮断し、他方のモータ6a、6bに通電する。ここで、前記所定の通電コイル切り替え条件を満たしていることを検知する検知要素としては、例えば、前記制御装置に接続したコイルの温度を検知する温度センサ等が用いられる。そして、所定の通電コイル切り替え条件を満たしていることが検知されたことの判定は、検知要素からコントローラ7a、7bに出力された信号に基づき行う。
 以上に述べたように、本実施形態に係る液圧シリンダシステム1によれば、第1及び第2の駆動系5a、5bには2重の冗長度を有するモータ6a、6bを備えるようにしつつ、モータ6a、6bの出力軸同士を接続部材8により接続してこれらを連動させることにより、全体として4重の電気冗長度を有する駆動系として機能する。従って、モータ6a、6bの大型化を招くことなく、ひいては液圧シリンダシステム1全体の大型化や質量の増大を招くことなく、所望の出力を得ることができしかも高い電気冗長度を備えた液圧シリンダシステム1を実現できる。
 次に、本発明の第二実施形態を、図2を参照して説明する。なお、この第二実施形態の液圧シリンダシステム13は、第1及び第2の駆動系のモータ以外、第一実施形態におけるものと同一の構成を有するので、同一の名称及び符号を付し、詳細な説明は省略する。また、図2において、作動液の供給源2a、2b及びコントローラ7a、7bは省略して示している。
 本実施形態の第1及び第2の駆動系5a、5bのモータ14a、14bは、それぞれ、コイル15a、15bを4組ずつ有する。すなわち、前記モータ14a、14bは、それぞれ4重の電気冗長度を有する。また、本実施形態では、各モータ14a、14bの出力を、第一実施形態に係るものの半分に設定している。その上で本実施形態では、第1及び第2の駆動系5a、5bのモータ14a、14bに同時に通電し、第1及び第2のシリンダ3a、3bを同時に駆動するようにしている。
 しかして本実施形態では、上述したように、第1の駆動系5aのモータ14aの出力軸と、第2の駆動系5bのモータ14bの出力軸とを、接続部材8により連動可能に接続している。そして、これら第1及び第2の駆動系5a、5bのモータ14a、14bに同時に通電し、これら第1及び第2の駆動系5a、5bのモータ14a、14bの出力軸を接続部材8により連動可能に接続した状態で連動させてバルブ4a、4bを駆動することにより、全体として4重の電気冗長度を有する駆動系として機能させている。
 ここで、液圧シリンダシステム13を利用して出力軸11に接続した駆動対象を駆動する際には、前記コントローラ7a、7bは、各駆動系5a、5bに対して、それぞれ通常の4重の電気冗長度を有する駆動系に対する制御として周知の制御を行う。この制御を受けて、第1及び第2の駆動系5a、5bのモータ14a、14bの出力軸から、第1及び第2のバルブ4a、4bに駆動力が出力される。このとき、上述したように第1及び第2の駆動系5a、5bのモータ14a、14bの出力は、第一実施形態に係るモータ6a、6bの出力の半分であるので、結果として、第1及び第2のバルブ4a、4bに出力される駆動力は、第一実施形態に係るものと同一となる。
 以上に述べたように、本実施形態に係る液圧シリンダシステム13によれば、各駆動系5a、5bには4重の冗長度を有しつつ所望の出力の半分を出力可能なモータ14a、14bを備えるようにしつつ、モータ14a、14bの出力軸同士を接続部材8により接続してこれらを連動させることにより、全体として、所望の出力を得ることができ、かつ4重の電気冗長度を有する駆動系として機能する。従って、このような構成によっても、モータの大型化を招くことなく、ひいては液圧シリンダシステム全体の大型化や質量の増大を招くことなく、所望の出力を得ることができしかも高い電気冗長度を備えた液圧シリンダシステムを実現できる。
 次に、本発明の第三実施形態を、図3を参照して説明する。この第三実施形態の液圧シリンダシステム16は、以下の点において第一実施形態の液圧シリンダシステム1と異なり、その他の点については第一実施形態の液圧シリンダシステム1と同一の構成を有する。以下の説明において、第一実施形態の液圧シリンダシステム1におけるものに対応する各部位には、同一の名称及び符号を付している。
 本実施形態では、前記第1及び第2の駆動系5a、5bのモータ6a、6b同士を連動可能に接続する接続部材8とモータ6a、6bとの間に、この接続部材8とモータ6a、6bとの間の動力の伝達をそれぞれ切断するための切断機構17a、17bを設けている。この切断機構17a、17bは、本実施形態ではスプリングを利用したクラッチ機構を利用して構成している。但し、接続部材8とモータ6a、6bとの間を破断し、モータ6a、6b同士を連動させる際にはクラッチ部材を介してこれらを連動可能に接続する構成を採用することを妨げない。
 本実施形態において、第1の駆動系5aにモータ6aの作動不良等の故障が生じた場合、コントローラ7aは切断機構17aを作動させて接続部材8とモータ6aとの間の動力の伝達を遮断する。このとき、第2の駆動系5bのモータ6bは前記第1の駆動系5aのモータ6aの作動不良の影響を受けることなく、運転を継続するので、第2のバルブ4bは引き続き作動し、従って第2のシリンダ3bも引き続き作動する。
 逆に、第2の駆動系5bにモータ6bの作動不良等の故障が生じた場合、コントローラ7bは切断機構17bを作動させて接続部材8とモータ6bとの間の動力の伝達を遮断する。このとき、第1の駆動系5aのモータ6aは前記第2の駆動系5bのモータ6bの作動不良の影響を受けることなく、運転を継続するので、第1のバルブ4aは引き続き作動し、従って第1のシリンダ3aも引き続き作動する。
 ここで、モータ6a、6bの作動不良等の故障を検知する検知要素としては、例えば、前記制御装置に接続したコイルの温度を検知する温度センサ等が用いられる。そして、モータ6a、6bの作動不良等の故障が検知されたことの判定は、検知要素からコントローラ7a、7bに出力された信号に基づき行う。
 本実施形態の構成によれば、第一実施形態に係る構成に係る効果に加えて、以下のような効果を得ることができる。すなわち、前記第1及び第2の駆動系5a、5bのモータ6a、6b同士を連動可能に接続する接続部材8とモータ6a、6bとの間に、この接続部材8とモータ6a、6bとの間の動力の伝達をそれぞれ切断するための切断機構17a、17bを設けているとともに、モータ6a、6bの作動不良等の故障が検知された際にこの切断機構17a、17bを作動させるようにしているので、一方の駆動系に作動不良が発生しても、作動不良が発生していない他方の駆動系側は前記作動不良の影響を受けることなく、該駆動系側の液圧シリンダの作動を継続させることができる。
 なお、本発明は以上に述べた実施形態に限らない。
 例えば、上述した第一実施形態においては、2重の電気冗長度を有するモータ2個を接続部材により接続しているが、1重又は3重以上の電気冗長度を有するモータ2個を接続部材により接続するようにしてもよく、また、3個以上のモータを接続部材により接続するようにしてもよい。コントローラも2個によりモータを制御しているが、1個又は3個以上で制御してもよい。
 また、上述した第二実施形態においては、4重の電気冗長度を有するモータ2個を接続部材により接続しているが、2重、3重、又は5重以上の電気冗長度を有するモータ2個を接続部材により接続するようにしてもよく、また、3個以上のモータを接続部材により接続してこれら3個以上のモータに同時に通電するようにしてもよい。コントローラも2個によりモータを制御しているが、1個又は3個以上で制御してもよい。
 また、上述した第三実施形態においては、コントローラ7a、7bによって切断機構を作動させる形態を示したが、コントローラ7a、7bを介さずに一定荷重により接続部材8が破断又はすべることで接続が切れる構成としてもよい。
 その他、本発明の趣旨を損ねない範囲で種々に変形してよい。
 本発明の液圧シリンダシステムの構成を採用すれば、駆動系のモータ同士を接続部材により連動可能に接続することにより、液圧シリンダの大型化及び質量の増大を防ぎつつ高い電気冗長度を実現することができる。
 また、バルブを駆動するためのモータの故障が検知された際に、前記接続部材とモータとの間の動力の伝達を切断するための切断機構を作動させるようにしているものであれば、一つの駆動系に作動不良が発生しても、作動不良が発生していない他の駆動系は前記作動不良の影響を受けることなく、該駆動系側の液圧シリンダの作動を継続させることができ、駆動系の作動不良に対する脆弱性を改善できる。
 1、13、16…液圧シリンダシステム
 3a、3b…シリンダ
 4a、4b…バルブ
 5a、5b…駆動系
 6a、6b、14a、14b…モータ
 8…接続部材

Claims (4)

  1. 複数のシリンダと、シリンダごとに設けられ該シリンダへの作動液の出し入れの量を調節するためのバルブと、バルブごとに設けられ該バルブを駆動するためのモータを有する駆動系と、前記駆動系のモータ同士を連動可能に接続する接続部材とを具備することを特徴とする液圧シリンダシステム。
  2. 複数のシリンダのピストン同士を一体的に動作可能に接続してなり、前記複数の駆動系のうちいずれか1つの駆動系のモータのみを運転し、この駆動系のモータにより駆動されるバルブからシリンダに作動液を供給し、このシリンダのピストンを駆動することにより前記ピストン接続部に接続した駆動対象を駆動する請求項1記載の液圧シリンダシステム。
  3. 複数のシリンダのピストン同士を一体的に動作可能に接続してなり、前記複数の駆動系の各モータを運転し、各駆動系のモータにより駆動されるバルブから各シリンダに作動液を供給し、各シリンダのピストンを駆動することにより前記ピストン接続部に接続した駆動対象を駆動する請求項1記載の液圧シリンダシステム。
  4. 前記接続部材と前記各モータとの間に、前記接続部材と各モータとの間の動力の伝達をそれぞれ切断するための切断機構を設け、前記モータの故障が検知された際にこの切断機構を作動させて前記接続部材と故障が検知されたモータとの間の動力の伝達を切断する請求項1又は2記載の液圧シリンダシステム。
PCT/JP2011/075904 2010-11-25 2011-11-10 液圧シリンダシステム WO2012070392A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11842572.7A EP2644907B1 (en) 2010-11-25 2011-11-10 Hydraulic cylinder system
US13/989,481 US9587658B2 (en) 2010-11-25 2011-11-10 Hydraulic cylinder system
JP2012545676A JP5426037B2 (ja) 2010-11-25 2011-11-10 液圧シリンダシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010261915 2010-11-25
JP2010-261915 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012070392A1 true WO2012070392A1 (ja) 2012-05-31

Family

ID=46145740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075904 WO2012070392A1 (ja) 2010-11-25 2011-11-10 液圧シリンダシステム

Country Status (4)

Country Link
US (1) US9587658B2 (ja)
EP (1) EP2644907B1 (ja)
JP (1) JP5426037B2 (ja)
WO (1) WO2012070392A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160078978A (ko) * 2013-10-03 2016-07-05 트랜스오션 이노베이션 랩스 리미티드 유압 디바이스 및 그 작동 방법
JP2019157626A (ja) * 2019-07-01 2019-09-19 トランスオーシャン イノベーション ラブス リミテッド 液圧デバイスおよびそれを作動する方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106672212B (zh) * 2016-12-28 2019-05-10 中国航空工业集团公司西安飞机设计研究所 一种飞机辅助翼面控制系统
JP7395131B2 (ja) * 2020-04-14 2023-12-11 Smc株式会社 流体圧シリンダ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376276A (en) 1976-12-20 1978-07-06 Mitsubishi Heavy Ind Ltd Hydraulic operation unit
JPH0460203A (ja) * 1990-06-28 1992-02-26 Kayaba Ind Co Ltd サーボバルブ
JPH09144713A (ja) * 1995-11-20 1997-06-03 Teijin Seiki Co Ltd アクチュエータ制御装置
JPH09328098A (ja) * 1996-04-10 1997-12-22 Teijin Seiki Co Ltd 舵面駆動用アクチュエータの制御回路

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3270623A (en) 1964-04-13 1966-09-06 Moog Inc Fluid powered servomechanism of a redundant, monitor type
US3401600A (en) * 1965-12-23 1968-09-17 Bell Aerospace Corp Control system having a plurality of control chains each of which may be disabled in event of failure thereof
GB2082799B (en) * 1980-08-27 1983-11-23 Elliott Brothers London Ltd Hydraulic actuator systems
AT392447B (de) * 1989-09-13 1991-03-25 Weber Guenter Steuervorrichtung fuer hydraulische arbeitszylinder einer ladebordwand eines fahrzeuges
JP3524936B2 (ja) * 1992-01-15 2004-05-10 キャタピラー インコーポレイテッド 油圧駆動車両用の冗長制御装置
DE9411335U1 (de) * 1994-07-18 1995-11-16 Kroell Andreas Fördervorrichtung
US6209677B1 (en) * 1998-09-09 2001-04-03 Daimlerchrysler Ag Steering system for non-tracked motor vehicles
US6945350B2 (en) * 2002-08-27 2005-09-20 Trw Inc. Steering apparatus for turning multiple sets of steerable vehicle wheels
JP3836422B2 (ja) * 2002-11-27 2006-10-25 ナブテスコ株式会社 翼駆動装置
US6981439B2 (en) * 2003-08-22 2006-01-03 Hr Textron, Inc. Redundant flow control for hydraulic actuator systems
DE05856857T1 (de) * 2005-02-11 2008-02-21 Bell Helicopter Textron, Inc., Fort Worth Konzentrisches doppelventil für doppelmotor
EP1852388B1 (en) * 2005-02-25 2013-04-03 Mitsubishi Heavy Industries, Ltd. Load handling regeneration system for battery type industrial vehicle
EP1852387B1 (en) * 2005-02-25 2013-04-03 Mitsubishi Heavy Industries, Ltd. Load handling regeneration method and load handling regeneration system of battery type industrial vehicle
US7600715B2 (en) * 2005-03-25 2009-10-13 Nabtesco Corporation Local backup hydraulic actuator for aircraft control systems
US7326141B2 (en) * 2006-03-13 2008-02-05 Bae Systems Information And Electronic Systems Integration Inc. Compact fault tolerant variable cross-drive electromechanical transmission
JP2009532277A (ja) * 2006-04-03 2009-09-10 ブルーウェイヴ システムズ エルエルシー 電気推進システム
US20090072083A1 (en) * 2006-06-02 2009-03-19 Honeywell International, Inc. Actuation system with redundant motor actuators
DE102007048642A1 (de) * 2007-10-10 2009-04-16 Mtu Aero Engines Gmbh Elektrischer Antrieb, insbesondere für eine Kraftstoffzumesseinheit für ein Flugzeugtriebwerk
FR2925624B1 (fr) * 2007-12-24 2009-12-18 Sonceboz Sa Systeme de soupape de commande hydraulique
US7882778B2 (en) * 2008-03-11 2011-02-08 Woodward Hrt, Inc. Hydraulic actuator with floating pistons
US8232750B2 (en) * 2010-02-25 2012-07-31 Quantum Fuel Systems Technologies Worldwide, Inc. Broad turndown ratio traction drive
US8620522B2 (en) * 2011-05-25 2013-12-31 The Boeing Company Suppressing electrical failure effects in servo control systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376276A (en) 1976-12-20 1978-07-06 Mitsubishi Heavy Ind Ltd Hydraulic operation unit
JPH0460203A (ja) * 1990-06-28 1992-02-26 Kayaba Ind Co Ltd サーボバルブ
JPH09144713A (ja) * 1995-11-20 1997-06-03 Teijin Seiki Co Ltd アクチュエータ制御装置
JPH09328098A (ja) * 1996-04-10 1997-12-22 Teijin Seiki Co Ltd 舵面駆動用アクチュエータの制御回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160078978A (ko) * 2013-10-03 2016-07-05 트랜스오션 이노베이션 랩스 리미티드 유압 디바이스 및 그 작동 방법
JP2016537568A (ja) * 2013-10-03 2016-12-01 トランスオーシャン イノベーション ラブス リミテッド 液圧デバイスおよびそれを作動する方法
KR102297588B1 (ko) * 2013-10-03 2021-09-07 트랜스오션 이노베이션 랩스 리미티드 유압 디바이스 및 그 작동 방법
JP2019157626A (ja) * 2019-07-01 2019-09-19 トランスオーシャン イノベーション ラブス リミテッド 液圧デバイスおよびそれを作動する方法

Also Published As

Publication number Publication date
JP5426037B2 (ja) 2014-02-26
US9587658B2 (en) 2017-03-07
US20130239797A1 (en) 2013-09-19
JPWO2012070392A1 (ja) 2014-05-19
EP2644907A4 (en) 2015-12-23
EP2644907A1 (en) 2013-10-02
EP2644907B1 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
US20210339727A1 (en) Pressure generating device and operating method comprising an electrically driven dual-action reciprocating piston
JP4874815B2 (ja) 別々のアクチュエータのダイナミック流体動力モニタリングシステム
JP5265981B2 (ja) 車両駆動列から車両の複数の車輪へトルクを伝達する装置及び少なくとも2つの車両駆動部品へトルクを伝達する方法
EP1846291B1 (en) Dual motor dual concentric valve
CN1854532B (zh) 用于驱动风扇和对制动器充液的电子液压系统
JP5426037B2 (ja) 液圧シリンダシステム
KR101283049B1 (ko) 자동변속기 유압제어장치
JP5179280B2 (ja) 車両駆動列から車両の車輪へトルクを伝達する装置及び車両駆動部品へトルクを伝達する方法
EP2512892B1 (en) Variator fault detection system
JP5865187B2 (ja) 電動式オイルポンプ制御システム
JP5391086B2 (ja) 飛行制御システム
JP2005265062A (ja) 作業機械の油圧制御装置
CN103946578A (zh) 用于机动车辆传动系的致动器装置以及致动器装置的操控方法
EP1707691A1 (en) Driving motor controlling device of construction machine
US20180208299A1 (en) Actuator in a landing gear system of an aircraft
JP6714499B2 (ja) 油圧アクチュエータを含む電動油圧システム
EP2905497B1 (en) Selective electrical control of electromechanical clutch assmbly
JP2010048359A (ja) 建設機械のポンプ制御回路
KR101210206B1 (ko) 자동변속기 유압제어장치
JP5573012B2 (ja) オルダム・ジョイント
JP5504871B2 (ja) 2重制御アクチュエータ装置
JP5015880B2 (ja) 建設機械のポンプ制御回路
KR20090063461A (ko) 고장 안정성 및 제어정밀도가 높은 멀티모터장치
WO2018194091A1 (ja) 油圧システム
US9050981B2 (en) System and method for providing fault mitigation for vehicle systems having high and low side drivers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012545676

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011842572

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13989481

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE