WO2012060015A1 - 車両システム制御装置 - Google Patents

車両システム制御装置 Download PDF

Info

Publication number
WO2012060015A1
WO2012060015A1 PCT/JP2010/069738 JP2010069738W WO2012060015A1 WO 2012060015 A1 WO2012060015 A1 WO 2012060015A1 JP 2010069738 W JP2010069738 W JP 2010069738W WO 2012060015 A1 WO2012060015 A1 WO 2012060015A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
vehicle
storage battery
driving force
diesel
Prior art date
Application number
PCT/JP2010/069738
Other languages
English (en)
French (fr)
Inventor
啓太 畠中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/825,580 priority Critical patent/US8838303B2/en
Priority to CN201080069981.5A priority patent/CN103180161B/zh
Priority to PCT/JP2010/069738 priority patent/WO2012060015A1/ja
Priority to BR112013010381A priority patent/BR112013010381A2/pt
Priority to EP10859271.8A priority patent/EP2636556A4/en
Priority to JP2011518971A priority patent/JP5128705B2/ja
Publication of WO2012060015A1 publication Critical patent/WO2012060015A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/24Coasting mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/12Emission reduction of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a vehicle system control device.
  • a storage battery vehicle that uses electric power from a storage battery does not cause the above-mentioned problem of a diesel car, but is more expensive than a diesel car and is not suitable for long-distance operation because it needs to be charged frequently.
  • Patent Document 1 discloses a diesel hybrid vehicle in which a generator is driven by a diesel engine and the electric power and storage battery power are used as a power source.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a vehicle system control device that can effectively use an existing pneumatic vehicle, improve fuel efficiency at startup and acceleration, and reduce noise. To do.
  • the present invention is a vehicle system control device for controlling a train vehicle system, which comprises the driving force of a storage battery car that constitutes the vehicle system and is driven by a motor.
  • An instruction signal for instructing start of driving of the battery car is generated at the time of start, and an instruction signal for instructing standby for driving of the diesel car is generated.
  • FIG. 1 is a diagram illustrating a configuration example of a vehicle system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a signal flow in the vehicle system of the first embodiment.
  • FIG. 3 is a diagram illustrating an example of speed characteristics of the vehicle system.
  • FIG. 4 is a diagram illustrating an example of the total torque characteristics of the pneumatic vehicle and the storage battery vehicle.
  • FIG. 5 is a diagram illustrating an example of torque characteristics of a pneumatic vehicle.
  • FIG. 6 is a diagram illustrating an example of torque characteristics of the battery car.
  • FIG. 7 is a diagram illustrating an example of a control procedure of the diesel hybrid control device.
  • FIG. 8 is a diagram illustrating a configuration example of a vehicle system according to the second embodiment.
  • FIG. 9 is a diagram illustrating an example of a signal flow in the vehicle system of the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a first embodiment of a vehicle system including a vehicle system control device according to the present invention.
  • the vehicle system according to the present embodiment includes a pneumatic vehicle 1 and a storage battery vehicle 2, and the pneumatic vehicle 1 and the storage battery vehicle 2 are connected by a coupler 3.
  • the vehicle system of the present embodiment is a vehicle system that constitutes a train.
  • the diesel car 1 travels by driving wheels 16 through the torque converter 12 with the output of the diesel engine 11.
  • the diesel engine 11 drives an AC generator 13, and the AC generator 13 supplies AC power to the auxiliary machine 14.
  • the pneumatic vehicle control device 15 controls the overall operation of the pneumatic vehicle 1.
  • the pneumatic vehicle 1 has the same configuration as a conventional general pneumatic vehicle, and an existing pneumatic vehicle can be used.
  • the storage battery car 2 converts the DC power of the storage battery 21 into AC power by the inverter 22, the motor 23 is driven by the AC power, and the wheels 28 are driven by the motor 23 to travel. Further, the DC power of the storage battery 21 is converted into AC power by a SIV (Static InVerter: auxiliary power supply) 24 and supplied to the auxiliary machine 25.
  • the battery car control device 26 controls the overall operation of the battery car 2.
  • the diesel hybrid control device 27 performs control for operating the pneumatic vehicle 1 and the storage battery vehicle 2 in cooperation with each other.
  • the storage battery car 2 excluding the diesel hybrid control device 27 has the same configuration as a conventional general storage battery car.
  • the diesel hybrid control device 27 is a vehicle system control device that performs diesel hybrid control in a vehicle system including the diesel vehicle 1 and the storage battery vehicle 2.
  • the diesel hybrid control device 27 and the storage battery vehicle control device 26 are shown as separate components, the diesel hybrid control device 27 and the storage battery vehicle control device 26 may be integrated into a vehicle system control device.
  • a device further including the storage battery 21, the inverter 22, the motor 23, the SIV 24, the storage battery car control device 26, and the diesel hybrid control device 27 may be used as the vehicle system control device.
  • the diesel car 1 and the storage battery car 2 are connected by a coupler 3, and the diesel car control apparatus 15 of the diesel car 1 and the diesel hybrid control apparatus 27 of the storage battery car 2 are connected by wiring or the like.
  • the diesel car 1 and the storage battery car 2 do not need to be directly connected, and may be connected via another vehicle.
  • the diesel vehicle control device 15 of the diesel vehicle 1 and the diesel hybrid control device 27 of the battery car 2 are connected to a driver's cab (not shown) in the train, and a notch command (power running, brake ( Control based on deceleration), travel, etc.).
  • FIG. 2 is a diagram illustrating an example of a signal flow in the vehicle system of the present embodiment.
  • the diesel hybrid control unit 27 includes a driving force instruction unit 31 that instructs the storage battery vehicle control device 26 and the pneumatic vehicle control device 15 to start and stop driving, drive force, and the like.
  • the driving force instruction unit 31 of the diesel hybrid control unit 27 of the storage battery vehicle 2 is based on the notch command from the driver's cab, the power running corresponding to the notch command to the storage battery vehicle control device 26 and the pneumatic vehicle control device 15, brakes, running, etc. Are instructed by instruction signals S1 and S2, respectively.
  • the instruction signals S1 and S2 may be in any form. However, if the instruction signals S1 and S2 are instructed in the same format as a normal notch command, the repair from the existing train and battery car can be reduced.
  • the diesel vehicle control device 15 instructs the diesel engine 11 to drive and stop the wheels 16 and to drive and stop the alternator 13 based on an instruction (instruction signal S2) from the diesel hybrid control unit 27.
  • a notch command is output to control the diesel engine 11.
  • the pneumatic vehicle control device 15 outputs a torque converter command for instructing torque to the torque converter 12 to control the torque transmitted by the torque converter 12.
  • the diesel engine 11 drives or stops the wheel 16 via the torque converter 12 based on the instruction when an instruction to drive or stop the wheel 16 is received from the diesel vehicle control device 15. Further, the diesel engine 11 drives or stops the AC generator 13 when an instruction to drive or stop the AC generator 13 is received from the diesel vehicle control device 15.
  • the storage battery car control device 26 outputs a PWM (Pulse Width Modulation) signal (pwm1 signal) for switching to the inverter 22 to the inverter 22 based on an instruction (instruction signal S1) from the diesel hybrid control unit 27. Moreover, the storage battery vehicle control device 26 outputs a switching PWM signal (pwm2 signal) for the SIV 24 to the SIV 24.
  • PWM Pulse Width Modulation
  • the inverter 22 converts the DC power of the storage battery 21 into AC power based on the pwm1 signal.
  • the inverter 22 converts the converted AC power current (motor currents: iu1, iv1, iw1) to the storage battery car control device 26.
  • the voltage and current of the DC power output from the storage battery 21 are input to the storage battery vehicle control device 26.
  • the battery car control device 26 generates the pwm1 signal so that the motor current becomes a desired value.
  • the SIV 24 converts the DC power of the storage battery 21 into AC power based on the pwm2 signal, and supplies the converted AC power to the auxiliary machine 25.
  • the AC power current (SIV output current: iu2, iv2, iw2) output from the SIV 24 and the AC power voltage (SIV output voltage: vu, vv, vw) output from the SIV 24 are supplied to the storage battery controller 26. Entered.
  • FIG. 3 shows an example of speed characteristics of the vehicle system.
  • FIG. 4 shows an example of the total torque characteristic of the pneumatic vehicle 1 and the storage battery vehicle 2 corresponding to the speed characteristic of FIG. 3
  • FIG. 5 shows an example of the torque characteristic of the pneumatic vehicle 1 corresponding to the speed characteristic of FIG.
  • FIG. 6 shows an example of the torque characteristic of the storage battery car 2 corresponding to the speed characteristic of FIG.
  • the diesel hybrid control device 27 Inverts the DC power of the storage battery 21 to the storage battery vehicle control device 26 in response to a power running notch command. Instruct 22 to convert to AC power and drive the motor 23.
  • the diesel hybrid control device 27 drives the SIV 24, and the SIV 24 supplies AC power to the auxiliary machine 25.
  • the diesel hybrid control device 27 does not instruct the pneumatic vehicle control device 15 to drive the wheels 16 (instructs driving standby) and instructs the alternator 13 to drive.
  • the diesel engine 11 is in an idling state, and the torque converter 12 and the wheel 16 are not connected to each other and no driving force is generated.
  • the diesel engine 11 drives the AC generator 13 to supply AC power to the auxiliary machine 14.
  • the diesel hybrid control device 27 instructs the storage battery vehicle control device 26 to drive with the driving force necessary to run the diesel vehicle 1 and the storage battery vehicle 2 at the start.
  • the battery car is not driven by the power of the diesel car 1 and continues. Drive with power of 2.
  • the diesel hybrid control device 27 instructs the dynamic vehicle control device 15 to drive, and the dynamic vehicle control device. 15 instructs the diesel engine 11 to drive the wheels 16 and instructs the torque converter 12 to torque. Thereby, the force of the diesel engine 11 is transmitted to the wheels 16 to generate power.
  • the torque instructed by the diesel engine 11 may be determined in any way. For example, if the output of the diesel engine 11 is set to an optimum value for driving in a fuel-efficient state, efficient traveling can be realized. it can.
  • the AC generator 13 continues to supply AC power to the auxiliary machine 14.
  • the torque of the diesel vehicle 1 is a certain value (for example, an optimal value for driving the output of the diesel engine 11 in a state with good fuel efficiency). ) Is shown.
  • the storage battery vehicle 2 has a driving force that is equivalent to the driving force required for the formation of the diesel car 1 and the storage battery car 2 combined with the driving force generated by the diesel car 1 (including the amount that increases or decreases depending on the route condition, etc.). Is generated.
  • the driving force (torque) of the storage battery vehicle 2 is determined by the driving force instructing unit 31 of the diesel hybrid control device 27 based on the speed of the vehicle system and the like after grasping the torque of the pneumatic vehicle 1.
  • the driving force of the battery car 2 may be determined by the battery car controller 26. It is assumed that the speed of the vehicle system is grasped by the diesel hybrid control device 27 or the storage battery vehicle control device 26 by an accelerometer or the like mounted on the wheel.
  • the driving force instruction unit 31 of the diesel hybrid control device 27 receives the notch command for the coasting control (period C in FIGS. 3 to 6)
  • the driving stop of the wheels 16 is stopped with respect to the pneumatic vehicle control device 15.
  • Instruction is given (idling state of the diesel engine 11).
  • the pneumatic vehicle control device 15 stops the transmission of power to the wheel 16 by the torque converter 12.
  • the AC generator 13 continues to supply AC power to the auxiliary machine 14.
  • the diesel hybrid control device 27 instructs the storage battery vehicle control device 26 to stop driving the wheels 28.
  • the storage battery car control device 26 stops the operation of the inverter 22 and stops the driving of the motor 23.
  • the SIV 24 continues to convert the DC power of the storage battery 21 into AC power and supplies power to the auxiliary machine 25.
  • the diesel hybrid control device 27 instructs the storage battery vehicle control device 26 to brake.
  • the storage battery car control device 26 controls the motor 23 to operate as a generator and convert the regenerative power into DC power by the inverter 22 to charge the storage battery 21.
  • the conventional diesel car 1 could not absorb the energy at the time of braking, in this embodiment, the energy at the time of braking can be absorbed by the storage battery 21 of the storage battery car 2 in this embodiment.
  • FIG. 7 is a diagram illustrating an example of a control procedure of the diesel hybrid control device 27 of the present embodiment.
  • movement of the diesel hybrid control apparatus 27 is demonstrated using FIG. First, it is assumed that the vehicle system is stopped in the initial state.
  • the diesel hybrid control device 27 receives a power running notch command (step S1), the diesel hybrid control device 27 instructs the storage battery vehicle control device 26 to drive the wheels 28 by the power of the storage battery vehicle 2 and starts running (step S2). At this time, the diesel hybrid control device 27 instructs the storage battery vehicle control device 26 to supply AC power to the auxiliary device 25 by the SIV 24 and instructs the diesel car control device 15 to supply AC power to the auxiliary device 14. .
  • the diesel hybrid control device 27 determines whether or not the vehicle has traveled a certain distance from the start of travel, or whether the speed of the traveling vehicle system has exceeded a threshold value (step S3).
  • the determination in step S3 may be performed based on either the distance from the start of traveling being a certain distance or more, or the speed of the traveling vehicle system being greater than or equal to the threshold value. It may be determined using whether time has passed.
  • the dynamic vehicle control device 15 to drive the wheels 16 with a predetermined driving force (step).
  • the battery car control device 26 is instructed to drive the wheels 28 with a driving force equivalent to the driving force instructed to the pneumatic vehicle control device 15 out of the necessary driving force (step S5).
  • step S3 If the vehicle has not traveled a certain distance from the start of traveling, or the speed of the traveling vehicle system is less than the threshold (No in step S3), step S3 is repeated.
  • step S6 the diesel hybrid control device 27 determines whether or not a notch command has been received (step S6). If received (step S6, Yes), the type of the received notch command is determined (step S7). ). If the notch command has not been received (No at Step S6), Step S6 is repeated.
  • step S7 When it is determined in step S7 that the received notch command is a command for a line (step S7, a line), the diesel hybrid control device 27 instructs the storage battery vehicle control device 26 and the diesel vehicle control device 15 to perform a line ( Step S8) and return to step S6. If it is determined in step S7 that the received notch command is a powering command (step S7, powering), the process returns to step S2.
  • step S7 If it is determined in step S7 that the received notch command is a brake command (step S7, brake), the battery car control device 26 and the diesel car control device 15 are instructed to brake (step S9).
  • the storage battery vehicle control device 26 controls the motor 23 to operate as a generator in response to a brake instruction so that the regenerative power is converted into DC power by the inverter 22 and the storage battery 21 is charged.
  • control procedure is an example, and the vehicle system is driven only by the power of the storage battery vehicle 2 until the vehicle travels a certain distance from the start or the speed of the traveling vehicle system exceeds the threshold value, and then
  • the control method is not limited to this, and any control method may be used as long as it is a control method that causes the vehicle to travel using the power of both the storage battery vehicle 2 and the pneumatic vehicle 1.
  • the pneumatic vehicle control device 15 is connected to the cab as described above, and can also travel independently by its own driving force in the same manner as in the past by a notch command from the cab. Similarly, the storage battery car 2 can also travel alone.
  • the present invention is not limited to this, and any one or more of the diesel car 1 and the battery car 2 are connected. It may be.
  • the diesel hybrid control device 27 may distribute and indicate the driving force to the plurality of pneumatic vehicles 1 in step S4.
  • one diesel hybrid control device 27 may distribute and indicate the driving force to each of the plurality of storage battery cars 2 in step S5.
  • the storage battery vehicle 2 is provided with the diesel hybrid control device 27.
  • the diesel vehicle 1 may be provided with the diesel hybrid control device 27, and the diesel hybrid control device 27 may be deleted from the storage battery vehicle 2. .
  • the pneumatic vehicle 1 has been described as an example.
  • the vehicle system control method of the present embodiment can also be applied when a diesel locomotive is used instead of the pneumatic vehicle 1.
  • various power storage devices a lithium ion battery, a nickel metal hydride battery, an electric double layer capacitor, a lithium ion capacitor, a flywheel, etc. can be used.
  • the battery car 2 including the diesel hybrid control device 27 is connected to the existing diesel vehicle 1, and the diesel hybrid control device 27 (the driving force instruction unit 31) is activated at the time of starting the vehicle system and At the time of acceleration, control is performed so that the diesel vehicle 1 and the storage battery vehicle 2 are driven by the driving force of the storage battery vehicle 2. And when it became more than a certain speed, it was made to drive
  • the battery car 2 can run alone, when the transportation amount is small or the distance is short, the battery car 2 can be run only with the battery car 2 to realize energy saving, noise reduction, and cost reduction. it can.
  • FIG. FIG. 8 is a diagram illustrating a configuration example of a second embodiment of the vehicle system according to the present invention.
  • the vehicle system of the present embodiment is configured by a pneumatic vehicle 1 a and a storage battery vehicle 2 a, and the pneumatic vehicle 1 a and the storage battery vehicle 2 a are connected by a connector 3.
  • the pneumatic vehicle 1a is the same as the pneumatic vehicle 1 of the first embodiment, except that the pneumatic vehicle control device 15a is provided instead of the pneumatic vehicle control device 15 of the pneumatic vehicle 1 of the first embodiment.
  • the storage battery car 2a includes a storage battery car control device 26a instead of the storage battery car control device 26 of the storage battery car 2 of the first embodiment, and the storage battery car 2a of the first embodiment is omitted except that the diesel hybrid control device 27 is deleted. It is the same.
  • the storage battery vehicle control device 26a and the pneumatic vehicle control device 15a are connected by wiring or the like. Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • FIG. 9 is a diagram illustrating an example of a signal flow in the vehicle system of the present embodiment.
  • control is performed so that the diesel car 1a and the storage battery car 2a are driven by the driving force of the storage battery car 2a.
  • the diesel hybrid control device 27 of the first embodiment is not provided, and based on the notch command from the cab, the pneumatic vehicle control device 15a and the storage battery vehicle control device 26a are similar to the first embodiment.
  • the driving force characteristics of the battery car 2a for example, the characteristics illustrated in FIGS. 3 to 6).
  • the diesel vehicle control device 15a and the storage battery vehicle control device 26a constitute a vehicle system control device.
  • the storage battery vehicle control device 26a has a function of generating an instruction signal related to driving of the storage battery vehicle 2a among the functions of the driving force instruction unit 31 of the first embodiment
  • the diesel car control device 15a has the driving force of the first embodiment.
  • the instruction unit 31 has a function of generating an instruction signal related to driving of the pneumatic vehicle 1 a.
  • the storage battery vehicle control device 26a and the pneumatic vehicle control device 15a receive the notch command from the cab as in the first embodiment.
  • a notch command from the cab a command for instructing whether the diesel hybrid mode or the normal mode is added, and when there is a command for instructing the diesel hybrid mode, the diesel vehicle 1a and the storage battery vehicle Carrying out driving in which the driving force of 2a is coordinated.
  • the diesel vehicle 1a and the storage battery vehicle 2a perform the same operations as the conventional diesel vehicle and the storage battery vehicle, respectively.
  • the setting of the diesel hybrid mode or the normal mode is not performed using the notch command from the driver's cab. For example, when the formation of the vehicle system is determined, the mode is set for each of the storage battery control device 26a and the diesel vehicle control device 15a.
  • the mode may be set by other methods such as setting.
  • the battery car control device 26a receives a power running notch command from the cab, converts the DC power of the storage battery 21 into AC power by the inverter 22, and performs the motor operation. 23 is instructed to be driven. Further, the storage battery car control device 26 a drives the SIV 24, and the SIV 24 supplies AC power to the auxiliary machine 25.
  • the pneumatic vehicle control device 15a places the diesel engine 11 in an idling state, and the torque converter 12 and the wheel 16 are not connected to generate a driving force. The diesel engine 11 drives the AC generator 13 to supply AC power to the auxiliary machine 14.
  • the power of the pneumatic vehicle 1 is not used for driving the vehicle system, and the pneumatic vehicle 1a and the storage battery vehicle 2a travel by the power a of the storage battery vehicle 2.
  • the diesel vehicle controller 15a After leaving the station or exceeding a certain speed (period B in FIGS. 3 to 6), the diesel vehicle controller 15a, for example, provides an optimum torque for driving the output of the diesel engine 11 in a state with good fuel efficiency.
  • the torque converter 12 is instructed to torque, and the diesel engine 11 is instructed to drive the wheels 16.
  • the storage battery vehicle control device 26a is a part of the driving force necessary for the formation of the combination of the diesel car 1a and the storage battery car 2a, excluding the driving force generated by the diesel car 1a (including the amount that increases or decreases depending on the route condition etc.). Generate driving force.
  • the determination as to whether the vehicle has left the station or exceeded a certain speed may be performed by each of the storage battery vehicle control device 26a and the diesel vehicle control device 15a, or any one of the storage battery vehicle control device 26a and the diesel vehicle control device 15a. One of them may make a determination, and the determination result may be notified to the other.
  • a method for distributing the driving force of the pneumatic vehicle 1a and the storage battery vehicle 2a is determined in advance, and the storage battery vehicle control device 26a and the pneumatic vehicle control device 15a may perform control in accordance with this method. For example, when the pneumatic vehicle 1a is set to an optimum torque for driving the output of the diesel engine 11 with good fuel efficiency, the pneumatic vehicle control device 15a notifies the storage battery vehicle control device 26a of the torque.
  • the storage battery vehicle control device 26a and the pneumatic vehicle control device 15a are based on the instructions from the cab instead of the instructions from the diesel hybrid control apparatus 27.
  • the operation corresponding to each line and brake is performed.
  • the operations of the present embodiment other than those described above are the same as those of the first embodiment.
  • the diesel hybrid control device 27 is not provided, and the diesel vehicle control device 15a and the storage battery vehicle control device 26a perform the same traveling as in the first embodiment based on the notch command from the cab. I tried to control it. Therefore, the same effect as in the first embodiment can be obtained without providing the diesel hybrid control device 27.
  • the vehicle system control device is useful for a vehicle system including a pneumatic vehicle, and is particularly suitable for a vehicle system that achieves energy saving, noise reduction, and cost reduction.

Abstract

 本発明にかかるディーゼルハイブリッド制御装置(27)は、列車の車両システムを構成しモータにより駆動される蓄電池車(2)の駆動力を指示する指示信号を生成し、前記車両システムを構成しディーゼルエンジンにより駆動される気動車(1)の駆動力を指示する指示信号を生成する駆動力指示部(31)、を備え、駆動力指示部(31)は、列車の発進時に蓄電池車(2)の駆動の開始を指示する指示信号を生成すると共に気動車(1)の駆動の待機を指示する指示信号を生成する。

Description

車両システム制御装置
 本発明は、車両システム制御装置に関するものである。
 従来の気動車は、ディーゼルエンジンの出力をトルクコンバータを通して直接車輪を駆動するため、起動時や加速時に、燃費が悪く騒音が大きい等の問題があった。蓄電池からの電力を使用する蓄電池車は、上述の気動車の問題は生じないが、気動車に比べ高価であり、頻繁に充電を行う必要があるため長距離の運行には向かない。
 また、下記特許文献1には、ディーゼルエンジンで発電機を駆動しその電力と蓄電池電力を電源とするディーゼルハイブリッド車両が開示されている。
特開2004-282859号公報
 しかしながら、上記特許文献1に記載のディーゼルハイブリッド車両では、ディーゼルエンジンで発電機を駆動しその電力と蓄電池電力を電源とするため、環境対策にはなるが、起動時や加速時に、燃費が悪く騒音が大きい等の従来の気動車で生じていた問題を解決できない、という問題があった。
 また、上記特許文献1に記載のディーゼルハイブリッド車両を採用する場合は、新たに車両を製造する、または既存の気動車に対して大規模な改修を行なう必要があり、既存の気動車を有効活用できない、という問題があった。
 本発明は、上記に鑑みてなされたものであって、既存の気動車を有効活用し、起動時や加速時の燃費を向上させ騒音を低下させることができる車両システム制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、列車の車両システムを制御する車両システム制御装置であって、前記車両システムを構成しモータにより駆動される蓄電池車の駆動力を指示する指示信号を生成し、前記車両システムを構成しディーゼルエンジンにより駆動される気動車の駆動力を指示する指示信号を生成する駆動力指示部、を備え、前記駆動力指示部は、前記列車の発進時に前記蓄電池車の駆動の開始を指示する指示信号を生成すると共に前記気動車の駆動の待機を指示する指示信号を生成することを特徴とする。
 この発明によれば、既存の気動車を有効活用し、起動時や加速時の燃費を向上させ騒音を低下させることができるという効果を奏する。
図1は、実施の形態1の車両システムの構成例を示す図である。 図2は、実施の形態1の車両システムにおける信号の流れの一例を示す図である。 図3は、車両システムの速度特性の一例を示す図である。 図4は、気動車と蓄電池車との合計のトルク特性の一例を示す図である。 図5は、気動車のトルク特性の一例を示す図である。 図6は、蓄電池車のトルク特性の一例を示す図である。 図7は、ディーゼルハイブリッド制御装置の制御手順の一例を示す図である。 図8は、実施の形態2の車両システムの構成例を示す図である。 図9は、実施の形態2の車両システムにおける信号の流れの一例を示す図である。
 以下に、本発明にかかる車両システム制御装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明にかかる車両システム制御装置を備える車両システムの実施の形態1の構成例を示す図である。図1に示すように、本実施の形態の車両システムは、気動車1と、蓄電池車2と、で構成され、気動車1と、蓄電池車2と、は連結器3により連結されている。本実施の形態の車両システムは列車を構成する車両システムである。
 気動車1は、ディーゼルエンジン11の出力をトルクコンバータ12を通して車輪16を駆動し走行する。また、ディーゼルエンジン11は交流発電機13を駆動し、交流発電機13は交流電力を補機14に供給する。気動車制御装置15は、気動車1の動作全般を制御する。気動車1は、従来の一般的な気動車と同様の構成であり、既存の気動車を用いることができる。
 蓄電池車2は、蓄電池21の直流電力をインバータ22により交流電力に変換し、この交流電力によりモータ23が駆動され、モータ23により車輪28が駆動されて走行する。また、蓄電池21の直流電力をSIV(Static InVerter:補助電源装置)24により交流電力に変換し補機25に供給する。蓄電池車制御装置26は、蓄電池車2の動作全般を制御する。ディーゼルハイブリッド制御装置27は、気動車1と蓄電池車2とを連携して動作させるための制御を行う。ディーゼルハイブリッド制御装置27を除く蓄電池車2は、従来の一般的な蓄電池車と同様の構成である。
 ディーゼルハイブリッド制御装置27は、気動車1と蓄電池車2を備える車両システムにおいてディーゼルハイブリッド制御を実施する車両システム制御装置である。なお、ここでは、ディーゼルハイブリッド制御装置27と蓄電池車制御装置26を別の構成要素として示したが、ディーゼルハイブリッド制御装置27と蓄電池車制御装置26を一体化して車両システム制御装置としてもよい。また、蓄電池21、インバータ22、モータ23、SIV24、蓄電池車制御装置26およびディーゼルハイブリッド制御装置27をさらに備えた装置を車両システム制御装置としてもよい。
 気動車1と蓄電池車2は、連結器3により連結されていると共に、気動車1の気動車制御装置15と蓄電池車2のディーゼルハイブリッド制御装置27とは配線等により接続されている。なお、気動車1と蓄電池車2は直接連結されていなくてもよく、他の車両を介して連結されていてもよい。また、気動車1の気動車制御装置15と蓄電池車2のディーゼルハイブリッド制御装置27とは、列車内の図示しない運転台と接続されており、運転台からの運転指令であるノッチ指令(力行、ブレーキ(減速)、だ行等)に基づいて制御を行う。
 図2は、本実施の形態の車両システムにおける信号の流れの一例を示す図である。図2に示すようにディーゼルハイブリッド制御部27は、蓄電池車制御装置26および気動車制御装置15へ駆動の開始停止や駆動力等を指示する駆動力指示部31を備える。蓄電池車2のディーゼルハイブリッド制御部27の駆動力指示部31は、運転台からのノッチ指令に基づいて、蓄電池車制御装置26,気動車制御装置15へノッチ指令に相当する力行、ブレーキ、だ行等の運転のモード(駆動力)をそれぞれ指示信号S1,S2により指示する。この指示信号S1,S2はどのような形態でなされてもよいが、通常のノッチ指令と同様の形式で指示するようにすると、既存の気動車および蓄電池車からの改修を低減することができる。
 気動車制御装置15は、ディーゼルハイブリッド制御部27からの指示(指示信号S2)に基づいて、ディーゼルエンジン11に対して、車輪16の駆動や停止、交流発電機13の駆動や停止等を指示するエンジンノッチ指令を出力してディーゼルエンジン11を制御する。また、気動車制御装置15は、トルクコンバータ12にトルクを指示するトルクコンバータ指令を出力してトルクコンバータ12が伝えるトルクを制御する。
 ディーゼルエンジン11は、気動車制御装置15から車輪16の駆動または停止の指示があった場合には、指示に基づいてトルクコンバータ12を介して車輪16を駆動または停止する。また、ディーゼルエンジン11は、気動車制御装置15から交流発電機13の駆動または停止の指示があった場合には、交流発電機13を駆動または停止する。
 蓄電池車制御装置26は、ディーゼルハイブリッド制御部27からの指示(指示信号S1)に基づいて、インバータ22に対するスイッチング用のPWM(Pulse Width Modulation)信号(pwm1信号)をインバータ22へ出力する。また、蓄電池車制御装置26は、SIV24に対するスイッチング用のPWM信号(pwm2信号)をSIV24へ出力する。
 インバータ22は、pwm1信号に基づいて蓄電池21の直流電力を交流電力に変換する。インバータ22により、変換された交流電力の電流(モータ電流:iu1,iv1,iw1)は蓄電池車制御装置26へ入力される。また、蓄電池21から出力される直流電力の電圧と電流(蓄電池電圧,蓄電池電流:vb,ib)は、蓄電池車制御装置26へ入力される。蓄電池車制御装置26は、モータ電流が所望の値となるよう、pwm1信号を生成する。
 SIV24は、pwm2信号に基づいて蓄電池21の直流電力を交流電力に変換し、変換した交流電力を補機25へ供給する。SIV24から出力される交流電力の電流(SIV出力電流:iu2,iv2,iw2)と、SIV24から出力される交流電力の電圧(SIV出力電圧:vu,vv,vw)は、蓄電池車制御装置26へ入力される。
 つぎに、本実施の形態の動作について説明する。図3は、車両システムの速度特性の一例を示す。図4は、図3の速度特性に対応する気動車1と蓄電池車2との合計のトルク特性の一例を示し、図5は、図3の速度特性に対応する気動車1のトルク特性の一例を示し、図6は、図3の速度特性に対応する蓄電池車2のトルク特性の一例を示す。以下、図3~6に示した例を用いて本実施の形態の動作を説明する。
 車両システムを備える列車の発進(起動)時(図3~6のAの期間)は、ディーゼルハイブリッド制御装置27は、力行のノッチ指令により、蓄電池車制御装置26に、蓄電池21の直流電力をインバータ22で交流電力に変換してモータ23を駆動するよう指示する。また、ディーゼルハイブリッド制御装置27は、SIV24を駆動し、SIV24が補機25に交流電力を供給する。このとき、ディーゼルハイブリッド制御装置27は、気動車制御装置15に対して、車輪16の駆動は指示せず(駆動待機を指示し)、交流発電機13の駆動を指示する。この状態では、ディーゼルエンジン11はアイドリング状態でトルクコンバータ12と車輪16はつながっておらず駆動力を発生しない。また、ディーゼルエンジン11は、交流発電機13を駆動し補機14に交流電力を供給する。
 このように、発進時には、車両システムの駆動に気動車1の動力は使用せず、気動車1および蓄電池車2は蓄電池車2の動力により走行する。したがって、ディーゼルハイブリッド制御装置27は、発進時には、気動車1および蓄電池車2を走行させるために必要な駆動力で駆動するよう蓄電池車制御装置26へ指示する。
 その後、駅を離れるまで(発進から一定時間が経過するまで、または発進から一定距離を走行するまで)または車両システムのある速度となるまでは、引き続き、気動車1の動力で駆動せず、蓄電池車2の動力で走行する。
 駅を離れた後、または列車の速度がある速度を超えた後(図3~6のBの期間)は、ディーゼルハイブリッド制御装置27は気動車制御装置15に対して駆動を指示し、気動車制御装置15は、ディーゼルエンジン11に車輪16の駆動を指示しトルクコンバータ12にトルクを指示する。これにより、ディーゼルエンジン11の力が車輪16に伝達され動力が発生する。なお、ディーゼルエンジン11が指示するトルクはどのように決定してもよいが、例えばディーゼルエンジン11の出力を燃費の良い状態で運転するために最適な値とすると効率のよい走行を実現することができる。交流発電機13は補機14に交流電力を供給し続ける。図4の例では、駅を離れた後、またはある速度を超えた後、気動車1のトルクは、ある一定値(例えば、ディーゼルエンジン11の出力を燃費の良い状態で運転するために最適な値)を保つ例を示している。
 一方、蓄電池車2は、気動車1と蓄電池車2を合わせた編成として必要な駆動力のうち、気動車1が生成する駆動力を除いた分(路線状態などにより増減する分を含む)の駆動力を生成する。この蓄電池車2の駆動力(トルク)は、ディーゼルハイブリッド制御装置27の駆動力指示部31が、気動車1のトルクを把握しておき、車両システムの速度等に基づいて決定する。なお、蓄電池車2の駆動力は、蓄電池車制御装置26が決定するようにしてもよい。車両システムの速度は、車輪に搭載された加速度計等により、ディーゼルハイブリッド制御装置27または蓄電池車制御装置26が把握しているとする。
 その後、ディーゼルハイブリッド制御装置27の駆動力指示部31が、だ行制御のためのノッチ指令を受信すると(図3~6のCの期間)、気動車制御装置15に対して車輪16の駆動停止を指示する(ディーゼルエンジン11のアイドリング状態)。この指示により、気動車制御装置15は、トルクコンバータ12による車輪16への動力の伝達を停止させる。交流発電機13は補機14に交流電力を供給し続ける。
 また、ディーゼルハイブリッド制御装置27は、蓄電池車制御装置26に対しても、車輪28の駆動停止を指示する。蓄電池車制御装置26は、この指示により、インバータ22の動作を停止させ、モータ23の駆動を停止させる。SIV24は、蓄電池21の直流電力の交流電力への変換を継続し、補機25に電力を供給する。
 ブレーキのノッチ指令を受信した場合(図3~6のDの期間)、ディーゼルハイブリッド制御装置27は、蓄電池車制御装置26にブレーキを指示する。蓄電池車制御装置26は、この指示によりモータ23を発電機として動作させ回生電力をインバータ22で直流電力に変換し蓄電池21に充電するよう制御する。従来の気動車1ではブレーキ時のエネルギーを吸収できていなかったが、本実施の形態では、この動作により、ブレーキ時のエネルギーを蓄電池車2の蓄電池21に吸収できるようになる。
 図7は、本実施の形態のディーゼルハイブリッド制御装置27の制御手順の一例を示す図である。図7を用いて、ディーゼルハイブリッド制御装置27の動作を説明する。まず、初期状態では、車両システムは停止しているとする。ディーゼルハイブリッド制御装置27は、力行のノッチ指令を受信すると(ステップS1)、蓄電池車制御装置26へ蓄電池車2の動力による車輪28の駆動を指示し、走行を開始する(ステップS2)。また、このとき、ディーゼルハイブリッド制御装置27は、蓄電池車制御装置26へSIV24による補機25への交流電力の供給を指示し、気動車制御装置15へ補機14への交流電力の供給を指示する。
 つぎに、ディーゼルハイブリッド制御装置27は、走行開始から一定距離を走行したかまたは走行車両システムの速度がしきい値以上となったか否かを判断する(ステップS3)。なお、ステップS3の判断は、走行開始からの距離が一定距離以上になったか、走行車両システムの速度がしきい値以上のいずれか一方により実施すればよいが、他の条件(走行開始から一定時間経過したか等)を用いて判断してもよい。走行開始から一定距離を走行したかまたは走行車両システムの速度がしきい値以上となった場合(ステップS3 Yes)、気動車制御装置15へ所定の駆動力での車輪16の駆動を指示する(ステップS4)と共に、蓄電池車制御装置26へ、必要な駆動力のうち気動車制御装置15へ指示した駆動力を除いた分の駆動力で車輪28を駆動するよう指示する(ステップS5)。
 走行開始から一定距離を走行していないかまたは走行車両システムの速度がしきい値未満である場合(ステップS3 No)、ステップS3を繰り返す。
 ステップS5の後、ディーゼルハイブリッド制御装置27は、ノッチ指令を受信したが否かを判断し(ステップS6)、受信した場合(ステップS6 Yes)は、受信したノッチ指令の種類を判定する(ステップS7)。ノッチ指令を受信していない場合(ステップS6 No)、ステップS6を繰り返す。
 ステップS7で、受信したノッチ指令がだ行の指令であると判断した場合(ステップS7 だ行)、ディーゼルハイブリッド制御装置27は、蓄電池車制御装置26および気動車制御装置15へだ行を指示し(ステップS8)、ステップS6へ戻る。また、ステップS7で、受信したノッチ指令が力行の指令であると判断した場合(ステップS7 力行)、ステップS2へ戻る。
 ステップS7で、受信したノッチ指令がブレーキの指令であると判断した場合(ステップS7 ブレーキ)、蓄電池車制御装置26および気動車制御装置15へブレーキを指示する(ステップS9)。この際、上述のように、蓄電池車制御装置26は、ブレーキの指示によりモータ23を発電機として動作させ回生電力をインバータ22で直流電力に変換し蓄電池21に充電するよう制御する。
 なお、以上述べた制御手順は一例であり、起動から一定距離を走行したかまたは走行車両システムの速度がしきい値以上になるまでは、蓄電池車2の動力のみで車両システムを走行させ、その後は蓄電池車2と気動車1の両方の動力を用いて走行させるような制御方法であれば、これに限らずどのような制御方法を用いてもよい。
 また、気動車制御装置15は、上述のように運転台と接続されており、運転台からのノッチ指令により、従来と同様に自身の駆動力により単独で走行することも可能である。また、蓄電池車2についても、同様に単独で走行することも可能である。
 また、本実施の形態では、気動車1と蓄電池車2が1台ずつ連結される例を示したが、これに限らず、気動車1、蓄電池車2のうちいずれか1つ以上が複数台連結されていてもよい。例えば、気動車1が複数台の場合、ディーゼルハイブリッド制御装置27は、ステップS4では、駆動力を複数の気動車1にそれぞれ配分して指示すればよい。蓄電池車2が複数台の場合、1台のディーゼルハイブリッド制御装置27が、ステップS5で駆動力を複数の蓄電池車2にそれぞれ配分して指示すればよい。
 なお、本実施の形態では、蓄電池車2がディーゼルハイブリッド制御装置27を備えるようにしたが、気動車1がディーゼルハイブリッド制御装置27を備え、蓄電池車2からディーゼルハイブリッド制御装置27を削除してもよい。
 また、上記説明では、気動車1を例に説明したが、気動車1の代わりにディーゼル機関車を用いた場合にも、本実施の形態の車両システムの制御方法を適用できる。なお、蓄電池21としては、様々な電力貯蔵装置(リチウムイオン電池、ニッケル水素電池、電気二重層キャパシタ、リチウムイオンキャパシタ、フライホイール等)を用いることができる。
 このように、本実施の形態では、既存の気動車1にディーゼルハイブリッド制御装置27を備えた蓄電池車2を連結し、ディーゼルハイブリッド制御装置27(駆動力指示部31)が、車両システムの起動時および加速時には、蓄電池車2の駆動力により気動車1および蓄電池車2を走行させるよう制御するようにした。そして、ある速度以上になった場合には、気動車1と蓄電池車2の両方の駆動力を用いて走行するようにした。そのため、従来の気動車を有効活用した上で、従来の気動車に比べ、起動時や加速時の、燃費を改善し、騒音を低減することができる。また、ブレーキ時に、回生電力を蓄電池車2の蓄電池21に吸収することができ、省エネルギー化を実現することができる。また、気動車のディーゼルエンジンの寿命を延ばす効果もある。
 また、蓄電池車2は、単独でも走行可能なため、輸送量が少ないときや距離が短いときなどには蓄電池車2のみで走行することで省エネルギー化、騒音低減、低コスト化を実現することができる。
実施の形態2.
 図8は、本発明にかかる車両システムの実施の形態2の構成例を示す図である。図8に示すように、本実施の形態の車両システムは、気動車1aと、蓄電池車2aと、で構成され、気動車1aと、蓄電池車2aと、は連結器3により連結されている。気動車1aは、実施の形態1の気動車1の気動車制御装置15の代わりに気動車制御装置15aを備える以外は、実施の形態1の気動車1と同様である。蓄電池車2aは、実施の形態1の蓄電池車2の蓄電池車制御装置26の代わりに蓄電池車制御装置26aを備え、ディーゼルハイブリッド制御装置27を削除する以外は、実施の形態1の蓄電池車2と同様である。蓄電池車制御装置26aと気動車制御装置15aと、が配線等により接続されている。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。
 図9は、本実施の形態の車両システムにおける信号の流れの一例を示す図である。本実施の形態では、実施の形態1と同様に、車両システムの起動時および加速時には、蓄電池車2aの駆動力により気動車1aおよび蓄電池車2aを走行させるよう制御する。本実施の形態では、実施の形態1のディーゼルハイブリッド制御装置27を備えず、運転台からのノッチ指令に基づいて、気動車制御装置15aおよび蓄電池車制御装置26aが実施の形態1と同様に気動車1aと蓄電池車2aの駆動力特性(例えば、図3~6で例示した特性)となるよう制御する。
 すなわち、本実施の形態では、気動車制御装置15aおよび蓄電池車制御装置26aが車両システム制御装置を構成する。また、蓄電池車制御装置26aが実施の形態1の駆動力指示部31の機能のうち蓄電池車2aの駆動に関する指示信号を生成する機能を有し、気動車制御装置15aが実施の形態1の駆動力指示部31の機能のうち気動車1aの駆動に関する指示信号を生成する機能を有する。
 蓄電池車制御装置26aおよび気動車制御装置15aは、実施の形態1と同様に運転台からのノッチ指令を受信する。本実施の形態では、運転台からのノッチ指令として、ディーゼルハイブリッドモードか通常モードか、を指示する指令を追加することとし、ディーゼルハイブリッドモードを指示する指令があった場合に、気動車1aと蓄電池車2aの駆動力を協調させた走行を実施する。通常モードの場合には、気動車1a,蓄電池車2aは、それぞれ従来の気動車,蓄電池車と同様の動作を実施する。なお、ディーゼルハイブリッドモードか通常モードかの設定は、運転台からのノッチ指令を用いずに、例えば、車両システムの編成が決定した際に蓄電池車制御装置26aおよび気動車制御装置15aに対してそれぞれモードを設定する等、他の方法によりモードを設定してもよい。
 つぎに、本実施の形態のディーゼルハイブリッドモードの動作を説明する。本実施の形態では、図3~6のAの期間では、蓄電池車制御装置26aは、運転台から力行のノッチ指令を受けて、蓄電池21の直流電力をインバータ22で交流電力に変換してモータ23を駆動するよう指示する。また、蓄電池車制御装置26aはSIV24を駆動し、SIV24が補機25に交流電力を供給する。一方、気動車制御装置15aは、ディーゼルエンジン11をアイドリング状態としトルクコンバータ12と車輪16はつなげず駆動力を発生させない。また、ディーゼルエンジン11は、交流発電機13を駆動し補機14に交流電力を供給する。このようにして、起動時には、車両システムの駆動に気動車1の動力は使用せず、気動車1aおよび蓄電池車2aは蓄電池車2の動力aにより走行する。
 駅を離れた後、またはある速度を超えた後(図3~6のBの期間)は、気動車制御装置15aは、例えばディーゼルエンジン11の出力を燃費の良い状態で運転するために最適なトルクをトルクコンバータ12にトルクを指示し、ディーゼルエンジン11に車輪16の駆動を指示する。また、蓄電池車制御装置26aは、気動車1aと蓄電池車2aを合わせた編成として必要な駆動力のうち、気動車1aが生成する駆動力を除いた分(路線状態などにより増減する分を含む)の駆動力を生成する。
 なお、駅を離れた、またはある速度を超えたか否かの判断は、蓄電池車制御装置26aおよび気動車制御装置15aが各々実施してもよいし、蓄電池車制御装置26aと気動車制御装置15aのいずれか一方が判断して、判断結果を他方に通知するようにしてもよい。また、気動車1aと蓄電池車2aの駆動力の配分方法は、あらかじめ定めておき、この方法に従って、蓄電池車制御装置26aおよび気動車制御装置15aが各々制御を行えばよい。例えば、気動車1aをディーゼルエンジン11の出力を燃費の良い状態で運転するために最適なトルクとする場合は、当該トルクを気動車制御装置15aが蓄電池車制御装置26aへ通知する。
 以下、図3~6のC,Dの期間では、蓄電池車制御装置26aおよび気動車制御装置15aは、ディーゼルハイブリッド制御装置27からの指示の代わりに運転台からの指示に基づいて、実施の形態1と同様にそれぞれだ行,ブレーキに対応する動作を実施する。以上述べた以外の本実施の形態の動作は、実施の形態1と同様である。
 このように、本実施の形態では、ディーゼルハイブリッド制御装置27を備えず、運転台からのノッチ指令に基づいて、気動車制御装置15aおよび蓄電池車制御装置26aが実施の形態1と同様の走行を行なうよう制御するようにした。そのため、ディーゼルハイブリッド制御装置27を備えずに、実施の形態1と同様の効果を得ることができる。
 以上のように、本発明にかかる車両システム制御装置は、気動車を備える車両システムに有用であり、特に、省エネルギー化、騒音低減、低コスト化を図る車両システムに適している。
 1,1a 気動車
 2,2a 蓄電池車
 3 連結器
 11 ディーゼルエンジン
 12 トルクコンバータ
 13 交流発電機
 14,25 補機
 15,15a 気動車制御装置
 16,28 車輪
 21 蓄電池
 22 インバータ
 23 モータ
 24 SIV
 26,26a 蓄電池車制御装置
 27 ディーゼルハイブリッド制御装置
 31 駆動力指示部

Claims (10)

  1.  列車の車両システムを制御する車両システム制御装置であって、
     前記車両システムを構成しモータにより駆動される蓄電池車の駆動力を指示する指示信号を生成し、前記車両システムを構成しディーゼルエンジンにより駆動される気動車の駆動力を指示する指示信号を生成する駆動力指示部、
     を備え、
     前記駆動力指示部は、前記列車の発進時に前記蓄電池車の駆動の開始を指示する指示信号を生成すると共に前記気動車の駆動の待機を指示する指示信号を生成することを特徴とする車両システム制御装置。
  2.  前記駆動力指示部は、ノッチ指令に基づいて前記気動車の駆動力と前記蓄電池車の駆動力とを配分することを特徴とする請求項1に記載の車両システム制御装置。
  3.  前記駆動力指示部は、前記列車の発進時からの走行距離がしきい値以上となった場合または前記列車の速度がしきい値以上となった場合、ディーゼルエンジンによる前記気動車の駆動開始を指示する指示信号を生成すると共に前記気動車の駆動力を指示する指示信号を生成し、前記列車の所望の駆動力から前記気動車の駆動力として指示した駆動力を減じた駆動力を前記蓄電池車の駆動力として指示する指示信号を生成することを特徴とする請求項1に記載の車両システム制御装置。
  4.  前記気動車の駆動力を略一定値とすることを特徴とする請求項3に記載の車両システム制御装置。
  5.  前記蓄電池車の駆動を制御する蓄電池車制御装置、
     をさらに備え、
     前記駆動力指示部は、前記蓄電池車の駆動力を指示する指示信号と前記蓄電池車の駆動の開始を指示する指示信号とを前記蓄電池車制御装置へ出力することを特徴とする請求項1に記載の車両システム制御装置。
  6.  蓄電池と、
     前記蓄電池により供給される直流電力を交流電力に変換するインバータと、
     前記交流電力により駆動され前記蓄電池車を駆動するモータと、
     をさらに備えることを特徴とする請求項5に記載の車両システム制御装置。
  7.  前記蓄電池の直流電力を交流電力に変換し前記蓄電池車内の補機に供給する補助電源装置、
     をさらに備えることを特徴とする請求項6に記載の車両システム制御装置。
  8.  前記列車の減速時には前記インバータが回生動作することにより前記モータが発電した電力を前記蓄電池に充電する、
     ことを特徴とする請求項6に記載の車両システム制御装置。
  9.  前記蓄電池車内に配置されることを特徴とする請求項5に記載の車両システム制御装置。
  10.  前記蓄電池車の駆動を制御する蓄電池車制御装置と、
     前記気動車の駆動を制御する気動車制御装置と、
     を備え、
     前記蓄電池車制御装置は、前記駆動力指示部の機能のうち前記蓄電池車への前記指示信号を生成する機能を有し、
     前記気動車制御装置は、前記駆動力指示部の機能のうち前記気動車への前記指示信号を生成する機能を有することを特徴とする請求項1に記載の車両システム制御装置。
PCT/JP2010/069738 2010-11-05 2010-11-05 車両システム制御装置 WO2012060015A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/825,580 US8838303B2 (en) 2010-11-05 2010-11-05 Vehicle system control device
CN201080069981.5A CN103180161B (zh) 2010-11-05 2010-11-05 车辆系统控制装置
PCT/JP2010/069738 WO2012060015A1 (ja) 2010-11-05 2010-11-05 車両システム制御装置
BR112013010381A BR112013010381A2 (pt) 2010-11-05 2010-11-05 dispositivo de controle do sistema de veículo
EP10859271.8A EP2636556A4 (en) 2010-11-05 2010-11-05 SYSTEM CONTROL DEVICE FOR WAGON
JP2011518971A JP5128705B2 (ja) 2010-11-05 2010-11-05 車両システム制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069738 WO2012060015A1 (ja) 2010-11-05 2010-11-05 車両システム制御装置

Publications (1)

Publication Number Publication Date
WO2012060015A1 true WO2012060015A1 (ja) 2012-05-10

Family

ID=46024145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069738 WO2012060015A1 (ja) 2010-11-05 2010-11-05 車両システム制御装置

Country Status (6)

Country Link
US (1) US8838303B2 (ja)
EP (1) EP2636556A4 (ja)
JP (1) JP5128705B2 (ja)
CN (1) CN103180161B (ja)
BR (1) BR112013010381A2 (ja)
WO (1) WO2012060015A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104442412B (zh) * 2013-09-18 2018-01-19 通用电气公司 装置,移动运输设备,电动拖拉机,电动叉车以及相关方法
US9701323B2 (en) 2015-04-06 2017-07-11 Bedloe Industries Llc Railcar coupler
CN105015559B (zh) * 2015-07-31 2017-10-13 株洲南车时代电气股份有限公司 一种机车无火回送供电装置及供电方法
ITUB20154278A1 (it) * 2015-10-09 2017-04-09 Faiveley Transport Italia Spa Sistema di controllo della trazione e della frenatura per un convoglio ferroviario.
EP3860889A1 (de) * 2018-10-03 2021-08-11 Schweizerische Bundesbahnen SBB Bremssystem für ein schienenfahrzeug
WO2021024462A1 (ja) * 2019-08-08 2021-02-11 三菱電機株式会社 データ収集システム、補助電源装置、モニタ装置およびデータ収集方法
CA3143907A1 (en) * 2020-12-23 2022-06-23 Meteorcomm Llc End of train device and methods for powering end of train device
GB2611343A (en) * 2021-10-01 2023-04-05 Hitachi Rail Ltd Power system for a railway vehicle
DE102021211159A1 (de) * 2021-10-04 2023-04-06 Siemens Mobility GmbH Verfahren zur Leistungsversorgung von Hilfsbetrieben eines Schienenfahrzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294205A (ja) * 1995-04-20 1996-11-05 Aqueous Res:Kk ハイブリッド車両
JP2001136603A (ja) * 1999-11-01 2001-05-18 Central Japan Railway Co エネルギを回生・再用する鉄道車両
JP2004282859A (ja) 2003-03-14 2004-10-07 Hitachi Ltd 鉄道車両の駆動装置
JP2006238542A (ja) * 2005-02-23 2006-09-07 Hokkaido Railway Co ハイブリッド鉄道車両
JP2007124802A (ja) * 2005-10-28 2007-05-17 Hitachi Ltd 車両駆動システム
JP2007143290A (ja) * 2005-11-18 2007-06-07 Hitachi Ltd ハイブリッド車両

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060005738A1 (en) * 2001-03-27 2006-01-12 Kumar Ajith K Railroad vehicle with energy regeneration
US20080000381A1 (en) * 2006-05-24 2008-01-03 Bartley Thomas L Rail car braking regeneration and propulsion system and method
US8408144B2 (en) * 2006-10-04 2013-04-02 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Hybrid locomotive regenerative energy storage system and method
US20080121136A1 (en) * 2006-11-28 2008-05-29 General Electric Company Hybrid locomotive and method of operating the same
CA2682066C (en) * 2007-01-24 2015-12-01 Railpower, Llc Multi-power source locomotive control
US7891302B2 (en) * 2007-03-13 2011-02-22 Titan Rail, Inc. System and method for providing head end power for use in passenger train sets
US8370051B2 (en) * 2009-01-05 2013-02-05 Ford Global Technologies, Llc Methods and systems for assisted direct start control
US8413589B2 (en) * 2009-02-26 2013-04-09 Union Pacific Railroad Company Container-based locomotive power source
US8640629B2 (en) * 2009-05-01 2014-02-04 Norfolk Southern Corporation Battery-powered all-electric and/or hybrid locomotive and related locomotive and train configurations
US8136454B2 (en) * 2009-05-01 2012-03-20 Norfolk Southern Corporation Battery-powered all-electric locomotive and related locomotive and train configurations
US8482151B2 (en) * 2009-07-02 2013-07-09 Electrical Power Worx Corp. Auxiliary power systems and methods thereof
CA2787764C (en) * 2010-01-21 2018-08-14 ePower Engine Systems, L.L.C. Hydrocarbon fueled-electric series hybrid propulsion systems
SE537432C2 (sv) * 2010-03-08 2015-04-28 Int Truck Intellectual Prop Co Styrsystem för hybridfordonsmotorer
US8552575B2 (en) * 2011-04-03 2013-10-08 Tma Power, Llc Hybrid electric power for vehicular propulsion
JP5823281B2 (ja) * 2011-12-20 2015-11-25 株式会社東芝 ハイブリッド式電気機関車
US8880248B2 (en) * 2012-03-15 2014-11-04 Bright Energy Storage Technologies, Llp Auxiliary power unit assembly and method of use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294205A (ja) * 1995-04-20 1996-11-05 Aqueous Res:Kk ハイブリッド車両
JP2001136603A (ja) * 1999-11-01 2001-05-18 Central Japan Railway Co エネルギを回生・再用する鉄道車両
JP2004282859A (ja) 2003-03-14 2004-10-07 Hitachi Ltd 鉄道車両の駆動装置
JP2006238542A (ja) * 2005-02-23 2006-09-07 Hokkaido Railway Co ハイブリッド鉄道車両
JP2007124802A (ja) * 2005-10-28 2007-05-17 Hitachi Ltd 車両駆動システム
JP2007143290A (ja) * 2005-11-18 2007-06-07 Hitachi Ltd ハイブリッド車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2636556A4 *

Also Published As

Publication number Publication date
US8838303B2 (en) 2014-09-16
EP2636556A4 (en) 2014-12-03
JP5128705B2 (ja) 2013-01-23
CN103180161A (zh) 2013-06-26
EP2636556A1 (en) 2013-09-11
JPWO2012060015A1 (ja) 2014-05-12
CN103180161B (zh) 2015-08-26
BR112013010381A2 (pt) 2016-08-02
US20130184905A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5128705B2 (ja) 車両システム制御装置
JP5905013B2 (ja) ハイブリッド駆動装置
JP4417948B2 (ja) 鉄道車両の駆動制御装置
JP4648054B2 (ja) ハイブリッド車両,電動駆動装置用制御装置及び電動駆動装置
CN101516701B (zh) 铁道车辆的驱动装置
AU2008247963B2 (en) Electric drive vehicle retrofit system and associated method
AU2008247961B2 (en) Propulsion system
JP5749615B2 (ja) ハイブリッド電気車両の非常走行制御システムおよびその制御方法
KR100916428B1 (ko) 하이브리드 차량의 보조배터리 충전제어방법
JP2013035534A (ja) ハイブリッド車両
WO2007142165A1 (ja) 車両駆動システムおよびそれを備える車両
CN101734251A (zh) 一种增程式电动汽车控制系统及其控制方法
CN101659202A (zh) 一种混合动力驱动系统及其驱动方法
WO2013088523A1 (ja) ハイブリッド車両の発電機制御装置
CN104626963A (zh) 一种混合动力环卫车动力系统
JP2006197756A (ja) 車両の回生制動制御装置
JP2000224709A (ja) 電源装置
JP2007191088A (ja) ハイブリッド車両
JP5246941B2 (ja) ハイブリッド気動車
CN101596873A (zh) 混合动力车电机运行模式控制方法
CN204383160U (zh) 混合动力环卫车动力系统
CN108248366A (zh) 一种多模式混合动力传动系统
JPH11252993A (ja) 駆動装置
JP2008049809A (ja) ディーゼル動車のハイブリッド型駆動装置
JP2002305803A (ja) 電気車

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011518971

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859271

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13825580

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010859271

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010859271

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013010381

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013010381

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130426