WO2012066872A1 - 繊維強化複合材、繊維強化複合材の製造方法及び強化繊維基材 - Google Patents

繊維強化複合材、繊維強化複合材の製造方法及び強化繊維基材 Download PDF

Info

Publication number
WO2012066872A1
WO2012066872A1 PCT/JP2011/073483 JP2011073483W WO2012066872A1 WO 2012066872 A1 WO2012066872 A1 WO 2012066872A1 JP 2011073483 W JP2011073483 W JP 2011073483W WO 2012066872 A1 WO2012066872 A1 WO 2012066872A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
fiber
fabric
resin portion
reinforced composite
Prior art date
Application number
PCT/JP2011/073483
Other languages
English (en)
French (fr)
Inventor
堀 藤夫
水野 宏
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2012066872A1 publication Critical patent/WO2012066872A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • B29K2021/003Thermoplastic elastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/122Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles microfibres or nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness

Definitions

  • the present invention relates to a fiber reinforced composite material, a method for producing a fiber reinforced composite material, and a reinforced fiber base material.
  • a nonwoven fabric as an interlayer toughness reinforcing material consisting of short fibers is laminated on at least one side of a sheet-like reinforcing fiber base material consisting of reinforcing fibers.
  • a composite reinforcing fiber base material in which the reinforcing fiber base material and the nonwoven fabric are integrated is proposed by the short fibers to be formed penetrating the reinforcing fiber base material (see Patent Document 1).
  • Non-woven fabric as composite reinforcing fiber substrate is integrated with reinforcing fiber substrate by adhesion with pressure-sensitive adhesive, some of the fibers constituting the non-woven fabric are low melting point fibers, and the reinforcing fiber substrate and non-woven fabric are heat-melted Examples thereof include those integrated by wearing, or fibers in which a reinforcing fiber base material is penetrated by punching such as needle punching of fibers forming a nonwoven fabric.
  • the present invention has been made in view of the above-mentioned conventional problems, and its purpose is to use a woven fabric constituting a reinforcing fiber base material and an interlayer toughness reinforcing material without using an adhesive, a heat fusion agent, or the like.
  • An object of the present invention is to provide a fiber-reinforced composite material and a method for producing a fiber-reinforced composite material that can sufficiently ensure integration of thermoplastic resin portions and are excellent in strength and impact resistance (toughness).
  • Another object is to provide a reinforcing fiber substrate suitable for the fiber-reinforced composite material.
  • the fiber-reinforced composite material of the invention according to claim 1 is a thermoplastic resin portion in which a thermoplastic resin having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m is attached to the surface of the reinforcing fiber. It consists of a reinforced fiber base material on which a woven fabric having a laminated structure and a matrix resin made of a thermosetting resin.
  • the woven fabric that is laminated to form the reinforcing fiber base has a thermoplastic resin portion to which a thermoplastic resin having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m is attached to the surface.
  • a thermoplastic resin portion to which a thermoplastic resin having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m is attached to the surface.
  • the thermoplastic resin portion is a non-woven fabric made of a fibrous thermoplastic resin having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m.
  • strength and impact resistance of a fiber reinforced composite material are excellent.
  • the thermoplastic resin portion is made of a particulate thermoplastic resin having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m. Therefore, a fiber reinforced composite material excellent in strength and impact resistance (toughness) can be provided.
  • a method for producing a fiber-reinforced composite material comprising: forming a fabric having a thermoplastic resin portion having a thermoplastic resin portion attached to a surface thereof by an electrospinning method; A reinforcing fiber base material forming step of laminating the woven fabric to form a reinforcing fiber base material; and a resin impregnation curing step of placing the reinforcing fiber base material in a mold and injecting a thermosetting resin and thermosetting it. It has.
  • thermoplastic resin portion-attached fabric forming step a fabric having a thermoplastic resin portion in which a thermoplastic resin is attached to the surface by electrospinning is formed.
  • the reinforcing fiber substrate forming step the reinforcing fiber substrate is formed by laminating a woven fabric having a thermoplastic resin portion formed on the surface.
  • a thermosetting resin is injected in a state where the reinforcing fiber base is placed in the mold, and thermosetting is performed to form a fiber reinforced composite material.
  • the invention according to claim 5 is the invention according to claim 4, wherein a woven fabric in which the thermoplastic resin portion is not formed is laminated on the woven fabric in which the thermoplastic resin portion is formed.
  • the thermoplastic resin portion-attached fabric forming step is a part of the reinforcing fiber substrate forming step. In this invention, the form retainability of the reinforcing fiber base before the resin impregnation curing step is improved.
  • thermoplastic resin has a melting point higher than a thermosetting temperature of the thermosetting resin. Since the thermoplastic resin part adhering to the laminated fabric constituting the reinforcing fiber base is composed of nanofibers and nanoparticles, it is easily melted when heated near the melting point. Therefore, when the melting point of the thermoplastic resin is lower than the thermosetting temperature of the thermosetting resin that is impregnated and cured in the reinforcing fiber base, the thermoplastic resin portion flows and is unevenly distributed when the thermosetting resin is impregnated into the reinforcing fiber base. May result in adverse effects on the strength and impact resistance of the fiber reinforced composite. However, in the present invention, such a problem can be avoided.
  • thermoplastic resin portion is formed by attaching a thermoplastic resin having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m to the surface of the reinforcing fiber. Therefore, it is suitable for the fiber reinforced composite material.
  • thermoplastic resin portion is a nonwoven fabric made of a fibrous thermoplastic resin having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m. Therefore, it is suitable for the fiber reinforced composite material.
  • the present invention it is possible to sufficiently ensure the integration of the fabric constituting the reinforcing fiber base and the thermoplastic resin portion as the interlayer toughness reinforcing material without using an adhesive, a heat-sealing agent, or the like. Further, it is possible to provide a fiber reinforced composite material excellent in strength and impact resistance.
  • (A) is a partially broken schematic perspective view of a fiber-reinforced composite material of one embodiment
  • (b) is a schematic view of a state in which a nanofiber nonwoven fabric is formed on the surface of a woven fabric
  • (c) is a laminated reinforcing fiber.
  • (A), (b) is a schematic diagram which shows the manufacturing method of a reinforced fiber base material.
  • (A), (b) is a schematic diagram which shows the textile fabric in which the thermoplastic resin part of another embodiment was formed, respectively.
  • the fiber reinforced composite material 11 is formed in the three-dimensional shape of a channel shape (cross-sectional U shape).
  • the fiber reinforced composite material 11 is a reinforced fiber base material in which a woven fabric 13 having a thermoplastic resin portion 12 formed by attaching a thermoplastic resin to the surface by electrospinning is laminated. 14 and a matrix resin made of a thermosetting resin.
  • the fabric 13 is formed with the fiber bundle 15 which consists of a continuous fiber, and the plain fabric is employ
  • the fiber bundle 15 for example, a non-twisted fiber bundle (roving) of carbon fiber having a light weight, high breaking strength, and high elastic modulus is used.
  • the carbon fiber bundle hundreds to tens of thousands of thin fibers are bundled to form one fiber bundle, and the fiber bundle having the number of fibers suitable for the required performance is selected.
  • the fiber bundle 15 forms the woven fabric 13 in a flat state.
  • the thermoplastic resin portion 12 is a non-woven fabric made of nanofibers having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m, and is almost uniformly attached over the entire surface of the fabric 13.
  • a resin having a melting point higher than the thermosetting temperature of the thermosetting resin constituting the matrix resin is used.
  • the thermoplastic resin include PBI (polyphenylene benzimidazole), PET (polyethylene terephthalate), PAN (polyacrylonitrile), and the like.
  • the reinforcing fiber base material 14 is formed by laminating the woven fabric 13 in a state in which the woven fabric 13 is integrated with the thermoplastic resin portion 12.
  • the thermoplastic resin portion 12 is composed of a nonwoven fabric made of nanofibers formed using a thermoplastic resin by an electrospinning method, and therefore, without performing treatment such as adhesion or thermal fusion with an adhesive, Adhesion of the thermoplastic resin, which is a fiber, to the woven fabric 13 can sufficiently secure the strength of integration of the woven fabric 13 and the thermoplastic resin portion 12.
  • the basis weight (weight per unit area) of the thermoplastic resin portion 12 is preferably several g / m 2 .
  • the manufacturing method of the fiber reinforced composite material 11 includes a thermoplastic resin portion-attached fabric forming step, a reinforcing fiber base material forming step, and a resin impregnation curing step.
  • a thermoplastic resin portion-attached fabric forming step a fabric 13 having a thermoplastic resin portion 12 formed by attaching a thermoplastic resin to the surface by electrospinning is formed.
  • a thermoplastic resin is attached to the fabric 13 by electrospinning to form the thermoplastic resin portion 12.
  • the woven fabric 13 having the thermoplastic resin portion 12 formed on the surface is laminated to form the reinforcing fiber substrate 14.
  • a fabric 13 having no thermoplastic resin portion 12 is laminated on a fabric 13 having a thermoplastic resin portion 12 formed on the surface, and the thermoplastic resin portion 12 is placed on the surface of the fabric 13.
  • the forming operation is repeated until the predetermined number of layers is reached. That is, in this embodiment, the thermoplastic resin portion-attached fabric forming process is a part of the reinforcing fiber base material forming process.
  • a thermosetting resin is injected with the reinforcing fiber substrate 14 placed in a mold, and thermosetting is performed to form a fiber reinforced composite material.
  • the electrospinning apparatus includes a high voltage power source 21, a discharge nozzle 22, and a metal plate 23 that supports the fabric 13.
  • the high voltage power supply 21 can output about 10 to 20 kV.
  • the discharge nozzle 22 is connected by a pipe 24 to a resin solution supply unit (not shown).
  • the positive terminal of the high voltage power supply 21 is electrically connected to the discharge nozzle 22, and the negative terminal of the high voltage power supply 21 and the metal plate 23 are grounded.
  • the metal plate 23 in order to form the channel-shaped reinforcing fiber base material 14, the metal plate 23 is formed in a channel shape.
  • the metal plate 23 since the three outer surfaces 23a, 23b, and 23c of the metal plate 23 formed in a channel shape can be sequentially opposed to the discharge nozzle 22, the metal plate 23 is configured to be rotatable by a rotation device (not shown). .
  • thermoplastic resin solution is discharged from the discharge nozzle 22 in a state where the first outer surface 23 a of the metal plate 23 faces the discharge nozzle 22.
  • the discharged resin solution 25 is split by electrostatic repulsion and proceeds toward the metal plate 23. And it adheres to the surface of 13 supported on the metal plate 23, and becomes the nonwoven fabric-like thermoplastic resin part 12.
  • the resin solution 25 is discharged from the discharge nozzle 22 so that the thermoplastic resin portion 12 has a preset basis weight, and the discharge of the resin solution 25 is interrupted when the set basis weight is reached. Then, the metal plate 23 is rotated and disposed so that the second outer surface 23b faces the discharge nozzle 22 as shown in FIG. In this state, the resin solution 25 is again discharged from the discharge nozzle 22 to adhere the thermoplastic resin portion 12 onto the fabric 13 positioned on the second outer surface 23b. Similarly, when the thermoplastic resin portion 12 is attached to the fabric 13 located on the third outer surface 23c, the attachment of the thermoplastic resin portion 12 to the fabric 13 is completed.
  • thermoplastic resin portion 12 is attached on the fabric 13 to which the thermoplastic resin portion 12 has been attached.
  • the thermoplastic resin portion 12 also adheres to the fabric 13.
  • the thermoplastic resin part 12 is made to adhere to the surface of the fabric 13 newly attached like the above.
  • the reinforced fiber base material 14 is impregnated and cured with a thermosetting resin in a resin impregnation and curing step, whereby the fiber reinforced composite material 11 is formed.
  • the resin is impregnated and cured by, for example, the RTM (Resin Transfer Molding) method.
  • a thermosetting resin is injected into the mold while the reinforcing fiber base 14 is disposed in the mold, and thermosetting is performed.
  • the thermoplastic resin portion 12 melts, the thermoplastic resin portion 12 that has been substantially uniformly attached to the entire surface of the fabric 13 may flow and become unevenly distributed. Impact resistance may be adversely affected.
  • the melting point of the thermoplastic resin constituting the thermoplastic resin portion 12 is higher than the thermosetting temperature of the thermosetting resin, the thermoplastic resin portion 12 does not melt and avoids such problems. Can do.
  • a fiber reinforced composite material 11 includes a reinforced fiber base material 14 on which a woven fabric 13 having a thermoplastic resin portion 12 having a thermoplastic resin having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m attached to a surface is laminated; And a matrix resin made of a thermosetting resin. Therefore, unlike the conventional technique, the thermoplastic resin portion 12 is not integrated with the woven fabric 13 and the thermoplastic resin portion 12 as the interlayer toughness reinforcing material without using a needle punch or using an adhesive or a heat-sealing agent. The strength of the integration can be sufficiently secured by the adhesion of the fabric to the fabric 13.
  • the thermoplastic resin portion 12 suppresses the development of interlayer cracks due to the impact, and therefore, it is possible to provide a fiber reinforced composite material excellent in strength and impact resistance (toughness). it can.
  • thermoplastic resin portion 12 is a nonwoven fabric made of a fibrous thermoplastic resin having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m. Therefore, compared with the case where the thermoplastic resin portion 12 is in the form of particles, the strength of integration of the fabric 13 and the thermoplastic resin portion 12 and the impact resistance of the fiber reinforced composite material 11 are excellent.
  • the manufacturing method of the fiber reinforced composite material 11 is a method of laminating the fabric 13 with a thermoplastic resin portion-attached fabric forming step for forming a fabric 13 having a thermoplastic resin portion 12 formed on the surface by an electrospinning method.
  • a reinforcing fiber base material forming step for forming the reinforcing fiber base material 14 and a resin impregnation curing step for placing the reinforcing fiber base material 14 in a mold and injecting and thermosetting the thermosetting resin are provided.
  • the integration of the woven fabric 13 constituting the reinforcing fiber base 14 and the thermoplastic resin portion 12 does not require a needle punch, an adhesive, or a heat fusion agent, and the reinforcing fiber base 14 It is possible to sufficiently ensure the integration of the woven fabric 13 and the thermoplastic resin portion 12, and to manufacture the fiber-reinforced composite material 11 having excellent strength and impact resistance.
  • the thermoplastic resin portion 12 also adheres to the fabric 13. Therefore, the thermoplastic resin part 12 integrates the laminated fabrics 13 constituting the reinforcing fiber base material 14, and improves the shape retention of the reinforcing fiber base material 14 before the resin impregnation curing step.
  • thermoplastic resin portion 12 The melting point of the thermoplastic resin forming the thermoplastic resin portion 12 is higher than the thermosetting temperature of the thermosetting resin. Therefore, the thermoplastic resin portion 12 does not melt during the impregnation / thermosetting of the reinforcing fiber base 14 with the thermosetting resin. Therefore, when the thermoplastic resin portion 12 flows and becomes unevenly distributed, it is possible to avoid the problem of adversely affecting the strength and impact resistance of the fiber reinforced composite material 11.
  • thermoplastic resin portion-attached fabric forming process is a part of the reinforcing fiber substrate forming process. Therefore, unlike the case where the thermoplastic resin portion-attached fabric forming step is independent of the reinforcing fiber base material forming step, it is necessary to secure a dedicated place for storing the fabric 13 formed in the thermoplastic resin portion-attached fabric forming step. There is no.
  • the fabric 13 Since the fiber bundle 15 constituting the fabric 13 is formed of carbon fibers, the fabric 13 has conductivity. Therefore, even when the number of layers of the fabric 13 is increased, an appropriate high voltage is maintained between the surface of the fabric 13 and the discharge nozzle 22, and the thermoplastic resin portion 12 with respect to the surface of the fabric 13 is maintained. Good adhesion is achieved.
  • the embodiment is not limited to the above, and may be embodied as follows, for example.
  • the thermoplastic resin portion 12 formed on the surface of the fabric 13 is not limited to a nonwoven fabric made of nanofibers, and may be nanoparticles, for example, as shown in FIG. Moreover, a nonwoven fabric and particle
  • the thermoplastic resin part 12 is made into a non-woven fabric, is made into particles, or the non-woven fabric and particles are mixed because the resin concentration of the thermoplastic resin solution when the thermoplastic resin part 12 is formed by the electrospinning method. It becomes possible by changing.
  • the nonwoven fabric and particles are mixed as the thermoplastic resin portion 12, and only the particles are formed by further reducing the concentration. It becomes a state to be. Also in this case, the strength of the integration of the woven fabric 13 and the thermoplastic resin portion 12 can be sufficiently ensured without using a needle punch or using an adhesive or a heat fusion agent. In addition, when the fiber reinforced composite material 11 receives an impact, the thermoplastic resin portion 12 suppresses the progress of interlayer cracks due to the impact, so that the fiber reinforced composite material 11 is excellent in strength and impact resistance (toughness).
  • the woven fabric 13 is not limited to a flat (wide) fiber bundle 15 but may be formed of a normal fiber bundle 15 as shown in FIG. Also in this case, the thermoplastic resin portion 12 is adhered to the surface of the fabric 13 without any trouble.
  • thermoplastic resin portion-attached fabric forming step and the reinforcing fiber base forming step may be independent steps. Specifically, an operation for forming the woven fabric 13 with the thermoplastic resin portion 12 attached to the surface and an operation for forming the reinforced fiber base material 14 by laminating the woven fabric 13 with the thermoplastic resin portion 12 attached to the surface. are performed separately.
  • a device including a flat metal plate 23 is used as an electrospinning device, and the surface of the fabric 13 placed on the metal plate 23 is heated by electrospinning. A plastic resin portion 12 is adhered.
  • the woven fabric 13 having the thermoplastic resin portion 12 attached to the surface is sequentially laminated on a mold having a predetermined shape to form the reinforcing fiber substrate 14.
  • thermoplastic resin part-attached fabric forming step in the method for manufacturing the fiber reinforced composite material 11 is not limited to the method of forming the thermoplastic resin part 12 by attaching a thermoplastic resin to the surface of the fabric 13 by electrospinning.
  • the fabric 13 may be formed by the fiber bundle 15.
  • the reinforcing fiber base 14 is formed by stacking the warp 13 and the weft 13 in a state where the woven fabrics 13 are shifted by 45 degrees between the adjacent woven fabrics 13. May be.
  • the fiber reinforced composite material 11 manufactured using the reinforcing fiber base 14 has a configuration in which reinforcing fibers are arranged in a four-axis orientation. Therefore, the tensile strength in the bias direction is higher than that of the fiber-reinforced composite material 11 manufactured using the reinforcing fiber base material 14 that is laminated with the warp yarns and the weft yarns arranged in the same direction.
  • the fiber bundle 15 constituting the fabric 13 is not limited to carbon fiber.
  • inorganic fibers such as glass fibers and ceramic fibers, or high-strength organic fibers such as aramid fibers, poly-p-phenylenebenzobisoxazole fibers, and ultrahigh molecular weight polyethylene fibers may be used. It is selected as appropriate. For example, when the required performance of rigidity and strength for the reinforcing fiber base 14 is high, carbon fiber is preferable. If an inexpensive glass fiber is used for the fiber bundle 15, the cost is reduced.
  • the shape of the reinforcing fiber base 14 is not limited to a U-shaped cross section, and may be, for example, a substantially L-shaped cross section or a flat plate shape.
  • the thermosetting resin constituting the matrix resin is not limited to an epoxy resin, and for example, an unsaturated polyester resin, a vinyl ester resin, or the like may be used.
  • thermoplastic resin having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m to the surface of the reinforcing fiber is not limited to the electrospinning method, and a diameter prepared in advance with a predetermined basis weight is 10 ⁇ 8 to 10 ⁇ 6 m.
  • a non-woven fabric made of a fibrous thermoplastic resin may be laminated on the surface of the reinforcing fiber, or a thermoplastic resin having a diameter of 10 ⁇ 8 to 10 ⁇ 6 m may be attached to the reinforcing fiber surface by pressure injection.
  • thermoplastic resin part adhesion fabric formation process is a part of reinforcement fiber base material formation process.

Abstract

接着剤、熱融着剤等を用いずに、強化繊維基材を構成する織物と層間靭性強化材としての熱可塑性樹脂部との一体化を充分に確保することができ、強度及び耐衝撃性に優れた繊維強化複合材を提供する。繊維強化複合材11は、表面に電界紡糸法により熱可塑性樹脂を付着させて形成された熱可塑性樹脂部12を有する織物13が積層された強化繊維基材14と、熱硬化性樹脂製のマトリックス樹脂とからなる。熱可塑性樹脂部12は、ナノファイバーからなる不織布であり、織物13の表面全体にわたってほぼ均一に付着されている。熱可塑性樹脂としては融点がマトリックス樹脂を構成する熱硬化性樹脂の熱硬化温度より高い樹脂が使用される。

Description

繊維強化複合材、繊維強化複合材の製造方法及び強化繊維基材
本発明は、繊維強化複合材、繊維強化複合材の製造方法及び強化繊維基材に関する。
耐衝撃性に優れた繊維強化プラスチックの強化繊維基材として、強化繊維からなるシート状の強化繊維基材の少なくとも片面に、短繊維からなる層間靭性強化材としての不織布が積層され、該不織布を形成する短繊維が該強化繊維基材に貫通することにより、該強化繊維基材と該不織布が一体化されている複合強化繊維基材が提案されている(特許文献1参照)。複合強化繊維基材として不織布が強化繊維基材と粘着剤による接着で一体化されているもの、不織布を構成する繊維の一部が低融点繊維であり、強化繊維基材と不織布とが熱融着により一体化されているもの、あるいは、不織布を形成する繊維をニードルパンチ等のパンチングにより強化繊維基材を貫通させたもの等が挙げられている。
再公表特許WO00/56539号公報
ところが、接着や熱融着で不織布と強化繊維基材との一体化を行う場合は、粘着剤(接着剤)や熱融着剤(低融点繊維)と、繊維強化複合材(繊維強化プラスチック)のマトリックス樹脂との相性により、使用できる粘着剤や熱融着剤の種類が限定され、一体化の強度を充分に確保できない。また、ニードルパンチで不織布を形成する繊維の一部が強化繊維基材を貫通するようにした場合は、基材が損傷するという問題がある。
本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、接着剤、熱融着剤等を用いずに、強化繊維基材を構成する織物と層間靭性強化材としての熱可塑性樹脂部の一体化を充分に確保することができ、強度及び耐衝撃性(靭性)に優れた繊維強化複合材及び繊維強化複合材の製造方法を提供することにある。また、他の目的は、前記繊維強化複合材に適した強化繊維基材を提供することにある。
前記の目的を達成するため、請求項1に記載の発明の繊維強化複合材は、強化繊維の表面に径が10-8~10-6mである熱可塑性樹脂を付着させた熱可塑性樹脂部を有する織物が積層された強化繊維基材と、熱硬化性樹脂製のマトリックス樹脂とからなる。
この発明では、積層されて強化繊維基材を構成する織物は、表面に径が10-8~10-6mである熱可塑性樹脂を付着させた熱可塑性樹脂部を有するため、接着剤、熱融着剤等を用いずに、ナノファイバー又はナノ粒子の織物に対する付着性により織物と層間靭性強化材としての熱可塑性樹脂部との一体化の強度を充分に確保できるとともに、ニードルパンチを用いて不織布の繊維を強化繊維基材を貫通させる場合のような繊維損傷の虞がない。また、繊維強化複合材が衝撃を受けた場合に熱可塑性樹脂部が衝撃による層間クラックの進展を抑える。したがって、強度及び耐衝撃性(靭性)に優れた繊維強化複合材を提供することができる。
請求項2に記載の発明は、請求項1に記載の発明において、前記熱可塑性樹脂部は径が10-8~10-6mの繊維状の熱可塑性樹脂からなる不織布である。この発明では、織物と層間靭性強化材としての熱可塑性樹脂部との一体化の強度や繊維強化複合材の強度及び耐衝撃性が優れる。
請求項3に記載の発明は、請求項1に記載の発明において、前記熱可塑性樹脂部は径が10-8~10-6mの粒子状の熱可塑性樹脂からなる。したがって、強度及び耐衝撃性(靭性)に優れた繊維強化複合材を提供することができる。
請求項4に記載の発明の繊維強化複合材の製造方法は、表面に電界紡糸法により熱可塑性樹脂を付着させた熱可塑性樹脂部を有する織物を形成する熱可塑性樹脂部付着織物形成工程と、前記織物を積層して強化繊維基材を形成する強化繊維基材形成工程と、前記強化繊維基材を成型型内に配置して熱硬化性樹脂を注入するとともに熱硬化させる樹脂含浸硬化工程とを備えている。
この発明では、熱可塑性樹脂部付着織物形成工程において、表面に電界紡糸法により熱可塑性樹脂を付着させた熱可塑性樹脂部を有する織物が形成される。強化繊維基材形成工程では、表面に熱可塑性樹脂部が形成された織物を積層することにより強化繊維基材が形成される。樹脂含浸硬化工程では、強化繊維基材が成型型内に配置された状態で熱硬化性樹脂が注入されるとともに熱硬化が行われて繊維強化複合材が形成される。したがって、接着剤、熱融着剤等を用いずに、強化繊維基材を構成する複数層の織物と層間靭性強化材としての熱可塑性樹脂部との一体化を充分に確保することができ、強度及び耐衝撃性に優れた繊維強化複合材を製造することができる。
請求項5に記載の発明は、請求項4に記載の発明において、前記熱可塑性樹脂部が形成された織物の上に前記熱可塑性樹脂部が形成されていない織物を積層して、その織物の表面に前記熱可塑性樹脂部を形成する作業を所定積層数になるまで繰り返すことで、前記熱可塑性樹脂部付着織物形成工程が前記強化繊維基材形成工程の一部となっている。この発明では、樹脂含浸硬化工程前の強化繊維基材の形態保持性が向上する。
請求項6に記載の発明は、請求項4及び5のいずれか一項に記載の発明において、前記熱可塑性樹脂は、その融点が前記熱硬化性樹脂の熱硬化温度より高い。強化繊維基材を構成する積層された織物に付着した熱可塑性樹脂部は、ナノファイバーやナノ粒子で構成されるため、融点近くに加熱されると溶融し易い。そのため、熱可塑性樹脂の融点が強化繊維基材に含浸硬化させる熱硬化性樹脂の熱硬化温度より低いと、熱硬化性樹脂の強化繊維基材への含浸時に熱可塑性樹脂部が流れて偏在する状態になる場合があり、繊維強化複合材の強度や耐衝撃性に悪影響を及ぼす可能性がある。しかし、この発明では、そのような不具合を回避することができる。
請求項7に記載の発明の強化繊維基材は、強化繊維の表面に径が10-8~10-6mである熱可塑性樹脂を付着させた熱可塑性樹脂部が形成されている。したがって、前記繊維強化複合材に適している。
請求項8に記載の発明の強化繊維基材は、前記熱可塑性樹脂部は径が10-8~10-6mの繊維状の熱可塑性樹脂からなる不織布である。したがって、前記繊維強化複合材に適している。
本発明によれば、接着剤、熱融着剤等を用いずに、強化繊維基材を構成する織物と層間靭性強化材としての熱可塑性樹脂部との一体化を充分に確保することができ、強度及び耐衝撃性に優れた繊維強化複合材を提供することができる。
(a)は一実施形態の繊維強化複合材の一部破断模式斜視図、(b)は織物の表面にナノファイバーの不織布が形成された状態の模式図、(c)は積層された強化繊維基材とナノファイバーとの関係を示す模式図。 (a),(b)は強化繊維基材の製造方法を示す模式図。 (a),(b)はそれぞれ別の実施形態の熱可塑性樹脂部が形成された織物を示す模式図。
以下、本発明を具体化した一実施形態を図1及び図2にしたがって説明する。
図1(a)に示すように、繊維強化複合材11は、チャネル状(断面コ形状)の立体的な形状に形成されている。繊維強化複合材11は、図1(c)に示すように、表面に電界紡糸法により熱可塑性樹脂を付着させて形成された熱可塑性樹脂部12を有する織物13が積層された強化繊維基材14と、熱硬化性樹脂製のマトリックス樹脂とからなる。
図1(b)に示すように、織物13は、連続繊維からなる繊維束15で形成され、実施形態では織物として平織物が採用されている。繊維束15としては軽量で破断強度が高く、弾性率の大きい例えば炭素繊維の無撚りの繊維束(ロービング)が使用される。炭素繊維束は細い繊維が数百~数万本束ねられて1本の繊維束が構成されており、要求性能に適した繊維の本数の繊維束が選択される。繊維束15は偏平な状態で織物13を形成する。
熱可塑性樹脂部12は、径が10-8~10-6mのナノファイバーからなる不織布であり、織物13の表面全体にわたってほぼ均一に付着されている。熱可塑性樹脂としては融点がマトリックス樹脂を構成する熱硬化性樹脂の熱硬化温度より高い樹脂が使用される。熱可塑性樹脂として、例えば、PBI(ポリフェニレンベンゾイミダゾール)、PET(ポリエチレンテレフタレート)、PAN(ポリアクリロニトリル)等が挙げられる。
図1(c)に示すように、強化繊維基材14は、織物13が熱可塑性樹脂部12により互いに一体化された状態で積層されて形成されている。熱可塑性樹脂部12は、電界紡糸法により熱可塑性樹脂を使用して形成されたナノファイバーからなる不織布で構成されているため、接着剤による接着や熱融着等の処理を行うことなく、ナノファイバーである熱可塑性樹脂の織物13への付着性により織物13と熱可塑性樹脂部12との一体化の強度を充分に確保することができる。熱可塑性樹脂部12の目付(単位面積当たりの重量)は数g/mが好ましい。
マトリックス樹脂の熱硬化性樹脂としてはエポキシ樹脂が使用されている。
次に前記のように構成された繊維強化複合材11の製造方法を説明する。繊維強化複合材11の製造方法は、熱可塑性樹脂部付着織物形成工程と、強化繊維基材形成工程と、樹脂含浸硬化工程とを備えている。熱可塑性樹脂部付着織物形成工程では、表面に電界紡糸法により熱可塑性樹脂を付着させて形成された熱可塑性樹脂部12を有する織物13が形成される。この実施形態では、織物13に対して電界紡糸法により熱可塑性樹脂を付着させて熱可塑性樹脂部12を形成する。強化繊維基材形成工程では、表面に熱可塑性樹脂部12が形成された織物13が積層されて強化繊維基材14が形成される。この実施形態では、表面に熱可塑性樹脂部12が形成された織物13の上に熱可塑性樹脂部12が形成されていない織物13を積層して、その織物13の表面に熱可塑性樹脂部12を形成する作業を所定積層数になるまで繰り返す。即ち、この実施形態では、熱可塑性樹脂部付着織物形成工程が強化繊維基材形成工程の一部となっている。樹脂含浸硬化工程では、強化繊維基材14が成型型内に配置された状態で熱硬化性樹脂が注入されるとともに熱硬化が行われて繊維強化複合材が形成される。
次に図2にしたがって、織物13の表面に電界紡糸法により熱可塑性樹脂部12を形成する方法を説明する。
電界紡糸法には公知の電界紡糸装置が使用される。電界紡糸装置は、高電圧電源21と、吐出ノズル22と、織物13を支持する金属板23とを備えている。高電圧電源21は10~20kV程度の出力が可能になっている。吐出ノズル22は、パイプ24により図示しない樹脂溶液供給部に接続されている。高電圧電源21のプラス端子が吐出ノズル22に電気的に接続され、高電圧電源21のマイナス端子及び金属板23はアースされている。
この実施形態では、チャネル状の強化繊維基材14を形成するため、金属板23はチャネル状に形成されている。また、チャネル状に形成された金属板23の3つの外面23a,23b,23cが吐出ノズル22と順次対向可能とするため、金属板23は図示しない回動装置により回動可能に構成されている。
織物13の表面に熱可塑性樹脂部12を付着させるには、図2(a)に示すように、織物13を金属板23の各外面23a,23b,23cに接触する状態で取り付ける。そして、金属板23の第1の外面23aが吐出ノズル22と対向する状態で、吐出ノズル22から熱可塑性樹脂溶液を吐出する。吐出された樹脂溶液25は、静電反発によって分裂して、金属板23に向かって進む。そして、金属板23上に支持されている13の表面に付着して不織布状の熱可塑性樹脂部12となる。
熱可塑性樹脂部12が予め設定された目付となるように、吐出ノズル22から樹脂溶液25を吐出し設定された目付けとなった時点で樹脂溶液25の吐出を中断する。そして、金属板23を回動させて、図2(b)に示すように、第2の外面23bが吐出ノズル22と対向する状態に配置させる。その状態で、再び吐出ノズル22から樹脂溶液25を吐出して、第2の外面23b上に位置する織物13上に熱可塑性樹脂部12を付着させる。また、同様に第3の外面23c上に位置する織物13上に熱可塑性樹脂部12を付着させると、その織物13に対する熱可塑性樹脂部12の付着が完了する。
次に熱可塑性樹脂部12の付着が完了した織物13の上に、熱可塑性樹脂部12がまだ付着されていない織物13を取り付ける。熱可塑性樹脂部12がまだ付着されていない織物13が、熱可塑性樹脂部12の付着が完了した織物13の上に取り付けられると、熱可塑性樹脂部12が当該織物13にも付着する。そして、新たに取り付けられた織物13の表面に、前述と同様にして熱可塑性樹脂部12を付着させる。以下、同様にして表面に熱可塑性樹脂部12が形成された織物13が所定数積層されると強化繊維基材14の形成が完了する。なお、最後に積層された織物13に対する電界紡糸装置による熱可塑性樹脂部12の付着作業は省略してもよい。
強化繊維基材14は、樹脂含浸硬化工程において熱硬化性樹脂が含浸硬化されて繊維強化複合材11が形成される。樹脂の含浸硬化は、例えば、RTM (Resin Transfer Molding )法で行われる。強化繊維基材14が成形型内に配置された状態で成形型内に熱硬化性樹脂が注入されるとともに熱硬化が行われる。そのとき、熱可塑性樹脂部12が溶融すると、織物13の表面全体にほぼ均一に付着していた熱可塑性樹脂部12が流れて偏在する状態になる場合があり、繊維強化複合材11の強度や耐衝撃性に悪影響を及ぼす可能性がある。しかし、熱可塑性樹脂部12を構成する熱可塑性樹脂は、その融点が熱硬化性樹脂の熱硬化温度より高いため、熱可塑性樹脂部12が溶融することはなく、そのような不具合を回避することができる。
この実施形態によれば、以下に示す効果を得ることができる。
(1)繊維強化複合材11は、表面に径が10-8~10-6mである熱可塑性樹脂を付着させた熱可塑性樹脂部12を有する織物13が積層された強化繊維基材14と、熱硬化性樹脂製のマトリックス樹脂とからなる。したがって、織物13と層間靭性強化材としての熱可塑性樹脂部12との一体化に従来技術と異なりニードルパンチを用いたり接着剤や熱融着剤等を用いたりせずに、熱可塑性樹脂部12の織物13への付着性により一体化の強度を充分に確保できる。また、繊維強化複合材11が衝撃を受けた場合に熱可塑性樹脂部12が衝撃による層間クラックの進展を抑えるため、強度及び耐衝撃性(靭性)に優れた繊維強化複合材を提供することができる。
(2)熱可塑性樹脂部12は径が10-8~10-6mの繊維状の熱可塑性樹脂からなる不織布である。したがって、熱可塑性樹脂部12が粒子状の場合に比べて、織物13と熱可塑性樹脂部12との一体化の強度や繊維強化複合材11の耐衝撃性が優れる。
(3)繊維強化複合材11の製造方法は、表面に電界紡糸法により形成された熱可塑性樹脂部12を有する織物13を形成する熱可塑性樹脂部付着織物形成工程と、織物13を積層して強化繊維基材14を形成する強化繊維基材形成工程と、強化繊維基材14を成型型内に配置して熱硬化性樹脂を注入・熱硬化させる樹脂含浸硬化工程とを備えている。したがって、強化繊維基材14を構成する織物13と熱可塑性樹脂部12との一体化に、従来技術と異なり、ニードルパンチや接着剤や熱融着剤を必要とせずに、強化繊維基材14を構成する織物13と熱可塑性樹脂部12との一体化を充分に確保することができ、強度及び耐衝撃性に優れた繊維強化複合材11を製造することができる。また、熱可塑性樹脂部12がまだ付着されていない織物13が、熱可塑性樹脂部12の付着が完了した織物13の上に取り付けられると、熱可塑性樹脂部12が当該織物13にも付着する。そのため、熱可塑性樹脂部12が、強化繊維基材14を構成する積層された織物13同士を一体化し、樹脂含浸硬化工程前の強化繊維基材14の形態保持性を向上させる。
(4)熱可塑性樹脂部12を形成する熱可塑性樹脂は、その融点が熱硬化性樹脂の熱硬化温度より高い。そのため、熱硬化性樹脂の強化繊維基材14への含浸・熱硬化時に熱可塑性樹脂部12が溶融することがない。したがって、熱可塑性樹脂部12が流れて偏在する状態になることにより、繊維強化複合材11の強度や耐衝撃性に悪影響を及ぼすという不具合を回避することができる。
(5)繊維強化複合材11の製造方法において、織物13の表面に熱可塑性樹脂部12を付着させる作業と、表面に熱可塑性樹脂部12が付着された織物13の上に他の織物13を積層する作業とが交互に行われる。即ち、熱可塑性樹脂部付着織物形成工程が強化繊維基材形成工程の一部となっている。したがって、熱可塑性樹脂部付着織物形成工程が強化繊維基材形成工程と独立している場合と異なり、熱可塑性樹脂部付着織物形成工程で形成された織物13を保管する専用の場所を確保する必要がない。
(6)織物13を構成する繊維束15は炭素繊維によって形成されているため、織物13は導電性を有する。したがって、織物13の積層数が多くなった場合でも、織物13の表面と吐出ノズル22との間に適正な高電圧が印加された状態に維持されて、織物13の表面に対する熱可塑性樹脂部12の付着が良好に行われる。
実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 織物13の表面に形成される熱可塑性樹脂部12は、ナノファイバーからなる不織布に限らず、例えば、図3(a)に示すように、ナノ粒子であってもよい。また、不織布と粒子が混在してもよい。熱可塑性樹脂部12を不織布にしたり、粒子にしたり、不織布と粒子が混在するようにしたりするのは、電界紡糸法により熱可塑性樹脂部12を形成するときの、熱可塑性樹脂溶液の樹脂濃度を変更することにより可能になる。樹脂濃度を熱可塑性樹脂部12として不織布が形成されるときの濃度より低くすることにより、熱可塑性樹脂部12として不織布と粒子が混在する状態になり、さらに濃度を低くすることにより粒子のみが形成される状態になる。この場合も、ニードルパンチを用いたり接着剤や熱融着剤等を用いたりせずに、織物13と熱可塑性樹脂部12との一体化の強度を充分に確保できる。また、繊維強化複合材11が衝撃を受けた場合に熱可塑性樹脂部12が衝撃による層間クラックの進展を抑えるため、強度及び耐衝撃性(靭性)に優れた繊維強化複合材11となる。
○ 織物13は扁平(幅広)な繊維束15で形成されるものに限らず、図3(b)に示すように、通常の太さの繊維束15で形成してもよい。この場合も熱可塑性樹脂部12は織物13の表面に支障なく付着される。
○ 繊維強化複合材11の製造方法において、熱可塑性樹脂部付着織物形成工程と強化繊維基材形成工程とを独立した工程としてもよい。具体的には、表面に熱可塑性樹脂部12が付着された織物13を形成する作業と、表面に熱可塑性樹脂部12が付着された織物13を積層して強化繊維基材14を形成する作業とはそれぞれ別に行われる。例えば、熱可塑性樹脂部付着織物形成工程では、電界紡糸装置として平板状の金属板23を備えた装置を使用し、金属板23の上に載置された織物13の表面に電界紡糸法で熱可塑性樹脂部12を付着させる。そして、強化繊維基材形成工程では、表面に熱可塑性樹脂部12が付着された織物13を所定形状の型の上に順次積層して強化繊維基材14を形成する。
○ 繊維強化複合材11の製造方法における熱可塑性樹脂部付着織物形成工程は、織物13の表面に電界紡糸法により熱可塑性樹脂を付着させて熱可塑性樹脂部12を形成する方法に限らない。例えば、織物13を構成する繊維束15に対して先ず電界紡糸法により熱可塑性樹脂を付着させて熱可塑性樹脂部12を形成した後、その繊維束15で織物13を形成してもよい。
○ 強化繊維基材14を構成する織物13を積層する際、織物13の経糸及び緯糸の配列方向が隣り合う織物13同士で45度ずつずれた状態で積層して強化繊維基材14を形成してもよい。この場合、その強化繊維基材14を用いて製造される繊維強化複合材11は、強化繊維が4軸配向で配列された構成になる。そのため、織物13の経糸及び緯糸の配列方向が同じ状態で積層された強化繊維基材14を用いて製造される繊維強化複合材11に比べて、バイアス方向の引っ張り強度が高くなる。
○ 織物13を構成する繊維束15は炭素繊維製に限らない。例えば、ガラス繊維やセラミック繊維等の無機繊維、あるいは、アラミド繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等の高強度の有機繊維等を使用してもよく、要求性能に応じて適宜選択される。例えば、強化繊維基材14に対する剛性・強度の要求性能が高い場合は、炭素繊維が好ましい。繊維束15に安価なガラス繊維を用いると低コストとなる。
○ 織物13を構成する繊維束15が絶縁性の場合、織物13の表面に電界紡糸法により熱可塑性樹脂を付着させて熱可塑性樹脂部12を形成する作業は、織物13が積層されない状態で行う。
○ 強化繊維基材14の形状は断面コ字状に限らず、たとえば、断面略L字状や平板状であってもよい。
○ マトリックス樹脂を構成する熱硬化性樹脂は、エポキシ樹脂に限らず、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂等を使用してもよい。
○ 強化繊維の表面に径が10-8~10-6mである熱可塑性樹脂を付着させる方法として、電界紡糸法に限らず、あらかじめ所定目付で作成した径が10-8~10-6mの繊維状熱可塑性樹脂からなる不織布を強化繊維表面に積層したり、径が10-8~10-6mである熱可塑性樹脂を強化繊維表面に加圧噴射することで付着させてもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項4又は請求項5に記載の発明において、前記熱可塑性樹脂部付着織物形成工程が強化繊維基材形成工程の一部となっている。
なお、平成22年11月19日に出願された日本国特許出願(特願2010-258890)の明細書、特許請求の範囲、図面及び要約の開示内容は、ここに引用することにより全体が本明細書の記載の一部とされる。
11…繊維強化複合材、12…熱可塑性樹脂部、13…織物、14…強化繊維基材。

Claims (8)

  1. 強化繊維の表面に径が10-8~10-6mである熱可塑性樹脂を付着させた熱可塑性樹脂部を有する織物が積層された強化繊維基材と、熱硬化性樹脂製のマトリックス樹脂とからなる繊維強化複合材。
  2. 前記熱可塑性樹脂部は径が10-8~10-6mの繊維状の熱可塑性樹脂からなる不織布である請求項1に記載の繊維強化複合材。
  3. 前記熱可塑性樹脂部は径が10-8~10-6mの粒子状の熱可塑性樹脂からなる請求項1に記載の繊維強化複合材。
  4. 強化繊維の表面に電界紡糸法により熱可塑性樹脂を付着させた熱可塑性樹脂部を有する織物を形成する熱可塑性樹脂部付着織物形成工程と、
    前記織物を積層して強化繊維基材を形成する強化繊維基材形成工程と、
    前記強化繊維基材を成型型内に配置して熱硬化性樹脂を注入するとともに熱硬化させる樹脂含浸硬化工程と
    を備えている繊維強化複合材の製造方法。
  5. 前記熱可塑性樹脂部が形成された織物の上に前記熱可塑性樹脂部が形成されていない織物を積層して、その織物の表面に前記熱可塑性樹脂部を形成する作業を所定積層数になるまで繰り返すことで、前記熱可塑性樹脂部付着織物形成工程が前記強化繊維基材形成工程の一部となっている請求項4に記載の繊維強化複合材の製造方法。
  6. 前記熱可塑性樹脂は、その融点が前記熱硬化性樹脂の熱硬化温度より高い請求項4及び5のいずれか一項に記載の繊維強化複合材の製造方法。
  7. 強化繊維の表面に径が10-8~10-6mである熱可塑性樹脂を付着させた熱可塑性樹脂部が形成された強化繊維基材。
  8. 前記熱可塑性樹脂部は径が10-8~10-6mの繊維状の熱可塑性樹脂からなる不織布である請求項7に記載の強化繊維基材。
PCT/JP2011/073483 2010-11-19 2011-10-13 繊維強化複合材、繊維強化複合材の製造方法及び強化繊維基材 WO2012066872A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010258890A JP2012107160A (ja) 2010-11-19 2010-11-19 繊維強化複合材、繊維強化複合材の製造方法及び強化繊維基材
JP2010-258890 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012066872A1 true WO2012066872A1 (ja) 2012-05-24

Family

ID=46083812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073483 WO2012066872A1 (ja) 2010-11-19 2011-10-13 繊維強化複合材、繊維強化複合材の製造方法及び強化繊維基材

Country Status (2)

Country Link
JP (1) JP2012107160A (ja)
WO (1) WO2012066872A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372982A (zh) * 2017-11-08 2020-07-03 株式会社Jsp 复合粒子、复合粒子固化物、复合粒子模内成形体、层叠体、复合体及复合粒子的制造方法
CN115991017A (zh) * 2022-11-28 2023-04-21 苏州大学 一种双层结构热敏性防火阻燃非织造材料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101536260B1 (ko) * 2013-04-16 2015-07-14 (주)타스지혁 친환경 인테리어용 바닥재의 제조방법 및 이에 따라 제조된 친환경 인테리어용 바닥재
CN103552331B (zh) * 2013-10-25 2016-06-22 中航复合材料有限责任公司 一种热塑性树脂超细纤维膜增韧预浸料的制备方法
CN103552357B (zh) * 2013-10-25 2016-06-29 中航复合材料有限责任公司 一种复合材料增强纤维织物的制备方法
CN104309235B (zh) * 2014-10-15 2016-11-30 中国航空工业集团公司基础技术研究院 一种双功能无纺布定型-增韧的增强纤维织物制造方法
JP6618705B2 (ja) * 2015-04-17 2019-12-11 東芝インフラシステムズ株式会社 モールドコイルの製造方法、及びモールドコイルの製造システム
ES2655497B1 (es) * 2016-07-20 2018-10-30 Manuel Torres Martinez Proceso de acondicionamiento de fibras, instalación de acondicionamiento de fibras y cinta de fibra acondicionada obtenida
CN113736138B (zh) * 2021-08-24 2022-04-12 同济大学 一种纤维增强复合材料的回收再利用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080607A (ja) * 2001-07-06 2003-03-19 Toray Ind Inc プリフォームおよびそれからなるfrpならびにそれらの製造方法
JP2005219228A (ja) * 2004-02-03 2005-08-18 Toray Ind Inc 強化繊維基材の製造方法、プリフォームの製造方法および複合材料の製造方法
JP2007092210A (ja) * 2005-09-28 2007-04-12 Teijin Ltd 繊維構造体の製造方法および製造装置
JP2010156096A (ja) * 2008-12-12 2010-07-15 Eads Construcciones Aeronauticas Sa 航空機構造体の複合材料用のそれらの電磁特性を改善するためのエポキシ樹脂のナノファイバーの製造方法
JP2010214704A (ja) * 2009-03-16 2010-09-30 Toho Tenax Co Ltd 極細繊維からなるバインダーを用いたプリフォーム用基材とその製造方法
JP2010534579A (ja) * 2007-07-27 2010-11-11 ダウ・コーニング・コーポレイション ファイバー構造体およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080607A (ja) * 2001-07-06 2003-03-19 Toray Ind Inc プリフォームおよびそれからなるfrpならびにそれらの製造方法
JP2005219228A (ja) * 2004-02-03 2005-08-18 Toray Ind Inc 強化繊維基材の製造方法、プリフォームの製造方法および複合材料の製造方法
JP2007092210A (ja) * 2005-09-28 2007-04-12 Teijin Ltd 繊維構造体の製造方法および製造装置
JP2010534579A (ja) * 2007-07-27 2010-11-11 ダウ・コーニング・コーポレイション ファイバー構造体およびその製造方法
JP2010156096A (ja) * 2008-12-12 2010-07-15 Eads Construcciones Aeronauticas Sa 航空機構造体の複合材料用のそれらの電磁特性を改善するためのエポキシ樹脂のナノファイバーの製造方法
JP2010214704A (ja) * 2009-03-16 2010-09-30 Toho Tenax Co Ltd 極細繊維からなるバインダーを用いたプリフォーム用基材とその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372982A (zh) * 2017-11-08 2020-07-03 株式会社Jsp 复合粒子、复合粒子固化物、复合粒子模内成形体、层叠体、复合体及复合粒子的制造方法
CN111372982B (zh) * 2017-11-08 2022-12-09 株式会社Jsp 复合粒子、复合粒子固化物、复合粒子模内成形体、层叠体、复合体及复合粒子的制造方法
US11680148B2 (en) 2017-11-08 2023-06-20 Jsp Corporation Composite particles, composite particle cured product, composite particle in-mold molded article, laminate, composite, and method for producing composite particles
CN115991017A (zh) * 2022-11-28 2023-04-21 苏州大学 一种双层结构热敏性防火阻燃非织造材料及其制备方法

Also Published As

Publication number Publication date
JP2012107160A (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
WO2012066872A1 (ja) 繊維強化複合材、繊維強化複合材の製造方法及び強化繊維基材
JP4206454B2 (ja) 多軸補強積層成型品及びその製造方法
JP2020056149A (ja) 平面状複合材料
WO2013133437A1 (ja) Rtm工法用高目付炭素繊維シ一ト及びrtm工法
JP5279375B2 (ja) 強化繊維糸シートを有する補強用不織基布
JP2016539029A (ja) 一方向強化材、一方向強化材の製造方法、及びそれらの使用
US20050257887A1 (en) Method and apparatus for melt-bonded materials for tackification of dry fabric preforms
JP5920471B2 (ja) 三次元繊維強化複合材及び三次元繊維強化複合材の製造方法
JP6411376B2 (ja) 向上した引張強度を有するベール安定化複合材料
US20160279897A1 (en) Thermoplastic resin reinforced sheet material and method for manufacturing same
JP2004197325A (ja) 繊維強化シート
JP2007126793A (ja) 積層体の裁断方法とプリフォーム基材及びそれを用いたプリフォームの製造方法
JP2018065999A (ja) 強化繊維基材、強化繊維積層体および繊維強化樹脂
JP4341419B2 (ja) プリフォームの製造方法および複合材料の製造方法
JP2018154675A (ja) 強化繊維基材の製造方法、強化繊維プリフォームの製造方法および繊維強化複合材料成形体の製造方法
JP6439528B2 (ja) 強化繊維基材の製造方法
WO2020031771A1 (ja) 強化繊維テープ材料およびその製造方法、強化繊維テープ材料を用いた強化繊維積層体および繊維強化樹脂成形体
JP3099656B2 (ja) 一方向性強化繊維複合基材及びその製造方法
JP4813803B2 (ja) 繊維強化シート
US7456119B2 (en) Composites
JP2000220302A (ja) 構造物の補修・補強方法
JP2014141766A (ja) 繊維束、三次元繊維構造体及び繊維強化複合材並びに繊維束の製造方法
KR101291090B1 (ko) 스피커 진동판
JP2018066074A (ja) 一方向性強化繊維シート
JP2020023182A (ja) 強化繊維基材、強化繊維積層体および繊維強化樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841787

Country of ref document: EP

Kind code of ref document: A1