WO2012063362A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2012063362A1
WO2012063362A1 PCT/JP2010/070215 JP2010070215W WO2012063362A1 WO 2012063362 A1 WO2012063362 A1 WO 2012063362A1 JP 2010070215 W JP2010070215 W JP 2010070215W WO 2012063362 A1 WO2012063362 A1 WO 2012063362A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
predetermined
period
torque fluctuation
internal combustion
Prior art date
Application number
PCT/JP2010/070215
Other languages
English (en)
French (fr)
Inventor
繁幸 浦野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012542778A priority Critical patent/JP5273317B2/ja
Priority to PCT/JP2010/070215 priority patent/WO2012063362A1/ja
Priority to CN201080065813.9A priority patent/CN102822487B/zh
Priority to DE112010005988.8T priority patent/DE112010005988B4/de
Priority to US13/576,828 priority patent/US8651088B2/en
Publication of WO2012063362A1 publication Critical patent/WO2012063362A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/1455Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means by using a second control of the closed loop type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine equipped with an in-cylinder pressure sensor.
  • the amount of air taken into a combustion chamber is calculated using a detection value of a cylinder pressure sensor (hereinafter also referred to as “CPS”), and this amount of air is used.
  • CPS cylinder pressure sensor
  • Control devices that optimally determine the ignition timing have been proposed.
  • the CPS detects the in-cylinder pressure as a relative pressure with respect to the intake pipe pressure. For this reason, in order to use the detected value of CPS in various controls, it is necessary to correct this detected value to an absolute pressure.
  • the absolute pressure correction value is calculated using the detected values of the two CPSs during the adiabatic compression stroke period. For this reason, for example, when the closing timing (IVC) of the intake valve is delayed, two CPS detection values Pc ( ⁇ a ) and Pc ( ⁇ b ) are detected within a short adiabatic compression stroke period.
  • the difference in the in-cylinder volume (V ⁇ ( ⁇ a ) ⁇ V ⁇ ( ⁇ b ) may be extremely small. In this case, the denominator of the above equation (1) is close to zero. In this way, the absolute pressure correction value may not be accurately calculated under the operating conditions where the adiabatic compression stroke period of the internal combustion engine is shortened, and improvement is desired. It was.
  • the present invention has been made to solve the above-described problems, and is an internal combustion engine capable of correcting the CPS detection value to an absolute pressure with high accuracy regardless of the length of the adiabatic compression stroke period of the internal combustion engine.
  • An object of the present invention is to provide a control device.
  • the first invention provides An in-cylinder pressure sensor for outputting an in-cylinder pressure detection value of a predetermined cylinder at a predetermined crank angle of the internal combustion engine; In-cylinder pressure detection means for detecting in-cylinder pressure detection values P 1 and P 2 at predetermined crank angles ⁇ 1 and ⁇ 2 during an adiabatic period from IVC to ignition timing of the predetermined cylinder, respectively, using the in-cylinder pressure sensor;
  • the cylinder volume of the predetermined cylinder at the crank angle ⁇ 1 is V 1
  • the cylinder volume of the predetermined cylinder at the crank angle ⁇ 2 is V 2
  • the specific heat ratio of the cylinder gas of the predetermined cylinder is ⁇ , the value obtained by dividing a value obtained by subtracting the value P 1 V 1 ⁇ of PV kappa from the value P 2 V 2 kappa of PV kappa in the crank angle theta 1 to (V 1 ⁇ -V 2 ⁇ ) in the crank angle theta 2 Absolute pressure correction value calculating
  • a torque fluctuation calculating means for calculating torque fluctuation of the internal combustion engine includes an ignition delay means for retarding the ignition timing when the adiabatic period is shorter than the predetermined period and when the torque fluctuation is smaller than a predetermined value.
  • the ignition retard means includes a retard amount setting means for setting a retard amount of the ignition timing within a range where the torque fluctuation does not exceed a predetermined value.
  • a fourth invention is any one of the first to third inventions, Torque fluctuation calculating means for calculating torque fluctuation of the internal combustion engine; A variable valve mechanism that varies the intake closing timing, and The adiabatic period changing means controls the variable valve mechanism to advance the IVC when the adiabatic period is shorter than the predetermined period and the torque fluctuation is greater than or equal to a predetermined value. It is characterized by including a means.
  • Torque fluctuation balance control that controls the ignition timing of each cylinder of the internal combustion engine to suppress the torque fluctuation when the heat insulation period is shorter than the predetermined period and the torque fluctuation is equal to or greater than a predetermined value. Is further provided with torque fluctuation balance control means for executing the above.
  • the valve closing timing ( The heat insulation period from the IVC) to the ignition timing is compared with the predetermined period, and the heat insulation period is extended when the heat insulation period is shorter than the predetermined period. Therefore, according to the present invention, the calculation accuracy of the absolute pressure correction value is improved, so that the in-cylinder pressure detection value can be corrected with high accuracy.
  • the ignition timing is retarded when the heat insulation period is shorter than the predetermined period and the torque fluctuation of the internal combustion engine is smaller than the predetermined value.
  • the heat insulation period can be effectively extended without significantly impairing drivability.
  • the retard amount of the ignition timing is set in a range where the torque fluctuation does not exceed the predetermined value. For this reason, according to the present invention, it is possible to achieve both suppression of deterioration of drivability and improvement of correction accuracy of the in-cylinder pressure.
  • IVC is advanced when the heat insulation period is shorter than the predetermined period and when the torque fluctuation of the internal combustion engine is equal to or greater than the predetermined value.
  • the ignition timing of each cylinder of the internal combustion engine is controlled to control the torque. Variation is suppressed. For this reason, according to this invention, before extending an adiabatic period, torque fluctuation can be suppressed and subsequent drivability deterioration can be suppressed effectively.
  • Embodiment 1 It is a schematic block diagram for demonstrating the system configuration
  • FIG. 1 is a schematic configuration diagram for explaining a system configuration as a first embodiment of the present invention.
  • the system according to the present embodiment includes an internal combustion engine 10.
  • the internal combustion engine 10 is configured as a spark ignition type multi-cylinder engine using gasoline as fuel.
  • a piston 12 that reciprocates inside the cylinder of the internal combustion engine 10 is provided.
  • the internal combustion engine 10 includes a cylinder head 14.
  • a combustion chamber 16 is formed between the piston 12 and the cylinder head 14.
  • One end of an intake passage 18 and an exhaust passage 20 communicates with the combustion chamber 16.
  • An intake valve 22 and an exhaust valve 24 are disposed at a communication portion between the intake passage 18 and the exhaust passage 20 and the combustion chamber 16, respectively.
  • the intake valve 22 is provided with an intake valve timing control device 36 that variably controls the valve timing.
  • an intake valve timing control device 36 that variably controls the valve timing.
  • a variable valve timing mechanism that advances or retards the opening / closing timing while keeping the operating angle constant by changing the phase angle of the camshaft (not shown) with respect to the crankshaft. It is assumed that (VVT) is used.
  • VVT 36 the intake valve timing control device 36 is referred to as “VVT 36”.
  • An air cleaner 26 is attached to the inlet of the intake passage 18.
  • a throttle valve 28 is disposed downstream of the air cleaner 26.
  • the throttle valve 28 is an electronically controlled valve that is driven by a throttle motor based on the accelerator opening.
  • the ignition plug 30 is attached to the cylinder head 14 so as to protrude into the combustion chamber 16 from the top of the combustion chamber 16.
  • the cylinder head 14 is provided with a fuel injection valve 32 for injecting fuel into the cylinder.
  • the cylinder head 14 incorporates an in-cylinder pressure sensor (CPS) 34 for detecting the in-cylinder pressure of each cylinder.
  • CPS in-cylinder pressure sensor
  • the system of this embodiment includes an ECU (Electronic Control Unit) 40 as shown in FIG.
  • ECU Electronic Control Unit
  • various sensors such as a crank angle sensor 42 for detecting the rotational position of the crankshaft are connected to the input portion of the ECU 40.
  • various actuators such as the throttle valve 28, the spark plug 30, and the fuel injection valve 32 described above are connected to the output portion of the ECU 40.
  • the ECU 40 controls the operating state of the internal combustion engine 10 based on various types of input information.
  • Embodiment 1 Basic operation of absolute pressure correction
  • the CPS 34 is a very effective sensor in that it can directly detect the combustion state in the cylinder. Therefore, the output of the CPS 34 is used as a control parameter for various controls of the internal combustion engine 10. For example, the detected in-cylinder pressure is used for calculation of the amount of intake air sucked into the cylinder, calculation of fluctuations in the indicated torque, and the like. In addition to this, the calorific value PV ⁇ and MFB (combustion mass ratio) calculated using the detected in-cylinder pressure are calculated. These are used for misfire detection and optimal ignition timing control.
  • the CPS 34 detects the in-cylinder pressure as a relative pressure with respect to the intake pipe pressure. For this reason, in order to use the detected value of the CPS 34 in various controls, it is necessary to perform absolute pressure correction for correcting the detected value to an absolute pressure.
  • absolute pressure correction for correcting the detected value to an absolute pressure.
  • FIG. 2 is a diagram showing changes in the in-cylinder pressure P, the in-cylinder (combustion chamber 16) volume V, and the PV ⁇ value ( ⁇ is a specific heat ratio) in the compression stroke of the internal combustion engine 10. 2 is based on the assumption that the intake valve 22 is closed after intake bottom dead center.
  • the CPS 34 detects a relative pressure based on the intake pipe pressure. For this reason, the CPS detection value P CPSDV indicated by the broken line in FIG. 2 deviates from the true value P TV (solid line) of the in-cylinder pressure indicated by the solid line in the drawing by an amount corresponding to the error Pr.
  • the detected value P CPSDV can be corrected to an absolute pressure without having a configuration for detecting the intake pipe pressure.
  • the number of cylinders of the internal combustion engine 10 is n (n represents an integer equal to or greater than 2; the same applies hereinafter)
  • the adiabatic compression stroke period of the target cylinder for absolute pressure correction is 1 / n cycle than that of the target cylinder. (720 ° / n) Generally coincides with the adiabatic compression stroke period of the preceding cylinder.
  • CA 1 is preferably on the advance side as close as possible to the ignition timing of the target cylinder, and CA 2 is The retardation side as close as possible to IVC is preferable.
  • Atkinson cycle has been proposed as a system for improving the fuel consumption of the internal combustion engine 10.
  • the Atkinson cycle is a system that effectively uses heat energy by reducing the pump loss by increasing the expansion ratio rather than the compression ratio.
  • the IVC may be changed to the retard side from the intake bottom dead center by the VVT 36.
  • the actual compression ratio can be reduced by changing the IVC to the retard side from the intake bottom dead center.
  • the knock limit of the optimal ignition timing MKT
  • the period from IVC to the ignition timing that is, the adiabatic compression stroke period is reduced, and as a result, the interval between the crank angles CA 1 and CA 2 for detecting the in-cylinder pressures P 1 and P 2 is reduced.
  • FIG. 3 is a diagram showing the relationship between the interval between the crank angles CA 1 and CA 2 and the right side of the above equation (3).
  • both (P 2 V 2 ⁇ -P 1 V 1 ⁇ ) and (V 1 ⁇ -V 2 ⁇ ) take large values. Therefore, the variation in the calculated value of the absolute pressure correction value Pr is small.
  • (CA 1 -CA 2 ) becomes shorter, (P 2 V 2 ⁇ -P 1 V 1 ⁇ ) and (V 1 ⁇ -V 2 ⁇ ) become smaller values accordingly, and therefore the absolute pressure correction value Pr The variation of the calculated value gradually increases.
  • FIG. 4 is a diagram showing variations in the absolute pressure correction value Pr with respect to the adiabatic compression stroke period (ignition timing ⁇ IVC).
  • the predetermined crank angle period CAth is preferably set to the minimum crank angle period before the variation of the absolute pressure correction value Pr suddenly increases. Specifically, for example, by comparing the variation of the absolute pressure correction value Pr or the amount of change thereof with a predetermined determination value, it is possible to effectively identify the crank angle at which the variation of the absolute pressure correction value Pr changes suddenly.
  • FIG. 5 is a diagram for explaining the relationship of torque fluctuation to the ignition retard amount. As shown in this figure, the greater the ignition retardation amount, the worse the torque fluctuation. For this reason, it is assumed that the drivability requirement cannot be satisfied if the ignition retardation control described above is executed in an operating state with a large torque fluctuation.
  • the ignition delay control is performed. Execute it.
  • the torque fluctuation can be calculated according to the following equation (4) based on the in-cylinder pressure sensor 34 disposed in each cylinder.
  • BPF represents a bandpass filter processing function (here, a bandpass filter processing of 1 to 4 Hz)
  • STD represents a standard deviation calculation function.
  • FIG. 6 is a diagram for explaining an example when the ignition timing is retarded for each cylinder in one cycle.
  • the absolute pressure correction value Pr of each cylinder is updated once every four cycles.
  • the absolute pressure correction value Pr of each cylinder is updated once every two cycles.
  • FIG. 7 is a diagram showing the relationship of the degree of deterioration of fuel consumption with respect to the ignition retard amount for each number of ignition retard cylinders. As shown in this figure, it can be seen that the greater the ignition retard amount and the greater the number of ignition retard cylinders, the worse the fuel consumption.
  • the number of ignition timing cylinders is set for each operation region in consideration of the degree of deterioration of fuel consumption. Specifically, for example, the number of ignition retarded cylinders is increased in an operation region where the deterioration degree of fuel consumption due to the retard of the ignition timing is small (for example, the MBT region), and conversely, ignition is performed in an operation region where the deterioration degree of fuel consumption is large. It is preferable to reduce the number of retarded cylinders. Thereby, the update frequency of the absolute pressure correction value Pr can be increased while suppressing deterioration of fuel consumption.
  • IVC advance angle control IVC advance angle control
  • the ignition retardation control is not suitable for operating conditions where the torque fluctuation TF is large. Therefore, when the torque fluctuation TF is larger than the predetermined torque fluctuation TF th , it is preferable to perform IVC advance angle control. Thereby, it is possible to effectively extend the adiabatic compression stroke period while suppressing torque fluctuation.
  • the IVC advance angle control is performed by driving the VVT 36, the control responsiveness is worse than the ignition timing control. Further, when IVC is advanced, pump loss increases, which causes a problem of deterioration in fuel consumption.
  • the control for suppressing the torque fluctuation by controlling the ignition timing of each cylinder (hereinafter, “ It is preferable to perform “torque fluctuation balance control”.
  • the ignition retard control is executed instead of the IVC advance control, so that the absolute pressure correction is performed while suppressing the deterioration of fuel consumption. Can improve the accuracy.
  • FIG. 8 is a flowchart showing a routine executed by the ECU 40 in the first embodiment.
  • the routine shown in FIG. 8 it is first determined whether or not the crank angle difference (adiabatic compression stroke period) between the current ignition timing and IVC is greater than a predetermined crank angle period CAth (step 100).
  • a preset value is read according to the relationship shown in FIG.
  • step 104 the magnitudes of the torque fluctuation TF calculated using the above equation (4) and the predetermined torque fluctuation TF th are compared.
  • the predetermined torque fluctuation TF th is read as a preset value as a torque fluctuation that can satisfy the drivability requirement.
  • the process proceeds to the next step, and the ignition timing of each cylinder is determined.
  • the retardation control is executed in order (step 106). Specifically, in consideration of the relationship between the ignition retardation amount and torque fluctuation shown in FIG. 6, the ignition retardation amount in which the torque fluctuation does not exceed TFth is set. Further, in consideration of the relationship between the number of ignition retard cylinders and the fuel consumption shown in FIG. 7, the allowable number of ignition retard cylinders is set for the set ignition retard amount.
  • Step 106 it is next determined whether or not the adiabatic compression stroke period of the cylinder that has executed the ignition delay control is longer than a predetermined crank angle CA th (Ste 108).
  • the same process as the process of step 100 is executed for the ignition retard execution cylinder.
  • this routine is executed again from step 104 above.
  • step 108 if it is determined in step 108 that the ignition timing ⁇ IVC> CA th is established, it is determined that the absolute pressure correction variation has decreased, the process proceeds to the next step, and the ignition retard cylinder is set. Absolute pressure correction is performed (step 110).
  • Step 104 if the establishment of the torque fluctuation TF ⁇ TF th is not recognized, it is determined that the drivability requirement is not satisfied, the routine proceeds to the next step, and the torque fluctuation balance control is executed. (Step 112). Specifically, the ignition timing of each cylinder is controlled so that the torque fluctuation is the best.
  • step 114 it is determined whether or not the torque fluctuation TF is smaller than a predetermined torque fluctuation TF th (step 114).
  • the same processing as in step 104 is executed.
  • this routine is immediately terminated.
  • the establishment of the torque fluctuation TF ⁇ TF th is not recognized in step 114, it is determined that the drivability requirement is not yet satisfied after the processing of step 112, and the process proceeds to the next step.
  • IVC advance angle control for advancing the IVC is executed (step 116).
  • the adiabatic compression stroke period is smaller than the predetermined crank angle period CAth , the ignition retard control or the IVC advance control is executed.
  • the adiabatic compression stroke period can be effectively extended, so that highly accurate absolute pressure correction can be realized while suppressing variations in calculation of the absolute pressure correction value Pr.
  • the system according to the first embodiment in the case adiabatic compression stroke period is smaller than the predetermined crank angle period CA th, when the torque variation TF is less than the predetermined torque variation TFth, ignition retard Control is executed. Thereby, the accuracy of absolute pressure correction can be improved while satisfying the drivability requirement.
  • the system according to the first embodiment in the case adiabatic compression stroke period is smaller than the predetermined crank angle period CA th, when the torque variation TF is predetermined torque variation TF th or more, IVC advances Prior to the angle control, torque fluctuation balance control is executed. As a result, the torque fluctuation can be quickly suppressed by the ignition timing control with good control responsiveness, and the execution opportunity of the ignition retard control can be effectively increased.
  • the intake valve timing control device 36 As the intake valve timing control device 36, a VVT that advances or retards the opening / closing timing while keeping the working angle constant by changing the phase angle of the cam shaft with respect to the crankshaft is used.
  • a device that can be used as the intake valve timing control device 36 is not limited to this. That is, for example, the IVC for each cylinder may be individually controlled using an electromagnetic valve or the like that can vary the closing timing of the intake valve 22 for each cylinder.
  • the CPS detection value is the “in-cylinder pressure detection value” of the first invention
  • the CPS 34 is the “in-cylinder pressure sensor” of the first invention
  • the adiabatic compression stroke period is The predetermined crank angle period CA th corresponds to the “predetermined period” of the first aspect of the invention, and the “adiabatic period” of the first aspect of the invention.
  • the “comparing means” in the first invention executes the processes of steps 102 and 108, so that the “absolute pressure” in the first invention is executed.
  • the “correction means” executes the processing of step 106 or 116 described above, thereby realizing the “adiabatic period changing means” in the first invention.
  • the predetermined torque fluctuation TF th corresponds to the “predetermined value” of the second aspect of the invention
  • the ECU 40 executes the process of step 104 described above.
  • the “torque fluctuation calculating means” according to the second aspect of the present invention executes the processing of step 106, thereby realizing the “ignition retarding means” according to the second aspect of the present invention.
  • the “retard amount setting means” in the third aspect of the present invention is realized by the ECU 40 executing the processing of step 106.
  • the predetermined torque fluctuation TF th corresponds to the “predetermined value” of the fourth invention
  • the VVT 36 corresponds to the “variable valve mechanism” of the fourth invention.
  • the ECU 40 executes the process of step 114
  • the “torque fluctuation calculating means” in the fourth aspect of the invention executes the process of step 116, so that the “IVC progression in the fourth aspect of the invention”.
  • Each “corner means” is realized.
  • the “torque fluctuation balance control means” in the fifth aspect of the present invention is realized by the ECU 40 executing the process of step 112 described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 筒内圧センサを有する内燃機関において、断熱圧縮行程期間の長短によらず、高精度にCPS検出値を絶対圧に補正する。 各気筒に筒内圧センサ34を備える内燃機関10において、IVCから点火時期までの断熱圧縮行程期間中の所定クランク角θ,θにおける筒内圧検出値P,P、筒内容積V1,V2、および比熱比κから絶対圧補正値Pr(=(P κ-P κ)/(V κ-V κ))を演算し、当該絶対圧補正値Prを用いて筒内圧検出値を絶対圧補正する。この際、断熱圧縮行程期間(点火時期-IVC)が所定クランク角期間CAthよりも小さい場合には点火時期を遅角し(ステップ104~106)、また、断熱圧縮行程期間がCAth以上である場合にはIVCを進角する(ステップ114~116)。好ましくは、IVCを進角する前に各気筒の点火時期を制御してトルク変動を抑制する(ステップ112)。

Description

内燃機関の制御装置
 この発明は、内燃機関の制御装置に係り、特に、筒内圧センサが搭載された内燃機関の制御装置に関する。
 従来、例えば日本特開2007-146785号公報には、筒内圧センサ(以下、「CPS」とも称する)の検出値を用いて燃焼室内に吸入された空気量を算出し、この空気量を用いて点火時期を最適に決定する制御装置が提案されている。CPSは筒内圧を吸気管圧力に対する相対圧として検出する。このため、CPSの検出値を各種制御で使用するためには、この検出値を絶対圧に補正する必要がある。上記従来の制御装置では、吸気下死点後の圧縮行程中のPVκ値(κは比熱比)が理論上一定であることを利用して、その場合に成立するポアソンの関係式を用いた次式(1)により、CPS検出値の絶対圧に対する誤差(絶対圧補正値Pr)を算出することとしている。尚、次式(1)において、Pc(θ,Pc(θ)は、圧縮行程中の所定の2点のクランク角θ,θにおけるCPSの検出値であり、V(θ),V(θ)はPc(θ),Pc(θ)検出時の筒内(燃焼室)容積を示している。
 絶対圧補正値Pr=(Pc(θ)・Vκ(θ)-Pc(θ)・Vκ(θ))/(Vκ(θ)-Vκ(θ)) ・・・(1)
日本特開2007-146785号公報
 上式(1)では、断熱圧縮行程期間における2つのCPSの検出値を用いて絶対圧補正値の算出を行う。このため、例えば吸気弁の閉じ時期(IVC)を遅閉じとする場合、短い断熱圧縮行程期間内で2つのCPS検出値Pc(θ),Pc(θ)を検出することになるので、筒内容積の差(Vκ(θ)-Vκ(θ)が極端に小さくなってしまうおそれがある。この場合、上式(1)の分母がゼロに近づくこととなるため、絶対圧補正値のバラツキが大きくなってしまう。このように、内燃機関の断熱圧縮行程期間が短くなる運転条件においては、絶対圧補正値を精度よく算出することができないおそれがあり、改善が望まれていた。
 この発明は、上述のような課題を解決するためになされたもので、内燃機関の断熱圧縮行程期間の長短によらず、高精度にCPS検出値を絶対圧に補正することが可能な内燃機関の制御装置を提供することを目的とする。
 第1の発明は、上記の目的を達成するため、
 内燃機関の所定クランク角における所定気筒の筒内圧検出値を出力する筒内圧センサと、
 前記所定気筒のIVCから点火時期までの断熱期間中の所定クランク角θ,θにおける筒内圧検出値P,Pを、前記筒内圧センサを用いてそれぞれ検出する筒内圧検出手段と、
 前記クランク角θにおける前記所定気筒の筒内容積をV、前記クランク角θにおける前記所定気筒の筒内容積をV、前記所定気筒の筒内ガスの比熱比をκとしたとき、前記クランク角θにおけるPVκの値P κから前記クランク角θにおけるPVκの値P κを減算した値に(V κ-V κ)を除算した値を、絶対圧補正値として演算する絶対圧補正値演算手段と、
 前記絶対圧補正値を用いて前記筒内圧検出値を補正する絶対圧補正手段と、
 を備える内燃機関の制御装置において、
 前記断熱期間と所定期間とを比較する比較手段と、
 前記断熱期間が前記所定期間よりも短い場合に、前記断熱期間を拡大させる断熱期間変更手段と、
 を備えることを特徴としている。
 第2の発明は、第1の発明において、
 前記内燃機関のトルク変動を演算するトルク変動演算手段を更に備え、
 前記断熱期間変更手段は、前記断熱期間が前記所定期間よりも短い場合、且つ前記トルク変動が所定値よりも小さい場合に、前記点火時期を遅角する点火遅角手段を含むことを特徴としている。
 第3の発明は、第2の発明において、
 前記点火遅角手段は、前記トルク変動が所定値を超えない範囲で前記点火時期の遅角量を設定する遅角量設定手段を含むことを特徴としている。
 第4の発明は、第1乃至第3の何れか1つの発明において、
 前記内燃機関のトルク変動を演算するトルク変動演算手段と、
 前記吸気閉じ時期を可変させる可変動弁機構と、を更に備え、
 前記断熱期間変更手段は、前記断熱期間が前記所定期間よりも短い場合、且つ前記トルク変動が所定値以上である場合に、前記可変動弁機構を制御して前記IVCを進角させるIVC進角手段を含むことを特徴としている。
 第5の発明は、第2乃至第4の何れか1つの発明において、
 前記断熱期間が前記所定期間よりも短い場合、且つ前記トルク変動が所定値以上である場合に、前記内燃機関の各気筒の点火時期をそれぞれ制御して、前記トルク変動を抑制するトルク変動バランス制御を実行するトルク変動バランス制御手段を更に備えることを特徴としている。
 第1の発明によれば、筒内圧センサ(CPS)によって検出された筒内圧検出値を、絶対圧補正値を用いて補正する内燃機関の制御装置において、所定気筒の吸気弁の閉弁時期(IVC)から点火時期までの断熱期間と所定期間とが比較され、当該断熱期間が所定期間よりも短い場合に、当該断熱期間が拡大される。このため、本発明によれば、絶対圧補正値の演算精度が向上するので、筒内圧検出値を高精度に補正することができる。
 第2の発明によれば、上記断熱期間が所定期間よりも短い場合であって、且つ内燃機関のトルク変動が所定値よりも小さい場合に、点火時期が遅角される。これにより、ドライバビリティを大きく損なうことなく断熱期間を有効に拡大させることができる。
 第3の発明によれば、トルク変動が所定値を超えない範囲で点火時期の遅角量が設定される。このため、本発明によれば、ドライバビリティの悪化抑制と筒内圧の補正精度向上とを両立させることができる。
 第4の発明によれば、上記断熱期間が所定期間よりも短い場合であって、且つ内燃機関のトルク変動が所定値以上である場合に、IVCが進角される。これにより、点火時期を遅角させるとドライバビリティを大きく損なうおそれのある領域において、トルク変動を抑制しつつ断熱期間を有効に拡大させることができる。
 第5の発明によれば、上記断熱期間が所定期間よりも短い場合であって、且つ内燃機関のトルク変動が所定値以上である場合に、内燃機関の各気筒の点火時期を制御してトルク変動が抑制される。このため、本発明によれば、断熱期間を拡大させる前に、トルク変動を抑制させて、その後のドライバビリティ悪化を有効に抑制することができる。
本発明の実施の形態1としてのシステム構成を説明するための概略構成図である。 内燃機関の圧縮行程における筒内圧P、筒内容積V、およびPVκ値の変化を示した図である。 クランク角CA,CAの間隔と、上式(3)の右辺との関係を示した図である。 断熱圧縮行程期間(点火時期-IVC)に対する誤差Prのバラツキ(絶対圧補正バラツキ)を示す図である。 点火遅角量に対するトルク変動の関係を説明するための図である。 1サイクルで1気筒ずつ点火時期を遅角した場合の一例を説明するための図である。 点火遅角量に対する燃費の悪化度合の関係を、点火遅角気筒数毎に示す図である。 本発明の実施の形態1において実行するルーチンを示すフローチャートである。
 以下、図面に基づいてこの発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態によりこの発明が限定されるものではない。
実施の形態1.
[実施の形態1の構成]
 図1は、本発明の実施の形態1としてのシステム構成を説明するための概略構成図である。図1に示すとおり、本実施の形態のシステムは内燃機関10を備えている。内燃機関10は、ガソリンを燃料とする火花点火式の多気筒エンジンとして構成されている。内燃機関10の筒内には、その内部を往復運動するピストン12が設けられている。また、内燃機関10は、シリンダヘッド14を備えている。ピストン12とシリンダヘッド14との間には、燃焼室16が形成されている。燃焼室16には、吸気通路18および排気通路20の一端がそれぞれ連通している。吸気通路18および排気通路20と燃焼室16との連通部には、それぞれ吸気弁22および排気弁24が配置されている。
 吸気弁22には、バルブタイミングを可変制御する吸気バルブタイミング制御装置36が備えられている。本実施形態では、吸気バルブタイミング制御装置36として、クランク軸に対するカム軸(図示略)の位相角を変化させることで、作用角は一定のまま開閉タイミングを進角或いは遅角する可変バルブタイミング機構(VVT)が用いられているものとする。以下、吸気バルブタイミング制御装置36を「VVT36」と称する。
 吸気通路18の入口には、エアクリーナ26が取り付けられている。エアクリーナ26の下流には、スロットルバルブ28が配置されている。スロットルバルブ28は、アクセル開度に基づいてスロットルモータにより駆動される電子制御式のバルブである。
 シリンダヘッド14には、燃焼室16の頂部から燃焼室16内に突出するように点火プラグ30が取り付けられている。また、シリンダヘッド14には、燃料を筒内に噴射するための燃料噴射弁32が設けられている。更に、シリンダヘッド14には、各気筒の筒内圧力を検出するための筒内圧センサ(CPS)34がそれぞれ組み込まれている。
 本実施の形態のシステムは、図1に示すとおり、ECU(Electronic Control Unit)40を備えている。ECU40の入力部には、上述した筒内圧センサ34の他、クランク軸の回転位置を検知するためのクランク角センサ42等の各種センサが接続されている。また、ECU40の出力部には、上述したスロットルバルブ28、点火プラグ30、燃料噴射弁32等の各種アクチュエータが接続されている。ECU40は、入力された各種の情報に基づいて、内燃機関10の運転状態を制御する。
[実施の形態1の動作]
(絶対圧補正の基本動作)
 CPS34は、筒内の燃焼状態を直接検出することができる点で、非常に有効なセンサである。このため、該CPS34の出力は、内燃機関10の各種制御の制御パラメータとして利用される。例えば、検出された筒内圧は、筒内へ吸入された吸入空気量の算出や図示トルクの変動等の演算に用いられる。また、この他にも、検出された筒内圧を用いて演算された発熱量PVκやMFB(燃焼質量割合)が演算される。これらは、失火検出や最適点火時期制御などに利用される。
 但し、CPS34は、筒内圧を吸気管圧力に対する相対圧として検出する。このため、CPS34の検出値を各種制御で使用するためには、この検出値を絶対圧に補正する絶対圧補正を行う必要がある。以下、絶対圧補正の基本動作について図2を参照して説明する。
 図2は、内燃機関10の圧縮行程における筒内圧P、筒内(燃焼室16)容積V、およびPVκ値(κは比熱比)の変化を示した図である。尚、図2の説明は、吸気弁22を吸気下死点以後に閉じることを前提としている。
 図2に示すように、IVCの後、筒内圧Pはピストン12の上昇に伴い増加し、筒内容積Vはピストン12の上昇に伴い減少する。CPS34は、この過程で吸気管圧力を基準とした相対圧を検出する。このため、図2中に破線で示すCPS検出値PCPSDVは、図中に実線で示す筒内圧の真値PTV(実線)から誤差Prに相当する分乖離してしまう。
 真値PTVと検出値PCPSDVとの間には、次式(2)に示す関係が成立する。そこで、ECU40は、検出値PCPSDVから、この乖離に相当する分の誤差Prを除くための絶対圧補正を実行する。具体的には、IVCから点火時期までの断熱圧縮行程期間のPVκ値が理論上一定であること、および次式(2)に示す関係を利用して、その場合に成立するポアソンの関係式を用いた次式(3)により、誤差Prを絶対圧補正値Prとして算出する。尚、次式(3)において、P,Pは、圧縮行程中の所定の2点のクランク角におけるCPSの検出値であり、V,Vは、P,P検出時の筒内容積を示している。
 PTV=PCPSDV+Pr ・・・(2)
 Pr=(P κ-P κ)/(V κ-V κ) ・・・(3)
 上式(2)および(3)を用いることにより、吸気管圧を検出する構成を有していなくても、検出値PCPSDVを絶対圧に補正することができる。尚、内燃機関10の気筒数をn(nは2以上の整数を表す。以下同じ。)とした場合、絶対圧補正の対象気筒の断熱圧縮行程期間は、その対象気筒よりも1/nサイクル(720°/n)先行する気筒の断熱圧縮行程期間と概ね一致する。そのため、上式(3)を用いる際に、そのP,Pに対象気筒よりも1/nサイクル先行する気筒の検出値PCPSDVを適用すれば、絶対圧補正の対象気筒の絶対圧補正値Prを精度高く推定することができる。
 また、P,P検出時のクランク角をそれぞれCA,CA(CA<CA)とすると、CAは、当該対象気筒の点火時期にできるだけ近い進角側が好ましく、CAは、IVCに出来るだけ近い遅角側が好ましい。これにより、CA,CAの間隔を最大限に拡げることができるので、絶対圧補正値Prの算出精度を高めることができる。
(本実施の形態の特徴的動作)
 次に、図3乃至図7を参照して、本実施の形態の特徴的動作について説明する。内燃機関10の燃費を向上させるシステムとして、アトキンソンサイクルが提案されている。アトキンソンサイクルは、圧縮比よりも膨張比を大きくしてポンプロスを低減し、熱エネルギを有効に使うシステムである。このようなシステムを本実施形態のシステムに適用する場合、VVT36によってIVCを吸気下死点よりも遅角側に変更することがある。
 IVCを吸気下死点よりも遅角側に変更することで、実圧縮比を低下させることができる。しかしながら、実圧縮比を低下させると、最適点火時期(MBT)のノッキング限界が進角側にオフセットされる。そうすると、IVCから点火時期までの期間、すなわち断熱圧縮行程期間が縮小し、結果として筒内圧P,Pを検出するクランク角CA,CAの間隔が狭まることになる。
 図3は、クランク角CA,CAの間隔と、上式(3)の右辺との関係を示した図である。この図に示すとおり、検出間隔(CA-CA)が十分に長い場合は、(P κ-P κ)、(V κ-V κ)ともに大きな値をとるので、絶対圧補正値Prの算出値のバラツキは小さい。しかしながら、(CA-CA)が短くなると、それに伴い(P κ-P κ)や(V κ-V κ)も小さな値となるため、絶対圧補正値Prの算出値のバラツキが次第に大きくなってしまう。
 そこで、本実施の形態のシステムでは、本実施の形態1のシステムでは、IVCから点火時期までの断熱圧縮行程期間が所定クランク角期間CAthよりも小さい場合に、係る断熱圧縮行程期間を拡大する制御を実行し、その際のCPS検出値に基づいて、絶対圧補正を実行することとした。図4は、断熱圧縮行程期間(点火時期-IVC)に対する絶対圧補正値Prのバラツキを示す図である。この図に示すとおり、絶対圧補正値Prのバラツキは、断熱圧縮行程期間を小さくしていくと急激に大きくなる。そこで、所定クランク角期間CAthは、絶対圧補正値Prのバラツキが急激に大きくなる手前の最小のクランク角期間に設定することが好ましい。具体的には、例えば、絶対圧補正値Prのバラツキ或いはその変化量を所定の判定値と比較することにより、絶対圧補正値Prのバラツキが急変するクランク角を有効に特定することができる。
 断熱圧縮行程期間を拡大する制御としては、点火時期を遅角する点火遅角制御と、IVCを進角するIVC進角制御とが考えられる。以下、各制御の詳細についてそれぞれ説明する。
(点火遅角制御)
 先ず、点火遅角制御について説明する。点火遅角制御は断熱圧縮行程期間を有効に拡大することができるが、係る制御を実行すると、点火時期が最適点火時期(MBT)から外れてしまうこととなる。図5は、点火遅角量に対するトルク変動の関係を説明するための図である。この図に示すとおり、点火遅角量が大きいほどトルク変動が悪化する。このため、トルク変動が大きい運転状態で上述した点火遅角制御を実行することとすると、ドライバビリティ要求を満たすことができないことが想定される。
 そこで、本実施の形態1のシステムでは、内燃機関10のトルク変動TFが、ドライバビリティ要求を満足できるトルク変動として予め設定された所定のトルク変動TFthよりも小さい場合に、点火遅角制御を実行することとする。尚、トルク変動は、各気筒に配置された筒内圧センサ34に基づいて、次式(4)に従って算出することができる。尚、次式(4)において、BPFはバンドパスフィルタ処理関数(ここでは、1~4Hzのバンドパスフィルタ処理)を、STDは標準偏差算出関数を、それぞれ示している。
Figure JPOXMLDOC01-appb-M000001
 また、上記点火遅角制御は気筒毎に実行される。図6は、1サイクルで1気筒ずつ点火時期を遅角した場合の一例を説明するための図である。この図に示す例では、1サイクルに1気筒の点火遅角を実行することとしているため、各気筒の絶対圧補正値Prは、4サイクルに1回の頻度で更新されることとなる。同様に、例えば1サイクルに2気筒の点火遅角を実行することとすると、各気筒の絶対圧補正値Prは、2サイクルに1回の頻度で更新されることとなる。
 絶対圧補正値Prの更新頻度を上げる観点からは、1サイクルに実施する点火遅角気筒数(以下、「点火遅角気筒数」と称する)を増やすことが好ましい。しかしながら、点火遅角制御は燃費の悪化と関係している。図7は、点火遅角量に対する燃費の悪化度合の関係を、点火遅角気筒数毎に示す図である。この図に示すとおり、点火遅角量が大きいほど、および点火遅角気筒数が多いほど、燃費が悪化することが分かる。
 そこで、本実施の形態1のシステムでは、点火遅角制御を実行する場合に、燃費の悪化度合を考慮して、運転領域毎に点火時期気筒数を設定することとする。具体的には、例えば、点火時期の遅角による燃費の悪化度合が小さい運転領域(例えばMBT領域等)では点火遅角気筒数を増やし、また、逆に燃費の悪化度合が大きい運転領域では点火遅角気筒数を減らすことが好ましい。これにより、燃費の悪化を抑制しつつ絶対圧補正値Prの更新頻度を高めることができる。
(IVC進角制御)
 次に、IVC進角制御について説明する。上述したとおり、点火遅角制御は、トルク変動TFが大きい運転条件には適していない。そこで、トルク変動TFが所定のトルク変動TFthよりも大きい場合には、IVC進角制御を行うことが好ましい。これにより、トルク変動を抑制しつつ断熱圧縮行程期間を有効に拡大することができる。但し、IVC進角制御はVVT36を駆動して行うため、制御応答性が点火時期制御に比して悪い。また、IVCを進角するとポンプロスが増大するため、燃費の悪化の問題も生じる。
 そこで、トルク変動TFが所定のトルク変動TFthよりも大きい場合には、IVC進角制御を行う前に、先ず、各気筒の点火時期をそれぞれ制御してトルク変動を抑制する制御(以下、「トルク変動バランス制御」と称する)を行うことが好ましい。これにより、トルク変動TFを所定のトルク変動TFthよりも小さく抑えることができれば、IVC進角制御ではなく点火遅角制御が実行されることとなるので、燃費の悪化を抑制しつつ絶対圧補正の精度を高めることができる。
[実施の形態1の具体的処理]
 次に、図8を参照して、本実施の形態の具体的処理について説明する。図8は、ECU40が本実施の形態1において実行するルーチンを示すフローチャートである。図8に示すルーチンでは、先ず、現在の点火時期とIVCとのクランク角差(断熱圧縮行程期間)が所定クランク角期間CAthよりも大きいか否かが判定される(ステップ100)。所定クランク角期間CAthは、図4に示す関係に従い予め設定された値が読み込まれる。その結果、点火時期-IVC>CAthの成立が認められた場合には、絶対圧補正バラツキが小さいと判断されて、次のステップに移行し、上式(2)および(3)に基づく各気筒の絶対圧補正が実行される(ステップ102)。
 一方、上記ステップ100において、点火時期-IVC>CAthの成立が認められない場合には、絶対圧補正バラツキが大きいと判断されて、次のステップに移行し、トルク変動TFが所定のトルク変動TFthよりも小さいか否かが判定される(ステップ104)。ここでは、具体的には、上式(4)を用いて算出されたトルク変動TFと所定のトルク変動TFthとの大小が比較される。尚、所定のトルク変動TFthは、ドライバビリティ要求を満足できるトルク変動として、予め設定された値が読み込まれる。その結果、トルク変動TF<TFthの成立が認められた場合には、現在のトルク変動がドライバビリティ要求を満たす許容範囲内と判断されて、次のステップに移行し、各気筒の点火時期の遅角制御が順に実行される(ステップ106)。ここでは、具体的には、図6に示す点火遅角量とトルク変動との関係を考慮して、トルク変動がTFthを超えない範囲となる点火遅角量が設定される。また、図7に示す点火遅角気筒数と燃費との関係を考慮して、上記設定した点火遅角量において許容しうる点火遅角気筒数が設定される。
 上記ステップ106において、点火遅角制御が実行されると、次に、当該点火遅角制御を実行した気筒の断熱圧縮行程期間が所定クランク角期間CAthよりも大きいか否かが判定される(ステップ108)。ここでは、具体的には、上記ステップ100の処理と同様の処理が点火遅角実行気筒に対して実行される。その結果、点火時期-IVC>CAthの成立が認められない場合には、未だ絶対圧補正バラツキが大きいと判断されて、再度上記ステップ104から本ルーチンが実行される。
 一方、上記ステップ108において、点火時期-IVC>CAthの成立が認められた場合には、絶対圧補正バラツキが小さくなったと判断されて、次のステップに移行し、点火遅角気筒に対して絶対圧補正が実行される(ステップ110)。
 更に、上記ステップ104において、トルク変動TF<TFthの成立が認められない場合には、ドライバビリティ要求を満たしていないと判断されて、次のステップに移行し、トルク変動バランス制御が実行される(ステップ112)。ここでは、具体的には、トルク変動が最良となるように、各気筒の点火時期がそれぞれ制御される。
 次に、トルク変動TFが所定のトルク変動TFthよりも小さいか否かが判定される(ステップ114)。ここでは、具体的には、上記ステップ104と同様の処理が実行される。その結果、トルク変動TF<TFthの成立が認められた場合には、上記ステップ112の処理によってドライバビリティ要求を満たすに至ったと判断されて、本ルーチンは速やかに終了される。一方、上記ステップ114において、トルク変動TF<TFthの成立が認められない場合には、上記ステップ112の処理の後も、未だドライバビリティ要求を満たしていないと判断されて、次のステップに移行し、IVCを進角させるIVC進角制御が実行される(ステップ116)。
 以上説明したとおり、本実施の形態1のシステムによれば、断熱圧縮行程期間が所定クランク角期間CAthよりも小さい場合に、点火遅角制御またはIVC進角制御が実行される。これにより、断熱圧縮行程期間を有効に拡大することができるので、絶対圧補正値Prの算出バラツキを抑制して高精度な絶対圧補正を実現することができる。
 特に、本実施の形態1のシステムによれば、断熱圧縮行程期間が所定クランク角期間CAthよりも小さい場合であって、トルク変動TFが所定のトルク変動TFthよりも小さい場合に、点火遅角制御が実行される。これにより、ドライバビリティ要求を満たしつつ絶対圧補正の精度を向上させることができる。
 また、本実施の形態1のシステムによれば、断熱圧縮行程期間が所定クランク角期間CAthよりも小さい場合であって、トルク変動TFが所定のトルク変動TFth以上である場合に、IVC進角制御が実行される。これにより、トルク変動を抑制しつつ絶対圧補正の精度を向上させることができる。
 更に、本実施の形態1のシステムによれば、断熱圧縮行程期間が所定クランク角期間CAthよりも小さい場合であって、トルク変動TFが所定のトルク変動TFth以上である場合に、IVC進角制御に先立ってトルク変動バランス制御が実行される。これにより、制御応答性の良い点火時期制御によってトルク変動を逸早く抑制し、点火遅角制御の実行機会を有効に高めることができる。
 ところで、上述した実施の形態1では、吸気バルブタイミング制御装置36として、クランク軸に対するカム軸の位相角を変化させることで、作用角は一定のまま開閉タイミングを進角或いは遅角するVVTを用いることとしているが、吸気バルブタイミング制御装置36として利用可能な装置はこれに限られない。すなわち、例えば、気筒別に吸気弁22の閉弁時期を可変させることのできる電磁弁等を利用して、気筒毎のIVCを個別に制御することとしてもよい。
 尚、上述した実施の形態1においては、CPS検出値が前記第1の発明の「筒内圧検出値」に、CPS34が前記第1の発明の「筒内圧センサ」に、断熱圧縮行程期間が前記第1の発明の「断熱期間」に、所定クランク角期間CAthが前記第1の発明の「所定期間」に、それぞれ相当している。また、ECU40が、上記ステップ100の処理を実行することにより、前記第1の発明における「比較手段」が、上記ステップ102および108の処理を実行することにより、前記第1の発明における「絶対圧補正手段」が、上記ステップ106または116の処理を実行することにより、前記第1の発明における「断熱期間変更手段」が、それぞれ実現されている。
 また、上述した実施の形態1においては、所定のトルク変動TFthが前記第2の発明の「所定値」に相当しているとともに、ECU40が、上記ステップ104の処理を実行することにより、前記第2の発明における「トルク変動演算手段」が、上記ステップ106の処理を実行することにより、前記第2の発明における「点火遅角手段」が、それぞれ実現されている。
 また、上述した実施の形態1においては、ECU40が、上記ステップ106の処理を実行することにより、前記第3の発明における「遅角量設定手段」が実現されている。
 また、上述した実施の形態1においては、所定のトルク変動TFthが前記第4の発明の「所定値」に、VVT36が前記第4の発明の「可変動弁機構」に、それぞれ相当している。また、ECU40が、上記ステップ114の処理を実行することにより、前記第4の発明における「トルク変動演算手段」が、上記ステップ116の処理を実行することにより、前記第4の発明における「IVC進角手段」が、それぞれ実現されている。
 また、上述した実施の形態1においては、ECU40が、上記ステップ112の処理を実行することにより、前記第5の発明における「トルク変動バランス制御手段」が実現されている。
10 内燃機関
12 ピストン
14 シリンダヘッド
16 燃焼室
18 吸気通路
20 排気通路
22 吸気弁
24 排気弁
26 エアクリーナ
28 スロットルバルブ
30 点火プラグ
32 燃料噴射弁
34 筒内圧センサ
36 吸気バルブタイミング制御装置(VVT)
40 ECU(Electronic Control Unit)
42 クランク角センサ

Claims (5)

  1.  内燃機関の所定クランク角における所定気筒の筒内圧検出値を出力する筒内圧センサと、
     前記所定気筒のIVCから点火時期までの断熱期間中の所定クランク角θ,θにおける筒内圧検出値P,Pを、前記筒内圧センサを用いてそれぞれ検出する筒内圧検出手段と、
     前記クランク角θにおける前記所定気筒の筒内容積をV、前記クランク角θにおける前記所定気筒の筒内容積をV、前記所定気筒の筒内ガスの比熱比をκとしたとき、前記クランク角θにおけるPVκの値P κから前記クランク角θにおけるPVκの値P κを減算した値に(V κ-V κ)を除算した値を、絶対圧補正値として演算する絶対圧補正値演算手段と、
     前記絶対圧補正値を用いて前記筒内圧検出値を補正する絶対圧補正手段と、
     を備える内燃機関の制御装置において、
     前記断熱期間と所定期間とを比較する比較手段と、
     前記断熱期間が前記所定期間よりも短い場合に、前記断熱期間を拡大させる断熱期間変更手段と、
     を備えることを特徴とする内燃機関の制御装置。
  2.  前記内燃機関のトルク変動を演算するトルク変動演算手段を更に備え、
     前記断熱期間変更手段は、前記断熱期間が前記所定期間よりも短い場合、且つ前記トルク変動が所定値よりも小さい場合に、前記点火時期を遅角する点火遅角手段を含むことを特徴とする請求項1記載の内燃機関の制御装置。
  3.  前記点火遅角手段は、前記トルク変動が所定値を超えない範囲で前記点火時期の遅角量を設定する遅角量設定手段を含むことを特徴とする請求項2記載の内燃機関の制御装置。
  4.  前記内燃機関のトルク変動を演算するトルク変動演算手段と、
     前記吸気閉じ時期を可変させる可変動弁機構と、を更に備え、
     前記断熱期間変更手段は、前記断熱期間が前記所定期間よりも短い場合、且つ前記トルク変動が所定値以上である場合に、前記可変動弁機構を制御して前記IVCを進角させるIVC進角手段を含むことを特徴とする請求項1乃至3の何れか1項記載の内燃機関の制御装置。
  5.  前記断熱期間が前記所定期間よりも短い場合、且つ前記トルク変動が所定値以上である場合に、前記内燃機関の各気筒の点火時期をそれぞれ制御して、前記トルク変動を抑制するトルク変動バランス制御を実行するトルク変動バランス制御手段を更に備えることを特徴とする請求項2乃至4の何れか1項記載の内燃機関の制御装置。
PCT/JP2010/070215 2010-11-12 2010-11-12 内燃機関の制御装置 WO2012063362A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012542778A JP5273317B2 (ja) 2010-11-12 2010-11-12 内燃機関の制御装置
PCT/JP2010/070215 WO2012063362A1 (ja) 2010-11-12 2010-11-12 内燃機関の制御装置
CN201080065813.9A CN102822487B (zh) 2010-11-12 2010-11-12 内燃机的控制装置
DE112010005988.8T DE112010005988B4 (de) 2010-11-12 2010-11-12 Steuergerät für eine Brennkraftmaschine
US13/576,828 US8651088B2 (en) 2010-11-12 2010-11-12 Control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070215 WO2012063362A1 (ja) 2010-11-12 2010-11-12 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2012063362A1 true WO2012063362A1 (ja) 2012-05-18

Family

ID=46050540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070215 WO2012063362A1 (ja) 2010-11-12 2010-11-12 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8651088B2 (ja)
JP (1) JP5273317B2 (ja)
CN (1) CN102822487B (ja)
DE (1) DE112010005988B4 (ja)
WO (1) WO2012063362A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104407A (ja) * 2011-11-16 2013-05-30 Toyota Motor Corp 内燃機関の制御装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942805B2 (ja) * 2012-11-16 2016-06-29 トヨタ自動車株式会社 火花点火式内燃機関
JP5708674B2 (ja) * 2013-01-24 2015-04-30 トヨタ自動車株式会社 内燃機関の制御装置
JP5790684B2 (ja) * 2013-03-22 2015-10-07 トヨタ自動車株式会社 火花点火式内燃機関
JP6621483B2 (ja) 2015-04-14 2019-12-18 ウッドワード, インコーポレーテッドWoodward, Inc. 可変分解能サンプリングによる燃焼圧力フィードバックエンジン制御
JP6686684B2 (ja) * 2016-05-11 2020-04-22 いすゞ自動車株式会社 排ガス浄化システム
JP6190936B1 (ja) * 2016-09-27 2017-08-30 三菱電機株式会社 内燃機関の制御装置及びその制御方法
US10934965B2 (en) 2019-04-05 2021-03-02 Woodward, Inc. Auto-ignition control in a combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351146A (ja) * 2004-06-09 2005-12-22 Toyota Motor Corp 内燃機関の制御装置および制御方法
JP2006132526A (ja) * 2004-10-07 2006-05-25 Toyota Motor Corp 内燃機関の制御装置および制御方法
JP2007146785A (ja) * 2005-11-29 2007-06-14 Toyota Motor Corp 内燃機関の制御装置および制御方法
JP2008025404A (ja) * 2006-07-19 2008-02-07 Toyota Motor Corp 筒内圧センサの校正装置
JP2008025551A (ja) * 2006-07-25 2008-02-07 Yanmar Co Ltd ディーゼルエンジンのバルブタイミング制御方法
JP2010190090A (ja) * 2009-02-17 2010-09-02 Toyota Motor Corp 吸気圧センサの劣化判定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432405C (zh) * 2004-10-07 2008-11-12 丰田自动车株式会社 内燃机的控制装置及控制方法
JP4353078B2 (ja) * 2004-11-18 2009-10-28 トヨタ自動車株式会社 内燃機関の制御装置および制御方法
JP4793488B2 (ja) * 2009-03-11 2011-10-12 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351146A (ja) * 2004-06-09 2005-12-22 Toyota Motor Corp 内燃機関の制御装置および制御方法
JP2006132526A (ja) * 2004-10-07 2006-05-25 Toyota Motor Corp 内燃機関の制御装置および制御方法
JP2007146785A (ja) * 2005-11-29 2007-06-14 Toyota Motor Corp 内燃機関の制御装置および制御方法
JP2008025404A (ja) * 2006-07-19 2008-02-07 Toyota Motor Corp 筒内圧センサの校正装置
JP2008025551A (ja) * 2006-07-25 2008-02-07 Yanmar Co Ltd ディーゼルエンジンのバルブタイミング制御方法
JP2010190090A (ja) * 2009-02-17 2010-09-02 Toyota Motor Corp 吸気圧センサの劣化判定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104407A (ja) * 2011-11-16 2013-05-30 Toyota Motor Corp 内燃機関の制御装置

Also Published As

Publication number Publication date
CN102822487A (zh) 2012-12-12
DE112010005988B4 (de) 2014-12-04
DE112010005988T5 (de) 2013-08-14
US20130213354A1 (en) 2013-08-22
JPWO2012063362A1 (ja) 2014-05-12
JP5273317B2 (ja) 2013-08-28
US8651088B2 (en) 2014-02-18
CN102822487B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5273317B2 (ja) 内燃機関の制御装置
US8046156B2 (en) Control apparatus of internal combustion engine
US7004148B2 (en) Control apparatus for internal combustion engine
JP6174264B2 (ja) 内燃機関の制御装置及び制御方法
JP5758862B2 (ja) 内燃機関の筒内圧検出装置
JP5802229B2 (ja) 内燃機関の点火制御装置
JP4732305B2 (ja) 内燃機関の制御装置
WO2016063639A1 (ja) エンジンの制御装置
JP2007056784A (ja) 内燃機関の点火時期制御装置
JP5772531B2 (ja) 内燃機関の制御装置
JP2008240569A (ja) 内燃機関の点火時期制御装置
JP4758770B2 (ja) 内燃機関の吸入空気量制御装置
JP2015014229A (ja) 内燃機関の異常燃焼回避装置
JP6272003B2 (ja) エンジンの制御装置
JP7209753B2 (ja) 内燃機関の制御装置
WO2021250890A1 (ja) エンジンの制御方法及び制御装置
JP5594218B2 (ja) 内燃機関の制御装置
JP2018172994A (ja) 内燃機関制御装置
JP6570504B2 (ja) 内燃機関の制御装置
JP2007009835A (ja) 内燃機関の制御装置
JP5626089B2 (ja) 内燃機関の制御装置
JP2009216002A (ja) エンジンの燃料噴射制御装置
JP2010229928A (ja) 内燃機関の点火時期制御装置
JP2011226427A (ja) アイドル回転数制御方法
JP2006257964A (ja) 可変吸気管長機構を有する内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065813.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859404

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13576828

Country of ref document: US

Ref document number: 2012542778

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120100059888

Country of ref document: DE

Ref document number: 112010005988

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859404

Country of ref document: EP

Kind code of ref document: A1