WO2012056406A1 - Installation de fabrication continue des billes millimétriques d'oxydes mixtes pour la fabrication de cristaux synthétiques - Google Patents

Installation de fabrication continue des billes millimétriques d'oxydes mixtes pour la fabrication de cristaux synthétiques Download PDF

Info

Publication number
WO2012056406A1
WO2012056406A1 PCT/IB2011/054774 IB2011054774W WO2012056406A1 WO 2012056406 A1 WO2012056406 A1 WO 2012056406A1 IB 2011054774 W IB2011054774 W IB 2011054774W WO 2012056406 A1 WO2012056406 A1 WO 2012056406A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
tube
beads
installation according
millimeter
Prior art date
Application number
PCT/IB2011/054774
Other languages
English (en)
Inventor
Abdeldjelil Nehari
Kheirreddine Lebbou
Jérôme GODFROY
Original Assignee
Saphir Product S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saphir Product S.A. filed Critical Saphir Product S.A.
Publication of WO2012056406A1 publication Critical patent/WO2012056406A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/027Treatment involving fusion or vaporisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/007Apparatus for preparing, pre-treating the source material to be used for crystal growth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to an installation for manufacturing millimeter balls of mixed oxides intended for the manufacture of synthetic crystals, in particular millimeter balls of Al 2 0 3 intended for the manufacture of synthetic sapphire from the microspheres of Al 2 0 3 having a average diameter between 20 and 100 Lm, and a continuous manufacturing process of the millimeter balls of Al 2 0 3 by means of the installation.
  • microbeads are of great interest useful flowability for mixing with broken or refounded crystals; however, used too much, they are difficult to degas quickly because of their small size; this can then induce bubble-type defects in the sapphire crystals obtained.
  • the inventor has developed an installation and a method for producing beads or SPHE ⁇ stiff dense alumina and ultrapure a DIAME ⁇ be adjustable means of 1 to 10 mm. With these millimeter beads density close to 3.98, a bulk density is obtained than 2 which provides subsequently a synthetic sapphire of very good quality with good ⁇ productivity.
  • the installation according to the invention is characterized in that it comprises a tubular crucible made of a refractory metal housed in an insulating ceramic tube, a heating device of this crucible by induction, that the bottom of the crucible is provided with at least one capillary outlet with an internal diameter of 0.5 to 2 mm, that the aforementioned assembly is under a controlled atmosphere in a quartz tube with circulation of neutral gas of a length greater than that of the crucible so that the drops of molten alumina formed at the lower end of the capillary outlet of the crucible fall into the falling quartz tube free and cool by radiation tem perature ⁇ , that the lower part of the quartz tube is provided with a mesh screen thousandth ⁇ tric allowing desired to fragment the large drops of alumina, and then a wholesaler ⁇ operative part accelerated precooling makes it possible to cool the millimeter balls before they are discharged to a receptacle supplied with a coolant capable of contributing to the transport of these balls.
  • the installation is characterized in that the accelerated re ⁇ cooling device is a tube, preferably made of brass, inclined and provided cooling means ⁇ disse
  • the installation is characterized in that a device for continuous charging of the crucible is situated upstream of the crucible comprising a reservoir of microbeads provided with orifices through which the microbeads exit by gravity and are guided to the crucible by a tube, that the flow of the microbeads is adjusted by a piston controlled sequentially to open and close said orifices.
  • the installation is characterized in that the flow rate of the micro-balls is adjusted so that the residence time that of the melt in the crucible is at least of the order of 10 seconds.
  • the installation is characterized in that the bottom of the crucible is flat and comprises one or more ca ⁇ pillar outputs.
  • the installation is characterized in that the bottom of the crucible is conical and comprises a single capillary outlet.
  • the apparatus is characterized in that the crucible has a minimum hau ⁇ tor of 50 mm, that the minimum inner diameter is 20 mm.
  • the installation is characterized in that the internal diameter of a capillary is between 0.5 and 2 mm, its height of 2 to 5 mm and its outer diameter is 1 to 6 mm mm.
  • the invention also relates to a method of fabrica ⁇ tion of the balls by means of the aforementioned installation. The method comprises the following steps:
  • Figure 1 is a side view of the crucible
  • Figure 2 is a side view of insulating ceramic tube
  • Figure 3 is a side view of the crucible assembly and ceramic tube with the heating means;
  • Figure 5 is a schematic side of the entire installation.
  • the installation comprises a crucible 1 of cylindrical shape made of a refractory metal such as iridium, tungsten, molybdenum ... and it is placed on a cylindrical base 2 of insulating ceramic such as alumina or zirconia.
  • the diameter of the set ⁇ set varies from about 20 to 80 mm and its height is at least 50 mm.
  • a tube 3 also insulating ceramic of corresponding dimensions is placed on the crucible 1. This tube 3 insulating ceramic is surrounded by a heating device 4 by induc ⁇ tion.
  • the lower end of the crucible is flat in shape and provided with several capil ⁇ lar orifices whose average diameter varies from 0.5 to 2 mm while their height varies from 2 to 5 mm.
  • the bottom of the crucible 1 can also be conical with a single orifice.
  • the assembly consisting of the crucible 1, the tube in ⁇ ceramics 3 and the heating device are housed in a vertical quartz tube 5 of the order of 2 meters.
  • the lower part of the quartz tube 5 is provided with a millimeter grid 6.
  • a ⁇ TONNOIR 7 is fixed sealingly and commu ⁇ nique ave an inclined tube 8 provided with means re ⁇ know sacreds (not shown).
  • the lower end of the tube 8 terminated in a 9-neck container. reading the millimetric balls formed.
  • the funnel 7 and the pipe 8 are made in principle of brass.
  • the container 9 is fed by a li ⁇ quide coolant likely depending on the facilities to contribute to the bil ⁇ the transport.
  • the upper part of the tube is provided with a dispo ⁇ loading device 10 microbeads of alumina.
  • This device 10 is provided with means to allow continuous charging of the crucible. It comprises a tank provided with microbeads orifice tra ⁇ out to which the microbeads by climbed ⁇ side and are guided to the crucible with a dense alumina tube or synthetic sapphire or noble metal.
  • the flow of the microbeads is regulated by a piston controlled sequentially to open and close said orifices.
  • the quartz tube 5 is hermetically sealed and a circulation of a neutral gas such as argon is ensured; the sealing inside the quartz tube is achieved by means of liquid seals.
  • the induction heater 4 provides inside the crucible a temperature of the order of 2050 ° C.
  • the process of producing millimeter balls will now be described. We start by ensuring a continuous flow of a neutral gas in the installation to control the atmosphere of the enclosure which is sealed by the liquid seals.
  • the heated crucible is sequentially supplied at more than 2050 ° C., with Al 2 0 3 microbeads having a mean diameter of between 20 and 100 ⁇ , so that the residence time of the microbeads is at least about ten seconds. time required for the liquefaction of the microbeads and the evaporation of the gases so that the mass is as homogeneous as possible.
  • the same continuous manufacturing process is applicable to any type of material having similarities in the physical properties of viscosity and surface tension.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

L'installation concerne notamment la fabrication des billes millimétriques de Al203 destinées à la fabrication de saphir synthétique. Elle comprend un creuset tubulaire (1) fait d'un métal réfractaire logé dans d'un tube (3) de céramique isolante, un dispositif de chauffage (4) de ce creuset (1) par induction, Le fond du creuset (1) est muni d'au moins une sortie capillaire d'un diamètre interne de 0,5 à 2 mm. L'ensemble précité (1,3,4) est sous atmosphère contrôlée dans un tube en quartz (5) avec circulation de gaz neutre d'une longueur supérieure à celle du creuset (1) de sorte que les gouttes d'alumine en fusion formées à l'extrémité inférieure de la sortie capillaire du creuset (1) tombent dans le tube en quartz (5) en chute libre et se refroidissent par rayonnement de température. La partie inférieure du tube en quartz (5) est munie d'une grille (6) à mailles millimétriques permettant si besoin de fragmenter les grosses gouttes d'alumine, et qu'ensuite un dispositif de pré-refroidissement (7, 8) accéléré permet de refroidir les billes millimétriques avant leur évacuation vers un récipient (9).

Description

Installation de fabrication continue des billes millimétriques d'oxydes mixtes pour la fabrication de cristaux synthétiques
La présente invention concerne une installation de fabrication des billes millimétriques d'oxydes mixtes destinées à la fabrication de cristaux synthétiques, notamment des billes millimétriques de Al203 destinées à la fabrication de saphir synthétique à partir des microbilles de Al203 ayant un diamètre moyen entre 20 et 100 Lm, et un procédé de fabrication continue des billes millimétriques de Al203 au moyen de l'installation.
Pour la fabrication du saphir synthétique et en fonction de la qualité et pureté souhaitées on fait fondre de l'Al203 sous différentes formes telles que poudres, poudres pastillées ou paillettes, microbilles, cristaux cassés ou craquelés de saphir. L'utilisation des poudres seules ne permet pas d'obtenir un produit de densité suffisante pour permettre de remplir en une fois les creusets utilisés pour fondre la charge ; de plus lors de la fusion, les gaz chauds libérés font voler les particules fines de poudres : il faut donc, au minimum, utiliser des pastilles de poudres pressées voire frittées pour limiter les ces phénomènes lors de la fusion. Souvent on préfère utiliser un mélange des différents éléments précités sous forme pré-cristallisée en essayant d'obtenir une bonne densité apparente qui est un gage de productivité. Cependant la demande croissante du marché se heurte à une insuffisance de cristaux cassés ; les microbilles présentent l'intérêt d'une grande coulabilité utile pour les mélanger à des cristaux cassés ou refondus ; cependant, utilisées en trop grande quantité, elles sont difficiles à dégazer rapidement du fait de leur trop petite taille ; ceci peut alors induire des défauts de type bulles dans les cristaux de saphir obtenus.
L'inventeur a mis au point une installation et un procédé permettant de produire des billes ou sphé¬ roïdes en alumine dense et ultra pure d'un diamè¬ tre moyen ajustable de 1 à 10 mm. Avec ces billes millimétriques de masse volumique proche de 3,98, on obtient une densité apparente supérieure à 2 ce qui permet d'obtenir par la suite un saphir synthétique de très bonne qualité avec une bonne pro¬ ductivité .
L'installation selon l'invention est caractérisée par le fait qu'elle comprend un creuset tubulaire fait d'un métal réfractaire logé dans d'un tube de céramique isolante, un dispositif de chauffage de ce creuset par induction, que le fond du creuset est muni d'au moins une sortie capillaire d'un diamètre interne de 0,5 à 2 mm, que l'ensemble précité est sous atmosphère contrôlée dans un tube en quartz avec circulation de gaz neutre d'une longueur supérieure à celle du creuset de sorte que les gouttes d'alumine en fusion formées à l'extrémité inférieure de la sortie capillaire du creuset tombent dans le tube en quartz en chute libre et se refroidissent par rayonnement de tem¬ pérature, que la partie inférieure du tube en quartz est munie d'une grille à mailles millimé¬ triques permettant si besoin de fragmenter les grosses gouttes d'alumine, et qu'ensuite un dispo¬ sitif de pré-refroidissement accéléré permet de refroidir les billes millimétriques avant leur évacuation vers un récipient alimenté d'un liquide de refroidissement susceptible de contribuer au transport de ces billes.
Selon une exécution préférée l'installation est caractérisée par le fait que le dispositif de re¬ froidissement accéléré est un tube, de préférence en laiton, incliné et pourvu de moyens de refroi¬ dissement
Selon une variante d'exécution l'installation est caractérisée par le fait qu'un dispositif de char- gement continu du creuset est situé en amont du creuset comprenant un réservoir des microbilles muni d'orifices à travers lesquelles sortent les microbilles par gravité et sont guidées vers le creuset par un tube, que le débit des microbilles est réglé par un piston piloté séquentiellement pour ouvrir et fermer lesdits orifices.
Selon une variante d'exécution l'installation est caractérisée par le fait que le débit des micro- billes est réglé de sorte que le temps de résiden- ce de la masse en fusion dans le creuset soit au moins de l'ordre de 10 secondes.
Selon une variante d'exécution l'installation est caractérisée par le fait que le fond du creuset est plat et comprend une ou plusieurs sorties ca¬ pillaires .
Selon une autre variante d'exécution l'installation est caractérisée par le fait que le fond du creuset est conique et comprend une seule sortie capillaire.
Selon une exécution préférée l'installation est caractérisée par le fait que le creuset a une hau¬ teur minimum de 50 mm, que son diamètre intérieure minimum est de 20 mm.
Selon une variante d'exécution l'installation est caractérisée par le fait que le diamètre interne d'un capillaire est compris entre 0,5 et 2 mm, sa hauteur de 2 à 5 mm et son diamètre externe est de 1 à 6mm mm. L'invention concerne aussi un procédé de fabrica¬ tion des billes au moyen de l'installation précitée. Le procédé comprend les étapes suivantes :
- circulation continue d'un gaz neutre dans l'installation afin de conserver le contrôle de l'atmosphère et maîtrise éventuelle de l'étanchéité par un joint liquide,
- alimentation séquentielle du creuset chauffé à plus de 2050 °C avec des billes millimétriques d'oxydes mixtes telles que des microbilles d'Al203 d'un diamètre moyen entre 20 et 100 μπι de sorte que le temps de résidence des micro¬ billes soit au minimum de 10 sec,
- passage des gouttes formées à l'extrémité in- férieure de la sortie capillaire du creuset dans le tube en quartz et fragmentation le cas échéant sur la grille à mailles millimétrique,
- passage éventuel dans le tube en laiton de pré-refroidissement
- récupération des billes ou sphéroïdes milli¬ métriques dans un récipient alimenté par un liquide de refroidissement susceptible de contribuer au transport de ces billes L'invention sera décrite à l'aide du dessin annexé
La figure 1 est vue de côté du creuset ;
La figure 2 est une vue de côté tube en céramique isolante ;
La figure 3 est une vue de côté de l'ensemble creuset et tube en céramique avec les moyens de chauffage ; La figure 5 est une schématique de côté de l'ensemble de l'installation.
L'installation comprend un creuset 1 de forme cy- lindrique fait d'un métal réfractaire tel qu'iridium, tungstène, molybdène... et il est posé sur une base cylindrique 2 en céramique isolante telle qu'alumine ou zircone. Le diamètre du creu¬ set varie d'environ 20 à 80 mm et sa hauteur est de minimum 50 mm. Un tube 3 également en céramique isolante de dimensions correspondantes est mis sur le creuset 1. Ce tube 3 en céramique isolante est entouré d'un dispositif de chauffage 4 par induc¬ tion. L'extrémité inférieure du creuset est de forme plate et muni de plusieurs orifices capil¬ laires dont le diamètre moyen varie de 0.5 à 2 mm tandis que leur hauteur varie de 2 à 5 mm. Le fond du creuset 1 peut aussi être conique muni d'un seul orifice.
L'ensemble constitué du creuset 1, du tube en cé¬ ramique 3 et le dispositif de chauffage sont logés dans un tube vertical en quartz 5 de l'ordre de 2 mètres. La partie inférieure du tube en quartz 5 est munie d'une grille millimétriques 6. A l'extrémité inférieure du tube en quartz 5 un en¬ tonnoir 7 est fixé de manière étanche et il commu¬ nique ave un tube incliné 8 muni de moyens de re¬ froidissements (non représentés). L'extrémité in- férieure du tube 8 abouti dans un récipient 9 col- lectant les billes millimétriques formées. L'entonnoir 7 et le tuyau 8 sont faits en principe en laiton. Le récipient 9 est alimenté par un li¬ quide de refroidissement susceptible selon les installations de contribuer au transport des bil¬ les .
La partie supérieure du tube est munie d'un dispo¬ sitif de chargement 10 de microbilles d'alumine. Ce dispositif 10 est muni de moyens pour permettre un chargement continu du creuset. Il comprend un réservoir des microbilles muni d'orifices à tra¬ vers lesquelles sortent les microbilles par gravi¬ té et sont guidées vers le creuset par un tube en alumine dense ou en saphir synthétique ou en en métal noble. Le débit des microbilles est réglé par un piston piloté séquentiellement pour ouvrir et fermer lesdits orifices. Le tube de quartz 5 est hermétiquement fermé et une circulation d'un gaz neutre tel que de l'argon est assurée ; l'étanchéité à l'intérieur du tube en quartz est obtenue au moyen de joints d'étanchéité liquides.
Le dispositif de chauffage 4 par induction assure à l'intérieur du creuset une température de l'ordre de 2050° C.
Le procédé de production des billes millimétriques sera maintenant décrit. On commence par assurer une circulation continue d'un gaz neutre dans l'installation afin de contrôler l'atmosphère de l'enceinte dont l'étanchéité est assurée par les joints liquides. On alimente séquentiellement le creuset chauffé à plus de 2050 °C, avec des microbilles d'Al203 d'un diamètre moyen entre 20 et 100 μπι de sorte que le temps de résidence des microbilles soit au minimum d'une dizaine de secondes, temps nécessaire pour la liquéfaction des microbilles et 1 ' évaporation des gaz afin que la masse soit la plus homogène possible. Par capillarité des gouttes sortent de l'orifice ou des orifices du fond du creuset 1 et tombent par gravité dans l'atmosphère neutre du tube en quartz 5 et se fragmentent sur la grille millimétrique 6 si leur grandeur est supérieure à celle des mailles de la grille. Pendant leur chute les gouttes subissent un premier refroidissement par radiation de température. Par la suite elles sont recueillies dans l'entonnoir 7 et dirigées vers le tube en laiton 8 incliné et refroidi. L'inclinaison du tube 8 assure un contact des gouttes avec le tube et accélère leur refroidisse¬ ment tout au long de leur déplacement. À l'extrémité inférieure du tube 8 on recueille dans le récipient 9 les billes ou sphéroïdes millimé¬ triques dont le diamètre est de l'ordre 0.3 à 4 mm. Le récipient est alimenté par un liquide de refroidissement achevant le refroidissement des billes et pouvant selon les installations contri- bué au transfert des billes vers une autre desti¬ nation de stockage.
Les essais déjà réalisés permettent d'obtenir des billes ou sphéroïdes millimétrique d'une pureté chimique en A1203 de 99, 998 %, en phase alpha (phase cristalline, d'une densité apparente ou ab¬ solu supérieure à 2.
Le même procédé de fabrication continue est appli¬ cable à tout type de matériau présentant des similitudes dans les propriétés physiques de viscosité et tension superficielle.
C'est tout à fait le cas des alumines dopées ou de composés d'oxydes mixtes comme le YAG (Y3A15012) par exemple .

Claims

Revendications
1. Installation de fabrication continue des billes millimétriques d'oxydes mixtes destinées à la fabrication de cristaux synthétiques, notamment des billes millimétriques de Al203 destinées à la fabrication de saphir synthétique à partir des microbilles de Al203 ayant un diamètre moyen entre 20 et 100 μπι, caractérisée par le fait qu'elle com¬ prend un creuset tubulaire (1) fait d'un métal ré- fractaire logé dans d'un tube (3) de céramique isolante, un dispositif de chauffage (4) de ce creuset (1) par induction, que le fond du creuset (1) est muni d'au moins une sortie capillaire d'un diamètre interne de 0,5 à 2 mm, que l'ensemble précité (1,3,4) est sous atmosphère contrôlée dans un tube en quartz (5) avec circulation de gaz neutre d'une longueur supérieure à celle du creuset (1) de sorte que les gouttes d'alumine en fusion formées à l'extrémité inférieure de la sortie ca- pillaire du creuset (1) tombent dans le tube en quartz (5) en chute libre et se refroidissent par rayonnement de température, que la partie infé¬ rieure du tube en quartz (5) est munie d'une gril¬ le (6) à mailles millimétriques permettant si be- soin de fragmenter les grosses gouttes d'alumine, et qu'ensuite un dispositif de pré-refroidissement (7, 8) accéléré permet de refroidir les billes millimétriques avant leur évacuation vers un réci¬ pient (9) alimenté d'un liquide de refroidissement susceptible de contribuer au transport de ces bil¬ les .
2. Installation selon la revendication 1, carac- térisée par le fait que le dispositif de refroi¬ dissement accéléré est un tube (8), de préférence en laiton, incliné et pourvu de moyens de refroi¬ dissement .
3. Installation selon l'une des revendications 1 ou 2, caractérisée par le fait qu'un dispositif de chargement (10) continu du creuset est situé en amont du creuset (1) comprenant un réservoir des microbilles muni d'orifices à travers lesquelles sortent les microbilles par gravité et sont gui¬ dées vers le creuset par un tube, que le débit des microbilles est réglé par un piston piloté séquen¬ tiellement pour ouvrir et fermer lesdits orifices.
4. Installation selon la revendication 3, caractérisée par le fait que le débit des microbilles est réglé de sorte que le temps de résidence de la masse en fusion dans le creuset soit au moins de l'ordre de 10 secondes.
5. Installation selon l'une des revendications 1 à 4, caractérisée par le fait que le fond du creu¬ set est plat et comprend une ou plusieurs sorties capillaires .
6. Installation selon l'une des revendications 1 à 4, caractérisée par le fait que le fond du creu¬ set est conique et comprend une seule sortie ca¬ pillaire .
7. Installation selon l'une des revendications 1 à 6, caractérisée par le fait que le creuset a une hauteur minimum de 50 mm, que son diamètre intérieure minimum est de 20 mm.
8. Installation selon l'une des revendications 1 à 7, caractérisée par le fait que le diamètre in¬ terne d'un capillaire est compris entre 0,5 et 2 mm, sa hauteur de 2 à 5 mm et son diamètre externe est de 1 à 6mm mm.
9. Procédé de production des billes millimétriques d'oxydes mixtes destinées à la fabrication de cristaux synthétiques notamment des billes milli¬ métriques de Al203 destinées à la fabrication de saphir synthétique au moyen de l'installation selon l'une des revendications précédentes selon les étapes suivantes :
- circulation continue d'un gaz neutre dans l'installation afin de conserver le contrôle de l'atmosphère et maîtrise éventuelle de l'étanchéité par un joint liquide,
- alimentation séquentielle du creuset chauffé à plus de 2050 °C avec des billes millimétriques d'oxydes mixtes telles que des microbilles d'Al203 d'un diamètre moyen entre 20 et 100 μπι de sorte que le temps de résidence des micro¬ billes soit au minimum de 10 sec,
passage des gouttes formées à l'extrémité in¬ férieure de la sortie capillaire du creuset dans le tube en quartz et fragmentation le cas échéant sur la grille à mailles millimétrique, passage éventuel dans le tube en laiton de pré-refroidissement
récupération des billes ou sphéroïdes milli¬ métriques dans un récipient alimenté par un liquide de refroidissement susceptible de contribuer au transport de ces billes.
PCT/IB2011/054774 2010-10-27 2011-10-26 Installation de fabrication continue des billes millimétriques d'oxydes mixtes pour la fabrication de cristaux synthétiques WO2012056406A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1058846A FR2966750B1 (fr) 2010-10-27 2010-10-27 Installation de fabrication continue des billes millimetriques d'oxydes mixtes pour la fabrication de cristaux synthetiques
FR1058846 2010-10-27

Publications (1)

Publication Number Publication Date
WO2012056406A1 true WO2012056406A1 (fr) 2012-05-03

Family

ID=44023048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/054774 WO2012056406A1 (fr) 2010-10-27 2011-10-26 Installation de fabrication continue des billes millimétriques d'oxydes mixtes pour la fabrication de cristaux synthétiques

Country Status (3)

Country Link
FR (1) FR2966750B1 (fr)
TW (1) TW201229335A (fr)
WO (1) WO2012056406A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020118755A1 (fr) * 2018-12-14 2020-06-18 中国电子科技集团公司第十三研究所 Procédé et dispositif de croissance de cristaux par synthèse par trans-injection et vgf en continu

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171714A (en) * 1962-10-05 1965-03-02 Lerroy V Jones Method of making plutonium oxide spheres
US4354987A (en) * 1981-03-31 1982-10-19 Union Carbide Corporation Consolidation of high purity silicon powder
US20040007790A1 (en) * 2002-04-18 2004-01-15 Kenji Kato Method and apparatus for producing semiconductor or metal particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171714A (en) * 1962-10-05 1965-03-02 Lerroy V Jones Method of making plutonium oxide spheres
US4354987A (en) * 1981-03-31 1982-10-19 Union Carbide Corporation Consolidation of high purity silicon powder
US20040007790A1 (en) * 2002-04-18 2004-01-15 Kenji Kato Method and apparatus for producing semiconductor or metal particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020118755A1 (fr) * 2018-12-14 2020-06-18 中国电子科技集团公司第十三研究所 Procédé et dispositif de croissance de cristaux par synthèse par trans-injection et vgf en continu

Also Published As

Publication number Publication date
FR2966750B1 (fr) 2012-12-21
TW201229335A (en) 2012-07-16
FR2966750A1 (fr) 2012-05-04

Similar Documents

Publication Publication Date Title
US11085127B2 (en) Methods of introducing dopant into a melt of semiconductor or solar-grade material via a feed tube
CN112584950B (zh) 造粒方法及装置
FR2470634A1 (fr) Procede et appareil pour produire des granules de dimensions relativement grandes par croissance a partir de gouttelettes solidifiees
JP2009035476A (ja) 球状のデバイスのためのジェットシステム
US20210222320A1 (en) Method of Producing a Single-Crystal
CN101948112A (zh) 一种分离硅和剩渣的方法
FR2972729A1 (fr) Procede et dispositif pour la formation de billes de verre metallique
WO2012056406A1 (fr) Installation de fabrication continue des billes millimétriques d'oxydes mixtes pour la fabrication de cristaux synthétiques
JPS6256395A (ja) 珪素棒を製造する方法および装置
US20020056950A1 (en) Apparatus for producing fine metal balls
US20040007790A1 (en) Method and apparatus for producing semiconductor or metal particles
EP2751309A1 (fr) Système de fabrication d'un matériau cristallin par cristallisation dirigée muni d'une source de chaleur additionnelle latérale
US6074476A (en) Non-contact processing of crystal materials
US11326270B2 (en) Single-crystal production equipment and single-crystal production method
JP6464814B2 (ja) はんだボールの製造装置および製造方法
JP2007527832A (ja) 固体粒子を運搬する方法
JP4051234B2 (ja) 粒状シリコンの製造方法
EP3572559A1 (fr) Dispositif de fabrication d'un monocristal et procédé de fabrication d'un monocristal
JP2007326721A (ja) 粒状半導体の製造方法及び製造装置
JP2009007228A (ja) 球状結晶の製造方法及び製造装置
JP2008207984A (ja) 結晶シリコン粒子の製造方法及び結晶シリコン粒子の製造装置
JP4332063B2 (ja) 粒状結晶の製造装置
JP2006151717A (ja) 粒状結晶の製造方法
EP0457674B1 (fr) Dispositif et procédé pour la préparation d'alliages en poudre, par solidification rapide
JP2001247907A (ja) 球形金属粒製造方法及び製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11781654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11781654

Country of ref document: EP

Kind code of ref document: A1