WO2012062656A1 - Arbeitsmedium für absorptionswärmepumpen - Google Patents

Arbeitsmedium für absorptionswärmepumpen Download PDF

Info

Publication number
WO2012062656A1
WO2012062656A1 PCT/EP2011/069402 EP2011069402W WO2012062656A1 WO 2012062656 A1 WO2012062656 A1 WO 2012062656A1 EP 2011069402 W EP2011069402 W EP 2011069402W WO 2012062656 A1 WO2012062656 A1 WO 2012062656A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethyl
acetate
working medium
methylimidazolium
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2011/069402
Other languages
German (de)
English (en)
French (fr)
Inventor
Matthias Seiler
Rolf Schneider
Olivier Zehnacker
Marc-Christoph Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Priority to EP11778629.3A priority Critical patent/EP2638123B1/de
Priority to BR112013007941A priority patent/BR112013007941A2/pt
Priority to SG2013016167A priority patent/SG188955A1/en
Priority to KR1020137014601A priority patent/KR101404833B1/ko
Priority to JP2013538135A priority patent/JP6358799B2/ja
Priority to CA2817264A priority patent/CA2817264C/en
Priority to PH1/2013/500344A priority patent/PH12013500344A1/en
Priority to CN201180051909.4A priority patent/CN103189466B/zh
Priority to US13/883,573 priority patent/US20130219949A1/en
Priority to HK13114427.9A priority patent/HK1187070B/xx
Publication of WO2012062656A1 publication Critical patent/WO2012062656A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/047Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type

Definitions

  • the invention relates to a working medium for
  • Absorption heat pumps which are a refrigerant, an ionic liquid as sorbent and an additive for
  • Improvement of the material and heat transfer includes.
  • Classic heat pumps are based on a cycle of a refrigerant via an evaporator and a condenser.
  • a refrigerant is evaporated, wherein heat is removed from a first medium by the heat of vaporization absorbed by the refrigerant. The evaporated
  • Refrigerant is then pressurized to a higher pressure and condensed at a higher temperature than the vaporization in the condenser, releasing the heat of vaporization and releasing heat to a second medium at a higher temperature level. Subsequently, the liquefied refrigerant is relieved to the pressure of the evaporator.
  • Refrigerant, the evaporator and the condenser of a conventional heat pump nor a sorbent, an absorber and a desorber In the absorber, the vaporized refrigerant is absorbed at the pressure of evaporation in the sorbent and then desorbed in the desorber at the higher pressure of the condensation by supplying heat back from the sorbent.
  • Sorbent requires less mechanical energy than the compression of the refrigerant vapor in a traditional heat pump, rather than the consumption of mechanical Energy occurs for the desorption of the refrigerant
  • Absorption heat pump is calculated as the ratio of the used for cooling or heating heat flow to the
  • Absorption heat pump is supplied, and is called
  • Absorption heat pumps use a working medium that uses water as the refrigerant and lithium bromide as
  • Working media containing water as refrigerant and lithium bromide as sorbent have the disadvantage that a water concentration of 35 to 40 wt .-% in Working medium may not fall below, otherwise it would lead to the crystallization of lithium bromide and thereby
  • EP 2 093 278 A1 discloses fatty alcohols, such as isostearyl alcohol and oleyl alcohol, as wetting-requiring additives for ionic liquids.
  • Contain liquid with organic cations as a sorbent, which can improve the mass or heat transfer in the absorption of an absorption heat pump.
  • Refrigerant water completely different behavior than the sorbent lithium bromide, as they unlike LiBr not increase the surface tension compared to water, but significantly reduce, as for example, from W. Liu et al, J. Mol. Liquids 140 (2008) 68- 72 is known.
  • the ionic liquid shows a similar surfactant behavior as 2-ethyl-l-hexanol and enriches in a mixture with water at the
  • aliphatic alcohol having 6 to 10 carbon atoms such as 2-ethyl-1-hexanol, containing water as a refrigerant and ionic liquid as a sorbent
  • the invention accordingly is a
  • the at least one refrigerant at least one monohydric aliphatic alcohol having 6 to 10 carbon atoms and at least one ionic liquid of at least one organic
  • the invention is also a
  • Absorption heat pump which includes an absorber, a desorber, a condenser, an evaporator and a
  • inventive working medium comprises.
  • absorption heat pump according to the invention includes all devices that absorb heat at a low temperature level and at a higher
  • Absorptive heat pumps according to the invention thus include both absorption chillers and absorption heat pumps in the narrower sense, in which absorber and evaporator are operated at a lower working pressure than desorber and condenser, as well as absorption heat transformers in which absorber and evaporator at a higher
  • Working pressure can be operated as a desorber and a condenser.
  • absorption chillers the intake of
  • Evaporative heat in the evaporator used to cool a medium.
  • absorption heat pumps in the narrower sense, the heat released in the condenser and / or absorber is used to heat a medium.
  • Absorption heat transformers the absorption heat released in the absorber is used for heating a medium, wherein the heat of absorption at a higher
  • the working medium according to the invention comprises at least one refrigerant, at least one monohydric aliphatic alcohol having 6 to 10 carbon atoms and at least one ionic liquid of at least one organic
  • the working medium preferably comprises from 4 to 67% by weight of refrigerant, from 0.0001 to 10% by weight of alcohol having from 6 to 10 carbon atoms and from 30 to 95% by weight of ionic liquid.
  • the working medium according to the invention comprises at least one refrigerant which is volatile, so that when using the working medium in an absorption heat pump, a portion of the refrigerant in the desorber can be evaporated by supplying heat from the working medium.
  • the invention Working medium contains as refrigerant preferably water, methanol, ethanol or mixtures of these refrigerants.
  • the refrigerant is methanol, ethanol, a mixture of methanol and ethanol, a mixture of ethanol with water or a mixture of methanol with water.
  • the refrigerant is ethanol.
  • Methanol, ethanol or mixtures of methanol or ethano with water can be used in absorption chillers to cool to temperatures less than 0 ° C
  • Working media according to the invention which contain water as refrigerant, do not form any ignitable vapors when using the working medium in an absorption heat pump.
  • the working medium according to the invention also comprises at least one monohydric aliphatic alcohol having 6 to 10 carbon atoms, which in the use of the
  • the alcohol is preferably a primary alcohol and preferably has a branched alkyl radical.
  • Suitable alcohols are in principle all hexanols, heptanols, octanols, nonanols, decanols and mixtures thereof, the alcohols being 2-methyl-1-hexanol, 2-ethyl-1-hexanol and 3,5,5-trimethyl-1-hexanol are preferred and 2-ethyl-l-hexanol is particularly preferred.
  • the working medium according to the invention preferably comprises at least 0.0001 wt .-%, particularly preferably at least 0.001 wt .-% and in particular at least 0.0015 wt .-% of the alcohol having 6 to 10 carbon atoms.
  • the working medium according to the invention preferably comprises at most 10% by weight, more preferably at most
  • the proportion of alcohol in the working medium depending on the refrigerant used and the used ionic liquid preferably chosen so that with the least possible amount of alcohol a
  • the working medium according to the invention further comprises at least one ionic liquid of at least one organic cation and at least one anion, which in the use of the working medium in a
  • ionic liquid refers to salts or mixtures of salts free of nonionic substances or additives.
  • the ionic liquid is one or more salts of organic cations with organic or inorganic anions.
  • the ionic liquid preferably has a melting point of less than 20 ° C in order to use the
  • the anion (s) of the ionic liquid may be mono-, di- or poly-negatively charged and are preferably simply negatively charged and more preferably anions of monovalent acids.
  • the one or more anions of the ionic liquid may be mono-, di- or poly-negatively charged and are preferably simply negatively charged and more preferably anions of monovalent acids.
  • the one or more anions of the ionic liquid may be mono-, di- or poly-negatively charged and are preferably simply negatively charged and more preferably anions of monovalent acids.
  • the one or more anions of the ionic liquid may be mono-, di- or poly-negatively charged and are preferably simply negatively charged and more preferably anions of monovalent acids.
  • the one or more anions of the ionic liquid may be mono-, di- or poly-negatively charged and are preferably simply negatively charged and more preferably anions of monovalent acids.
  • the one or more anions of the ionic liquid may be mono-, di- or poly-negatively charged and are preferably
  • Suitable anions are anions of monovalent ones
  • inorganic acids preferably halides, nitrate, nitrite and cyanate, as well as anions of monovalent
  • organic acids preferably carboxylic acids such as
  • inorganic acids preferably sulfate, hydrogen sulfate, carbonate and bicarbonate, as well as mono- and dianions of divalent organic acids, preferably oxalate, succinate and malonate.
  • mono-, di- and trianions of trivalent inorganic acids preferably sulfate, hydrogen sulfate, carbonate and bicarbonate, as well as mono- and dianions of divalent organic acids, preferably oxalate, succinate and malonate.
  • phosphate preferably phosphate, hydrogen phosphate and
  • Dihydrogen phosphate Dihydrogen phosphate.
  • suitable inorganic anions are tetrafluoroborate, hexafluorophosphate, hydroxide,
  • Perfluoroalkyl radical having 1 to 30 carbon atoms, as well as saccharinate and anions of the formulas R a OS0 3 ⁇ and R a S0 3 ⁇ , in which R a is a polyether radical.
  • the anion (s) are of the ionic type
  • Liquid selected from hydroxide, halides, nitrate, nitrite, carboxylates, phosphate, alkyl phosphates,
  • Hexafluorophosphate and more preferably selected from the group consisting of hydroxide, chloride, bromide, nitrate, nitrite, formate, acetate, propionate, glycolate, Dimethyl phosphate, diethyl phosphate, methyl sulfate and
  • this comprises
  • Working fluid an ionic liquid with phosphate or phosphonate ions, in particular dimethyl phosphate or
  • Diethyl phosphate in combination with methanol or ethanol as a refrigerant. This combination can be when using the working medium in one
  • Absorption heat pump at the same time achieve a high mass and heat transfer in the absorber and low corrosion and avoid solidification of the ionic liquid in the sorbent circuit.
  • the organic cation (s) of the ionic liquid may be singly, doubly or multiply positively charged and are preferably simply positively charged.
  • the organic cation (s) of the ionic liquid preferably have a molecular weight of at most 260 g / mol, more preferably of at most 220 g / mol,
  • R 1 RN + C (NR 3 R 4 ) (NR 5 R 6 ) (IV)
  • R 1 RN + C (NR 3 R 4 ) (XR 5 ) (V) in which R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are the same or different and
  • Hydrogen a linear or branched aliphatic or olefinic hydrocarbon radical, a
  • Hydrocarbon radical an alkylaryl radical, a
  • R ' is an aliphatic or olefinic
  • Hydrocarbon radical is,
  • R 7 is a linear or branched alkylene radical containing 2 or 3 carbon atoms, n is from 1 to 3,
  • R 8 is hydrogen or a linear or branched one
  • X is an oxygen atom or a sulfur atom, and wherein at least one and preferably each of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is other than hydrogen.
  • heteroaromatic cations having at least one quaternary nitrogen atom in the ring, which carries a radical R 1 as defined above, preferably nitrogen atom-substituted derivatives of pyrrole, pyrazole, imidazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, Pyrimidine, pyrazine, indole, quinoline, isoquinoline, cinnoline, quinoxaline or phthalazine.
  • the organic cation contains a quaternary nitrogen atom.
  • the organic cation is preferably a 1-alkylimidazolium ion, 1, 3-dialkylimidazolium ion,
  • each other are hydrogen, alkyl or hydroxyethyl and R 4 is an alkyl radical.
  • the organic cation is a 1, 3-dialkylimidazolium ion, wherein the
  • Alkyl groups are independently selected from methyl, ethyl, n-propyl and n-butyl.
  • the organic cations are N-alkylated alkylpyridinium ions, hereinafter referred to as N-alkyl-alkylpyridinium ions, which are obtainable by alkylating a mixture of alkylpyridines unsubstituted on the nitrogen atom,
  • N-methylalkylpyridinium ions and N-butylalkylpyridinium ions Particular preference is given to N-alkylalkylpyridinium ions which are obtained by alkylating a mixture of picolines, dimethylpyridines and ethylpyridines
  • Preferred organic cations are 1-methylimidazolium, 1, 3-dimethylimidazolium, 1-ethyl-3-methylimidazolium,
  • the refrigerant is water and the ionic liquid is 2-hydroxyethyltrimethylammonium acetate,
  • N-methylpyridinium chloride N-methylpyridinium acetate
  • Tetramethylammonium formate tetramethylammonium acetate, 1-butyltrimethylammonium acetate,
  • Working medium according to the invention is the refrigerant
  • the ionic liquids can be prepared by methods known in the art,
  • the ionic liquids are preferably liquid at 20 ° C and has at this temperature a viscosity according to DIN 53 019 from 1 to 15,000 mPas, more preferably from 2 to 10,000 mPa's, especially 5 to 5,000 mPa's and most preferably from 10 to 3,000 mPa's , At a temperature of 50 ° C, the ionic liquid
  • ionic liquids are used which are immiscible with water indefinitely, stable to hydrolysis and thermally stable up to a temperature of 100 ° C.
  • Hydrolysis-stable ionic liquids in a mixture with 50% by weight of water when stored at 80 ° C. within 8000 h show less than 5% degradation by hydrolysis.
  • ionic liquids which, on analysis, show a weight loss of less than 10% and in particular less than 5%.
  • the working medium according to the invention can be used in addition to
  • the proportion of corrosion inhibitors is preferably 10 to 50,000 ppm, more preferably 100 to 10,000 ppm, based on the mass of the ionic
  • Preferred inorganic corrosion inhibitors are Li 2 Cr0 4 , Li 2 Mo0 4 , Li 3 VO, LiVO 3 , NiBr 2 , Li 3 PO 4 , CoBr 2 and LiOH.
  • Suitable organic corrosion inhibitors are amines and alkanolamines, preferably 2-aminoethanol,
  • Fatty acid alkylolamides referred to amides of fatty acids with alkanolamines and their alkoxylates. Suitable is
  • Phosphoric acid esters in particular phosphoric acid esters of ethoxylated fatty alcohols, and fatty acid-alkanolamine mixtures.
  • Preferred organic corrosion inhibitors are benzimidazole and especially benzotriazole.
  • the working medium of the invention exhibits in a corrosion test according to ASTM D1384 for all Test materials have a removal of less than 5 g / m 2 , more preferably less than 3 g / m 2 and in particular less than 2 g / m 2 .
  • ASTM D1384 for all Test materials have a removal of less than 5 g / m 2 , more preferably less than 3 g / m 2 and in particular less than 2 g / m 2 .
  • precisely weighed, drilled metal flakes of copper, soft solder, brass, steel, gray cast iron and cast aluminum are placed in a rack on an insulated bar one behind the other. Copper, soft solder and brass are going through
  • Spacers made of brass, steel, cast iron and cast aluminum are each conductively connected by steel spacers, but the resulting "packages" are isolated from one another
  • the test specimen is immersed in the medium and heated to 88 ° C. for 14 days while introducing air
  • the slides are then cleaned, weighed again and the removal determined.
  • Absorption heat pump can be reduced.
  • the absorption heat pump according to the invention comprises an absorber, a desorber, a condenser, a
  • vapor refrigerant is absorbed in low-refrigerant working medium in the absorber to obtain a
  • refrigerant-rich working medium and releasing heat of absorption. From the thus obtained refrigerant-rich working medium is in the desorber with heat Refrigerant vapor desorbs to give low-refrigerant working medium, which is returned to the absorber.
  • the vapor refrigerant obtained in the desorber is condensed in the condenser with the release of heat of condensation, the resulting liquid refrigerant is in the evaporator with uptake of
  • the absorption heat pump according to the invention can be designed both in one stage and in several stages with several coupled circuits of the working medium.
  • Absorption heat pump, an absorption chiller and the evaporator heat is absorbed from a medium to be cooled.
  • the absorption heat pump according to the invention has over those known from WO 2005/113702 and WO 2006/134015
  • a model CH-MG 150 absorption chiller from YAZAKI was used with working media of 80% by weight of ionic liquid and 20% by weight of refrigerant at one

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
PCT/EP2011/069402 2010-11-08 2011-11-04 Arbeitsmedium für absorptionswärmepumpen Ceased WO2012062656A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP11778629.3A EP2638123B1 (de) 2010-11-08 2011-11-04 Arbeitsmedium für absorptionswärmepumpen
BR112013007941A BR112013007941A2 (pt) 2010-11-08 2011-11-04 meio de trabalho para bombas de absorção de calor
SG2013016167A SG188955A1 (en) 2010-11-08 2011-11-04 Working medium for absorption heat pumps
KR1020137014601A KR101404833B1 (ko) 2010-11-08 2011-11-04 흡수식 열 펌프용 작업 매체
JP2013538135A JP6358799B2 (ja) 2010-11-08 2011-11-04 吸収式ヒートポンプのための作動媒体
CA2817264A CA2817264C (en) 2010-11-08 2011-11-04 Working medium for absorption heat pumps
PH1/2013/500344A PH12013500344A1 (en) 2010-11-08 2011-11-04 Working medium for absorption heat pumps
CN201180051909.4A CN103189466B (zh) 2010-11-08 2011-11-04 用于吸收式热泵的工作介质
US13/883,573 US20130219949A1 (en) 2010-11-08 2011-11-04 Working medium for absorption heat pumps
HK13114427.9A HK1187070B (en) 2010-11-08 2011-11-04 Working medium for absorption heat pumps

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10190356 2010-11-08
EP10190356.5 2010-11-08

Publications (1)

Publication Number Publication Date
WO2012062656A1 true WO2012062656A1 (de) 2012-05-18

Family

ID=43760011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/069402 Ceased WO2012062656A1 (de) 2010-11-08 2011-11-04 Arbeitsmedium für absorptionswärmepumpen

Country Status (11)

Country Link
US (1) US20130219949A1 (enExample)
EP (1) EP2638123B1 (enExample)
JP (2) JP6358799B2 (enExample)
KR (1) KR101404833B1 (enExample)
CN (1) CN103189466B (enExample)
BR (1) BR112013007941A2 (enExample)
CA (1) CA2817264C (enExample)
MY (1) MY153070A (enExample)
PH (1) PH12013500344A1 (enExample)
SG (1) SG188955A1 (enExample)
WO (1) WO2012062656A1 (enExample)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623123B2 (en) 2009-02-02 2014-01-07 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethyl piperidine
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
US9221007B2 (en) 2011-11-14 2015-12-29 Evonik Degussa Gmbh Method and device for separating acid gases from a gas mixture
WO2017174235A1 (de) * 2016-04-06 2017-10-12 Sortech Ag Adsorptionswärmepumpe und verfahren zum betreiben einer adsorptionswärmepumpe
DE102016210484A1 (de) * 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
DE102016210478A1 (de) * 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088389B1 (de) * 2008-02-05 2017-05-10 Evonik Degussa GmbH Absorptionskältemaschine
DE102009047564A1 (de) 2009-12-07 2011-06-09 Evonik Degussa Gmbh Arbeitsmedium für eine Absorptionskältemaschine
DE102011077377A1 (de) 2010-11-12 2012-05-16 Evonik Degussa Gmbh Verfahren zur Absorption von sauren Gasen aus Gasmischungen
DE102012200907A1 (de) 2012-01-23 2013-07-25 Evonik Industries Ag Verfahren und Absorptionsmedium zur Absorption von CO2 aus einer Gasmischung
WO2013113461A1 (en) * 2012-02-02 2013-08-08 Vtu Holding Gmbh Ionic liquids for cooling in high temperature environment
DE102012207509A1 (de) 2012-05-07 2013-11-07 Evonik Degussa Gmbh Verfahren zur Absorption von CO2 aus einer Gasmischung
EP2735820A1 (de) * 2012-11-21 2014-05-28 Evonik Industries AG Absorptionswärmepumpe und Sorptionsmittel für eine Absorptionswärmepumpe umfassend Methansulfonsäure
CN104592942B (zh) * 2014-12-24 2017-11-24 巨化集团技术中心 一种阻燃型制冷剂及其制备方法
DE102015212749A1 (de) 2015-07-08 2017-01-12 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
JP2019517654A (ja) * 2016-05-26 2019-06-24 矢崎総業株式会社 吸収式冷凍機におけるグアニジニウム系イオン液体
US10168080B2 (en) * 2016-05-26 2019-01-01 Yazaki Corporation Eutectic mixtures of ionic liquids in absorption chillers
EP3257843A1 (en) 2016-06-14 2017-12-20 Evonik Degussa GmbH Method of preparing a high purity imidazolium salt
DE102016210481B3 (de) 2016-06-14 2017-06-08 Evonik Degussa Gmbh Verfahren zum Reinigen einer ionischen Flüssigkeit
EP3257568B1 (de) 2016-06-14 2019-09-18 Evonik Degussa GmbH Verfahren zur entfeuchtung von feuchten gasgemischen mit ionischen flüssigkeiten
DE102016210483A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren und Absorptionsmittel zur Entfeuchtung von feuchten Gasgemischen
JP6729453B2 (ja) * 2017-03-07 2020-07-22 株式会社デンソー 熱媒体用基材、並びにそれを用いた熱輸送システムおよびヒートポンプシステム
KR102482452B1 (ko) 2017-09-28 2022-12-29 삼성디스플레이 주식회사 유기 재료 정제 조성물 및 이를 이용한 유기 재료 정제 방법
JP7054874B2 (ja) * 2018-08-23 2022-04-15 パナソニックIpマネジメント株式会社 液体吸湿材料を用いた調湿システムおよびこれを備える空気調和装置
JP7054876B2 (ja) * 2018-08-23 2022-04-15 パナソニックIpマネジメント株式会社 液体吸湿材料を用いた調湿システムおよびこれを備える空気調和装置
JP7054875B2 (ja) * 2018-08-23 2022-04-15 パナソニックIpマネジメント株式会社 液体吸湿材料を用いた調湿システムおよびこれを備える空気調和装置
JP7054873B2 (ja) * 2018-08-23 2022-04-15 パナソニックIpマネジメント株式会社 液体吸湿材料を用いた調湿システムおよびこれを備える空気調和装置、並びに、調湿システム用液体吸湿材料
WO2020114576A1 (en) 2018-12-04 2020-06-11 Evonik Operations Gmbh Process for dehumidifying moist gas mixtures
EP3757189A1 (en) * 2019-06-26 2020-12-30 Evonik Operations GmbH Use of ionic liquids as coolants for vehicle engines, motors and batteries
KR102524486B1 (ko) * 2021-09-24 2023-04-20 고려대학교 산학협력단 흡수식 에너지 저장 및 냉난방 동시 활용 시스템
EP4282890A1 (de) 2022-05-25 2023-11-29 Evonik Operations GmbH Herstellung von polyurethanschaum unter verwendung von ionischen flüssigkeiten
EP4282892A1 (de) 2022-05-25 2023-11-29 Evonik Operations GmbH Herstellung von polyurethanschaum unter verwendung von katalysatoren auf basis ionischer flüssigkeiten
CN116790225A (zh) * 2023-06-14 2023-09-22 东方电气集团东方锅炉股份有限公司 一种低温热源驱动下的吸收式制冷工质对
CN119924302A (zh) * 2023-11-03 2025-05-06 中国石油天然气股份有限公司 增强杀菌缓蚀剂配伍性的助剂和杀菌缓蚀剂及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276217A (en) 1965-11-09 1966-10-04 Carrier Corp Maintaining the effectiveness of an additive in absorption refrigeration systems
US3580759A (en) 1968-06-25 1971-05-25 Borg Warner Heat transfer additives for absorbent solutions
US3609087A (en) 1968-02-01 1971-09-28 American Gas Ass Inc The Secondary alcohol additives for lithium bromide-water absorption refrigeration system
WO2005113702A1 (de) 2004-05-21 2005-12-01 Basf Aktiengesellschaft Neue arbeitsstoffpaare für absorptionswärmepumpen, absorptionskältemaschinen und wärmetransformatoren
WO2006134015A1 (de) 2005-06-17 2006-12-21 Evonik Degussa Gmbh Neuartige arbeitsmedien für kälteprozesse
US20070144186A1 (en) * 2005-12-14 2007-06-28 Shiflett Mark B Absorption cycle utilizing ionic liquids and water as working fluids
EP2087930A1 (de) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Verfahren zur Absorption eines flüchtigen Stoffes in einem flüssigen Absorptionsmittel
EP2093278A1 (de) 2008-02-05 2009-08-26 Evonik Goldschmidt GmbH Performance-Additive zur Verbesserung der Benetzungseigenschaften von ionischen Flüssigkeiten auf festen Oberflächen

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606779A (ja) * 1983-06-27 1985-01-14 Sanyo Electric Co Ltd 吸収冷凍機用の組成物
JPH01198679A (ja) * 1987-10-16 1989-08-10 Kawasaki Heavy Ind Ltd 吸収冷凍機用吸収液
JPH076704B2 (ja) * 1988-01-20 1995-01-30 矢崎総業株式会社 吸収冷凍機の吸収液
JP2512095B2 (ja) * 1988-08-12 1996-07-03 株式会社日立製作所 冷熱発生方法
US5390509A (en) * 1991-11-27 1995-02-21 Rocky Research Triple effect absorption cycle apparatus
JP3013673B2 (ja) * 1993-11-12 2000-02-28 株式会社日立製作所 吸収冷凍機
JPH07139839A (ja) * 1993-11-19 1995-06-02 Sekiyu Sangyo Kasseika Center 吸収式冷温水機の吸収促進剤
JPH09104862A (ja) * 1995-02-27 1997-04-22 Asahi Glass Co Ltd 吸収冷凍機用組成物および吸収冷凍機
DE29516319U1 (de) * 1995-10-14 1996-02-01 ABSOTECH Energiesparsysteme GmbH & Co. KG, 83646 Bad Tölz Absorptionswärmetransformationsanlage mit Zusatzkomponenten zur Steigerung der Nutzleistung bzw. Erweiterung der Grenzen für die Antriebs-, Nutz- oder Kühltemperaturen
JP2002098449A (ja) * 2000-09-22 2002-04-05 Mitsubishi Heavy Ind Ltd 吸収冷凍機
JP2002228291A (ja) * 2001-01-30 2002-08-14 Kawasaki Thermal Engineering Co Ltd 吸収冷凍機
US8715521B2 (en) * 2005-02-04 2014-05-06 E I Du Pont De Nemours And Company Absorption cycle utilizing ionic liquid as working fluid
EP2129737B1 (en) * 2007-04-03 2012-10-17 E. I. Du Pont de Nemours and Company Heat transfer systems using mixtures of polyols and ionic liquids
JP2008267667A (ja) * 2007-04-18 2008-11-06 Hitachi Building Systems Co Ltd 吸収式冷温水機用吸収液および吸収式冷温水機
EP2087931A3 (de) * 2008-02-05 2011-08-31 Evonik Goldschmidt GmbH Entschäumung von ionischen Flüssigkeiten
EP2088389B1 (de) * 2008-02-05 2017-05-10 Evonik Degussa GmbH Absorptionskältemaschine
KR20110095282A (ko) * 2008-11-07 2011-08-24 이 아이 듀폰 디 네모아 앤드 캄파니 작동 유체로서 이온성 화합물 및/또는 비이온성 흡수제를 이용하는 흡수 사이클
CN102449101A (zh) * 2009-03-31 2012-05-09 纳幕尔杜邦公司 溴化锂/水吸收循环系统中的离子化合物
EP2246651A2 (de) * 2009-04-27 2010-11-03 Basf Se Absorptionswärmepumpen, Absorptionskältemaschinen und Absorptionswärmetransformatoren auf Basis EMIM-acetat / Methanol
DE102009047564A1 (de) * 2009-12-07 2011-06-09 Evonik Degussa Gmbh Arbeitsmedium für eine Absorptionskältemaschine
EP2380941A1 (de) * 2010-04-20 2011-10-26 Evonik Degussa GmbH Absorptionswärmepumpe mit Sorptionsmittel umfassend ein Lithiumsalz und ein organisches Salz mit gleichem Anion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276217A (en) 1965-11-09 1966-10-04 Carrier Corp Maintaining the effectiveness of an additive in absorption refrigeration systems
US3609087A (en) 1968-02-01 1971-09-28 American Gas Ass Inc The Secondary alcohol additives for lithium bromide-water absorption refrigeration system
US3580759A (en) 1968-06-25 1971-05-25 Borg Warner Heat transfer additives for absorbent solutions
WO2005113702A1 (de) 2004-05-21 2005-12-01 Basf Aktiengesellschaft Neue arbeitsstoffpaare für absorptionswärmepumpen, absorptionskältemaschinen und wärmetransformatoren
WO2006134015A1 (de) 2005-06-17 2006-12-21 Evonik Degussa Gmbh Neuartige arbeitsmedien für kälteprozesse
US20070144186A1 (en) * 2005-12-14 2007-06-28 Shiflett Mark B Absorption cycle utilizing ionic liquids and water as working fluids
EP2087930A1 (de) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Verfahren zur Absorption eines flüchtigen Stoffes in einem flüssigen Absorptionsmittel
WO2009097930A2 (de) 2008-02-05 2009-08-13 Evonik Degussa Gmbh Verfahren zur absorption eines flüchtigen stoffes in einem flüssigen absorptionsmittel
EP2093278A1 (de) 2008-02-05 2009-08-26 Evonik Goldschmidt GmbH Performance-Additive zur Verbesserung der Benetzungseigenschaften von ionischen Flüssigkeiten auf festen Oberflächen

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEMIE, vol. 112, 2000, pages 3926 - 3945
F. ZIEGLER, INT. J. THERM. SCI., vol. 38, 1999, pages 191 - 208
P. WASSERSCHEID, T. WELTON: "Ionic Liquids in Synthesis", 2007, WILEY-VCH
U.DOMANSKA ET AL: "solubility of 1-Alkyl-3-ethylimidazolium-based ionic liquids in water and 1-octanol", JOURNAL CHEMICAL ENGINEERING DATA, 2008, pages 1126 - 1132, XP002631001 *
W. LIU ET AL., J. MOL. LIQUIDS, vol. 140, 2008, pages 68 - 72
X. ZHOU, K. E. HEROLD, PROC. OF THE INT. SORPTION HEAT PUMP CONF., 2002, pages 341 - 346
ZHOU X ET AL: "The vapor surfactant theory of absorption and condensation enhancement", PROCEEDINGS OF THE INTERNATIONAL SORPTION HEAT PUMP CONFERENCE, SCIENCE PRESS, BEIJING; CHINA; SHANGHAI, CHINA, 1 January 2002 (2002-01-01), pages 341 - 346, XP008134895, ISBN: 978-1-880132-06-7 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
US8623123B2 (en) 2009-02-02 2014-01-07 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethyl piperidine
US9221007B2 (en) 2011-11-14 2015-12-29 Evonik Degussa Gmbh Method and device for separating acid gases from a gas mixture
WO2017174235A1 (de) * 2016-04-06 2017-10-12 Sortech Ag Adsorptionswärmepumpe und verfahren zum betreiben einer adsorptionswärmepumpe
US11441823B2 (en) 2016-04-06 2022-09-13 Fahrenheit Gmbh Adsorption heat pump and method for operating an adsorption heat pump
DE102016210484A1 (de) * 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
DE102016210478A1 (de) * 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen

Also Published As

Publication number Publication date
CA2817264C (en) 2016-12-13
HK1187070A1 (zh) 2014-03-28
CA2817264A1 (en) 2012-05-18
CN103189466B (zh) 2016-01-06
JP2017036914A (ja) 2017-02-16
KR20130100349A (ko) 2013-09-10
BR112013007941A2 (pt) 2016-06-14
SG188955A1 (en) 2013-05-31
EP2638123A1 (de) 2013-09-18
JP2013543965A (ja) 2013-12-09
PH12013500344A1 (en) 2013-03-25
KR101404833B1 (ko) 2014-06-09
MY153070A (en) 2014-12-31
EP2638123B1 (de) 2016-08-31
CN103189466A (zh) 2013-07-03
JP6358799B2 (ja) 2018-07-18
US20130219949A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
EP2638123B1 (de) Arbeitsmedium für absorptionswärmepumpen
EP2923158B1 (de) Absorptionswärmepumpe und sorptionsmittel für eine absorptionswärmepumpe umfassend methansulfonsäure
EP2636715B1 (de) Arbeitsmedium für absorptionswärmepumpen
WO2013050230A1 (de) Arbeitsmedium für absorptionswärmepumpen
DE102009047564A1 (de) Arbeitsmedium für eine Absorptionskältemaschine
DE102005028451B4 (de) Verfahren zum Transport von Wärme
DE3134448C2 (enExample)
WO2009097930A2 (de) Verfahren zur absorption eines flüchtigen stoffes in einem flüssigen absorptionsmittel
WO2013050242A1 (de) Sorptionsmittel für absorptionswärmepumpen
EP2561032A1 (de) Absorptionswärmepumpe mit sorptionsmittel umfassend ein lithiumsalz und ein organisches salz mit gleichem anion
EP2561031A1 (de) Absorptionswärmepumpe mit sorptionsmittel umfassend lithiumchlorid und ein organisches chloridsalz
EP3257568B1 (de) Verfahren zur entfeuchtung von feuchten gasgemischen mit ionischen flüssigkeiten
EP2246651A2 (de) Absorptionswärmepumpen, Absorptionskältemaschinen und Absorptionswärmetransformatoren auf Basis EMIM-acetat / Methanol
US11608460B2 (en) Ionic liquid additives for use as an absorbent in absorption chillers
HK1187070B (en) Working medium for absorption heat pumps
EP0464840A2 (de) Stoffgemische für Absorptionswärmepumpen and Absorptionswärmetransformatoren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11778629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12013500344

Country of ref document: PH

REEP Request for entry into the european phase

Ref document number: 2011778629

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011778629

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13883573

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2817264

Country of ref document: CA

Ref document number: 2013538135

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137014601

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007941

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013007941

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130402