WO2012100505A1 - 多层波束成形方法及实现多层波束成形的ue - Google Patents

多层波束成形方法及实现多层波束成形的ue Download PDF

Info

Publication number
WO2012100505A1
WO2012100505A1 PCT/CN2011/076892 CN2011076892W WO2012100505A1 WO 2012100505 A1 WO2012100505 A1 WO 2012100505A1 CN 2011076892 W CN2011076892 W CN 2011076892W WO 2012100505 A1 WO2012100505 A1 WO 2012100505A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
data stream
signal
noise ratio
receiving side
Prior art date
Application number
PCT/CN2011/076892
Other languages
English (en)
French (fr)
Inventor
郭阳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/981,828 priority Critical patent/US8767875B2/en
Priority to EP11856902.9A priority patent/EP2670062A4/en
Publication of WO2012100505A1 publication Critical patent/WO2012100505A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity

Definitions

  • the present invention relates to beamforming techniques for multiple input and multiple output (MIMO) communication systems, and more particularly to a multilayer beamforming method and a user equipment (UE) for implementing multilayer beamforming.
  • MIMO multiple input and multiple output
  • UE user equipment
  • LTE Long Term Evolution
  • LTE-A Long-Term Evolution
  • LTE-A Advanced Long-Term Evolution
  • the beamforming technology mainly works by controlling the beam direction.
  • the antenna array structure is used to obtain the beam of the feature direction, and the user terminal is also distinguished by the orientation of the user terminal, so that multiple users can be reused for the same time and frequency resources.
  • Obvious beam energy gain can be obtained, which can improve cell coverage and MIMO system capacity, reduce MIMO system interference and increase MIMO system capacity, improve link reliability, and increase peak rate.
  • beamforming technology can also use the strongest direction of the user signal to control the beam to take advantage of the strongest paths in the multipath channel environment for data transmission.
  • Beamforming technology is suitable for use in open suburban scenes as well as in complex urban environments. For small antenna spacing (such as 0.5), it is more suitable for applying beamforming technology, which is beneficial to control beam pointing.
  • multiple data streams can be simultaneously transmitted through multiple layers by designing appropriate weight vector of the transmitting antenna and the receiving antenna, and data of multiple layers can be transmitted in parallel, and the layer is removed. Interference.
  • the direction of the shaped beam can be designed by designing appropriate weight vector of the transmitting antenna and the receiving antenna to distinguish multi-user signals and remove inter-user interference.
  • the current beamforming technology is mainly for beamforming of a single-layer data stream.
  • the terminal side performs beamforming processing on the uplink data stream to be sent directly to the base station side, and sends the uplink to the base station.
  • the data stream is a single layer.
  • the number of base station side antennas of the MIMO system will be expanded to more than 8 and the number of terminal side antennas will be extended to 4. More than this, as for the beamforming technology, it is necessary to control the number of layers used for beamforming, and the existing single-stream beamforming technology needs to be extended to the multi-stream beamforming technology to more fully utilize the spatial channel resources.
  • the present invention provides a multi-layer beamforming method, the method includes: the UE obtaining, according to the obtained transmission weights of each spatial channel layer, a signal to noise ratio of each layer of the data stream to the receiving side;
  • the UE determines a data flow that can be transmitted according to the obtained signal to noise ratio of each layer of the data stream to the receiving side; the UE performs beamforming processing on the data stream that can be transmitted, and transmits the data stream to the receiving side.
  • the process for the UE to obtain the transmission weight of each spatial channel layer includes: obtaining, by the UE, an uplink channel matrix; performing eigenvalue decomposition on the obtained uplink channel matrix to obtain gains of each spatial channel layer, That is, the transmission weight of each spatial channel layer; the product of the transmission weight of each spatial channel layer and the signal-to-noise ratio of its own link is calculated, and the signal-to-noise ratio of each layer of the data stream to the receiving side is obtained.
  • the UE determines, according to the signal to noise ratio of the obtained layer data stream to the receiving side, the data stream that can be sent, where the UE obtains the signal to noise ratio of the obtained layer data stream to the receiving side.
  • Pre-configured SNR thresholds are compared and the data stream arrives at the receiving side for signal to noise
  • Each layer of data stream having a ratio greater than the signal to noise ratio threshold is determined to be a data stream that can be transmitted.
  • the process of performing beamforming processing on the transmittable data stream by the UE and transmitting the data stream to the receiving side includes: the UE coding, adjusting, and loading each layer of the data stream that can be sent.
  • the dedicated pilot maps the transmittable data stream to its own transmit antenna according to the transmit weight of the spatial channel layer in which the data stream can be transmitted, and transmits it to the receiving side through the transmit antenna.
  • the present invention also provides a UE that implements multi-layer beamforming, the UE includes: an obtaining unit, a determining unit, and a sending unit, where the obtaining unit is configured to obtain, according to the obtained transmission weights of each spatial channel layer, a signal to noise ratio of each layer of the data stream to the receiving side; a determining unit, configured to determine, according to a signal to noise ratio of each layer of the data stream obtained by the obtaining unit to the receiving side, a data stream that can be sent; The data stream determined by the determining unit to be transmitted is subjected to beamforming processing and transmitted to the receiving side.
  • the obtaining unit is configured to obtain an uplink channel matrix, perform eigenvalue decomposition on the obtained uplink channel matrix, and obtain a gain of each spatial channel layer, that is, a transmission weight of each spatial channel layer; The product of the transmission weight of the spatial channel layer and the signal-to-noise ratio of its own link, and the signal-to-noise ratio of each layer of the data stream to the receiving side is obtained.
  • the UE further includes: a configuration unit, configured to pre-configure a signal to noise ratio threshold; the determining unit, configured to: obtain, by the obtaining unit, a signal to noise ratio of each layer of the data stream to the receiving side Comparing with the signal-to-noise ratio threshold value pre-configured by the configuration unit, and determining each layer of the data stream whose data stream reaches the receiving side with a signal-to-noise ratio greater than the signal-to-noise ratio threshold is determined to be a transmittable data stream.
  • a configuration unit configured to pre-configure a signal to noise ratio threshold
  • the determining unit configured to: obtain, by the obtaining unit, a signal to noise ratio of each layer of the data stream to the receiving side Comparing with the signal-to-noise ratio threshold value pre-configured by the configuration unit, and determining each layer of the data stream whose data stream reaches the receiving side with a signal-to-noise ratio greater than the signal-to-noise ratio threshold is determined to be
  • the sending unit is configured to encode, adjust, and load dedicated pilots of each layer that are determined by the determining unit, according to a transmission right of a spatial channel layer where the data stream that can be sent is located.
  • the value, the data stream that can be sent is mapped to its own transmitting antenna, and transmitted to the receiving side through the transmitting antenna.
  • the UE determines the data stream that can be transmitted according to the signal-to-noise ratio of each layer of the data stream to the receiving side, and performs beamforming processing on the data stream that can be transmitted.
  • a beamforming scheme is adopted for the communication system using the TDD technology to use multiple layers for data transmission in the uplink, and the data streams of multiple layers are uniformly considered, and only the data streams of each layer that can be decoded by the receiving side are determined.
  • the transmission not only maximizes the channel capacity, but also makes full use of the spatial channel resources.
  • FIG. 2 is a schematic diagram of implementation of a multi-layer beamforming process according to an embodiment of the present invention
  • FIG. 3 is a specific implementation flowchart of the embodiment shown in FIG. detailed description
  • the uplink channel and the downlink channel are in the same frequency band, and the uplink and downlink transmissions are switched only by time variation. Therefore, the uplink channel and the downlink channel have reciprocity, that is, By obtaining the downlink channel information and directly obtaining the uplink channel information, it is advantageous to use the channel matrix and perform eigenvalue decomposition on the channel matrix to obtain the beamforming transmission weight, which can maximize the channel capacity.
  • the basic idea of the present invention is: For a MIMO system using TDD technology, the UE side first obtains the transmission weight of each layer of the data stream to be transmitted, and selectively performs weighted transmission on each layer of the data stream to maximize the channel capacity. On the basis of this, the resources of the spatial channel are fully and rationally utilized.
  • the multi-layer beamforming method of the present invention is applicable to a communication system using TDD technology, such as a MIMO system using TDD technology.
  • the method mainly includes the following steps:
  • Step 101 The UE obtains a signal to noise ratio of each layer of the data stream to the receiving side according to the obtained transmission weight of each spatial channel layer.
  • Step 102 The UE determines, according to the obtained signal to noise ratio of each layer of the data stream, the data stream that can be sent.
  • Step 103 The UE performs beamforming processing on the transmittable data stream, and sends the data stream to the receiving side.
  • the receiving side is generally a base station side.
  • the process of obtaining the transmission weight of each spatial channel layer by the UE in step 101 includes: the UE obtaining an uplink channel matrix; performing eigenvalue decomposition on the obtained uplink channel matrix to obtain gains of each spatial channel layer, that is, spatial channels.
  • the transmission weight of the layer; the product of the transmission weight of each spatial channel layer and the signal-to-noise ratio of its own link is calculated, and the signal-to-noise ratio of each layer of the data stream to the receiving side is obtained.
  • the UE obtains a downlink channel matrix by channel estimation, and obtains an uplink channel matrix according to the reciprocity of the TDD channel.
  • the UE determines, according to the signal-to-noise ratio of the obtained layer data stream to the receiving side, the data stream that can be sent, where the UE may obtain the signal-to-noise of the received layer data stream to the receiving side. Comparing with the pre-configured signal-to-noise ratio threshold value, each layer of the data stream whose data stream reaches the receiving side and whose signal-to-noise ratio is greater than the signal-to-noise ratio threshold value is determined to be a data stream that can be transmitted.
  • the SNR threshold may be set to the received signal-to-noise ratio 1 ⁇ vw ⁇ when the correct block rate on the receiving side reaches the threshold P of the simulation evaluation, where the correct block rate on the receiving side is 1 minus the receiving side.
  • the difference obtained by the block error ratio (BLER, Block Error Ratio), the preferred value of P is 70%.
  • the relationship between the block error rate and the signal-to-noise ratio of the receiving side can be obtained through simulation test. The specific process is commonly used in the art, and will not be described here.
  • the process of performing beamforming processing on the data stream that can be sent by the UE and transmitting the data stream to the receiving side includes: the UE coding, adjusting, and loading the data stream that can be sent.
  • the dedicated pilot of the layer maps the transmittable data stream to its own transmit antenna according to the transmit weight of the spatial channel layer in which the transmittable data stream is located, and transmits the data flow to the receiving side through the transmit antenna.
  • the present invention further provides a UE that implements multi-layer beamforming
  • the UE mainly includes: an obtaining unit, a determining unit, and a sending unit, where the obtaining unit is configured to perform, according to the obtained spatial channel layer transmissions a weight, a signal to noise ratio of each layer of the data stream to the receiving side is obtained; a determining unit, configured to determine, according to a signal to noise ratio of each layer of the data stream obtained by the obtaining unit, to the receiving side, the data stream that can be sent;
  • the data stream determined by the determining unit to be transmittable is subjected to beamforming processing and transmitted to the receiving side.
  • the obtaining unit may be configured to obtain an uplink channel matrix, perform eigenvalue decomposition on the obtained uplink channel matrix, and obtain a gain of each spatial channel layer, that is, a transmission weight of each spatial channel layer; and calculate each spatial channel.
  • the product of the transmission weight of the layer and the signal-to-noise ratio of its own link, and the signal-to-noise ratio of the data stream of each layer to the receiving side is obtained.
  • the UE may further include: a configuration unit, configured to pre-configure a signal to noise ratio threshold; where the determining unit may be configured to: obtain, by the obtaining unit, each layer of the data stream to the receiving side Comparing with the signal-to-noise ratio threshold value pre-configured by the configuration unit, the data stream whose data stream reaches the receiving side and whose signal-to-noise ratio is greater than the signal-to-noise ratio threshold is determined as the data stream that can be transmitted.
  • a configuration unit configured to pre-configure a signal to noise ratio threshold
  • the determining unit may be configured to: obtain, by the obtaining unit, each layer of the data stream to the receiving side Comparing with the signal-to-noise ratio threshold value pre-configured by the configuration unit, the data stream whose data stream reaches the receiving side and whose signal-to-noise ratio is greater than the signal-to-noise ratio threshold is determined as the data stream that can be transmitted.
  • the sending unit may be configured to: encode, adjust, and load a dedicated pilot of each layer that is determined by the determining unit, according to a transmission weight of a spatial channel layer where the data stream that can be sent is located, The data stream that can be transmitted is mapped to its own transmitting antenna and transmitted to the receiving side through the transmitting antenna.
  • the UE acts as a transmitting side, and since the noise is a known value, the link signal to noise ratio ⁇ V ⁇ is also a known value, and is pre-configured. Go to the UE. If the current UE is the transmitting side, the number of antennas is N, and the base station is the receiving side, and the number of antennas is M, the obtained uplink channel matrix H is a matrix of M*N dimensions as shown in the following formula (1). k l2 k l3 K
  • the first column feature vector corresponding to the feature value is the weight vector required for layer 1; the f-th column feature vector corresponding to the feature vector is the weight vector required for layer f;
  • the gain which is the gain of the spatial channel layer 2, is the gain of the spatial channel layer f.
  • the number f of spatial channel layers satisfies the following equation (3).
  • the signal noise of each layer of the data stream reaching the receiving side is obtained as follows: Layer 1 data
  • the signal-to-noise ratio of the stream arriving at the receiving side is S ⁇ * ⁇
  • the signal-to-noise ratio of the data stream of layer 2 to the receiving side is SNR
  • the signal-to-noise ratio of the data stream of layer f to the receiving side is SNR rx ⁇ ff .
  • the UE compares the obtained signal-to-noise ratio of the data stream arriving at the receiving side in the f spatial channel layers with the pre-configured SNR threshold SNR Rx, and the signal-to-noise ratio of the data stream reaching the receiving side is greater than the pre-configured signal-to-noise ratio.
  • the threshold is 1 ⁇
  • the data stream of this layer can be normally decoded on the receiving side, and the UE determines that the data stream of the layer can be transmitted.
  • the signal to noise ratio of the data stream with k layers reaching the receiving side is greater than the signal to noise ratio threshold.
  • the UE decides to perform beamforming processing on the data streams of the k layers and transmits them to the receiving side.
  • the specific implementation process of the beamforming process shown in FIG. 2 may include the following Steps:
  • Step 301 The UE estimates the downlink channel matrix according to the downlink common pilot, and obtains the uplink channel matrix by using the reciprocity of the TDD channel.
  • Step 302 The UE performs eigenvalue decomposition on the obtained uplink channel matrix, obtains gains of f spatial channel layers and corresponding f-column feature vectors, and obtains spatial channel layer data according to the obtained gains of the spatial channel layers.
  • Step 303 The UE finds that the SNR of the data stream reaching the receiving side is greater than the SNR threshold. Layer 1 ⁇ layer k, and determine the data stream of layer 1 ⁇ layer k transmission.
  • Step 304 The UE encodes and modulates the data stream of the layer 1 ⁇ layer 1 ⁇ .
  • Step 305 The UE loads the dedicated pilot (DRS) corresponding to each layer into the data streams of the layer 1 ⁇ layer 1 ⁇ .
  • DRS dedicated pilot
  • the DRS is pre-configured on the UE and the receiving side.
  • Step 306 The UE performs weighting processing on the data streams of layer 1 to layer k according to the gain of each layer obtained in step 302, that is, the transmission weight of each layer, and respectively maps the data streams of layer 1 to layer k to the transmitting antenna. And transmitting through the antenna port of the transmitting antenna to complete the beamforming process.
  • Step 307 The base station side as the receiving side receives the data streams of layer 1 to layer k through its own receiving antenna, and performs signal demodulation according to the dedicated pilot of the received data stream.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种多层波束成形方法,所述方法包括:根据已获得的各空间信道层的发射权值,得到各层数据流到达接收侧的信噪比;根据所得到各层数据流到达接收侧的信噪比,确定能够发送的数据流;对所述能够发送的数据流进行波束成形处理,并发射到接收侧。本发明还公开了一种实现多层波束成形的UE,通过只对接收侧能够解码的各层数据流进行传输,不仅最大限度的利用了信道容量,而且能够充分合理的利用空间信道资源。

Description

多层波束成形方法及实现多层波束成形的 UE 技术领域
本发明涉及多输入多输出 ( MIMO, Multiple Input and Multiple Output ) 通信系统的波束成形 (beamforming )技术, 尤其涉及一种多层波束成形方 法及实现多层波束成形的用户设备(UE )。 背景技术
MIMO系统由于其有效提高信道容量而在长期演进( LTE , Long-Term Evolution ), 高级长期演进( LTE-A, Advanced Long-Term Evolution ) 的研 究中倍受人们关注。
波束成形技术主要是通过控制波束方向来进行工作的, 利用天线阵列 结构获得特征方向的波束, 还通过用户终端所在方位来区分用户终端, 从 而可以实现多个用户复用相同的时间、 和频率资源, 可以获得明显的波束 能量增益, 可以完善小区覆盖和 MIMO系统容量, 减小 MIMO系统干扰和 增加 MIMO系统容量, 提高链路可靠性, 提高峰值速率。 同时, 波束成形 技术也可以利用用户信号最强的方向进行控制波束, 以利用多径信道环境 中最强的几条径进行数据传输。 波束成形技术比较适合用于空旷的郊区场 景, 也可以用于复杂的城区环境。 对于小天线间距(如 0.5 )情况下, 更 加适合于应用波束成形 ( beamforming )技术, 有利于控制波束指向。
在单用户 MIMO模式中, 可以通过设计合适的发射天线和接收天线的 权值矢量来将多个数据流通过多个层同时进行传输, 并可以使多个层的数 据之间并行传输, 去除层间干扰。 在多用户 MIMO模式中, 可以通过设计 合适的发射天线和接收天线的权值矢量来设计赋形波束的方向, 区分多用 户的信号, 去除用户间干扰。 目前的波束成形技术, 主要是针对单层数据流的波束成形, 对于单用 户 MIMO模式来说, 终端侧将直接对待发送的上行数据流进行波束成形处 理, 并发送到基站侧, 待发的上行数据流为单层。
对于即将开始制定的第三代合作伙伴计划 (3GPP, Third Generation Partnership Projects ) Rel-10标准来说, MIMO系统的基站侧天线数目将会 扩展至 8个以上, 终端侧天线数目将会扩展至 4个以上, 如此, 对于波束 成形技术来说, 就需要控制波束成形所使用的层数, 需要将现有的单流波 束成形技术扩展至多流波束成形技术, 以便更充分合理的利用空间信道资 源。 发明内容
有鉴于此, 本发明的主要目的在于提供一种多层波束成形方法及实现 多层波束成形的 UE, 以实现波束成形中所使用层数的控制。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种多层波束成形方法, 所述方法包括: UE根据已获得 的各空间信道层的发射权值, 得到各层数据流到达接收侧的信噪比; 所述
UE根据所得到各层数据流到达接收侧的信噪比, 确定能够发送的数据流; 所述 UE对所述能够发送的数据流进行波束成形处理, 并发射到接收侧。
在上述方案中, 所述 UE得到各空间信道层的发射权值的过程, 包括: 所述 UE获得上行信道矩阵;对所获得的上行信道矩阵进行特征值分解,得 到各空间信道层的增益, 即各空间信道层的发射权值; 计算各空间信道层 的发射权值与自身链路信噪比的乘积, 得到各层数据流到达接收侧的信噪 比。
在上述方案中, 所述 UE根据所得到各层数据流到达接收侧的信噪比, 确定能够发送的数据流,为: 所述 UE将所得到各层数据流到达接收侧的信 噪比与预先配置的信噪比门限值进行比较, 并将数据流到达接收侧的信噪 比大于所述信噪比门限值的各层数据流确定为能够发送的数据流。
在上述方案中, 所述 UE对所述能够发送的数据流进行波束成形处理, 并发射到接收侧的过程,包括:所述 UE对所述能够发送的数据流进行编码、 调整、 加载各层的专用导频, 根据能够发送的数据流所在空间信道层的发 射权值, 将能够发送的数据流映射到自身的发射天线上, 并通过发射天线 发送给接收侧。
本发明还提供了一种实现多层波束成形的 UE, 所述 UE包括: 获得单 元、 确定单元和发送单元; 其中, 获得单元, 用于根据已获得的各空间信 道层的发射权值, 得到各层数据流到达接收侧的信噪比; 确定单元, 用于 根据所述获得单元得到的各层数据流到达接收侧的信噪比, 确定能够发送 的数据流; 发送单元, 用于所述确定单元所确定能够发送的数据流进行波 束成形处理, 并发射到接收侧。
在上述方案中, 所述获得单元用于, 获得上行信道矩阵; 对所获得的 上行信道矩阵进行特征值分解, 得到各空间信道层的增益, 即各空间信道 层的发射权值; 再计算各空间信道层的发射权值与自身链路信噪比的乘积, 得到各层数据流到达接收侧的信噪比。
在上述方案中, 所述 UE还包括: 配置单元, 用于预先配置信噪比门限 值; 所述确定单元, 用于将所述获得单元得到的各层数据流到达接收侧的 信噪比与所述配置单元预先配置的信噪比门限值进行比较, 并将数据流到 达接收侧的信噪比大于所述信噪比门限值的各层数据流确定为能够发送的 数据流。
在上述方案中, 所述发送单元, 用于对所述确定单元所确定能够发送 的数据流进行编码、 调整、 加载各层的专用导频, 根据能够发送的数据流 所在空间信道层的发射权值, 将能够发送的数据流映射到自身的发射天线 上, 并通过发射天线发送给接收侧。 本发明的多层波束成形方法及实现多层波束成形的 UE, UE根据各层 数据流到达接收侧的信噪比, 确定能够进行传输的数据流, 再对能够传输 的数据流进行波束成形处理后发送, 给出了一种适用于釆用 TDD技术的通 信系统上行使用多个层进行数据传输的波束成形方案, 统一考虑多个层的 数据流, 只对接收侧能够解码的各层数据流进行传输, 不仅最大限度的利 用了信道容量, 而且能够充分合理的利用空间信道资源。 附图说明
图 1为本发明多层波束成形方法的实现流程图;
图 2为本发明一种实施例的多层波束成形过程的实现示意图; 图 3为图 2所示实施例的具体实现流程图。 具体实施方式
在时分双工(TDD, Time Division Duplexing )的 MIMO系统中, 上行 信道与下行信道所处频段相同, 仅通过时间变化切换上行与下行传输, 因 此, 上行信道与下行信道具有互易性, 即可以通过获取下行信道信息来直 接获得上行信道信息, 可以利于使用信道矩阵、 并对信道矩阵做特征值分 解, 获得波束成形发射权值, 可以最大限度的利用信道容量。
本发明的基本思想是: 对于釆用 TDD技术的 MIMO系统, UE侧首先 获得待发送各层数据流的发射权值, 并有选择的对各层数据流进行加权发 射, 在最大限度利用信道容量的基础上, 又充分合理的利用了空间信道的 资源。
本发明的多层波束成形方法, 适用于釆用 TDD技术的通信系统, 如釆 用 TDD技术的 MIMO系统, 参照图 1所示, 主要包括以下步骤:
步骤 101 : UE根据已获得的各空间信道层的发射权值, 得到各层数据 流到达接收侧的信噪比; 步骤 102: 所述 UE根据所得到各层数据流到达接收侧的信噪比, 确定 能够发送的数据流;
步骤 103: 所述 UE对所述能够发送的数据流进行波束成形处理, 并发 射到接收侧。
这里, 所述接收侧一般为基站侧。
其中, 步骤 101中, UE得到各空间信道层的发射权值的过程包括: UE 得到上行信道矩阵; 对所得到的上行信道矩阵进行特征值分解, 得到各空 间信道层的增益, 即各空间信道层的发射权值; 计算各空间信道层的发射 权值与自身链路信噪比的乘积, 得到各层数据流到达接收侧的信噪比。
这里, UE通过信道估计得到下行信道矩阵, 再根据 TDD信道的互易 性, 得到上行信道矩阵。
其中, 步骤 102中, 所述 UE根据所得到各层数据流到达接收侧的信噪 比, 确定能够发送的数据流, 可以为: 所述 UE将所得到各层数据流到达接 收侧的信噪比与预先配置的信噪比门限值进行比较, 将数据流到达接收侧 的信噪比大于所述信噪比门限值的各层数据流确定为能够发送的数据流。
这里, 信噪比门限值可以设置为接收侧正确块率达到仿真评估的门限 值 P时的接收信噪比1 ^vw^ , 这里, 接收侧的正确块率为 1减去接收侧的误 块率(BLER, Block Error Ratio )得到的差值, P的优选值为 70%。 实际应 用中, 对于每个信道传输场景, 可以通过仿真测试, 得到接收侧误块率与 信噪比的关系, 具体过程是本领域常用技术手段, 在此不再赘述。
其中, 步骤 103中, 所述 UE对所述能够发送的数据流进行波束成形处 理, 并发射到接收侧的过程, 包括: 所述 UE对所述能够发送的数据流进行 编码、 调整、 加载各层的专用导频, 根据所述能够发送的数据流所在空间 信道层的发射权值, 将能够发送的数据流映射到自身的发射天线上, 并通 过发射天线发送给接收侧。 相应的, 本发明还提供了一种实现多层波束成形的 UE, 所述 UE主要 包括: 获得单元、 确定单元和发送单元; 其中, 获得单元, 用于根据已获 得的各空间信道层的发射权值, 得到各层数据流到达接收侧的信噪比; 确 定单元, 用于根据所述获得单元得到的各层数据流到达接收侧的信噪比, 确定能够发送的数据流; 发送单元, 用于所述确定单元所确定能够发送的 数据流进行波束成形处理, 并发射到接收侧。
其中, 所述获得单元可以用于, 获得上行信道矩阵; 对所获得的上行 信道矩阵进行特征值分解, 得到各空间信道层的增益, 即各空间信道层的 发射权值; 再计算各空间信道层的发射权值与自身链路信噪比的乘积, 得 到各层数据流到达接收侧的信噪比。
其中, 所述 UE还可以包括: 配置单元, 用于预先配置信噪比门限值; 这里, 所述确定单元可以用于, 将所述获得单元得到的各层数据流到 达接收侧的信噪比与所述配置单元预先配置的信噪比门限值进行比较, 将 数据流到达接收侧的信噪比大于所述信噪比门限值的各层数据流确定为能 够发送的数据流。
其中, 所述发送单元可以用于, 对所述确定单元所确定能够发送的数 据流进行编码、 调整、 加载各层的专用导频, 根据能够发送的数据流所在 空间信道层的发射权值, 将能够发送的数据流映射到自身的发射天线上, 并通过发射天线发送给接收侧。
图 2为本发明 TDD系统多层波束成形实现过程的一种具体实施例,UE 作为发射侧, 由于噪声为已知值, 其链路信噪比^ V ^也就为已知值, 预先 配置到 UE中。 如果当前 UE作为发射侧, 其天线数目为 N, 基站作为接收 侧, 其天线数目为 M, 则得到的上行信道矩阵 H为如下式 ( 1 )所示, M*N 维的矩阵。 kl2 kl3 K
H =
h..., h..
( 1 ) 对上述的上行信道矩阵 H进行特征值分解后, 得到特征值矩阵 E, 如 下式(2 ) 所示:
Figure imgf000008_0001
其中, 对应于特征值 的第一列特征矢量即为层 1所需要使用的权值 矢量; 对应于 的第 f列特征矢量即为层 f 所需要使用的权值矢量; 为 空间信道层 1的增益, 为空间信道层 2的增益, ... ..., 为空间信道层 f的增益。 这里, 空间信道层数目 f满足如下式(3 )。
f=min ( M, N ) ( 3 ) 根据上述得到的各空间信道层的增益, 即各空间信道层的发射权值, 得到各层数据流达到接收侧的信噪比如下: 层 1 的数据流到达接收侧的信 噪比为 S^^ * ^ , 层 2的数据流到达接收侧的信噪比为 SNR , ... ... , 层 f的数据流到达接收侧的信噪比为 SNRrx ^ff 。
UE将得到的 f个空间信道层中数据流到达接收侧的信噪比与预先配置 的信噪比门限值 SNRRx进行比较, 数据流到达接收侧的信噪比大于预先配置 的信噪比门限值1 ^时, 此层的数据流在接收侧能够得到正常解码, UE 确定该层的数据流可以进行传输。 在图 2所示的一种具体实施例中, 有 k 个层的数据流到达接收侧的信噪比大于信噪比门限值
Figure imgf000008_0002
此时, UE 决 定对这 k个层的数据流进行波束成形处理, 并传输到接收侧。
参照图 3所示, 图 2所示波束成形过程的具体实现流程可以包括如下 步骤:
步骤 301 : UE根据下行公共导频估计下行信道矩阵,通过 TDD信道的 互易性, 得到上行信道矩阵。
步骤 302: UE对所得到的上行信道矩阵进行特征值分解, 得到 f个空 间信道层的增益和对应的 f列特征矢量,并根据所得到的各空间信道层的增 益, 得到各空间信道层数据流到达接收侧的信噪比;
步骤 303: UE找到数据流到达接收侧的信噪比大于信噪比门限值
Figure imgf000009_0001
的层 1~层 k, 并确定对层 1~层 k的数据流进行传输。
步骤 304: UE对层 1~层1^的数据流进行编码、 调制。
步骤 305: UE对层 1~层1^的数据流分别加载各层对应的专用导频(DRS,
Dedicated Reference Signal );
这里, DRS是预先配置在 UE和接收侧。
步骤 306: UE根据在步骤 302得到的各层增益, 即各层的发射权值, 对层 1~层 k的数据流进行加权处理, 分别将层 1~层 k的数据流映射到发射 天线, 并通过发射天线的天线端口进行发送, 完成波束赋形过程。
步骤 307: 作为接收侧的基站侧通过自身的接收天线接收层 1~层 k的 数据流, 并根据所接收数据流的专用导频进行信号解调。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种多层波束成形方法, 其特征在于, 所述方法包括:
根据已获得的各空间信道层的发射权值 , 得到各层数据流到达接收侧 的信噪比;
根据所得到各层数据流到达接收侧的信噪比, 确定能够发送的数据流; 对所述能够发送的数据流进行波束成形处理, 并发射到接收侧。
2、 根据权利要求 1所述的多层波束成形方法, 其特征在于, 所述得到 各空间信道层的发射权值的过程, 包括:
获得上行信道矩阵; 对所获得的上行信道矩阵进行特征值分解, 得到 各空间信道层的增益, 即各空间信道层的发射权值; 计算各空间信道层的 发射权值与自身链路信噪比的乘积, 得到各层数据流到达接收侧的信噪比。
3、 根据权利要求 1所述的多层波束成形方法, 其特征在于, 所述根据 所得到各层数据流到达接收侧的信噪比, 确定能够发送的数据流, 为: 将所得到各层数据流到达接收侧的信噪比与预先配置的信噪比门限值 进行比较, 并将数据流到达接收侧的信噪比大于所述信噪比门限值的各层 数据流确定为能够发送的数据流。
4、根据权利要求 1至 3任一项所述的多层波束成形方法,其特征在于, 所述对所述能够发送的数据流进行波束成形处理, 并发射到接收侧的过程, 包括:
对所述能够发送的数据流进行编码、 调整、 加载各层的专用导频, 根 据能够发送的数据流所在空间信道层的发射权值, 将能够发送的数据流映 射到自身的发射天线上, 并通过发射天线发送给接收侧。
5、 一种实现多层波束成形的 UE, 其特征在于, 所述 UE包括: 获得 单元、 确定单元和发送单元; 其中,
获得单元, 用于根据已获得的各空间信道层的发射权值, 得到各层数 据流到达接收侧的信噪比;
确定单元, 用于根据所述获得单元得到的各层数据流到达接收侧的信 噪比, 确定能够发送的数据流;
发送单元, 用于所述确定单元所确定能够发送的数据流进行波束成形 处理, 并发射到接收侧。
6、 根据权利要求 5所述实现多层波束成形的 UE, 其特征在于, 所述 获得单元用于, 获得上行信道矩阵; 对所获得的上行信道矩阵进行特征值 分解, 得到各空间信道层的增益, 即各空间信道层的发射权值; 再计算各 空间信道层的发射权值与自身链路信噪比的乘积, 得到各层数据流到达接 侧的信噪比。
7、 根据权利要求 5所述实现多层波束成形的 UE, 其特征在于, 所述 UE还包括: 配置单元, 用于预先配置信噪比门限值;
所述确定单元, 用于将所述获得单元得到的各层数据流到达接收侧的 信噪比与所述配置单元预先配置的信噪比门限值进行比较, 并将数据流到 达接收侧的信噪比大于所述信噪比门限值的各层数据流确定为能够发送的 数据流。
8、 根据权利要求 5至 7任一项所述实现多层波束成形的 UE, 其特征 在于, 所述发送单元, 用于对所述确定单元所确定能够发送的数据流进行 编码、 调整、 加载各层的专用导频, 根据能够发送的数据流所在空间信道 层的发射权值, 将能够发送的数据流映射到自身的发射天线上, 并通过发 射天线发送给接收侧。
PCT/CN2011/076892 2011-01-26 2011-07-06 多层波束成形方法及实现多层波束成形的ue WO2012100505A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/981,828 US8767875B2 (en) 2011-01-26 2011-07-06 Multi-layer beam forming method and User Equipment (UE) for implementing multi-layer beam forming
EP11856902.9A EP2670062A4 (en) 2011-01-26 2011-07-06 METHOD FOR MULTILAYER BEAMFORMING AND USER DEVICE FOR MULTILAYER BEAMFORMING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110028120.9A CN102624432B (zh) 2011-01-26 2011-01-26 多层波束成形方法及实现多层波束成形的终端
CN201110028120.9 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012100505A1 true WO2012100505A1 (zh) 2012-08-02

Family

ID=46564128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076892 WO2012100505A1 (zh) 2011-01-26 2011-07-06 多层波束成形方法及实现多层波束成形的ue

Country Status (4)

Country Link
US (1) US8767875B2 (zh)
EP (1) EP2670062A4 (zh)
CN (1) CN102624432B (zh)
WO (1) WO2012100505A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624433B (zh) * 2011-01-27 2016-09-28 中兴通讯股份有限公司 多径波束成形方法及实现多径波束成形的终端
US9014309B1 (en) * 2013-11-19 2015-04-21 Sprint Spectrum L.P. Adaptive per-antenna rate control based on network conditions
CN105245265B (zh) * 2014-06-20 2021-01-01 中兴通讯股份有限公司 3d波束下的用户服务模式选择方法、导频信息发送及装置
CN105245310B (zh) * 2014-07-09 2020-01-14 中兴通讯股份有限公司 一种下行导频信号的处理方法及系统
US10542545B2 (en) * 2017-02-06 2020-01-21 Mediatek Inc. Beam failure recovery mechanism for multi-beam operation
CN109151967B (zh) * 2017-06-14 2020-07-21 维沃移动通信有限公司 一种上行多波束功率控制方法及终端
US10674383B2 (en) 2017-07-25 2020-06-02 Mediatek Inc. Channels and procedures for beam failure recovery
WO2022269919A1 (ja) * 2021-06-25 2022-12-29 株式会社Nttドコモ 端末、無線通信方法及び基地局
CN114900217B (zh) * 2022-06-10 2023-09-26 Oppo广东移动通信有限公司 预编码方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219373A1 (en) * 2007-03-07 2008-09-11 Hongyuan Zhang Codebook selection for transmit beamforming
CN101729115A (zh) * 2008-10-29 2010-06-09 华为技术有限公司 一种多天线发射方法、装置及系统
CN101808341A (zh) * 2008-12-31 2010-08-18 英特尔公司 无线网络中用于波束精化的布置
CN102013908A (zh) * 2010-11-03 2011-04-13 中兴通讯股份有限公司 一种tdd系统的下行单用户多层波束成形方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US6862271B2 (en) * 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US8798183B2 (en) * 2007-08-13 2014-08-05 Qualcomm Incorporated Feedback and rate adaptation for MIMO transmission in a time division duplexed (TDD) communication system
US9398639B2 (en) * 2010-06-29 2016-07-19 Go Net Systems Ltd. Methods circuits apparatus and systems for wireless data communication
US8711985B2 (en) * 2011-07-01 2014-04-29 Intel Corporation Multi user MIMO detection utilizing averaged spatial whitening

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219373A1 (en) * 2007-03-07 2008-09-11 Hongyuan Zhang Codebook selection for transmit beamforming
CN101729115A (zh) * 2008-10-29 2010-06-09 华为技术有限公司 一种多天线发射方法、装置及系统
CN101808341A (zh) * 2008-12-31 2010-08-18 英特尔公司 无线网络中用于波束精化的布置
CN102013908A (zh) * 2010-11-03 2011-04-13 中兴通讯股份有限公司 一种tdd系统的下行单用户多层波束成形方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POTEVIO: "Impact of user pairing on TDD transparent MU-MIMO dual-layer beamforming", 3GPP TSG RAN WG1 MEETING #58 RL-093442, 28 August 2009 (2009-08-28), XP050597623, Retrieved from the Internet <URL:http://ftp.3gpp.org/ftp/tsg_ran/WGlRLl/TSGRl58/Docs/Rl-093442.zip> [retrieved on 20110926] *
See also references of EP2670062A4 *

Also Published As

Publication number Publication date
CN102624432A (zh) 2012-08-01
US8767875B2 (en) 2014-07-01
US20130308727A1 (en) 2013-11-21
CN102624432B (zh) 2017-04-05
EP2670062A1 (en) 2013-12-04
EP2670062A4 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP7246414B2 (ja) 無線通信システムのためのドップラー遅延コードブックベースのプリコーディングおよびcsiレポート
US20240048317A1 (en) Electronic device, method and apparatus for wireless communication system for channel estimation
CN102624432B (zh) 多层波束成形方法及实现多层波束成形的终端
CN102104404B (zh) 无线通信系统中多用户mimo的传输方法、基站和用户终端
KR20170130513A (ko) 무선 통신 시스템, 및 무선 통신 시스템에서의 디바이스 및 방법
Li et al. Advancement of MIMO technology in WiMAX: from IEEE 802.16 d/e/j to 802.16 m
JP2006238423A (ja) 無線基地局装置及び端末装置
CN105519029B (zh) Ofdm通信系统及信号收发方法与装置
WO2010121473A1 (zh) 一种适用于频分复用系统的单用户波束成形方法和装置
CN102710395B (zh) 基于联合波束赋形的协同传输方法
CN108111210B (zh) 无线通信方法和无线通信设备
WO2022032424A1 (en) Procedures for port-selection codebook with frequency selective precoded reference signals
EP3921948A1 (en) Method and apparatus for beamspace processing based on multiple beamspace bases
US12015458B2 (en) Technique for precoding a radio transmission
CN102223170B (zh) 码分多径信道的序贯多天线选择发送方法
JP2015528680A (ja) Dlmu−mimo通信システムにおける伝送能力向上方法
WO2012055131A1 (zh) 一种频分双工系统下行多用户多径波束赋形方法及装置
CN102624433B (zh) 多径波束成形方法及实现多径波束成形的终端
CN102013908B (zh) 一种tdd系统的下行单用户多层波束成形方法和装置
JP5340344B2 (ja) 通信装置及び通信方法
Sharma Effective channel state information (CSI) feedback for MIMO systems in wireless broadband communications
CN109964520A (zh) 无线设备的共同调度
CN102457320A (zh) 一种频分双工系统下行单用户多径波束成形方法及装置
Gesbert et al. Multiple antenna techniques
WO2024094310A1 (en) Approaches for mimo transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011856902

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13981828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE