WO2012058874A1 - 一种tdd系统的下行单用户多层波束成形方法和装置 - Google Patents

一种tdd系统的下行单用户多层波束成形方法和装置 Download PDF

Info

Publication number
WO2012058874A1
WO2012058874A1 PCT/CN2011/070590 CN2011070590W WO2012058874A1 WO 2012058874 A1 WO2012058874 A1 WO 2012058874A1 CN 2011070590 W CN2011070590 W CN 2011070590W WO 2012058874 A1 WO2012058874 A1 WO 2012058874A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
signal
spatial channel
spatial
noise ratio
Prior art date
Application number
PCT/CN2011/070590
Other languages
English (en)
French (fr)
Inventor
郭阳
禹忠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012058874A1 publication Critical patent/WO2012058874A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present invention relates to the field of wireless mobile communications, and in particular, to a downlink single-user multi-layer beamforming method and apparatus for a TDD system. Background technique
  • the MIMO (Multiple Input and Multiple Output) system has become a technology of great interest in the research of LTE and LTE+ due to its effective channel capacity enhancement.
  • multiple data streams can be simultaneously transmitted through multiple layers by designing appropriate weight vector of the transmitting antenna and the receiving antenna, and data of multiple layers can be transmitted in parallel, and the layer is removed. Interference.
  • the direction of the shaped beam can be designed by designing appropriate weight vector of the transmitting antenna and the receiving antenna to distinguish multi-user signals and remove inter-user interference.
  • the method of beamforming distinguishes users by the orientation of the user, so that multiple users can reuse the same time and frequency resources.
  • small antenna spacing 0.5
  • beamforming technology can also transmit in the strongest directions of the same user's signal to take advantage of the strongest paths in the multipath channel environment.
  • Beamforming technology works mainly by controlling the beam direction, and is more suitable for use in open suburban scenes. Beamforming can achieve significant beam energy gains that can extend cell coverage. At the same time, the beamforming technology can also be applied to complex urban environments.
  • the beam direction type algorithm can utilize the direction of several paths with the strongest signal, and the channel matrix decomposition type algorithm can use several paths with the best channel capacity.
  • Beamforming technology can use the antenna array structure to obtain beams with characteristic directions, so Obtaining obvious beam energy gain, which can improve cell coverage and system capacity, reduce system interference and increase system capacity, improve link reliability, and improve peak rate. Beamforming technology can effectively improve edge user performance for LTE+ systems. In this way, the existing single-stream beamforming technology can be extended to multi-stream beamforming technology, which is still suitable for single users, thereby improving user throughput.
  • the number of antennas on the base station side will be extended to more than 8 and the number of antennas on the terminal side will be expanded to more than 4.
  • the beamforming method is controlled. The use of the number of layers to fully and rationally utilize spatial channel resources has become an important issue. Summary of the invention
  • An object of the present invention is to provide a downlink single-user multi-layer beamforming method and apparatus for a TDD system.
  • the present invention obtains the gain and transmission weight of each spatial channel layer through a downlink channel matrix, and solves the space used for controlling beamforming. The problem of the number of layers in the channel layer, thereby maximizing the channel capacity.
  • a downlink single-user multi-layer beamforming method for a TDD system proposed by the present invention includes:
  • An evolved node obtains a downlink channel matrix according to the estimated uplink channel matrix, and obtains a gain and a transmission weight of each spatial channel layer according to the downlink channel matrix;
  • the eNB calculates the signal-to-noise ratio of the data transmitted by the different spatial channel layers to the receiving end by using the gain of each spatial channel layer to obtain k spatial channel layers capable of correctly transmitting data;
  • the eNB loads the data transmitted by the k spatial channel layers into dedicated pilots respectively, and multiplies the data transmitted by the k spatial channel layers by corresponding transmission weights, and then transmits them through the antenna.
  • a downlink single-user multi-layer beamforming apparatus for a TDD system proposed by the present invention includes:
  • a parameter generating unit configured to acquire a downlink channel matrix according to the estimated uplink channel matrix, and And generating, according to the downlink channel matrix, a gain and a transmission weight of each spatial channel layer; and a determining unit, configured to calculate, by using a gain of each spatial channel layer, a signal to noise ratio after the data transmitted by the different spatial channel layers reaches the receiving end, And acquiring k spatial channel layers capable of correctly transmitting data; the sending unit is configured to load the data transmitted by the k spatial channel layers into dedicated pilots respectively, multiply the corresponding transmission weights, and then transmit the data through the antenna.
  • the solution of the present invention provides a single-user beamforming method and apparatus using multiple layers simultaneously, and comprehensively considers data of multiple layers to maximize the utilization of channel capacity, thereby fully and reasonably utilizing the resources of the spatial channel.
  • FIG. 1 is a schematic block diagram of a downlink single-user multi-layer beamforming method for a TDD system of the present invention
  • FIG. 2 is a flow chart of a downlink single-user multi-layer beamforming method for a TDD system of the present invention
  • FIG. 3 is a downlink single user of the TDD system of the present invention.
  • the uplink channel and the downlink channel are in the same frequency band, the data transmission of the uplink channel and the downlink channel is switched only by time variation. Therefore, it is generally considered that the uplink channel and the downlink channel have reciprocity, that is, the uplink channel can be adopted.
  • the information directly obtains downlink channel information. Therefore, after the eNB of the TDD system calculates the uplink channel matrix of the user according to the uplink SRS pilot, the downlink channel matrix H is obtained according to the reciprocity of the uplink channel and the downlink channel of the TDD system, as follows:
  • H is the m x n matrix
  • m is the number of receiving antennas
  • n is the number of transmitting antennas.
  • the eigenvalue matrix E is decomposed by the downlink channel matrix H, and the obtained eigenvalue matrix E is as follows:
  • the eigenvalue is the gain of the spatial channel layer 1
  • the corresponding feature vector of the first column is the transmission weight required for the spatial channel layer 1
  • the eigenvalue is the gain of the spatial channel layer 2
  • the second column feature vector is the transmission weight value required for the spatial channel layer 2
  • the eigenvalue 1 # is the gain of the spatial channel layer f
  • the f-th column eigenvector corresponding to 1 # is the spatial channel layer f
  • the signal-to-noise ratio after the data transmitted through the spatial channel layer 1 reaches the receiving end is SW? X X x
  • the signal-to-noise ratio of the data of the spatial channel layer 2 after reaching the receiving end is SW? X x the data of the spatial channel layer f
  • the signal-to-noise ratio after reaching the receiving end is X ⁇
  • the signal-to-noise ratio of the data of a certain spatial channel layer reaches the receiving end is greater than the signal-to-noise ratio threshold value sw ⁇ , it can be considered that the data of the spatial channel layer reaches the receiving end, and the receiving end can decode normally, then this Layers can be used for data transfer, otherwise they cannot be used for data transfer.
  • the signal-to-noise ratio of the data of the k spatial channel layers reaches the receiving end is greater than the signal-to-noise ratio threshold value sw ⁇ , a total of k spatial channel layers can simultaneously perform data transmission.
  • the signal-to-noise ratio of the link on the transmitting side; sw ⁇ is the received signal-to-noise ratio when the correct block rate of the received data of the receiving side reaches the set value P, that is, the signal-to-noise ratio gate that receives the correct block rate and reaches the set value P
  • the values of SW ⁇ X and SW ⁇ are known values of the TDD system; the set value p > 70%, preferably 70%.
  • Figure 1 shows the block diagram of the downlink single-user multi-layer beamforming method for the TDD system, as shown in Figure 1:
  • the eNB encodes and modulates the data of the k spatial channel layers, schedules and loads each dedicated channel pilot (DRS, Dedicated Reference Signal), and encodes and modulates the dedicated pilot.
  • DRS dedicated channel pilot
  • the data of the k spatial channel layers are respectively multiplied by the transmission weights of the corresponding spatial channel layers, so that k spatial channel layer data are respectively mapped to eight antennas, and weighted to obtain spatial signals, and through each spatial channel layer itself
  • the antenna port is sent.
  • the receiving end demodulates the spatial signal according to the dedicated pilot.
  • FIG. 2 shows a flow chart of the downlink single-user multi-layer beamforming method of the TDD system. As shown in Figure 2, the following steps are included:
  • Step 101 The eNB estimates the uplink channel matrix of the user according to the uplink SRS pilot, and obtains the downlink channel matrix by using the reciprocity of the uplink channel and the downlink channel in the TDD system.
  • Step 103 According to whether the signal to noise ratio of the data of the spatial channel layer reaches the receiving end is greater than the signal to noise ratio threshold SNR, obtain k spatial channel layers that can be used for data transmission, and corresponding k eigenvalues and feature vectors. .
  • Step 104 Perform coding and modulation processing on the data of the k spatial channel layers.
  • Step 105 Load the respective dedicated pilots of each spatial channel layer for the data of the k spatial channel layers.
  • Step 106 Multiply the data of the k spatial channel layers of the encoded and modulated dedicated pilots by the respective feature vectors of each spatial channel layer, thereby mapping the data onto the antenna, and weighting the data mapped to the antenna. After getting the spatial signal, pass each space channel layer for each day The line port is sent out.
  • Step 107 The receiving end (the UE side) performs signal demodulation on the spatial signal according to the dedicated pilot.
  • the feature value is the gain of the spatial channel layer and is used to calculate the signal to noise ratio of the data after it reaches the receiving end through the spatial channel layer.
  • the feature vector is the transmit weight of the spatial channel layer and is used to map the data onto the transmit antenna.
  • Figure 3 shows a block diagram of the downlink single-user multi-layer beamforming device of the TDD system. As shown in Figure 3, the device includes:
  • a parameter generating unit configured to acquire a downlink channel matrix according to the estimated uplink channel matrix, and generate a gain and a transmission weight of each spatial channel layer according to the downlink channel matrix; and the parameter generating unit estimates the user according to the uplink SRS pilot
  • the uplink channel matrix so that the downlink channel matrix is directly obtained through the dissimilarity between the uplink channel and the downlink channel of the TDD system, and the eigenvalue decomposition is performed on the downlink channel matrix to obtain eigenvalues and feature vectors, that is, each spatial channel
  • the gain and emission weight of the layer The gain and emission weight of the layer.
  • a determining unit configured to calculate, by using a gain of each spatial channel layer, a signal to noise ratio after data transmitted by different spatial channel layers arrives at the receiving end, and obtain k spatial channel layers that can correctly transmit data;
  • the ratio is greater than the SNR threshold, the spatial channel layer may be used for data transmission, otherwise data transmission may not be performed; the SNR threshold is when the correct block rate of the received data at the receiving end reaches the set value P.
  • a sending unit configured to load the data transmitted by the k spatial channel layers into dedicated pilots respectively, and multiply the corresponding transmission weights, and then transmit the data through the antenna; the sending unit transmits the k spatial channel layers
  • the data is encoded and modulated separately and loaded into each spatial channel layer. Pilot, and multiplying the data transmitted by the k spatial channel layers encoded and modulated by corresponding transmission weights, and mapping to the antenna; the data mapped to the antenna is weighted to form a spatial signal, and the corresponding antenna is formed by the corresponding antenna
  • the port is launched.
  • the decision unit includes:
  • the receiving end signal to noise ratio calculation subunit is configured to calculate a signal to noise ratio after the data transmitted by the different spatial channel layers arrives at the receiving end according to the gain generated by the parameter generating unit and the signal to noise ratio of the transmitting side link.
  • a decision subunit configured to determine that the spatial channel layer can be used for data transmission when the signal to noise ratio after the data transmitted by the spatial channel layer reaches the receiving end is greater than a signal to noise ratio threshold, otherwise it cannot be used as a data transmission data transmission.
  • the sending unit includes:
  • a coded modulation subunit is used to encode and modulate the transmitted data.
  • the beamforming subunit is configured to load the dedicated pilot of the spatial channel layer for the encoded and modulated data, multiply the encoded and modulated data by the transmission weight of the corresponding spatial channel layer, and map to the antenna.
  • the sending subunit is configured to weight the data mapped to the antenna to form a spatial signal, which is transmitted by the corresponding antenna port.
  • the working principle of the device is as follows:
  • the parameter generating unit estimates the uplink channel matrix according to the uplink SRS pilot, and directly obtains the downlink channel matrix by the reciprocity of the uplink channel and the downlink channel of the TDD system. Performing eigenvalue decomposition on the downlink channel matrix to obtain a gain and a transmission weight of each spatial channel layer, and respectively feeding them into a receiving signal to noise ratio calculation subunit of the determining unit and a beamforming subunit of the transmitting unit .
  • the receiving signal to noise ratio calculation subunit multiplies the signal to noise ratio of the transmitting side link by the received gain, and obtains a signal to noise ratio of data transmitted by different spatial channel layers to the receiving end, and calculates
  • the received signal to noise ratio is sent to the connected decision subunit, and the decision subunit compares the signal to noise ratio and the signal to noise ratio threshold, if the signal to noise ratio of the receiving end is greater than the signal to noise ratio threshold a value, then the spatial channel layer can be used as a data transmission, transmitting information that can be used as a spatial channel layer of the data transmission to a coded modulation sub-unit of the transmitting unit, the spatial channel that the coded modulation sub-unit can use to transmit data
  • the layer data is encoded and modulated, and the processed data is sent to the beamforming subunit.
  • the beamforming sub-unit loads the data with the dedicated pilot, the data is multiplied by the transmission weight, so that the data is mapped onto the antenna, and after being weighted by the data, the data is transmitted through the antenna port of the corresponding spatial channel layer.
  • the present invention uniformly considers data of multiple layers, and maximizes the utilization of channel capacity, thereby fully and reasonably utilizing the resources of the spatial channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种TDD系统的下行单用户多层波束成形方法和装置,方法包括:演进型节点(eNB)根据估计的上行信道矩阵获取下行信道矩阵,并根据所述下行信道矩阵得到每个空间信道层的增益和发射权值;eNB利用每个空间信道层的增益计算不同空间信道层传输的数据到达接收端后的信噪比,以获取可以正确传输数据的k个空间信道层;eNB将所述k个空间信道层传输的数据分别加载专用导频,并将所述k个空间信道层传输的数据分别乘以相应的发射权值后,通过天线发射出去。本发明统一考虑多个层的数据、最大限度的利用信道容量,从而充分并合理的利用空间信道的资源。

Description

一种 TDD系统的下行单用户多层波束成形方法和装置 技术领域
本发明涉及无线移动通信领域, 尤其涉及一种 TDD系统的下行单用户 多层波束成形方法和装置。 背景技术
多输入多输出 ( MIMO , Multiple Input and Multiple Output)系统由于其 有效提高信道容量而成为 LTE、 LTE+的研究中一项倍受人们关注的技术。
在单用户 MIMO模式中, 可以通过设计合适的发射天线和接收天线的 权值矢量来对多个数据流通过多个层同时进行传输, 并可以使多个层的数 据之间并行传输, 去除层间干扰。
在多用户 MIMO模式中, 可以通过设计合适的发射天线和接收天线的 权值矢量来设计赋形波束的方向, 区分多用户的信号, 去除用户间干扰。
波束成形的方法通过用户所在方位来区分用户, 从而可以实现多个用 户复用相同的时间、 频率资源。 对于小天线间距(0.5 )情况有利于控制波 束指向, 更加适合于应用波束成形 ( beamforming )技术。 同时波束成形技 术也可以对同一个用户的信号最强的几个方向进行传输, 以利用多径信道 环境中最强的几条径。
波束成形技术主要是通过控制波束方向来进行工作的, 比较适合用于 空旷的郊区场景。 波束成形可以获得明显的波束能量增益, 可以扩大小区 的覆盖。 同时波束成形技术也可以用于复杂的城区环境, 利用波束方向类 的算法可以利用信号最强的几个径的方向, 利用信道矩阵分解类的算法可 以使用信道容量最好的几条径。
波束成形技术利用天线阵列结构可以获得特征方向的波束, 因此可以 获得明显的波束能量增益, 这可以完善小区覆盖和系统容量, 减小系统干 扰和增加系统容量, 提高链路可靠性, 提高峰值速率, 波束成形技术可以 有效的改善边沿用户的性能, 对于 LTE+系统来说, 可以将现有的单流波束 成形技术扩展至多流波束成形技术, 仍然适用于单用户, 从而提高用户的 吞吐量。
对于即将开始制定的 3GPP Rel-10标准来说,基站侧天线数目将会扩展 至 8个以上, 终端侧天线数目将会扩展至 4个以上, 对于未来的波束成形 技术来说, 控制波束成形所使用的层数从而充分并合理的利用空间信道资 源成为重要的课题。 发明内容
本发明的目的在于提供一种 TDD系统的下行单用户多层波束成形方法 和装置, 本发明通过下行信道矩阵得到每个空间信道层的增益和发射权值 , 解决了控制波束成形所使用的空间信道层的层数的问题, 从而最大限度利 用信道容量。
根据本发明的一个方面, 本发明提出的一种 TDD系统的下行单用户多 层波束成形方法包括:
演进型节点(eNB )根据估计的上行信道矩阵获取下行信道矩阵, 并根 据所述下行信道矩阵得到每个空间信道层的增益和发射权值;
eNB 利用每个空间信道层的增益计算不同空间信道层传输的数据到达 接收端后的信噪比, 以获取能正确传输数据的 k个空间信道层;
eNB将所述 k个空间信道层传输的数据分别加载专用导频,并将所述 k 个空间信道层传输的数据分别乘以相应的发射权值后, 通过天线发射出去。
根据本发明的另一个方面, 本发明提出的一种 TDD系统的下行单用户 多层波束成形装置包括:
参数生成单元, 用于根据估计的上行信道矩阵获取下行信道矩阵, 并 根据所述下行信道矩阵, 生成每个空间信道层的增益和发射权值; 判决单元, 用于利用每个空间信道层的增益计算不同空间信道层传输 的数据到达接收端后的信噪比, 并获取能正确传输数据的 k个空间信道层; 发送单元, 用于将所述 k个空间信道层传输的数据分别加载专用导频, 并乘以相应的发射权值后, 通过天线发射出去。
与现有技术相比较, 本发明的有益效果在于:
本发明方案给出了同时使用多个层的单用户波束成形方法和装置, 统 一考虑多个层的数据, 最大限度的利用信道容量, 从而充分并合理得利用 空间信道的资源。 附图说明
图 1是本发明 TDD系统的下行单用户多层波束成形方法原理框图; 图 2是本发明 TDD系统的下行单用户多层波束成形方法流程图; 图 3是本发明 TDD系统的下行单用户多层波束成形装置框图。 具体实施方式
以下结合附图对本发明的优选实施例进行详细说明, 应当理解, 以下 所说明的优选实施例仅用于说明和解释本发明, 并不用于限制本发明。
在 TDD系统中, 由于上行信道与下行信道所处的频段相同, 仅通过时 间变化切换上行信道与下行信道的数据传输, 因此, 通常认为上行信道与 下行信道具有互易性, 即可以通过上行信道信息直接获得下行信道信息。 因此, 当 TDD系统的 eNB根据上行 SRS导频计算用户的上行信道矩阵后, 根据 TDD系统的上行信道和下行信道的互易性, 获得下行信道矩阵 H, 如 下:
其中, H为 m x n矩阵, m为接收天线数目, n为发射天线数目。 将下行信道矩阵 H做特征值分解, 得到的特征值矩阵 E如下:
Ε =
Figure imgf000006_0002
其中, min ( m,n ), 特征值 为空间信道层 1的增益, 对应于 的第 1 列特征矢量即为空间信道层 1 所需要使用的发射权值; 特征值 为空间 信道层 2的增益, 对应于 的第 2列特征矢量为空间信道层 2所需要使用 的发射权值; 特征值 1#为空间信道层 f的增益, 对应于 1#的第 f列特征矢 量为空间信道层 f 所需要使用的发射权值。
因此, 通过空间信道层 1传递的数据到达接收端后的信噪比为 SW? X X x , 空间信道层 2的数据到达接收端后的信噪比为 SW? X x 空间信道层 f的数据到达接收端后的信噪比为 X λ
当某一空间信道层的数据到达接收端后的信噪比大于信噪比门限值 sw^时, 则可认为此空间信道层的数据到达接收端后, 接收端可以正常解 码, 则这一层可以用作数据传输, 否则不能用作数据传输。 当有 k个空间 信道层的数据到达接收端后的信噪比大于信噪比门限值 sw^时, 则共有 k 个空间信道层可以同时进行数据传输。
其中, 为发射侧的链路信噪比; sw^为接收侧接收数据的正确 块率达到设定值 P时的接收信噪比, 即接收正确块率达到设定值 P的信噪 比门限值; 所述 SW^X和 SW^的值为 TDD 系统的已知值; 所述设定值 p > 70% , 优选值为 70%。 当存在 K个空间信道层可以同时用作数据传输时, 结合图 1进一步说 明 TDD系统的下行单用户多层波束成形方法。
图 1显示了 TDD系统的下行单用户多层波束成形方法原理框图,如图 1所示:
eNB对 k个空间信道层的数据分别进行编码和调制, 调度并加载每个 空间信道层各自的专用导频( DRS , Dedicated Reference Signal ), 并对已加 载专用导频的编码和调制后的所述 k个空间信道层的数据分别乘以相应空 间信道层的发射权值, 从而将 k个空间信道层数据分别映射至八根天线上, 经过加权后得到空间信号, 并通过各空间信道层自己的天线端口进行发送。
接收端根据专用导频对空间信号进行信号解调。
图 2显示了 TDD系统的下行单用户多层波束成形方法流程图, 如图 2 所示, 包括以下步骤:
步骤 101 : eNB根据上行 SRS导频估计用户的上行信道矩阵, 并通过 TDD系统上行信道与下行信道的互易性得到下行信道矩阵。
步骤 102: 对下行信道矩阵进行特征值分解, 得到 f个特征值和对应的 f列特征矢量, 其中 f=min ( m,n ), m为接收天线数目, n为发射天线数目。
步骤 103:根据空间信道层的数据到达接收端后的信噪比是否大于信噪 比门限值 SNR^获得可以用作数据传输的 k个空间信道层, 以及对应的 k个 特征值和特征矢量。
步骤 104: 对 k个空间信道层的数据分别进行编码和调制处理。
步骤 105:对 k个空间信道层的数据分别加载每个空间信道层各自的专 用导频。
步骤 106:对加载专用导频的经过编码和调制的 k个空间信道层的数据 分别乘以每个空间信道层各自的特征矢量, 从而将数据映射至天线上, 并 将映射到天线的数据加权后得到空间信号, 通过每个空间信道层各自的天 线端口发送出去。
步骤 107: 接收端 (UE侧)根据专用导频对空间信号进行信号解调。 所述特征值是空间信道层的增益, 用于计算数据通过空间信道层到达 接收端后的信噪比。
所述特征向量是空间信道层的发射权值, 用于将数据映射到发射天线 上。
图 3显示了 TDD系统的下行单用户多层波束成形装置框图, 如图 3所 示, 装置包括:
参数生成单元, 用于根据估计的上行信道矩阵获取下行信道矩阵, 并 根据所述下行信道矩阵, 生成每个空间信道层的增益和发射权值; 所述参 数生成单元根据上行 SRS导频估计用户的上行信道矩阵,从而通过 TDD系 统的上行信道与下行信道之间的互异性直接获取下行信道矩阵, 并将所述 下行信道矩阵进行特征值分解, 得到特征值和特征向量, 即每个空间信道 层的增益和发射权值。
判决单元, 用于利用每个空间信道层的增益计算不同空间信道层传输 的数据到达接收端后的信噪比, 并获取可以正确传输数据的 k个空间信道 层; 所述判决单元通过比较所述数据到达接收端后的信噪比与信噪比门限 值, 获取可以正确传输数据的 k个空间信道层, 即若通过某一个空间信道 层传输的所述数据到达接收端后的信噪比大于信噪比门限值, 则所述空间 信道层可以用于数据传输, 否则不能进行数据传输; 所述信噪比门限值为 接收端接收数据的正确块率达到设定值 P时的信噪比, 所述设定值 p≥70% , 优选值为 70%。
发送单元, 用于将所述 k个空间信道层传输的数据分别加载专用导频, 并乘以相应的发射权值后, 通过天线发射出去; 所述发送单元将所述 k个 空间信道层传输的数据分别经过编码和调制后加载每个空间信道层的专用 导频, 并把经过编码和调制的 k个空间信道层传输的数据乘以相应的发射 权值, 映射到天线上; 映射到天线上的数据经过加权后, 形成空间信号, 并由相应的天线端口发射出去。
所述判决单元包括:
接收端信噪比计算子单元, 用于根据所述参数生成单元生成的所述增 益和发送侧链路信噪比计算不同空间信道层传输的数据到达接收端后的信 噪比。
判决子单元, 用于在某一个空间信道层传输的所述数据到达接收端后 的信噪比大于信噪比门限值时, 判决所述空间信道层可以用于数据传输, 否则不能用作数据传输。
所述发送单元包括:
编码调制子单元, 用于将发送数据进行编码和调制。
波束成形子单元, 用于为编码和调制后的数据加载空间信道层的专用 导频, 将编码和调制后的数据乘以相应空间信道层的发射权值, 并映射到 天线上。
发送子单元, 用于将映射到天线上的数据经过加权后, 形成空间信号, 由相应的天线端口发射出去。
所述装置的工作原理如下:
参数生成单元根据上行 SRS导频估计上行信道矩阵,并通过 TDD系统 的上行信道与下行信道的互易性, 直接获得下行信道矩阵。 将所述下行信 道矩阵进行特征值分解, 得到每个空间信道层的增益和发射权值, 并分别 送入判决单元的接收端信噪比计算子单元和所述发送单元的波束成形子单 元中。
所述接收端信噪比计算子单元将发射侧链路的信噪比乘以接收的所述 增益, 得到不同空间信道层传输的数据到达接收端的信噪比, 并将计算得 到的所述信噪比送入相连的判决子单元中, 由所述判决子单元比较所述信 噪比与信噪比门限值, 若接收端信噪比大于所述信噪比门限值, 则空间信 道层可以用作数据传输, 将可以用作数据传输的空间信道层的信息传送给 发送单元的编码调制子单元, 由所述编码调制子单元将可以用于传送数据 的空间信道层的数据进行编码和调制处理, 并将处理后的数据送入波束成 形子单元。
所述波束成形子单元将数据加载专用导频后, 对所述数据乘以发射权 值, 使数据映射到天线上, 经过数据加权后通过相应的空间信道层的天线 端口发送出去。
综上所述, 本发明统一考虑多个层的数据, 最大限度得利用信道容量, 从而充分并合理得利用空间信道的资源。

Claims

权利要求书
1、 一种 TDD 系统的下行单用户多层波束成形方法, 其特征在于, 该 方法包括:
演进型节点(eNB )根据估计的上行信道矩阵获取下行信道矩阵, 并根 据所述下行信道矩阵得到每个空间信道层的增益和发射权值;
eNB 利用每个空间信道层的增益计算不同空间信道层传输的数据到达 接收端后的信噪比, 以获取能正确传输数据的 k个空间信道层;
eNB将所述 k个空间信道层传输的数据分别加载专用导频,并将所述 k 个空间信道层传输的数据分别乘以相应的发射权值后, 通过天线发射出去。
2、 根据权利要求 1所述的方法, 其特征在于, 根据所述下行信道矩阵 得到每个空间信道层的增益和发射权值具体为:
eNB根据上行探测导频( SRS )生成用户的上行信道矩阵, 并通过所述 上行信道矩阵得到下行信道矩阵;
eNB 将所述下行信道矩阵进行特征值分解, 得到每个空间信道层的所 述增益和所述发射权值。
3、 根据权利要求 1所述的方法, 其特征在于, eNB获取所述能正确传 输数据的 k个空间信道层具体为:
若通过一个空间信道层传输的所述数据到达接收端后的信噪比大于信 噪比门限值, 则所述空间信道层能用于数据传输, 否则不能进行数据传输; 其中, 所述信噪比门限值为接收端接收数据的正确块率达到设定值 P时的 信噪比。
4、 根据权利要求 3所述的方法, 其特征在于, 所述设定值 p≥ 70% 。
5、 根据权利要求 4所述的方法, 其特征在于, 所述设定值 P取 70%。
6、 根据权利要求 1所述的方法, 其特征在于, 将所述 k个空间信道层 传输的数据分别加载专用导频前, 该方法还包括: eNB将所述 k个空间信 道层传输的数据分别经过编码和调制。
7、 根据权利要求 6所述的方法, 其特征在于, 所述通过天线发射出去 具体为:
eNB 将所述经过编码和调制的数据分别加载每个空间信道层的专用导 频, 并把所述数据乘以相应的发射权值, 映射到天线上;
映射到天线上的数据经过加权后, 形成空间信号, 并由相应的天线端 口发射出去。
8、 根据权利要求 1所述的方法, 其特征在于, 该方法还包括: 接收端 使用专用导频解调 eNB发送的空间信号。
9、 一种 TDD 系统的下行单用户多层波束成形装置, 其特征在于, 该 系统包括:
参数生成单元, 用于根据估计的上行信道矩阵获取下行信道矩阵, 并 根据所述下行信道矩阵, 生成每个空间信道层的增益和发射权值;
判决单元, 用于利用每个空间信道层的增益计算不同空间信道层传输 的数据到达接收端后的信噪比, 并获取能正确传输数据的 k个空间信道层; 发送单元, 用于将所述 k个空间信道层传输的数据分别加载专用导频, 并乘以相应的发射权值后, 通过天线发射出去。
10、 根据权利要求 9所述的装置, 其特征在于, 所述判决单元包括: 接收端信噪比计算子单元, 用于根据所述参数生成单元生成的所述增 益和发送侧链路信噪比计算不同空间信道层传输的数据到达接收端后的信 噪比;
判决子单元, 用于在一个空间信道层传输的所述数据到达接收端后的 信噪比大于信噪比门限值时, 判决所述空间信道层能用于数据传输, 否则 不能用作数据传输; 其中, 所述信噪比门限值为接收端接收数据的正确块 率达到设定值 P时的信噪比。
11、 根据权利要求 9所述的装置, 其特征在于, 所述发送单元包括: 编码调制子单元, 用于将发送数据进行编码和调制;
波束成形子单元, 用于为编码和调制后的数据加载空间信道层的专用 导频, 将编码和调制后的数据乘以相应空间信道层的发射权值, 并映射到 天线上;
发送子单元, 用于将映射到天线上的数据经过加权后, 形成空间信号, 由相应的天线端口发射出去。
PCT/CN2011/070590 2010-11-03 2011-01-25 一种tdd系统的下行单用户多层波束成形方法和装置 WO2012058874A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010531300.4A CN102013908B (zh) 2010-11-03 2010-11-03 一种tdd系统的下行单用户多层波束成形方法和装置
CN201010531300.4 2010-11-03

Publications (1)

Publication Number Publication Date
WO2012058874A1 true WO2012058874A1 (zh) 2012-05-10

Family

ID=43843951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070590 WO2012058874A1 (zh) 2010-11-03 2011-01-25 一种tdd系统的下行单用户多层波束成形方法和装置

Country Status (2)

Country Link
CN (1) CN102013908B (zh)
WO (1) WO2012058874A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624432B (zh) 2011-01-26 2017-04-05 中兴通讯股份有限公司 多层波束成形方法及实现多层波束成形的终端
JP5677224B2 (ja) * 2011-07-26 2015-02-25 京セラ株式会社 無線基地局及び通信制御方法
CN102723976B (zh) * 2012-06-19 2015-02-04 大唐移动通信设备有限公司 一种波束赋形方法及装置
CA3010228C (en) 2015-12-31 2023-10-31 Huawei Technologies Co., Ltd. Beamforming method, receiver, transmitter, and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359952A (zh) * 2007-07-30 2009-02-04 华为技术有限公司 时分双工模式下多输入多输出系统通信方法及设备
US20090227249A1 (en) * 2008-03-10 2009-09-10 Elektrobit Wireless Communications Oy Adaptive transmission method and a base station using the method
US20090233556A1 (en) * 2008-03-17 2009-09-17 Samsung Electronics Co., Ltd. Method and system for beamforming communication in high throughput wireless communication systems
CN101626265A (zh) * 2008-07-10 2010-01-13 中兴通讯股份有限公司 一种无线通信系统中实现下行波束赋形的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615937B (zh) * 2008-06-27 2013-08-07 中兴通讯股份有限公司 一种多天线发射方法及多天线发射装置
CN101753188B (zh) * 2008-12-19 2014-04-30 电信科学技术研究院 多流波束赋形传输时信道的秩的估计方法、系统及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359952A (zh) * 2007-07-30 2009-02-04 华为技术有限公司 时分双工模式下多输入多输出系统通信方法及设备
US20090227249A1 (en) * 2008-03-10 2009-09-10 Elektrobit Wireless Communications Oy Adaptive transmission method and a base station using the method
US20090233556A1 (en) * 2008-03-17 2009-09-17 Samsung Electronics Co., Ltd. Method and system for beamforming communication in high throughput wireless communication systems
CN101626265A (zh) * 2008-07-10 2010-01-13 中兴通讯股份有限公司 一种无线通信系统中实现下行波束赋形的方法

Also Published As

Publication number Publication date
CN102013908B (zh) 2014-12-10
CN102013908A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
US8619641B2 (en) Single-user beamforming method and apparatus suitable for frequency division duplex system
AU2020202808B2 (en) Wireless communication system, and device and method in wireless communication system
CN108476056B (zh) 无线通信方法和无线通信设备
KR101507088B1 (ko) 다중 입출력 무선통신 시스템에서 상향링크 빔 성형 및 공간분할 다중 접속 장치 및 방법
KR101408938B1 (ko) 다중 입출력 무선통신 시스템에서 일반화된 아이겐 분석을이용한 빔포밍 장치 및 방법
JP5651691B2 (ja) マルチユーザ共同送受信ビーム形成を容易にするための方法および装置
JP5264990B2 (ja) データ伝送の方法及びシステム
WO2012100533A1 (zh) 预编码处理方法、基站和通信系统
US8280426B2 (en) Adaptive power balancing and phase adjustment for MIMO-beamformed communication systems
WO2008138165A1 (en) Method and device for pre-processing data to be transmitted in multi input communication system
WO2012100505A1 (zh) 多层波束成形方法及实现多层波束成形的ue
WO2009033365A1 (fr) Procédé, système et appareil pour une transmission spatiale montante d'un système tdd
JP5133007B2 (ja) 送信装置、及びビームフォーミング行列生成方法
KR20100110965A (ko) 다중 셀 다중 안테나 시스템에서 간섭을 고려한 빔포밍 방법 및 장치
TW200913536A (en) A method for communicating in a MIMO context
CN102710395B (zh) 基于联合波束赋形的协同传输方法
JP2009153139A (ja) Mimo下りリンクにおけるプリコーディング処理方法、装置及び基地局
JP5900707B2 (ja) Dlmu−mimo通信システムにおける伝送能力向上方法
WO2012058874A1 (zh) 一种tdd系统的下行单用户多层波束成形方法和装置
WO2012055131A1 (zh) 一种频分双工系统下行多用户多径波束赋形方法及装置
JP2003258770A (ja) 送信装置
CN101577573B (zh) 独立数据流控制方法及装置
JP2009004886A (ja) 通信装置、及び送信レート設定方法
CN103516486A (zh) 基于矢量选择调制的多天线传输方法、接收方法和装置
WO2012100506A1 (zh) 多径波束成形方法及实现多径波束成形的ue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837404

Country of ref document: EP

Kind code of ref document: A1