WO2012066924A1 - Radical-curable resin composition, coating material and civil engineering building structure each using radical-curable resin composition, and method for constructing civil engineering building structure - Google Patents

Radical-curable resin composition, coating material and civil engineering building structure each using radical-curable resin composition, and method for constructing civil engineering building structure Download PDF

Info

Publication number
WO2012066924A1
WO2012066924A1 PCT/JP2011/075047 JP2011075047W WO2012066924A1 WO 2012066924 A1 WO2012066924 A1 WO 2012066924A1 JP 2011075047 W JP2011075047 W JP 2011075047W WO 2012066924 A1 WO2012066924 A1 WO 2012066924A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
curable resin
acid
polyester
Prior art date
Application number
PCT/JP2011/075047
Other languages
French (fr)
Japanese (ja)
Inventor
松本 高志
三田 俊夫
河合 功
優子 瀧川
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2012510834A priority Critical patent/JP5003854B2/en
Priority to CN201180020857.4A priority patent/CN102858824B/en
Priority to KR1020127024206A priority patent/KR20130132692A/en
Publication of WO2012066924A1 publication Critical patent/WO2012066924A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00

Definitions

  • the present invention is a radical having excellent storage stability by improving compatibility, excellent balance between tensile strength and tensile elongation of cured product at normal temperature and low temperature, excellent viscosity at low temperature, and excellent aggregate sedimentation.
  • the present invention relates to a curable resin composition, a covering material using the curable resin composition, a civil engineering structure, and a construction method thereof.
  • radical curable unsaturated resins such as unsaturated polyester resins, vinyl ester resins, urethane methacrylate resins and polyester methacrylate resins are used in order to shorten the construction period and cope with winter construction.
  • unsaturated polyester resins vinyl ester resins
  • urethane methacrylate resins and polyester methacrylate resins
  • polyester methacrylate resins are used in order to shorten the construction period and cope with winter construction.
  • oxygen in the air inhibits radical polymerization, there are disadvantages that the surface of the coating film is poorly dried and that dirt easily adheres. Therefore, a mixture of an unsaturated resin, a vinyl ester resin, and a polyester methacrylate resin in which a cycloaliphatic unsaturated dibasic acid is used as an air drying component has been proposed. (See Patent Document 1, Examples 5 and 6)
  • Patent Document 2 a mixed resin of an air-drying unsaturated polyester resin and an unsaturated polyester methacrylate resin has been proposed as a urethane methacrylate resin.
  • such a mixed resin composition has a problem in that the compatibility is poor due to the type of the polymerizable unsaturated monomer and the layers are separated during storage.
  • the subject of the present invention is excellent in storage stability by improving compatibility when mixing urethane methacrylate resin and polyester methacrylate resin, and excellent in balance between tensile strength and tensile elongation of cured product at normal temperature and low temperature, It exists in the radical curable resin composition which is excellent in the viscosity at low temperature, and is excellent in aggregate sedimentation, a coating material using the same, a civil engineering building structure, and its construction method.
  • the inventors of the present invention are radical curing containing a urethane methacrylate resin (A), a polyester methacrylate resin (B), and an ethylenically unsaturated monomer (C) having a (meth) acryloyl group. Focusing on the functional resin composition, we have conducted extensive research.
  • the present inventors first considered the use of a compatibilizing agent to improve the compatibility and studied the types.
  • a compatibilizing agent to improve the compatibility and studied the types.
  • the compatibility between the urethane methacrylate resin and the polyester methacrylate resin is improved when a dicyclopentadiene-based unsaturated polyester resin is used among various compatibilizers.
  • the compatibility between the urethane methacrylate resin and the polyester methacrylate resin was poor.
  • tensile properties particularly tensile elongation at low temperatures, are poor.
  • the present inventors conducted extensive research on the combination of the urethane methacrylate resin and the polyester methacrylate resin in combination with the amount of the dicyclopentadiene-based unsaturated polyester resin used as the compatibilizer.
  • the present invention relates to a radical curable resin composition containing a urethane methacrylate resin (A), a polyester methacrylate resin (B), and an ethylenically unsaturated monomer (C) having a (meth) acryloyl group.
  • the urethane methacrylate resin (A) is obtained by reacting the polyisocyanate (a) with the polyether polyol (b) and then with the hydroxyalkyl methacrylate, and the polyester methacrylate resin (B) is an acid component.
  • a specific urethane methacrylate resin (A) and a specific polyester methacrylate resin (B) are mixed, a specific amount of the dicyclopentadiene-based unsaturated polyester resin (D) is added so that the compatibility is excellent.
  • Radical curable resin composition excellent in tensile elongation and tensile strength at room temperature and low temperature, and further excellent in viscosity at low temperature, and excellent in sagging resistance and aggregate sedimentation, and coating material using the same
  • the present invention provides a civil engineering structure and a construction method thereof.
  • the urethane methacrylate resin (A) is obtained by reacting polyisocyanate (a) with polyether polyol (b) and then reacting with hydroxyalkyl methacrylate (c).
  • the number average molecular weight of the urethane methacrylate resin (A) is 800 to 50,000 from the viewpoint of further improving the compatibility with the polyester methacrylate resin (B) described later, particularly tensile properties at low temperatures, viscosity at low temperatures, and the like. It is preferable that it is 1000 to 20000.
  • the number average molecular weight of the urethane methacrylate resin (A) is a value determined by gel conversion using gel permeation chromatography (GPC).
  • polyisocyanate (a) examples include 2,4-tolylene diisocyanate and its isomer or a mixture of isomers (hereinafter abbreviated as tolylene diisocyanate or TDI), diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate.
  • TDI tolylene diisocyanate
  • diphenylmethane diisocyanate diphenylmethane diisocyanate
  • hexamethylene diisocyanate hexamethylene diisocyanate
  • isophorone diisocyanate xylylene diisocyanate.
  • the polyether polyol (b) preferably has a number average molecular weight of 400 or more, particularly preferably 400 to 3000, such as polypropylene glycol (hereinafter abbreviated as PPG), polytetramethylene glycol (hereinafter referred to as PTMG). Abbreviated), polyoxyethylene diol and the like.
  • PPG polypropylene glycol
  • PTMG polytetramethylene glycol
  • polyoxyethylene diol and the like.
  • the number average molecular weight of the polyether polyol (b) is a value determined by gel conversion using gel permeation chromatography (GPC).
  • hydroxyalkyl methacrylate (c) examples include 2-hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate.
  • an allyl ether group may be introduced into the polymer in order to improve anaerobic (odor) properties during curing. From the viewpoint of resin synthesis, those derived from a hydroxyl group-containing allyl ether compound are preferred.
  • hydroxyl group-containing allyl ether compound known and commonly used ones can be used.
  • typical examples include ethylene glycol monoallyl ether, diethylene glycol monoallyl ether, triethylene glycol monoallyl ether, polyethylene glycol monoallyl.
  • Ether propylene glycol neryl ether, dipropylene glycol monoallyl ether, tripropylene glycol monoallyl ether, polypropylene glycol monoallyl ether, 1,2-butylene glycol monoallyl ether, 1,3-butylene glycol monoallyl ether, hexylene Glycol monoallyl ether, octylene glycol monoallyl ether, trimethylolpropane diallyl ether, glycerin Diallyl ether, include allyl ether compound of a polyhydric alcohol such as pentaerythritol triallyl ether, allyl ether compound having one hydroxyl group are preferred.
  • a method of producing a urethane methacrylate resin (A) having a methacryloyl group at the terminal by producing it and then reacting it with 2 to 2.1 mol of hydroxyalkyl methacrylate (c) can be mentioned.
  • the hydroxyalkyl methacrylate (c) and the polyisocyanate (a) are reacted to obtain a methacryloyl group-containing monoisocyanate, and then the obtained methacryloyl group-containing monoisocyanate,
  • a method of obtaining a urethane methacrylate resin (A) having a methacryloyl group at the terminal by reacting with the polyether polyol (b) in the presence of polyisocyanate may be mentioned.
  • a method may be mentioned in which a group-containing compound is produced, and then a hydroxyl group-containing acrylic compound and a hydroxyl group-containing allyl ether compound are reacted so that the hydroxyl group is approximately equivalent to the isocyanate group.
  • the molar ratio of the hydroxyl group-containing methacrylic compound / hydroxyl group-containing allyl ether compound is preferably 90/10 to 20/80, more preferably 70/30 to 40/60.
  • the hydroxyl group-containing methacrylic compound and the hydroxyl group-containing allyl ether compound and polyisocyanate are reacted, and then the obtained isocyanate group-containing compound and polyether polyol (b) are reacted,
  • a method for producing an allyl ether group-containing polyether urethane methacrylate resin may be mentioned.
  • the urethane methacrylate resin (A) may be previously mixed with an ethylenically unsaturated monomer having a (meth) acryloyl group as the component (C) described later.
  • a polymerization inhibitor may be added when the urethane methacrylate resin (A) is produced or after the production.
  • polymerization inhibitor for example, toluhydroquinone, hydroquinone, benzoquinone, toluhydroquinone, p-tert-butylcatechol, 2,6-tert-butyl-4-methylphenol can be used.
  • the amount of the polymerization inhibitor used is preferably 100 to 200 ppm with respect to 100 parts by mass of the urethane methacrylate resin (A).
  • polyester methacrylate resin (B) used in the present invention will be described.
  • the polyester methacrylate resin (B) is one having at least one methacryloyl group at the end of a saturated polyester resin synthesized from a glycol component and an acid component, and preferably one methacryloyl group at each end. It is what has.
  • polyester methacrylate resin (B) it is essential to use 40 mol% or more of adipic acid as the acid component in order to solve the problems of the present invention.
  • the aggregate sedimentation property is particularly poor.
  • the acid component is more preferably one containing 50 to 100 mol% of adipic acid.
  • the number average molecular weight of the polyester methacrylate resin (B) is 2000 to 4000 in order to solve the problem of the present invention.
  • the number average molecular weight of the polyester methacrylate resin (B) is a value determined by gel conversion using gel permeation chromatography (GPC).
  • the saturated polyester resin synthesized from the glycol component and the acid component is obtained by a polycondensation reaction between an acid component containing a saturated dibasic acid and a polyhydric alcohol component containing glycol.
  • an aliphatic dibasic acid (B1), an alicyclic dibasic acid (B2), and an aromatic dibasic acid (B3) can be used as an acid component of a polyester structure.
  • adipic acid is used as the acid component, preferably 50 mol% to 100 mol%, and other acid components include aliphatic dibasic acids other than adipic acid,
  • the alicyclic dibasic acid (B2) and the aromatic dibasic acid (B3) are used in an amount of 60 mol% or less, preferably 50 mol% or less.
  • aliphatic dibasic acid other than the adipic acid examples include oxalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedioic acid, and the like.
  • Examples of the alicyclic dibasic acid (B2) include hexahydrophthalic acid, hexahydrophthalic anhydride, hexahydroterephthalic acid, and hexahydroisophthalic acid.
  • Examples of the aromatic dibasic acid (B3) include phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, and the like.
  • the polyhydric alcohol is preferably an aliphatic or alicyclic alcohol having two hydroxyl groups, such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, Tetraethylene glycol, 2-methyl-1,3-propanediol, 1,3-butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, 1,6-hexanediol, 1,2,3 , 4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexaneglycol, 1,3- Chrohexane glycol, 1,4-cyclohexane glycol, 1,4-cyclohexanedim
  • the compound containing the functional group and methacryloyl group which react with this functional group in the functional group (hydroxyl group and / or carboxyl group) of the terminal of the said saturated polyester is mentioned, for example. It is obtained by reacting.
  • the compound to be reacted include glycidyl (meth) acrylate, various unsaturated monobasic acids such as acrylic acid or methacrylic acid, and glycidyl esters thereof.
  • reaction with the saturated polyester From the viewpoint of properties and easy availability of raw materials, glycidyl methacrylate is preferred.
  • the urethane methacrylate resin (A) and the polyester methacrylate resin (B) have a mass ratio of (A) / (B) of 90/10 from the viewpoint that tension, viscosity, compatibility, particularly sagging resistance can be further improved. It is preferably ⁇ 20 / 80, more preferably 70/30 to 40/60.
  • the polyester methacrylate resin (B) may be an air drying polyester methacrylate resin using an air drying property imparting group-containing compound.
  • the air-drying polyester methacrylate resin is obtained by polycondensation reaction of an acid component composed of a saturated dibasic acid, a polyhydric alcohol component composed of glycol, and an air-drying imparting group-containing compound component.
  • the ethylenically unsaturated monomer (C) is capable of crosslinking with the urethane methacrylate resin (A) and the polyester methacrylate resin (B), and is preferably a monomer having a methacryloyl group. It is particularly preferable to use a methacrylic acid ester monomer. Although an ethylenically unsaturated monomer having no methacryloyl group can also be used, when the amount thereof increases in the component (C), the copolymerization with the urethane methacrylate resin (A) becomes worse and the curing time becomes longer. Therefore, it is not preferable.
  • Examples of the ethylenically unsaturated monomer (C) include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, methyl methacrylate, ethyl methacrylate, and methacrylic acid.
  • Those having a molecular weight of 150 or less, such as butyl, are preferably used from the viewpoints of compatibility with (A) and (B) and viscosity.
  • an ethylenically unsaturated monomer having a (meth) acryloyl group having a molecular weight of more than 150 can also be used, but it is contained in the monomer (C) component in an amount of 0 to less than 50% by mass and about 0 to 20% by mass. Is preferred.
  • Examples of the ethylenically unsaturated monomer having a (meth) acryloyl group having a molecular weight greater than 150 include 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, decyl (meth) acrylate, ( Lauryl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, ⁇ -ethoxyethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, cyclohexyl (meth) acrylate, ( Diethylaminoethyl (meth) acrylate, butyl (meth) methacrylate, hexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, phenylcarbit
  • ethylenically unsaturated monomer (C) a compound having at least two polymerizable double bonds in one molecule can be used, and the abrasion resistance and scratch resistance of the cured product surface can be used.
  • 0 to less than 50% by mass preferably about 0 to 20% by mass, may be used in combination in the monomer (C) component.
  • This compound having at least two polymerizable double bonds in one molecule preferably a polyfunctional (meth) acrylic acid ester monomer, such as ethylene glycol di (meth) acrylate, 1,2-propylene glycol diester Alkanediol di- (meth) acrylate such as (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tri Polyoxyalkylene-glycol di (meth) acrylates such as ethylene glycol (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, divinylbenzene, diallyl phthalate, triallyl phthalate Triallyl cyanurate, triallyl isocyanurate, allyl (meth) acrylate, diallyl fumarate, and the like,
  • an ethylenically unsaturated monomer other than those described above may be used in combination with the ethylenically unsaturated monomer (C) as long as the effects of the present invention are not impaired.
  • allyl monomers such as styrene, vinyl acetate, vinyl toluene, ⁇ -methyl styrene, diallyl phthalate, diallyl isophthalate, triallyl isocyanurate, diallyl tetrabromophthalate; acrylonitrile, glycidyl methacrylate, n-methylol acrylamide-butyl ether,
  • hard monomers such as n-methylolacrylamide and acrylamide.
  • an air-drying polymerizable unsaturated monomer can be used in combination, and 0 to less than 50% by mass in the monomer (C) component, preferably 0 to 20% by mass can be used.
  • acrylic acid derivatives such as dicyclopentadiene, tricyclodecane, silicicyclodecane, triazine, such as dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, Examples include tricyclo [5-2-1-02,6] decanyl (meth) acrylate and tris (2-hydroxyethyl) isocyanur (meth) acrylate, and the same applies to drying oils and epoxy reactive diluents described later. Can be used for
  • the unsaturated alcohol monomer is similarly 0 to less than 50% by mass, preferably 0 to 20% in the (C) monomer component. It can also be used in combination with about mass%.
  • the unsaturated alcohol monomer has a (meth) acryloyl group and a hydroxyl group. Specific examples thereof include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and (meth) acrylic. 2-hydroxyethyl acid, hydroxypropyl (meth) acrylate, and the like. These are used when the composition of the present invention is used for the purpose of imparting a hydrophilic function or improving resin compatibility.
  • the blending ratio [(A + B) / () of the polymer component (A) + (B) obtained by adding the urethane methacrylate resin (A) and the polyester methacrylate resin (B) and the ethylenically unsaturated monomer (C). C)] is preferably 2/8 to 8/2 in terms of mass ratio, more preferably 4/6 to 7/3, from the viewpoint of further improving curability and viscosity.
  • dicyclopentadiene unsaturated polyester resin (D) used in the present invention will be described.
  • the dicyclopentadiene-based unsaturated polyester resin (D) is a compatibilizing agent that improves the compatibility of the urethane methacrylate resin (A), the polyester methacrylate resin (B), and the ethylenically unsaturated monomer (C). It functions as.
  • the dicyclopentadiene-based unsaturated polyester resin (D) is obtained by reacting an ⁇ , ⁇ -unsaturated carboxylic acid and / or a saturated carboxylic acid, a polyhydric alcohol, and dicyclopentadiene.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid include fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, chloromaleic acid, and dimethyl esters thereof. You may use individually or in combination of 2 or more types. Especially, it is more preferable to use maleic anhydride from a viewpoint which can improve compatibility more.
  • saturated carboxylic acid examples include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, het acid, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, adipic acid, sebacic acid, azelaic acid, and the like. You may use individually or in combination of 2 or more types.
  • polyhydric alcohol the polyhydric alcohol mentioned above can be used individually or in combination of 2 or more types.
  • ethylene glycol and diethylene glycol are more preferable from the viewpoint of further improving the compatibility.
  • Examples of the method for producing the dicyclopentadiene-based unsaturated polyester resin (D) include the ⁇ , ⁇ -unsaturated carboxylic acid and / or the saturated carboxylic acid, the polyhydric alcohol, and the dicyclopentadiene.
  • a method of performing a condensation reaction by charging in a reaction system, or reacting the ⁇ , ⁇ -unsaturated carboxylic acid and / or saturated carboxylic acid with the dicyclopentadiene first, and then supplying the polyhydric alcohol.
  • a method of performing a condensation reaction is preferably performed at a temperature of 150 to 250 ° C. in an inert gas atmosphere.
  • the reaction ratio of the ⁇ , ⁇ -unsaturated carboxylic acid and / or saturated carboxylic acid, the polyhydric alcohol, and the dicyclopentadiene is the ⁇ , ⁇ -unsaturated carboxylic acid and / or saturated carboxylic acid 1
  • the polyhydric alcohol is preferably reacted in an amount of 0.3 to 0.7 mol and the dicyclopentadiene in an amount of 0.7 to 1.3 mol with respect to mol.
  • the acid value of the dicyclopentadiene unsaturated polyester resin (D) obtained by the above method is preferably 10 to 40 mgKOH / g, and more preferably 10 to 30 mgKOH / g.
  • the acid value of the dicyclopentadiene unsaturated polyester resin (D) is a value measured according to JIS K1557-5.
  • the number average molecular weight of the dicyclopentadiene unsaturated polyester resin (D) is preferably 1000 to 40000, more preferably 1000 to 10000, from the viewpoint of further improving curability, viscosity, compatibility, and the like. More preferably, it is particularly preferably 1000 to 3000.
  • the dicyclopentadiene unsaturated polyester resin (D) may be added in an amount of 5 to 25 parts by mass with respect to 100 parts by mass in total of the resin (A) and the resin (B). It is essential to solve the problems of the invention. When the addition amount is less than 5 parts by mass or exceeds 25 parts by mass, the compatibility and particularly the tensile elongation at low temperatures are poor. The addition amount is more preferably 10 to 20 parts by mass, and particularly preferably 15 to 20 parts by mass from the viewpoint of further improving the compatibility and particularly the tensile elongation at low temperatures.
  • the radical curable resin composition of the present invention includes the urethane methacrylate resin (A), the polyester methacrylate resin (B), the ethylenically unsaturated monomer (C), the dicyclopentadiene unsaturated polyester resin (D ), And other additives.
  • the radical curable resin composition of the present invention is excellent in low viscosity at low temperature and has a viscosity at 5 ° C. of 1000 to 2500 mPa ⁇ s, preferably 1500 to 2000 mPa ⁇ s.
  • the viscosity is a value measured with a rotary viscometer according to JIS K6901-5.5 after adjusting the radical curable resin composition of the present invention to 5 ° C.
  • thermoplastic resins paraffins and / or waxes
  • radical curing agents photo radical polymerization initiators, polymerization inhibitors, curing accelerators, fillers, aggregates, pigments, dyes, and the like.
  • Coloring agents, fiber reinforcements and the like can be mentioned.
  • thermoplastic resin It can be used for the purpose of improving the air curability of the thermoplastic resin and resin cured product and for the purpose of reducing curing shrinkage.
  • specific examples of the thermoplastic resin include lower alkyl esters of acrylic acid or methacrylic acid such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, and ethyl acrylate, and monomers such as styrene, vinyl chloride, and vinyl acetate.
  • Homopolymers or copolymers at least one of the vinyl monomers, lauryl methacrylate, isovinyl methacrylate, acrylamide, methacrylamide, hydroxyalkyl acrylate or methacrylate, acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid,
  • polyethylene Polypropylene may be mentioned polymers such as saturated polyester.
  • the addition amount is preferably 0 to 50 parts by mass, particularly preferably 0 to 35 parts by mass with respect to a total of 100 parts by mass of (A) + (B) + (C).
  • paraffin and / or waxes can be used for the purpose of further improving the room temperature drying property of the radical curable resin composition.
  • paraffin and / or wax examples include paraffin wax, polyethylene wax, higher fatty acids such as stearic acid and 1,2-hydroxystearic acid, and paraffin wax is preferably used.
  • This paraffin wax is added for the purpose of improving the air barrier action and the stain resistance during the curing reaction on the coating film surface.
  • the addition amount is 0.1 to 5 parts by mass, preferably 0.2 to 2 parts by mass, with respect to 100 parts by mass in total of (A) + (B) + (C).
  • the radical curing agent can be used for the purpose of adjusting the curing rate of the resin composition.
  • the radical curing agent is preferably an organic peroxide.
  • organic peroxides such as diacyl peroxide, peroxy ester, hydroperoxide, dialkyl peroxide, ketone peroxide, peroxyketal, alkyl perester, and carbonate Can be used alone or in combination of two or more, and is appropriately selected depending on kneading conditions, curing temperature, and the like. Benzoyl peroxide is preferred.
  • the amount of the radical curing agent added is preferably 0.01 to 4 parts by mass with respect to 100 parts by mass in total of (A) + (B) + (C).
  • the curing accelerator can decompose the organic peroxide of the radical curing agent by a redox reaction to facilitate generation of active radicals.
  • the curing accelerator include tertiary amines, quaternary ammonium salts, mercaptans, and the like.
  • metal soaps such as cobalt type, vanadium type, and manganese type, Preferably it is cobalt type metal soap.
  • the tertiary amines are amine compounds such as aniline, N, N-dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, N, N-bis ( 2-hydroxyethyl) -p-toluidine (abbreviated as PTD-2EO), N-methyl-N- (2-hydroxyethyl) -p-toluidine, N-ethyl-N- (2-hydroxyethyl) -p-toluidine N-methyl-N- (2-hydroxyethyl) -m-toluidine, N-ethyl-N- (2-hydroxyethyl) -m-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [ N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino)
  • N-substituted aniline N, N-substituted-p-toluidine, 4- (N, N-substituted amino) benzaldehyde and the like. More preferred is N, N-substituted-p-toluidine, especially PTD-2EO.
  • the amount added is preferably 0.1 to 3 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass in total of (A) + (B) + (C).
  • cobalt metal soap examples include cobalt naphthenate, cobalt octylate, zinc octylate, vanadium octylate, copper naphthenate, and barium naphthenate.
  • the fiber reinforcing material for example, glass fibers, amides, aramids, vinylons, polyesters, phenols and other organic fibers, carbon fibers, metal fibers, ceramic fibers, or a combination thereof are used.
  • glass fibers and organic fibers are preferable.
  • the fiber forms include plain weave, satin weave, non-woven fabric, mat shape, etc. The mat shape is preferred from the construction method, thickness maintenance, etc.
  • the glass roving is cut into 10-100 mm and used as chopped strands It is also possible to do.
  • filler examples include calcium carbonate powder, clay, alumina powder, aragonite powder, talc, barium sulfate, silica powder, glass powder, glass beads, mica, aluminum hydroxide, cellulose yarn, cinnabar sand, river sand, cold water stone, marble, Examples include crushed stones and glass balloons. Among them, crushed stones, colored porcelain aggregates and the like are preferably used for pavement materials that provide slip resistance.
  • the composition of the present invention has a solar reflectance of 15% or more in the wavelength range of 350 to 2100 nm as defined in JIS A 5759 for the purpose of heat shielding, and in the CIE 1976 L * a * b * color space.
  • a pigment having an L * value of 30 or less, more preferably an L * value of 24 or less is preferably used.
  • coloring pigments examples include yellow pigments such as monoazo yellow (trade name Hoster Palm Yellow H3G: manufactured by Hoechst), iron oxide (trade name Toda Color 120ED: manufactured by Toda Kogyo Co., Ltd.), Red pigments such as quinacridone red (trade name Hostaperm Red E2B70: manufactured by Hoechst), blue pigments such as phthalocyanine blue (trade name cyanine blue SPG-8: manufactured by DIC Corporation), phthalocyanine green (trade name cyanine) Green 5310: manufactured by Dainichi Seika Kogyo Co., Ltd.) and the like.
  • yellow pigments such as monoazo yellow (trade name Hoster Palm Yellow H3G: manufactured by Hoechst), iron oxide (trade name Toda Color 120ED: manufactured by Toda Kogyo Co., Ltd.), Red pigments such as quinacridone red (trade name Hostaperm Red E2B70: manufactured by Hoechst), blue pigments such as phthalocyanine blue (trade name
  • the covering material of the present invention is a civil engineering and building material excellent in low-temperature flexibility and low-temperature curability, and is used as, for example, paint, flooring and wall coating materials, waterproofing materials, lining materials, road markings, non-slip paving materials, etc.
  • it is a non-slip coating material.
  • it can be used for a wide range of applications such as cast products, laminated products, molded products such as corrugated plates, and adhesives.
  • the civil engineering building structure of the present invention is a civil engineering building base made of wood, metal, concrete, asphalt, etc., and is coated with the coating material of the present invention on, for example, paved roads, floors, sidewalks and the like.
  • a curing agent or the like is added to the resin composition of the present invention, and application work such as spray coating, brush coating, roll coating, etc. on the surface of civil engineering buildings, for example, asphalt surfaces and concrete surfaces, etc. Is to do.
  • application work such as spray coating, brush coating, roll coating, etc. on the surface of civil engineering buildings, for example, asphalt surfaces and concrete surfaces, etc. Is to do.
  • an anti-slip layer can be formed by spreading aggregates such as crushed stone on the surface after application.
  • the specific urethane methacrylate resin and the polyester methacrylate resin are compatible with each other, the crushed stone settles appropriately until it is cured, so that the crushed stone is hardly peeled off.
  • Synthesis Example 1 Synthesis of urethane methacrylate resin (UMA1) Thermometer, stirrer, inert gas inlet, air inlet, and polytetramethylene glycol having a number average molecular weight of 1000 in a 1-liter four-necked flask equipped with a reflux condenser 500 g (abbreviated as PTMG) and 174 g of tolylene diisocyanate (abbreviated as TDI) were charged and reacted at 80 ° C. for 4 hours in a nitrogen stream. Since the NCO equivalent was almost the theoretical equivalent of 600, it was cooled to 50 ° C.
  • UMA1 urethane methacrylate resin
  • urethane methacrylate resin UMA1 having a number average molecular weight of 1608.
  • Synthesis Example 2 Synthesis of Urethane Methacrylate Resin (UMA2)
  • Urethane Methacrylate Resin (UMA2) PPG, TDI, and HEMA with a number average molecular weight of 1000 are used and urethane with a number average molecular weight of 1608 is blended in the same molar ratio as in Synthesis Example 1.
  • a methacrylate resin (UMA2) was synthesized.
  • Synthesis Example 3 Synthesis of Urethane Methacrylate Resin (UMA3) In the same manner as in Synthesis Example 1 above, urethane having a number average molecular weight of 2608 with the same molar ratio blended as in Synthesis Example 1 using PPG, TDI, and HEMA with a number average molecular weight of 2000. A methacrylate resin (UMA3) was synthesized.
  • Synthesis Example 4 Synthesis of polyester methacrylate resin (B-1) 9 mol of adipic acid and 8 mol of diethylene glycol were charged into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, and used as an esterification catalyst. Monobutyltin oxide was added at 0.5% by mass and reacted at 205 ° C. for 11 hours. Thereafter, the mixture was cooled to 140 ° C., and then 2 mol of glycidyl methacrylate was added and reacted for 10 hours to obtain a polyester methacrylate resin (B-1) having a number average molecular weight of 2,150 and a specific gravity of 1.05.
  • Synthesis Example 5 Synthesis of polyester methacrylate resin (B-2) 10 mol of adipic acid and 9 mol of diethylene glycol were charged into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser as an esterification catalyst. Monobutyltin oxide was added at 0.5% by mass and reacted at 205 ° C. for 11 hours. Thereafter, the mixture was cooled to 140 ° C., then 2 mol of glycidyl methacrylate was added and reacted for 10 hours to obtain a polyester methacrylate resin (B-2) having a number average molecular weight of 2,374 and a specific gravity of 1.05.
  • Synthesis Example 7 Synthesis of polyester methacrylate resin (B-4) 5 mol of adipic acid and 4 mol of diethylene glycol were charged into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser as an esterification catalyst. Monobutyltin oxide was added at 0.5% by mass and reacted at 205 ° C. for 11 hours. Thereafter, the mixture was cooled to 140 ° C., and then 2 mol of glycidyl methacrylate was added and reacted for 10 hours to obtain a polyester methacrylate resin (B-4) having a number average molecular weight of 1,300 and a specific gravity of 1.04.
  • Synthesis Example 8 Synthesis of Polyester Methacrylate Resin (B-5) 20 mol of adipic acid and 19 mol of diethylene glycol were charged into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser as an esterification catalyst. Monobutyltin oxide was added at 0.5% by mass and reacted at 205 ° C. for 11 hours. Thereafter, the mixture was cooled to 140 ° C., then 2 mol of glycidyl methacrylate was added and reacted for 10 hours to obtain a polyester methacrylate resin (B-5) having a number average molecular weight of 4,534 and a specific gravity of 1.10.
  • Synthesis Example 9 Synthesis of polyester methacrylate resin (B-6) 15 mol of phthalic anhydride and 14 mol of diethylene glycol were charged into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, and an esterification catalyst As a result, 0.5% by mass of monobutyltin oxide was added and reacted at 205 ° C. for 11 hours. Thereafter, the mixture was cooled to 140 ° C., then 2 mol of glycidyl methacrylate was added and reacted for 10 hours to obtain a polyester methacrylate resin (B-6) having a number average molecular weight of 3,660 and a specific gravity of 1.05.
  • Synthesis Example 10 Synthesis of dicyclopentadiene-based unsaturated polyester resin (D-1) 2 moles of water and 2 moles of dicyclopentadiene were placed in a four-necked flask equipped with a thermometer, stirrer, inert gas inlet, and reflux condenser. After charging and heating up to 80 ° C., 2 mol of maleic anhydride was added dropwise and reacted until the acid value reached 210 mgKOH / g.
  • Examples 1 to 6 and Comparative Examples 1 to 6 A resin composition obtained by blending (A) to (D) shown in Tables 1 and 2 contains 0.4 parts by mass of PTD-2EO as a curing accelerator and Nyper NS (BPO: 40% benzoyl peroxide) as a curing agent. , Manufactured by Nippon Oil & Fats Co., Ltd.) was added to prepare a cured coating film.
  • PTD-2EO curing accelerator
  • Nyper NS BPO: 40% benzoyl peroxide
  • Aggregate sedimentation 1.6kg / m 2 of coated resin, 6.5kg / m 2 of colored porcelain aggregate (B grain) is sprayed on the resin after hardening the resin. The sedimentation state was observed.
  • Aggregate (B grain) settles 2/3 or more of the coating thickness.
  • Aggregate (B grain) settles about 1/3 to 2/3 of the coating thickness.
  • X Aggregate (B grain) settles to 1/3 of coating film thickness.
  • Colored porcelain aggregate Silica sand, feldspar, porcelain stone, etc. are baked at about 1300 ° C. or higher together with pigments. Standard chemical composition is SiO 2 : 75.3%, Al 2 O 3 : 20.6%, Na 2 O: 1.1%, K 2 O 3 : 2.3%
  • Viscosity After adjusting the temperature of the resin composition to 5 ° C., the viscosity was measured with a rotary viscometer according to JIS K6901-5.5.

Abstract

A radical-curable resin composition comprising a urethane methacrylate resin (A), a polyester methacrylate resin (B), and an ethylenically unsaturated monomer having a (meth)acryloyl group (C), characterized in that the urethane methacrylate resin (A) is obtained by reacting a polyisocyanate (a) with a polyether polyol (b) and then reacting the resulting product with a hydroxyalkyl methacrylate, the polyester methacrylate resin (B) is obtained by using 40 mol% or more of adipic acid as an acid component and has a number average molecular weight of 2000 to 4000, and a dicyclopentadiene unsaturated polyester resin (D) as a compatibilizer is contained in an amount of 5 to 25 parts by mass with respect to 100 parts by mass of the total amount of the resin (A) and the resin (B).

Description

ラジカル硬化性樹脂組成物、それを用いた被覆材、土木建築構造体及びその施工方法Radical curable resin composition, coating material using the same, civil engineering building structure, and construction method thereof
 本発明は、相溶性改善により保存安定性に優れ、かつ常温及び低温での硬化物の引張強さと引張伸び率とがバランス良く優れ、低温での粘度に優れ、かつ骨材沈降性に優れるラジカル硬化性樹脂組成物、それを用いた被覆材、土木建築構造体及びその施工方法に関する。 The present invention is a radical having excellent storage stability by improving compatibility, excellent balance between tensile strength and tensile elongation of cured product at normal temperature and low temperature, excellent viscosity at low temperature, and excellent aggregate sedimentation. The present invention relates to a curable resin composition, a covering material using the curable resin composition, a civil engineering structure, and a construction method thereof.
 土木建築分野では、工期短縮及び冬季施工に対応する為、不飽和ポリエステル樹脂、ビニルエステル樹脂、ウレタンメタクリレート樹脂、ポリエステルメタクリレート樹脂等のラジカル硬化性不飽和樹脂が使用されている。しかし、屋外で用いる場合には、空気中の酸素がラジカル重合を阻害するため、塗膜表面の乾燥性が悪く、汚れが付着しやすいという欠点がある。そこで、環状脂肪族不飽和二塩基酸を空気乾燥性成分とした不飽和樹脂、ビニルエステル樹脂及びポリエステルメタクリレート樹脂との混合物が提案された。(特許文献1、実施例5,6参照) In the field of civil engineering and construction, radical curable unsaturated resins such as unsaturated polyester resins, vinyl ester resins, urethane methacrylate resins and polyester methacrylate resins are used in order to shorten the construction period and cope with winter construction. However, when used outdoors, since oxygen in the air inhibits radical polymerization, there are disadvantages that the surface of the coating film is poorly dried and that dirt easily adheres. Therefore, a mixture of an unsaturated resin, a vinyl ester resin, and a polyester methacrylate resin in which a cycloaliphatic unsaturated dibasic acid is used as an air drying component has been proposed. (See Patent Document 1, Examples 5 and 6)
 しかし、こうした樹脂混合物は、ビニルエステル樹脂を混合するため硬化物の強度は改善するが、低温での引張伸び率が悪くなるといった問題を生じる。そこで、ウレタンメタクリレート樹脂に空気乾燥性不飽和ポリエステル樹脂と不飽和ポリエステルメタクリレート樹脂との混合樹脂が提案された。(特許文献2) However, such a resin mixture improves the strength of the cured product by mixing the vinyl ester resin, but causes a problem that the tensile elongation at low temperature is deteriorated. Therefore, a mixed resin of an air-drying unsaturated polyester resin and an unsaturated polyester methacrylate resin has been proposed as a urethane methacrylate resin. (Patent Document 2)
 しかし、こうした混合樹脂組成物は、重合性不飽和単量体の種類により、相溶性が悪く保存中に層分離するという問題があった。 However, such a mixed resin composition has a problem in that the compatibility is poor due to the type of the polymerizable unsaturated monomer and the layers are separated during storage.
特開2006-160943号公報JP 2006-160943 A 特開2008-106169号公報JP 2008-106169 A
 本発明の課題は、ウレタンメタクリレート樹脂とポリエステルメタクリレート樹脂とを混合した際の相溶性改善により保存安定性に優れ、かつ常温及び低温での硬化物の引張強さと引張伸び率とがバランス良く優れ、低温での粘度に優れ、骨材沈降性に優れるラジカル硬化性樹脂組成物、それを用いた被覆材、土木建築構造体及びその施工方法にある。 The subject of the present invention is excellent in storage stability by improving compatibility when mixing urethane methacrylate resin and polyester methacrylate resin, and excellent in balance between tensile strength and tensile elongation of cured product at normal temperature and low temperature, It exists in the radical curable resin composition which is excellent in the viscosity at low temperature, and is excellent in aggregate sedimentation, a coating material using the same, a civil engineering building structure, and its construction method.
 本発明者らは、前記課題を解決すべく、ウレタンメタクリレート樹脂(A)とポリエステルメタクリレート樹脂(B)、(メタ)アクリロイル基を有するエチレン性不飽和単量体(C)とを含有するラジカル硬化性樹脂組成物に着目し、鋭意研究を進めた。 In order to solve the above-mentioned problems, the inventors of the present invention are radical curing containing a urethane methacrylate resin (A), a polyester methacrylate resin (B), and an ethylenically unsaturated monomer (C) having a (meth) acryloyl group. Focusing on the functional resin composition, we have conducted extensive research.
 研究を進める中で、まず本発明者等は、相溶性改善のためには相溶化剤の使用が重要であると考え、その種類について研究した。結果、種々ある相溶化剤の中で、ジシクロペンタジエン系不飽和ポリエステル樹脂を使用した場合に、ウレタンメタクリレート樹脂とポリエステルメタクリレート樹脂との相溶性を向上することを見出した。また同時に、前記ジシクロペンタジエン系不飽和ポリエステル樹脂の使用量を振り分けた実験を行った場合には、ウレタンメタクリレート樹脂とポリエステルメタクリレート樹脂との相溶性が不良であることも見出した。また、併せて、引張り物性、特に低温での引張り伸び率が不良となることも見出した。 During the research, the present inventors first considered the use of a compatibilizing agent to improve the compatibility and studied the types. As a result, it has been found that the compatibility between the urethane methacrylate resin and the polyester methacrylate resin is improved when a dicyclopentadiene-based unsaturated polyester resin is used among various compatibilizers. At the same time, when an experiment was conducted in which the amount of the dicyclopentadiene-based unsaturated polyester resin was distributed, it was also found that the compatibility between the urethane methacrylate resin and the polyester methacrylate resin was poor. In addition, it has also been found that tensile properties, particularly tensile elongation at low temperatures, are poor.
 そこで、本発明者等は、相溶化剤として使用する前記ジシクロペンタジエン系不飽和ポリエステル樹脂の使用量と併せて、ウレタンメタクリレート樹脂とポリエステルメタクリレート樹脂の組成との組合せについて鋭意研究を重ねた。 Therefore, the present inventors conducted extensive research on the combination of the urethane methacrylate resin and the polyester methacrylate resin in combination with the amount of the dicyclopentadiene-based unsaturated polyester resin used as the compatibilizer.
 その結果、特定のウレタンメタクリレート樹脂(A)と特定のポリエステルメタクリレート樹脂(B)に対し、ジシクロペンタジエン系不飽和ポリエステル樹脂(D)を特定量加えることで、保存中に層分離しない相溶性、更には、常温及び低温での引張り物性、低温での粘度、耐タレ性、骨材沈降性の全ての満足する樹脂組成物が得られることを見出し、本発明を完成した。 As a result, by adding a specific amount of dicyclopentadiene unsaturated polyester resin (D) to a specific urethane methacrylate resin (A) and a specific polyester methacrylate resin (B), compatibility that does not separate layers during storage, Furthermore, the inventors have found that a resin composition satisfying all of tensile properties at normal and low temperatures, viscosity at low temperature, sagging resistance, and aggregate sedimentation can be obtained, and the present invention has been completed.
 即ち、本発明は、ウレタンメタクリレート樹脂(A)とポリエステルメタクリレート樹脂(B)、(メタ)アクリロイル基を有するエチレン性不飽和単量体(C)とを含有するラジカル硬化性樹脂組成物において、前記ウレタンメタクリレート樹脂(A)が、ポリイソシアネート(a)とポリエーテルポリオール(b)とを反応させ、次いでヒドロキシアルキルメタクリレートと反応させて得られるものであり、前記ポリエステルメタクリレート樹脂(B)が、酸成分としてアジピン酸を40モル%以上使用した数平均分子量2000~4000のものであり、前記樹脂(A)と前記樹脂(B)との合計100質量部に対して、相溶化剤としてジシクロペンタジエン系不飽和ポリエステル樹脂(D)を5~25質量部含有するものであることを特徴とするラジカル硬化性樹脂組成物、それを用いた被覆材、土木建築構造体及びその施工方法を提供するものである。 That is, the present invention relates to a radical curable resin composition containing a urethane methacrylate resin (A), a polyester methacrylate resin (B), and an ethylenically unsaturated monomer (C) having a (meth) acryloyl group. The urethane methacrylate resin (A) is obtained by reacting the polyisocyanate (a) with the polyether polyol (b) and then with the hydroxyalkyl methacrylate, and the polyester methacrylate resin (B) is an acid component. As a compatibilizing agent, a dicyclopentadiene-based compound having a number average molecular weight of 2000 to 4000 using 40 mol% or more of adipic acid as a total of 100 parts by mass of the resin (A) and the resin (B). It contains 5 to 25 parts by mass of unsaturated polyester resin (D) Radical curable resin composition, coating material using the same, there is provided a civil engineering structure and a construction method.
 本発明は、特定のウレタンメタクリレート樹脂(A)と特定のポリエステルメタクリレート樹脂(B)とを混合した際にジシクロペンタジエン系不飽和ポリエステル樹脂(D)を特定量添加することで、相溶性に優れ、常温及び低温での引張伸び率と引張強度とに優れ、更には低温での粘度に優れ、かつ、耐タレ性及び骨材沈降性に優れるラジカル硬化性樹脂組成物、それを用いた被覆材、土木建築構造体及びその施工方法を提供するものである。 In the present invention, when a specific urethane methacrylate resin (A) and a specific polyester methacrylate resin (B) are mixed, a specific amount of the dicyclopentadiene-based unsaturated polyester resin (D) is added so that the compatibility is excellent. , Radical curable resin composition excellent in tensile elongation and tensile strength at room temperature and low temperature, and further excellent in viscosity at low temperature, and excellent in sagging resistance and aggregate sedimentation, and coating material using the same The present invention provides a civil engineering structure and a construction method thereof.
 まず、本発明で使用するウレタンメタクリレート樹脂(A)について説明する。 First, the urethane methacrylate resin (A) used in the present invention will be described.
 前記ウレタンメタクリレート樹脂(A)は、ポリイソシアネート(a)とポリエーテルポリオール(b)とを反応させ、次いでヒドロキシアルキルメタクリレート(c)を反応させて得られるものである。 The urethane methacrylate resin (A) is obtained by reacting polyisocyanate (a) with polyether polyol (b) and then reacting with hydroxyalkyl methacrylate (c).
 前記ウレタンメタクリレート樹脂(A)の数平均分子量としては、後述するポリエステルメタクリレート樹脂(B)との相溶性、特に低温時の引張り物性、低温での粘度等をより向上できる観点から、800~50000であることが好ましく、1000~20000であることが更に好ましい。なお、前記ウレタンメタクリレート樹脂(A)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用い、ポリスチレン換算によって求めた値である。 The number average molecular weight of the urethane methacrylate resin (A) is 800 to 50,000 from the viewpoint of further improving the compatibility with the polyester methacrylate resin (B) described later, particularly tensile properties at low temperatures, viscosity at low temperatures, and the like. It is preferable that it is 1000 to 20000. The number average molecular weight of the urethane methacrylate resin (A) is a value determined by gel conversion using gel permeation chromatography (GPC).
 前記ポリイソシアネート(a)としては、2,4-トリレンジイソシアネートとその異性体または異性体の混合物(以下トリレンジイソシアネート若しくはTDIと略す。)、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリジンジイソシアネート、ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート、バーノックD-750、クリスボンNX(DIC(株)製品)、デスモジュールL(住友バイエル(株)製品)、コロネートL(日本ポリウレタン(株)製品)等が挙げられるが、特にTDIが好ましく用いられる。 Examples of the polyisocyanate (a) include 2,4-tolylene diisocyanate and its isomer or a mixture of isomers (hereinafter abbreviated as tolylene diisocyanate or TDI), diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate. Hydrogenated xylylene diisocyanate, dicyclohexylmethane diisocyanate, tolidine diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate, Bernock D-750, Crisbon NX (DIC Corporation product), Desmodur L (Sumitomo Bayer Co., Ltd. product), Coronate L (Nippon Polyurethane Co., Ltd. product) and the like can be mentioned, and TDI is particularly preferably used.
 前記ポリエーテルポリオール(b)とは、好ましくは数平均分子量400以上のもので、特に好ましくは400~3000のものであり、例えば、ポリプロピレングリコール(以下PPGと略す)、ポリテトラメチレングリコール(以下PTMGと略す)、ポリオキシエチレンジオール等が挙げられる。前記ポリエーテルポリオール(b)としては、PPG、PTMGを使用することが、後述するポリエステルメタクリレート樹脂(B)との相溶性、特に低温時の引張り物性、低温での粘度等をより向上できる観点から好ましい。なお、前記ポリエーテルポリオール(b)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用い、ポリスチレン換算によって求めた値である。 The polyether polyol (b) preferably has a number average molecular weight of 400 or more, particularly preferably 400 to 3000, such as polypropylene glycol (hereinafter abbreviated as PPG), polytetramethylene glycol (hereinafter referred to as PTMG). Abbreviated), polyoxyethylene diol and the like. As the polyether polyol (b), the use of PPG and PTMG is more compatible with the polyester methacrylate resin (B) described later, particularly tensile properties at low temperature, viscosity at low temperature, and the like. preferable. The number average molecular weight of the polyether polyol (b) is a value determined by gel conversion using gel permeation chromatography (GPC).
 前記ヒドロキシアルキルメタクリレート(c)としては、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレートが挙げられる。 Examples of the hydroxyalkyl methacrylate (c) include 2-hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate.
 前記ウレタンメタクリレート樹脂(A)には、硬化時の嫌気(臭気)性改良のため、アリルエーテル基をポリマー中に導入してもよい。樹脂合成上好ましいのは、水酸基含有アリルエーテル化合物由来のものである。 In the urethane methacrylate resin (A), an allyl ether group may be introduced into the polymer in order to improve anaerobic (odor) properties during curing. From the viewpoint of resin synthesis, those derived from a hydroxyl group-containing allyl ether compound are preferred.
 前記水酸基含有アリルエーテル化合物としては、公知慣用のものが使用できるが、そのうちでも代表的なものとしては、例えばエチレングリコールモノアリルエーテル、ジエチレングリコールモノアリルエーテ、トリエチレングリコールモノアリルエーテル、ポリエチレングリコールモノアリルエーテル、プロピレングリコールネリアリルエーテル、ジプロピレングリコールモノアリルエーテル、トリプロピレングリコールモノアリルエーテル、ポリプロピレングリコールモノアリルエーテル、1,2-ブチレングリコールモノアリルエーテル、1,3-ブチレングリコールモノアリルエーテル、ヘキシレングリコールモノアリルエーテル、オクチレングリコールモノアリルエーテル、トリメチロールプロパンジアリルエーテル、グリセリンジアリルエーテル、ペンタエリスリトールトリアリルエーテル等の多価アルコール類のアリルエーテル化合物等が挙げられ、水酸基を1個有するアリルエーテル化合物が好ましい。 As the hydroxyl group-containing allyl ether compound, known and commonly used ones can be used. Among them, typical examples include ethylene glycol monoallyl ether, diethylene glycol monoallyl ether, triethylene glycol monoallyl ether, polyethylene glycol monoallyl. Ether, propylene glycol neryl ether, dipropylene glycol monoallyl ether, tripropylene glycol monoallyl ether, polypropylene glycol monoallyl ether, 1,2-butylene glycol monoallyl ether, 1,3-butylene glycol monoallyl ether, hexylene Glycol monoallyl ether, octylene glycol monoallyl ether, trimethylolpropane diallyl ether, glycerin Diallyl ether, include allyl ether compound of a polyhydric alcohol such as pentaerythritol triallyl ether, allyl ether compound having one hydroxyl group are preferred.
 前記ウレタンメタクリレート樹脂(A)の製造方法としては、例えば、前記ポリイソシアネート(a)とポリエーテルポリオール(b)とを好ましくはNCO/OH=2~1.5で反応させ、高分子量ポリイソシアネートを生成し、次いでそれを2~2.1モルのヒドロキシアルキルメタクリレート(c)と反応させて、末端にメタクリロイル基を有するウレタンメタクリレート樹脂(A)を製造する方法が挙げられる。 As a method for producing the urethane methacrylate resin (A), for example, the polyisocyanate (a) and the polyether polyol (b) are preferably reacted at NCO / OH = 2 to 1.5 to obtain a high molecular weight polyisocyanate. A method of producing a urethane methacrylate resin (A) having a methacryloyl group at the terminal by producing it and then reacting it with 2 to 2.1 mol of hydroxyalkyl methacrylate (c) can be mentioned.
 また、他の方法としては、例えば、前記ヒドロキシアルキルメタクリレート(c)とポリイソシアネート(a)とを反応させて、メタクリロイル基含有モノイソシアネートを得、次いで、得られたメタクリロイル基含有モノイソシアネートと、場合によってはポリイソシアネート共存下で前記ポリエーテルポリオール(b)とを反応させることにより末端にメタクリロイル基を有するウレタンメタクリレート樹脂(A)を得る方法が挙げられる。 As another method, for example, the hydroxyalkyl methacrylate (c) and the polyisocyanate (a) are reacted to obtain a methacryloyl group-containing monoisocyanate, and then the obtained methacryloyl group-containing monoisocyanate, Depending on the case, a method of obtaining a urethane methacrylate resin (A) having a methacryloyl group at the terminal by reacting with the polyether polyol (b) in the presence of polyisocyanate may be mentioned.
 また、前記アリルエーテル基含有ウレタンメタクリレート樹脂の製造方法としては、例えば、前記ポリイソシアネート(a)とポリエーテルポリオール(b)とを好ましくはNCO/OH=2~1.5で反応させ、末端イソシアネート基含有化合物を生成し、次いでそれに水酸基含有アクリル化合物及び水酸基含有アリルエーテル化合物をイソシアネート基に対して水酸基がほぼ当量となるように反応する方法が挙げられる。この際の水酸基含有メタクリル化合物/水酸基含有アリルエーテル化合物のモル比率は、好ましくは90/10~20/80、より好ましくは70/30~40/60である。 Further, as a method for producing the allyl ether group-containing urethane methacrylate resin, for example, the polyisocyanate (a) and the polyether polyol (b) are preferably reacted at NCO / OH = 2 to 1.5 to obtain a terminal isocyanate. A method may be mentioned in which a group-containing compound is produced, and then a hydroxyl group-containing acrylic compound and a hydroxyl group-containing allyl ether compound are reacted so that the hydroxyl group is approximately equivalent to the isocyanate group. In this case, the molar ratio of the hydroxyl group-containing methacrylic compound / hydroxyl group-containing allyl ether compound is preferably 90/10 to 20/80, more preferably 70/30 to 40/60.
 また、他の方法としては、例えば、前記水酸基含有メタクリル化合物及び水酸基含有アリルエーテル化合物とポリイソシアネートとを反応させ、次いで得られたイソシアネート基含有化合物とポリエーテルポリオール(b)とを反応させて、アリルエーテル基含有ポリエーテルウレタンメタクリレート樹脂を製造する方法が挙げられる。 Moreover, as another method, for example, the hydroxyl group-containing methacrylic compound and the hydroxyl group-containing allyl ether compound and polyisocyanate are reacted, and then the obtained isocyanate group-containing compound and polyether polyol (b) are reacted, A method for producing an allyl ether group-containing polyether urethane methacrylate resin may be mentioned.
 前記ウレタンメタクリレート樹脂(A)は、予め後述する(C)成分の(メタ)アクリロイル基を有するエチレン性不飽和単量体を混合していてもよい。その場合、前記ウレタンメタクリレート樹脂(A)と前記エチレン性不飽和単量体(C)との質量割合は、(A)/(C)=10~90/90~10であることが好ましく、30~70/70~30であることが、引張り物性や低温時の粘度等の観点からより好ましい。 The urethane methacrylate resin (A) may be previously mixed with an ethylenically unsaturated monomer having a (meth) acryloyl group as the component (C) described later. In that case, the mass ratio of the urethane methacrylate resin (A) and the ethylenically unsaturated monomer (C) is preferably (A) / (C) = 10 to 90/90 to 10, It is more preferably from 70/70 to 30 from the viewpoints of tensile physical properties and viscosity at low temperature.
 また、前記ウレタンメタクリレート樹脂(A)を製造する際、もしくは、製造後に重合禁止剤を添加してもよい。 Further, a polymerization inhibitor may be added when the urethane methacrylate resin (A) is produced or after the production.
 前記重合禁止剤としては、例えば、トルハイドロキノン、ハイドロキノン、ベンゾキノン、トルハイドロキノン、p-tert-ブチルカテコール、2,6-tert-ブチル-4-メチルフェノールが使用できる。 As the polymerization inhibitor, for example, toluhydroquinone, hydroquinone, benzoquinone, toluhydroquinone, p-tert-butylcatechol, 2,6-tert-butyl-4-methylphenol can be used.
 また、前記重合禁止剤の使用量としては、前記ウレタンメタクリレート樹脂(A)100質量部に対し、100~200ppm添加することが好ましい。 The amount of the polymerization inhibitor used is preferably 100 to 200 ppm with respect to 100 parts by mass of the urethane methacrylate resin (A).
 次に、本発明で使用するポリエステルメタクリレート樹脂(B)について説明する。 Next, the polyester methacrylate resin (B) used in the present invention will be described.
 前記ポリエステルメタクリレート樹脂(B)とは、グリコール成分と酸成分とから合成される飽和ポリエステル樹脂の末端に、1個以上のメタクリロイル基を有するものであり、好ましくは両末端にそれぞれ1個のメタクリロイル基を有するものである。 The polyester methacrylate resin (B) is one having at least one methacryloyl group at the end of a saturated polyester resin synthesized from a glycol component and an acid component, and preferably one methacryloyl group at each end. It is what has.
 前記ポリエステルメタクリレート樹脂(B)としては、前記酸成分としてアジピン酸を40モル%以上使用することが、本発明の課題を解決するうえで必須である。前記酸成分として、アジピン酸を40モル%以上使用しない場合には、特に骨材沈降性が不良となる。なお、前記酸成分としては、アジピン酸を50~100モル%使用したものを使用することがより好ましい。 As the polyester methacrylate resin (B), it is essential to use 40 mol% or more of adipic acid as the acid component in order to solve the problems of the present invention. When 40 mol% or more of adipic acid is not used as the acid component, the aggregate sedimentation property is particularly poor. The acid component is more preferably one containing 50 to 100 mol% of adipic acid.
 また、前記ポリエステルメタクリレート樹脂(B)の数平均分子量としては、2000~4000であることが本発明の課題を解決するうえで必須である。 Further, the number average molecular weight of the polyester methacrylate resin (B) is 2000 to 4000 in order to solve the problem of the present invention.
 前記(B)の数平均分子量が2000未満である場合には、耐タレ性や低温時の引張り伸び率が不良となり、また、4000を超える場合には、骨材沈降性や低温時の粘度が不良となる。なお、前記ポリエステルメタクリレート樹脂(B)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用い、ポリスチレン換算によって求めた値である。 When the number average molecular weight of (B) is less than 2000, sagging resistance and tensile elongation at low temperature are poor, and when it exceeds 4000, aggregate sedimentation and viscosity at low temperature are low. It becomes defective. The number average molecular weight of the polyester methacrylate resin (B) is a value determined by gel conversion using gel permeation chromatography (GPC).
 前記グリコール成分と酸成分とから合成される飽和ポリエステル樹脂は、飽和二塩基酸を含む酸成分と、グリコールを含む多価アルコール成分との重縮合反応により得られるものである。その際、ポリエステル構造の酸成分としては、脂肪族二塩基酸(B1)、脂環式二塩基酸(B2)及び芳香族二塩基酸(B3)を使用することができる。本発明では、酸成分としてアジピン酸を40モル%以上使用するもので、好ましくは50モル%~100モル%使用するものであり、その他の酸成分として、アジピン酸以外の脂肪族二塩基酸、脂環式二塩基酸(B2)、芳香族二塩基酸(B3)を60モル%以下、好ましくは50モル%以下使用するものである。 The saturated polyester resin synthesized from the glycol component and the acid component is obtained by a polycondensation reaction between an acid component containing a saturated dibasic acid and a polyhydric alcohol component containing glycol. In that case, an aliphatic dibasic acid (B1), an alicyclic dibasic acid (B2), and an aromatic dibasic acid (B3) can be used as an acid component of a polyester structure. In the present invention, 40 mol% or more of adipic acid is used as the acid component, preferably 50 mol% to 100 mol%, and other acid components include aliphatic dibasic acids other than adipic acid, The alicyclic dibasic acid (B2) and the aromatic dibasic acid (B3) are used in an amount of 60 mol% or less, preferably 50 mol% or less.
 前記アジピン酸以外の脂肪族二塩基酸としては、例えば、シュウ酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,12-ドデカン2酸等を挙げることができる。 Examples of the aliphatic dibasic acid other than the adipic acid include oxalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedioic acid, and the like.
 前記脂環式二塩基酸(B2)としては、例えば、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等が挙げられる。芳香族二塩基酸(B3)としては、例えば、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸等が挙げられる。 Examples of the alicyclic dibasic acid (B2) include hexahydrophthalic acid, hexahydrophthalic anhydride, hexahydroterephthalic acid, and hexahydroisophthalic acid. Examples of the aromatic dibasic acid (B3) include phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, and the like.
 前記多価アルコールとしては、好ましくは水酸基を2個有する脂肪族または脂環式アルコールで、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、テトラエチレングリコール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ネオペンチルグリコール、水素化ビスフェノールA、1,4-ブタンジオール、1,6-ヘキサンジオール、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、1,3-プロパンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、1,4-シクロヘキサンジメタノール、パラキシレングリコール、ビシクロヘキシル-4,4’-ジオール、2,6-デカリングリコール、2,7-デカリングリコール等を挙げることができ、単独或いは併用して使用される。そのほかにエチレンオキサイド、プロピレンオキサイド等の付加物も同様に使用できる。 The polyhydric alcohol is preferably an aliphatic or alicyclic alcohol having two hydroxyl groups, such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, Tetraethylene glycol, 2-methyl-1,3-propanediol, 1,3-butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, 1,6-hexanediol, 1,2,3 , 4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexaneglycol, 1,3- Chrohexane glycol, 1,4-cyclohexane glycol, 1,4-cyclohexanedimethanol, paraxylene glycol, bicyclohexyl-4,4′-diol, 2,6-decalin glycol, 2,7-decalin glycol, etc. Can be used alone or in combination. In addition, adducts such as ethylene oxide and propylene oxide can be used in the same manner.
 前記ポリエステルメタクリレート樹脂(B)の製造方法としては、例えば、前記飽和ポリエステルの末端の官能基(水酸基及び/又はカルボキシル基)に、この官能基と反応する官能基とメタクリロイル基とを含有する化合物を反応させることで得られるものである。前記反応させる化合物としては、例えば、グリシジル(メタ)アクリレート、アクリル酸またはメタクリル酸の如き各種の不飽和一塩基酸、およびそのグリシジルエステル類等が挙げられ、これらのうち、前記飽和ポリエステルとの反応性や原料入手の容易性の観点から、グリシジルメタクリレートが好ましい。 As a manufacturing method of the said polyester methacrylate resin (B), the compound containing the functional group and methacryloyl group which react with this functional group in the functional group (hydroxyl group and / or carboxyl group) of the terminal of the said saturated polyester is mentioned, for example. It is obtained by reacting. Examples of the compound to be reacted include glycidyl (meth) acrylate, various unsaturated monobasic acids such as acrylic acid or methacrylic acid, and glycidyl esters thereof. Among these, reaction with the saturated polyester From the viewpoint of properties and easy availability of raw materials, glycidyl methacrylate is preferred.
 前記ウレタンメタクリレート樹脂(A)とポリエステルメタクリレート樹脂(B)とは、引張り物、粘度、相溶性、特に耐タレ性をより向上できる観点から、(A)/(B)の質量比率が90/10~20/80であることが好ましく、70/30~40/60であることがより好ましい。 The urethane methacrylate resin (A) and the polyester methacrylate resin (B) have a mass ratio of (A) / (B) of 90/10 from the viewpoint that tension, viscosity, compatibility, particularly sagging resistance can be further improved. It is preferably ˜20 / 80, more preferably 70/30 to 40/60.
 また、前記ポリエステルメタクリレート樹脂(B)としては、空気乾燥性付与基含有化合物を使用した空気乾燥性ポリエステルメタクリレート樹脂であってもよい。前記空気乾燥性ポリエステルメタクリレート樹脂は、飽和二塩基酸からなる酸成分、グリコールからなる多価アルコール成分及び空気乾燥性付与基含有化合物成分を重縮合反応により得られるものである。 The polyester methacrylate resin (B) may be an air drying polyester methacrylate resin using an air drying property imparting group-containing compound. The air-drying polyester methacrylate resin is obtained by polycondensation reaction of an acid component composed of a saturated dibasic acid, a polyhydric alcohol component composed of glycol, and an air-drying imparting group-containing compound component.
 次に、本発明で使用する(メタ)アクリロイル基を有するエチレン性不飽和単量体(C)について説明する。 Next, the ethylenically unsaturated monomer (C) having a (meth) acryloyl group used in the present invention will be described.
 前記エチレン性不飽和単量体(C)とは、ウレタンメタクリレート樹脂(A)及びポリエステルメタクリレート樹脂(B)と架橋反応可能なものであり、好ましくはメタクリロイル基を有するモノマーである。特にメタクリル酸エステルモノマーを使用することが好ましい。メタクリロイル基を有しないエチレン性不飽和単量体も使用できるが、(C)成分中でその量が多くなった場合、ウレタンメタクリレート樹脂(A)との共重合性が悪くなり硬化時間が長くなるので好ましくない。 The ethylenically unsaturated monomer (C) is capable of crosslinking with the urethane methacrylate resin (A) and the polyester methacrylate resin (B), and is preferably a monomer having a methacryloyl group. It is particularly preferable to use a methacrylic acid ester monomer. Although an ethylenically unsaturated monomer having no methacryloyl group can also be used, when the amount thereof increases in the component (C), the copolymerization with the urethane methacrylate resin (A) becomes worse and the curing time becomes longer. Therefore, it is not preferable.
 前記エチレン性不飽和単量体(C)としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等の分子量が150以下のものが、前記(A)及び(B)との相溶性や粘度の点から好ましく使用される。 Examples of the ethylenically unsaturated monomer (C) include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, methyl methacrylate, ethyl methacrylate, and methacrylic acid. Those having a molecular weight of 150 or less, such as butyl, are preferably used from the viewpoints of compatibility with (A) and (B) and viscosity.
 もちろん分子量が150より大きい(メタ)アクリロイル基を有するエチレン性不飽和単量体も使用できるが、単量体(C)成分中に0~50質量%未満、0~20質量%程度含まれるのが好ましい。分子量が150より大きい(メタ)アクリロイル基を有するエチレン性不飽和単量体としては、例えば、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸2-ハイドロキシエチル、(メタ)アクリル酸β-エトキシエチル、(メタ)アクリル酸2-シアノエチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)メタアクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、フェニルカルビトール(メタ)アクリレート、ノニルフェニルカルビトール(メタ)アクリレート、ノニフェノキシプロピル(メタ)アクリレート、N-ビニルピロリドン、ポリカプロラクトン(メタ)アクリレート、(メタ)アクリロイルオキシエチルフタレート、(メタ)アクリロイルオキシサクシネート、フェノールEO変性(n=2~4)(メタ)アクリレート、ノニルフェノールEO変性(n=1~4)(メタ)アクリレート、ノニルフェノールPO変性(n=2.5)(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、ωーカルボキシーポリカプロラクトン(n=2)モノ(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート等がある。 Of course, an ethylenically unsaturated monomer having a (meth) acryloyl group having a molecular weight of more than 150 can also be used, but it is contained in the monomer (C) component in an amount of 0 to less than 50% by mass and about 0 to 20% by mass. Is preferred. Examples of the ethylenically unsaturated monomer having a (meth) acryloyl group having a molecular weight greater than 150 include 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, decyl (meth) acrylate, ( Lauryl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, β-ethoxyethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, cyclohexyl (meth) acrylate, ( Diethylaminoethyl (meth) acrylate, butyl (meth) methacrylate, hexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, phenylcarbitol (meth) acrylate , Nonylphenyl carbitol (meth) acrelane Noniphenoxypropyl (meth) acrylate, N-vinylpyrrolidone, polycaprolactone (meth) acrylate, (meth) acryloyloxyethyl phthalate, (meth) acryloyloxysuccinate, phenol EO modified (n = 2-4) (meth) Acrylate, Nonylphenol EO modified (n = 1-4) (meth) acrylate, Nonylphenol PO modified (n = 2.5) (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, ω-carboxy-polycaprolactone (n = 2) Mono (meth) acrylate, monohydroxyethyl phthalate (meth) acrylate, etc.
 また、前記エチレン性不飽和単量体(C)としては、一分子中に少なくとも2個の重合性二重結合を有する化合物も使用可能であり、硬化物表面の耐摩耗性、耐さっ傷性、耐薬品性等を向上される目的で、単量体(C)成分中に0~50質量%未満、好ましくは0~20質量%程度併用されてもよい。この一分子中に少なくとも2個の重合性二重結合を有する化合物、好ましくは、多官能の(メタ)アクリル酸エステルモノマーであり、例えばエチレングリコールジ(メタ)アクリレート、1,2-プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートのようなアルカンジオールジ-(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリエチレングリコール(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等のポリオキシアルキレン-グリコールジ(メタ)アクリレート、ジビニルベンゼン、ジアリルフタレート、トリアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、アリル(メタ)アクリレート、ジアリルフマレート等が挙げられ、これらは単独で、又は2種以上の併用で用いられる。 In addition, as the ethylenically unsaturated monomer (C), a compound having at least two polymerizable double bonds in one molecule can be used, and the abrasion resistance and scratch resistance of the cured product surface can be used. For the purpose of improving chemical resistance and the like, 0 to less than 50% by mass, preferably about 0 to 20% by mass, may be used in combination in the monomer (C) component. This compound having at least two polymerizable double bonds in one molecule, preferably a polyfunctional (meth) acrylic acid ester monomer, such as ethylene glycol di (meth) acrylate, 1,2-propylene glycol diester Alkanediol di- (meth) acrylate such as (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tri Polyoxyalkylene-glycol di (meth) acrylates such as ethylene glycol (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, divinylbenzene, diallyl phthalate, triallyl phthalate Triallyl cyanurate, triallyl isocyanurate, allyl (meth) acrylate, diallyl fumarate, and the like, it can be used alone or used in combination of two or more thereof.
 更に、本発明の効果を損なわない範囲であれば、上記した以外のエチレン性不飽和単量体をエチレン性不飽和単量体(C)とともに併用してもよい。例えば、スチレン、酢酸ビニル、ビニルトルエン、α-メチルスチレン、ジアリルフタレート、ジアリルイソフタレート、トリアリルイソシアヌレート、ジアリルテトラブロムフタレート等のアリルモノマー類;アクリルニトリル、グリシジルメタクリレート、n-メチロールアクリルアミド-ブチルエーテル、n-メチロールアクリルアミド、アクリルアミド等の硬質モノマー類が挙げられる。 Furthermore, an ethylenically unsaturated monomer other than those described above may be used in combination with the ethylenically unsaturated monomer (C) as long as the effects of the present invention are not impaired. For example, allyl monomers such as styrene, vinyl acetate, vinyl toluene, α-methyl styrene, diallyl phthalate, diallyl isophthalate, triallyl isocyanurate, diallyl tetrabromophthalate; acrylonitrile, glycidyl methacrylate, n-methylol acrylamide-butyl ether, Examples thereof include hard monomers such as n-methylolacrylamide and acrylamide.
 また、エチレン性不飽和単量体(C)としては、空乾性を有する重合性不飽和単量体を併用することもでき、単量体(C)成分中に0~50質量%未満、好ましくは0~20質量%使用できる。例えばジシクロペンタジエン、トリシクロデカン、シリシクロデカン、トリアジン等のアクリル酸誘導体、例えば、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリシクロ[5-2-1-02,6]デカニル(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌル(メタ)アクリレート等を挙げることができ、後述する乾性油、エポキシ反応性希釈剤等も同様に使用できる。 Further, as the ethylenically unsaturated monomer (C), an air-drying polymerizable unsaturated monomer can be used in combination, and 0 to less than 50% by mass in the monomer (C) component, preferably 0 to 20% by mass can be used. For example, acrylic acid derivatives such as dicyclopentadiene, tricyclodecane, silicicyclodecane, triazine, such as dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, Examples include tricyclo [5-2-1-02,6] decanyl (meth) acrylate and tris (2-hydroxyethyl) isocyanur (meth) acrylate, and the same applies to drying oils and epoxy reactive diluents described later. Can be used for
 この他に、前記エチレン性不飽和単量体(C)成分としては、不飽和アルコール単量体も同様に、(C)単量体成分中に0~50質量%未満、好ましくは0~20質量%程度併用することもできる。この不飽和アルコール単量体とは、(メタ)アクリロイル基と水酸基を有するものであり、具体例としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル等挙げられる。これらは親水性機能の付与や樹脂相溶性向上を目的に本発明組成物を用いる時に使用される。 In addition, as the ethylenically unsaturated monomer (C) component, the unsaturated alcohol monomer is similarly 0 to less than 50% by mass, preferably 0 to 20% in the (C) monomer component. It can also be used in combination with about mass%. The unsaturated alcohol monomer has a (meth) acryloyl group and a hydroxyl group. Specific examples thereof include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and (meth) acrylic. 2-hydroxyethyl acid, hydroxypropyl (meth) acrylate, and the like. These are used when the composition of the present invention is used for the purpose of imparting a hydrophilic function or improving resin compatibility.
 前記ウレタンメタクリレート樹脂(A)とポリエステルメタクリレート樹脂(B)とを加えたポリマー分(A)+(B)と、前記エチレン性不飽和単量体(C)との配合比率〔(A+B)/(C)〕としては、硬化性や粘度をより向上できる観点から、質量比で2/8~8/2が好ましく、4/6~7/3がより好ましい。 The blending ratio [(A + B) / () of the polymer component (A) + (B) obtained by adding the urethane methacrylate resin (A) and the polyester methacrylate resin (B) and the ethylenically unsaturated monomer (C). C)] is preferably 2/8 to 8/2 in terms of mass ratio, more preferably 4/6 to 7/3, from the viewpoint of further improving curability and viscosity.
 次に、本発明で使用するジシクロペンタジエン系不飽和ポリエステル樹脂(D)について説明する。 Next, the dicyclopentadiene unsaturated polyester resin (D) used in the present invention will be described.
 前記ジシクロペンタジエン系不飽和ポリエステル樹脂(D)は、前記ウレタンメタクリレート樹脂(A)及び前記ポリエステルメタクリレート樹脂(B)及び前記エチレン性不飽和単量体(C)の相溶性を向上させる相溶化剤として機能するものである。 The dicyclopentadiene-based unsaturated polyester resin (D) is a compatibilizing agent that improves the compatibility of the urethane methacrylate resin (A), the polyester methacrylate resin (B), and the ethylenically unsaturated monomer (C). It functions as.
 前記ジシクロペンタジエン系不飽和ポリエステル樹脂(D)は、α,β-不飽和カルボン酸及び/又は飽和カルボン酸と、多価アルコールと、ジシクロペンタジエンとを反応して得られるものである。 The dicyclopentadiene-based unsaturated polyester resin (D) is obtained by reacting an α, β-unsaturated carboxylic acid and / or a saturated carboxylic acid, a polyhydric alcohol, and dicyclopentadiene.
 前記α,β-不飽和カルボン酸としては、例えば、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、シトラコン酸、メサコン酸、クロロマレイン酸、またこれらのジメチルエステル類等が挙げられ、これらは単独又は2種以上を併用しても良い。なかでも、相溶性をより向上できる観点から、無水マレイン酸を使用することがより好ましい。 Examples of the α, β-unsaturated carboxylic acid include fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, chloromaleic acid, and dimethyl esters thereof. You may use individually or in combination of 2 or more types. Especially, it is more preferable to use maleic anhydride from a viewpoint which can improve compatibility more.
 前記飽和カルボン酸としては、例えば、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ヘット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、アジピン酸、セバシン酸、アゼライン酸等が挙げられ、これらは単独又は2種以上を併用しても良い。 Examples of the saturated carboxylic acid include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, het acid, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, adipic acid, sebacic acid, azelaic acid, and the like. You may use individually or in combination of 2 or more types.
 なお、前記多価アルコールとしては、前述した多価アルコールを単独又は2種以上併用することができる。なかでも、相溶性をより向上できる観点から、エチレングリコール、ジエチレングリコールがより好ましい。 In addition, as said polyhydric alcohol, the polyhydric alcohol mentioned above can be used individually or in combination of 2 or more types. Of these, ethylene glycol and diethylene glycol are more preferable from the viewpoint of further improving the compatibility.
 前記ジシクロペンタジエン系不飽和ポリエステル樹脂(D)の製造方法としては、例えば、前記α,β-不飽和カルボン酸及び/又は飽和カルボン酸と、前記多価アルコールと、前記ジシクロペンタジエンとを共に反応系中に仕込んで縮合反応を行う方法や、前記α,β-不飽和カルボン酸及び/又は飽和カルボン酸と、前記ジシクロペンタジエンとを先に反応させ、次いで、前記多価アルコールを供給し、縮合反応を行う方法が挙げられる。
 前記縮合反応は、不活性ガス雰囲気下で、150~250℃の温度で反応させることが好ましい。
Examples of the method for producing the dicyclopentadiene-based unsaturated polyester resin (D) include the α, β-unsaturated carboxylic acid and / or the saturated carboxylic acid, the polyhydric alcohol, and the dicyclopentadiene. A method of performing a condensation reaction by charging in a reaction system, or reacting the α, β-unsaturated carboxylic acid and / or saturated carboxylic acid with the dicyclopentadiene first, and then supplying the polyhydric alcohol. And a method of performing a condensation reaction.
The condensation reaction is preferably performed at a temperature of 150 to 250 ° C. in an inert gas atmosphere.
 前記α,β-不飽和カルボン酸及び/又は飽和カルボン酸と、前記多価アルコールと、前記ジシクロペンタジエンとの反応比率としては、前記α,β-不飽和カルボン酸及び/又は飽和カルボン酸1モルに対し、前記多価アルコールが0.3~0.7モル、前記ジシクロペンタジエンが0.7~1.3モルの範囲で反応させることが好ましい。 The reaction ratio of the α, β-unsaturated carboxylic acid and / or saturated carboxylic acid, the polyhydric alcohol, and the dicyclopentadiene is the α, β-unsaturated carboxylic acid and / or saturated carboxylic acid 1 The polyhydric alcohol is preferably reacted in an amount of 0.3 to 0.7 mol and the dicyclopentadiene in an amount of 0.7 to 1.3 mol with respect to mol.
 以上の方法により得られたジシクロペンタジエン系不飽和ポリエステル樹脂(D)の酸価としては、10~40mgKOH/gであることが好ましく、10~30mgKOH/gであることがより好ましい。なお、前記ジシクロペンタジエン系不飽和ポリエステル樹脂(D)の酸価は、JIS K1557-5に準拠して測定を行った値を示す。 The acid value of the dicyclopentadiene unsaturated polyester resin (D) obtained by the above method is preferably 10 to 40 mgKOH / g, and more preferably 10 to 30 mgKOH / g. The acid value of the dicyclopentadiene unsaturated polyester resin (D) is a value measured according to JIS K1557-5.
 また、前記ジシクロペンタジエン系不飽和ポリエステル樹脂(D)の数平均分子量としては、硬化性や粘度、相溶性等をより向上できる観点から、1000~40000であることが好ましく、1000~10000であることがより好ましく、1000~3000であることが特に好ましい。 The number average molecular weight of the dicyclopentadiene unsaturated polyester resin (D) is preferably 1000 to 40000, more preferably 1000 to 10000, from the viewpoint of further improving curability, viscosity, compatibility, and the like. More preferably, it is particularly preferably 1000 to 3000.
 また、前記ジシクロペンタジエン系不飽和ポリエステル樹脂(D)添加量は、前記樹脂(A)及び前記樹脂(B)との合計100質量部に対して、5~25質量部使用することが、本発明の課題を解決するうえで必須である。前記添加量が、5質量部未満である場合や25質量部を超えた場合は、相溶性や特に低温時の引張り伸び率が不良となる。
 なお、前記添加量としては、相溶性や特に低温時の引張り伸び率をより向上できる観点から、10~20質量部であることがより好ましく、15~20質量部であることが特に好ましい。
The dicyclopentadiene unsaturated polyester resin (D) may be added in an amount of 5 to 25 parts by mass with respect to 100 parts by mass in total of the resin (A) and the resin (B). It is essential to solve the problems of the invention. When the addition amount is less than 5 parts by mass or exceeds 25 parts by mass, the compatibility and particularly the tensile elongation at low temperatures are poor.
The addition amount is more preferably 10 to 20 parts by mass, and particularly preferably 15 to 20 parts by mass from the viewpoint of further improving the compatibility and particularly the tensile elongation at low temperatures.
 次に、本発明のラジカル硬化性樹脂組成物について説明する。 Next, the radical curable resin composition of the present invention will be described.
 本発明のラジカル硬化性樹脂組成物は、前記ウレタンメタクリレート樹脂(A)、前記ポリエステルメタクリレート樹脂(B)、前記エチレン性不飽和単量体(C)、前記ジシクロペンタジエン系不飽和ポリエステル樹脂(D)、及びその他の添加剤を含有するものである。 The radical curable resin composition of the present invention includes the urethane methacrylate resin (A), the polyester methacrylate resin (B), the ethylenically unsaturated monomer (C), the dicyclopentadiene unsaturated polyester resin (D ), And other additives.
 本発明のラジカル硬化性樹脂組成物は、低温での低粘度性に優れるものであり、5℃における粘度が、1000~2500mPa・s、好ましくは、1500~2000mPa・sである。なお、前記粘度は、本発明のラジカル硬化性樹脂組成物を5℃に調整したあと、JIS K6901-5.5に準じて、回転式粘度計にて測定した値を示す。 The radical curable resin composition of the present invention is excellent in low viscosity at low temperature and has a viscosity at 5 ° C. of 1000 to 2500 mPa · s, preferably 1500 to 2000 mPa · s. The viscosity is a value measured with a rotary viscometer according to JIS K6901-5.5 after adjusting the radical curable resin composition of the present invention to 5 ° C.
 前記その他の添加剤としては、例えば、熱可塑性樹脂、パラフィン及び/又はワックス類、ラジカル硬化剤、光ラジカル重合開始剤、重合禁止剤、硬化促進剤、充填剤、骨材、顔料、染料等の着色剤、繊維強化材等が挙げられる。 Examples of the other additives include thermoplastic resins, paraffins and / or waxes, radical curing agents, photo radical polymerization initiators, polymerization inhibitors, curing accelerators, fillers, aggregates, pigments, dyes, and the like. Coloring agents, fiber reinforcements and the like can be mentioned.
 前記熱可塑性樹脂、樹脂硬化物の空気硬化性を改良する目的と、硬化収縮を低減する目的で使用することができる。前記熱可塑性樹脂の具体例としては、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、メチルアクリレート、エチルアクリレートなどのアクリル酸又はメタクリル酸の低級アルキルエステル類、スチレン、塩化ビニル、酢酸ビニルなどの単量体の単独重合体又は共重合体類、前記ビニル単量体の少なくとも1種と、ラウリルメタクリレート、イソビニルメタクリレート、アクリルアミド、メタクリルアミド、ヒドロキシアルキルアクリレート又はメタクリレート、アクリルニトリル、メタクリルニトリル、アクリル酸、メタクリル酸、セチルステアリルメタクリレートよりなる重合体の少なくとも1種の共重合体などのほか、セルロースアセテートブチレート及びセルロースアセテートプロピオネート、ポリエチレン、ポリプロピレン、飽和ポリエステル等の重合体を挙げることができる。その添加量は、前記(A)+(B)+(C)の合計100質量部に対して0~50質量部が好ましく、0~35質量部が特に好ましい。 It can be used for the purpose of improving the air curability of the thermoplastic resin and resin cured product and for the purpose of reducing curing shrinkage. Specific examples of the thermoplastic resin include lower alkyl esters of acrylic acid or methacrylic acid such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, and ethyl acrylate, and monomers such as styrene, vinyl chloride, and vinyl acetate. Homopolymers or copolymers, at least one of the vinyl monomers, lauryl methacrylate, isovinyl methacrylate, acrylamide, methacrylamide, hydroxyalkyl acrylate or methacrylate, acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid, In addition to at least one copolymer of cetyl stearyl methacrylate, cellulose acetate butyrate and cellulose acetate propionate, polyethylene Polypropylene, may be mentioned polymers such as saturated polyester. The addition amount is preferably 0 to 50 parts by mass, particularly preferably 0 to 35 parts by mass with respect to a total of 100 parts by mass of (A) + (B) + (C).
 また、パラフィン及び/又はワックス類は、ラジカル硬化性樹脂組成物の常温乾燥性を更に向上させる目的で使用することができる。 Moreover, paraffin and / or waxes can be used for the purpose of further improving the room temperature drying property of the radical curable resin composition.
 前記パラフィン及び/又はワックスとしては、パラフィンワックス、ポリエチレンワックスやステアリン酸、1,2-ヒドロキシステアリン酸等の高級脂肪酸等が挙げられるが、好ましくはパラフィンワックスが用いられる。このパラフィンワックスは、塗膜表面における硬化反応中の空気遮断作用、耐汚れ性の向上を目的に添加される。添加量としては、前記(A)+(B)+(C)の合計100質量部に対して0.1~5質量部、好ましくは0.2~2質量部である。 Examples of the paraffin and / or wax include paraffin wax, polyethylene wax, higher fatty acids such as stearic acid and 1,2-hydroxystearic acid, and paraffin wax is preferably used. This paraffin wax is added for the purpose of improving the air barrier action and the stain resistance during the curing reaction on the coating film surface. The addition amount is 0.1 to 5 parts by mass, preferably 0.2 to 2 parts by mass, with respect to 100 parts by mass in total of (A) + (B) + (C).
 また、前記ラジカル硬化剤、光ラジカル重合開始剤、重合禁止剤は、樹脂組成物の硬化速度を調整する目的で使用することができる。前記ラジカル硬化剤としては、好ましくは有機過酸化物が挙げられる。具体的にはジアシルパーオキサイド系、パーオキシエステル系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ケトンパーオキサイド系、パーオキシケタール系、アルキルパーエステル系、パーカーボネート系等の公知の有機過酸化物が使用され、単独又は2種以上を併用することができ、混練条件、養生温度等で適宜選択される。好ましくはベンゾイルパーオキサイドである。 Further, the radical curing agent, photo radical polymerization initiator, and polymerization inhibitor can be used for the purpose of adjusting the curing rate of the resin composition. The radical curing agent is preferably an organic peroxide. Specifically, known organic peroxides such as diacyl peroxide, peroxy ester, hydroperoxide, dialkyl peroxide, ketone peroxide, peroxyketal, alkyl perester, and carbonate Can be used alone or in combination of two or more, and is appropriately selected depending on kneading conditions, curing temperature, and the like. Benzoyl peroxide is preferred.
 前記ラジカル硬化剤添加量は、好ましくは、前記(A)+(B)+(C)の合計100質量部に対して0.01~4質量部である。 The amount of the radical curing agent added is preferably 0.01 to 4 parts by mass with respect to 100 parts by mass in total of (A) + (B) + (C).
 また、前記硬化促進剤は、前記ラジカル硬化剤の有機過酸化物をレドックス反応によって分解し、活性ラジカルの発生を容易にすることができる。前記硬化促進剤とは、例えば、第3級アミン類、第4級アンモニウム塩、メルカプタン類等がある。また、乾燥性補助剤としては、コバルト系、バナジウム系、マンガン系等の金属石鹸類があり、好ましくはコバルト系金属石鹸である。 Also, the curing accelerator can decompose the organic peroxide of the radical curing agent by a redox reaction to facilitate generation of active radicals. Examples of the curing accelerator include tertiary amines, quaternary ammonium salts, mercaptans, and the like. Moreover, as a drying adjuvant, there exist metal soaps, such as cobalt type, vanadium type, and manganese type, Preferably it is cobalt type metal soap.
 前記第3級アミン類とは、アミン化合物で、例えばアニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、p-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン(PTD-2EOと略す)、N-メチル-N-(2-ヒドロキシエチル)-p-トルイジン、N-エチル-N-(2-ヒドロキシエチル)-p-トルイジン、N-メチル-N-(2-ヒドロキシエチル)-m-トルイジン、N-エチル-N-(2-ヒドロキシエチル)-m-トルイジン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N-ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N-置換アニリン、N,N-置換-p-トルイジン、4-(N,N-置換アミノ)ベンズアルデヒド等が挙げられる。より好ましくはN,N-置換-p-トルイジンであり、特にPTD-2EOである。その添加量としては、前記(A)+(B)+(C)の合計100質量部に対して好ましくは0.1~3質量部、より好ましくは0.1~1質量部である。 The tertiary amines are amine compounds such as aniline, N, N-dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, N, N-bis ( 2-hydroxyethyl) -p-toluidine (abbreviated as PTD-2EO), N-methyl-N- (2-hydroxyethyl) -p-toluidine, N-ethyl-N- (2-hydroxyethyl) -p-toluidine N-methyl-N- (2-hydroxyethyl) -m-toluidine, N-ethyl-N- (2-hydroxyethyl) -m-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [ N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydride) Roxypropyl) -p-toluidine, N-ethyl-m-toluidine, triethanolamine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, N, N-bis (hydroxyethyl) aniline, diethanolaniline, etc. , N-substituted aniline, N, N-substituted-p-toluidine, 4- (N, N-substituted amino) benzaldehyde and the like. More preferred is N, N-substituted-p-toluidine, especially PTD-2EO. The amount added is preferably 0.1 to 3 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass in total of (A) + (B) + (C).
 前記コバルト系金属石鹸とは、例えば、ナフテン酸コバルト、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸バリウム等が挙げられる。 Examples of the cobalt metal soap include cobalt naphthenate, cobalt octylate, zinc octylate, vanadium octylate, copper naphthenate, and barium naphthenate.
 また、前記繊維強化材としては、例えばガラス繊維、アミド、アラミド、ビニロン、ポリエステル、フェノール等の有機繊維、カーボン繊維、金属繊維、セラミック繊維或いはこれらを組合わせて用いられる。施工性、経済性を考慮した場合、好ましいのはガラス繊維、有機繊維である。また、繊維の形態は、平織り、朱子織り、不織布、マット状等があるが、施工法、厚み保持等よりマット状が好ましい、また、ガラスロービングを10~100mmにカットしてチョップドストランドにして使用することも可能である。 As the fiber reinforcing material, for example, glass fibers, amides, aramids, vinylons, polyesters, phenols and other organic fibers, carbon fibers, metal fibers, ceramic fibers, or a combination thereof are used. In consideration of workability and economy, glass fibers and organic fibers are preferable. The fiber forms include plain weave, satin weave, non-woven fabric, mat shape, etc. The mat shape is preferred from the construction method, thickness maintenance, etc. Also, the glass roving is cut into 10-100 mm and used as chopped strands It is also possible to do.
 前記充填材としては、炭酸カルシウム粉、クレー、アルミナ粉、硅石粉、タルク、硫酸バリウム、シリカパウダー、ガラス粉、ガラスビーズ、マイカ、水酸化アルミニウム、セルロース糸、硅砂、川砂、寒水石、大理石、砕石、ガラスバルーンなどが挙げられる。なかでも滑り止め性を与える舗装材用途では、砕石、着色磁器質骨材などが好ましく用いられる。 Examples of the filler include calcium carbonate powder, clay, alumina powder, aragonite powder, talc, barium sulfate, silica powder, glass powder, glass beads, mica, aluminum hydroxide, cellulose yarn, cinnabar sand, river sand, cold water stone, marble, Examples include crushed stones and glass balloons. Among them, crushed stones, colored porcelain aggregates and the like are preferably used for pavement materials that provide slip resistance.
 さらに、本発明の組成物は、遮熱性を目的に、JIS A 5759に定義される350~2100nmの波長域における日射反射率が15%以上であって、かつCIE1976L色空間におけるL値が30以下、より好ましくはL値が24以下の顔料が好ましく用いられる。さらに、JIS A 5759に定義される350~2100nmの波長域における日射反射率が12%以上の着色顔料と、必要に応じて白色顔料を併用することも好ましい。この条件を満たす着色顔料の例としては、モノアゾ系エロー(商品名ホスターパームエローH3G:ヘキスト(株)製)等の黄色系顔料、酸化鉄(商品名トダカラー120ED:戸田工業(株)製)、キナクリドンレッド(商品名Hostaperm Red E2B70:ヘキスト(株)製)等の赤色系顔料、フタロシアニンブルー(商品名シアニンブルーSPG-8:DIC(株)製)等の青色系顔料、フタロシアニングリーン(商品名シアニングリーン5310:大日精化工業(株)製)等の緑色系顔料等があげられる。 Furthermore, the composition of the present invention has a solar reflectance of 15% or more in the wavelength range of 350 to 2100 nm as defined in JIS A 5759 for the purpose of heat shielding, and in the CIE 1976 L * a * b * color space. A pigment having an L * value of 30 or less, more preferably an L * value of 24 or less is preferably used. Furthermore, it is also preferable to use a color pigment having a solar reflectance of 12% or more in a wavelength range of 350 to 2100 nm as defined in JIS A 5759 and a white pigment as necessary. Examples of coloring pigments that satisfy this condition include yellow pigments such as monoazo yellow (trade name Hoster Palm Yellow H3G: manufactured by Hoechst), iron oxide (trade name Toda Color 120ED: manufactured by Toda Kogyo Co., Ltd.), Red pigments such as quinacridone red (trade name Hostaperm Red E2B70: manufactured by Hoechst), blue pigments such as phthalocyanine blue (trade name cyanine blue SPG-8: manufactured by DIC Corporation), phthalocyanine green (trade name cyanine) Green 5310: manufactured by Dainichi Seika Kogyo Co., Ltd.) and the like.
 本発明の被覆材とは、低温柔軟性かつ低温硬化性に優れた土木建築材料であり、例えば塗料、床材及び壁面コーティング材、防水材、ライニング材、道路マーキング、滑り止め舗装材等として使用され、好ましくは滑り止め用被覆材である。この他に注型品、積層品、波平板等の成形品、接着剤などの広範な用途にも使用できる。 The covering material of the present invention is a civil engineering and building material excellent in low-temperature flexibility and low-temperature curability, and is used as, for example, paint, flooring and wall coating materials, waterproofing materials, lining materials, road markings, non-slip paving materials, etc. Preferably, it is a non-slip coating material. In addition, it can be used for a wide range of applications such as cast products, laminated products, molded products such as corrugated plates, and adhesives.
 本発明の土木建築構造体は、木、金属、コンクリート、アスファルト等からなる土木建築物基体で、例えば、舗装道路、床、歩道等で、本発明の被覆材を塗布したものである。 The civil engineering building structure of the present invention is a civil engineering building base made of wood, metal, concrete, asphalt, etc., and is coated with the coating material of the present invention on, for example, paved roads, floors, sidewalks and the like.
 本発明の施工方法は、本発明の樹脂組成物に硬化剤等を添加して、土木建築物の表面、例えば、アスファルト面やコンクリート面等に、スプレー塗装、刷毛塗装、ロール塗布等の塗布作業を行うことである。滑り止め舗装材とするには、塗布に次いで砕石等の骨材を表面に散布することで、滑り止め層を形成することができる。本発明では、特定のウレタンメタクリレート樹脂とポリエステルメタクリレート樹脂とが相溶していることで、砕石が硬化までに適度に沈降するので、砕石の剥がれが少ない。 In the construction method of the present invention, a curing agent or the like is added to the resin composition of the present invention, and application work such as spray coating, brush coating, roll coating, etc. on the surface of civil engineering buildings, for example, asphalt surfaces and concrete surfaces, etc. Is to do. In order to obtain a non-slip pavement material, an anti-slip layer can be formed by spreading aggregates such as crushed stone on the surface after application. In the present invention, since the specific urethane methacrylate resin and the polyester methacrylate resin are compatible with each other, the crushed stone settles appropriately until it is cured, so that the crushed stone is hardly peeled off.
 以下本発明を実施例によって更に詳細に説明する。また、文中に「部」「%」とあるのは、質量部、質量%を示すものである。 Hereinafter, the present invention will be described in more detail with reference to examples. Also, “parts” and “%” in the text indicate parts by mass and mass%.
合成例1:ウレタンメタクリレート樹脂(UMA1)の合成
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた1リットルの四つ口フラスコに数平均分子量1000のポリテトラメチレングリコール(PTMGと略す)500gとトリレンジイソシアネート(TDIと略す)174gを仕込み、窒素気流下80℃で4時間反応させた。NCO当量が600とほぼ理論当量値となったので、50℃まで冷却した。空気気流下、ハイドロキノン0.07gを加え、2-ヒドロキシエチルメタクリレート(HEMAと略す)130gを加え、90℃で5時間反応させた。NCO%が0.1%以下となった時点で、ターシャリーブチルカテコール(TBCと略す)0.07g添加し、数平均分子量1608のウレタンメタクリレート樹脂(UMA1)を得た。
Synthesis Example 1: Synthesis of urethane methacrylate resin (UMA1) Thermometer, stirrer, inert gas inlet, air inlet, and polytetramethylene glycol having a number average molecular weight of 1000 in a 1-liter four-necked flask equipped with a reflux condenser 500 g (abbreviated as PTMG) and 174 g of tolylene diisocyanate (abbreviated as TDI) were charged and reacted at 80 ° C. for 4 hours in a nitrogen stream. Since the NCO equivalent was almost the theoretical equivalent of 600, it was cooled to 50 ° C. Under an air stream, 0.07 g of hydroquinone was added, 130 g of 2-hydroxyethyl methacrylate (abbreviated as HEMA) was added, and the mixture was reacted at 90 ° C. for 5 hours. When NCO% became 0.1% or less, 0.07 g of tertiary butylcatechol (abbreviated as TBC) was added to obtain a urethane methacrylate resin (UMA1) having a number average molecular weight of 1608.
合成例2:ウレタンメタクリレート樹脂(UMA2)の合成
 上記合成例1と同様にして、数平均分子量1000のPPG、TDI、HEMAを用いて、合成例1と同モル比配合で数平均分子量1608のウレタンメタクリレート樹脂(UMA2)を合成した。
Synthesis Example 2: Synthesis of Urethane Methacrylate Resin (UMA2) In the same manner as in Synthesis Example 1 above, PPG, TDI, and HEMA with a number average molecular weight of 1000 are used and urethane with a number average molecular weight of 1608 is blended in the same molar ratio as in Synthesis Example 1. A methacrylate resin (UMA2) was synthesized.
合成例3:ウレタンメタクリレート樹脂(UMA3)の合成
上記合成例1と同様にして、数平均分子量2000のPPG、TDI、HEMAを用いて、合成例1と同モル比配合で数平均分子量2608のウレタンメタクリレート樹脂(UMA3)を合成した。
Synthesis Example 3: Synthesis of Urethane Methacrylate Resin (UMA3) In the same manner as in Synthesis Example 1 above, urethane having a number average molecular weight of 2608 with the same molar ratio blended as in Synthesis Example 1 using PPG, TDI, and HEMA with a number average molecular weight of 2000. A methacrylate resin (UMA3) was synthesized.
合成例4:ポリエステルメタクリレート樹脂(B-1)の合成
 アジピン酸9モル、ジエチレングリコール8モルを温度計、攪拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコに仕込み、エステル化触媒としてモノブチルチンオキサイドを0.5質量%添加し、205℃で11時間反応させた。その後、140℃まで冷却し、次いでグリシジルメタクリレート2モルを投入し、10時間反応させ、数平均分子量2,150、比重1.05のポリエステルメタクリレート樹脂(B-1)を得た。
Synthesis Example 4: Synthesis of polyester methacrylate resin (B-1) 9 mol of adipic acid and 8 mol of diethylene glycol were charged into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, and used as an esterification catalyst. Monobutyltin oxide was added at 0.5% by mass and reacted at 205 ° C. for 11 hours. Thereafter, the mixture was cooled to 140 ° C., and then 2 mol of glycidyl methacrylate was added and reacted for 10 hours to obtain a polyester methacrylate resin (B-1) having a number average molecular weight of 2,150 and a specific gravity of 1.05.
合成例5:ポリエステルメタクリレート樹脂(B-2)の合成
 アジピン酸10モル、ジエチレングリコール9モルを温度計、攪拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコに仕込み、エステル化触媒としてモノブチルチンオキサイドを0.5質量%添加し、205℃で11時間反応させた。その後、140℃まで冷却し、次いでグリシジルメタクリレート2モルを投入し、10時間反応させ、数平均分子量2,374、比重1.05のポリエステルメタクリレート樹脂(B-2)を得た。
Synthesis Example 5: Synthesis of polyester methacrylate resin (B-2) 10 mol of adipic acid and 9 mol of diethylene glycol were charged into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser as an esterification catalyst. Monobutyltin oxide was added at 0.5% by mass and reacted at 205 ° C. for 11 hours. Thereafter, the mixture was cooled to 140 ° C., then 2 mol of glycidyl methacrylate was added and reacted for 10 hours to obtain a polyester methacrylate resin (B-2) having a number average molecular weight of 2,374 and a specific gravity of 1.05.
合成例6:ポリエステルメタクリレート樹脂(B-3)の合成
 アジピン酸7.5モル、無水フタル酸7.5モル、ジエチレングリコール14モルを温度計、攪拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコに仕込み、エステル化触媒としてモノブチルチンオキサイドを0.5質量%添加し、205℃で11時間反応させた。その後、140℃まで冷却し、次いでグリシジルメタクリレート2モルを投入し、10時間反応させ、数平均分子量3,650、比重1.05のポリエステルメタクリレート樹脂(B-3)を得た。
Synthesis Example 6 Synthesis of Polyester Methacrylate Resin (B-3) Adipic acid 7.5 mol, phthalic anhydride 7.5 mol, diethylene glycol 14 mol were equipped with a thermometer, stirrer, inert gas inlet and reflux condenser. Into a four-necked flask, 0.5% by mass of monobutyltin oxide was added as an esterification catalyst and reacted at 205 ° C. for 11 hours. Thereafter, the mixture was cooled to 140 ° C., then 2 mol of glycidyl methacrylate was added and reacted for 10 hours to obtain a polyester methacrylate resin (B-3) having a number average molecular weight of 3,650 and a specific gravity of 1.05.
合成例7:ポリエステルメタクリレート樹脂(B-4)の合成
 アジピン酸5モル、ジエチレングリコール4モルを温度計、攪拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコに仕込み、エステル化触媒としてモノブチルチンオキサイドを0.5質量%添加し、205℃で11時間反応させた。その後、140℃まで冷却し、次いでグリシジルメタクリレート2モルを投入し、10時間反応させ、数平均分子量1,300、比重1.04のポリエステルメタクリレート樹脂(B-4)を得た。
Synthesis Example 7: Synthesis of polyester methacrylate resin (B-4) 5 mol of adipic acid and 4 mol of diethylene glycol were charged into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser as an esterification catalyst. Monobutyltin oxide was added at 0.5% by mass and reacted at 205 ° C. for 11 hours. Thereafter, the mixture was cooled to 140 ° C., and then 2 mol of glycidyl methacrylate was added and reacted for 10 hours to obtain a polyester methacrylate resin (B-4) having a number average molecular weight of 1,300 and a specific gravity of 1.04.
合成例8:ポリエステルメタクリレート樹脂(B-5)の合成
 アジピン酸 20モル、ジエチレングリコール 19モルを温度計、攪拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコに仕込み、エステル化触媒としてモノブチルチンオキサイドを0.5質量%添加し、205℃で11時間反応させた。その後、140℃まで冷却し、次いでグリシジルメタクリレート2モルを投入し、10時間反応させ、数平均分子量4,534、比重1.10のポリエステルメタクリレート樹脂(B-5)を得た。
Synthesis Example 8 Synthesis of Polyester Methacrylate Resin (B-5) 20 mol of adipic acid and 19 mol of diethylene glycol were charged into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser as an esterification catalyst. Monobutyltin oxide was added at 0.5% by mass and reacted at 205 ° C. for 11 hours. Thereafter, the mixture was cooled to 140 ° C., then 2 mol of glycidyl methacrylate was added and reacted for 10 hours to obtain a polyester methacrylate resin (B-5) having a number average molecular weight of 4,534 and a specific gravity of 1.10.
合成例9:ポリエステルメタクリレート樹脂(B-6)の合成
 無水フタル酸15モル、ジエチレングリコール14モルを温度計、攪拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコに仕込み、エステル化触媒としてモノブチルチンオキサイドを0.5質量%添加し、205℃で11時間反応させた。その後、140℃まで冷却し、次いでグリシジルメタクリレート2モルを投入し、10時間反応させ、数平均分子量3,660、比重1.05のポリエステルメタクリレート樹脂(B-6)を得た。
Synthesis Example 9: Synthesis of polyester methacrylate resin (B-6) 15 mol of phthalic anhydride and 14 mol of diethylene glycol were charged into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, and an esterification catalyst As a result, 0.5% by mass of monobutyltin oxide was added and reacted at 205 ° C. for 11 hours. Thereafter, the mixture was cooled to 140 ° C., then 2 mol of glycidyl methacrylate was added and reacted for 10 hours to obtain a polyester methacrylate resin (B-6) having a number average molecular weight of 3,660 and a specific gravity of 1.05.
合成例10:ジシクロペンタジエン系不飽和ポリエステル樹脂(D-1)の合成
 水2モル、ジシクロペンタジエン2モルを温度計、攪拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコに仕込み、80℃まで昇温後、無水マレイン酸2モルを滴下し、酸価が210mgKOH/gとなるまで反応させた。その後、エチレングリコール1モルを仕込み、205℃に昇温、酸価が20mgKOH/gとなるまで反応させ、数平均分子量1460のジシクロペンタジエン系不飽和ポリエステル樹脂(D-1)を得た。
Synthesis Example 10: Synthesis of dicyclopentadiene-based unsaturated polyester resin (D-1) 2 moles of water and 2 moles of dicyclopentadiene were placed in a four-necked flask equipped with a thermometer, stirrer, inert gas inlet, and reflux condenser. After charging and heating up to 80 ° C., 2 mol of maleic anhydride was added dropwise and reacted until the acid value reached 210 mgKOH / g. Thereafter, 1 mol of ethylene glycol was charged, the temperature was raised to 205 ° C., and the reaction was continued until the acid value reached 20 mgKOH / g to obtain a dicyclopentadiene unsaturated polyester resin (D-1) having a number average molecular weight of 1460.
合成例11:ジシクロペンタジエン系不飽和ポリエステル樹脂(D-2)の合成
 水2モル、ジシクロペンタジエン2モルを温度計、攪拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコに仕込み、80℃まで昇温後、無水マレイン酸2モルを滴下し、酸価が210mgKOH/gとなるまで反応させた。その後、ジエチレングリコール1モルを仕込み、205℃に昇温、酸価が20mgKOH/gとなるまで反応させ、数平均分子量1950のジシクロペンタジエン系不飽和ポリエステル樹脂(D-2)を得た。
Synthesis Example 11 Synthesis of Dicyclopentadiene Unsaturated Polyester Resin (D-2) 2 mol of water and 2 mol of dicyclopentadiene were placed in a four-necked flask equipped with a thermometer, stirrer, inert gas inlet and reflux condenser. After charging and heating up to 80 ° C., 2 mol of maleic anhydride was added dropwise and reacted until the acid value reached 210 mgKOH / g. Thereafter, 1 mol of diethylene glycol was charged, the temperature was raised to 205 ° C., and the reaction was continued until the acid value reached 20 mgKOH / g, to obtain a dicyclopentadiene unsaturated polyester resin (D-2) having a number average molecular weight of 1950.
 実施例1~6及び比較例1~6
 表1及び表2記載の(A)~(D)の配合による樹脂組成物に硬化促進剤としてPTD-2EOを 0.4質量部、硬化剤として ナイパーNS(BPO:ベンゾイルパーオキサイド40%含有物、日本油脂製)を 2質量部添加して硬化塗膜を作成した。
Examples 1 to 6 and Comparative Examples 1 to 6
A resin composition obtained by blending (A) to (D) shown in Tables 1 and 2 contains 0.4 parts by mass of PTD-2EO as a curing accelerator and Nyper NS (BPO: 40% benzoyl peroxide) as a curing agent. , Manufactured by Nippon Oil & Fats Co., Ltd.) was added to prepare a cured coating film.
◆数平均分子量の測定方法
 合成例、実施例及び比較例におけるポリオール、ウレタンメタクリレート樹脂、ポリエステルメタクリレート樹脂、ジシクロペンタジエン系不飽和ポリエステル樹脂の数平均分子量は、以下のように測定した。
(測定装置・条件)
東ソー(株)製 一体型GPC装置
装置:HLC-8220GPC
検出器:RI(示差屈折計)
カラム:TSK-gel G5000HxL(7.8×300mm)×1
            G4000HxL(7.8×300mm)×1
            G3000HxL(7.8×300mm)×1
            G2000HxL(7.8×300mm)×1
移動相:THF(テトラヒドロフラン)
流速:1.0mL/min
設定温度:40℃
注入量:100μL(試料濃度:0.4%)
ポリスチレン(※)換算による数平均分子量を測定。
 ※ポリスチレン:東ソー(株)製 TSK標準ポリスチレン
◆ Method for Measuring Number Average Molecular Weight The number average molecular weights of polyols, urethane methacrylate resins, polyester methacrylate resins, and dicyclopentadiene unsaturated polyester resins in Synthesis Examples, Examples, and Comparative Examples were measured as follows.
(Measurement equipment and conditions)
Tosoh Co., Ltd. integrated GPC device: HLC-8220GPC
Detector: RI (differential refractometer)
Column: TSK-gel G5000HxL (7.8 × 300 mm) × 1
G4000HxL (7.8 × 300mm) × 1
G3000HxL (7.8 × 300mm) × 1
G2000HxL (7.8 × 300mm) × 1
Mobile phase: THF (tetrahydrofuran)
Flow rate: 1.0 mL / min
Set temperature: 40 ° C
Injection volume: 100 μL (sample concentration: 0.4%)
Measures the number average molecular weight in terms of polystyrene (*).
* Polystyrene: TSK standard polystyrene manufactured by Tosoh Corporation
◆相溶性(保存安定性)
 表1,2の(A)~(D)を配合し、23℃条件で1ヶ月放置した。
(評価)
○:1ヶ月後に濁り、層分離がないことを目視確認した。
×:1ヶ月後に濁りや層分離があることを目視確認した。
◆ Compatibility (storage stability)
(A) to (D) in Tables 1 and 2 were blended and allowed to stand at 23 ° C. for 1 month.
(Evaluation)
○: It was confirmed visually that it became cloudy after 1 month and there was no layer separation.
X: Visual confirmation of turbidity and layer separation after 1 month.
◆密度(比重)
 (金属製比重瓶法)JIS K5600-2-4により測定。
◆ Density (specific gravity)
(Metal specific gravity bottle method) Measured according to JIS K5600-2-4.
◆骨材沈降性
 骨材沈降性:1.6kg/m2塗布した樹脂の上に、着色磁器質骨材(B粒)を6.5kg/m2散布し、樹脂硬化後のその骨材の沈降状態を観察した。
○:骨材(B粒)が、塗膜厚の2/3以上沈降。
△:骨材(B粒)が、塗膜厚の1/3~2/3程度の沈降。
×:骨材(B粒)が、塗膜厚の1/3までの沈降。
着色磁器質骨材:珪砂、長石、陶石等を顔料とともに約1300℃以上で焼成し製造する。標準的な化学組成は、SiO:75.3%、Al:20.6%、NaO:1.1%、K:2.3%
◆ Aggregate sedimentation Aggregate sedimentation: 1.6kg / m 2 of coated resin, 6.5kg / m 2 of colored porcelain aggregate (B grain) is sprayed on the resin after hardening the resin. The sedimentation state was observed.
○: Aggregate (B grain) settles 2/3 or more of the coating thickness.
Δ: Aggregate (B grain) settles about 1/3 to 2/3 of the coating thickness.
X: Aggregate (B grain) settles to 1/3 of coating film thickness.
Colored porcelain aggregate: Silica sand, feldspar, porcelain stone, etc. are baked at about 1300 ° C. or higher together with pigments. Standard chemical composition is SiO 2 : 75.3%, Al 2 O 3 : 20.6%, Na 2 O: 1.1%, K 2 O 3 : 2.3%
◆引張強さ・引張伸び率
 樹脂組成物に、40%ベンゾイルパーオキサイド(40%BPO)を2部混合添加した。23℃で3日養生した後、JIS K6911-5.18に準じて、引張物性を測定した。なお、試験速度:5mm/min、測定温度:23℃及び-10℃である。
◆ Tensile strength / tensile elongation 2 parts of 40% benzoyl peroxide (40% BPO) were mixed and added to the resin composition. After curing at 23 ° C. for 3 days, tensile properties were measured according to JIS K6911-5.18. The test speed is 5 mm / min, and the measurement temperatures are 23 ° C. and −10 ° C.
◆粘度
 樹脂組成物の温度を5℃に調整したあと、JIS K6901-5.5の準じて、回転式粘度計により粘度を測定した。
◆ Viscosity After adjusting the temperature of the resin composition to 5 ° C., the viscosity was measured with a rotary viscometer according to JIS K6901-5.5.
◆耐タレ性
 室温25℃で2%傾斜のスレート板に1.6kg/m2樹脂組成物を塗布した。
○:タレが10cm以下となるもの
×:タレが10cmより長いもの
◆ Sagging resistance 1.6 kg / m 2 resin composition was applied to a slate plate inclined at 2% at room temperature of 25 ° C.
○: Sauce is 10 cm or less ×: Sauce is longer than 10 cm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(表中の説明)
MMA:メチルメタクリレート
(Explanation in the table)
MMA: Methyl methacrylate

Claims (9)

  1. ウレタンメタクリレート樹脂(A)とポリエステルメタクリレート樹脂(B)、(メタ)アクリロイル基を有するエチレン性不飽和単量体(C)とを含有するラジカル硬化性樹脂組成物において、
     前記ウレタンメタクリレート樹脂(A)が、ポリイソシアネート(a)とポリエーテルポリオール(b)とを反応させ、次いでヒドロキシアルキルメタクリレート(c)を反応させて得られるものであり、
     前記ポリエステルメタクリレート樹脂(B)が、酸成分としてアジピン酸を40モル%以上使用した数平均分子量2000~4000のものであり、
     前記樹脂(A)と前記樹脂(B)との合計100質量部に対して、相溶化剤としてジシクロペンタジエン系不飽和ポリエステル樹脂(D)を5~25質量部含有するものであることを特徴とするラジカル硬化性樹脂組成物。
    In the radical curable resin composition containing the urethane methacrylate resin (A), the polyester methacrylate resin (B), and the ethylenically unsaturated monomer (C) having a (meth) acryloyl group,
    The urethane methacrylate resin (A) is obtained by reacting polyisocyanate (a) with polyether polyol (b) and then reacting with hydroxyalkyl methacrylate (c),
    The polyester methacrylate resin (B) has a number average molecular weight of 2000 to 4000 using 40 mol% or more of adipic acid as an acid component,
    5 to 25 parts by mass of a dicyclopentadiene unsaturated polyester resin (D) as a compatibilizer is added to 100 parts by mass of the total of the resin (A) and the resin (B). A radical curable resin composition.
  2. 前記ポリイソシアネート(a)が、トリレンジイソシアネートである請求項1記載のラジカル硬化性樹脂組成物。 The radical curable resin composition according to claim 1, wherein the polyisocyanate (a) is tolylene diisocyanate.
  3. 前記ポリエーテルポリオール(b)が、ポリプロピレングリコール及び/又はポリテトラメチレングリコールである請求項1記載のラジカル硬化性樹脂組成物。 The radical curable resin composition according to claim 1, wherein the polyether polyol (b) is polypropylene glycol and / or polytetramethylene glycol.
  4. 前記ポリエステルメタクリレート樹脂(B)の酸成分が、アジピン酸を50~100モル%使用するものである請求項1記載のラジカル硬化性樹脂組成物。 The radical curable resin composition according to claim 1, wherein the acid component of the polyester methacrylate resin (B) uses 50 to 100 mol% of adipic acid.
  5. 前記(A)+(B)/(C)の質量比率が、2/8~8/2であることを特徴とする請求項1記載のラジカル硬化性樹脂組成物。 2. The radical curable resin composition according to claim 1, wherein the mass ratio of (A) + (B) / (C) is 2/8 to 8/2.
  6. 前記(A)/(B)の質量比率が、90/10~20/80であることを特徴とする請求項1記載のラジカル硬化性樹脂組成物。 2. The radical curable resin composition according to claim 1, wherein the mass ratio of (A) / (B) is 90/10 to 20/80.
  7. 請求項1~6いずれか1項のラジカル硬化性樹脂組成物を使用することを特徴とする被覆材。 A coating material comprising the radical curable resin composition according to any one of claims 1 to 6.
  8. 請求項1~6いずれか1項のラジカル硬化性樹脂組成物を使用することを特徴とする土木建築構造体。 A civil engineering structure comprising the radical curable resin composition according to any one of claims 1 to 6.
  9. 請求項7記載の被覆材を用いることを特徴とする土木建築物の施工方法。 The construction method of the civil engineering building characterized by using the coating | covering material of Claim 7.
PCT/JP2011/075047 2010-11-19 2011-10-31 Radical-curable resin composition, coating material and civil engineering building structure each using radical-curable resin composition, and method for constructing civil engineering building structure WO2012066924A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012510834A JP5003854B2 (en) 2010-11-19 2011-10-31 Radical curable resin composition, coating material using the same, civil engineering building structure, and construction method thereof
CN201180020857.4A CN102858824B (en) 2010-11-19 2011-10-31 Radical-curable resin composition, coating material and civil engineering building structure each using radical-curable resin composition, and method for constructing civil engineering building structure
KR1020127024206A KR20130132692A (en) 2010-11-19 2011-10-31 Radical-curable resin composition, coating material and civil engineering building structure each using radical-curable resin composition, and method for constructing civil engineering building structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-258908 2010-11-19
JP2010258908 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012066924A1 true WO2012066924A1 (en) 2012-05-24

Family

ID=46083863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075047 WO2012066924A1 (en) 2010-11-19 2011-10-31 Radical-curable resin composition, coating material and civil engineering building structure each using radical-curable resin composition, and method for constructing civil engineering building structure

Country Status (4)

Country Link
JP (1) JP5003854B2 (en)
KR (1) KR20130132692A (en)
CN (1) CN102858824B (en)
WO (1) WO2012066924A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158629A (en) * 2019-03-26 2020-10-01 株式会社菱晃 Resin composition, structure, and method for manufacturing structure
CN116854866A (en) * 2023-06-05 2023-10-10 浙江创赢新材料有限公司 MMA (methyl methacrylate) bi-component unsaturated polyester resin for road coating and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048459A (en) * 2013-09-04 2015-03-16 Dic株式会社 Radically polymerizable resin composition and civil engineering building material
CN107208387B (en) * 2014-12-12 2021-10-15 Dic株式会社 Waterproof foundation structure
JP7033084B2 (en) * 2017-01-23 2022-03-09 昭和電工株式会社 Radical Polymerizable Resin Compositions and Structure Repair Injectants
CN107588065B (en) * 2017-09-29 2020-01-14 深圳市洲明科技股份有限公司 Arc lock and display screen
RU2020122082A (en) * 2017-12-05 2022-01-14 Индустрия Кимика Реджана И.К.Р. Сочиета` Пер Ациони STYRENE-FREE AND COBALT-FREE POLYMER COMPOSITION AND ITS USE FOR FILLING AND BINDING
TW202138424A (en) * 2020-02-17 2021-10-16 日商東洋紡股份有限公司 Aromatic polyester and method for producing same
CN112920334B (en) * 2021-03-30 2022-09-06 华东理工大学华昌聚合物有限公司 Low-shrinkage unsaturated polyester resin and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203949A (en) * 2002-12-24 2004-07-22 Dainippon Ink & Chem Inc Resin composition
JP2005146105A (en) * 2003-11-14 2005-06-09 Dainippon Ink & Chem Inc Radical-polymerizable resin composition
JP2006160943A (en) * 2004-12-09 2006-06-22 Dainippon Ink & Chem Inc Curable resin composition, civil engineering and construction material and civil engineering and construction structure
JP2008106169A (en) * 2006-10-26 2008-05-08 Dainippon Ink & Chem Inc Curable resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206280C (en) * 1998-04-15 2005-06-15 Dsmip财产有限公司 Radiation curable resin composition
BR0209878A (en) * 2001-05-22 2004-06-08 Dainippon Ink & Chemicals Curable unsaturated resin composition
KR101574351B1 (en) * 2008-09-16 2015-12-03 닛본 페인트 홀딩스 가부시키가이샤 Fingerprint resistant photocurable composition and painted article provided with fingerprint resistant coating layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203949A (en) * 2002-12-24 2004-07-22 Dainippon Ink & Chem Inc Resin composition
JP2005146105A (en) * 2003-11-14 2005-06-09 Dainippon Ink & Chem Inc Radical-polymerizable resin composition
JP2006160943A (en) * 2004-12-09 2006-06-22 Dainippon Ink & Chem Inc Curable resin composition, civil engineering and construction material and civil engineering and construction structure
JP2008106169A (en) * 2006-10-26 2008-05-08 Dainippon Ink & Chem Inc Curable resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158629A (en) * 2019-03-26 2020-10-01 株式会社菱晃 Resin composition, structure, and method for manufacturing structure
CN116854866A (en) * 2023-06-05 2023-10-10 浙江创赢新材料有限公司 MMA (methyl methacrylate) bi-component unsaturated polyester resin for road coating and preparation method thereof
CN116854866B (en) * 2023-06-05 2024-02-06 浙江创赢新材料有限公司 MMA (methyl methacrylate) bi-component unsaturated polyester resin for road coating and preparation method thereof

Also Published As

Publication number Publication date
CN102858824B (en) 2015-04-15
JPWO2012066924A1 (en) 2014-05-12
JP5003854B2 (en) 2012-08-15
KR20130132692A (en) 2013-12-05
CN102858824A (en) 2013-01-02

Similar Documents

Publication Publication Date Title
JP5003854B2 (en) Radical curable resin composition, coating material using the same, civil engineering building structure, and construction method thereof
JP4973965B2 (en) Urethane (meth) acrylate resin composition and coating material using the same
US8277944B2 (en) Primer composition, waterproof floor slab structure using the same, and method for waterproofing floor slab
JP3674081B2 (en) Resin composition, civil engineering and building materials and covering materials
JP2011231231A (en) Radically curable unsaturated resin composition and coating material
WO2011048970A1 (en) Radically curable resin composition, paving material using same, and paved structure
JP6057123B2 (en) Radical polymerizable resin composition, primer, and floor slab waterproof structure
JP3677637B2 (en) Resin composition, civil engineering and building materials and covering materials
JP3674076B2 (en) Resin composition, civil engineering and building materials and covering materials
US20120289664A1 (en) Polyester (meth)acrylate resin composition, coated structure, and method for constructing the same
JP4147468B2 (en) Resin composition
JP4982987B2 (en) Resin composition for coating
JP5131156B2 (en) Radical polymerizable resin composition
JP2004202739A (en) Resin-coated structure
JP3244077B2 (en) Vinyl ester resin composition
WO2011013532A1 (en) Radical-curable resin composition, pavement materials using same, and paved structures
JP5927892B2 (en) Composite covering structure
WO2016171034A1 (en) Radical polymerizable resin composition and primer for civil engineering and construction
JP5845935B2 (en) Radical polymerizable resin composition
JPH10120736A (en) Curable resin composition, frp molded material and coating material
JP2017206596A (en) Primer for concrete
JP2024005579A (en) Radical polymerizable composition
JP2004323860A (en) Resin composition, civil engineering and construction material, and coating material
JP2014051633A (en) Radical curable resin composition, covering material and waterproof material for floor slab

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020857.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012510834

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024206

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842419

Country of ref document: EP

Kind code of ref document: A1