WO2012065398A1 - 一种抑制本振泄露的方法、装置及系统 - Google Patents

一种抑制本振泄露的方法、装置及系统 Download PDF

Info

Publication number
WO2012065398A1
WO2012065398A1 PCT/CN2011/072761 CN2011072761W WO2012065398A1 WO 2012065398 A1 WO2012065398 A1 WO 2012065398A1 CN 2011072761 W CN2011072761 W CN 2011072761W WO 2012065398 A1 WO2012065398 A1 WO 2012065398A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
frequency signal
local oscillator
intermediate frequency
signal
Prior art date
Application number
PCT/CN2011/072761
Other languages
English (en)
French (fr)
Inventor
但小莉
吴广德
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012065398A1 publication Critical patent/WO2012065398A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3818Demodulator circuits; Receiver circuits using coherent demodulation, i.e. using one or more nominally phase synchronous carriers
    • H04L27/3836Demodulator circuits; Receiver circuits using coherent demodulation, i.e. using one or more nominally phase synchronous carriers in which the carrier is recovered using the received modulated signal or the received IF signal, e.g. by detecting a pilot or by frequency multiplication

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, apparatus and system for suppressing leakage of a local oscillator. Background technique
  • the RF transmitter in the communication field is mainly composed of a D AC (Digital Analog Converter), a band pass filter, an IQ modulator, and a preamplifier.
  • the DAC converts the digital signal into two mutually orthogonal baseband analog signals
  • the bandpass filter performs signal filtering on the baseband analog signal, and then the signal modulator modulates the two baseband analog signals into one RF signal, and then mixes Frequency, amplification, etc., send the processed RF signal.
  • Embodiments of the present invention provide a method, device, and system for suppressing leakage of a local oscillator, and determining each channel quickly and accurately by adjusting a correspondence relationship between a DC offset and a local oscillator leakage strength without changing an existing circuit.
  • the DC offset compensation amount of the IF signal is further compensated by the local oscillator leakage to achieve the effect of suppressing the leakage of the local oscillator.
  • An embodiment of the present invention provides a method for suppressing leakage of a local oscillator.
  • the method includes: acquiring a local oscillator leakage strength of a pre-transmitted radio frequency signal, where the radio frequency signal is orthogonal to a first intermediate frequency signal and a second intermediate frequency The signal is modulated with the local oscillator signal to form;
  • Adjusting the first intermediate frequency signal when detecting that the local oscillator leakage intensity is greater than the intensity threshold Determining a first replacement DC offset and a second replacement DC offset by a correspondence between a DC offset of the second intermediate frequency signal and a local oscillator leakage strength;
  • an embodiment of the present invention provides a device for suppressing leakage of a local oscillator, including: a local oscillator leakage strength acquiring module, configured to acquire a local oscillator leakage intensity of a pre-transmitted radio frequency signal, where the radio frequency signals are orthogonal to each other The first intermediate frequency signal and the second intermediate frequency signal are modulated with the local oscillator signal;
  • a DC offset acquisition module configured to: when detecting that the local oscillator leakage intensity is greater than a strength threshold, adjust a correspondence between a DC offset of the first intermediate frequency signal and the second intermediate frequency signal and a local oscillator leakage strength, and determine a first replacement DC offset and a second replacement DC offset;
  • a compensation module configured to perform local oscillator leakage compensation on the first intermediate frequency signal according to the first replacement DC offset; and perform local oscillator leakage compensation on the second intermediate frequency signal according to the second replacement DC offset .
  • an embodiment of the present invention provides a system for suppressing leakage of a local oscillator, including: a test board, a frequency mask, and a central processing unit; the test board includes a digital-to-analog converter, and the frequency i-ridge
  • the central processing unit is connected to the central processor; the frequency language device is connected to the central processing unit;
  • the frequency language device is configured to acquire a local oscillator leakage intensity of the pre-transmitted radio frequency signal, where the radio frequency signal is modulated by the first intermediate frequency signal and the second intermediate frequency signal and the local oscillation signal;
  • the digital-to-analog converter in the test board is configured to adjust a DC offset and a local oscillator leakage of the first intermediate frequency signal and the second intermediate frequency signal when the local oscillator leakage intensity is greater than a strength threshold Corresponding relationship between the strengths, determining a first replacement DC offset and a second replacement DC offset; performing local oscillator leakage compensation on the first intermediate frequency signal according to the first replacement DC offset, according to the second replacement DC offset, performing local oscillator leakage compensation on the second intermediate frequency signal;
  • the central processor is configured to control the frequency language device and the digital to analog converter.
  • Embodiments of the present invention provide a method, device, and system for suppressing local oscillator leakage, which are used for acquiring a local oscillator leakage intensity of a pre-transmitted radio frequency signal, wherein the radio frequency signal is orthogonal to a first intermediate frequency signal and a second The road intermediate frequency signal is modulated with the local oscillator signal; and when the local oscillator leakage intensity is greater than the intensity threshold, the corresponding relationship between the DC offset of the first intermediate frequency signal and the second intermediate frequency signal and the local oscillator leakage strength is adjusted, Determining a first replacement DC offset and a second replacement DC offset; performing local oscillator leakage compensation on the first intermediate frequency signal according to the first replacement DC offset, according to the second replacement DC offset, The second intermediate frequency signal performs local oscillator leakage compensation.
  • the method, device and system for suppressing local oscillator leakage provided by the embodiments of the present invention can quickly and accurately determine each intermediate frequency by adjusting the correspondence between the DC offset and the local oscillator leakage strength without changing the existing circuit.
  • the DC offset of the signal in turn, compensates for the leakage of the local oscillator, and the effect of suppressing the leakage of the local oscillator is achieved.
  • FIG. 1 is a partial hardware environment of a method according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for suppressing leakage of a local oscillator according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a method for suppressing leakage of a local oscillator according to another embodiment of the present invention
  • FIG. 4 is a schematic diagram of a device for suppressing leakage of a local oscillator according to another embodiment of the present invention
  • FIG. 5 is a schematic diagram of a system for suppressing leakage of a local oscillator according to another embodiment of the present invention. detailed description
  • the hardware environment of the method provided by the embodiment of the present invention is:
  • the I/Q baseband signal is divided into two intermediate frequency signals, that is, an I intermediate frequency signal and a Q intermediate frequency signal, which are respectively subjected to digital-to-analog conversion and filtering.
  • Modulated into an RF signal in an I/Q modulator the inherent DC of the circuit
  • the embodiment of the invention provides a method for suppressing leakage of the local oscillator. As shown in FIG. 2, the method includes the following steps:
  • Step 201 Acquire a local oscillator leakage intensity of the pre-transmitted radio frequency signal, where the radio frequency signal is modulated by the mutually orthogonal first intermediate frequency signal and the second intermediate frequency signal and the local oscillator signal.
  • the baseband signal is divided into two intermediate frequency signals (the first intermediate frequency signal and the second intermediate frequency signal), and after being digital-analog converted and filtered, respectively, modulated into one RF signal in the modulator.
  • the first intermediate frequency signal and the second intermediate frequency signal are orthogonal to each other.
  • Step 202 When detecting that the local oscillator leakage intensity is greater than the intensity threshold, adjust the correspondence between the DC offset of the first intermediate frequency signal and the second intermediate frequency signal and the local oscillator leakage strength, and determine the first replacement DC offset and the second Replace the DC offset.
  • the correspondence between the DC offset of the first intermediate frequency signal and the second intermediate frequency signal and the local oscillator leakage strength is established in advance, and then multiple test DC offsets can be obtained from the DC offset register, according to the DC offset and Corresponding relationship between the local oscillator leakage strengths, obtaining an adjustment coefficient in the correspondence relationship, thereby determining a first replacement DC offset and a second replacement DC offset; the first replacement DC offset and the second replacement DC offset cause the local oscillator to leak Minimum, or 0.
  • the test DC offset is selected, it can be randomly selected or selected according to a predetermined rule, and it is better to select it in the data range of the DC offset register.
  • the pre-established correspondence between the DC offset and the local oscillator leakage intensity includes: acquiring the local oscillator leakage signal according to the first intermediate frequency signal and the second intermediate frequency signal; according to the amplitude of the local oscillator leakage signal and the first intermediate frequency signal and the second intermediate frequency The relationship between the DC offset of the signals and the corresponding relationship between the DC offset and the local oscillator leakage strength.
  • the relationship between the amplitude of the local leakage signal and the DC offset of the first intermediate frequency signal and the second intermediate frequency signal is specifically: the amplitude of the first local oscillator signal and the first DC offset (first path) The square of the product of the DC offset of the IF signal, the amplitude of the second local oscillator signal, and the second DC The square of the product of the offset (the DC offset of the second intermediate frequency signal), and the sum of the two is proportional to the square of the amplitude of the local leakage signal, that is, the amplitude of the local leakage is ⁇ A ⁇ D + Aq 2 /) , where Ai,
  • a q represents the amplitudes of the first local oscillator signal and the second local oscillator signal, respectively, and Di and D q respectively represent the DC offset of the first intermediate frequency signal and the second intermediate frequency signal (ie, the first DC offset) And the second DC offset).
  • Step 203 Perform local oscillator leakage compensation on the first intermediate frequency signal according to the first replacement DC offset; perform local oscillator leakage compensation on the second intermediate frequency signal according to the second replacement DC offset.
  • the first intermediate frequency signal is /(t) and the second intermediate frequency signal is Q ⁇ t).
  • the first local oscillator signal is ⁇ . — (0
  • the second local oscillator signal is ⁇ .— 2 (0.
  • /(t) and ⁇ .— 0, ⁇ .— 2 (the expressions of 0 are:
  • Gq, Ai, A q represent / (t), Q (t ), f LO lit), ⁇ . – the amplitude of 2W, ⁇ i ⁇ respectively represent /(t), Q ⁇ t), f LO I(t) , ⁇ . _2 (the phase of 0, D q , , E q respectively represent /(t), Q(t), f LO lit) , ⁇ . — 2W DC offset.
  • the magnitude of the local oscillator leakage fc(t) and /(t) and e(t) can be obtained.
  • the process of establishing the corresponding relationship between the DC offset and the local oscillator leakage strength is only an example of the method provided by the embodiment of the present invention, and the corresponding relationship between the DC offset and the local oscillator leakage strength may be established by using other methods. For example, assume different expressions, or use different approximations, and so on.
  • Step 301 Acquire a local oscillator leakage intensity of the pre-transmitted radio frequency signal, where the radio frequency signal is orthogonal to the I-channel intermediate frequency signal (the first intermediate frequency signal) and the Q intermediate frequency signal (the second intermediate frequency signal) and the corresponding version. Vibration signal modulation is formed;
  • Step 302 detecting that the local oscillator leakage intensity is greater than the strength threshold
  • Step 303 Acquire test DC offsets of multiple sets of I intermediate frequency signals and Q intermediate frequency signals (ie, obtain multiple sets of first DC offsets and second DC offsets); for example, obtain four groups in a DC offset register.
  • the first DC offset and the second DC offset are (xl, yl), (x2, y2), (x3, y3), and (x4, y4), respectively.
  • Step 304 Substituting each set of test DC offset into a pair of DC offset and local oscillator leakage strength Should be related to, obtain the local oscillator leakage intensity;
  • Step 305 Adjust a correspondence between a DC offset and a local oscillator leakage strength.
  • Step 306 Determine a first replacement DC offset and a second replacement DC offset. Specifically, when x is equal to a, and y is equal to b, the local oscillator leakage is minimum, so the value of the first replacement DC offset is determined to be a, and the value of the second replacement DC offset is b.
  • Step 307 Perform local oscillator leakage compensation on the first intermediate frequency signal according to the first replacement DC offset; perform local oscillator leakage compensation on the second intermediate frequency signal according to the second replacement DC offset.
  • the correspondence between the DC offset and the local oscillator leakage strength can be adjusted quickly and accurately without changing the existing circuit.
  • the DC offset of each intermediate frequency signal is determined, and then the local oscillator leakage compensation is performed to achieve the effect of suppressing the leakage of the local oscillator.
  • the embodiment of the present invention further provides a device for suppressing leakage of a local oscillator.
  • the method specifically includes:
  • the local oscillator leakage intensity acquiring module 401 is configured to obtain a local oscillator leakage intensity of the pre-transmitted radio frequency signal, and the radio frequency signal is modulated by the first intermediate intermediate frequency signal and the second intermediate frequency signal and the local oscillator signal;
  • the DC offset obtaining module 402 is configured to: when detecting that the local oscillator leakage intensity is greater than the strength threshold, adjust a correspondence between a DC offset of the first intermediate frequency signal and the second intermediate frequency signal and a local leakage leakage strength, and determine the first replacement. DC offset and second replacement DC offset;
  • the compensation module 403 is configured to perform local oscillator leakage compensation on the first intermediate frequency signal according to the first replacement DC offset; and perform local oscillator leakage compensation on the second intermediate frequency signal according to the second replacement DC offset.
  • the device further comprises:
  • the detecting module 404 is configured to detect whether the local oscillator leakage intensity is greater than a strength threshold.
  • the DC offset acquisition 402 of the device comprises:
  • the determining sub-module 4022 is configured to obtain a plurality of test DC offsets, obtain an adjustment coefficient in the correspondence, and determine a first replacement DC offset and a second replacement DC offset.
  • the embodiment of the present invention further provides a system for suppressing leakage of a local oscillator.
  • the method includes: a test board 501, a frequency finder 502, and a central processing unit 503.
  • the test board 501 includes The digital-to-analog converter 5011 is connected to the frequency finder 502 and the central processing unit 503 respectively; the frequency utterer 502 is connected to the central processing unit 503;
  • the frequency converter 502 is configured to obtain a local oscillator leakage intensity of the pre-transmitted radio frequency signal, and the radio frequency signal is modulated by the mutually orthogonal first intermediate frequency signal and the second intermediate frequency signal and the local oscillator signal;
  • the digital-to-analog converter 5011 in the test board 501 is configured to adjust the correspondence between the DC offset of the first intermediate frequency signal and the second intermediate frequency signal and the local oscillator leakage strength when the local oscillator leakage intensity is greater than the intensity threshold. Determining a first replacement DC offset and a second replacement DC offset; performing local oscillator leakage compensation on the first intermediate frequency signal according to the first replacement DC offset; and performing the second intermediate frequency signal according to the second replacement DC offset Vibration leakage compensation
  • the central processing unit 503 is configured to control the frequency converter and the digital to analog converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Noise Elimination (AREA)
  • Transceivers (AREA)

Description

一种抑制本振泄露的方法、 装置及系统 技术领域
本发明涉及通信领域技术, 尤其涉及一种抑制本振泄露的方法、 装置 及系统。 背景技术
目前, 通信领域的射频发射机主要由 D AC ( Digital Analog Converter, 数模转换器)、 带通滤波器、 IQ调制器和预放大器等组成。 DAC将数字信 号转化为相互正交的两路基带模拟信号后, 带通滤波器对基带模拟信号进 行信号滤波处理 , 然后信号调制器将该两路基带模拟信号调制为一路射频 信号, 再经过混频、 放大等过程, 发送处理后的射频信号。
但是, 电路固有的直流失调特性会引起的本振泄露, 而较大的本振泄 露将对整个通信系统性能产生较大影响, 如产生较高的误码率、 通信中断 等。 发明内容
本发明实施例提供了一种抑制本振泄露的方法、 装置及系统, 在不改 变现有电路的条件下, 通过调整直流偏置与本振泄露强度的对应关系, 快 速、 准确的确定每路中频信号的直流偏置补偿量, 进而进行本振泄露补偿, 达到抑制本振泄露的效果。
本发明实施例提供了一种抑制本振泄露的方法, 该方法包括: 获取预发射的射频信号的本振泄露强度, 所述射频信号由相互正交的 第一路中频信号和第二路中频信号与本振信号调制形成;
检测到所述本振泄露强度大于强度阔值时, 调整所述第一路中频信号 和第二路中频信号的直流偏置与本振泄露强度的对应关系, 确定第一替换 直流偏置和第二替换直流偏置;
根据所述第一替换直流偏置对所述第一路中频信号进行本振泄露补 偿; 根据所述第二替换直流偏置对所述第二路中频信号进行本振泄露补偿。
相应的, 本发明实施例提供了一种抑制本振泄露的装置, 包括: 本振泄露强度获取模块, 用于获取预发射的射频信号的本振泄露强度, 所述射频信号由相互正交的第一路中频信号和第二路中频信号与本振信号 调制形成;
直流偏置获取模块, 用于检测到所述本振泄露强度大于强度阔值时, 调整所述第一路中频信号和第二路中频信号的直流偏置与本振泄露强度的 对应关系, 确定第一替换直流偏置和第二替换直流偏置;
补偿模块, 用于根据所述第一替换直流偏置对所述第一路中频信号进 行本振泄露补偿; 根据所述第二替换直流偏置对所述第二路中频信号进行 本振泄露补偿。
相应的, 本发明实施例提供了一种抑制本振泄露的系统, 包括: 测试 单板、 频语仪、 和中央处理器; 所述测试单板包括数模转化器, 与所述频 i脊仪、 中央处理器分别相连; 所述频语仪与所述中央处理器相连;
所述频语仪, 用于获取预发射的射频信号的本振泄露强度, 所述射频 信号由相互正交的第一路中频信号和第二路中频信号与本振信号调制形 成;
所述测试单板中的数模转化器, 用于检测到所述本振泄露强度大于强 度阔值时, 调整所述第一路中频信号和第二路中频信号的直流偏置与本振 泄露强度的对应关系, 确定第一替换直流偏置和第二替换直流偏置; 根据 所述第一替换直流偏置, 对所述第一路中频信号进行本振泄露补偿, 根据 所述第二替换直流偏置, 对所述第二路中频信号进行本振泄露补偿; 所述中央处理器, 用于控制所述频语仪和所述数模转化器。 本发明实施例提供了一种抑制本振泄露的方法、 装置及系统, 用于获 取预发射的射频信号的本振泄露强度, 所述射频信号由相互正交的第一路 中频信号和第二路中频信号与本振信号调制形成; 检测所述本振泄露强度 大于强度阔值时, 调整所述第一路中频信号和第二路中频信号的直流偏置 与本振泄露强度的对应关系, 确定第一替换直流偏置和第二替换直流偏置; 根据所述第一替换直流偏置, 对所述第一路中频信号进行本振泄露补偿, 根据所述第二替换直流偏置, 对所述第二路中频信号进行本振泄露补偿。 使用本发明实施例提供的抑制本振泄露的方法、 装置及系统, 在不改变现 有电路的条件下, 通过调整直流偏置与本振泄露强度的对应关系, 快速、 准确的确定每路中频信号的直流偏置, 进而进行本振泄露补偿, 达到抑制 本振泄露的效果。 附图说明
图 1为本发明实施例提供的方法运行的部分硬件环境;
图 2为本发明实施例中抑制本振泄露的方法流程示意图;
图 3为本发明另一实施例中抑制本振泄露的方法流程示意图; 图 4为本发明另一实施例中抑制本振泄露的装置示意图;
图 5为本发明另一实施例中抑制本振泄露的系统示意图。 具体实施方式
下面结合各个附图对本发明实施例技术方案的主要实现原理、 具体实 施方式及其对应能够达到的有益效果进行详细地阐述。
如图 1所示, 为本发明实施例提供的方法运行的部分硬件环境: I/Q基 带信号分成两路中频信号、 即 I路中频信号和 Q路中频信号, 分别经过数 模转换、 滤波后, 在 I/Q调制器中调制为一路射频信号, 该电路固有的直流 失调特性会引起的本振泄露。 为了抑制该本振泄露, 本发明实施例提供了 一种抑制本振泄露的方法, 如图 2所示, 包括以下步骤:
步骤 201、获取预发射的射频信号的本振泄露强度, 该射频信号由相互 正交的第一路中频信号和第二路中频信号与本振信号调制形成。
具体的, 基带信号分成两路中频信号 (第一路中频信号和第二路中频 信号), 分别经过数模转换、 滤波后, 在调制器中调制为一路射频信号。 而 且, 该第一路中频信号和第二路中频信号相互正交, 例如, 这两路相互正 交的中频信号可以分别为 /(ί) = G; cos(i«f + ψ{ )+ Oi和 Q{t) = Gq sin(i«f + /q )+ Dq
步骤 202、检测到本振泄露强度大于强度阔值时, 调整第一路中频信号 和第二路中频信号的直流偏置与本振泄露强度的对应关系, 确定第一替换 直流偏置和第二替换直流偏置。
具体的, 预先建立第一路中频信号和第二路中频信号的直流偏置与本 振泄露强度的对应关系, 然后可以从直流偏置寄存器中获取多个测试直流 偏置, 根据直流偏置与本振泄露强度的对应关系, 获取对应关系中的调整 系数, 进而确定第一替换直流偏置和第二替换直流偏置; 该第一替换直流 偏置和第二替换直流偏置使得本振泄露最小, 或者为 0。 选取测试直流偏置 时, 可以随机选取, 也可以按照预定的规则进行选取, 最好在直流偏置寄 存器的数据范围内均勾选取。
预先建立直流偏置与本振泄露强度的对应关系包括: 根据第一路中频 信号和第二中频信号获取本振泄露信号; 根据本振泄露信号的幅值与第一 路中频信号和第二中频信号各自的直流偏置的关系, 建立直流偏置与本振 泄露强度的对应关系。
其中, 本振泄露信号的幅值与第一路中频信号和第二中频信号各自的 直流偏置的关系具体为: 第一路本振信号的幅值和第一直流偏置 (第一路 中频信号的直流偏置) 的乘积的平方、 第二路本振信号的幅值和第二直流 偏置 (第二路中频信号的直流偏置) 的乘积的平方, 两者之和与本振泄露 信号的幅值的平方呈正比, 即本振泄露的幅值为 ^A^D + Aq2/) , 其中 Ai、
Aq分别表示第一路本振信号和第二路本振信号的幅值, Di、 Dq分别表示第 一路中频信号和第二路中频信号的直流偏置 (即第一直流偏置和第二直流 偏置)。
步骤 203、 根据第一替换直流偏置对第一路中频信号进行本振泄露补 偿; 根据第二替换直流偏置对第二路中频信号进行本振泄露补偿。
下面通过一个具体的例子, 对建立直流偏置与本振泄露强度的对应关 系的过程进行详细说明, 首先设第一路中频信号为 /(t)、 第二路中频信号为 Q{t), 和第一路本振信号为 Λ。— (0、 第二路本振信号为 Λ。— 2(0。 假设 /(t), 和 Λ。— 0, Λ。— 2(0的表达式分别为:
Figure imgf000007_0001
其中, 、 Gq、 Ai、 Aq分别表示 /(t), Q(t), fLO lit) , Λ。— 2W的幅值, Ψ i Θ 分别表示 /(t), Q{t), fLO I(t) , Λ。_2(0的相位, Dq、 、 Eq分别表示 /(t), Q(t), fLO lit) , Λ。— 2W的直流偏置。
由于输出信号 /。(t)可表示为:
L (t) = /(0 x fLOj (t) - Q(t) x fLO Q(t)
将上述各个信号的表达式带入上式, 可得:
Gj A; cos((i¾ + ω)ί+ + ) + Gq Aq cos((i¾ +«)t+ + ^ )为上边带调制信号,
-^G^ cos((iyc -iy)t+^.-^.)-^GqAq cos((i¾-iy)t+^ -ψ^为泄漏的下边带无 用信号, AiDiCos(i¾t+ ;)— AqZ^sin t+ )为泄露的本振信号
Figure imgf000008_0001
ψί ) - GQEqsin(iyt+ ψίΐ )+OiEi - D Eq为输出的^ ί氐频和直流分量。 由此可以得到本振泄露与第一路中频信号、 第二路中频信号的关系, 不考虑本振的幅度和相位不平衡时, 即 Ai=Aq, = 泄露的本振信号可 以表示为:
Figure imgf000008_0002
= -JA.2D.2+A 2 2 cos(iy t+6i +a) tana=^- 通过上述表达式可以得出本振泄漏 fc(t)的大小与 /(t)和 e(t)信号的直流 偏移 Di和 Dq有关, 且本振泄露的幅值为 ^Ό» , 即第一路本震信 号的幅值和第一直流偏置的乘积的平方、 第二路本震信号的幅值和第二直 流偏置的乘积的平方, 两者之和与本振泄露信号的幅值的平方呈正比。 从 理论模型上看, 本振抑制的大小与 /(t)直流偏移值 Di, 2(t)直流偏移值 Dq呈 抛物面方程关系。
基本抛物面方程如式为:
2 2
a2 b2
然而实际情况, 抛物面的顶点不在原点, 因此, 用任意抛物面来确立 本振抑制的大小与 /(ή直流偏移值 Di, 2(t)直流偏移值 Dq的对应关系, 如:
A2 B2
其中, A, B, C, a, b表示任意抛物面的参 H
考虑 IQ对称性: z+c=^ y-b)2
A2 A2
可以写成: A A
进一步写成:
A»Z + C = (x-a)2 + (y-b)2
为了确定 A, C, a, b四个抛物面的参数, 可以选择测试点, 通过将测 试点的值代入上述表达式, 获得参 ¾a、 b的值, 即第一替换直流偏置和第 二替换直流偏置。
上述建立直流偏置与本振泄露强度的对应关系的过程, 仅为说明本发 明实施例提供的方法所举的一个例子, 还可以使用其他方式建立直流偏置 与本振泄露强度的对应关系, 例如假设不同的表达式、 或使用不同的近似 方式等。
通过上述描述, 可以看出, 使用本发明实施例提供的抑制本振泄露的 方法, 可以在不改变现有电路的条件下, 通过调整直流偏置与本振泄露强 度的对应关系, 快速、 准确的确定每路中频信号的直流偏置, 进而进行本 振泄露补偿, 达到抑制本振泄露的效果。 详细说明, 如图 3所示, 包括以下步骤:
步骤 301、获取预发射的射频信号的本振泄露强度, 该射频信号由相互 正交的 I路中频信号 (第一路中频信号)和 Q路中频信号 (第二路中频信 号)与对应的本振信号调制形成;
步骤 302、 检测到本振泄露强度大于强度阔值;
步骤 303、获取多组 I路中频信号和 Q路中频信号的测试直流偏置(即 获取多组第一直流偏置和第二直流偏置); 例如, 在直流偏置寄存器中获取 四组第一直流偏置和第二直流偏置, 分别为 (xl, yl )、 (x2, y2)、 (x3, y3 )和 (x4, y4)。
步骤 304、分别将每组测试直流偏置代入直流偏置与本振泄露强度的对 应关系, 获取本振泄露强度;
步骤 305、 调整直流偏置与本振泄露强度的对应关系。
殳设直流偏置与本振泄露强度的对应关系为 A · z + C = ( _ α)2 + _ , 为了确定 A, C, a, b四个抛物面的参数, 测试四组直流偏置: (xl, yl, zl)、 (x2, y2, z2)、 (x3, y3, z3 )和(x4, y4, z4), 这样可以产生一个 方程组:
Figure imgf000010_0001
整理得:
k + l*b k*i-h*m
m j*m-l*i
h = (xl + yl -x4 -y4 )* (xl + yl -x2 - y2 )
Figure imgf000010_0002
k = (Xi + ^ -x3 - y3 )'- ■-(¾ + i -χ2 - y2 )
Figure imgf000010_0003
m = -2 ( 1 ) ( JC^ Λ--^ ) 这样可以确定出直流偏置与本振泄露强度的对应关系中各个参数的 值, 确定后的参数值代人 A*Z + C = (;c— a)2 + (y— ό)2。 步骤 306、 确定第一替换直流偏置和第二替换直流偏置。 具体的, 当 x等于 a, y等于 b时, 本振泄露最小, 因此确定第一替换 直流偏置的值为 a, 第二替换直流偏置的值为 b。
步骤 307、 根据第一替换直流偏置对第一路中频信号进行本振泄露补 偿; 根据第二替换直流偏置对第二路中频信号进行本振泄露补偿。
通过上述描述, 可以看出, 使用本发明实施例提供的抑制本振泄露的 方法, 可以在不改变现有电路的条件下, 通过调整直流偏置与本振泄露强 度的对应关系, 快速、 准确的确定每路中频信号的直流偏置, 进而进行本 振泄露补偿, 达到抑制本振泄露的效果。
相应的, 本发明实施例还提供一种抑制本振泄露的装置, 如图 4所示, 具体包括:
本振泄露强度获取模块 401 ,用于获取预发射的射频信号的本振泄露强 度, 射频信号由相互正交的第一路中频信号和第二路中频信号与本振信号 调制形成;
直流偏置获取模块 402, 用于检测到本振泄露强度大于强度阔值时, 调 整第一路中频信号和第二路中频信号的直流偏置与本振泄露强度的对应关 系, 确定第一替换直流偏置和第二替换直流偏置;
补偿模块 403 ,用于根据第一替换直流偏置对第一路中频信号进行本振 泄露补偿; 根据第二替换直流偏置对第二路中频信号进行本振泄露补偿。
较佳的, 该装置还包括:
检测模块 404, 用于检测本振泄露强度是否大于强度阔值。
较佳的, 该装置的直流偏置获取 402包括:
建立子模块 4021 , 用于预先建立第一路中频信号和第二路中频信号的 直流偏置与本振泄露强度的对应关系;
确定子模块 4022, 用于获取多个测试直流偏置, 获取对应关系中的调 整系数, 确定第一替换直流偏置和第二替换直流偏置。 通过上述描述, 可以看出, 使用本发明实施例提供的抑制本振泄露的 装置, 可以在不改变现有电路的条件下, 通过调整直流偏置与本振泄露强 度的对应关系, 快速、 准确的确定每路中频信号的直流偏置, 进而进行本 振泄露补偿, 达到抑制本振泄露的效果。
相应的, 本发明实施例还提供了一种抑制本振泄露的系统, 如图 5 所 示, 包括: 测试单板 501、 频语仪 502、 和中央处理器 503; 其中, 测试单 板 501 包括数模转化器 5011 , 与频语仪 502、 中央处理器 503分别相连; 频语仪 502与中央处理器 503相连;
频语仪 502, 用于获取预发射的射频信号的本振泄露强度,射频信号由 相互正交的第一路中频信号和第二路中频信号与本振信号调制形成;
测试单板 501中的数模转化器 5011 , 用于检测到本振泄露强度大于强 度阔值时, 调整第一路中频信号和第二路中频信号的直流偏置与本振泄露 强度的对应关系, 确定第一替换直流偏置和第二替换直流偏置; 根据第一 替换直流偏置对第一路中频信号进行本振泄露补偿; 根据第二替换直流偏 置对第二路中频信号进行本振泄露补偿;
中央处理器 503, 用于控制频语仪和数模转化器。
通过上述描述, 可以看出, 使用本发明实施例提供的抑制本振泄露的 方法、 装置及系统, 在不改变现有电路的条件下, 通过调整直流偏置与本 振泄露强度的对应关系, 快速、 准确的确定每路中频信号的直流偏置, 进 而进行本振泄露补偿, 达到抑制本振泄露的效果。 本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权 利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在 内。

Claims

权利要求书
1、 一种抑制本振泄露的方法, 其特征在于, 包括:
获取预发射的射频信号的本振泄露强度, 所述射频信号由相互正交的 第一路中频信号和第二路中频信号与本振信号调制形成;
检测到所述本振泄露强度大于强度阔值时, 调整所述第一路中频信号 和第二路中频信号的直流偏置与本振泄露强度的对应关系, 确定第一替换 直流偏置和第二替换直流偏置;
根据所述第一替换直流偏置对所述第一路中频信号进行本振泄露补 偿; 根据所述第二替换直流偏置对所述第二路中频信号进行本振泄露补偿。
2、 如权利要求 1所述的方法, 其特征在于, 所述检测到本振泄露信号 强度不大于强度阔值时, 输出所述射频信号。
3、 如权利要求 1所述的方法, 其特征在于, 所述调整第一路中频信号 和第二路中频信号的直流偏置与本振泄露强度的对应关系, 确定第一替换 直流偏置和第二替换直流偏置, 包括:
预先建立所述第一路中频信号和第二路中频信号的直流偏置与本振泄 露强度的对应关系;
获取多个测试直流偏置, 获取所述对应关系中的调整系数, 确定第一 替换直流偏置和第二替换直流偏置。
4、 如权利要求 3所述的方法, 其特征在于, 所述预先建立所述第一路 中频信号和第二路中频信号的直流偏置与本振泄露强度的对应关系包括: 根据所述第一路中频信号和第二中频信号获取本振泄露信号; 根据所述本振泄露信号的幅值与第一路中频信号和第二中频信号各自 的直流偏置的关系, 建立所述第一路中频信号和第二路中频信号的直流偏 置与本振泄露强度的对应关系。
5、 如权利要求 4所述的方法, 其特征在于, 所述本振泄露信号的幅值 与第一路中频信号和第二中频信号各自的直流偏置的关系, 包括: 所述第一路本震信号的幅值和第一路中频信号的直流偏置的乘积的平 方、 所述第二路本震信号的幅值和第二路中频信号的直流偏置的乘积的平 方, 两者之和与所述本振泄露信号的幅值的平方呈正比。
6、 一种抑制本振泄露的装置, 其特征在于, 包括:
本振泄露强度获取模块, 用于获取预发射的射频信号的本振泄露强度, 所述射频信号由相互正交的第一路中频信号和第二路中频信号与本振信号 调制形成;
直流偏置获取模块, 用于检测到所述本振泄露强度大于强度阔值时, 调整所述第一路中频信号和第二路中频信号的直流偏置与本振泄露强度的 对应关系, 确定第一替换直流偏置和第二替换直流偏置;
补偿模块, 用于根据所述第一替换直流偏置对所述第一路中频信号进 行本振泄露补偿; 根据所述第二替换直流偏置对所述第二路中频信号进行 本振泄露补偿。
7、 如权利要求 6所述的装置, 其特征在于, 还包括:
检测模块, 用于检测所述本振泄露强度是否大于强度阔值。
8、 如权利要求 6所述的装置, 其特征在于, 所述直流偏置获取包括: 建立子模块, 用于预先建立所述第一路中频信号和第二路中频信号的 直流偏置与本振泄露强度的对应关系;
确定子模块, 用于获取多个测试直流偏置, 获取所述对应关系中的调 整系数, 确定第一替换直流偏置和第二替换直流偏置。
9、 一种抑制本振泄露的系统, 其特征在于, 包括: 测试单板、 频语仪、 和中央处理器; 所述测试单板包括数模转化器, 与所述频语仪、 中央处理 器分别相连; 所述频语仪与所述中央处理器相连;
所述频语仪, 用于获取预发射的射频信号的本振泄露强度, 所述射频 信号由相互正交的第一路中频信号和第二路中频信号与本振信号调制形 成;
所述测试单板中的数模转化器, 用于检测到所述本振泄露强度大于强 度阔值时, 调整所述第一路中频信号和第二路中频信号的直流偏置与本振 泄露强度的对应关系, 确定第一替换直流偏置和第二替换直流偏置; 并根 据所述第一替换直流偏置对所述第一路中频信号进行本振泄露补偿; 根据 所述第二替换直流偏置对所述第二路中频信号进行本振泄露补偿;
所述中央处理器, 用于控制所述频语仪和所述数模转化器。
10、 如权利要求 9所述的系统, 其特征在于, 所述数模转化器, 还用 于预先建立所述第一路中频信号和第二路中频信号的直流偏置与本振泄露 强度的对应关系; 获取多个测试直流偏置, 获取所述对应关系中的调整系 数, 确定第一替换直流偏置和第二替换直流偏置。
PCT/CN2011/072761 2010-11-18 2011-04-14 一种抑制本振泄露的方法、装置及系统 WO2012065398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010549780.7 2010-11-18
CN201010549780.7A CN102065041B (zh) 2010-11-18 2010-11-18 一种抑制本振泄露的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2012065398A1 true WO2012065398A1 (zh) 2012-05-24

Family

ID=44000148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072761 WO2012065398A1 (zh) 2010-11-18 2011-04-14 一种抑制本振泄露的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN102065041B (zh)
WO (1) WO2012065398A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486272A (zh) * 2014-12-08 2015-04-01 大唐移动通信设备有限公司 一种反馈信号的修正方法及装置
CN105610441A (zh) * 2015-12-23 2016-05-25 北京时代民芯科技有限公司 一种发射型数模转换器直流失调的电流补偿系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355438B (zh) * 2011-06-23 2014-03-12 中国科学院上海高等研究院 直接正交上变频收发信机及其发射机本振泄露的评估方法
CN102957653B (zh) * 2011-08-23 2017-04-26 中兴通讯股份有限公司 一种降低频谱泄漏的方法及装置
CN102916694B (zh) * 2012-10-29 2016-08-24 上海大唐移动通信设备有限公司 一种本振信号调节方法及装置
CN104883203B (zh) * 2015-06-09 2017-05-03 珠海市杰理科技股份有限公司 射频收发机及其射频本振泄漏抑制装置
CN105471468B (zh) * 2015-11-11 2018-06-05 上海华为技术有限公司 一种本振泄漏信号校正的装置、方法及微处理机控制器
CN105577594B (zh) * 2015-12-14 2018-12-18 电子科技大学 一种面向iq调制器的快速本振泄漏校准装置及方法
CN107547145B (zh) * 2016-06-27 2021-10-12 中兴通讯股份有限公司 一种本振泄漏信号的检测方法及装置
US11012162B2 (en) * 2017-12-18 2021-05-18 Telefonaktiebolaget Lm Ericsson (Publ) Local oscillator leakage detecting and cancellation
CN112436857B (zh) * 2020-07-21 2022-03-29 珠海市杰理科技股份有限公司 检测电路及检测方法、无线射频收发器、电器设备
CN113595583B (zh) * 2021-07-19 2023-05-05 杭州永谐科技有限公司 一种本振信号泄露抑制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079645A (zh) * 2006-05-25 2007-11-28 北京六合万通微电子技术有限公司 用于消除无线通信发射机中本振泄漏的装置
CN101420236A (zh) * 2007-10-24 2009-04-29 松下电器产业株式会社 本振泄漏检测和消除装置及方法
CN101834619A (zh) * 2010-03-29 2010-09-15 京信通信系统(中国)有限公司 一种发射系统及降低发射系统本振泄漏功率的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474709B2 (en) * 2001-11-14 2009-01-06 Broadcom Corporation Frequency shift keying modulator and applications thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079645A (zh) * 2006-05-25 2007-11-28 北京六合万通微电子技术有限公司 用于消除无线通信发射机中本振泄漏的装置
CN101420236A (zh) * 2007-10-24 2009-04-29 松下电器产业株式会社 本振泄漏检测和消除装置及方法
CN101834619A (zh) * 2010-03-29 2010-09-15 京信通信系统(中国)有限公司 一种发射系统及降低发射系统本振泄漏功率的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486272A (zh) * 2014-12-08 2015-04-01 大唐移动通信设备有限公司 一种反馈信号的修正方法及装置
CN105610441A (zh) * 2015-12-23 2016-05-25 北京时代民芯科技有限公司 一种发射型数模转换器直流失调的电流补偿系统
CN105610441B (zh) * 2015-12-23 2019-02-01 北京时代民芯科技有限公司 一种发射型数模转换器直流失调的电流补偿系统

Also Published As

Publication number Publication date
CN102065041B (zh) 2014-11-05
CN102065041A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
WO2012065398A1 (zh) 一种抑制本振泄露的方法、装置及系统
KR101831208B1 (ko) 트랜시버 캘리브레이션을 위한 장치 및 방법
TWI571078B (zh) 用於正交接收信號的寬頻寬類比至數位轉換的裝置和方法
KR101011748B1 (ko) 무선 주파수 송신기를 위한 내부 캘리브레이션 시스템
CN105007091B (zh) 传收器以及补偿方法
TWI536779B (zh) 校正傳送器/接收器的第一、第二訊號路徑之間的不匹配的校正方法與校正裝置
EP2487854A1 (en) I/Q imbalance estimation and correction in a communication system
JP2011509596A5 (zh)
JP2010283589A (ja) 通信装置
CN105282062B (zh) 传送器/接收器的信号路径之间不匹配的校正方法与装置
WO2014015711A1 (zh) 收发信机和干扰对消方法
US10122477B2 (en) Transmitter performance calibration systems and methods
US9912357B1 (en) Digital polar transmitter having a digital front end
TWI502935B (zh) 估測補償方法及裝置
JP2010504678A (ja) 送信機のアナログi/q変調器をキャリブレーションするための方法およびシステム
US8660503B2 (en) Transmitter
TWI660593B (zh) 訊號發送裝置、偵測電路與其訊號偵測方法
CN107925909A (zh) 通过可缩放数字无线调制解调器进行干扰抑制
TWI481234B (zh) 具有同相-正交不平衡補償的接收機及其同相-正交不平衡補償方法
JP4563232B2 (ja) 線路状態検出装置、通信装置、平衡伝送システム、及び線路状態検出方法
TW201735556A (zh) 用於提供基於雙音調測試的快速二階輸入截取點校準的設備及方法
Shaha et al. Implementing directional Tx-Rx of high modulation QAM signaling with SDR testbed
US9992089B2 (en) Parameter obtaining method and apparatus
US20110098006A1 (en) Transmitter circuit and communication device using the same
JP2003023468A (ja) ディジタル変調器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842050

Country of ref document: EP

Kind code of ref document: A1