WO2012066881A1 - 波長変換素子及びそれを備える光源 - Google Patents

波長変換素子及びそれを備える光源 Download PDF

Info

Publication number
WO2012066881A1
WO2012066881A1 PCT/JP2011/073611 JP2011073611W WO2012066881A1 WO 2012066881 A1 WO2012066881 A1 WO 2012066881A1 JP 2011073611 W JP2011073611 W JP 2011073611W WO 2012066881 A1 WO2012066881 A1 WO 2012066881A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
light
conversion element
dispersion medium
element according
Prior art date
Application number
PCT/JP2011/073611
Other languages
English (en)
French (fr)
Inventor
角見 昌昭
義正 山口
隆史 西宮
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010257923A external-priority patent/JP5585410B2/ja
Priority claimed from JP2010257924A external-priority patent/JP5585411B2/ja
Priority claimed from JP2010265972A external-priority patent/JP5585421B2/ja
Priority to KR1020197006028A priority Critical patent/KR20190026949A/ko
Priority to US13/821,581 priority patent/US9638396B2/en
Priority to KR1020197032647A priority patent/KR20190126467A/ko
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201180054545.5A priority patent/CN103210509B/zh
Priority to EP19210219.2A priority patent/EP3637482B1/en
Priority to EP11841968.8A priority patent/EP2642540B1/en
Priority to KR1020137006552A priority patent/KR20130122937A/ko
Publication of WO2012066881A1 publication Critical patent/WO2012066881A1/ja
Priority to US15/448,651 priority patent/US9920891B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/625Chalcogenides with alkaline earth metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material

Definitions

  • the present invention relates to a wavelength conversion element and a light source including the same.
  • next-generation light sources that replace fluorescent lamps and incandescent lamps, such as light sources using light emitting diodes (LEDs) and laser diodes (LDs).
  • LEDs light emitting diodes
  • LDs laser diodes
  • a wavelength conversion member that absorbs part of light from an LED and emits yellow light on the light emitting side of the LED that emits blue light.
  • a light source in which is arranged is disclosed. This light source emits white light which is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.
  • the present invention has been made in view of such a point, and an object thereof is to increase the luminance of a light source using a wavelength conversion member.
  • the first wavelength conversion element according to the present invention is formed by bundling a plurality of wavelength conversion members including a dispersion medium and a phosphor powder dispersed in the dispersion medium.
  • the wavelength conversion member is one in which the phosphor powder is dispersed in the dispersion medium, for example, unlike an optical member made only of glass, light incident on the wavelength conversion unit is greatly scattered in the wavelength conversion member. Tend to. For this reason, when the wavelength conversion element is composed of a single wavelength conversion member, a part of the light in the wavelength conversion member leaks out from the side surface of the wavelength conversion member, so that the light emitted from the light exit surface Strength is lowered.
  • the first wavelength conversion element in contrast, in the first wavelength conversion element according to the present invention, a plurality of wavelength conversion members are bundled. For this reason, a part of the light emitted from the side surface of a certain wavelength conversion member is reflected on the surface of the adjacent wavelength conversion member. As a result, one of the wavelength conversion members is propagated by propagating through the air layer formed between the adjacent wavelength conversion members, or entering the wavelength conversion member again and reflecting while reflecting in the wavelength conversion member. The light exits from the light exit area provided with the end of the. For this reason, in the 1st wavelength conversion element concerning the present invention, the leakage of the light from the side of the wavelength conversion element can be controlled, and the intensity of the light emitted from the light emission region can be increased.
  • the second wavelength conversion element according to the present invention includes a wavelength conversion member and at least two first reflection layers.
  • the wavelength conversion member is formed by dispersing phosphor powder in a dispersion medium.
  • the wavelength conversion member has a light incident surface and a light output surface that face each other in the optical axis direction.
  • the at least two first reflective layers are each formed along a plane parallel to the optical axis direction inside the wavelength conversion member. The at least two first reflective layers divide the wavelength conversion member into a plurality of portions.
  • the second wavelength conversion element according to the present invention is formed along a plane parallel to the optical axis direction inside the wavelength conversion member, and includes at least two layers dividing the wavelength conversion member into a plurality of portions.
  • a first reflective layer is provided. For this reason, a part of the light scattered toward the side surface is reflected by the reflection layer, and is effectively suppressed from being emitted from the side surface. Therefore, in the second wavelength conversion element according to the present invention, the intensity of the light emitted from the light emitting surface can be increased. Therefore, by using the second wavelength conversion element according to the present invention, the brightness of the light source can be increased.
  • the second wavelength conversion element it is preferable that at least two first reflective layers are formed in parallel to each other. With this configuration, it is possible to improve the straightness of the light emitted from the wavelength conversion element.
  • the second wavelength conversion element it is preferable that three or more first reflective layers are laminated. With this configuration, it is possible to improve the straightness of the light emitted from the wavelength conversion element.
  • the second wavelength conversion element according to the present invention includes at least two second layers formed along a plane parallel to the optical axis direction and intersecting the first reflective layer inside the wavelength conversion member. It is preferable to further include a reflective layer. And it is preferable that the wavelength conversion part which extends along an optical axis direction by the 1st reflection layer and the 2nd reflection layer is partitioned and formed in the wavelength conversion member. In this configuration, the intensity of light emitted from the light exit surface can be further increased. Further, it is possible to further improve the straightness of the light emitted from the light emitting surface.
  • the second wavelength conversion element it is preferable that at least two second reflective layers are formed in parallel to each other. In this configuration, the straightness of the light emitted from the wavelength conversion element can be further improved.
  • the second wavelength conversion element it is preferable that at least two second reflective layers and at least two first reflective layers are orthogonal to each other. With this configuration, it is possible to further improve the straightness of the light emitted from the light emitting surface.
  • the second wavelength conversion element it is more preferable that three or more second reflection layers are laminated and the wavelength conversion units are provided in a matrix. With this configuration, it is possible to further improve the straightness of the light emitted from the light emitting surface.
  • the first reflective layer may be made of, for example, a dielectric multilayer film, but is preferably made of a metal, an alloy, or a white paint. This is because the first reflective layer made of a metal, an alloy, or a white paint has low wavelength dependency of reflectance and can be easily formed.
  • the second reflective layer may be made of, for example, a dielectric multilayer film, but is preferably made of a metal, an alloy, or a white paint. Specific examples of metals that are preferably used include Ag, Al, Au, Pd, Pt, Cu, Ti, Ni, and Cr.
  • the alloy preferably used include an alloy containing one or more metals selected from the group consisting of Ag, Al, Au, Pd, Pt, Cu, Ti, Ni, and Cr.
  • the white paint preferably used include, for example, a white color containing particles made of one or more metals and alloys selected from the group consisting of Ag, Al, Au, Pd, Pt, Cu, Ti, Ni, and Cr. Examples include paints.
  • the third wavelength conversion element according to the present invention has a light incident surface and a light output surface that face each other in the first direction.
  • the third wavelength conversion element according to the present invention includes a first portion and a second portion.
  • the first part is formed by dispersing the phosphor powder in the first dispersion medium.
  • the first portion constitutes a first wavelength conversion unit extending from the light incident surface to the light emitting surface in the first direction.
  • the second portion is provided so as to reach the light exit surface from the light incident surface in the first direction.
  • the second part is provided in contact with the first part.
  • the second part includes a second dispersion medium having a refractive index different from that of the first dispersion medium.
  • the 2nd portion containing the 2nd dispersion medium which has a refractive index different from the 1st dispersion medium is provided so that the 1st wavelength conversion part may be touched. Yes.
  • the light in the first wavelength converter is reflected at a high reflectance at the interface between the first wavelength converter and the second part.
  • the intensity of light emitted from the light exit surface can be increased. Therefore, by using the third wavelength conversion element according to the present invention, the brightness of the light source can be increased.
  • the first wavelength it is preferable that the 1st part which comprises the conversion part is surrounded by the 2nd part.
  • the second portion may be composed of only the second dispersion medium, but further includes a phosphor powder dispersed in the second dispersion medium, It is preferable that the 2nd part comprises the 2nd wavelength conversion part.
  • the ratio of the wavelength conversion unit contributing to wavelength conversion can be increased. Therefore, the intensity of light emitted from the light exit surface can be further increased.
  • the light incident on each of the first and second wavelength conversion units and the generated fluorescence propagate to the light exit surface in a state of being confined in the first or second wavelength conversion unit. Therefore, the intensity of light emitted from the light exit surface can be further increased.
  • the difference in reflectance at the interface between the first and second portions is larger from the viewpoint of further increasing the intensity of light emitted from the light exit surface. Therefore, the difference between the refractive index of the first dispersion medium and the refractive index of the second dispersion medium is preferably 0.05 or more, and more preferably 0.1 or more.
  • the wavelength conversion member may be cylindrical.
  • the first wavelength conversion element according to the present invention is preferably formed by bundling three or more wavelength conversion members. In this configuration, leakage of light from the side surface side of the wavelength conversion element can be more efficiently suppressed, and the intensity of light emitted from the light emission region can be further increased. Therefore, it is possible to further increase the brightness of the light source.
  • the refractive index of the dispersion medium of the wavelength conversion member is preferably 1.45 or more. In that case, the refractive index difference between the wavelength conversion member and the air layer can be increased. For this reason, the reflectance at the interface can be increased and the reflection angle can be decreased, so that the emission of light from the side surface of the wavelength conversion member can be suppressed. Therefore, light leakage from the side surface side of the wavelength conversion element can be more effectively suppressed.
  • the dispersion medium is not particularly limited as long as the phosphor powder can be dispersed.
  • the dispersion medium preferably used as the dispersion medium include resin, glass, ceramics, and the like.
  • inorganic dispersion media such as glass and ceramics are more preferably used. This is because the heat resistance of the wavelength conversion element can be improved by using the inorganic dispersion medium.
  • the phosphor powder is preferably an inorganic phosphor powder.
  • the light source according to the present invention includes any one of the first to third wavelength conversion elements according to the present invention and a light emitting element that emits excitation light of the phosphor powder toward the end face of the wavelength conversion element.
  • the intensity of light emitted from the light exit surface can be increased. Therefore, the light source according to the present invention has high luminance.
  • FIG. 1 is a schematic diagram of a light source according to the first embodiment.
  • FIG. 2 is a schematic perspective view of the element body of the wavelength conversion element according to the first embodiment.
  • FIG. 3 is a schematic perspective view of the element body of the wavelength conversion element according to the second embodiment.
  • FIG. 4 is a schematic perspective view of the element body of the wavelength conversion element according to the third embodiment.
  • FIG. 5 is a schematic perspective view of the element body of the wavelength conversion element according to the fourth embodiment.
  • FIG. 6 is a schematic diagram of a light source according to the fifth embodiment.
  • FIG. 9 is a schematic cross-sectional view taken along line IV-IV in FIG.
  • FIG. 10 is a schematic cross-sectional view of the element main body of the wavelength conversion element in the seventh embodiment.
  • FIG. 11 is a schematic cross-sectional view of the element body of the wavelength conversion element according to the eighth embodiment.
  • FIG. 12 is a schematic diagram of a light source according to the ninth embodiment.
  • FIG. 13 is a schematic perspective view of the wavelength conversion element according to the ninth embodiment.
  • FIG. 1 is a schematic diagram of a light source according to the first embodiment.
  • the light source 1 includes a wavelength conversion element 11 and a light emitting element 10.
  • the wavelength conversion element 11 emits light L2 having a longer wavelength than the light L0 when the light L0 emitted from the light emitting element 10 is irradiated. Further, part of the light L0 is transmitted through the wavelength conversion element 11. For this reason, the wavelength conversion element 11 emits light L3 that is a combined light of the transmitted light L1 and the light L2.
  • the light L3 emitted from the light source 1 is determined by the wavelength and intensity of the light L0 emitted from the light emitting element 10 and the wavelength and intensity of the light L2 emitted from the wavelength conversion element 11. For example, when the light L0 is blue light and the light L2 is yellow light, white light L3 can be obtained.
  • the light emitting element 10 is an element that emits excitation light of a phosphor powder, which will be described later, to the wavelength conversion element 11.
  • the kind of the light emitting element 10 is not particularly limited.
  • the light emitting element 10 can be composed of, for example, an LED, an LD, an electroluminescence light emitting element, or a plasma light emitting element. From the viewpoint of increasing the luminance of the light source 1, the light emitting element 10 preferably emits high-intensity light. From this viewpoint, it is preferable that the light emitting element 10 is composed of an LED or an LD.
  • the wavelength conversion element 11 includes an element body 11a, a wavelength selection filter layer 11b, and a reflection suppression layer 11c.
  • the wavelength selection filter layer 11b and the reflection suppression layer 11c are not essential.
  • the wavelength conversion element may be composed of only the element body, for example. Further, either the wavelength selection filter layer or the reflection suppression layer may be formed on both the light emitting surface and the light incident surface of the element body.
  • the wavelength selection filter layer 11b is formed on the light incident surface of the element body 11a.
  • the wavelength selection filter layer 11b transmits only light in a specific wavelength region of the light L0 emitted from the light emitting element 10 to the element body 11a, and suppresses transmission of light in other wavelength regions, and This is a layer that prevents the light L2 converted by the main body 11a from being emitted from the light incident surface (light emitting element 10) side.
  • the wavelength selection filter layer 11b can be formed of, for example, a dielectric multilayer film.
  • the reflection suppressing layer 11c is formed on the light emitting surface of the element body 11a.
  • the reflection suppressing layer 11c is a layer that suppresses the light emitted from the element body 11a from being reflected by the light emitting surface and increases the emission rate of the light emitted from the element body 11a.
  • the reflection suppression layer 11c can be formed of, for example, a dielectric multilayer film.
  • FIG. 2 is a schematic perspective view of the element body 11a.
  • the element body 11 a includes a wavelength conversion member 12 and a plurality of reflection layers 13.
  • the wavelength conversion member 12 is formed in a prismatic shape.
  • the wavelength conversion member 12 has a light incident surface 12a, a light emitting surface 12b, and four side surfaces 12c to 12f.
  • the light incident surface 12a and the light emitting surface 12b face each other in the optical axis direction (x direction).
  • the wavelength conversion member 12 has a dispersion medium and a phosphor powder dispersed in the dispersion medium.
  • the phosphor powder absorbs the light L0 from the light emitting element 10 and emits the light L2 having a longer wavelength than the light L0.
  • the phosphor powder is preferably an inorganic phosphor powder. By using the inorganic phosphor powder, the heat resistance of the wavelength conversion member 12 can be improved.
  • inorganic phosphors that emit blue light when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 to 440 nm include Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ba) MgAl 10 O 17. : Eu 2+ and the like.
  • inorganic phosphors that emit green fluorescence (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 to 440 nm include SrAl 2 O 4 : Eu 2+ and SrGa 2 S 4. : Eu 2+ and the like.
  • inorganic phosphors that emit green fluorescence (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ and SrGa 2 S 4 : Eu 2+. Etc.
  • a specific example of a non-fluorescent material that emits yellow fluorescence (fluorescence with a wavelength of 540 nm to 595 nm) when irradiated with excitation light of ultraviolet to near ultraviolet with a wavelength of 300 to 440 nm includes ZnS: Eu 2+ and the like.
  • inorganic phosphor that emits yellow fluorescence (fluorescence with a wavelength of 540 nm to 595 nm) when irradiated with blue excitation light with a wavelength of 440 to 480 nm include Y 3 (Al, Gd) 5 O 12 : Ce 2+ and the like. Can be mentioned.
  • inorganic phosphors that emit red fluorescence (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm include Gd 3 Ga 4 O 12 : Cr 3+ , CaGa 2. S 4 : Mn 2+ and the like can be mentioned.
  • inorganic phosphors that emit red fluorescence (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Mg 2 TiO 4 : Mn 4+ and K 2 SiF 6 : Mn 4+. Etc.
  • the average particle diameter (D 50 ) of the phosphor powder is not particularly limited.
  • the average particle diameter (D 50 ) of the phosphor powder is, for example, preferably about 1 ⁇ m to 50 ⁇ m, and more preferably about 5 ⁇ m to 25 ⁇ m. If the average particle size (D 50 ) of the phosphor powder is too large, the emission color may be non-uniform. On the other hand, if the average particle diameter (D 50 ) of the phosphor powder is too small, the emission intensity may be reduced.
  • the content of the phosphor powder in the wavelength conversion member 12 is not particularly limited.
  • the content of the phosphor powder in the wavelength conversion member 12 can be appropriately set according to the intensity of light emitted from the light emitting element 10, the light emission characteristics of the phosphor powder, the chromaticity of the light to be obtained, and the like.
  • the content of the phosphor powder in the wavelength conversion member 12 can be, for example, about 0.01% by mass to 30% by mass, and preferably 0.05% by mass to 20% by mass. More preferably, the content is 0.08% by mass to 15% by mass.
  • the porosity in the wavelength conversion member 12 will become high, and the emitted light intensity of the light source 1 may fall.
  • the content of the phosphor powder in the wavelength conversion member 12 is too small, sufficiently strong fluorescence may not be obtained.
  • the dispersion medium is preferably, for example, a heat resistant resin, glass, or ceramic.
  • a heat resistant resin glass, or ceramic.
  • an inorganic dispersion medium such as glass or ceramics that has particularly high heat resistance and hardly deteriorates due to the light L0 from the light emitting element 10 is more preferably used.
  • heat resistant resin examples include polyimide and the like.
  • glass examples include silicate glass, borosilicate glass, phosphate glass, and borophosphate glass.
  • ceramics include metal nitrides such as zirconia, alumina, barium titanate, silicon nitride, and titanium nitride.
  • a plurality of first reflective layers 13 are formed inside the wavelength conversion member 12.
  • three or more first reflective layers 13 are formed.
  • Each of the plurality of first reflective layers 13 is formed in a flat plate shape.
  • Each of the plurality of first reflective layers 13 is formed to extend along the x direction (optical axis direction) and the y direction perpendicular to the x direction. That is, each of the plurality of first reflective layers 13 is formed along a plane parallel to the x direction (optical axis direction).
  • the plurality of first reflective layers 13 are arranged at intervals from each other along the z direction perpendicular to the x direction and the y direction. That is, the plurality of first reflective layers 13 are opposed to each other in the z direction.
  • Each of the plurality of first reflective layers 13 is exposed to the light incident surface 12a, the light emitting surface 12b, and the side surfaces 12e and 12f. For this reason, the wavelength conversion member 12 is partitioned into a plurality of wavelength conversion units 14 arranged in the z direction.
  • the plurality of first reflective layers 13 are provided in parallel to each other.
  • at least two reflective layers may not be arranged in parallel to each other.
  • the first reflective layer 13 preferably has a high reflectance of the light L0 from the light emitting element 10, that is, the excitation light of the phosphor powder and the light (converted light) emitted from the phosphor powder.
  • the reflectance of the reflective layer 13 at each of the excitation wavelength of the phosphor powder and the wavelength of light emitted from the phosphor powder when the phosphor powder is irradiated with the light having the excitation wavelength is 60% or more.
  • it is 85% or more, more preferably 90% or more.
  • the reflective layer 13 is preferably made of, for example, a metal or an alloy.
  • the reflective layer 13 is made of, for example, a metal such as Ag, Al, Au, Pd, Pt, Cu, Ti, Ni, or Cr, an alloy containing at least one of these metals, or a white paint. It is preferable.
  • the adhesion layer can be formed of, for example, aluminum oxide, silicon oxide, chromium oxide, copper oxide, or the like.
  • a plurality of reflective layers 13 are formed inside the wavelength conversion member 12. For this reason, it can suppress that the light which is scattered in the wavelength conversion member 12 and goes to the side surfaces 12c and 12d emits from the side surfaces 12c and 12d. More specifically, among the plurality of wavelength conversion units 14, the light of the wavelength conversion unit 14 a sandwiched by the reflection layer 13 in the z direction is suppressed by being reflected by the reflection layer 13 and emitted from the side surfaces 12 c and 12 d. The light exits from the light exit surface 12b. Therefore, the intensity of the light L3 emitted from the light emitting surface 12b of the wavelength conversion member 12 can be increased. Therefore, the luminance of the light source 1 can be increased.
  • the straightness of the light L3 emitted from the wavelength conversion member 12 can be improved. From the viewpoint of further improving the straightness of the light L3, it is preferable to provide three or more reflective layers 13.
  • the average optical path length until the light incident on the wavelength conversion member 12 is emitted from the wavelength conversion member 12 can be increased. Therefore, the wavelength conversion efficiency in the wavelength conversion member 12 can be increased.
  • the manufacturing method of the wavelength conversion element 11 is not specifically limited.
  • the wavelength conversion element 11 can be manufactured, for example, by the following method.
  • the element body 11a is manufactured. Specifically, a plate-like member made of a dispersion medium in which phosphor powder is dispersed for constituting the wavelength conversion unit is produced.
  • This plate-shaped member can be produced, for example, by press-molding a mixed powder of a phosphor powder and a glass powder or a ceramic powder, followed by firing.
  • a reflective layer is formed on one surface of the plate-like member.
  • the reflective layer can be formed by, for example, a CVD method, a sputtering method, a plating method, or the like.
  • the reflective film may be formed by bonding using an adhesive or the like.
  • the element body 11a can be formed by laminating and bonding a plurality of plate-like members each having a reflective layer formed on one side.
  • a mixed powder of phosphor powder and glass powder or ceramic powder is press-molded into a plate shape, and a plurality of layers obtained by applying a paste containing metal fine particles to one side of the obtained molded body are laminated, and then fired By doing so, the element body 11a can be produced.
  • the wavelength conversion element 11 can be completed by forming the wavelength selection filter layer 11b and the reflection suppressing layer 11c by sputtering or CVD.
  • FIG. 3 is a schematic perspective view of the element body of the wavelength conversion element according to the second embodiment.
  • a plurality of second reflection layers 15 are formed in the wavelength conversion member 12 in addition to the plurality of first reflection layers 13.
  • three or more second reflective layers 15 are provided.
  • Each of the plurality of second reflective layers 15 is parallel to the x direction (optical axis direction) and along the x direction and a direction inclined in the x direction (a direction intersecting the first reflective layer 13). It is formed to extend.
  • each of the plurality of second reflective layers 15 is formed to extend along the x direction and the z direction (direction perpendicular to the first reflective layer 13). .
  • the plurality of second reflective layers 15 are arranged at intervals in the y direction.
  • the plurality of second reflective layers 15 are opposed to each other in the y direction.
  • Each of the plurality of second reflective layers 15 reaches the light incident surface 12a, the light emitting surface 12b, and the side surfaces 12c and 12d.
  • the plurality of second reflection layers 15 and the plurality of first reflection layers 13 define a plurality of prismatic wavelength conversion sections 16 arranged in a matrix. Therefore, in the present embodiment, not only light leakage from the side surfaces 12c and 12d but also light leakage from the side surfaces 12e and 12f can be suppressed. Therefore, the intensity of the light L3 emitted from the light emitting surface 12b can be further increased. Therefore, the luminance of the light source 1 can be further increased.
  • the plurality of reflective layers 15 are provided in parallel to each other.
  • at least two second reflective layers may not be provided in parallel to each other.
  • the manufacturing method of the element body 11a in the present embodiment is not particularly limited.
  • the element body 11a may be manufactured by pasting together a rectangular columnar wavelength conversion member in which a reflective layer is formed on two adjacent side surfaces in a matrix.
  • the element main body 11a may be manufactured by inserting a plurality of rectangular columnar wavelength conversion members into a metal folder formed in a lattice shape.
  • FIG. 4 is a schematic perspective view of the element body of the wavelength conversion element according to the third embodiment.
  • FIG. 5 is a schematic perspective view of the element body of the wavelength conversion element according to the fourth embodiment.
  • the present invention is not limited to this configuration.
  • a reflective layer 17 may be formed on the side surfaces 12c to 12f. By doing so, it is possible to more effectively suppress light leakage from the side surfaces 12c to 12f. Therefore, the intensity of the light L3 emitted from the light emitting surface 12b can be further increased. Therefore, the luminance of the light source 1 can be further increased.
  • FIG. 6 is a schematic diagram of a light source according to the fifth embodiment.
  • the light source 2 of the present embodiment is provided with a beam splitter 18.
  • the light L0 from the light emitting element 10 is guided to the wavelength conversion element 11 side by the beam splitter 18.
  • a reflection suppression layer 11c is formed on the light incident surface side of the wavelength conversion element 11, and a reflection layer 11d is formed on the opposite surface.
  • an adhesive layer (not shown) made of resin or solder is formed on the reflective layer 11d, and the substrate 19 made of glass, ceramics, metal, or the like and the wavelength conversion element 11 are fixed via the adhesive layer. ing.
  • this reflective layer 11d a part of the light L0 and the light emitted from the wavelength conversion member 12 are reflected to the beam splitter 18 side. Therefore, the light L3 is emitted toward the beam splitter 18 and is transmitted through the beam splitter 18 and emitted.
  • the wavelength conversion portions as shown in FIGS. 2 and 3 are formed in a layer or matrix form.
  • peeling between the substrate 19 and the wavelength conversion element 11 due to heat generated when converting the light L0 emitted from the light emitting element 10 into the light L3 can be effectively suppressed.
  • borosilicate glass powder and 15% by mass of sulfide phosphor powder (CaGa 2 S 4 , fluorescence wavelength: 561 nm) are mixed, press-molded, and then fired and cut.
  • a wavelength conversion member having a thickness of 0.3 mm, a width of 0.3 mm, and a depth of 20 mm was produced.
  • a 134 nm thick layer made of aluminum oxide was formed as an adhesion layer on the entire surface of the wavelength conversion member by a vacuum deposition method.
  • a reflective layer made of Ag having a thickness of 150 nm was formed on the adhesion layer by sputtering.
  • the wavelength conversion member on which the adhesion layer and the reflection layer are formed is laminated, and bonded, cut, and polished using an epoxy resin adhesive to form a matrix element body having a width of 2.1 mm square and a depth of 0.5 mm.
  • an epoxy resin adhesive to form a matrix element body having a width of 2.1 mm square and a depth of 0.5 mm.
  • a total of 39 layers of silicon oxide layers and tantalum oxide layers were alternately formed on the light incident surface of the element body by a vacuum vapor deposition method to form a wavelength selection filter layer.
  • a reflection suppressing layer was formed on the light emitting surface of the element body by alternately forming a total of four silicon oxide layers and tantalum oxide layers by vacuum deposition. The wavelength conversion element was completed through the above steps.
  • the light incident surface of the produced wavelength conversion element was irradiated with light having a wavelength of 460 nm using an LD, and the intensity of the light emitted from the light emitting surface side was measured through a 1 mm square slit.
  • the intensity of the light emitted from the wavelength conversion element of this example was 102 lm.
  • a wavelength conversion member having a width of 2.1 mm square and a depth of 0.5 mm was prepared in the same manner as in the above example, and the wavelength conversion member was used as a wavelength conversion element without forming an adhesion layer and a reflection layer on the surface of the wavelength conversion member. The same evaluation was performed. As a result, the intensity of the light emitted from the wavelength conversion element of this comparative example was 83 lm.
  • FIG. 7 is a schematic perspective view of an element body 11a according to the sixth embodiment. 8 is a schematic cross-sectional view taken along line III-III in FIG.
  • FIG. 9 is a schematic cross-sectional view taken along line IV-IV in FIG.
  • the element body 11a includes a plurality of first wavelength converters 12L and a plurality of second wavelength converters 12H.
  • Each of the first and second wavelength conversion units 12L and 12H includes a dispersion medium and a phosphor powder dispersed in the dispersion medium.
  • the phosphor powder absorbs the light L0 from the light emitting element 10 and emits the light L2 having a longer wavelength than the light L0.
  • the same powder as in the first embodiment can be used.
  • the content of the phosphor powder in each of the first and second wavelength conversion units 12L and 12H is not particularly limited.
  • the phosphor powder content in each of the first and second wavelength converters 12L and 12H is the intensity of light emitted from the light emitting element 10, the light emission characteristics of the phosphor powder, the chromaticity of the light to be obtained, and the like. It can be set appropriately depending on the situation.
  • the content of the phosphor powder in each of the first and second wavelength conversion units 12L and 12H is generally about 0.01% by mass to 30% by mass, for example, 0.05% by mass. % To 20% by mass, more preferably 0.08% to 15% by mass.
  • the phosphor powder content in each of the first and second wavelength conversion units 12L and 12H is too large, the porosity in each of the first and second wavelength conversion units 12L and 12H increases, and the light source 1 The light emission intensity may decrease. On the other hand, if the phosphor powder content in each of the first and second wavelength conversion units 12L and 12H is too small, sufficiently strong fluorescence may not be obtained.
  • the first wavelength conversion unit 12L and the second wavelength conversion unit 12H may include the same type of phosphor powder, or may include different types of phosphor powder.
  • the average particle diameter (D 50 ) of the phosphor powder and the content of the phosphor powder may be the same in the first wavelength conversion unit 12L and the second wavelength conversion unit 12H, or at least one of them. May be different.
  • the same dispersion medium as in the first embodiment can be used.
  • heat resistant resin examples include polyimide and the like.
  • glass examples include silicate glass, borosilicate glass, phosphate glass, and borophosphate glass.
  • ceramics include metal nitrides such as zirconia, alumina, barium titanate, silicon nitride, and titanium nitride.
  • the refractive index of the dispersion medium of the first wavelength conversion unit 12L is different from the refractive index of the dispersion medium of the second wavelength conversion unit 12H.
  • the refractive index of the dispersion medium of the first wavelength conversion unit 12L and the refractive index of the dispersion medium of the second wavelength conversion unit 12H are different for each of the wavelengths of the light L0 and the light L2.
  • the refractive index of the dispersion medium of the first wavelength conversion unit 12L is lower than the refractive index of the dispersion medium of the second wavelength conversion unit 12H.
  • the difference between the refractive index of the dispersion medium of the first wavelength conversion unit 12L and the refractive index of the dispersion medium of the second wavelength conversion unit 12H is 0.05 or more It is preferable that it is 0.1 or more.
  • each of the first and second wavelength conversion units 12L and 12H is formed in a quadrangular prism shape.
  • the plurality of first and second wavelength conversion units 12L and 12H are arranged in a matrix along the y direction and the z direction.
  • the plurality of first and second wavelength conversion units 12L and 12H are arranged in a matrix so as to be alternately positioned in each of the y direction and the z direction.
  • each of the 1st and 2nd wavelength conversion parts 12L and 12H is surrounded by the 2nd or 1st wavelength conversion parts 12H and 12L.
  • all the side surfaces of the first and second wavelength conversion units 12L and 12H are in contact with the second or first wavelength conversion units 12H and 12L.
  • Each of the first and second wavelength conversion units 12L and 12H is provided so as to extend from the light incident surface 11a1 to the light emitting surface 11a2 in the x direction.
  • first and second wavelength conversion units 12L and 12H may be directly bonded by, for example, fusion, or may be bonded by an adhesive or the like. Moreover, you may fix the 1st and 2nd wavelength conversion parts 12L and 12H which adjoin, using fixing members, such as a frame.
  • the first wavelength conversion unit 12L and the second wavelength conversion unit 12H having different refractive indexes are provided so as to be in contact with each other. For this reason, the light in the first wavelength conversion unit 12L is reflected at a high reflectance at the interface with the second wavelength conversion unit 12H. Similarly, the light in the second wavelength conversion unit 12H is reflected at a high reflectance at the interface with the first wavelength conversion unit 12L, and the light incident on the interface at a large angle is totally reflected. . Therefore, light leakage from the side surface of the element body 11a is effectively suppressed. Therefore, the intensity of the light L3 emitted from the light emission surface 11a2 of the element body 11a can be increased. As a result, the high-intensity light source 1 can be realized.
  • the first wavelength conversion unit 12L is surrounded by the second wavelength conversion unit 12H, and the second wavelength conversion unit 12H is surrounded by the first wavelength conversion unit 12L. For this reason, it is more effectively suppressed that light leaks from the side surface of the element body 11a. Therefore, the intensity of the light L3 emitted from the light emitting surface 11a2 of the element body 11a can be further increased.
  • the straightness of the light L3 can be improved by configuring the element body 11a with the first and second wavelength conversion members 12L and 12H.
  • the light reflectance at the interface between the first wavelength conversion unit 12L and the second wavelength conversion unit 12H is set. It is preferable to make it higher. Therefore, the refractive index of the dispersion medium ( ⁇ refractive index of the first wavelength conversion section 12L) of the first wavelength conversion section 12L and the refractive index of the dispersion medium ( ⁇ second wavelength conversion section of the second wavelength conversion section 12H).
  • the difference from the refractive index of 12H is preferably 0.05 or more, and more preferably 0.1 or more.
  • the present invention is not limited to this configuration. Only one of the first and second wavelength conversion units 12L and 12H is provided, and instead of the other of the first and second wavelength conversion units 12L and 12H, the first and second wavelength conversion units 12L are provided. , 12H may be provided with a portion made of a dispersion medium having a refractive index different from that of one dispersion medium. Even in this case, light leakage from the side surface of the element body 11a can be effectively suppressed.
  • the element body 11a is preferably constituted by the first and second wavelength conversion units 12L and 12H.
  • FIG. 10 is a schematic cross-sectional view of the element main body of the wavelength conversion element in the seventh embodiment.
  • FIG. 11 is a schematic cross-sectional view of the element body of the wavelength conversion element according to the eighth embodiment.
  • the present invention is not limited to this configuration.
  • one or more first wavelength converters 12L may be surrounded by one or more second wavelength converters 12H.
  • the light in the one or more first wavelength conversion units 12L is effectively suppressed from leaking to the outside. Therefore, similarly to the sixth embodiment, the intensity of the light L3 emitted from the light emitting surface 11a2 can be increased, and the luminance of the light source can be increased.
  • each of the first and second wavelength conversion units 12L and 12H has a quadrangular prism shape.
  • the present invention is not limited to this configuration.
  • the first and second wavelength conversion units may have a polygonal column shape, a triangular column shape, or the like.
  • the first wavelength conversion unit 12L may have a cylindrical shape
  • the second wavelength conversion unit 12H may have a cylindrical shape.
  • the wavelength conversion element according to the sixth to eighth embodiments may be used as the wavelength conversion element of the light source 2 shown in FIG.
  • FIG. 12 is a schematic diagram of a light source according to the present embodiment.
  • the light source 1 includes a wavelength conversion element 11 and a light emitting element 10.
  • the wavelength conversion element 11 emits light L2 having a longer wavelength than the light L0 when the light L0 emitted from the light emitting element 10 is irradiated. Further, a part of the light L0 is transmitted through the wavelength conversion element 11. For this reason, the wavelength conversion element 11 emits light L3 that is a combined light of the transmitted light L1 and the light L2.
  • the light L3 emitted from the light source 1 is determined by the wavelength and intensity of the light L0 emitted from the light emitting element 10 and the wavelength and intensity of the light L2 emitted from the wavelength conversion element 11. For example, when the light L0 is blue light and the light L2 is yellow light, white light L3 can be obtained.
  • the light emitting element 10 is an element that emits excitation light of a phosphor powder, which will be described later, to the wavelength conversion element 11.
  • the kind of the light emitting element 10 is not particularly limited.
  • the light emitting element 10 can be composed of, for example, an LED, an LD, an electroluminescence light emitting element, or a plasma light emitting element. From the viewpoint of increasing the luminance of the light source 1, the light emitting element 10 preferably emits high-intensity light. From this viewpoint, it is preferable that the light emitting element 10 is composed of an LED or an LD.
  • a wavelength selection filter layer or a reflection suppression layer may be formed on at least one of the light incident region 11e and the light emitting region 11f of the wavelength conversion member.
  • the wavelength selection filter layer on the light incident region 11 e of the wavelength conversion element 11, only the light in a specific wavelength region among the light L0 emitted from the light emitting element 10 is sent to the wavelength conversion element 11. It is possible to transmit light and suppress transmission of light in other wavelength ranges, and it is possible to suppress the light L2 converted by the wavelength conversion element 11 from being emitted from the light incident region 11e.
  • the wavelength selection filter layer can be formed by, for example, a dielectric multilayer film.
  • the reflection suppression layer can be formed by, for example, a dielectric multilayer film.
  • FIG. 13 is a schematic perspective view of the wavelength conversion element 11.
  • the wavelength conversion element 11 includes three or more wavelength conversion members 12 arranged so as to extend along the x direction.
  • the wavelength conversion element 11 preferably includes nine or more wavelength conversion members 12, and more preferably includes 25 or more wavelength conversion members 12.
  • Three or more wavelength conversion members 12 are bundled and fixed so that adjacent wavelength conversion members 12 are in contact with each other.
  • the wavelength conversion member 12 is formed in a cylindrical shape. For this reason, an air layer 20 extending from the light incident region 11e of the wavelength conversion element 11 to the light emitting region 11f in the x direction is formed between the adjacent wavelength conversion members 12.
  • Each of the light incident area 11e and the light emitting area 11f is constituted by the air layer 20 and the end face of the wavelength conversion member 12.
  • the plurality of wavelength conversion members 12 may be fixed using a fixing member such as a frame, or may be fixed using an adhesive or the like.
  • the wavelength conversion member 12 has a dispersion medium and a phosphor powder dispersed in the dispersion medium.
  • the phosphor powder absorbs the light L0 from the light emitting element 10 and emits the light L2 having a longer wavelength than the light L0.
  • the same powder as in the first embodiment can be used.
  • the content of the phosphor powder in the wavelength conversion member 12 is not particularly limited.
  • the content of the phosphor powder in the wavelength conversion member 12 can be appropriately set according to the intensity of light emitted from the light emitting element 10, the light emission characteristics of the phosphor powder, the chromaticity of the light to be obtained, and the like.
  • the content of the phosphor powder in the wavelength conversion member 12 can be, for example, about 0.01% by mass to 30% by mass, and preferably 0.05% by mass to 20% by mass. More preferably, the content is 0.08% by mass to 15% by mass.
  • the porosity in the wavelength conversion member 12 will become high, and the emitted light intensity of the light source 1 may fall.
  • the content of the phosphor powder in the wavelength conversion member 12 is too small, sufficiently strong fluorescence may not be obtained.
  • the same dispersion medium as in the first embodiment can be used.
  • heat resistant resin examples include polyimide and the like.
  • glass examples include silicate glass, borosilicate glass, phosphate glass, and borophosphate glass.
  • ceramics include metal nitrides such as zirconia, alumina, barium titanate, silicon nitride, and titanium nitride.
  • the number of wavelength conversion members 12 bundled is increased, and the air formed in the wavelength conversion element 11. It is preferable to increase the number of layers 20. Therefore, the number of the wavelength conversion members 12 bundled is preferably 9 or more, and more preferably 25 or more.
  • the refractive index of the dispersion medium of the wavelength conversion member 12 ( ⁇ refractive index of the wavelength conversion member 12) is 1.45 or more. It is preferable that it is 1.55 or more.
  • wavelength conversion element according to the ninth embodiment may be used as the wavelength conversion element of the light source 2 shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)
  • Projection Apparatus (AREA)

Abstract

 波長変換部材を用いた光源の高輝度化を図る。 波長変換素子11は、分散媒と、分散媒中に分散している蛍光体粉末とを含む複数の波長変換部材12が束ねられてなる。

Description

波長変換素子及びそれを備える光源
 本発明は、波長変換素子及びそれを備える光源に関する。
 近年、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)を用いた光源などの、蛍光ランプや白熱灯に変わる次世代の光源に対する注目が高まってきている。そのような次世代光源の一例として、例えば下記の特許文献1には、青色光を出射するLEDの光出射側にLEDからの光の一部を吸収し、黄色の光を出射する波長変換部材が配置された光源が開示されている。この光源は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。
特開2000-208815号公報
 近年、上記のような波長変換部材を用いた光源の輝度をさらに高めたいという要望が高まってきている。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、波長変換部材を用いた光源の高輝度化を図ることにある。
 本発明に係る第1の波長変換素子は、分散媒と、分散媒中に分散している蛍光体粉末とを含む複数の波長変換部材が束ねられてなる。
 波長変換部材が、分散媒中に蛍光体粉末が分散しているものである場合は、例えば、ガラスのみからなる光学部材とは異なり、波長変換部に入射した光が波長変換部材中において大きく散乱する傾向にある。このため、波長変換素子が単一の波長変換部材により構成されている場合は、波長変換部材内の光の一部が波長変換部材の側面から漏れ出るため、光出射面から出射される光の強度が低くなる。
 それに対して本発明に係る第1の波長変換素子では、複数の波長変換部材が束ねられている。このため、ある波長変換部材の側面から出射された光の一部は、隣の波長変換部材の表面において反射される。その結果、隣り合う波長変換部材間に形成されている空気層を伝搬したり、再度波長変換部材内に入射し、波長変換部材内を反射しながら伝搬したりすることによって、波長変換部材の一方の端部が設けられた光出射領域から出射する。このため、本発明に係る第1の波長変換素子では、波長変換素子の側面側からの光の漏れを抑制でき、光出射領域から出射する光の強度を高めることができる。従って、本発明に係る第1の波長変換素子を用いることによって光源の高輝度化を図ることができる。
 本発明に係る第2の波長変換素子は、波長変換部材と、少なくとも2層の第1の反射層とを備えている。波長変換部材は、蛍光体粉末が分散媒中に分散してなる。波長変換部材は、光軸方向において対向する光入射面及び光出射面を有する。少なくとも2層の第1の反射層は、波長変換部材の内部において、それぞれ光軸方向と平行な平面に沿って形成されている。少なくとも2層の第1の反射層は、波長変換部材を複数の部分に区画している。
 本発明に係る第2の波長変換素子には、波長変換部材の内部において、それぞれ光軸方向と平行な平面に沿って形成されており、波長変換部材を複数の部分に区画する少なくとも2層の第1の反射層が設けられている。このため、側面に向かって散乱した光の一部は、反射層により反射され、側面から出射することが効果的に抑制される。よって、本発明に係る第2の波長変換素子では、光出射面から出射する光の強度を高めることができる。従って、本発明に係る第2の波長変換素子を用いることによって、光源の高輝度化を図ることができる。
 本発明に係る第2の波長変換素子において、少なくとも2層の第1の反射層は、互いに平行に形成されていることが好ましい。この構成では、波長変換素子から出射される光の直進性を向上することができる。
 本発明に係る第2の波長変換素子において、第1の反射層は、3層以上積層されていることが好ましい。この構成では、波長変換素子から出射される光の直進性を向上することができる。
 本発明に係る第2の波長変換素子は、波長変換部材の内部において、光軸方向と平行で、且つ、第1の反射層と交差する平面に沿って形成される少なくとも2層の第2の反射層をさらに備えていることが好ましい。そして、波長変換部材内に、第1の反射層と第2の反射層とによって光軸方向に沿って延びる波長変換部が区画形成されていることが好ましい。この構成では、光出射面から出射する光の強度をさらに高めることができる。また、光出射面から出射する光の直進性をさらに向上することができる。
 本発明に係る第2の波長変換素子において、少なくとも2層の第2の反射層は、互いに平行に形成されていることが好ましい。この構成では、波長変換素子から出射される光の直進性をさらに向上することができる。
 本発明に係る第2の波長変換素子において、少なくとも2層の第2の反射層と、少なくとも2層の第1の反射層とが直交していることが好ましい。この構成では、光出射面から出射する光の直進性をさらに向上することができる。
 本発明に係る第2の波長変換素子において、第2の反射層は、3層以上積層されており、波長変換部がマトリクス状に設けられていることがより好ましい。この構成では、光出射面から出射する光の直進性をさらに向上することができる。
 本発明に係る第2の波長変換素子において、第1の反射層は、例えば誘電体多層膜からなるものであってもよいが、金属、合金または白色塗料からなるものであることが好ましい。金属、合金または白色塗料からなる第1の反射層は、反射率の波長依存性が低く、かつ容易に形成できるためである。同様に、第2の反射層も、例えば誘電体多層膜からなるものであってもよいが、金属、合金または白色塗料からなるものであることが好ましい。好ましく用いられる金属の具体例としては、例えば、Ag,Al,Au,Pd,Pt,Cu,Ti,Ni,Crなどが挙げられる。好ましく用いられる合金の具体例としては、例えば、Ag,Al,Au,Pd,Pt,Cu,Ti,Ni及びCrからなる群から選ばれた1種以上の金属を含む合金などが挙げられる。好ましく用いられる白色塗料の具体例としては、例えば、Ag,Al,Au,Pd,Pt,Cu,Ti,Ni及びCrからなる群から選ばれた1種以上の金属、合金からなる粒子を含む白色塗料などが挙げられる。
 本発明に係る第3の波長変換素子は、第1の方向において対向している光入射面及び光出射面を有する。本発明に係る第3の波長変換素子は、第1の部分と第2の部分とを備えている。第1の部分は、蛍光体粉末が第1の分散媒中に分散してなる。第1の部分は、第1の方向において光入射面から光出射面に至る第1の波長変換部を構成している。第2の部分は、第1の方向において光入射面から光出射面に至るように設けられている。第2の部分は、第1の部分に接するように設けられている。第2の部分は、第1の分散媒とは異なる屈折率を有する第2の分散媒を含む。
 本発明に係る第3の波長変換素子では、第1の波長変換部と接するように、第1の分散媒とは異なる屈折率を有する第2の分散媒を含む第2の部分が設けられている。このため、第1の波長変換部内の光は、第1の波長変換部と第2の部分との間の界面において高い反射率で反射される。このため、波長変換素子の側面から光が漏れることが効果的に抑制される。よって、本発明に係る第3の波長変換素子では、光出射面から出射する光の強度を高めることができる。従って、本発明に係る第3の波長変換素子を用いることによって、光源の高輝度化を図ることができる。
 本発明に係る第3の波長変換素子において、波長変換素子の側面からの光の漏れをより効果的に抑制し、光出射面から出射する光の強度をさらに高める観点からは、第1の波長変換部を構成している第1の部分が第2の部分により包囲されていることが好ましい。
 本発明に係る第3の波長変換素子において、第2の部分は、第2の分散媒のみにより構成されていてもよいが、第2の分散媒に分散している蛍光体粉末をさらに含み、第2の部分が第2の波長変換部を構成していることが好ましい。この構成では、波長変換素子において、波長変換に寄与する波長変換部の占める割合を高くすることができる。従って、光出射面から出射する光の強度をより高めることができる。この場合、第1の部分と第2の部分とのそれぞれが複数設けられており、複数の第1及び第2の部分がマトリクス状に配列されていることが好ましい。この構成では、第1の波長変換部が第2の波長変換部によって包囲され、かつ第2の波長変換部が第1の波長変換部によって包囲されることとなる。このため、第1及び第2の波長変換部のそれぞれに入射した光及び発生した蛍光は、第1または第2の波長変換部に閉じ込められた状態で光出射面まで伝搬する。従って、光出射面から出射する光の強度をさらに高めることができる。
 本発明に係る第3の波長変換素子において、光出射面から出射する光の強度をさらに高める観点からは、第1及び第2の部分間の界面における反射率の差が大きい方が好ましい。従って、第1の分散媒の屈折率と第2の分散媒の屈折率との差は、0.05以上であることが好ましく、0.1以上であることがより好ましい。
 本発明に係る第1の波長変換素子において、波長変換部材が円柱状であってもよい。その場合、本発明に係る第1の波長変換素子は、波長変換部材が3本以上束ねられてなることが好ましい。この構成では、波長変換素子の側面側からの光の漏れをより効率的に抑制でき、光出射領域から出射する光の強度をより高めることができる。従って、光源のさらなる高輝度化を図ることができる。
 波長変換部材の分散媒の屈折率は、1.45以上であることが好ましい。その場合、波長変換部材と空気層との間の屈折率差を大きくすることができる。このため、界面での反射率を大きくでき、また、反射角度を小さくできるため、波長変換部材の側面からの光の出射を抑制することができる。従って、波長変換素子の側面側からの光の漏れをより効果的に抑制することができる。
 波長変換素子の側面側からの光の漏れをより効果的に抑制する観点からは、波長変換部材が9本以上束ねられていることが好ましい。
 本発明に係る第1~第3の波長変換素子において、分散媒は、蛍光体粉末を分散させることができるものであれば特に限定されない。分散媒として好ましく用いられる分散媒の具体例としては、例えば、樹脂、ガラス、セラミックスなどが挙げられる。その中でも、ガラスやセラミックスなどの無機分散媒がより好ましく用いられる。無機分散媒を用いることにより、波長変換素子の耐熱性を向上することができるためである。また、同様の理由から、蛍光体粉末は、無機蛍光体粉末であることが好ましい。
 本発明に係る光源は、上記本発明に係る第1~第3の波長変換素子のいずれかと、波長変換素子の端面に向けて蛍光体粉末の励起光を出射する発光素子とを備える。
 上述の通り、上記本発明に係る第1~第3の波長変換素子では、光出射面から出射する光の強度を高めることができる。従って、本発明に係る光源は、高輝度である。
 本発明によれば、波長変換部材を用いた光源の高輝度化を図ることができる。
図1は、第1の実施形態に係る光源の模式図である。 図2は、第1の実施形態における波長変換素子の素子本体の略図的斜視図である。 図3は、第2の実施形態における波長変換素子の素子本体の略図的斜視図である。 図4は、第3の実施形態における波長変換素子の素子本体の略図的斜視図である。 図5は、第4の実施形態における波長変換素子の素子本体の略図的斜視図である。 図6は、第5の実施形態に係る光源の模式図である。 図7は、第6の実施形態における波長変換素子の素子本体の略図的斜視図である。 図8は、図7の線III-IIIにおける略図的断面図である。 図9は、図7の線IV-IVにおける略図的断面図である。 図10は、第7の実施形態における波長変換素子の素子本体の略図的横断面図である。 図11は、第8の実施形態における波長変換素子の素子本体の略図的横断面図である。 図12は、第9の実施形態に係る光源の模式図である。 図13は、第9の実施形態における波長変換素子の略図的斜視図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は単なる例示である。本発明は、以下の実施形態に何ら限定されない。
 (第1の実施形態)
 図1は、第1の実施形態に係る光源の模式図である。図1に示すように、光源1は、波長変換素子11と、発光素子10とを備えている。波長変換素子11は、発光素子10から出射された光L0が照射された際に、光L0よりも波長の長い光L2を出射する。また、光L0の一部は、波長変換素子11を透過する。このため、波長変換素子11からは、透過光L1と光L2との合成光である光L3が出射する。このため、光源1から出射する光L3は、発光素子10から出射する光L0の波長及び強度と、波長変換素子11から出射する光L2の波長及び強度とによって決まる。例えば、光L0が青色光であり、光L2が黄色光である場合は、白色の光L3を得ることができる。
 発光素子10は、波長変換素子11に対して後述する蛍光体粉末の励起光を出射する素子である。発光素子10の種類は特に限定されない。発光素子10は、例えば、LED、LD、エレクトロルミネッセンス発光素子、プラズマ発光素子により構成することができる。光源1の輝度を高める観点からは、発光素子10は、高強度の光を出射するものであることが好ましい。この観点からは、発光素子10は、LEDやLDにより構成されていることが好ましい。
 本実施形態においては、波長変換素子11は、素子本体11aと、波長選択フィルタ層11bと、反射抑制層11cとを有する。もっとも、本発明においては、波長選択フィルタ層11b及び反射抑制層11cは、必須ではない。波長変換素子は、例えば、素子本体のみにより構成されていてもよい。また、素子本体の光出射面と光入射面との両方の上に波長選択フィルタ層または反射抑制層のいずれかが形成されていてもよい。
 波長選択フィルタ層11bは、素子本体11aの光入射面の上に形成されている。この波長選択フィルタ層11bは、発光素子10から出射される光L0の内、特定の波長域の光のみを素子本体11aへ透過させ、それ以外の波長域の光の透過を抑制すると共に、素子本体11aで変換された光L2が光入射面(発光素子10)側から出射することを防止する層である。波長選択フィルタ層11bは、例えば、誘電体多層膜により形成することができる。
 一方、反射抑制層11cは、素子本体11aの光出射面の上に形成されている。この反射抑制層11cは、素子本体11aから出射する光が光出射面で反射することを抑制して、素子本体11aから出射する光の出射率を高める層である。反射抑制層11cは、例えば、誘電体多層膜により形成することができる。
 図2は、素子本体11aの略図的斜視図である。図2に示すように、素子本体11aは、波長変換部材12と、複数の反射層13とを有する。本実施形態では、波長変換部材12は、角柱状に形成されている。波長変換部材12は、光入射面12aと、光出射面12bと、4つの側面12c~12fとを有する。光入射面12aと光出射面12bとは光軸方向(x方向)に対向している。
 波長変換部材12は、分散媒と、分散媒中に分散している蛍光体粉末とを有する。
 蛍光体粉末は、発光素子10からの光L0を吸収し、光L0よりも波長が長い光L2を出射するものである。蛍光体粉末は、無機蛍光体粉末であることが好ましい。無機蛍光体粉末を用いることにより、波長変換部材12の耐熱性を向上することができる。
 波長300~440nmの紫外~近紫外の励起光を照射すると青色の光を発する無機蛍光体の具体例としては、Sr(POCl:Eu2+、(Sr,Ba)MgAl1017:Eu2+などが挙げられる。
 波長300~440nmの紫外~近紫外の励起光を照射すると緑色の蛍光(波長が500nm~540nmの蛍光)を発する無機蛍光体の具体例としては、SrAl:Eu2+、SrGa:Eu2+などが挙げられる。
 波長440~480nmの青色の励起光を照射すると緑色の蛍光(波長が500nm~540nmの蛍光)を発する無機蛍光体の具体例としては、SrAl:Eu2+、SrGa:Eu2+などが挙げられる。
 波長300~440nmの紫外~近紫外の励起光を照射すると黄色の蛍光(波長が540nm~595nmの蛍光)を発する無蛍光体の具体例としては、ZnS:Eu2+などが挙げられる。
 波長440~480nmの青色の励起光を照射すると黄色の蛍光(波長が540nm~595nmの蛍光)を発する無機蛍光体の具体例としては、Y(Al,Gd)12:Ce2+などが挙げられる。
 波長300~440nmの紫外~近紫外の励起光を照射すると赤色の蛍光(波長が600nm~700nmの蛍光)を発する無機蛍光体の具体例としては、GdGa12:Cr3+、CaGa:Mn2+などが挙げられる。
 波長440~480nmの青色の励起光を照射すると赤色の蛍光(波長が600nm~700nmの蛍光)を発する無機蛍光体の具体例としては、MgTiO:Mn4+、KSiF:Mn4+などが挙げられる。
 蛍光体粉末の平均粒子径(D50)は、特に限定されない。蛍光体粉末の平均粒子径(D50)は、例えば、1μm~50μm程度であることが好ましく、5μm~25μm程度であることがより好ましい。蛍光体粉末の平均粒子径(D50)が大きすぎると、発光色が不均一になる場合がある。一方、蛍光体粉末の平均粒子径(D50)が小さすぎると、発光強度が低下する場合がある。
 波長変換部材12における蛍光体粉末の含有量は、特に限定されない。波長変換部材12における蛍光体粉末の含有量は、発光素子10から出射される光の強度、蛍光体粉末の発光特性、得ようとする光の色度などに応じて適宜設定することができる。波長変換部材12における蛍光体粉末の含有量は、一般的には、例えば、0.01質量%~30重量%程度とすることができ、0.05質量%~20質量%であることが好ましく、0.08質量%~15質量%であることがさらに好ましい。波長変換部材12における蛍光体粉末の含有量が多すぎると、波長変換部材12における気孔率が高くなり、光源1の発光強度が低下してしまう場合がある。一方、波長変換部材12における蛍光体粉末の含有量が少なすぎると、十分に強い蛍光が得られなくなる場合がある。
 分散媒は、例えば、耐熱樹脂やガラスやセラミックスであることが好ましい。なかでも、耐熱性が特に高く、発光素子10からの光L0により劣化し難いガラスやセラミックスなどの無機分散媒がより好ましく用いられる。
 耐熱樹脂の具体例としては、例えばポリイミドなどが挙げられる。ガラスの具体例としては、例えば、珪酸塩系ガラス、硼珪酸塩系ガラス、リン酸塩系ガラス、硼リン酸塩系ガラスなどが挙げられる。セラミックスの具体例としては、例えば、ジルコニア、アルミナ、チタン酸バリウム、窒化ケイ素、窒化チタン等の金属窒化物などが挙げられる。
 波長変換部材12の内部には、複数の第1の反射層13が形成されている。本実施形態では、第1の反射層13が3層以上形成されている。複数の第1の反射層13のそれぞれは平板状に形成されている。複数の第1の反射層13のそれぞれは、x方向(光軸方向)と、x方向に垂直なy方向とに沿って延びるように形成されている。すなわち、複数の第1の反射層13のそれぞれは、x方向(光軸方向)と並行な平面に沿って形成されている。複数の第1の反射層13は、x方向及びy方向のそれぞれに対して垂直なz方向に沿って相互に間隔をおいて配列されている。すなわち、複数の第1の反射層13は、z方向において対向している。複数の第1の反射層13のそれぞれは、光入射面12a、光出射面12b及び側面12e、12fに露出している。このため、波長変換部材12は、z方向に配列された複数の波長変換部14に区画されている。
 なお、本実施形態では、複数の第1の反射層13は、互いに平行に設けられているが、本発明においては、少なくとも2層の反射層は、互いに平行に配置されていなくてもよい。
 第1の反射層13は、発光素子10からの光L0、すなわち、蛍光体粉末の励起光、及び蛍光体粉末から出射される光(変換光)の反射率が高いものであることが好ましい。具体的には、蛍光体粉末の励起波長及び蛍光体粉末に励起波長の光が照射された際に蛍光体粉末から出射される光の波長のそれぞれにおける反射層13の反射率は、60%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがさらに好ましい。
 このような反射率を実現する観点からは、反射層13は、例えば、金属または合金からなることが好ましい。具体的には、反射層13は、例えば、Ag,Al,Au,Pd,Pt,Cu,Ti,Ni,Crなどの金属、これらの金属の少なくともひとつを含む合金または白色塗料により形成されていることが好ましい。
 なお、反射層13の材質によっては、反射層13と波長変換部材12とを直接密着させると、反射層13の密着強度を十分に高くできない場合がある。このため、反射層13と波長変換部材12との間に密着層を形成してもよい。密着層は、例えば、酸化アルミニウム、酸化ケイ素、酸化クロム、酸化銅などにより形成することができる。
 以上説明したように、本実施形態では、波長変換部材12の内部に複数の反射層13が形成されている。このため、波長変換部材12中において散乱し、側面12c、12dに向かう光が、側面12c、12dから出射することを抑制することができる。より具体的には、複数の波長変換部14のうち、z方向において反射層13により挟まれた波長変換部14aの光は、反射層13により反射され、側面12c、12dから出射することが抑制されており、光出射面12bから出射する。よって、波長変換部材12の光出射面12bから出射する光L3の強度を高めることができる。従って、光源1の輝度を高めることができる。
 また、反射層13を複数設けることにより、波長変換部材12から出射される光L3の直進性を高めることができる。光L3の直進性をさらに高める観点からは、反射層13を3層以上設けることが好ましい。
 また、反射層13を設けることにより、波長変換部材12に入射した光が波長変換部材12から出射するまでの平均光路長を長くすることができる。従って、波長変換部材12における波長変換効率を高めることができる。
 なお、波長変換素子11の製造方法は特に限定されない。波長変換素子11は、例えば以下のような方法で製造することができる。
 まず、素子本体11aを作製する。具体的には、波長変換部を構成するための、蛍光体粉末が分散した分散媒からなる板状部材を作製する。この板状部材は、例えば、蛍光体粉末と、ガラス粉末やセラミック粉末との混合粉末をプレス成形した後に、焼成することにより作製することができる。
 次に、板状部材の一方の面の上に反射層を形成する。反射層の形成は、例えば、CVD法、スパッタリング法、メッキ法などにより行うことができる。また、反射膜を接着剤等を用いて接着することにより形成してもよい。
 次に、片面に反射層が形成された板状部材を複数積層し、接着することにより素子本体11aを形成することができる。
 また、例えば、蛍光体粉末と、ガラス粉末やセラミック粉末との混合粉末を板状にプレス成形し、得られた成形体の片面に金属微粒子を含むペーストを塗布したものを複数積層し、その後焼成することによっても素子本体11aを作製することができる。
 最後に、スパッタリング法やCVD法などにより波長選択フィルタ層11b及び反射抑制層11cを形成することにより、波長変換素子11を完成させることができる。
 以下、本発明を実施した好ましい形態の他の例及び変形例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 (第2の実施形態)
 図3は、第2の実施形態における波長変換素子の素子本体の略図的斜視図である。
 図3に示すように、本実施形態では、波長変換部材12の内部に、複数の第1の反射層13に加えて、複数の第2の反射層15が形成されている。具体的には、本実施形態では、3層以上の第2の反射層15が設けられている。複数の第2の反射層15のそれぞれは、x方向(光軸方向)に平行で、しかも、x方向と、x方向に傾斜した方向(第一の反射層13と交差する方向)とに沿って延びるように形成されている。本実施形態では、具体的には、複数の第2の反射層15のそれぞれは、x方向とz方向(第一の反射層13と直行する方向)とに沿って延びるように形成されている。複数の第2の反射層15は、y方向に相互に間隔をおいて配列されている。すなわち、複数の第2の反射層15は、y方向に対向している。複数の第2の反射層15のそれぞれは、光入射面12a、光出射面12b及び側面12c、12dに至っている。この複数の第2の反射層15と複数の第1の反射層13とによって、マトリクス状に配置された複数の角柱状の波長変換部16が区画形成されている。従って、本実施形態においては、側面12c、12dからの光の漏れのみならず、側面12e、12fからの光の漏れも抑制することができる。よって、光出射面12bから出射する光L3の強度をより高めることができる。従って、光源1の輝度をより高めることができる。
 なお、本実施形態では、複数の反射層15は、互いに平行に設けられているが、本発明において少なくとも2層の第2の反射層は、互いに平行に設けられていなくてもよい。
 本実施形態における素子本体11aの作製方法は、特に限定されない。素子本体11aは、例えば、隣り合う2側面の上に反射層が形成された四角柱状の波長変換部材をマトリクス状に貼り合わせて行くことにより素子本体11aを作製してもよい。また、格子状に形成された金属製のフォルダに四角柱状の波長変換部材を複数挿入していくことにより素子本体11aを作製してもよい。
 (第3及び第4の実施形態)
 図4は、第3の実施形態における波長変換素子の素子本体の略図的斜視図である。図5は、第4の実施形態における波長変換素子の素子本体の略図的斜視図である。
 上記第1及び第2の実施形態では、波長変換部材12の側面12c~12fの上には反射層が設けられていない例について説明した。但し、本発明は、この構成に限定されない。例えば、図4や図5に示すように、側面12c~12fの上に反射層17を形成してもよい。そうすることにより、側面12c~12fから光が漏れることをより効果的に抑制することができる。よって、光出射面12bから出射する光L3の強度をさらに高めることができる。従って、光源1の輝度をさらに高めることができる。
 (第5の実施形態)
 図6は、第5の実施形態に係る光源の模式図である。
 図6に示すように、本実施形態の光源2には、ビームスプリッタ18が設けられている。発光素子10からの光L0は、ビームスプリッタ18により波長変換素子11側に導かれる。波長変換素子11の光入射面側には反射抑制層11cが形成されており、反対側の面の上には、反射層11dが形成されている。さらに、反射層11dの上には樹脂や半田からなる接着層(図示せず)が形成されており、接着層を介してガラス、セラミックス、金属等からなる基板19と波長変換素子11が固定されている。この反射層11dにより、光L0の一部及び波長変換部材12の発光は、ビームスプリッタ18側に反射される。このため、光L3は、ビームスプリッタ18に向けて発せられ、ビームスプリッタ18を透過して出射される。
 尚、図6に示すように、接着層を介して基板19と波長変換素子11を固定した光源2とする場合、図2、3に示すような波長変換部が層状またはマトリクス状に形成された波長変換素子11を用いることによって、発光素子10から出射される光L0を光L3に変換する際に発生する熱による基板19と波長変換素子11との剥離を効果的に抑えることができる。
 以下、本発明について、実施例及び比較例に基づいて具体的に説明する。但し、以下の実施例は単なる例示である。本発明は以下の実施例に何ら限定されない。
 (実施例)
 本実施例では、下記の要領で上記第2の実施形態における波長変換素子11と実質的に同様の構成を有する波長変換素子を作製した。
 具体的には、まず、硼珪酸塩系ガラス粉末85質量%と、硫化物蛍光体粉末(CaGa、蛍光波長:561nm)15質量%とを混合し、プレス成形した後に、焼成、切断することにより、厚み0.3mm、幅0.3mm、奥行き20mmの波長変換部材を作製した。波長変換部材の全面に、密着層として、酸化アルミニウムからなる厚み134nmの層を真空蒸着法により形成した。次に、密着層の上に、Agからなる厚み150nmの反射層をスパッタ法により形成した。次に、密着層及び反射層が形成された波長変換部材を積層し、エポキシ樹脂接着剤を用いて接着、切断、研磨することにより幅2.1mm角、奥行き0.5mmのマトリクス状の素子本体を作製した。
 次に、真空蒸着法により、素子本体の光入射面の上に、酸化ケイ素層と酸化タンタル層とを交互に合計39層形成することにより波長選択フィルタ層を形成した。一方、素子本体の光出射面の上には、真空蒸着法により、酸化ケイ素層と酸化タンタル層とを交互に合計4層形成することにより反射抑制層を形成した。以上の工程により、波長変換素子を完成させた。
 作製した波長変換素子の光入射面に、LDを用いて波長460nmの光を照射し、光出射面側から出射された光を1mm角のスリットを介して強度を測定した。その結果、本実施例の波長変換素子から出射された光の強度は、102lmであった。
 (比較例)
 上記実施例と同様にして幅2.1mm角、奥行き0.5mmの波長変換部材を作製し、波長変換部材の表面に密着層及び反射層を形成せずに、波長変換素子として用い、実施例と同様の評価を行った。その結果、本比較例の波長変換素子から出射された光の強度は、83lmであった。
 これらの結果から、波長変換部材の内部に対向する少なくとも2層の反射層を設けることにより、波長変換素子の光出射面から出射される光の強度を高めることができることが分かる。
 (第6の実施形態)
 図7は、第6の実施形態における素子本体11aの略図的斜視図である。図8は、図7の線III-IIIにおける略図的断面図である。図9は、図7の線IV-IVにおける略図的断面図である。図7~図9に示すように、素子本体11aは、複数の第1の波長変換部12Lと、複数の第2の波長変換部12Hとを有する。第1及び第2の波長変換部12L,12Hのそれぞれは、分散媒と、分散媒中に分散している蛍光体粉末とを有する。
 蛍光体粉末は、発光素子10からの光L0を吸収し、光L0よりも波長が長い光L2を出射するものである。蛍光体粉末としては、第1の実施形態と同様のものを用いることができる。
 第1及び第2の波長変換部12L,12Hのそれぞれにおける蛍光体粉末の含有量は、特に限定されない。第1及び第2の波長変換部12L,12Hのそれぞれにおける蛍光体粉末の含有量は、発光素子10から出射される光の強度、蛍光体粉末の発光特性、得ようとする光の色度などに応じて適宜設定することができる。第1及び第2の波長変換部12L,12Hのそれぞれにおける蛍光体粉末の含有量は、一般的には、例えば、0.01質量%~30重量%程度とすることができ、0.05質量%~20質量%であることが好ましく、0.08質量%~15質量%であることがさらに好ましい。第1及び第2の波長変換部12L,12Hのそれぞれにおける蛍光体粉末の含有量が多すぎると、第1及び第2の波長変換部12L,12Hのそれぞれにおける気孔率が高くなり、光源1の発光強度が低下してしまう場合がある。一方、第1及び第2の波長変換部12L,12Hのそれぞれにおける蛍光体粉末の含有量が少なすぎると、十分に強い蛍光が得られなくなる場合がある。
 なお、第1の波長変換部12Lと、第2の波長変換部12Hとは、同種の蛍光体粉末を含んでいてもよいし、異なる種類の蛍光体粉末を含んでいてもよい。また、蛍光体粉末の平均粒子径(D50)及び蛍光体粉末の含有量は、第1の波長変換部12Lと、第2の波長変換部12Hとで同じであってもよいし、少なくとも一方が異なっていてもよい。
 分散媒としては、第1の実施形態と同様のものを用いることができる。
 耐熱樹脂の具体例としては、例えばポリイミドなどが挙げられる。ガラスの具体例としては、例えば、珪酸塩系ガラス、硼珪酸塩系ガラス、リン酸塩系ガラス、硼リン酸塩系ガラスなどが挙げられる。セラミックスの具体例としては、例えば、ジルコニア、アルミナ、チタン酸バリウム、窒化ケイ素、窒化チタン等の金属窒化物などが挙げられる。
 本実施形態では、第1の波長変換部12Lの分散媒の屈折率と、第2の波長変換部12Hの分散媒の屈折率とが異なる。詳細には、光L0の波長及び光L2の波長のそれぞれにおいて、第1の波長変換部12Lの分散媒の屈折率と、第2の波長変換部12Hの分散媒の屈折率とが異なる。具体的には、光L0の波長及び光L2の波長のそれぞれにおいて、第1の波長変換部12Lの分散媒の屈折率は、第2の波長変換部12Hの分散媒の屈折率よりも低い。光L0の波長及び光L2の波長のそれぞれにおいて、第1の波長変換部12Lの分散媒の屈折率と、第2の波長変換部12Hの分散媒の屈折率との差は、0.05以上であることが好ましく、0.1以上であることがより好ましい。
 本実施形態では、第1及び第2の波長変換部12L,12Hのそれぞれは、四角柱状に形成されている。複数の第1及び第2の波長変換部12L,12Hは、y方向及びz方向に沿ってマトリクス状に配列されている。具体的には、複数の第1及び第2の波長変換部12L,12Hがy方向及びz方向のそれぞれにおいて交互に位置するようにマトリクス状に配列されている。このため、第1及び第2の波長変換部12L,12Hのそれぞれは、第2または第1の波長変換部12H,12Lにより包囲されている。具体的には、第1及び第2の波長変換部12L,12Hのそれぞれの側面のすべてが、第2または第1の波長変換部12H,12Lと接している。
 第1及び第2の波長変換部12L,12Hのそれぞれは、x方向において光入射面11a1から光出射面11a2に至るように設けられている。
 なお、隣り合う第1及び第2の波長変換部12L,12Hは、例えば融着することにより直接接合されていてもよいし、接着剤等により接着されていてもよい。また、隣り合う第1及び第2の波長変換部12L,12Hを、枠体などの固定部材を用いて固定してもよい。
 以上説明したように、本実施形態では、屈折率の異なる第1の波長変換部12Lと第2の波長変換部12Hとが接するように設けられている。このため、第1の波長変換部12L内の光は、第2の波長変換部12Hとの間の界面において高い反射率で反射される。同様に、第2の波長変換部12H内の光は、第1の波長変換部12Lとの間の界面において高い反射率で反射され、且つ、大きな角度で界面に入射した光は全反射される。よって、素子本体11aの側面から光が漏れることが効果的に抑制される。従って、素子本体11aの光出射面11a2から出射される光L3の強度を高めることができる。その結果、高輝度な光源1を実現することができる。
 本実施形態では、第1の波長変換部12Lが第2の波長変換部12Hにより包囲されており、第2の波長変換部12Hが第1の波長変換部12Lにより包囲されている。このため、素子本体11aの側面から光が漏れることがより効果的に抑制される。従って、素子本体11aの光出射面11a2から出射される光L3の強度をより高めることができる。
 また、第1及び第2の波長変換部材12L,12Hにより素子本体11aを構成することにより、光L3の直進性を向上することができる。
 なお、素子本体11aの光出射面11a2から出射される光L3の強度をより高める観点からは、第1の波長変換部12Lと第2の波長変換部12Hとの間の界面における光反射率をより高くすることが好ましい。従って、第1の波長変換部12Lの分散媒の屈折率(≒第1の波長変換部12Lの屈折率)と第2の波長変換部12Hの分散媒の屈折率(≒第2の波長変換部12Hの屈折率)との差は、0.05以上であることが好ましく、0.1以上であることがより好ましい。
 なお、本実施形態では、複数の第1及び第2の波長変換部12L,12Hにより素子本体11aを構成する例について説明した。但し、本発明は、この構成に限定されない。第1及び第2の波長変換部12L,12Hのうちの一方のみを設け、第1及び第2の波長変換部12L,12Hのうちの他方の代わりに、第1及び第2の波長変換部12L,12Hのうちの一方の分散媒とは屈折率の異なる分散媒からなる部分を設けてもよい。この場合であっても、素子本体11aの側面からの光の漏れを効果的に抑制することができる。但し、素子本体11aにおいて、波長変換機能を有する波長変換部の占める割合を多くし、光出射面11a2から出射される光L3の強度を高くする観点からは、本実施形態のように、複数の第1及び第2の波長変換部12L,12Hにより素子本体11aを構成することが好ましい。
 (第7及び第8の実施形態)
 図10は、第7の実施形態における波長変換素子の素子本体の略図的横断面図である。図11は、第8の実施形態における波長変換素子の素子本体の略図的横断面図である。
 上記第6の実施形態では、複数の第1の波長変換部12Lと複数の第2の波長変換部12Hとを交互にマトリクス状に配置する例について説明した。但し、本発明は、この構成に限定されない。例えば、図10や図11に示すように、1または複数の第1の波長変換部12Lを1または複数の第2の波長変換部12Hにより包囲するようにしてもよい。この場合は、1または複数の第1の波長変換部12L内の光が外部に漏れることが効果的に抑制される。従って、上記第6の実施形態と同様に、光出射面11a2から出射される光L3の強度を高くすることができ、光源の高輝度化を図ることができる。
 また、上記第6の実施形態では、第1及び第2の波長変換部12L,12Hのそれぞれが四角柱状である例について説明した。但し、本発明は、この構成に限定されない。第1及び第2の波長変換部は、例えば、多角柱状、三角柱状などであってもよい。また、図11に示すように、第1の波長変換部12Lを円柱状とし、第2の波長変換部12Hを円筒状としてもよい。
 なお、第6~第8の実施形態に係る波長変換素子を、図6に示す光源2の波長変換素子として用いてもよい。
 (第9の実施形態)
 図12は、本実施形態に係る光源の模式図である。図12に示すように、光源1は、波長変換素子11と、発光素子10とを備えている。波長変換素子11は、発光素子10から出射された光L0が照射された際に、光L0よりも波長の長い光L2を出射する。また、光L0の一部は、波長変換素子11を透過する。このため、波長変換素子11からは、透過光L1と光L2との合成光である光L3が出射する。このため、光源1から出射する光L3は、発光素子10から出射する光L0の波長及び強度と、波長変換素子11から出射する光L2の波長及び強度とによって決まる。例えば、光L0が青色光であり、光L2が黄色光である場合は、白色の光L3を得ることができる。
 発光素子10は、波長変換素子11に対して後述する蛍光体粉末の励起光を出射する素子である。発光素子10の種類は特に限定されない。発光素子10は、例えば、LED、LD、エレクトロルミネッセンス発光素子、プラズマ発光素子により構成することができる。光源1の輝度を高める観点からは、発光素子10は、高強度の光を出射するものであることが好ましい。この観点からは、発光素子10は、LEDやLDにより構成されていることが好ましい。
 なお、波長変換部材の光入射領域11e及び光出射領域11fのうちの少なくとも一方の上に波長選択フィルタ層や反射抑制層を形成してもよい。
 例えば、波長選択フィルタ層を、波長変換素子11の光入射領域11eの上に形成することで、発光素子10から出射される光L0のうち、特定の波長域の光のみを波長変換素子11へ透過させ、それ以外の波長域の光の透過を抑制すると共に、波長変換素子11で変換された光L2が光入射領域11eから出射することを抑制することができる。波長選択フィルタ層は、例えば、誘電体多層膜により形成することができる。
 また、例えば、反射抑制層を、波長変換素子11の光出射領域11fの上に形成することで、波長変換素子11から出射する光が光出射領域11fで反射することを抑制して、波長変換素子11から出射する光の出射率を高めることができる。反射抑制層は、例えば、誘電体多層膜により形成することができる。
 図13は、波長変換素子11の略図的斜視図である。図13に示すように、波長変換素子11は、x方向に沿って延びるように配置された3本以上の波長変換部材12を備えている。波長変換素子11は、9本以上の波長変換部材12を備えていることが好ましく、25本以上の波長変換部材12を備えていることがより好ましい。3本以上の波長変換部材12は、隣り合う波長変換部材12同士が接触するように束ねられて固定されている。本実施形態では、波長変換部材12は円柱状に形成されている。このため、隣り合う波長変換部材12の間には、x方向において波長変換素子11の光入射領域11eから光出射領域11fにまで至る空気層20が形成されている。光入射領域11e及び光出射領域11fのそれぞれは、この空気層20と波長変換部材12の端面とにより構成されている。
 なお、複数の波長変換部材12は、例えば枠体などの固定部材を用いて固定してもよいし、接着剤等を用いて固定してもよい。
 波長変換部材12は、分散媒と、分散媒中に分散している蛍光体粉末とを有する。
 蛍光体粉末は、発光素子10からの光L0を吸収し、光L0よりも波長が長い光L2を出射するものである。蛍光体粉末としては、第1の実施形態と同様のものを用いることができる。
 波長変換部材12における蛍光体粉末の含有量は、特に限定されない。波長変換部材12における蛍光体粉末の含有量は、発光素子10から出射される光の強度、蛍光体粉末の発光特性、得ようとする光の色度などに応じて適宜設定することができる。波長変換部材12における蛍光体粉末の含有量は、一般的には、例えば、0.01質量%~30重量%程度とすることができ、0.05質量%~20質量%であることが好ましく、0.08質量%~15質量%であることがさらに好ましい。波長変換部材12における蛍光体粉末の含有量が多すぎると、波長変換部材12における気孔率が高くなり、光源1の発光強度が低下してしまう場合がある。一方、波長変換部材12における蛍光体粉末の含有量が少なすぎると、十分に強い蛍光が得られなくなる場合がある。
 分散媒としては、第1の実施形態と同様のものを用いることができる。
 耐熱樹脂の具体例としては、例えばポリイミドなどが挙げられる。ガラスの具体例としては、例えば、珪酸塩系ガラス、硼珪酸塩系ガラス、リン酸塩系ガラス、硼リン酸塩系ガラスなどが挙げられる。セラミックスの具体例としては、例えば、ジルコニア、アルミナ、チタン酸バリウム、窒化ケイ素、窒化チタン等の金属窒化物などが挙げられる。
 以上説明したように、本実施形態では、円柱状の波長変換部材12が3本以上束ねられている。このため、波長変換部材12の間に光入射領域11eから光出射領域11fにまで至る空気層20が形成されている。よって、ある波長変換部材12の側面から出射された光の一部は、隣の波長変換部材12の表面において反射される。その結果、空気層20を伝搬したり、再度波長変換部材12内に入射し、波長変換部材12内を伝搬したりすることによって、波長変換部材12の光出射領域11fから出射する。このため、波長変換素子11の側面側からの光の漏れを抑制でき、光出射領域11fから出射される光の強度を高めることができる。従って、高輝度な光源1を実現することができる。
 また、波長変換素子11の側面側からの光の漏れをより効果的に抑制する観点からは、束ねられている波長変換部材12の本数を多くして、波長変換素子11中に形成される空気層20の数を多くすることが好ましい。従って、束ねられている波長変換部材12の本数は、9本以上であることが好ましく、25本以上であることがより好ましい。
 また、波長変換素子11の側面側からの光の漏れをより効果的に抑制する観点から、波長変換部材12の分散媒の屈折率(≒波長変換部材12の屈折率)が1.45以上であることが好ましく、1.55以上であることがより好ましい。
 なお、第9の実施形態に係る波長変換素子を、図6に示す光源2の波長変換素子として用いてもよい。
1,2…光源
10…発光素子
11…波長変換素子
11a…素子本体
11a1…光入射面
11a2…光出射面
11b…波長選択フィルタ層
11c…反射抑制層
11d…反射層
11e…光入射領域
11f…光出射領域
12…波長変換部材
12L…第1の波長変換部
12H…第2の波長変換部
12a…光入射面
12b…光出射面
12c~12f…側面
13,15,17…反射層
14…波長変換部
16…波長変換部
18…ビームスプリッタ
19…基板
20…空気層

Claims (19)

  1.  分散媒と、前記分散媒中に分散している蛍光体粉末とを含む複数の波長変換部材が束ねられてなる、波長変換素子。
  2.  蛍光体粉末が分散媒中に分散してなり、光軸方向において対向する光入射面及び光出射面を有する波長変換部材と、
     前記波長変換部材の内部において、前記光軸方向と平行な平面に沿って形成され、前記波長変換部材を複数の部分に区画する少なくとも2層の第1の反射層と、
    を備える波長変換素子。
  3.  前記少なくとも2層の第1の反射層は、互いに平行に形成されている、請求項2に記載の波長変換素子。
  4.  前記第1の反射層が、3層以上積層されている、請求項2または3に記載の波長変換素子。
  5.  前記波長変換部材の内部において、前記光軸方向と平行で、且つ、前記第1の反射層と交差する平面に沿って形成される少なくとも2層の第2の反射層をさらに備え、
     前記波長変換部材内に、前記第1の反射層と前記第2の反射層とによって前記光軸方向に沿って延びる波長変換部が区画形成されている、請求項2~4のいずれか一項に記載の波長変換素子。
  6.  前記少なくとも2層の第2の反射層が、互いに平行に形成されている、請求項5に記載の波長変換素子。
  7.  前記第2の反射層と、前記第1の反射層とが直交している、請求項5または6に記載の波長変換素子。
  8.  前記第2の反射層が、3層以上積層されており、前記波長変換部がマトリクス状に設けられている、請求項5~7のいずれか一項に記載の波長変換素子。
  9.  前記第1の反射層は、金属、合金または白色塗料からなる、請求項2~8のいずれか一項に記載の波長変換素子。
  10.  第1の方向において対向している光入射面及び光出射面を有する波長変換素子であって、
     蛍光体粉末が第1の分散媒中に分散してなり、前記第1の方向において前記光入射面から前記光出射面に至る第1の波長変換部を構成している第1の部分と、
     前記第1の方向において前記光入射面から前記光出射面に至るように、かつ前記第1の部分に接するように設けられており、前記第1の分散媒とは異なる屈折率を有する第2の分散媒を含む第2の部分と、
    を備える、波長変換素子。
  11.  前記第1の部分は、前記第2の部分により包囲されている、請求項10に記載の波長変換素子。
  12.  前記第2の部分は、前記第2の分散媒に分散している蛍光体粉末をさらに含み、第2の波長変換部を構成している、請求項10または11に記載の波長変換素子。
  13.  前記第1の部分と前記第2の部分とのそれぞれが複数設けられており、前記複数の第1及び第2の部分がマトリクス状に配列されている、請求項10~12の波長変換素子。
  14.  前記第1の分散媒の屈折率と前記第2の分散媒の屈折率との差が0.05以上である、請求項10~13のいずれか一項に記載の波長変換素子。
  15.  前記波長変換部材が円柱状であり、前記波長変換部材が3本以上束ねられてなる、請求項1に記載の波長変換素子。
  16.  前記波長変換部材が9本以上束ねられている、請求項15に記載の波長変換素子。
  17.  前記分散媒の屈折率が1.45以上である、請求項15または16に記載の波長変換素子。
  18.  前記蛍光体粉末が無機蛍光体粉末であり、かつ、前記分散媒がガラスまたはセラミックスである、請求項1~17のいずれか一項に記載の波長変換素子。
  19.  請求項1~18のいずれか一項に記載の波長変換素子と、
     前記波長変換素子の前記光入射面に向けて前記蛍光体粉末の励起光を出射する発光素子と、
    を備える光源。
PCT/JP2011/073611 2010-11-18 2011-10-14 波長変換素子及びそれを備える光源 WO2012066881A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020137006552A KR20130122937A (ko) 2010-11-18 2011-10-14 파장 변환 소자 및 그것을 구비하는 광원
EP11841968.8A EP2642540B1 (en) 2010-11-18 2011-10-14 Wavelength conversion element and light source provided with the same
EP19210219.2A EP3637482B1 (en) 2010-11-18 2011-10-14 Wavelength conversion element and light source comprising the same
US13/821,581 US9638396B2 (en) 2010-11-18 2011-10-14 Wavelength conversion element and light source provided with same
KR1020197032647A KR20190126467A (ko) 2010-11-18 2011-10-14 파장 변환 소자 및 그것을 구비하는 광원
KR1020197006028A KR20190026949A (ko) 2010-11-18 2011-10-14 파장 변환 소자 및 그것을 구비하는 광원
CN201180054545.5A CN103210509B (zh) 2010-11-18 2011-10-14 波长变换元件和具备该波长变换元件的光源
US15/448,651 US9920891B2 (en) 2010-11-18 2017-03-03 Wavelength conversion element and light source provided with same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010257923A JP5585410B2 (ja) 2010-11-18 2010-11-18 波長変換素子及びそれを備える光源
JP2010-257923 2010-11-18
JP2010-257924 2010-11-18
JP2010257924A JP5585411B2 (ja) 2010-11-18 2010-11-18 波長変換素子及びそれを備える光源
JP2010265972A JP5585421B2 (ja) 2010-11-30 2010-11-30 波長変換素子及びそれを備える光源
JP2010-265972 2010-11-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/821,581 A-371-Of-International US9638396B2 (en) 2010-11-18 2011-10-14 Wavelength conversion element and light source provided with same
US15/448,651 Continuation US9920891B2 (en) 2010-11-18 2017-03-03 Wavelength conversion element and light source provided with same

Publications (1)

Publication Number Publication Date
WO2012066881A1 true WO2012066881A1 (ja) 2012-05-24

Family

ID=46083821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073611 WO2012066881A1 (ja) 2010-11-18 2011-10-14 波長変換素子及びそれを備える光源

Country Status (6)

Country Link
US (2) US9638396B2 (ja)
EP (2) EP3637482B1 (ja)
KR (3) KR20130122937A (ja)
CN (1) CN103210509B (ja)
TW (1) TWI538261B (ja)
WO (1) WO2012066881A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076594A (ja) * 2013-10-11 2015-04-20 シチズン電子株式会社 蛍光体層及びその製造方法と、その蛍光体層を用いたled発光装置
US20150136306A1 (en) * 2013-11-18 2015-05-21 Nichia Corporation Method for manufacturing light distribution member, and method for manufacturing light emitting device
JP2015228389A (ja) * 2014-05-30 2015-12-17 日亜化学工業株式会社 光学的機能部材の製造方法、発光装置の製造方法及び発光装置
JP2016072466A (ja) * 2014-09-30 2016-05-09 日亜化学工業株式会社 透光部材の製造方法、発光装置の製造方法及び透光部材
EP3093893A1 (en) 2015-05-15 2016-11-16 Nichia Corporation Method for manufacturing light distribution members, method for manufacturing light emitting device, light distribution member, and light emitting devices
JP2016219794A (ja) * 2015-05-15 2016-12-22 日亜化学工業株式会社 配光部材の製造方法、発光装置の製造方法、配光部材、及び発光装置
US9920889B2 (en) 2013-10-11 2018-03-20 Citizen Electronics Co., Ltd. Lighting device including phosphor cover and method of manufacturing the same
WO2018235169A1 (ja) * 2017-06-20 2018-12-27 公立大学法人名古屋市立大学 光線力学的治療用光照射装置
CN109143745A (zh) * 2017-06-27 2019-01-04 深圳市光峰光电技术有限公司 发光聚集器、发光设备及投影光源

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014030922B1 (pt) * 2012-06-11 2021-01-12 Heliatek Gmbh componente fotoativo em um substrato compreendendo um primeiro e um segundo eletrodo e emprego de um componente fotoativo
KR20160040696A (ko) * 2013-08-05 2016-04-14 코닝 인코포레이티드 발광성 코팅 및 장치
DE112014004933T5 (de) * 2013-10-29 2016-07-21 Osram Opto Semiconductors Gmbh Wellenlängenumwandlungselement, Verfahren zur Herstellung und Licht emittierender Halbleiterbauteil, welcher dasselbe aufweist
JP6459354B2 (ja) 2014-09-30 2019-01-30 日亜化学工業株式会社 透光部材及びその製造方法ならびに発光装置及びその製造方法
TWI547750B (zh) * 2014-10-13 2016-09-01 台達電子工業股份有限公司 光波長轉換裝置及其適用之光源系統
JP6740616B2 (ja) * 2015-09-15 2020-08-19 日本電気硝子株式会社 波長変換部材及び発光デバイス
US10174925B2 (en) * 2015-12-25 2019-01-08 Nichia Corporation Wavelength conversion member and light source device having wavelength conversion member
CN107403855B (zh) * 2016-05-18 2019-07-09 光宝光电(常州)有限公司 多色温发光二极管封装结构及其制造方法
CN106318373B (zh) * 2016-07-27 2018-11-02 北京宇极科技发展有限公司 一种形貌和粒径可控锰掺杂氟化物发光材料的制备方法
JP6923804B2 (ja) * 2017-12-08 2021-08-25 日亜化学工業株式会社 波長変換部材及びその製造方法
JP2023073749A (ja) 2021-11-16 2023-05-26 日亜化学工業株式会社 波長変換部材及びその製造方法、発光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330793A (ja) * 1996-06-11 1997-12-22 Idemitsu Kosan Co Ltd 多色発光装置およびその製造方法
JP2000208815A (ja) 1996-07-29 2000-07-28 Nichia Chem Ind Ltd 発光ダイオ―ド
WO2008044759A1 (en) * 2006-10-12 2008-04-17 Panasonic Corporation Light-emitting device and method for manufacturing the same
JP2010096648A (ja) * 2008-10-17 2010-04-30 Japan Atomic Energy Agency 放射線−光変換素子、放射線検出器
WO2010123059A1 (ja) * 2009-04-22 2010-10-28 シーシーエス株式会社 Led発光デバイスの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3041228A (en) * 1956-11-26 1962-06-26 I J Mccullough Method of making luminescent screens
JPS63154983A (ja) 1986-12-19 1988-06-28 Hitachi Medical Corp 放射線検出器
US5109463A (en) * 1990-06-25 1992-04-28 Lee Ho Shang Fiber optic lamp
US6608332B2 (en) 1996-07-29 2003-08-19 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device and display
US20070164661A1 (en) 1999-07-26 2007-07-19 Idemitsu Kosan Co., Ltd. Fluorescent conversion medium and color light emitting device
WO2005097939A1 (ja) * 2004-03-30 2005-10-20 Idemitsu Kosan Co., Ltd. 蛍光変換媒体及びカラー発光装置
DE10109850A1 (de) * 2001-03-01 2002-09-05 Wavelight Laser Technologie Ag Vorrichtung zum Erzeugen von Weißlicht
JP2004101367A (ja) 2002-09-10 2004-04-02 Hitachi Medical Corp 蛍光体及び放射線検出器及び医用画像診断装置
JP4134993B2 (ja) 2005-03-24 2008-08-20 日立金属株式会社 X線検出装置
US8330348B2 (en) * 2005-10-31 2012-12-11 Osram Opto Semiconductors Gmbh Structured luminescence conversion layer
WO2007052777A1 (en) 2005-11-04 2007-05-10 Matsushita Electric Industrial Co., Ltd. Light-emitting module, and display unit and lighting unit using the same
JP4752795B2 (ja) * 2007-03-12 2011-08-17 パナソニック株式会社 照明器具用の光源装置
US20090039375A1 (en) 2007-08-07 2009-02-12 Cree, Inc. Semiconductor light emitting devices with separated wavelength conversion materials and methods of forming the same
US20100207511A1 (en) 2009-02-19 2010-08-19 Mitsunori Harada Semiconductor light emitting device
JP2010219166A (ja) 2009-03-13 2010-09-30 Nippon Electric Glass Co Ltd 半導体発光素子デバイス
US8354784B2 (en) 2010-09-28 2013-01-15 Intematix Corporation Solid-state light emitting devices with photoluminescence wavelength conversion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330793A (ja) * 1996-06-11 1997-12-22 Idemitsu Kosan Co Ltd 多色発光装置およびその製造方法
JP2000208815A (ja) 1996-07-29 2000-07-28 Nichia Chem Ind Ltd 発光ダイオ―ド
WO2008044759A1 (en) * 2006-10-12 2008-04-17 Panasonic Corporation Light-emitting device and method for manufacturing the same
JP2010096648A (ja) * 2008-10-17 2010-04-30 Japan Atomic Energy Agency 放射線−光変換素子、放射線検出器
WO2010123059A1 (ja) * 2009-04-22 2010-10-28 シーシーエス株式会社 Led発光デバイスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2642540A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9920889B2 (en) 2013-10-11 2018-03-20 Citizen Electronics Co., Ltd. Lighting device including phosphor cover and method of manufacturing the same
JP2015076594A (ja) * 2013-10-11 2015-04-20 シチズン電子株式会社 蛍光体層及びその製造方法と、その蛍光体層を用いたled発光装置
US9744754B2 (en) 2013-11-18 2017-08-29 Nichia Corporation Method for manufacturing light distribution member, and method for manufacturing light emitting device
US20150136306A1 (en) * 2013-11-18 2015-05-21 Nichia Corporation Method for manufacturing light distribution member, and method for manufacturing light emitting device
JP2015099816A (ja) * 2013-11-18 2015-05-28 日亜化学工業株式会社 配光部材の製造方法及び発光装置の製造方法
JP2015228389A (ja) * 2014-05-30 2015-12-17 日亜化学工業株式会社 光学的機能部材の製造方法、発光装置の製造方法及び発光装置
JP2016072466A (ja) * 2014-09-30 2016-05-09 日亜化学工業株式会社 透光部材の製造方法、発光装置の製造方法及び透光部材
JP2016219794A (ja) * 2015-05-15 2016-12-22 日亜化学工業株式会社 配光部材の製造方法、発光装置の製造方法、配光部材、及び発光装置
EP3093893A1 (en) 2015-05-15 2016-11-16 Nichia Corporation Method for manufacturing light distribution members, method for manufacturing light emitting device, light distribution member, and light emitting devices
US10415795B2 (en) 2015-05-15 2019-09-17 Nichia Corporation Method of manufacturing light distribution member with shielded individual transmissive pieces and light-shielding frame, method of manufacturing light emitting device having light distribution member, light distribution member, and light emitting device
WO2018235169A1 (ja) * 2017-06-20 2018-12-27 公立大学法人名古屋市立大学 光線力学的治療用光照射装置
CN109143745A (zh) * 2017-06-27 2019-01-04 深圳市光峰光电技术有限公司 发光聚集器、发光设备及投影光源
CN109143745B (zh) * 2017-06-27 2021-02-26 深圳光峰科技股份有限公司 发光聚集器、发光设备及投影光源

Also Published As

Publication number Publication date
KR20190026949A (ko) 2019-03-13
EP2642540B1 (en) 2019-12-04
US9638396B2 (en) 2017-05-02
US20170175958A1 (en) 2017-06-22
EP2642540A4 (en) 2016-05-25
EP3637482A1 (en) 2020-04-15
US20130170179A1 (en) 2013-07-04
TWI538261B (zh) 2016-06-11
CN103210509B (zh) 2016-03-16
CN103210509A (zh) 2013-07-17
TW201232845A (en) 2012-08-01
EP2642540A1 (en) 2013-09-25
KR20190126467A (ko) 2019-11-11
EP3637482B1 (en) 2022-04-20
US9920891B2 (en) 2018-03-20
KR20130122937A (ko) 2013-11-11

Similar Documents

Publication Publication Date Title
WO2012066881A1 (ja) 波長変換素子及びそれを備える光源
JP5678885B2 (ja) 波長変換素子、光源及び液晶用バックライトユニット
JP5585421B2 (ja) 波長変換素子及びそれを備える光源
EP2272102B1 (en) Semiconductor light-emitting apparatus
WO2018074132A1 (ja) 波長変換部材、発光デバイス及び波長変換部材の製造方法
WO2012017838A1 (ja) 光源装置
JP5919968B2 (ja) 波長変換部材及び発光デバイス
JP2017198983A (ja) 波長変換部材および投光器
JP2016170326A (ja) プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2014203852A (ja) 波長変換部材及び発光デバイス
JP2012094741A (ja) 波長変換素子及びそれを備える光源
JP2019012160A (ja) 発光体及び発光装置
JP5585410B2 (ja) 波長変換素子及びそれを備える光源
JP5585411B2 (ja) 波長変換素子及びそれを備える光源
WO2019021846A1 (ja) 波長変換部材及び発光装置
JP7090842B2 (ja) 波長変換部材及び発光装置
JP2013214629A (ja) 波長変換部材及び発光デバイス
WO2018123219A1 (ja) 波長変換体及び波長変換部材
JP2019028096A (ja) 波長変換部材
JP2017098095A (ja) 発光装置、車両用灯具、ディスプレイ装置、および波長変換装置
JP2024068970A (ja) 蛍光光源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180054545.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13821581

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137006552

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011841968

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE