WO2012060073A1 - 太陽電池パネル - Google Patents

太陽電池パネル Download PDF

Info

Publication number
WO2012060073A1
WO2012060073A1 PCT/JP2011/005993 JP2011005993W WO2012060073A1 WO 2012060073 A1 WO2012060073 A1 WO 2012060073A1 JP 2011005993 W JP2011005993 W JP 2011005993W WO 2012060073 A1 WO2012060073 A1 WO 2012060073A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
liquid crystal
solar cell
light
area
Prior art date
Application number
PCT/JP2011/005993
Other languages
English (en)
French (fr)
Inventor
裕志 吉田
千幸 神徳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012060073A1 publication Critical patent/WO2012060073A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13324Circuits comprising solar cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133374Constructional arrangements; Manufacturing methods for displaying permanent signs or marks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a solar cell panel capable of displaying simultaneously with power generation.
  • Patent Document 2 discloses a solar that is configured to display a desired pattern such as a character or a figure by coloring the surface of a solar cell module in an arbitrary color and combining solar cell modules of different colors. A battery panel is described.
  • Patent Document 3 describes a solar cell panel in which unit solar cell elements having two or more colors on a light receiving surface are arranged in a mosaic pattern so as to form a pattern of specific characters, symbols or figures. ing.
  • the present invention has been made in view of such a problem, and an object thereof is to provide a solar cell panel that can be sufficiently used as an information transmission medium.
  • a solar cell panel has a liquid crystal layer provided between a pair of substrates, a liquid crystal display device that switches between a light scattering state and a light transmission state of the liquid crystal layer, and a back surface side of the liquid crystal display device A solar cell disposed on the surface side of the liquid crystal display device, or a panel arranged on at least one of the liquid crystal display device and the solar cell to display a predetermined figure.
  • a predetermined figure is a figure displayed to an observer, and shall have a character, a number, a shape, a pattern, or these combination.
  • the configuration of the present invention by changing the liquid crystal layer to a light scattering state or a light transmission state, it is possible to change a display form of a predetermined graphic for an observer. As a result, a display that can effectively attract the viewer's interest or attract the viewer's attention is possible, so that the solar cell can be used not only as a power generation but also as an information transmission medium. it can.
  • the panel is light transmissive, the panel is disposed on the surface side of the liquid crystal display device, and when the liquid crystal layer is in the light scattering state, the predetermined figure with the liquid crystal layer as a background On the other hand, when the liquid crystal layer is in the light transmission state, the predetermined figure can be displayed against the background of the solar cell through the liquid crystal layer.
  • the liquid crystal layer when the liquid crystal layer is in the light scattering state, it is possible to display a predetermined figure with the liquid crystal layer in the light scattering state as a background.
  • a predetermined figure when the liquid crystal layer is in a light transmitting state, a predetermined figure can be displayed with the solar cell as a background.
  • the background of a predetermined figure can be changed, so that the viewer's interest is effectively attracted or the viewer's attention is effectively increased. A display that can be evoked is possible.
  • the predetermined figure is black.
  • the liquid crystal layer when the liquid crystal layer is in a light scattering state, it is possible to display a predetermined black figure with the light scattering state liquid crystal layer as a background. Since the color of the light scattering liquid crystal layer is, for example, white, a black figure can be displayed on a white background. Therefore, a predetermined figure can be clearly displayed to the observer.
  • a predetermined black figure when the liquid crystal layer is in a light transmission state, a predetermined black figure can be displayed with the solar cell as a background through the light transmission state liquid crystal layer. Since the color of the solar cell is black, for example, a black figure can be displayed on a black background. Therefore, it is possible to display a predetermined figure so that it is difficult to see for an observer.
  • the panel is arranged between the liquid crystal display device and the solar cell, and when the liquid crystal layer is in the light transmission state, the predetermined figure is displayed with the solar cell as a background through the liquid crystal layer.
  • the predetermined figure may not be displayed when the liquid crystal layer is in the light scattering state.
  • a predetermined figure when the liquid crystal layer is in a light transmission state, a predetermined figure can be displayed with the solar cell as a background.
  • the predetermined figure when the liquid crystal layer is in the light scattering state, the predetermined figure is not visible to the observer because it is blocked by the light scattering state liquid crystal layer.
  • a predetermined figure is displayed or is not displayed, so that the viewer's interest is effectively attracted or the viewer's attention is effectively received. A display that can be evoked is possible.
  • the predetermined figure is white.
  • a predetermined white figure when the liquid crystal layer is in a light transmission state, a predetermined white figure can be displayed with the solar cell as a background via the light transmission state liquid crystal layer. Since the color of the solar cell is black, for example, a white figure can be displayed on a black background. Therefore, a predetermined figure can be clearly displayed to the observer.
  • the predetermined figure when the liquid crystal layer is in the light scattering state, the predetermined figure is not visible to the observer because it is blocked by the light scattering state liquid crystal layer. In this way, by setting the liquid crystal layer in a light scattering state or a light transmission state, a predetermined figure is clearly displayed or not displayed to the observer, so that the observer's interest is effectively attracted or observed. Display that can effectively call the attention of the person.
  • a plurality of light receiving sensors that receive external light irradiated on the solar cell panel, and the light receiving information that exceeds a predetermined reference value with respect to the light receiving information obtained by the light receiving sensor is received by the light receiving sensor. It is preferable to have a position setting unit that sets the position of the panel based on the light reception information.
  • external light means all the light irradiated to a solar cell panel.
  • This configuration makes it possible to efficiently generate power and use an effective information transmission medium even if the area where the intensity of external light irradiated on the solar cell panel is different from other areas.
  • the position setting unit sets the position of the panel in a region excluding a portion where the light reception information exceeding the reference value is obtained based on the light reception information obtained by the light reception sensor. .
  • the position of the panel is set, and a relatively bright area in the panel area that is the surface side area of the liquid crystal display device is set. It can be used for power generation to perform efficient power generation.
  • the liquid crystal layer is preferably a liquid crystal layer having memory properties.
  • the liquid crystal layer having a memory property is a liquid crystal layer (having memory characteristics) characterized in that a voltage applied to the liquid crystal panel can be held by a memory circuit without input of an external signal.
  • cholesteric liquid crystal is also called memory liquid crystal.
  • the solar cell since the display mode of a predetermined graphic can be changed for an observer, the solar cell can be sufficiently used not only as a power generation but also as an information transmission medium.
  • FIG. 1 is a cross-sectional view of a solar cell panel according to Embodiment 1.
  • FIG. It is a figure which shows one specific example which displays the panel of a black predetermined figure on the display area of a panel area
  • FIG. 1 It is a figure which shows a specific example in case the panel of a white predetermined figure is non-displayed in the display area of a panel area
  • FIG. 8 It is a figure explaining the solar cell panel which concerns on Embodiment 8 which can change the arrangement position of a panel
  • (A) is a figure where the panel is arrange
  • (B) is a figure arrange
  • FIG. It is an active matrix type circuit configuration diagram of a liquid crystal display device. It is a figure which illustrates roughly the structure of the solar cell panel which concerns on Embodiment 9 in which the light reception sensor is provided. It is detailed sectional drawing of the liquid crystal display device explaining the arrangement position of a light reception sensor. It is a block diagram which shows typically the wiring structure and control part of the solar cell panel which concern on Embodiment 9.
  • FIG. It is a circuit block diagram around TFT of a liquid crystal display device.
  • FIG. 10 is a flowchart showing a method for controlling a solar cell panel according to Embodiment 9. It is a block diagram explaining the process of the light reception information which the light reception sensor acquired. It is a figure explaining the solar cell panel by which external light is directly irradiated to the panel area
  • Embodiment 1 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. However, the embodiments are for facilitating understanding of the principle of the present invention, and the scope of the present invention is as follows. The present invention is not limited to the embodiments, and other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.
  • FIG. 1 is a diagram illustrating the entire solar cell panel 900 according to the present embodiment.
  • a solar cell panel 900 includes a liquid crystal display device 100 in which a light-scattering liquid crystal layer is sandwiched between transparent substrates, and a solar cell disposed to face the back side of the liquid crystal display device 100. 200 and a liquid crystal control unit 500 that controls the liquid crystal display device 100 to control the alignment state of the liquid crystal in the liquid crystal layer to a light scattering state or a light transmission state.
  • positioned is not specifically limited, For example, it arrange
  • the storage battery 310 stores the power generated by the solar battery 200.
  • the storage battery 310 is not particularly limited, and is, for example, a secondary battery such as a lead storage battery, a nickel / hydrogen battery, a lithium ion battery, or a capacitor.
  • FIG. 2 is a cross-sectional view of the solar cell panel 900 according to this embodiment.
  • the liquid crystal display device 100 includes, for example, a second transparent substrate 12 that is an array substrate disposed on the back side, and a first transparent substrate 11 that is, for example, a counter substrate disposed on the front side facing the second transparent substrate 12. And a memory liquid crystal layer 36 as a light-scattering liquid crystal layer sandwiched between the first transparent substrate 11 and the second transparent substrate 12, for example.
  • the memory liquid crystal layer 36 is not particularly limited.
  • a ferroelectric liquid crystal or a cholesteric liquid crystal having excellent memory characteristics can be used.
  • a pixel electrode 23 is formed as the second electrode on the inner side of the second transparent substrate 12, that is, the front surface.
  • a counter electrode 25 is formed on the inner surface of the first transparent substrate 11, that is, on the back side surface, as a first electrode facing the second electrode.
  • the counter electrode 25 is given a predetermined counter potential from an external drive circuit (not shown).
  • the first transparent substrate 11 and the second transparent substrate 12 are not particularly limited, and for example, a light transmissive substrate such as a glass plate or a quartz plate can be used.
  • the pixel electrode 23 and the counter electrode 25 are formed of a light transmissive conductive material such as ITO (indium tin oxide).
  • a display area 710 for displaying or hiding a predetermined figure is provided in the panel area 90 which is an area on the surface side of the liquid crystal display device 100.
  • the display area is an area for displaying or hiding a predetermined graphic, and even if external light is applied to the solar cell to generate power in this area, the display area is displayed as long as the predetermined graphic is displayed or hidden.
  • the display area 710 is provided in a part of the panel area 90, and an area other than the display area 710 of the panel area 90 is provided with a power generation area 720 that generates power by transmitting external light and irradiating the solar cell 200.
  • the power generation area 720 refers to a region in which external light is applied to the solar cell 200 and only power generation is performed.
  • a panel 610 for displaying a predetermined black figure is arranged in the display area 710 and on the surface side of the liquid crystal display device 100.
  • the panel 610 is accommodated in a transparent support 620.
  • the transparent support 620 is made of a transparent material such as plastic or glass.
  • the transparent support 620 has a predetermined thickness so that the panel 610 can be accommodated therein, and is a flat three-dimensional object so that it can be stably placed on the surface side of the liquid crystal display device 100.
  • the panel 610 displays a predetermined black graphic, but the present invention is not limited to such an embodiment.
  • the panel 610 may display a dark color graphic. Is possible.
  • the dark color color is a color with a low degree of brightness, and is not particularly limited.
  • the color tone such as brown, amber, dark green, and rosy is used.
  • a chromatic or achromatic color with dark low brightness is used.
  • the liquid crystal display device 100 and the solar cell 200 are disposed, for example, with a predetermined interval through a spacer or the like, but the present invention is not limited to this, and the liquid crystal display device 100 and the solar cell 200 are disposed in close contact with each other. Is also possible.
  • a first transparent electrode 42 is formed on the back side of the transparent insulating substrate 41.
  • the transparent insulating substrate 41 is, for example, light transmissive glass.
  • the first transparent electrode 42 is, for example, SnO 2.
  • a microcrystalline p-type silicon layer 43, a microcrystalline i-type silicon layer 44, and a microcrystalline n-type silicon layer 45 are formed on the back side of the first transparent electrode 42.
  • the p-type silicon layer 43, the i-type silicon layer 44, and the n-type silicon layer 45 form the photoelectric conversion layer 40.
  • the film thickness of the photoelectric conversion layer 40 is not particularly limited, but is, for example, 100 to 600 nm.
  • a second transparent electrode 46 is formed on the back side of the microcrystalline n-type silicon layer 45.
  • the second transparent electrode 46 is, for example, a ZnO layer.
  • a back electrode 47 made of, for example, an Al film or an Ag film is formed on the back side of the second transparent electrode 46.
  • the solar cell 200 can generate electricity by allowing light such as external light to enter from the transparent insulating substrate 41 side and performing photoelectric conversion by the above-described photoelectric conversion layer 40 having the pin structure.
  • the photoelectric conversion layer 40 has a pin structure in which a p-type silicon layer 43, an i-type silicon layer 44, and an n-type silicon layer 45 are sequentially stacked from the first transparent electrode 42 side. It is also possible to form a nip structure by sequentially laminating a silicon layer and a p-type silicon layer.
  • the photoelectric conversion layer 40 is a microcrystalline silicon photoelectric conversion layer, but is not limited to this embodiment. For example, an amorphous p-type silicon layer or an amorphous i-type silicon layer is formed from the first transparent electrode 42 side. It is also possible to sequentially stack amorphous n-type silicon layers to form a pin structure.
  • an amorphous n-type silicon layer, an amorphous i-type silicon layer, and an amorphous p-type layer are formed from the first transparent electrode 42 side. It is also possible to form a nip structure by sequentially laminating type silicon layers.
  • the photoelectric conversion layer 40 is not limited to a single type formed as amorphous silicon or microcrystalline silicon. For example, a tandem photoelectric conversion layer in which a photoelectric conversion layer made of amorphous silicon and a photoelectric conversion layer made of microcrystalline silicon are stacked. It is also possible to form as. By making the photoelectric conversion layer 40 a tandem type, the conversion efficiency is improved by, for example, about 1.5 times compared to the single type.
  • an antireflection layer may be provided on the light receiving surface of the photoelectric conversion layer 40 in order to increase the light receiving efficiency, and the first transparent electrode 42 may be formed on the surface of the antireflection layer.
  • the antireflection layer can be formed of, for example, titanium oxide, silicon dioxide, silicon nitride or the like.
  • FIG. 3 is a diagram showing a specific example of displaying the panel 610 in the display area 710.
  • the liquid crystal control unit 500 does not form an electric field between the pixel electrode 23 and the counter electrode 25 in the memory liquid crystal layer 36 corresponding to the display area 710, and the liquid crystal molecules 38 in the memory liquid crystal layer 36.
  • the memory liquid crystal layer 36 of the liquid crystal display device 100 is changed to a light scattering state, and external light is scattered.
  • the panel 610 is a human figure that schematically shows a state where, for example, pollen is generated.
  • the panel 610 can be displayed as a result of the observer recognizing the panel 610 displaying a predetermined black figure with white as a background, for example.
  • the display area 710 is preferably an area having a predetermined extent than the area of the panel 610.
  • the area of the display area 710 is about the same as the area of the panel 610, the scattered light of the liquid crystal molecules 38 around the panel 610 is reduced, and the display of the panel 610 is unclear due to, for example, white scattered light becoming weaker in the background. Because there is a possibility of becoming.
  • the liquid crystal control unit 500 applies a voltage between the pixel electrode 23 and the counter electrode 25, thereby bringing the liquid crystal molecules 38 in the memory liquid crystal layer 36 into an aligned state.
  • the memory liquid crystal layer 36 is controlled to a light transmission state. Therefore, in the power generation area 720, external light is applied to the solar cell 200 through the memory liquid crystal layer 36 in a light transmission state, and efficient power generation is possible.
  • FIG. 4 is a diagram showing a specific example when the panel 610 is not displayed in the display area 710.
  • the liquid crystal controller 500 puts the memory liquid crystal layer 36 corresponding to the display area 710 into a light transmissive state. External light hits the panel 610 and is reflected by the viewer to enter the viewer's field of view. Further, by setting the memory liquid crystal layer 36 corresponding to the display area 710 to a light transmitting state, for example, the black color of the solar cell 200 enters the observer's field of view. If it does so, as a result of the panel 610 having the background of the black color of the solar cell 200 recognized by the observer, the panel 610 is not displayed.
  • the memory liquid crystal layer 36 is controlled to be in a light transmissive state. Therefore, in the power generation area 720, external light is applied to the solar cell 200 through the memory liquid crystal layer 36 in the light transmissive state, thereby efficiently generating power. Is possible.
  • the display area 710 since the memory liquid crystal layer 36 is in a light transmission state, external light is applied to the solar cell 200 through the memory liquid crystal layer 36 in a light transmission state to generate power.
  • a usage mode of the solar cell panel 900 in the case where identification display is performed by setting the panel 610 to display or non-display will be described.
  • a solar cell panel 900 is installed on the upper part of a door provided at the entrance of a building and the pollen scattering rate in the atmosphere is high as shown in FIG. Call attention to incoming and outgoing observers.
  • the memory liquid crystal layer 36 is controlled to be in a light transmission state, and power is generated.
  • the size of the solar cell panel 900 is exaggerated with respect to the door. Further, the scope of the present invention is not limited to the example in which the entire panel area 90 is configured by the display area 710 and the power generation area 720 as shown in FIG. A third area other than the area 710 and the power generation area 720 may be provided.
  • the third area is an area provided in an area other than the display area 710 and the power generation area 720, and whether to display or not can be set as appropriate. By providing the third area, a panel area is provided. The display variation at 90 can be increased.
  • the panel 610 when the pollen scattering rate in the atmosphere is low, the panel 610 is not displayed and power is generated not only in the power generation area 720 but also in the display area 710. I do. In this way, by displaying or not displaying the panel 610, display capable of effectively attracting the viewer's attention becomes possible.
  • the usage mode in which the display 710 is set to either display or non-display in the display area 710 and the identification display is performed is not limited to the above-described specific example of the caution ventilation display of the pollen scattering rate.
  • the solar cell panel 900 of the present invention can be used if any one of the first state and the second state that is different from the first state is identified and displayed.
  • Embodiment 2 >> In the first embodiment described above, the display area 710 is provided in a part of the panel region 90, but the scope of the present invention is not limited to such an embodiment. In the second embodiment, as shown in FIG. 6, the display area 710 is provided on the entire surface of the panel region 90, and the power generation area 720 shown in the first embodiment is not provided.
  • FIG. 7 is a diagram showing a specific example in which the panel 610 is displayed in the display area 710 provided on the entire surface of the panel region 90.
  • the usage mode of the solar cell panel 900 according to the second embodiment will be described.
  • the liquid crystal controller 500 puts the memory liquid crystal layer 36 into a light scattering state.
  • the panel 610 is a human figure that schematically shows a state where, for example, pollen is generated, as in the first embodiment.
  • the panel 610 can be displayed as a result of the viewer recognizing the panel 610 displaying a predetermined black figure with white as a background.
  • the display area 710 is provided on the entire surface of the panel region 90, a relatively large panel 610 can be displayed compared to the first embodiment.
  • all external light is not scattered by the memory liquid crystal layer 36 in the light scattering state, but may be irradiated to the solar cell 200 without being scattered, as shown in FIG. Therefore, power generation is performed also in the display area 710, although the efficiency is somewhat lowered.
  • FIG. 8 is a diagram showing a specific example when the panel 610 is not displayed in the display area 710.
  • the memory liquid crystal layer 36 is brought into a light transmission state.
  • the panel 610 with the background of, for example, black color of the solar cell 200 is recognized by the observer, and the panel 610 is not displayed.
  • the display area 710 since the memory liquid crystal layer 36 is in a light transmissive state, external light is applied to the solar cell 200 through the memory liquid crystal layer 36 in the light transmissive state to generate power.
  • Embodiment 3 >> In the above-described first and second embodiments, the panel 610 is displayed or not displayed, but the scope of the present invention is not limited to such an embodiment. In the third embodiment, a usage mode in which the background color of the panel 610 is changed will be described.
  • FIG. 9 is a diagram showing a specific example in which the panel 610 is displayed on the background of a predetermined color.
  • the display area 710 is provided on the entire surface of the panel region 90.
  • the panel 610 is a human figure that schematically shows a state where, for example, pollen is generated, as in the first embodiment.
  • the liquid crystal control unit 500 puts the memory liquid crystal layer 36 into the light scattering state to such an extent that it transmits light slightly more than the light scattering state shown in FIG. 7 described above. Therefore, for example, an observer recognizes a panel 610 that displays a predetermined black graphic with a light gray background.
  • FIG. 10 is a diagram showing a specific example in which the panel 610 is displayed on the background of another color.
  • the liquid crystal control unit 500 puts the memory liquid crystal layer 36 into a light scattering state to such an extent that light is further transmitted than the light scattering state shown in FIG. 9 described above.
  • the liquid crystal control unit 500 puts the memory liquid crystal layer 36 in a light scattering state to such an extent that light is slightly scattered from the light transmission state shown in FIG. Therefore, for example, an observer recognizes a panel 610 that displays a predetermined black figure with a dark gray background.
  • the panel 610 which is the same display object it can be displayed in a background of different colors, so that it is possible to display that effectively attracts the viewer's interest.
  • the panel 610 is a panel that displays a predetermined black graphic.
  • the scope of the present invention is not limited to such an embodiment, and the color of the panel is limited. It is not a thing.
  • the panel 610 is disposed on the surface side of the liquid crystal display device 100.
  • the scope of the present invention is not limited to such an embodiment, and the panel is not limited to the liquid crystal display device 100. It is also possible to arrange between the solar cell 200 and the solar cell 200.
  • the display area 710 is single. However, the scope of the present invention is not limited to such an embodiment.
  • a plurality of display areas 710 are provided in the panel region 90 (for example, two in the fourth embodiment).
  • the panel 610 is a road lane line having a predetermined width and a predetermined length, for example.
  • FIG. 12 is a diagram showing a specific example in which a panel 610 that is a lane line is displayed in a plurality of display areas 710 provided in the panel region 90.
  • the solar cell panel 900 is used by being incorporated in, for example, a road, and the vehicle travels on the upper part of the solar cell panel 900. Since the vehicle travels on the upper part of the solar cell panel 900, the solar cell panel 900 is made of a material and a structure capable of withstanding the weight of the traveling vehicle.
  • the liquid crystal control unit 500 puts the memory liquid crystal layer 36 corresponding to each display area 710 into a light scattering state.
  • a panel 610 that is a lane line with white scattered light as a background is recognized by the observer, and two lane lines are displayed on the road, so that the road becomes a three-lane road with an equal road width. Therefore, for example, it is suitable for ordinary vehicles to use these lanes.
  • the power generation area 720 power is generated by irradiating the solar cell 200 with external light.
  • the distance between the panel 610 (lane line) and the panel 610 (lane line) in the description of the cross section of the solar battery panel 900 is the state in which the vehicle uses the lane. In the description, the distance between the panel 610 (lane line) and the panel 610 (lane line) is exaggerated narrowly.
  • FIG. 13 is a diagram showing a specific example when the panel 610 which is a lane line is not displayed in the display area 710 provided in a plurality in the panel region 90.
  • the liquid crystal control unit 500 makes only the memory liquid crystal layer 36 corresponding to one display area 710 light transmissive, for example.
  • the panel 610 of the solar cell 200 with a background of, for example, black color is recognized by an observer, and one of the two displayed lane lines is hidden, and the road is a lane having a predetermined width and a lane having a wider width than that. It becomes two lanes composed of Therefore, for example, a wide road lane is suitable for a large vehicle such as a bus.
  • power generation area 720 power is generated by irradiating the solar cell 200 with external light, and also in the display area 710 in which the memory liquid crystal layer 36 is in a light transmission state, the memory liquid crystal layer in which the external light is in a light transmission state.
  • the solar cell 200 is irradiated through 36 to generate power.
  • the solar cell panel 900 is incorporated in the road to generate power, and the lanes that are changed depending on the traffic time zone or the like by the display or non-display of the panel 610 that is the lane line. The observer can be identified.
  • the panel 610 for displaying a predetermined black graphic is arranged in the display area 710 provided in plural.
  • the scope of the present invention is limited to such an embodiment. It is also possible to arrange a panel for displaying a predetermined white graphic in a plurality of display areas 710 that are not provided.
  • FIG. 14 is a diagram illustrating the entire solar cell panel 900 according to the fifth embodiment.
  • a panel 611 for displaying a predetermined white graphic is disposed in the display area 710 and between the liquid crystal display device 100 and the solar cell 200.
  • the panel 611 is accommodated in a transparent support 620.
  • Other configurations are the same as those of the first embodiment.
  • the panel 611 displays a white predetermined graphic, but the present invention is not limited to such an embodiment.
  • the panel 611 displays a light color graphic.
  • the light color is a color with a high degree of brightness, and is not particularly limited. For example, white, cream, light cyan, yellow, silver, light gray, etc. A chromatic or achromatic color with a bright color and a high brightness.
  • FIG. 15 is a diagram showing a specific example of displaying the panel 611 in the display area 710.
  • the liquid crystal control unit 500 puts the memory liquid crystal layer 36 corresponding to the display area 710 into a light transmissive state.
  • the panel 611 is a figure of the parking violation mark, for example.
  • External light hits the panel 611 via the light-transmitting memory liquid crystal layer 36 and is reflected by the viewer to enter the viewer's field of view. Further, the external light hits the solar cell 200 through the memory liquid crystal layer 36 in a light transmitting state and is reflected by the observer, thereby entering the observer's field of view.
  • the display area 710 is preferably an area having a predetermined extent than the area of the panel 610, but in the case of the panel 611, the liquid crystal molecules 38 around Since the figure is not displayed with the scattered light as a background, the display area 710 in the case of the panel 611 does not need to be larger than the display area 710 in the case of the panel 610.
  • the memory liquid crystal layer 36 is controlled in a light transmission state. Therefore, in the power generation area 720, external light is applied to the solar cell 200 through the memory liquid crystal layer 36 in a light transmission state, and efficient power generation is possible. In the display area 710 as well, since the memory liquid crystal layer 36 is in a light transmission state, external light is applied to the solar cell 200 through the memory liquid crystal layer 36 in a light transmission state to generate power.
  • FIG. 16 is a diagram showing a specific example when the panel 611 is not displayed in the display area 710.
  • the liquid crystal control unit 500 puts the memory liquid crystal layer 36 corresponding to the display area 710 into a light scattering state. Since the external light is scattered by the memory liquid crystal layer 36 in the light scattering state and the display area 710 looks white, the panel 611 disposed between the memory liquid crystal layer 36 and the solar cell 200 is not displayed to the observer.
  • the memory liquid crystal layer 36 is controlled to be in a light transmissive state. Therefore, in the power generation area 720, external light is applied to the solar cell 200 through the memory liquid crystal layer 36 in the light transmissive state, thereby efficiently generating power. Is possible.
  • a usage mode of the solar cell panel 900 when the identification display is performed by setting the panel 611 to display or non-display will be described.
  • a solar battery panel 900 is incorporated into a parking prohibition sign that becomes a parking prohibition zone depending on the time zone.
  • FIG. 17A in the case of a parking prohibition time zone, the panel 611 is displayed and attention is paid to the observer. Arouse.
  • the power generation area 720 the memory liquid crystal layer 36 is controlled to be in a light transmission state, and power is generated.
  • FIG. 17B when it is not the parking prohibition time zone, the panel 611 is hidden and power generation is performed in the power generation area 720.
  • the usage mode in which the panel 611 is set to display or non-display in the display area 710 and the identification display is performed is not limited to the specific example in which the parking prohibition mark is displayed according to the above-described time zone. Any one of the first state and the second state that is different from the first state can be used.
  • the display area 710 is provided in a part of the panel region 90, but the scope of the present invention is not limited to such an embodiment.
  • the display area 710 is provided on the entire surface of the panel region 90, and the power generation area 720 shown in the fifth embodiment is not provided.
  • the panel 611 is a figure of a parking violation mark, for example, similarly to the fifth embodiment.
  • FIG. 19 is a diagram illustrating a specific example in which the panel 611 is displayed in the display area 710 provided on the entire surface of the panel region 90.
  • the usage mode of the solar cell panel 900 according to the sixth embodiment will be described.
  • the liquid crystal control unit 500 puts the memory liquid crystal layer 36 into a light transmission state.
  • a panel 611 of the solar cell 200 with a black color as a background is recognized by an observer, and in the sixth embodiment, a relatively larger panel 611 can be displayed than in the fifth embodiment.
  • power generation is performed by external light applied to the solar cell 200.
  • the solar cell panel 900 has a cylindrical shape that is circular when viewed from the front side.
  • FIG. 20 is a diagram showing a specific example when the panel 611 is not displayed in the display area 710.
  • the liquid crystal control unit 500 puts the memory liquid crystal layer 36 into a light scattering state. Since the external light is scattered by the memory liquid crystal layer 36 in the light scattering state and the display area 710 looks white, for example, the panel 611 disposed between the memory liquid crystal layer 36 and the solar cell 200 is not displayed to the observer. .
  • the display area 710 all external light is not scattered by the memory liquid crystal layer 36 in the light scattering state, but may be irradiated to the solar cell 200 without being scattered, as shown in FIG. Therefore, power generation is performed also in the display area 710, although the efficiency is somewhat lowered.
  • Embodiment 7 >> In Embodiments 1 to 6 described above, there is only one type of panel 610 disposed on the front surface side of the liquid crystal display device 100, and the graphic pattern cannot be changed. However, the scope of the present invention is not limited to such an embodiment. In the seventh embodiment, a plurality of types of panels 610 are provided in advance, and any one of them is selected and arranged in the display area 710.
  • FIG. 21 is a diagram for explaining a solar cell panel 900 according to Embodiment 7 having a display object arrangement unit 630 for selecting one figure from a plurality of panels 610 and arranging it in the display area 710.
  • the display object arranging unit 630 includes, for example, a disk-shaped rotating body 623 in which a plurality of panels 610 are arranged at predetermined intervals on an inner circumferential track, and the rotating body 623 is arranged at a predetermined angle.
  • the actuator 621 is configured to rotate
  • the instruction unit 622 is configured to give an instruction for rotation operation to the actuator 621.
  • the panel 610 is accommodated in a transparent support 620.
  • the rotating body 623 is disposed on the surface side of the liquid crystal display device 100.
  • each of the supports 620a, 620b, 620c, and 620d is, for example, a human figure 610a that schematically shows a state where pollen is generated, and one of public races.
  • a horse-shaped graphic 610b indicating the holding of a certain horse race, an umbrella-shaped graphic 610c indicating a heavy rain warning, and a traffic jam vehicle graphic 610d indicating traffic congestion information on the road are arranged.
  • the solar panel 900 is arranged on the wall surface of a building along the road. And when the scattering rate of pollen in the atmosphere is high, the rotating body 623 is rotated by the operating unit 621, and a humanoid figure 610a schematically showing the state where pollen is generated is arranged in the display area 710 and displayed.
  • the memory liquid crystal layer 36 corresponding to the area 710 is set in the light scattering state, and the humanoid figure 610a is set in the display state to alert the observer.
  • the rotating body 623 is rotated to place the horse-shaped figure 610b in the display area 710, and the memory liquid crystal layer 36 corresponding to the display area 710 is in a light scattering state.
  • the horse-shaped figure 610b is displayed and the observer is informed of the opening of the official race.
  • the rotating body 623 is rotated to place the umbrella-shaped figure 610c in the display area 710, and the memory liquid crystal layer 36 corresponding to the display area 710 is light-scattered. State, the umbrella-shaped figure 610c is displayed, and the observer is informed of the danger of disaster.
  • the rotating body 623 is rotated to place the traffic vehicle figure 610d in the display area 710, and the memory liquid crystal layer 36 corresponding to the display area 710 is in a light scattering state. Then, the traffic jam figure 610d is displayed to notify the observer of the traffic jam and give an opportunity to bypass the traffic jam. If none of the above-described display is necessary, the liquid crystal control unit 500 puts the memory liquid crystal layer 36 corresponding to the display area 710 into a light transmission state. As a result of the viewer recognizing the panel 610 of the solar cell 200 with, for example, a black color as a background, the panel 610 is not displayed.
  • the display object arranging unit 630 is configured to include the rotating body 623 in which a plurality of panels 610 are arranged at predetermined intervals on a circumferential track, but is limited to such an embodiment. For example, it is also possible to select one figure from among the plurality of panels 610 by sliding a plurality of panels 610 arranged in a row at a predetermined interval instead of the rotating body 623.
  • the display object arrangement unit includes a rectangular parallelepiped support provided on the front surface side of the liquid crystal display device 100 in which a plurality of panels 610 are arranged in a line in the longitudinal direction at predetermined intervals, and a rectangular parallelepiped support.
  • An operation unit that slides the body in the longitudinal direction and an instruction unit that gives an instruction for the slide operation to the operation unit are configured.
  • a plurality of panels 610 are arranged at predetermined intervals inside a track belt-shaped (caterpillar-shaped) flexible and transparent support 620, and the liquid crystal display device 100 is fitted in the center of the track belt-shaped support 620.
  • One figure can be selected from the plurality of panels 610 by rotating the track belt-shaped support 620.
  • the arrangement of the plurality of panels 610 in the display object arrangement unit 630 can be any arrangement on a finite or infinite orbit, and any one of them can be selected and arranged in the display area 710. If it does, it is included within the scope of the present invention.
  • the display object arranging unit includes a disk-shaped rotating body that is arranged between the liquid crystal display device 100 and the solar cell 200, and a plurality of panels 611 arranged at predetermined intervals on a circumferential track, and a rotating body.
  • the display object arrangement unit includes a rectangular parallelepiped support body in which a plurality of panels 611 are arranged in a line in the longitudinal direction at predetermined intervals, and is provided between the liquid crystal display device 100 and the solar cell 200, and a rectangular parallelepiped. It is also possible to have an actuating part that slides the shaped support in the longitudinal direction and an instructing part that gives an instruction to the actuating part for a sliding action.
  • Embodiment 8 In the above-described embodiment, the position of the panel 610 disposed in the panel region 90 is fixed. However, the scope of the present invention is not limited to such an embodiment. In the eighth embodiment, the position of the panel 610 disposed in the panel region 90 is freely changed.
  • the position setting unit 640 for changing the position of the panel 610 includes, for example, a wire 643 as a string-like member attached to the left and right of the support 620, reels 642a and 642b for winding or feeding the wire 643, and these And an instruction unit 641 for giving an operation instruction to the reel units 642a and 642b.
  • the wire 643 is thin enough not to lower the transmittance of the liquid crystal display device 100.
  • a set of reel portions 642a and 642b is provided on the left and right sides of the liquid crystal display device 100, and operates in synchronism with the winding and feeding operations.
  • the wires 643 are attached to the left and right of the support 620, but are not limited to such an embodiment, and may be directly attached to the panel 610.
  • the instruction unit 641 causes the reel unit 642a disposed on the right side of the liquid crystal display device 100 to perform a winding operation, and causes the reel unit 642b disposed on the left side to perform a feeding operation. Accordingly, the position of the panel 610 arranged on the left side of the panel area 90 is changed to the right side of the panel area 90.
  • the panel 610 housed in the transparent support 620 is disposed on the lower left side of the panel region 90.
  • the position setting unit 640 that changes the position of the panel 610 includes, for example, wires 643 attached to the top and bottom and left and right of the support 620, reels 642a, 642b, 642c, and 642d that wind or send the wire 643,
  • the reel unit 642a, 642b, 642c, and 642d may be configured to include an instruction unit 641 that gives an operation instruction to the reel units 642a, 642b, 642c, and 642d.
  • Reel portions 642a, 642b, 642c, 642d move on rail portions 644a, 644b, 644c, 644d, respectively.
  • the reel portions 642a, 642b, 642c, and 642d are provided on the left and right and top and bottom of the liquid crystal display device 100, respectively, and the pair of left and right and the pair of top and bottom operate in synchronization with each other in the winding and feeding operations.
  • the rail portions 644c and 644d move to the left and right of the liquid crystal display device 100 as the reel portions 642a and 642b provided on the left and right sides of the rectangular liquid crystal display device 100 are wound and fed out. Is possible.
  • the rail portions 644 a and 644 b move up and down the liquid crystal display device 100 as the reel portions 642 c and 642 d provided above and below the rectangular liquid crystal display device 100 are wound and fed out. Is possible.
  • the instruction unit 641 causes the reel unit 642a disposed on the right side of the liquid crystal display device 100 and the reel unit 642c disposed on the upper side to perform a winding operation, and is disposed on the left side.
  • the reel section 642b and the reel section 642d disposed on the lower side to perform a feeding operation, the position of the panel 610 disposed on the lower left side of the panel area 90 is changed to the upper right side of the panel area 90.
  • the display of the panel 610 can be set at various positions in the panel region, and thus a display that does not bore the observer is possible.
  • the panel area 90 of the solar cell panel 900 is large, when the distance between the observer and the panel 610 is large, the position of the panel 610 is changed so as to reduce the distance, thereby displaying easy to see. It is possible.
  • the liquid crystal display device 100 is an active matrix type liquid crystal display device in order to realize the alignment state of the memory liquid crystal 36 corresponding to the position change of the panel 610.
  • FIG. 24 is an active matrix circuit configuration diagram of the liquid crystal display device 100.
  • the liquid crystal display device 100 includes a panel region 90 in which a plurality of display pixels 80 are formed, a gate driver 110, and a source driver 120.
  • a plurality of scanning lines 22 and a plurality of signal lines 21 intersecting with the scanning lines 22 are arranged on the second transparent substrate 12 in a matrix shape via an insulating film (not shown).
  • display pixels 80 are arranged at each intersection of the scanning lines 22. That is, a plurality of display pixels 80 are arranged in a matrix in the panel region 90.
  • the liquid crystal display device 100 has, for example, a rectangular shape as a whole, and the shape of the panel region 90 is also rectangular, for example.
  • the display pixel 80 includes a pixel electrode 23, a thin film transistor (TFT) 24, a counter electrode 25, and a memory liquid crystal layer 36.
  • the source of the TFT 24 is connected to the signal line 21, the gate is connected to the scanning line 22, and the drain is connected to the pixel electrode 23.
  • the gate driver 110 includes a buffer circuit and a shift register (not shown), and sequentially outputs scanning signals to the scanning lines 22 based on control signals supplied from an external driving circuit (not shown). .
  • the source driver 120 includes an analog switch, a shift register, and the like, and is supplied with signals from an external drive circuit (not shown) through a control signal and a video bus.
  • the source driver 120 samples the signal supplied from the video bus on the signal line 21 at a predetermined timing by supplying an analog switch open / close signal from the shift register.
  • the position of the panel 610 that displays the black predetermined graphic is changed.
  • the present invention is not limited to such an embodiment, and the panel 611 that displays the white predetermined graphic is not limited thereto. It is also possible to change the position.
  • Embodiment 9 when the panel 610 is displayed, the position of the panel 610 in the panel area 90 is set according to the intensity of the external light irradiated on the panel area.
  • FIG. 25 is a diagram schematically illustrating the structure of the solar cell panel 900 according to the ninth embodiment.
  • the liquid crystal display device 100 includes a panel region 90 which is a surface region on the surface side, and a frame-shaped peripheral region provided around the panel region 90.
  • the light receiving sensor 180 is for receiving external light irradiated on the panel region 90, and is disposed inside the liquid crystal display device 100 and distributed in the panel region 90, for example. For this reason, the light receiving sensor 180 can obtain light reception information of the external light irradiating the panel region 90 at various parts in the panel region 90.
  • the light receiving sensor 180 is disposed in a region where each of the plurality of display pixels 80 is formed in a plan view of the liquid crystal display device 100. For this reason, the light reception information a1 to d1 of the external light that irradiates the panel region 90 can be obtained for each display pixel 80 unit.
  • the arrangement of the light receiving sensor 180 is not limited to this.
  • the light receiving sensor 180 is provided for each pixel group (8 pixel ⁇ 8 pixel group, 10 pixel ⁇ 10 pixel group) composed of a plurality of display pixels. May be provided. In this case, the light reception information a1 to d1 can be obtained for each pixel group.
  • the pixel group can be set arbitrarily.
  • the light receiving sensor 180 may be a sensor that generates electrical information according to the received light.
  • the light receiving sensor 180 may be a sensor that generates a photovoltaic force by the received external light.
  • a light receiving sensor 180 for example, a photodiode, a phototransistor, or the like can be used.
  • the light receiving sensor 180 may be a photoresistor whose electric resistance changes according to the intensity of received light.
  • the specific information of the “light reception information” varies depending on the type of sensor, circuit configuration, and the like.
  • a photodiode is used as the light receiving sensor 180.
  • FIG. 26 is a detailed sectional view of the liquid crystal display device 100 for explaining the arrangement position of the light receiving sensor 180.
  • a spacer 16 is interposed between the second transparent substrate 12 and the first transparent substrate 11. The interval between the second transparent substrate 12 and the first transparent substrate 11 is maintained at a predetermined interval by the spacer 16.
  • the second transparent substrate 12 includes a signal line 21, a scanning line 22, a pixel electrode 23, a control signal line 30, a planarization layer 54, respectively formed on the front side of the glass substrate 51 (that is, the memory liquid crystal layer 36 side).
  • An alignment film 56, a TFT 24, and the like are provided.
  • the counter electrode 25 and the alignment film 66 horizontal alignment film are formed on the memory liquid crystal layer 36 side of the glass substrate 61.
  • FIG. 27 is a block diagram schematically showing a wiring structure and a control unit of the solar cell panel 900 according to this embodiment.
  • the liquid crystal display device 100 is an active matrix liquid crystal display device, for example, as in the eighth embodiment.
  • the light receiving sensor 180 is connected to the control unit 550. Then, the photovoltaic power generated by the optical sensor 180 is sent to the control unit 550 as “light reception information a1 to d1”.
  • the control unit 550 is connected to the liquid crystal display device 100. Further, a signal is input from the light receiving sensor 180 to the control unit 550.
  • the control unit 550 is an electronic processing device, and includes a liquid crystal panel control unit 520, a power source 522, and a liquid crystal control unit 500 connected to the liquid crystal panel control unit 520.
  • the control unit 550 is configured to control the liquid crystal display device 100 based on a signal input from the light receiving sensor 180.
  • reference values are predetermined for the light receiving information a1 to d1 obtained by the light receiving sensor 180.
  • the liquid crystal control unit 500 excludes the portion where the light receiving information exceeding the reference value is obtained based on the light receiving information a1 to d1.
  • the position of the panel 610 is set in the area. That is, in the solar cell panel 900, when the panel area 90 is irradiated with strong external light that exceeds a predetermined reference value, a region where the strong external light is irradiated is defined as a power generation area 720.
  • the other area is a display area 710 on which the panel 610 is arranged.
  • each display pixel 80 is formed with a TFT 24, a liquid crystal capacitor Clc, and an auxiliary capacitor Ccs.
  • the gate electrode 76 of the TFT 24 is connected to the scanning line 22.
  • a source electrode 81 of the TFT 24 is connected to the signal line 21.
  • the auxiliary capacitor Ccs has a first electrode 91 and a second electrode 92.
  • the first electrode 91 is connected to the control signal line 30, while the second electrode 92 is connected to the drain electrode 93 of the TFT 24.
  • the auxiliary capacitor Ccs receives a control signal from the control signal line 30 and maintains the voltage (liquid crystal capacitor Clc) applied to the display pixel 80.
  • the liquid crystal capacitor Clc has a pixel electrode 23 and a counter electrode 25.
  • the pixel electrode 23 is connected to the drain electrode 93 of the TFT 24.
  • the scanning lines 22 (1) to (m) of the liquid crystal display device 100 are connected to the gate driver 110, and the signal lines 21 (1) to (n) are connected to the source driver 120. Yes. Further, the gate driver 110 and the source driver 120 are each connected to the liquid crystal panel control unit 520.
  • the liquid crystal panel control unit 520 includes a timing controller 525 and supplies a liquid crystal panel control signal to the gate driver 110 and the source driver 120. At this time, the timing controller 525 adjusts the timing for transmitting the liquid crystal panel control signal to the gate driver 110 and the source driver 120. The liquid crystal panel control unit 520 supplies the liquid crystal panel control signal created based on the liquid crystal control unit 500 to the gate driver 110 and the source driver 120.
  • the power source 522 supplies operating power to each component of the solar cell panel 900.
  • the power supply 522 also supplies a common electrode voltage (Vcom) to the counter electrode 25 of the first transparent substrate 11 as shown in FIG.
  • the common electrode voltage (Vcom) supplied to the counter electrode 25 is used as a voltage for applying the memory liquid crystal layer 36 sandwiched between the second transparent substrate 12 and the first transparent substrate 11.
  • FIG. 29 is a flowchart showing a control method of the solar cell panel 900 according to the ninth embodiment.
  • step S101 of FIG. 29 light reception information a1 to d1 of light incident on the panel region 90 is acquired by the plurality of light reception sensors 180 (first step).
  • the light receiving sensor 180 receives, as external light, ambient light where the solar cell panel 900 is installed, and external light directly irradiated on the panel region 90.
  • the light reception information a1 to d1 acquired by the light reception sensor 180 is output to the reference value setting unit 531 and the image output setting unit 532 as shown in FIG.
  • the reference value setting unit 531 sets a reference value based on the light reception information a 1 to d 1 and outputs the reference value to the image output setting unit 532.
  • the reference value can be set as a value that is larger by a predetermined value than the light reception information a1 to d1 of the panel region 90 irradiated with ambient light.
  • step S102 of FIG. 29 the image output setting unit 532 determines whether the area of the part where the received light information a1 to d1 exceeding the reference value has exceeded a certain ratio with respect to the area of the panel region 90. Determine whether.
  • FIG. 31 is a plan view showing a solar cell panel 900 in which external light is directly applied to the panel region 90.
  • the area of the part where the received light information a1 to d1 exceeding the reference value is obtained in step S102. Since it falls below a certain ratio, the process does not proceed to step S103.
  • the display area 710 is displayed on the left side of the panel region 90, and the power generation area 720 is displayed on the panel. Arranged on the right side of region 90.
  • step S102 external light is directly applied to a part of the panel area 90 (for example, the left side of the panel area 90 as shown in FIG. 31), and received light information a1 to d1 exceeding the reference value is obtained.
  • the process proceeds to step S103.
  • step S103 the image output setting unit 532 sets the display area 710 and the power generation area 720 based on the received light information a1 to d1.
  • the panel light 90 is partially irradiated with external light stronger than the ambient light, the intersection of the area where the strong external light strikes with the power generation area 720, the area where the strong external light strikes, and the display area 710
  • the display area 710 is set so as to be larger than the intersection (including the intersection area including zero), and the area other than the set display area 710 is set as the power generation area. 720.
  • the position setting unit 640 shown in the seventh embodiment is used to arrange the panel 610 in the panel area 90. change.
  • the panel area 90 is excluded from the area excluding the portion of the panel area 90 where the received light information exceeding the reference value is obtained (that is, the direct irradiation area where the external light is directly irradiated in the panel area 90).
  • 610 and a display area 710 including the panel 610 are arranged, and a region other than the display area 710 is defined as a power generation area 720.
  • the display area 710 can be arranged in any area other than the direct irradiation area of the external light, and can be arranged on the right end side of the area other than the direct irradiation area as shown in FIG. As shown at 32, it is also possible to arrange in the center of the area other than the direct irradiation area.
  • the display area 710 when the display area 710 does not fit in an area other than the external light direct irradiation area, a part of the display area 710 protrudes from the external light direct irradiation area.
  • the position If the display area 710 does not fit in a region other than the external light direct irradiation region, the area of the display area 710 is set so that the entire external light direct irradiation region can be contained in the power generation area 720 as shown in FIG. It can also be narrowed. In such a case, since a part of the area of the display area 710 is relatively narrow, for example, white scattered light in the background is weakened in the narrowed part, and the display of the panel 610 may be unclear. However, since all of the direct irradiation region of the external light is within the power generation area 720, high power generation efficiency can be maintained.
  • the area setting may be controlled based on the light reception information acquired by the light reception sensor 180 arranged in the center portion of the panel region 90.
  • the reference value setting unit 531 of the liquid crystal control unit 500 sets a reference value based on the light reception information acquired by the light reception sensor 180 disposed in the center portion of the panel region 90, and sets the reference value as an image output setting.
  • the image output setting unit 532 sets the display area 710 and the power generation area 720 based on the light reception information.
  • the display area 710 is set by the liquid crystal panel control unit 520 similarly to the above-described control. In this way, a decrease in the transmittance of the panel region 90 can be avoided by the small number of light receiving sensors 180 arranged in the central portion of the panel region 90.
  • the liquid crystal control unit 500 receives the light reception information a1 to d1 obtained by the light reception sensor 180 serving as a predetermined reference among the plurality of light reception sensors 180 and the light reception information a1 to d1 obtained by the other light reception sensors 180. It is also possible to control the area setting based on the difference between the received light information a1 to d1.
  • the liquid crystal control unit 500 can appropriately control the display of a light / dark image or the like by accurately reflecting the intensity distribution of the external light in the panel region 90.
  • the liquid crystal control unit 500 obtains the difference between the light reception information a1 to d1 obtained by the same light reception sensor 180 at a plurality of predetermined timings, and displays the display area 710 based on the difference between the light reception information a1 to d1. May be set. As a result, the liquid crystal control unit 500 can accurately control the display of bright and dark images and the like by accurately reflecting the amount of change over time of the received light information a1 to d1 obtained by the light receiving sensor 180.
  • the light reception information a1 to d1 obtained by the light reception sensor 180 temporarily greatly changes. . If the area setting is controlled based on the light reception information a1 to d1 obtained at this time, the arrangement and size of each image change unnecessarily.
  • the liquid crystal control unit 500 when the constant light reception information a1 to d1 is obtained by the light reception sensor 180 continuously for a predetermined time, is based on the constant light reception information a1 to d1. Control the area settings.
  • the position of the panel 610 in the panel area 90 is set according to the intensity of the external light applied to the panel area.
  • area setting is not performed according to the intensity of the external light applied to the panel area.
  • FIG. 35 is a plan view showing a solar cell panel 900 in which external light is directly applied to the panel region 90.
  • the display area 710 is displayed on the left side of the panel region 90, and the power generation area 720 is displayed in the panel region. 90 on the right side.
  • the external light is directly applied to a part of the panel region 90 (for example, the left side of the panel region 90 as shown in FIG. 35), and the area of the part where the received light information a1 to d1 exceeding the reference value is obtained.
  • the image output setting unit 532 sets the display area 710 and the power generation area 720 based on the received light information a1 to d1.
  • the intersection of the area where the strong external light strikes with the power generation area 720, the area where the strong external light strikes, and the display area 710 The display area 710 is set so as to be larger than the intersection (including the intersection area including zero), and the area other than the set display area 710 is set as the power generation area. 720.
  • the position setting unit 640 shown in the seventh embodiment is used to arrange the panel 611 in the panel area 90. change.
  • the panel is formed in an area excluding a portion of the panel area 90 that has received light reception information that exceeds the reference value (that is, a direct irradiation area in which external light is directly irradiated in the panel area 90).
  • 611 and a display area 710 including the panel 611 are arranged, and a region other than the display area 710 is defined as a power generation area 720.
  • the display area 710 can be arranged in any area other than the direct irradiation area of the external light.
  • the display area 710 can be arranged on the right end side of the area other than the direct irradiation area.
  • the display area 710 when the display area 710 does not fit in an area other than the external light direct irradiation area, a part of the display area 710 protrudes from the external light direct irradiation area. Set the position. If the display area 710 does not fit in an area other than the direct irradiation area of external light, the area of the display area 710 is set so that all of the direct irradiation area of external light falls within the power generation area 720 as shown in FIG. It can also be narrowed.
  • FIGS. 39 to 46 are schematic views of solar cell panels schematically showing modifications of the arrangement of the light receiving sensors.
  • the light receiving sensor 180 may be arranged so that external light irradiated on the liquid crystal display device 100 can be received at a plurality of positions in the panel region 90.
  • the arrangement position of the light receiving sensor 180 will be exemplified.
  • the light receiving sensors 180 may be arranged in a distributed manner, for example, along a line set so as to traverse or longitudinally cross the panel region 90. Accordingly, it is possible to acquire light reception information of the external light irradiated on the panel region 90 along a line set so as to traverse or longitudinally cross the panel region 90. In this case, for example, the brightness of the external light can be detected along a line set so as to traverse or longitudinally cross the panel region 90. In this case, the number of light receiving sensors 180 can be reduced as compared with the case where the light receiving sensors 180 are arranged for each pixel group composed of a plurality of pixels.
  • the aperture ratio decreases in the display pixel 80 in which the light receiving sensor 180 is disposed. By reducing the number of the light receiving sensors 180 in this way, the aperture ratio of the display pixel 80 is decreased as a whole of the panel region 90. Since it can suppress, the luminance fall of a display image can be suppressed.
  • the light receiving sensor 180 is arranged along the line connecting the midpoints of at least two opposite sides of the four sides of the panel region 90. You may arrange
  • the light receiving sensor 180 may be arranged along a line connecting the midpoints of the two sides of the rectangular panel region 90 in the short direction.
  • the light reception information a1 to d1 of the external light in the longitudinal direction of the rectangular panel region 90 can be obtained, the light reception information a1 to d1 roughly reflecting the luminance distribution of the external light that irradiates the entire panel region 90 is obtained. Obtainable.
  • the line connecting the midpoints of the two sides in the short direction of the panel region 90 may be disposed along the line connecting the midpoints of the two sides in the longitudinal direction of the panel region 90.
  • the light receiving sensor 180 may be arranged along at least two opposite sides of the four sides of the panel region 90 in the peripheral portion of the panel region 90.
  • the light receiving sensor 180 when the light receiving sensor 180 is arranged at the center of the panel area 90 and the brightness of the display image is lowered at the center of the panel area 90, the brightness of the display image is easily recognized by the user.
  • disposing the light receiving sensor 180 at the peripheral portion of the panel region 90 reduces the brightness of the display image compared to the case where the light receiving sensor 180 is disposed at the central portion of the panel region 90. It becomes difficult to be recognized.
  • the light receiving sensor 180 can be disposed at another position in the plan view of the liquid crystal display device 100.
  • the light receiving sensor 180 may be arranged along at least one diagonal line of the panel region 90.
  • the light receiving sensor 180 may be disposed at the center of each side in the peripheral portion of the panel region 90.
  • the light receiving sensors 180 may be arranged at the four corners of the peripheral edge of the panel region 90 as shown in FIG.
  • the area divided into four areas A, B, C, and D is set in the panel area 90.
  • the number of divisions of the panel region 90 is not limited to four and can be changed as appropriate according to the application.
  • a plurality of areas A to Z obtained by dividing the panel region 90 may be set corresponding to the position where the light receiving sensor 180 is disposed.
  • the light receiving sensor 180 may be arranged in a region where the TFT 24 and the signal line 21 are formed in a plan view of the liquid crystal display device 100. Since the TFT 24 and the signal line 21 have a light shielding property, light from the back side of the liquid crystal display device 100 is shielded by the TFT 24 and the signal line 21. Since the light receiving sensor 180 disposed in the region where the TFT 24 and the signal line 21 are formed is disposed in the region where the illumination light is originally shielded, the aperture ratio of the display pixel 80 is not reduced. Thereby, it is possible to prevent the luminance of the display image from being lowered by the light receiving sensor 180 being arranged.
  • the solar cell is a silicon solar cell.
  • the scope of the present invention is not limited to such an embodiment.
  • the solar cell is a dye-sensitized solar cell.
  • FIG. 47 is a cross-sectional view of a solar cell panel 900 in which the dye-sensitized solar cell 210 is disposed facing the back side of the liquid crystal display device 100.
  • the dye-sensitized solar cell 210 has a transparent substrate 162 on which a transparent conductive film 161 is formed, and a photoelectrode 163 containing a sensitizing dye and a titanium oxide based semiconductor.
  • the photoelectrode 163 is electrically connected to the transparent conductive film 161.
  • the photoelectrode 163 is composed of, for example, a titanium oxide-based semiconductor, and the titanium oxide-based semiconductor is not particularly limited, and titanium oxide, anatase-type titanium oxide, or the like can be used.
  • a counter substrate 165 having a conductive layer 164 formed on the transparent conductive film 161 is provided so as to face and separate from the transparent conductive film 161.
  • a counter electrode 166 is formed in contact with the conductive layer 164 of the counter substrate 165.
  • metal gold, platinum, silver, copper, magnesium, aluminum, indium, etc.
  • carbon conductive metal oxide (indium-tin composite oxide, fluorine-doped tin oxide, etc.), etc. are used. Can do.
  • An electrolyte solution 167 is filled between the counter electrode 166 and the photoelectrode 163.
  • the electrolyte solution 167 is an electrolytic solution in which iodine, lithium iodide, tertiary butylpyridine, dimethylpropylimidazolium iodide is dissolved in methoxyacetonitrile or acetonitrile.
  • the outer peripheral surfaces of the photoelectrode 163 and the counter electrode 166 are sealed with a seal layer 168.
  • the sensitizing dye of the photoelectrode 163 When external light is incident from the transparent substrate 162 side, the sensitizing dye of the photoelectrode 163 absorbs light energy to be excited and emits electrons. The emitted electrons reach the transparent conductive film 161 through the titanium oxide based semiconductor and flow to the external circuit. At this time, the sensitizing dye that has released electrons into cations oxidizes iodine ions in the electrolyte solution 167, and the oxidized iodine ions are reduced by the electrons returned from the external circuit to the counter electrode 166, Thus, it functions as a battery by circulating electrons.
  • the panel 610 can have various atmosphere colors.
  • -It can be fully utilized as an information transmission medium such as identification.
  • various atmosphere colors can be used as the background of the panel 611, it can be sufficiently utilized as an information transmission medium for advertising and identification.
  • the first electrode on which the first sensitizing dye is adsorbed the second electrode on which the second sensitizing dye having an absorption wavelength different from that of the second sensitizing dye is adsorbed, It is also possible to provide a tandem dye-sensitized solar cell including a counter electrode disposed between one electrode and a second electrode.
  • the basic configuration of the present invention is that a liquid crystal display device having a light scattering liquid crystal layer sandwiched between transparent substrates is arranged on the front side of the solar cell, and a display area 710 is displayed.
  • a panel for displaying a predetermined black figure with a light scattering liquid crystal layer as a background, or a panel for displaying a black predetermined figure with a solar cell through a light transmission liquid crystal layer as a background Display a panel that displays a white predetermined figure with a solar cell as a background through a light-transmitting liquid crystal layer, or display a white predetermined pattern with the liquid crystal layer in a light-scattering state.
  • a panel for displaying a graphic is not displayed, and can be regarded as a solar cell panel with a display function or a display device with a solar cell. Therefore, the above-described embodiment can be configured as a display device.
  • the display device is configured such that the liquid crystal display device 100 arranged on the front side and the solar cell 200 arranged on the back side are opposed to each other.
  • the liquid crystal display device 100 has a memory liquid crystal layer 36 as a light-scattering liquid crystal layer sandwiched between a first transparent substrate 11 and a second transparent substrate 12, for example, an active matrix type as shown in FIG. It has a circuit configuration.
  • the solar cell 200 is a silicon solar cell, for example.
  • the panel area 90 on the front side of the liquid crystal display device 100 is provided with a display area 710 for displaying or hiding a predetermined graphic.
  • a power generation area 720 that generates power by transmitting external light and irradiating the solar cell 200 is provided.
  • a transparent support 620 in which a panel 610 is housed is disposed in the display area 710 and on the surface side of the liquid crystal display device 100.
  • the liquid crystal control unit 500 displays the panel 610 by setting the liquid crystal molecules 38 in the random state in the memory liquid crystal layer 36 corresponding to the display area 710 and changing the memory liquid crystal layer 36 of the liquid crystal display device 100 to the light scattering state.
  • the liquid crystal control unit 500 sets the memory liquid crystal layer 36 corresponding to the display area 710 in a light transmissive state, and as a result, a panel with the black color of the solar cell 200 as a background, for example. 610 is recognized by the observer, and the panel 610 is not displayed.
  • a display device in which the panel 611 is arranged will be described with reference to FIG. 14. Unlike the display device shown in FIG. 2, the display device is arranged in the display area 710 and between the liquid crystal display device 100 and the solar cell 200. A transparent support 620 in which the panel 611 is accommodated is disposed.
  • the liquid crystal control unit 500 sets the memory liquid crystal layer 36 corresponding to the display area 710 to a light transmissive state, the panel 611 with the background of, for example, black color of the solar cell 200 is recognized by the observer, so that the panel 611 is displayed. Is done.
  • the liquid crystal control unit 500 causes the memory liquid crystal layer 36 corresponding to the display area 710 to be in a light scattering state, so that external light is scattered to the memory liquid crystal layer 36 in the light scattering state.
  • the display area 710 appears white, and the panel 611 is not displayed to the observer.
  • the usage example of the solar cell panel 900 which concerns on the above-mentioned embodiment was an example applied to the wall of an office building, of course, it is also possible to apply to other things, for example, in-car advertisement, It can also be suitably used for station advertisement signs, vending machines, warning solar panels, induction solar panels, road signs, self-luminous solar panels, and the like.
  • the solar cell panel according to the present invention can be sufficiently used as an information transmission medium, it is preferably used in places where there are many people such as office buildings and wall surfaces of stations.

Abstract

 本発明は、情報伝達媒体として十分に利用できる太陽電池パネルを提供することを目的とする。 本発明の太陽電池パネルは、一対の基板間に設けられた液晶層36を有し、液晶層36の光散乱状態と光透過状態とを切り替える液晶表示装置100と、液晶表示装置100の背面側に配置される太陽電池200と、液晶表示装置100の表面側、又は、液晶表示装置100と太陽電池200との間のうち少なくとも何れか一方に配置されて所定の図形を表示するパネル610,611とを備え、前記液晶層の光散乱状態と光透過状態とを切り替えることにより、観察者に対して所定の図形の表示状態を変化させることができる。

Description

太陽電池パネル
 本発明は、発電と同時に表示を行うことができる太陽電池パネルに関する。
 近年、太陽電池パネルは急速に普及しており、電卓等の小型電子機器に搭載されるような比較的小さなものから、特許文献1に記載されるように家庭用として住宅に取り付けられる太陽電池パネルや大規模な発電施設に用いられる大面積の太陽電池発電システムのように様々な分野で利用が促進されている。
 太陽電池の普及が促進されるにつれて、太陽電池の外観も重要な構成要素となってきており、太陽電池パネル前面の大面積を発電以外にも生かす方法、即ち、太陽電池パネル前面に文字や図形等を入れることにより、宣伝・識別等の情報伝達媒体として利用する方法も要求されつつある。
 例えば、特許文献2には、太陽電池モジュールの表面を任意の色に着色して、色の異なる太陽電池モジュールを組合せることにより所望の文字や図形等の模様を表示するように構成された太陽電池パネルが記載されている。
 また例えば特許文献3には、受光面に2種類以上の色を持つ単位太陽電池素子が特定の文字、記号又は図形のパターンを形成するようにモザイク状に並べられている太陽電池パネルが記載されている。
特開2001-295437号公報 特開2001-237449号公報 特開2006-179380号公報
 しかし、太陽電池パネルの前面に所望の色を与え、異なる色の太陽電池モジュールを組合せて任意の図形パターンを形成するように並べた太陽電池パネルの場合、表示できる模様は1種類に限定されるため、情報伝達媒体としての利用が不十分である問題点がある。
 本発明はかかる問題点に鑑みてなされたものであって、情報伝達媒体として十分に利用できる太陽電池パネルを提供することを目的とする。
 本発明に係る太陽電池パネルは、一対の基板間に設けられた液晶層を有し、前記液晶層の光散乱状態と光透過状態とを切り替える液晶表示装置と、前記液晶表示装置の背面側に配置される太陽電池と、前記液晶表示装置の表面側、又は、前記液晶表示装置と前記太陽電池との間のうち少なくとも何れか一方に配置されて所定の図形を表示するパネルと、を備える。ここで、所定の図形とは、観察者に表示される図形であり、文字、数字、形状、模様、又はこれらの結合を有するものとする。
 本発明の構成によれば、前記液晶層を光散乱状態又は光透過状態にすることにより、観察者に対して所定の図形の表示態様を変化させることできる。そのため、観察者の興味を効果的に引き付ける又は観察者の注意を効果的に喚起することのできる表示が可能となるので、太陽電池を発電のみならず情報伝達媒体としても十分に利用することができる。
 また、前記パネルの少なくとも一部は光透過性を有し、前記液晶表示装置の表面側に前記パネルが配置され、前記液晶層が前記光散乱状態のときには前記液晶層を背景として前記所定の図形を表示させる一方、前記液晶層が前記光透過状態のときには前記液晶層を介した前記太陽電池を背景として前記所定の図形を表示することが可能である。
 この構成によれば、液晶層が光散乱状態のときには、光散乱状態の液晶層を背景として所定の図形を表示させることができる。一方、液晶層が光透過状態のときには、太陽電池を背景として所定の図形を表示させることができる。このように、液晶層を光散乱状態又は光透過状態にすることにより、所定の図形の背景を変化させることができるので、観察者の興味を効果的に引き付ける又は観察者の注意を効果的に喚起することのできる表示が可能となる。
 また、前記所定の図形は黒色であることが好ましい。
 この構成によれば、液晶層が光散乱状態のときには、その光散乱状態の液晶層を背景として黒色の所定の図形を表示させることができる。光散乱状態の液晶層の色彩は例えば白色であるので、白色の背景に黒色の図形を表示することができる。そのため、観察者に対して所定の図形を明瞭に表示することができる。一方、液晶層が光透過状態のときには、その光透過状態の液晶層を介して太陽電池を背景として黒色の所定の図形を表示させることができる。太陽電池の色彩は例えば黒色であるので、黒色の背景に黒色の図形を表示することができる。そのため、観察者に対して所定の図形を見えにくく表示することができる。このように、液晶層を光散乱状態又は光透過状態にすることにより、所定の図形が観察者に対して明瞭に表示されたり又は見えにくく表示されたりするため、観察者の興味を効果的に引き付ける又は観察者の注意を効果的に喚起することのできる表示が可能となる。
 また、前記液晶表示装置と前記太陽電池との間に前記パネルが配置され、前記液晶層が前記光透過状態のときには前記液晶層を介して前記太陽電池を背景として前記所定の図形を表示させる一方、前記液晶層が前記光散乱状態のときには前記所定の図形を表示しないことが可能である。
 この構成によれば、液晶層が光透過状態のときには、太陽電池を背景として所定の図形を表示させることができる。一方、液晶層が光散乱状態のときには、光散乱状態の液晶層に遮られて、所定の図形は観察者に見えない。このように、液晶層を光散乱状態又は光透過状態にすることにより、所定の図形が表示されたり又は表示されなくなるので、観察者の興味を効果的に引き付ける又は観察者の注意を効果的に喚起することのできる表示が可能となる。
 また、前記所定の図形は白色であることが好ましい。
 この構成によれば、液晶層が光透過状態のときには、その光透過状態の液晶層を介して太陽電池を背景として白色の所定の図形を表示させることができる。太陽電池の色彩は例えば黒色であるので、黒色の背景に白色の図形を表示することができる。そのため、観察者に対して所定の図形を明瞭に表示することができる。一方、液晶層が光散乱状態のときには、光散乱状態の液晶層に遮られて、所定の図形は観察者に見えない。このように、液晶層を光散乱状態又は光透過状態にすることにより、所定の図形が観察者に対して明瞭に表示されたり又は表示されなくなるため、観察者の興味を効果的に引き付ける又は観察者の注意を効果的に喚起することのできる表示が可能となる。
 また、前記太陽電池パネルに照射された外部光を受光する複数の受光センサと、前記受光センサによって得られた受光情報に対して予め定められている基準値を上回る前記受光情報が前記受光センサによって得られたときに、前記受光情報に基づいて、前記パネルの位置を設定する位置設定部と、を有することが好ましい。ここで、外部光とは、太陽電池パネルに照射されるあらゆる光を意味する。
 この構成によれば、太陽電池パネルに照射される外部光の強度がある領域とその他の領域とにおいて異なっても、効率的な発電及び効果的な情報伝達媒体の利用が可能となる。
 また、前記位置設定部は、前記受光センサによって得られた前記受光情報に基づいて、前記基準値を上回る前記受光情報が得られた部位を除いた領域に前記パネルの位置を設定することが好ましい。
 この構成によれば、基準値を上回る受光情報が前記受光センサによって得られたときに、パネルの位置を設定して、液晶表示装置の表面側の領域であるパネル領域内の比較的明るい領域を発電のために使用して効率的な発電を行うことができる。
 また、前記液晶層は、メモリ性を有する液晶層であることが好ましい。ここで、メモリ性を有する液晶層とは、液晶パネルへの印加電圧を、メモリ回路により外部からの信号入力なしに保持できることを特徴とする(メモリ特性を有する)液晶層のことである。例えばコレステリック液晶はメモリ液晶とも呼ばれる。
 この構成によれば、前記液晶層に対する電界印加を停止した場合でも、液晶層内の液晶分子が配向状態を維持するメモリ特性により、消費電力の抑制化を促進できる。
 本発明によれば、観察者に対して所定の図形の表示態様を変化させることできるので、太陽電池を発電のみならず情報伝達媒体としても十分に利用することができる。
実施形態1に係る太陽電池パネルの全体を説明する図である。 実施形態1に係る太陽電池パネルの断面図である。 パネル領域の表示エリアに黒色の所定の図形のパネルを表示する一具体例を示す図である。 パネル領域の表示エリアにおいて、黒色の所定の図形のパネルが非表示の場合の一具体例を示す図である。 黒色の所定の図形のパネルを、表示又は非表示の何れかに設定することにより識別表示を行う使用態様を説明する図であり、そのうち(A)は表示状態であり、(B)は非表示状態である。 黒色の所定の図形のパネルを配置し、パネル領域の全面に表示エリアを設けた実施形態2に係る太陽電池パネルの断面図である。 パネル領域の全面に設けられている表示エリアに、黒色の所定の図形のパネルを表示する一具体例を示す図である。 パネル領域の全面に設けられている表示エリアにおいて、黒色の所定の図形のパネルが非表示の場合の一具体例を示す図である。 所定の色彩の背景にパネルを表示する実施形態3に係る一具体例を示す図である。 別の色彩の背景にパネルを表示する実施形態3に係る一具体例を示す図である。 パネル領域に複数の表示エリアを設けた実施形態4に係る太陽電池パネルの断面図である。 パネル領域に複数の表示エリアを設け、黒色の所定の図形のパネルを表示する一具体例を示す図である。 パネル領域に複数の表示エリアを設け、一方の黒色の所定の図形のパネルを非表示とする一具体例を示す図である。 白色の所定の図形のパネルを配置した実施形態5に係る太陽電池パネルの断面図である。 パネル領域の表示エリアに白色の所定の図形のパネルを表示する一具体例を示す図である。 パネル領域の表示エリアにおいて、白色の所定の図形のパネルが非表示の場合の一具体例を示す図である。 白色の所定の図形のパネルを表示又は非表示の何れかに設定することにより識別表示を行う使用態様を説明する図であり、そのうち(A)は表示状態であり、(B)は非表示状態である。 白色の所定の図形のパネルを配置し、パネル領域の全面に表示エリアを設けた実施形態6に係る太陽電池パネルの断面図である。 パネル領域の全面に設けられている表示エリアに白色の所定の図形のパネルを表示する一具体例を示す図である。 パネル領域の全面に設けられている表示エリアにおいて、白色の所定の図形のパネルが非表示の場合の一具体例を示す図である。 複数のパネルから一つを選択して表示エリアに配置する図形配置部を有する、実施形態7に係る太陽電池パネルを説明する図である。 パネルの配置位置を変更できる実施形態8に係る太陽電池パネルを説明する図であり、そのうち(A)はパネルが左側に配置されている図であり、(B)はパネルが右側に配置されている図である。 パネルの配置位置を変更できる実施形態8に係る太陽電池パネルを説明する図であり、そのうち(A)はパネルが左下側に配置されている図であり、(B)はパネルが右上側に配置されている図である。 液晶表示装置のアクティブマトリクス型の回路構成図である。 受光センサが設けられている実施形態9に係る太陽電池パネルの構造を概略的に説明する図である。 受光センサの配置位置を説明する液晶表示装置の詳細な断面図である。 実施形態9に係る太陽電池パネルの配線構造及び制御部を模式的に示すブロック図である。 液晶表示装置のTFT周辺の回路構成図である。 実施形態9に係る太陽電池パネルの制御方法を示すフローチャートである。 受光センサが取得した受光情報の処理を説明するブロック図である。 外部光がパネル領域に直接に照射されている太陽電池パネルを説明する図である。 外部光がパネル領域に直接に照射されている場合において、パネルの配置の他の具体例を説明する図である。 外部光がパネル領域の大半に照射されている太陽電池パネルを説明する図である。 外部光がパネル領域の大半に照射されている場合において、パネルの配置の他の具体例を説明する図である。 外部光がパネル領域に直接に照射されている太陽電池パネルを説明する図である。 外部光がパネル領域に直接に照射されている場合において、パネルの配置の他の具体例を説明する図である。 外部光がパネル領域の大半に照射されている太陽電池パネルを説明する図である。 外部光がパネル領域の大半に照射されている場合において、パネルの配置の他の具体例を説明する図である。 受光センサの配置の変形例であり、パネル領域の四辺のうち対向した二辺の中点を結ぶ線に沿った配置を模式的に示す太陽電池パネルの模式図である。 受光センサの配置の変形例であり、パネル領域の四辺のうち対向した二辺の中点を結ぶ線に沿った配置を模式的に示す太陽電池パネルの模式図である。 受光センサの配置の変形例であり、パネル領域の周縁部において、パネル領域の四辺のうち少なくとも対向した二辺に沿った受光センサの配置を模式的に示す太陽電池パネルの模式図である。 受光センサの配置の変形例であり、パネル領域の周縁部において、パネル領域の四辺のうち少なくとも対向した二辺に沿った受光センサの配置を模式的に示す太陽電池パネルの模式図である。 受光センサの配置の変形例であり、パネル領域の少なくとも一方の対角線に沿った受光センサの配置を模式的に示す太陽電池パネルの模式図である。 受光センサの配置の変形例であり、パネル領域の周縁部における各辺の中央部での配置を模式的に示す太陽電池パネルの模式図である。 受光センサの配置の変形例であり、パネル領域の周縁部の四隅での配置を模式的に示す太陽電池パネルの模式図である。 受光センサの配置の変形例であり、パネル領域を複数のエリアに分割し、受光センサをその位置に対応させた配置を模式的に示す太陽電池パネルの模式図である。 色素増感型太陽電池を液晶表示装置の背面側に対向して配置した実施形態11に係る太陽電池パネルの断面図である。
 《実施形態1》
 以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。
 図1は、本実施形態に係る太陽電池パネル900の全体を説明する図である。図1に示されるように、太陽電池パネル900は、光散乱性の液晶層を透明基板間に挟持した液晶表示装置100と、その液晶表示装置100の背面側に対向して配置される太陽電池200と、液晶表示装置100を制御して液晶層の液晶の配向状態を光散乱状態又は光透過状態に制御する液晶制御部500と、を有して構成される。太陽電池パネル900が配置される場所は特に限定されるものではないが、例えばオフィスビルの壁に配置される。
 蓄電池310には、太陽電池200にて発電された電力が蓄電される。蓄電池310は、特に限定されるものではないが、例えば鉛蓄電池、ニッケル・水素電池、リチウム・イオン電池等の二次電池、又はキャパシタである。
 図2は、本実施形態に係る太陽電池パネル900の断面図である。まず液晶表示装置100について説明する。液晶表示装置100は、背面側に配置された例えばアレイ基板である第2透明基板12と、第2透明基板12に対向して正面側に配置された例えば対向基板である第1透明基板11と、第1透明基板11と第2透明基板12との間に挟持された光散乱性の液晶層としての例えばメモリ液晶層36と、を有する。
 メモリ液晶層36の漏洩を防止するために、第1透明基板11と第2透明基板12との周囲はシール材29により封止されている。メモリ液晶層36としては、特に限定されるものではないが、例えばメモリ特性に優れる強誘電性液晶やコレステリック液晶等を使用することが可能である。
 第2透明基板12の内側即ち正面側表面には、第2電極として例えば画素電極23が形成される。第1透明基板11の内側即ち背面側表面には、第2電極に対向する第1電極として例えば対向電極25が形成される。対向電極25には、図示していない外部駆動回路から所定の対向電位が与えられている。
 第1透明基板11及び第2透明基板12としては、特に限定されるものではないが、例えばガラス板や石英板等の光透過性を有する基板を使用することができる。画素電極23及び対向電極25は、ITO(インジウム錫酸化物)等の光透過性導電材料にて形成される。
 液晶表示装置100の表面側の領域であるパネル領域90には、所定の図形の表示又は非表示を行う表示エリア710が設けられる。表示エリアとは、所定の図形の表示又は非表示を行う領域であり、この領域において外部光が太陽電池に照射されて発電を行う場合でも、所定の図形の表示又は非表示を行う限り表示エリアとする。表示エリア710はパネル領域90の一部に設けられ、パネル領域90の表示エリア710以外の領域には、外部光を透過させて太陽電池200に照射させることにより発電を行う発電エリア720が設けられる。ここで、発電エリア720とは、外部光が太陽電池200に照射されて発電のみを行う領域をいう。
 表示エリア710内且つ液晶表示装置100の表面側には、黒色の所定の図形を表示するパネル610が配置されている。パネル610は、透明な支持体620に収納されている。透明な支持体620は、例えばプラスチックやガラス等の透明な材質から構成される。透明な支持体620は、内部にパネル610を収納できるように所定の厚みを有し、液晶表示装置100の表面側に安定して配置しやすいように平板形状の立体物である。なお、本実施形態では、パネル610は黒色の所定の図形を表示するが、このような実施形態に限定されるものではなく、例えば、パネル610は暗色色彩の図形を表示するものとすることも可能である。ここで、ここで、暗色色彩とは、明るさの度合いが低い色彩のことであり、特に限定されるものではないが、例えば黒色の他、褐色、紺色、深緑色、臙脂色等の色調が暗い低明度の有彩色又は無彩色のことである。
 液晶表示装置100と太陽電池200とは、例えばスペーサ等を介して所定間隔を介在して配置されているが、これに限定されず液晶表示装置100と太陽電池200とを密接して配置することも可能である。
 次に太陽電池200の構造について説明する。透明絶縁性基板41の背面側には第1透明電極42が形成される。透明絶縁性基板41は例えば光透過性ガラスである。第1透明電極42は例えばSnOである。第1透明電極42の背面側には、微結晶のp型シリコン層43と、微結晶のi型シリコン層44と、微結晶のn型シリコン層45とが成膜される。p型シリコン層43、i型シリコン層44、及びn型シリコン層45は光電変換層40を形成する。光電変換層40の膜厚は特に限定されるものではないが例えば100~600nmである。微結晶のn型シリコン層45の背面側には第2透明電極46が形成される。第2透明電極46は例えばZnO層である。第2透明電極46の背面側には、例えばAl膜又はAg膜である裏面電極47が形成される。太陽電池200は、透明絶縁性基板41側から外部光等の光を入射させて上述したpin構造の光電変換層40で光電変換させることにより起電が可能となる。
 なお、光電変換層40は、第1透明電極42側からp型シリコン層43、i型シリコン層44、n型シリコン層45を順次積層してpin構造としたが、n型シリコン層、i型シリコン層、p型シリコン層を順次積層してnip構造とすることも可能である。また、光電変換層40は微結晶シリコンの光電変換層であるが、この実施形態に限定されることはなく、例えば第1透明電極42側からアモルファスのp型シリコン層、アモルファスのi型シリコン層、アモルファスのn型シリコン層を順次積層してpin構造とすることも可能であり、他にも、第1透明電極42側からアモルファスのn型シリコン層、アモルファスのi型シリコン層、アモルファスのp型シリコン層を順次積層してnip構造とすることも可能である。また、光電変換層40は、アモルファスシリコン又は微結晶シリコンとして形成するシングル型に限定されず、例えばアモルファスシリコンによる光電変換層と微結晶シリコンによる光電変換層とが積層されたタンデム型の光電変換層として形成することも可能である。光電変換層40をタンデム型にすることにより、シングル型に比べて変換効率が例えば約1.5倍程度向上する。また、光電変換層40の受光面に、受光効率を上げるために反射防止層を設け、その反射防止層の表面に第1透明電極42を形成することも可能である。反射防止層は例えば酸化チタン、二酸化ケイ素、窒化ケイ素等により形成することができる。
 次に、本実施形態に係る太陽電池パネル900の使用態様について説明する。図3は、表示エリア710にパネル610を表示する一具体例を示す図である。図3に示すように、液晶制御部500は、表示エリア710に対応するメモリ液晶層36にて、画素電極23と対向電極25との間の電界を形成しないでメモリ液晶層36における液晶分子38をランダム状態にし、液晶表示装置100のメモリ液晶層36を光散乱状態に変化させて、外部光を散乱させる。また、パネル610は、例えば花粉が発生している状態を模式的に示す人型図形である。外部光がパネル610に当たり観察者に反射することにより観察者の視界に入る。また、表示エリア710に対応するメモリ液晶層36を光散乱状態にすることにより、例えば白色の散乱光が観察者の視界に入る。そうすると、例えば白色を背景にして、黒色の所定の図形を表示するパネル610が観察者に認識される結果、パネル610の表示が可能となる。ここで、表示エリア710は、パネル610の面積よりも所定程度の広がりを有する面積であることが好ましい。表示エリア710の面積がパネル610の面積と同等程度の場合、パネル610の周辺の液晶分子38の散乱光が少なくなり、背景の例えば白色の散乱光が弱くなることでパネル610の表示が不明瞭になる可能性があり得るからである。
 発電エリア720では、液晶制御部500により、画素電極23と対向電極25との間に電圧を印加することにより、メモリ液晶層36における液晶分子38を配向状態にさせることで、液晶表示装置100のメモリ液晶層36が光透過状態に制御されている。そのため、発電エリア720では、外部光は光透過状態のメモリ液晶層36を介して太陽電池200に照射され、効率的な発電が可能となる。
 一方、図4は、表示エリア710にパネル610が非表示の場合の一具体例を示す図である。図4に示すように、液晶制御部500は、表示エリア710に対応するメモリ液晶層36を光透過状態にする。外部光はパネル610に当たり観察者に反射することにより観察者の視界に入る。また、表示エリア710に対応するメモリ液晶層36を光透過状態にすることにより、太陽電池200の例えば黒色の色彩が観察者の視界に入る。そうすると、太陽電池200の例えば黒色の色彩を背景にしたパネル610が観察者に認識される結果、パネル610は非表示となる。発電エリア720では、メモリ液晶層36は光透過状態に制御されているため、発電エリア720では、外部光は光透過状態のメモリ液晶層36を介して太陽電池200に照射され、効率的な発電が可能となる。また、表示エリア710においても、メモリ液晶層36が光透過状態であるため、外部光が光透過状態のメモリ液晶層36を介して太陽電池200に照射され発電が行われる。
 次に、パネル610を表示又は非表示の何れかに設定することにより識別表示を行う場合における太陽電池パネル900の使用態様について説明する。例えばビルの出入口に設けられるドアの上部に太陽電池パネル900を設置し、図5(A)に示すように、大気中の花粉の飛散率が高い場合は、パネル610を表示状態にしてビルに出入りする観察者に注意を喚起する。発電エリア720では、メモリ液晶層36は光透過状態に制御されており発電が行われる。
 なお、図では理解を促進させるために、ドアに対して太陽電池パネル900の大きさを誇張して示している。また、本発明の範囲は、図5(A)に示したようにパネル領域90の全てを表示エリア710及び発電エリア720にて構成する例に限定される必要はなく、パネル領域90内に表示エリア710及び発電エリア720以外の第3エリアを設けることも可能である。第3エリアは、表示エリア710及び発電エリア720以外の領域に設けられるエリアであって、表示を行うか又は行わないかは適宜自由に設定することができ、第3エリアを設けることによりパネル領域90における表示のバリエーションを増加させることが可能となる。
 一方、図5(B)に示すように、大気中の花粉の飛散率が低い場合は、パネル610を非表示状態にし、発電エリア720にて発電を行うのみならず、表示エリア710においても発電を行う。このように、パネル610を表示する又は表示しないことにより、観察者の注意を効果的に喚起することのできる表示が可能となる。
 表示エリア710にパネル610を表示又は非表示の何れかに設定して識別表示を行う使用態様は、上述した花粉飛散率の注意換気表示の具体例に限定されるわけではなく、第1状態と、この第1状態と異なる状態である第2状態とのいずれかを識別表示するものであるならば本発明の太陽電池パネル900は利用可能である。
 《実施形態2》
 上述の実施形態1においては、表示エリア710はパネル領域90の一部に設けられたが、本発明の範囲はこのような実施形態に限定されない。実施形態2においては、図6に示されるように、表示エリア710はパネル領域90の全面に設けられており、実施形態1にて示した発電エリア720は設けられていない。
 実施形態2に係る太陽電池パネル900の使用態様について説明するに、図7は、パネル領域90の全面に設けられている表示エリア710にパネル610を表示する一具体例を示す図である。図7に示すように、液晶制御部500は、メモリ液晶層36を光散乱状態にする。また、パネル610は、実施形態1と同様に例えば花粉が発生している状態を模式的に示す人型図形である。例えば白色を背景にして、黒色の所定の図形を表示するパネル610が観察者に認識される結果、パネル610の表示が可能となる。実施形態2ではパネル領域90の全面に表示エリア710を設けるため実施形態1よりも比較的大きめのパネル610の表示が可能となる。なお、表示エリア710において、全ての外部光は光散乱状態のメモリ液晶層36に散乱されるのではなく、図7に示すように、散乱されずに太陽電池200に照射される場合があり、そのため効率は多少下がるものの表示エリア710においても発電が行われる。
 一方、図8は、表示エリア710にパネル610が非表示の場合の一具体例を示す図である。図8に示すように、メモリ液晶層36を光透過状態にする。太陽電池200の例えば黒色の色彩を背景にしたパネル610が観察者に認識され、パネル610は非表示となる。表示エリア710において、メモリ液晶層36が光透過状態であるため、外部光が光透過状態のメモリ液晶層36を介して太陽電池200に照射され発電が行われる。
 《実施形態3》
 上述の実施形態1及び2においては、パネル610を表示する又は表示しない使用態様についての実施形態であったが、本発明の範囲はこのような実施形態に限定されない。実施形態3においては、パネル610の背景の色を変更する使用態様について説明をする。
 図9は、所定の色彩の背景にパネル610を表示する一具体例を示す図である。ここでは、一例として、パネル領域90の全面に表示エリア710が設けられる。パネル610は、実施形態1と同様に例えば花粉が発生している状態を模式的に示す人型図形である。図9に示すように、液晶制御部500は、前述の図7に示した光散乱状態よりもやや光を透過する程度に、メモリ液晶層36を光散乱状態にする。そのため、例えば明るい灰色を背景にして、黒色の所定の図形を表示するパネル610が観察者に認識される。
 一方、図10は、別の色彩の背景にパネル610を表示する一具体例を示す図である。図10に示すように、液晶制御部500は、前述の図9に示した光散乱状態よりも更に光を透過する程度に、メモリ液晶層36を光散乱状態にする。換言すれば、液晶制御部500は、前述の図8に示した光透過状態よりもやや光を散乱させる程度に、メモリ液晶層36を光散乱状態にする。そのため、例えば暗い灰色を背景にして、黒色の所定の図形を表示するパネル610が観察者に認識される。このように、同一の表示物であるパネル610を用いても、それを異なる色彩の背景にて表示できるので、観察者の興味を効果的に引き付ける表示が可能となる。
 なお、上述の実施形態では、パネル610は黒色の所定の図形を表示するパネルであったが、本発明の範囲はこのような実施形態に限定されるものではなく、パネルの色は限定されるものではない。
 また、上述の実施形態では、パネル610は、液晶表示装置100の表面側に配置されたが、本発明の範囲はこのような実施形態に限定されるものではなく、パネルは、液晶表示装置100と太陽電池200との間に配置されることも可能である。
 《実施形態4》
 上述の実施形態1~3において、表示エリア710は単数であった。しかし本発明の範囲はこのような実施形態に限定されるものではない。実施形態4においては、図11に示されるように、表示エリア710はパネル領域90内に複数(例えば実施形態4においては2つ)設けられる。実施形態4において、パネル610は、実施形態1~3と異なり、例えば所定幅及び所定長さの道路の車線ラインである。
 実施形態4に係る太陽電池パネル900の使用態様について説明する。図12は、パネル領域90に複数設けられている表示エリア710に、車線ラインであるパネル610を表示する一具体例を示す図である。図12に示されるように、実施形態4では、太陽電池パネル900は例えば道路に組み込まれて使用され、太陽電池パネル900の上部を車両が走行する。太陽電池パネル900の上部は車両が走行することになるため、太陽電池パネル900は走行する車両の重量に耐えられる材質及び構造にて構成される。
 液晶制御部500は、各々の表示エリア710に対応するメモリ液晶層36を光散乱状態にする。例えば白色の散乱光を背景にした車線ラインであるパネル610が観察者に認識されて、道路に車線ラインが2つ表示され、道路は均等な道幅の3車線となる。そのため例えば普通車両がこれらの車線を利用することに適している。発電エリア720では、外部光が太陽電池200に照射されることにより発電が行われる。なお、図では理解を促進させるために、太陽電池パネル900の断面の記載におけるパネル610(車線ライン)とパネル610(車線ライン)との間の距離は、車両が車線を利用している状態の説明の記載におけるパネル610(車線ライン)とパネル610(車線ライン)との間の距離よりも狭く誇張して表現されている。
 一方、図13は、パネル領域90に複数設けられている表示エリア710に車線ラインであるパネル610が非表示の場合の一具体例を示す図である。図13に示すように、液晶制御部500は、例えば、一方の表示エリア710に対応するメモリ液晶層36のみを光透過状態にする。太陽電池200の例えば黒色の色彩を背景にしたパネル610が観察者に認識され、2つ表示されていた車線ラインの一方が非表示となり、道路は所定道幅の車線とそれよりも広い道幅の車線とから構成される2車線となる。そのため例えば広い道幅の車線はバス等の大型車両が通行することに適している。発電エリア720では、外部光が太陽電池200に照射されることにより発電が行われ、また、メモリ液晶層36が光透過状態である表示エリア710においても、外部光が光透過状態のメモリ液晶層36を介して太陽電池200に照射され発電が行われる。
 このように、本実施形態4においては、道路に太陽電池パネル900を組み込むことにより、発電を行うと共に、車線ラインであるパネル610の表示又は非表示により、通行時間帯等により変更される車線を観察者に識別させることができる。
 なお、上述の実施形態では、複数設けられている表示エリア710内に、黒色の所定の図形を表示するパネル610が配置されていたが、本発明の範囲はこのような実施形態に限定されるものではなく、複数設けられている表示エリア710内に、白色の所定の図形を表示するパネルを配置することも可能である。
 《実施形態5》
 次に、図14は、実施形態5に係る太陽電池パネル900の全体を説明する図である。実施形態5においては実施形態1~4と異なり、表示エリア710内且つ液晶表示装置100と太陽電池200との間に、白色の所定の図形を表示するパネル611が配置されている。パネル611は、透明な支持体620に収納されている。これ以外の構成は実施形態1と同様である。なお、本実施形態では、パネル611は白色の所定の図形を表示するが、このような実施形態に限定されるものではなく、例えば、パネル611は明色色彩の図形を表示するものとすることも可能である。ここで、ここで、明色色彩とは、明るさの度合いが高い色彩のことであり、特に限定されるものではないが、例えば白、クリーム色、薄い水色、黄、銀、明るいグレー等の色調が明るい高明度の有彩色又は無彩色のことである。
 次に、本実施形態に係る太陽電池パネル900の使用態様について説明する。図15は、表示エリア710にパネル611を表示する一具体例を示す図である。図15に示すように、液晶制御部500は、表示エリア710に対応するメモリ液晶層36を光透過状態にする。また、パネル611は、例えば駐車違反マークの図形である。外部光が光透過状態のメモリ液晶層36を介してパネル611に当たり観察者に反射することにより観察者の視界に入る。また、外部光が光透過状態のメモリ液晶層36を介して太陽電池200に当たり観察者に反射することにより観察者の視界に入る。そうすると、太陽電池200の例えば黒色を背景にしたパネル611が観察者に認識される結果、パネル611の表示が可能となる。なお、上述の実施形態1~4において、表示エリア710は、パネル610の面積よりも所定程度の広がりを有する面積であることが好ましかったが、パネル611の場合は周辺の液晶分子38の散乱光を背景として図形を表示するものではないので、パネル611の場合の表示エリア710は、パネル610の場合の表示エリア710よりも広がりを要しない。
 発電エリア720では、メモリ液晶層36は光透過状態に制御されている。そのため、発電エリア720では、外部光は光透過状態のメモリ液晶層36を介して太陽電池200に照射され、効率的な発電が可能となる。また、表示エリア710においても、メモリ液晶層36が光透過状態であるため、外部光が光透過状態のメモリ液晶層36を介して太陽電池200に照射され発電が行われる。
 一方、図16は、表示エリア710にパネル611が非表示の場合の一具体例を示す図である。図16に示すように、液晶制御部500は、表示エリア710に対応するメモリ液晶層36を光散乱状態にする。外部光は光散乱状態のメモリ液晶層36に散乱されて表示エリア710は白く見えるため、メモリ液晶層36と太陽電池200との間に配置されているパネル611は観察者に非表示となる。発電エリア720では、メモリ液晶層36は光透過状態に制御されているため、発電エリア720では、外部光は光透過状態のメモリ液晶層36を介して太陽電池200に照射され、効率的な発電が可能となる。
 次に、パネル611を表示又は非表示の何れかに設定することにより識別表示を行う場合における太陽電池パネル900の使用態様について説明する。例えば時間帯によって駐車禁止地帯になる駐車禁止標識に太陽電池パネル900を組み込み、図17(A)に示すように、駐車禁止の時間帯の場合は、パネル611を表示状態にして観察者に注意を喚起する。発電エリア720では、メモリ液晶層36は光透過状態に制御されており発電が行われる。一方、図17(B)に示すように、駐車禁止の時間帯でない場合は、パネル611を非表示状態にして、発電エリア720にて発電を行う。
 なお、表示エリア710にパネル611を表示又は非表示の何れかに設定して識別表示を行う使用態様は、上述した時間帯によって駐車禁止マークを表示する具体例に限定されるわけではなく、第1状態と、この第1状態と異なる状態である第2状態とのいずれかを識別表示するものであるならば利用可能である。
 《実施形態6》
 上述の実施形態5においては、表示エリア710はパネル領域90の一部に設けられたが、本発明の範囲はこのような実施形態に限定されない。実施形態6においては、図18に示されるように、表示エリア710はパネル領域90の全面に設けられており、実施形態5にて示した発電エリア720は設けられていない。また、パネル611は、実施形態5と同様に例えば駐車違反マークの図形である。
 実施形態6に係る太陽電池パネル900の使用態様について説明するに、図19は、パネル領域90の全面に設けられている表示エリア710にパネル611を表示する一具体例を示す図である。図19に示すように、液晶制御部500は、メモリ液晶層36を光透過状態にする。太陽電池200の例えば黒色の色彩を背景にしたパネル611が観察者に認識され、実施形態6では実施形態5よりも比較的大きめのパネル611の表示が可能となる。表示エリア710において、太陽電池200に照射される外部光により発電が行われる。なお、パネル611は駐車違反マークの図形であるため、実施形態6では実施形態5と異なり、太陽電池パネル900は表面側から見た場合に円形となる円柱形状としている。
 一方、図20は、表示エリア710にパネル611が非表示の場合の一具体例を示す図である。図20に示すように、液晶制御部500は、メモリ液晶層36を光散乱状態にする。外部光は光散乱状態のメモリ液晶層36に散乱されて表示エリア710は例えば白く見えるため、メモリ液晶層36と太陽電池200との間に配置されているパネル611は観察者に非表示となる。なお、表示エリア710において、全ての外部光は光散乱状態のメモリ液晶層36に散乱されるのではなく、図20に示すように、散乱されずに太陽電池200に照射される場合があり、そのため効率は多少下がるものの表示エリア710においても発電が行われる。
 《実施形態7》
 上述の実施形態1~6においては、液晶表示装置100の表面側に配置されるパネル610は一種類であり、図形の絵柄を変更することはできなかった。しかしながら本発明の範囲はこのような実施形態に限定されない。実施形態7では、パネル610は予め複数種類設けられ、それらのうち何れか一つの図形を選択して表示エリア710に配置する。
 図21は、複数のパネル610から一つの図形を選択して表示エリア710に配置する表示物配置部630を有する、実施形態7に係る太陽電池パネル900を説明する図である。図21に示すように、表示物配置部630は、例えば、パネル610が内部の円周軌道上に所定間隔にて複数配置されている円盤形状の回転体623と、その回転体623を所定角度回転させる作動部621と、作動部621に回転作動の指示を与える指示部622と、を有して構成される。パネル610は、透明な支持体620内に収納されている。回転体623は、液晶表示装置100の表面側に配置される。支持体620a,620b,620c,620dは例えば4つ設けられており、各々の内部には、例えば、花粉が発生している状態を模式的に示す人型図形610a、公的レースの一つである競馬の開催を示す馬型図形610b、大雨警報を示す傘型図形610c、及び、道路の渋滞情報を示す渋滞車両図形610dが配置されている。
 次に、本実施形態7に係る太陽電池パネル900の使用態様を説明する。例えば太陽電池パネル900は道路沿いにあるビルの壁面に配置される。そして大気中の花粉の飛散率が高い場合は、作動部621により回転体623を回転させて、花粉が発生している状態を模式的に示す人型図形610aを表示エリア710に配置し、表示エリア710に対応するメモリ液晶層36を光散乱状態にし、人型図形610aを表示状態にして観察者に注意を喚起する。次に、周辺地域において競馬が開催されている場合は、回転体623を回転させて、馬型図形610bを表示エリア710に配置し、表示エリア710に対応するメモリ液晶層36を光散乱状態にし、馬型図形610bを表示状態にして観察者に公的レースの開催を報知させる。次に、周辺地域において大雨の来襲が予報されている場合は、回転体623を回転させて、傘型図形610cを表示エリア710に配置し、表示エリア710に対応するメモリ液晶層36を光散乱状態にし、傘型図形610cを表示状態にして観察者に災害の危険を報知させる。次に、この先の道路において渋滞が予想される場合は、回転体623を回転させて、渋滞車両図形610dを表示エリア710に配置し、表示エリア710に対応するメモリ液晶層36を光散乱状態にし、渋滞車両図形610dを表示状態にして観察者に渋滞を報知させ渋滞迂回の機会を与える。そして、上述のいずれも表示する必要性がない場合は、液晶制御部500は、表示エリア710に対応するメモリ液晶層36を光透過状態にする。太陽電池200の例えば黒色の色彩を背景にしたパネル610が観察者に認識される結果、パネル610は非表示となる。
 上述の実施形態では、表示物配置部630は、パネル610が円周軌道上に所定間隔にて複数配置されている回転体623を有して構成されたが、このような実施形態に限定されるものではなく、例えば、回転体623ではなく、一列に所定間隔にて複数配置されたパネル610をスライドさせることにより、複数のパネル610の中から一つの図形を選択することも可能である。具体的には、表示物配置部は、パネル610が長手方向に一列に所定間隔にて複数配置されて、液晶表示装置100の表面側に設けられた直方体形状の支持体と、直方体形状の支持体を長手方向にスライド移動させる作動部と、作動部にスライド作動の指示を与える指示部と、を有して構成される。
 また、トラックベルト形状(キャタピラー形状)の柔軟かつ透明な支持体620の内部に複数のパネル610を所定間隔にて配置し、トラックベルト形状の支持体620の中央部に液晶表示装置100をはめ込み、そのトラックベルト形状の支持体620を回転させることにより、複数のパネル610の中から一つの図形を選択することも可能である。このように、表示物配置部630における複数のパネル610の配置は有限軌道上又は無限軌道上の何れの配置も可能であり、それらのうち何れか一つの図形を選択して表示エリア710に配置するものであれば、本発明の範囲内に含まれる。
 なお、上述の実施形態7では、黒色の所定の図形を表示するパネル610が予め複数種類設けられ、それらのうち何れか一つを選択して表示エリア710に配置する例を示したが、このような実施形態に限定されるものではなく、白色の所定の図形を表示するパネル611が予め複数種類設けられ、それらのうち何れか一つを選択して表示エリア710に配置することも可能である。例えば、表示物配置部は、パネル611が円周軌道上に所定間隔にて複数配置されて、液晶表示装置100と太陽電池200との間に配置された円盤形状の回転体と、回転体を所定角度回転させる作動部621と、作動部621に回転作動の指示を与える指示部622と、を有して構成される。また、例えば、表示物配置部は、パネル611が長手方向に一列に所定間隔にて複数配置されて、液晶表示装置100と太陽電池200との間に設けられた直方体形状の支持体と、直方体形状の支持体を長手方向にスライド移動させる作動部と、作動部にスライド作動の指示を与える指示部と、を有して構成することも可能である。
 また、上述の実施形態2に示したように、表示エリア710をパネル領域90の全面に設けて発電エリア720を設けないことも可能である。
 《実施形態8》
 上述の実施形態においては、パネル610のパネル領域90に配置される位置は固定であった。しかしながら本発明の範囲はこのような実施形態に限定されない。実施形態8では、パネル610のパネル領域90に配置される位置は自由に変更される。
 図22(A)に示すように、透明な支持体620に収納されているパネル610は、パネル領域90の左側半分に配置されている。パネル610の位置を変更する位置設定部640は、例えば、支持体620の左右に取り付けられている紐状部材としてのワイヤー643と、ワイヤー643を巻き取り又は送り出しするリール部642a,642bと、これらリール部642a,642bに動作指示を与える指示部641と、を有して構成される。ワイヤー643は液晶表示装置100の透過率を下げない程度に細いものが使用される。リール部642a,642bは各々液晶表示装置100の左右に一組設けられ、巻き取り及び送り出し動作において同期して作動する。ワイヤー643は、支持体620の左右に取り付けられているが、このような実施形態に限定されるものではなく、パネル610に直接取り付けられても良い。
 上記の位置設定部640を有する太陽電池パネル900の使用態様について説明する。図22(B)に示すように、例えば、指示部641により、液晶表示装置100の右側に配置されたリール部642aに巻き取り動作をさせ、左側に配置されたリール部642bに送り出し動作をさせることにより、パネル領域90の左側に配置されていたパネル610は、パネル領域90の右側にその位置を変更させる。
 また、その他の実施形態としては、図23(A)に示すように、透明な支持体620に収納されているパネル610は、パネル領域90の左下側に配置されている。パネル610の位置を変更する位置設定部640は、例えば、支持体620の上下及び左右に取り付けられているワイヤー643と、ワイヤー643を巻き取り又は送り出しするリール部642a,642b,642c,642dと、これらリール部642a,642b,642c,642dに動作指示を与える指示部641と、を有して構成することも可能である。リール部642a,642b,642c,642dは、各々、レール部644a,644b,644c,644d上を移動する。リール部642a,642b,642c,642dは、各々、液晶表示装置100の左右及び上下に設けられ、巻き取り及び送り出し動作において左右一組及び上下一組は、各々同期して作動する。レール部644c,644dは、矩形状の液晶表示装置100の左右に設けられたリール部642a,642bの巻き取り及び送り出し動作に伴い、リール部642c,642dが液晶表示装置100の左右に移動することを可能とする。レール部644a,644bは、矩形状の液晶表示装置100の上下に設けられたリール部642c,642dの巻き取り及び送り出し動作に伴い、リール部642a,642bが液晶表示装置100の上下に移動することを可能とする。
 上記の位置設定部640を有する太陽電池パネル900の使用態様について説明する。図23(B)に示すように、例えば、指示部641により、液晶表示装置100の右側に配置されたリール部642a及び上側に配置されたリール部642cに巻き取り動作をさせ、左側に配置されたリール部642b及び下側に配置されたリール部642dに送り出し動作をさせることにより、パネル領域90の左下側に配置されていたパネル610は、パネル領域90の右上側にその位置を変更させる。
 上述したようなこれらの位置設定部640を有する構成によれば、パネル610の表示をパネル領域における種々の位置に設定することができるので、観察者に対して飽きさせない表示が可能である。また、特に太陽電池パネル900のパネル領域90が大きい場合は、観察者とパネル610との距離が離れている場合にその距離を縮めるようにパネル610の位置を変更させることにより、見易い表示を行うことが可能である。
 表示状態のパネル610が位置を変更するために移動する場合、表示エリア710も移動することになり、その表示エリア710の移動に対応してメモリ液晶36の光散乱状態も移動する必要がある。そのため、パネル610の位置変更に対応したメモリ液晶36の配向状態を実現するため、例えば液晶表示装置100は、例えばアクティブマトリクス型の液晶表示装置である。
 図24は、液晶表示装置100のアクティブマトリクス型の回路構成図である。液晶表示装置100は、複数の表示画素80が形成されたパネル領域90と、ゲートドライバ110と、ソースドライバ120とを有して構成される。パネル領域90は、第2透明基板12上に複数本の走査線22及びこれと交差する複数本の信号線21が図示していない絶縁膜を介してマトリクス形状に配置されており、信号線21及び走査線22の各交差部には表示画素80が配置されている。即ち、パネル領域90には、複数の表示画素80がマトリクス状に配置されている。液晶表示装置100は、全体として例えば矩形の形状を有しており、パネル領域90の形状も例えば矩形である。ここで、()内の添え字は、各走査信号線22同士を区別すると共に、各データ信号線21同士を区別するために付したものである。表示画素80は、画素電極23、薄膜トランジスタ(thinfilm transistor:TFT)24、対向電極25、メモリ液晶層36を有して構成されている。TFT24のソースは信号線21に、ゲートは走査線22に、ドレインは画素電極23に各々接続されている。
 ゲートドライバ110は、図示していないバッファ回路及びシフトレジスタ等で構成されており、図示していない外部駆動回路から供給されるコントロール信号に基づいて、順に走査線22に走査信号を出力していく。
 ソースドライバ120は、アナログスイッチやシフトレジスタ等で構成されており、図示していない外部駆動回路からコントロール信号及びビデオバスを通じて信号が供給されている。ソースドライバ120では、シフトレジスタからアナログスイッチの開閉信号を供給することにより、ビデオバスから供給される信号を所定のタイミングで信号線21にサンプリングする。
 なお、上述の実施形態8では、黒色の所定の図形を表示するパネル610の位置を変更したが、このような実施形態に限定されるものではなく、白色の所定の図形を表示するパネル611の位置を変更することも可能である。
 《実施形態9》
 次に実施形態9においては、パネル610を表示している場合に、パネル領域に照射された外部光の強度に応じて、パネル領域90内のパネル610の位置を設定する。
 図25は、実施形態9に係る太陽電池パネル900の構造を概略的に説明する図である。液晶表示装置100は、その表面側の表面領域であるパネル領域90と、その周囲に設けられた額縁状の周辺領域とを有している。
 受光センサ180は、パネル領域90に照射された外部光を受光するためのものであり、例えば、液晶表示装置100の内部に配置されて、パネル領域90に分散して配置されている。このため、受光センサ180は、パネル領域90における様々な部位において、パネル領域90を照射している外部光の受光情報を得ることができる。
 受光センサ180は、液晶表示装置100の平面視において複数の表示画素80の各々が形成された領域に配置されている。このため、パネル領域90を照射する外部光の受光情報a1~d1を表示画素80単位で得ることができる。なお、受光センサ180の配置は、これに限らず、例えば、複数の表示画素からなる1つの画素群(8画素×8画素の画素群、10画素×10画素の画素群)毎に受光センサ180を設けてもよい。この場合、画素群毎に受光情報a1~d1を得ることができる。また、画素群は任意に設定することが可能である。
 受光センサ180は、受光した光に応じて電気的な情報を生じさせるセンサを用いることができる。例えば、受光センサ180には、受光した外部光によって光起電力を生じさせるものを用いることができる。このような受光センサ180としては、例えば、フォトダイオード(photodiode)や、フォトトランジスタ(phototransistor)等を用いることができる。また、受光センサ180は、受光する光の強度に応じて電気抵抗が変化するフォトレジスタ(photoresistor)を用いることもできる。前記「受光情報」が具体的にどのような情報かは、センサの種類や回路構成等に応じて異なる。この実施形態では、受光センサ180としてフォトダイオードが用いられている。
 次に、図26は、受光センサ180の配置位置を説明する液晶表示装置100の詳細な断面図である。図26に示すように、第2透明基板12と第1透明基板11との間には、スペーサ16が介在されている。第2透明基板12と第1透明基板11との間隔は、スペーサ16によって所定の間隔に維持されている。
 第2透明基板12は、ガラス基板51の正面側(つまり、メモリ液晶層36側)に各々形成された、信号線21、走査線22、画素電極23、制御信号線30、平坦化層54、配向膜56、及びTFT24等を備えている。第1透明基板11は、ガラス基板61のメモリ液晶層36側に対向電極25及び配向膜66(水平配向膜)が形成されている。
 次に、図27は、本実施形態に係る太陽電池パネル900の配線構造及び制御部を模式的に示すブロック図である。液晶表示装置100は、例えば実施形態8と同様にアクティブマトリクス型の液晶表示装置である。受光センサ180は、制御部550に接続されている。そして、光センサ180で生じた光起電力が「受光情報a1~d1」として制御部550に送られる。制御部550は、液晶表示装置100に接続されている。また、制御部550には、受光センサ180から信号が入力されるようになっている。
 制御部550は、電子的処理装置であって、液晶パネル制御部520と、電源522と、液晶パネル制御部520に接続された液晶制御部500とを備えている。制御部550は、受光センサ180から入力された信号に基づいて、液晶表示装置100を制御するように構成されている。
 液晶制御部500では、受光センサ180によって得られた受光情報a1~d1に対して基準値が予め定められる。液晶制御部500は、基準値を上回る受光情報a1~d1が受光センサ180によって得られた場合に、当該受光情報a1~d1に基づいて、基準値を上回る受光情報が得られた部位を除いた領域に、パネル610の位置を設定する。即ち、太陽電池パネル900は、予め定められた基準値を上回るような強度の強い外部光がパネル領域90に照射された際に、強度の強い外部光が照射されている領域を発電エリア720とし、それ以外の領域をパネル610が配置される表示エリア710とする。
 図28に示すように、各表示画素80には、TFT24と、液晶容量Clcと、補助容量Ccsとが形成されている。TFT24のゲート電極76は、走査線22に接続されている。TFT24のソース電極81は、信号線21に接続されている。
 補助容量Ccsは、第1電極91及び第2電極92を有している。第1電極91は、制御信号線30に接続される一方、第2電極92は、TFT24のドレイン電極93に接続されている。補助容量Ccsは、制御信号線30から制御信号を受けて、表示画素80に印加された電圧(液晶容量Clc)を維持する。また、液晶容量Clcは、画素電極23と対向電極25とを有している。画素電極23はTFT24のドレイン電極93に接続されている。
 図27にもどり、液晶表示装置100の走査線22(1)~(m)は、ゲートドライバ110に接続されており、信号線21(1)~(n)は、ソースドライバ120に接続されている。また、ゲートドライバ110及びソースドライバ120は、各々液晶パネル制御部520に接続されている。
 液晶パネル制御部520は、タイミングコントローラ525を有し、液晶パネル制御信号をゲートドライバ110及びソースドライバ120に供給する。このとき、タイミングコントローラ525は、液晶パネル制御信号をゲートドライバ110とソースドライバ120に送信するタイミングを調整している。液晶パネル制御部520は、液晶制御部500に基づいて作成した液晶パネル制御信号をゲートドライバ110及びソースドライバ120に供給する。
 電源522は、太陽電池パネル900の各構成部に動作電源を供給する。また、電源522は、図27に示すように、動作電源の他に、第1透明基板11の対向電極25への共通電極電圧(Vcom)の供給も行っている。対向電極25に供給された共通電極電圧(Vcom)は、第2透明基板12及び第1透明基板11の間に挟まれたメモリ液晶層36を印加する電圧として用いられる。
 図29は、実施形態9に係る太陽電池パネル900の制御方法を示すフローチャートである。図29のステップS101において、パネル領域90に入射する光の受光情報a1~d1を複数の受光センサ180によって取得する(第1ステップ)。受光センサ180は、外部光として、太陽電池パネル900が設置されている周囲の光を受光すると共に、パネル領域90に直接に照射される外部光を受光する。
 受光センサ180が取得した受光情報a1~d1は、図30に示すように、基準値設定部531及び画像出力設定部532へ出力される。基準値設定部531は、前記受光情報a1~d1に基づいて基準値を設定し、当該基準値を画像出力設定部532へ出力する。例えば、基準値は、周囲光が照射されているパネル領域90の受光情報a1~d1よりも所定値だけ大きい値として設定することが可能である。
 次に、図29のステップS102において、画像出力設定部532は、基準値を上回る受光情報a1~d1が得られた部位の面積が、パネル領域90の面積に対して一定の割合を上回ったか否かを判断する。
 ここで、図31は、外部光がパネル領域90に直接に照射されている太陽電池パネル900を示す平面図である。例えば、図5(A)に示すように、外部光がパネル領域90に直接に照射されていないときは、ステップS102において、基準値を上回る受光情報a1~d1が得られた部位の面積が前記一定の割合を下回るため、ステップS103には進まない。この場合、図5(A)に示すように、外部光がパネル領域90に直接に照射されていない場合は、例えば、表示エリア710をパネル領域90の左側に表示して、発電エリア720をパネル領域90の右側に配置される。
 一方、ステップS102において、外部光がパネル領域90の一部(図31に示すように、例えばパネル領域90の左側)に直接に照射されていて、基準値を上回る受光情報a1~d1が得られた部位の面積が前記一定の割合を上回るときには、ステップS103に進む。
 ステップS103において、画像出力設定部532は、その受光情報a1~d1に基づいて、表示エリア710と発電エリア720とを設定する。周囲光よりも強い外部光がパネル領域90に部分的に照射される場合、強い外部光が当たっている領域と発電エリア720との交わりを、強い外部光が当たっている領域と表示エリア710との交わり(交わりの面積はゼロを含む。)よりも多くなるように、表示エリア710を強い外部光が当たっている領域から外して設定し、この設定された表示エリア710以外の領域を発電エリア720とする。強い外部光が当たっている領域から表示エリア710を外れるように設定するためには、例えば上述の実施形態7にて示した位置設定部640を用いて、パネル610のパネル領域90での配置を変更する。
 図31に示すように、例えばパネル領域90のうち基準値を上回る受光情報を得た部位(つまり、パネル領域90のうち外部光が直接に照射されている直接照射領域)を除いた領域にパネル610及びそのパネル610を含む表示エリア710を配置し、その表示エリア710以外の領域を発電エリア720とする。表示エリア710の配置は、外部光の直接照射領域以外の領域の何れに配置することも可能であり、図31に示したように直接照射領域以外の領域の右端側に配置することも、図32に示すように直接照射領域以外の領域の中央に配置することも可能である。
 また、図33に示すように、外部光の直接照射領域以外の領域に表示エリア710が収まらない場合は、表示エリア710の一部を外部光の直接照射領域にはみ出すようにして表示エリア710の位置を設定する。なお、外部光の直接照射領域以外の領域に表示エリア710が収まらない場合、図34に示すように、外部光の直接照射領域の全てが発電エリア720内に収まるように表示エリア710の面積を狭めることも可能である。斯かる場合において、表示エリア710の面積の一部が比較的狭くなっているため、その狭くなっている部分において背景の例えば白色の散乱光が弱くなり、パネル610の表示が不明瞭になる可能性があり得るが、外部光の直接照射領域の全てが発電エリア720内に収まるため、高い発電効率が維持できる。
 なお、パネル領域90の中央部分に配置された受光センサ180によって取得された受光情報に基づいて、エリア設定の制御を行うようにしてもよい。この場合、液晶制御部500の基準値設定部531は、パネル領域90の中央部分に配置された受光センサ180によって取得された受光情報に基づいて基準値を設定し、当該基準値を画像出力設定部532へ出力する。画像出力設定部532は、前記受光情報が基準値を上回った場合に、その受光情報に基づいて表示エリア710及び発電エリア720を設定する。そうして、上述の制御と同様に、液晶パネル制御部520によって前記表示エリア710が設定される。このようにすれば、パネル領域90の中央部分に配置した少ない数の受光センサ180によって、パネル領域90の透過率の低下を避けることができる。
 また、液晶制御部500は、複数の受光センサ180のうち予め定められた基準となる受光センサ180によって得られた受光情報a1~d1と、その他の受光センサ180によって得られた受光情報a1~d1との差分を求め、当該受光情報a1~d1の差分に基づいてエリア設定の制御をすることも可能である。
 この場合、基準となる受光センサ180によって得られた受光情報a1~d1と、その他の受光センサ180によって得られた受光情報a1~d1との差分に対して表示エリア710の設定をどのように制御するかについては、液晶制御部500に予め設定してもよい。この場合、液晶制御部500は、パネル領域90における外部光の強度分布を正確に反映して、明暗画像等の表示を好適に制御することができる。
 また、液晶制御部500は、予め定められた複数のタイミングにおいて、同一の受光センサ180によって得られた受光情報a1~d1の差分を求め、当該受光情報a1~d1の差分に基づいて表示エリア710の設定をしてもよい。これによって、液晶制御部500は、受光センサ180によって得られた受光情報a1~d1の経時的な変化量を正確に反映して、明暗画像等の表示を制御することができる。
 また、太陽電池パネル900の前を人が通行する等によって、パネル領域90を照射する外部光が一時的に遮られると、受光センサ180によって得られる受光情報a1~d1が一時的に大きく変化する。このときに得られた受光情報a1~d1に基づいてエリア設定の制御をすると、各画像の配置や大きさが不必要に変化してしまう。
 かかる不良を防ぐために、液晶制御部500は、予め定められた時間に継続して、一定の受光情報a1~d1が受光センサ180によって得られた場合に、当該一定の受光情報a1~d1に基づいてエリア設定を制御する。
 なお、上述の実施形態においては、パネル610を表示している場合に、パネル領域に照射された外部光の強度に応じて、パネル領域90内のパネル610の位置を設定したが、パネル610が非表示の場合は、表示エリア710及び発電エリア720の双方にてほぼ同等に発電を行っているため、パネル領域に照射された外部光の強度に応じてエリア設定は行わない。
 次にパネル611が非表示の場合に、パネル領域90に照射された外部光の強度に応じてパネル611の配置(即ちそのパネル611を含む表示エリア710の配置)を設定する場合について説明をする。
 図35は、外部光がパネル領域90に直接に照射されている太陽電池パネル900を示す平面図である。例えば、図17(B)に示すように、外部光がパネル領域90に直接に照射されていない場合は、例えば、表示エリア710をパネル領域90の左側に表示して、発電エリア720をパネル領域90の右側に配置される。
 一方、外部光がパネル領域90の一部(図35に示すように、例えばパネル領域90の左側)に直接に照射されていて、基準値を上回る受光情報a1~d1が得られた部位の面積が前記一定の割合を上回るときには、画像出力設定部532は、その受光情報a1~d1に基づいて、表示エリア710と発電エリア720とを設定する。周囲光よりも強い外部光がパネル領域90に部分的に照射される場合、強い外部光が当たっている領域と発電エリア720との交わりを、強い外部光が当たっている領域と表示エリア710との交わり(交わりの面積はゼロを含む。)よりも多くなるように、表示エリア710を強い外部光が当たっている領域から外して設定し、この設定された表示エリア710以外の領域を発電エリア720とする。強い外部光が当たっている領域から表示エリア710を外れるように設定するためには、例えば上述の実施形態7にて示した位置設定部640を用いて、パネル611のパネル領域90での配置を変更する。
 例えば図35に示すように、パネル領域90のうち基準値を上回る受光情報を得た部位(つまり、パネル領域90のうち外部光が直接に照射されている直接照射領域)を除いた領域にパネル611及びそのパネル611を含む表示エリア710を配置し、その表示エリア710以外の領域を発電エリア720とする。表示エリア710の配置は、外部光の直接照射領域以外の領域の何れに配置することも可能であり、図35に示したように直接照射領域以外の領域の右端側に配置することも、図36に示すように直接照射領域以外の領域の中央に配置することも可能である。
 また、図37に示すように、外部光の直接照射領域以外の領域に表示エリア710が収まらない場合は、表示エリア710の一部を外部光の直接照射領域にはみ出すようにして表示エリア710の位置を設定する。なお、外部光の直接照射領域以外の領域に表示エリア710が収まらない場合、図38に示すように、外部光の直接照射領域の全てが発電エリア720内に収まるように表示エリア710の面積を狭めることも可能である。斯かる場合において、パネル610の場合は背景の例えば白色の散乱光が弱くなり表示が不明瞭になる可能性があり得るが、パネル611の場合は周辺の液晶分子38の散乱光を背景として図形を表示するものではないので、図38に示すように表示エリア710の面積を狭めたとしても表示が不明瞭になることはない。
 《実施形態10》
 図39~図46は、受光センサの配置の変形例を模式的に示す太陽電池パネルの模式図である。受光センサ180は、液晶表示装置100に照射された外部光をパネル領域90の複数の位置で受光することができるように配置されていればよい。以下、受光センサ180の配置位置を例示する。
 受光センサ180は、例えば、パネル領域90を横断又は縦断するように設定された線に沿って分散して配置してもよい。これによって、パネル領域90を横断又は縦断するように設定された線に沿って、パネル領域90に照射された外部光の受光情報を取得することができる。この場合、例えば、パネル領域90を横断又は縦断するように設定された線に沿って、外部光の明るさを検知できる。この場合、複数の画素からなる1つの画素群毎に受光センサ180を配置する場合に比べて、受光センサ180の数を減らすことができる。
 そのことにより、外部光の受光情報を取得するための回路や配線を簡素化でき、製造コストを低く抑えることができる。また、受光センサ180を配置した表示画素80では開口率が低下してしまうが、このように受光センサ180の数を低減することにより、パネル領域90の全体として表示画素80の開口率の低下を抑えることができるため、表示画像の輝度低下を抑制できることとなる。
 例えば、パネル領域90が矩形状である場合、図39及び図40に示すように、受光センサ180は、パネル領域90の四辺のうち少なくとも対向した二辺の各中点を結ぶ線に沿ってパネル領域90に配置してもよい。この場合、受光センサ180は、当該中間点を結ぶ線に沿って、パネル領域90を照射する外部光の受光情報a1~d1を得ることができる。
 また、図39に示すように、矩形状のパネル領域90の短手方向における二辺の各中点を結ぶ線に沿って受光センサ180を配置してもよい。この場合、矩形のパネル領域90の長手方向における外部光の受光情報a1~d1を得ることができるので、パネル領域90全体を照射する外部光の輝度分布を大まかに反映した受光情報a1~d1を得ることができる。
 パネル領域90の短手方向における外部光の受光情報a1~d1を正確に取得したい場合には、図40に示すように、パネル領域90の短手方向における二辺の各中点を結ぶ線に沿って受光センサ180を配置するとともに、パネル領域90の長手方向における二辺の各中点を結ぶ線に沿って受光センサ180を配置してもよい。
 また、図41及び図42に示すように、パネル領域90の周縁部において、パネル領域90の四辺のうち少なくとも対向した二辺に沿って、受光センサ180を配置してもよい。
 ここで、パネル領域90の中心部に受光センサ180を配置し、パネル領域90の中心部で表示画像の輝度が低下すると、かかる表示画像の輝度低下がユーザに認知され易い。これに対し、上述のように、パネル領域90の周縁部に受光センサ180を配置することにより、パネル領域90の中心部に受光センサ180を配置した場合と比べて、表示画像の輝度低下がユーザに認知されにくくなる。
 なお、受光センサ180は、液晶表示装置100の平面視において、他の位置に配置することができる。例えば、図43に示すように、パネル領域90の少なくとも一方の対角線に沿って受光センサ180が配置されていてもよい。また、受光センサ180は、図44に示すように、パネル領域90の周縁部における各辺の中央部に配置してもよい。また、受光センサ180は、図45に示すように、パネル領域90の周縁部の四隅に配置してもよい。
 また、上述の実施形態では、パネル領域90には、A、B、C、Dの四つに分割されたエリアが設定されている。しかし、パネル領域90の分割数は、4つに限定されず、用途に合わせて適宜変更することができる。例えば、図46に示すように、受光センサ180が配置された位置に対応させて、パネル領域90を分割した複数のエリアA~Zを設定してもよい。
 また、受光センサ180は、液晶表示装置100の平面視においてTFT24や信号線21が形成された領域に配置されていてもよい。TFT24や信号線21は遮光性を有するため、液晶表示装置100の背面側からの光は、TFT24や信号線21によって遮光される。TFT24や信号線21が形成された領域に配置された受光センサ180は、照明光が元々遮光されている領域に配置されているので、表示画素80の開口率を低下させない。これによって、受光センサ180が配置されることによって、表示画像の輝度が低下するのを防止できる。
 《実施形態11》
 上述の実施形態では、太陽電池はシリコン太陽電池であった。しかし本発明の範囲はこのような実施形態に限定されない。本実施形態11では太陽電池は色素増感型太陽電池である。
 図47は、色素増感型太陽電池210を液晶表示装置100の背面側に対向して配置した太陽電池パネル900の断面図である。図47に示すように、色素増感型太陽電池210は、透明導電性膜161が形成された透明基板162と、増感色素及び酸化チタン系半導体を含有する光電極163を有する。光電極163は、透明導電性膜161と電気的に接続されている。光電極163は例えば酸化チタン系半導体にて構成され、酸化チタン系半導体としては、特に限定されるものではないが酸化チタン、アナターゼ型酸化チタン等を用いることができる。透明導電性膜161に離間対向して導電層164が形成された対向基板165が設けられる。対向基板165の導電層164に接して対極電極166が形成されている。対極電極166は、例えば、金属(金、白金、銀、銅、マグネシウム、アルミニウム、インジウム等)、炭素、導電性金属酸化物(インジウム-スズ複合酸化物、フッ素ドープ酸化スズ等)等を用いることができる。対極電極166と光電極163との間には電解質溶液167が充填されている。電解質溶液167は、ヨウ素、ヨウ化リチウム、ターシャルブチルピリジン、ジメチルプロピルイミダゾリウムヨウ化物を、メトキシアセトニトリル又はアセトニトリルに溶解させた電解液である。光電極163と対極電極166の外周面は、シール層168で封止されている。
 外部光が透明基板162側から入射すると、光電極163の増感色素が光エネルギーを吸収して励起状態となり、電子を放出する。放出された電子は酸化チタン系半導体を経由して透明導電性膜161に達して外部回路に流れる。このとき、電子を放出して陽イオンになった増感色素は、電解質溶液167のヨウ素イオンを酸化し、酸化されたヨウ素イオンは、外部回路から対極電極166に戻された電子によって還元され、このように電子を循環させることによって電池として機能する。光電極163に吸着される増感色素を適宜選択することにより、色素増感型太陽電池210に種々の色彩を付与させることができ、パネル610として種々の雰囲気の色彩が可能となるので、宣伝・識別等の情報伝達媒体として十分に活用できる。また、パネル611の背景として種々の雰囲気の色彩が可能となるので、宣伝・識別等の情報伝達媒体として十分に活用できる。なお、上述の構成と異なり、第1の増感色素を吸着させた第1電極と、第2の増感色素と吸収波長が異なる第2の増感色素を吸着させた第2電極と、第1電極と第2電極との間に配置された対極電極とを備えたタンデム型色素増感太陽電池を設けることも可能である。
 《その他の実施形態》
 上述の実施形態は太陽電池パネル900として説明したが、本発明の基本構成は、光散乱性液晶層を透明基板間に挟持した液晶表示装置を太陽電池の正面側に配置して、表示エリア710において、光散乱状態の液晶層を背景として黒色の所定の図形を表示するパネルを表示させるか、若しくは、光透過状態の液晶層を介した太陽電池を背景として黒色の所定の図形を表示するパネルを非表示とする、また、光透過状態の液晶層を介して太陽電池を背景として白色の所定の図形を表示するパネルを表示させるか、若しくは、液晶層を光散乱状態にして白色の所定の図形を表示するパネルを非表示とすることにあり、表示機能付きの太陽電池パネルとして捉えることも、太陽電池付きの表示装置として捉えることも可能である。そのため、上述の実施形態を表示装置として構成することも可能である。
 例えば図2を用いてパネル610を配置した表示装置を説明すると、表示装置は、表面側に配置される液晶表示装置100と背面側に配置される太陽電池200とを対向して構成される。液晶表示装置100は、第1透明基板11と第2透明基板12との間に挟持された光散乱性液晶層としてのメモリ液晶層36を有し、例えば図22に示すようなアクティブマトリクス型の回路構成を有する。太陽電池200は、例えばシリコン太陽電池である。液晶表示装置100の表面側のパネル領域90には、所定の図形の表示又は非表示を行う表示エリア710が設けられる。パネル領域90の表示エリア710以外の領域には、外部光を透過させて太陽電池200に照射させることにより発電を行う発電エリア720が設けられる。表示エリア710内且つ液晶表示装置100の表面側には、その内部にパネル610が収納されている透明な支持体620が配置されている。液晶制御部500は、表示エリア710に対応するメモリ液晶層36にて液晶分子38をランダム状態にし、液晶表示装置100のメモリ液晶層36を光散乱状態に変化させて、パネル610を表示する。一方、パネル610を非表示とする場合は、液晶制御部500は、表示エリア710に対応するメモリ液晶層36を光透過状態にし、その結果、太陽電池200の例えば黒色の色彩を背景にしたパネル610が観察者に認識されて、パネル610は非表示となる。
 また、例えば図14を用いてパネル611を配置した表示装置を説明すると、図2に示した表示装置と異なり、表示エリア710内且つ液晶表示装置100と太陽電池200との間に、その内部にパネル611が収納されている透明な支持体620が配置されている。液晶制御部500は、表示エリア710に対応するメモリ液晶層36を光透過状態にすると、太陽電池200の例えば黒色の色彩を背景にしたパネル611が観察者に認識される結果、パネル611が表示される。一方、パネル611を非表示とする場合は、液晶制御部500は、表示エリア710に対応するメモリ液晶層36を光散乱状態にすることで、外部光は光散乱状態のメモリ液晶層36に散乱されて表示エリア710は白く見え、パネル611は観察者に非表示となる。
 また、上述の実施形態に係る太陽電池パネル900の使用例は、オフィスビルの壁に適用される例であったが、それ以外のものに適用することも勿論可能であり、例えば、車内広告、駅の広告標識、自動販売機、警告太陽電池パネル、誘導太陽電池パネル、道路標識、自発光式太陽電池パネル等にも好適に用いることができる。
 本発明に係る太陽電池パネルは、情報伝達媒体として十分に利用できるので、オフィスビルや駅の壁面のように人が多い場所にて好適に利用される。
 11:第1透明基板
 12:第2透明基板
 21:信号線
 22:走査線
 23:画素電極
 24:薄膜トランジスタ
 25:対向電極
 29:シール材
 30:制御信号線
 36:メモリ液晶層
 38:液晶分子
 41:透明絶縁性基板
 42:第1透明電極
 43:p型シリコン層
 44:i型シリコン層
 45:n型シリコン層
 46:第2透明電極
 47:裏面電極
 80:表示画素
 90:パネル領域
 100:液晶表示装置
 110:ゲートドライバ
 120:ソースドライバ
 161:透明導電性膜
 162:透明基板
 163:光電極
 164:導電層
 165:対向基板
 166:対極電極
 167:電解質溶液
 168:シール層
 180:受光センサ
 200:太陽電池
 310:蓄電池
 500:液晶制御部
 520:液晶パネル制御部
 522:電源
 550:制御部
 610,611:パネル
 630:表示物配置部
 640:位置設定部
 710:表示エリア
 720:発電エリア
 900:太陽電池パネル

Claims (8)

  1.  一対の基板間に設けられた液晶層を有し、前記液晶層の光散乱状態と光透過状態とを切り替える液晶表示装置と、
     前記液晶表示装置の背面側に配置される太陽電池と、
     前記液晶表示装置の表面側、又は、前記液晶表示装置と前記太陽電池との間のうち少なくとも何れか一方に配置されて所定の図形を表示するパネルと、
    を備える太陽電池パネル。
  2.  前記パネルの少なくとも一部は光透過性を有し、
     前記液晶表示装置の表面側に前記パネルが配置され、
     前記液晶層が前記光散乱状態のときには前記液晶層を背景として前記所定の図形を表示させる一方、前記液晶層が前記光透過状態のときには前記液晶層を介した前記太陽電池を背景として前記所定の図形を表示する請求項1記載の太陽電池パネル。
  3.  前記所定の図形は黒色である請求項2記載の太陽電池パネル。
  4.  前記液晶表示装置と前記太陽電池との間に前記パネルが配置され、
     前記液晶層が前記光透過状態のときには前記液晶層を介して前記太陽電池を背景として前記所定の図形を表示させる一方、前記液晶層が前記光散乱状態のときには前記所定の図形を表示しない請求項1に記載の太陽電池パネル。
  5.  前記所定の図形は白色である請求項4記載の太陽電池パネル。
  6.  前記太陽電池パネルに照射された外部光を受光する複数の受光センサと、
     前記受光センサによって得られた受光情報に対して予め定められている基準値を上回る前記受光情報が前記受光センサによって得られたときに、前記受光情報に基づいて、前記パネルの位置を設定する位置設定部と、を有する請求項1乃至5の何れか1項に記載の太陽電池パネル。
  7.  前記位置設定部は、前記受光センサによって得られた前記受光情報に基づいて、前記基準値を上回る前記受光情報が得られた部位を除いた領域に前記パネルの位置を設定する請求項6に記載の太陽電池パネル。
  8.  前記液晶層は、メモリ性を有する液晶層である請求項1乃至7の何れか1項に記載の太陽電池パネル。
PCT/JP2011/005993 2010-11-02 2011-10-26 太陽電池パネル WO2012060073A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010246732 2010-11-02
JP2010-246732 2010-11-02

Publications (1)

Publication Number Publication Date
WO2012060073A1 true WO2012060073A1 (ja) 2012-05-10

Family

ID=46024201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005993 WO2012060073A1 (ja) 2010-11-02 2011-10-26 太陽電池パネル

Country Status (1)

Country Link
WO (1) WO2012060073A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046479A (ja) * 2015-08-27 2017-03-02 大日本印刷株式会社 太陽電池モジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160386A (ja) * 1994-12-05 1996-06-21 Dainippon Ink & Chem Inc 液晶表示装置
JPH09509507A (ja) * 1994-12-15 1997-09-22 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 液晶表示装置
JP2000310957A (ja) * 1999-04-28 2000-11-07 Nippon Telegr & Teleph Corp <Ntt> 表示装置
JP2002148360A (ja) * 2000-11-08 2002-05-22 Citizen Watch Co Ltd 太陽電池用表示装置およびその製造方法
JP2002221581A (ja) * 2001-01-24 2002-08-09 Kawaguchiko Seimitsu Co Ltd 太陽電池付電子機器
JP2002328187A (ja) * 1997-07-18 2002-11-15 Citizen Watch Co Ltd 発電機能付き時計

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160386A (ja) * 1994-12-05 1996-06-21 Dainippon Ink & Chem Inc 液晶表示装置
JPH09509507A (ja) * 1994-12-15 1997-09-22 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 液晶表示装置
JP2002328187A (ja) * 1997-07-18 2002-11-15 Citizen Watch Co Ltd 発電機能付き時計
JP2000310957A (ja) * 1999-04-28 2000-11-07 Nippon Telegr & Teleph Corp <Ntt> 表示装置
JP2002148360A (ja) * 2000-11-08 2002-05-22 Citizen Watch Co Ltd 太陽電池用表示装置およびその製造方法
JP2002221581A (ja) * 2001-01-24 2002-08-09 Kawaguchiko Seimitsu Co Ltd 太陽電池付電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046479A (ja) * 2015-08-27 2017-03-02 大日本印刷株式会社 太陽電池モジュール

Similar Documents

Publication Publication Date Title
US10380933B2 (en) Display with high transparency
JP5334580B2 (ja) 発電型表示装置
KR101947815B1 (ko) 수직구조의 듀얼 디스플레이 장치
US20130050599A1 (en) Solar panel, liquid crystal display system, and method for controlling solar panel
US8330882B2 (en) Image display capable of being an electronic curtain
JP2000101114A (ja) 透明電極
TW201243442A (en) Multi-mode liquid crystal display with auxiliary non-display components
US10303034B2 (en) Double-sided display panel and double-sided display device
CN104181725A (zh) 彩膜基板及显示装置
US11616162B2 (en) Energy harvesting electro-optic displays
JP2012019185A (ja) 発電装置および発電方法
WO2011125271A1 (ja) 表示装置、液晶モジュール及び画像表示システム
CN102998791B (zh) 一种电润湿显示装置
CN113589591A (zh) 一种透明液晶显示器
WO2012032751A1 (ja) 太陽電池パネル、表示装置、及び太陽電池パネルの制御方法
WO2012060073A1 (ja) 太陽電池パネル
JP6807687B2 (ja) 照明装置及び液晶表示装置
CN102998834A (zh) 一种半反半透液晶显示器及其图像显示方法
CN108681179B (zh) 一种电子纸
WO2012005190A1 (ja) 液晶表示装置
CN204659611U (zh) 一种车辆门/窗组件
CN111198493B (zh) 显示装置及智能手表
CN108873400A (zh) 显示装置及宽窄视角显示方法
WO2012032745A1 (ja) 表示装置、表示パネル、表示モジュール、画像表示システム及び画像表示方法
WO2011138847A1 (ja) 表示装置及びその制御方法並びに画像表示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP