WO2012053383A1 - 蛍光ランプ用の電極および蛍光ランプ - Google Patents

蛍光ランプ用の電極および蛍光ランプ Download PDF

Info

Publication number
WO2012053383A1
WO2012053383A1 PCT/JP2011/073261 JP2011073261W WO2012053383A1 WO 2012053383 A1 WO2012053383 A1 WO 2012053383A1 JP 2011073261 W JP2011073261 W JP 2011073261W WO 2012053383 A1 WO2012053383 A1 WO 2012053383A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent lamp
electrode
discharge
mayenite compound
conductive mayenite
Prior art date
Application number
PCT/JP2011/073261
Other languages
English (en)
French (fr)
Inventor
俊成 渡邉
暁 渡邉
伊藤 和弘
宮川 直通
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2012053383A1 publication Critical patent/WO2012053383A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0675Main electrodes for low-pressure discharge lamps characterised by the material of the electrode
    • H01J61/0677Main electrodes for low-pressure discharge lamps characterised by the material of the electrode characterised by the electron emissive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/14Selection of substances for gas fillings; Specified operating pressure or temperature having one or more carbon compounds as the principal constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/16Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • H01J9/042Manufacture, activation of the emissive part
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • H01J9/042Manufacture, activation of the emissive part
    • H01J9/045Activation of assembled cathode

Definitions

  • the present invention relates to a fluorescent lamp.
  • Fluorescent lamps are widely used in applications such as lighting, backlights for display devices, and light irradiation in various production processes.
  • Fluorescent lamp electrodes particularly hot cathode fluorescent lamp electrodes, usually use a filament made of tungsten (including a tungsten alloy).
  • an electron-emitting substance called an emitter is installed on the surface of such a filament. Thereby, the work function of an electrode falls and thermionic emission at the time of discharge is accelerated
  • cup-shaped electrodes (so-called hollow electrodes) made of nickel (including nickel alloys), molybdenum (including molybdenum alloys), and tungsten (including tungsten alloys) are used. Is done. Recently, it has been proposed that a discharge start voltage of a fluorescent lamp can be lowered by installing a conductive mayenite compound on the inner surface of a cup-shaped electrode material (base material) (Patent Document 1).
  • the conductive mayenite compound has better resistance to sputtering of mercury or rare gas ions than the electrode material (base material). Therefore, the area
  • the conductive mayenite compound is not provided on the end face of the cup-shaped electrode material, and the end face is exposed. For this reason, if the exposed portion of the electrode material is sputtered by mercury or rare gas ions during discharge, the electrode material may be scattered from the exposed portion.
  • Such a phenomenon is not preferable because it leads to consumption of the electrodes and further shortens the life of the fluorescent lamp.
  • the spattered material that has been scattered adheres to the inner wall of the glass tube outside the electrode and forms a deposit. Since this deposit is normally black, if such deposit adheres to the inner wall of the glass tube, the fluorescent lamp becomes dim and the appearance of the fluorescent lamp deteriorates. Further, in the case of a normal fluorescent lamp, the distance between the outer surface of the electrode and the inner wall of the glass tube is not so wide. For this reason, when the amount of deposits becomes significant, the glass tube and the electrode come into electrical contact via the deposits. When such a phenomenon occurs, the glass tube may be heated and the deterioration of the fluorescent lamp may be accelerated.
  • the present invention has been made in view of such problems, and in the present invention, there is significant resistance to sputtering by ions, and an electrode for a fluorescent lamp that can be used properly over a long period of time, and It aims at providing a fluorescent lamp provided with such an electrode.
  • the present invention is an electrode for a fluorescent lamp, and the electrode has a discharge region in which ions collide to participate in the discharge, and the conductive mayenite compound is installed over the entire discharge region.
  • a featured electrode is provided.
  • the electrode in the present invention may have a cup shape.
  • the electrode in the present invention may have a conductive base material and a layer of the conductive mayenite compound provided on the surface of the base material.
  • the present invention provides a fluorescent lamp having a bulb having an internal space filled with a discharge gas, a phosphor installed on the inner surface of the bulb, and an electrode for generating and maintaining a discharge in the internal space.
  • a fluorescent lamp is provided in which the electrode is an electrode having the characteristics described above.
  • the discharge gas is a mixed gas of mercury and at least one gas selected from the group consisting of argon, neon and krypton, or xenon, xenon and helium, argon and nitrogen, or carbon monoxide. It may be.
  • an electrode for a fluorescent lamp that has significant resistance to sputtering by ions and can be used properly over a long period of time, and a fluorescent lamp including such an electrode.
  • FIG. 1 is a schematic cross-sectional view of a fluorescent lamp having an electrode according to the present invention.
  • FIG. 3 is a schematic cross-sectional view of a fluorescent lamp having another electrode according to the present invention.
  • FIG. 6 is a schematic cross-sectional view of a fluorescent lamp having still another electrode according to the present invention.
  • FIG. 6 is a schematic cross-sectional view of a fluorescent lamp having still another electrode according to the present invention.
  • FIG. 1 shows a schematic cross-sectional view of a conventional fluorescent lamp.
  • a conventional fluorescent lamp 10 includes a tubular bulb 30 made of glass having a discharge space 20, a pair of electrodes 40A and 40B, and a sealing portion 51.
  • a protective film 60 and a phosphor 70 are installed on the inner surface of the bulb 30.
  • a discharge gas is sealed in the discharge space 20.
  • the discharge gas means a gas sealed in the discharge space 20, and specifically, a mixed gas of mercury and at least one gas selected from the group consisting of argon, neon and krypton, or xenon.
  • Sealing portions 51 are provided at both ends of the fluorescent lamp 10 so as to seal the discharge space 20 of the bulb 30.
  • Each electrode 40A, 40B has a cup-shaped base material 42 and a layer 45 of a conductive mayenite compound placed on the inner surface of the base material 42.
  • One end of a conductive lead 55 is connected to a part of the cup-shaped base material 42.
  • the other end of the lead 55 penetrates the sealing portion 51 and is led out of the fluorescent lamp 10.
  • the lead 55 is used as a terminal when a voltage is applied to the electrodes 40A and 40B.
  • a voltage is applied between the electrodes 40 ⁇ / b> A and 40 ⁇ / b> B through the lead 55.
  • the conductive mayenite compound has a relatively low work function of 2.4 eV and is conductive. For this reason, the fluorescent lamp in which the conductive mayenite compound is installed on the electrode can start discharge by secondary electron emission at the time of start-up even with a small applied voltage (in the normal case, both electrodes 40A and 40B have Since alternating current is applied, both electrodes become an anode and a cathode).
  • the conductive mayenite compound is self-heated by the discharge, and quickly shifts to the thermal electron emission stage depending on the discharge conditions. In this case, electrons can be emitted more efficiently.
  • Visible light can be emitted from the fluorescent lamp 10 through the series of processes described above.
  • the conductive mayenite compound layer 45 has better resistance to sputtering of discharge gas ions than the substrate 42. Therefore, the region where the conductive mayenite compound layer 45 is placed in the “discharge region” of the electrodes 40A and 40B is relatively less deteriorated and can exist relatively stably over a long period of time.
  • discharge region means the entire region of the electrode that is involved in the discharge by collision of ions.
  • the “discharge region” refers to the inner surface of the cup-shaped base material 42 (the region covered with the layer 45 of the conductive mayenite compound and the cup shape). The portion of the bottom surface of the base material 42) and the end surface 42C of the cup-shaped base material 42 are combined. The outer surface of the cup-shaped base material 42, that is, the surface facing the inner surface of the bulb 30, is not discharged because the distance from the inner surface of the bulb 30 is about 0.2 mm.
  • the conductive mayenite compound layer 45 is not provided in the discharge regions of the electrodes 40A and 40B. That is, the layer 45 of the conductive mayenite compound is not provided on the end face 42 ⁇ / b> C of the base material 42.
  • Such a phenomenon is not preferable because the life of the fluorescent lamp 10 is shortened due to the consumption of the base material 42, that is, the consumption of the electrodes 40A and 40B.
  • the scattered material is deposited so as to cover the layer 45 of the conductive mayenite compound, because the good electron emission characteristics of the conductive mayenite compound are not exhibited.
  • the scattered material is deposited on the inner wall of the valve 30 outside the electrodes 40A and 40B, the deposit is usually black, and therefore, such deposit adheres to the inner wall of the valve 30.
  • the fluorescent lamp 10 becomes dim, the appearance of the fluorescent lamp 10 deteriorates.
  • the distance between the outer surfaces of the electrodes 40A and 40B and the inner wall of the bulb 30 is not so wide.
  • valve 30 and the electrodes 40A and 40B come into electrical contact via the deposit.
  • the bulb 30 is heated, and the deterioration of the fluorescent lamp 10 may be accelerated.
  • the present invention is characterized in that the entire discharge region of the electrode is covered with a layer of a conductive mayenite compound, as will be described in detail later.
  • a conductive mayenite compound such as will be described in detail later.
  • Such an electrode has high resistance to sputtering by ions of the discharge gas, and the electrode can be used stably for a long time. Therefore, according to the present invention, it is possible to improve the life of the electrode and further the fluorescent lamp.
  • the amount of deposits adhering to the inner wall of the bulb is significantly suppressed, which causes the appearance of the fluorescent lamp to deteriorate or the bulb to be heated through the deposits, accelerating the deterioration of the fluorescent lamp.
  • the problem of being relieved can be reduced.
  • FIG. 2 is a sectional view showing a schematic example of a fluorescent lamp according to the present invention.
  • the fluorescent lamp 100 includes a tubular bulb 130 made of glass or the like having a discharge space 120, a pair of electrodes 140A and 140B, and a sealing portion 151.
  • the fluorescent lamp 100 may be used as, for example, a hot cathode fluorescent lamp, a cold cathode fluorescent lamp, or the like.
  • a protective film 160 and a phosphor 170 are installed on the inner surface of the bulb 130.
  • a discharge gas is sealed in the discharge space 120, and the discharge gas includes a mixed gas of mercury and at least one gas selected from the group consisting of argon, neon, and krypton, or xenon, xenon and helium, Argon and nitrogen or carbon monoxide are used.
  • the protective film 160 has a role of preventing the inner wall of the fluorescent lamp from being blackened by preventing elution of sodium contained in the bulb 130 and suppressing generation of mainly mercury and sodium compounds. However, installation of the protective film 160 is arbitrary.
  • Sealing portions 151 are provided at both ends of the fluorescent lamp 100 so as to seal the discharge space of the bulb 130.
  • the sealing portion 151 is a single member integrated with the valve 130.
  • the sealing portion 151 may be configured with a member different from the valve 130.
  • the electrode 140 has a base material 142 and a layer 145 of a conductive mayenite compound.
  • the base material 142 has a cup shape.
  • One end of a conductive lead 155 is connected to a part of the base material 142.
  • the lead 155 is used as a terminal when a voltage is applied to the electrodes 140A and 140B.
  • one end of the lead 155 is inserted into an opening 159 provided at the center of the base material 142.
  • the connection method between the base material 142 and the lead 155 is not particularly limited.
  • the base material 142 and the lead 155 may be configured as an integrated product. Note that the other end of the lead 155 passes through the sealing portion 151 and is led out of the fluorescent lamp 100.
  • the conductive mayenite compound layer 145 is placed on the substrate 142 so as to cover the entire discharge region of the electrodes 140A and 140B. That is, in the electrodes 140 ⁇ / b> A and 140 ⁇ / b> B, the conductive mayenite compound layer 145 is also provided on the end surface 142 ⁇ / b> C of the base material 142. Therefore, in the fluorescent lamp 100 according to the present invention, it is possible to reduce or suppress the consumption of the base material 142 due to sputtering of mercury, rare gas ions, or the like. In addition, this makes it possible to extend the life of the electrodes 140A and 140B, and further the fluorescent lamp 100.
  • the amount of deposits on the inner wall of the bulb 130 is reduced, the appearance of the fluorescent lamp 100 is deteriorated, and the problem that the bulb 130 is heated through the deposit and the deterioration of the fluorescent lamp 100 is accelerated is reduced. can do.
  • the discharge gas taken into the deposit is significantly suppressed, and the lifetime reduction of the fluorescent lamp 100 can be significantly suppressed.
  • the layer of conductive mayenite compound 145 is also provided on a part of the surface facing the inner surface of the bulb 130 in addition to the discharge regions of the electrodes 140 ⁇ / b> A and 140 ⁇ / b> B.
  • this is merely an example, and the installation portion of the conductive mayenite compound layer 145 is not limited to the embodiment shown in FIG.
  • the layer 145 of the conductive mayenite compound may be provided only in the discharge regions of the electrodes 140A and 140B.
  • Electrodes 140A, 140B As described above, the electrodes 140A and 140B according to the present invention include the base material 142 and the layer 145 of the conductive mayenite compound.
  • the base material 142 may be made of any material as long as it has conductivity. Typical materials for the base material 142 include nickel (including a nickel alloy), molybdenum (including a molybdenum alloy), tungsten (including a tungsten alloy), and the like.
  • the “conductive mayenite compound” is a general term for compounds exhibiting conductivity among the mayenite compounds.
  • the “mayenite compound” is a generic name for 12CaO ⁇ 7Al 2 O 3 (hereinafter also referred to as “C12A7”) having a cage structure and compounds having the same crystal structure as C12A7 (same type compounds).
  • a mayenite compound includes oxygen ions in a cage, and these oxygen ions are particularly referred to as “free oxygen ions”.
  • the “free oxygen ions” can be partially or completely replaced with electrons by reduction treatment or the like, and in particular, those having an electron density of 1.0 ⁇ 10 15 cm ⁇ 3 or more have “conductivity. Mayenite compound ". Since the “conductive mayenite compound” has conductivity as its name indicates, it can be used as an electrode material as in the present invention.
  • the electron density of the “conductive mayenite compound” is preferably 1.0 ⁇ 10 18 cm ⁇ 3 or more, more preferably 1.0 ⁇ 10 19 cm ⁇ 3 or more. More preferably, it is 0 ⁇ 10 20 cm ⁇ 3 or more.
  • the electron density of the conductive mayenite compound is lower than 1.0 ⁇ 10 18 cm ⁇ 3 , the resistance of the electrode when used as an electrode increases.
  • the electron density of the conductive mayenite is calculated from the measured value of the spin density obtained by measurement with an electron spin resonance apparatus (ESR apparatus) or the measured value of the absorption coefficient obtained from optical absorption measurement. Means the value.
  • ESR apparatus electron spin resonance apparatus
  • the electron density is smaller than 10 19 cm ⁇ 3 , it is preferable to measure using an electron spin resonance apparatus.
  • the light absorption measurement is performed as follows. It is preferable to calculate the electron density.
  • the intensity of light absorption by electrons in the cage of conductive mayenite is measured, and the absorption coefficient at 2.8 eV is obtained.
  • the electron density of the conductive mayenite is quantified using the fact that the obtained absorption coefficient is proportional to the electron density. If the conductive mayenite is powder or the like and it is difficult to measure the transmission spectrum with a photometer, the light diffusion spectrum is measured using an integrating sphere, and the conductive mayenite is obtained from the value obtained by the Kubelka-Munk method. The electron density is calculated.
  • the conductive mayenite compound has a C12A7 crystal structure composed of calcium (Ca), aluminum (Al) and oxygen (O), calcium (Ca), aluminum (Al) and oxygen (O
  • a part or all of at least one atom selected from among the above may be substituted with another atom or atomic group.
  • a part of calcium (Ca) is magnesium (Mg), strontium (Sr), barium (Ba), lithium (Li), sodium (Na), chromium (Cr), manganese (Mn), cerium (Ce). , Cobalt (Co), nickel (Ni) and / or copper (Cu) or other atoms.
  • a part of aluminum (Al) is silicon (Si), germanium (Ge), boron (B), gallium (Ga), titanium (Ti), manganese (Mn), iron (Fe), cerium (Ce).
  • Praseodymium (Pr), scandium (Sc), lanthanum (La), yttrium (Y), europium (Eu), yttrium (Yb), cobalt (Co), nickel (Ni) and / or terbium (Tb) May be.
  • the oxygen in the cage skeleton may be substituted with nitrogen (N) or the like.
  • the conductive mayenite compound is preferably a 12CaO ⁇ 7Al 2 O 3 compound, a 12SrO ⁇ 7Al 2 O 3 compound, a mixed crystal compound thereof, or an isomorphous compound thereof.
  • the following compounds (1) to (4) are considered as the conductive mayenite compound.
  • Mg magnesium
  • Sr strontium
  • Ca 1-z Sr z calcium strontium aluminate
  • y and z are 0.1 or less.
  • the free oxygen ion in the cage is an anion such as H ⁇ , H 2 ⁇ , H 2 ⁇ , O ⁇ , O 2 ⁇ , OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , S 2 ⁇ or Au ⁇ .
  • an anion such as H ⁇ , H 2 ⁇ , H 2 ⁇ , O ⁇ , O 2 ⁇ , OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , S 2 ⁇ or Au ⁇ .
  • Both cation and anion are substituted, for example wadalite Ca 12 Al 10 Si 4 O 32 : 6Cl ⁇ .
  • the conductivity of the conductive mayenite compound can be adjusted relatively easily by, for example, heat treatment in a reducing atmosphere.
  • the thickness of the conductive mayenite compound layer 145 is not particularly limited, but the thickness is, for example, in the range of 0.1 ⁇ m to 2 mm. If the thickness is less than 0.1 ⁇ m, it is difficult to form a film without a gap as a whole, and if it exceeds 2 mm, cracks may occur due to a difference in thermal expansion from the substrate, and defects such as peeling may occur.
  • the thickness of the conductive mayenite compound layer is preferably in the range of 1 ⁇ m to 1 mm, and more preferably in the range of 10 to 500 ⁇ m.
  • phosphor 170 examples include europium-activated yttrium oxide phosphor, cerium terbium-activated lanthanum phosphate phosphor, europium-activated strontium halophosphate phosphor, europium-activated barium magnesium aluminate phosphor, and europium manganese-activated barium magnesium.
  • An aluminate phosphor, a terbium activated cerium aluminate phosphor, a terbium activated cerium magnesium aluminate phosphor, an antimony activated calcium halophosphate phosphor, or the like can be used alone or in combination.
  • the shape, size, wattage, light color and color rendering property emitted by the fluorescent lamp are not particularly limited.
  • the shape is not limited to a straight pipe as shown in FIG. 2, and may be a round shape, a double ring shape, a twin shape, a compact shape, a U shape, a light bulb shape, or the like.
  • the size may be 4 to 110.
  • the wattage may be, for example, several watts to hundreds tens of watts.
  • Examples of the light color include daylight color, daylight white color, white color, warm white color, and light bulb color.
  • FIG. 4 shows another configuration of the fluorescent lamp according to the present invention. It should be noted that in the fluorescent lamp 200 of FIG. 4, the same reference numerals as those in FIG.
  • the fluorescent lamp 200 has the same configuration as the fluorescent lamp 100 shown in FIG. However, in the fluorescent lamp 200, the configurations of the electrodes 240A and 240B are different from those of the electrodes 140A and 140B in FIG. That is, the electrodes 240A and 240B of the fluorescent lamp 200 have a plate shape instead of a cup shape.
  • the electrodes 240 ⁇ / b> A and 240 ⁇ / b> B have a plate-like base material 242 and a layer 245 of a conductive mayenite compound.
  • the plate-shaped substrate 242 has two main surfaces 247U and 247L, two side surfaces (only one side surface 247S is visible in FIG. 4), one upper surface 247C, and one lower surface 247D. .
  • the conductive mayenite compound layer 245 is provided over the entire discharge region of the plate-like substrate 242.
  • region in electrode 240A, 240B is corresponded to the area
  • the plate-like base material 242 may be installed on a pedestal 260.
  • the layer 245 of the conductive mayenite compound includes two main surfaces 247U and 247L of the plate-like substrate 242, two side surfaces (only one side surface 247S is visible in FIG. 5), and one It is installed on the upper surface 247C, and these surfaces become discharge regions of the electrodes 240A and 240B.
  • the electrode base materials 142 and 242 have a cup shape or a plate shape.
  • the shape of the substrate is not limited to these.
  • the shape of the substrate may be a rod shape, a pyramid shape, a prism shape, or the like. That is, what is important in the present invention is that the entire discharge region of the electrode is covered with a layer of a conductive mayenite compound, and as long as this is satisfied, the shape of the substrate may be any shape. .
  • the discharge region of the electrode has not only the longitudinal section of the glass tube but also the longitudinal direction.
  • the discharge region is narrowed, the current density increases and ion bombardment increases, so that sputtering of the electrode is accelerated and the life of the electrode is reduced. Therefore, the upper limit of the discharge current is lowered, which is not preferable.
  • Example 1 An electrode sample in which a conductive mayenite compound was installed in the discharge region was manufactured by the following method.
  • powder A1 This was pulverized with an automatic mortar to obtain a powder (hereinafter referred to as powder A1).
  • the average particle size was 20 ⁇ m. Further, X-ray diffraction confirmed that the powder A1 had only a 12CaO ⁇ 7Al 2 O 3 structure, and the powder A1 was a (non-conductive) mayenite compound.
  • powder A2 a powder (hereinafter referred to as powder A2).
  • the average particle diameter of the powder A2 was 20 ⁇ m. Further, it was confirmed by X-ray diffraction that the powder A2 had only a C12A7 structure. Furthermore, the light diffuse reflection spectrum was measured for the powder A2, and the electron density of the powder A2 was determined by the Kubelka-Munk method. As a result, the electron density of the powder A2 was 1.0 ⁇ 10 19 cm ⁇ 3 , and it was confirmed that the powder A2 was a conductive mayenite compound.
  • the average particle size of the powder A3 was about 5 ⁇ m.
  • butyl carbitol acetate, terpineol, and ethyl cellulose are added to powder A3 so that powder A3: butyl carbitol acetate: terpineol: ethyl cellulose has a weight ratio of 6: 2.4: 1.2: 0.4.
  • the mixture was kneaded in an automatic mortar. Thereafter, the mixture was further kneaded using a centrifugal kneader to obtain a paste containing a conductive mayenite compound.
  • the cup was kept at 100 ° C. for 1 hour and dried, and then baked as follows.
  • the cup was placed on an alumina plate, and the alumina plate was placed in a carbon container.
  • the carbon container was placed in an electric furnace and the atmosphere was evacuated to 1 ⁇ 10 ⁇ 4 Pa. Thereafter, the atmosphere was purged with nitrogen, and then the carbon container was heated to 500 ° C. in 15 minutes. The temperature was maintained at this temperature for 30 minutes or more to sufficiently decompose and remove the binder component, and then the carbon container was heated to 1300 ° C. in 24 minutes and held at this temperature for 30 minutes. Thereafter, the carbon container was rapidly cooled to room temperature.
  • Example 1 a sample of the cup-shaped electrode in which the conductive mayenite compound was formed in the entire discharge region was obtained (hereinafter referred to as “sample according to Example 1”).
  • the sample coating was green.
  • the film thickness of the conductive mayenite compound was about 100 ⁇ m.
  • X-ray diffraction confirmed that only the 12CaO ⁇ 7Al 2 O 3 structure was present in the coating.
  • the electron density of the conductive mayenite compound in the covering portion was determined by the Kubelka-Munk method, the electron density was 2.0 ⁇ 10 19 cm ⁇ 3 .
  • Comparative Example 1 A sample according to Comparative Example 1 was manufactured in the same manner as the sample manufacturing method according to Example 1 described above.
  • the conductive mayenite compound paste was not placed over the entire discharge region of the cup. That is, paste, only placed on the inner front surface of the cup, the distal end surface of the cup not installed. Therefore, in the sample according to Comparative Example 1, the conductive mayenite compound is not installed on the tip surface of the cup of the completed electrode.
  • the distance between both electrodes of the fluorescent lamp was 250 mm, and the inner diameter was 3 mm.
  • the fluorescent lamp was operated continuously for 1000 hours with a discharge current of 4 mA (effective value).
  • Table 1 shows the EDX analysis results of the portion of the glass tube in the fluorescent lamp of Comparative Example 1 where the deposits are attached.
  • the unit of numerical values in Table 1 is the atomic composition percentage.
  • Table 1 also shows the EDX analysis results of the glass tube before use for comparison.
  • the adhering material adhering portion of the glass tube contains a considerable amount of nickel, which is a cup material of the electrode, and mercury. From this result, in the fluorescent lamp of Comparative Example 1, it is inferred that the electrode (cup material) is sputtered by mercury or rare gas ions during operation.
  • Table 1 shows the EDX analysis result of the glass tube after use of the fluorescent lamp of Example 1 for confirmation.
  • the analysis place is the same position as the fluorescent lamp of Comparative Example 1. In the analysis results, nickel (and mercury) is not detected at all.
  • the present invention can be applied to a fluorescent lamp having an electrode for discharge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Discharge Lamp (AREA)

Abstract

 イオンによるスパッタに対して有意な耐性を有し、長期にわたって適正に使用することの可能な蛍光ランプ用の電極を提供することを目的とする。 蛍光ランプ用の電極であって、当該電極は、イオンが衝突して放電に関与する放電領域を有し、該放電領域の全体にわたって、導電性マイエナイト化合物が設置されていることを特徴とする電極。

Description

蛍光ランプ用の電極および蛍光ランプ
 本発明は、蛍光ランプに関する。
 蛍光ランプは、照明、表示装置のバックライト、および各種生産工程での光照射などの用途に広く用いられている。
 蛍光ランプの電極、特に熱陰極蛍光ランプの電極には、通常の場合、タングステン(タングステン合金を含む)で構成されたフィラメントが使用される。ただし、蛍光ランプの始動性およびランプ効率を高めるため、このようなフィラメントの表面には、エミッタと呼ばれる電子放出性物質が設置される。これにより、電極の仕事関数が低下し、放電時の熱電子放出が促進される。
 また、特に冷陰極蛍光ランプの電極には、ニッケル(ニッケル合金を含む)、モリブデン(モリブデン合金を含む)、タングステン(タングステン合金を含む)で構成されたカップ状の電極(いわゆるホロー電極)が使用される。最近では、カップ状の電極材料(基材)の内表面に導電性マイエナイト化合物を設置することにより、蛍光ランプの放電開始電圧を低下させ得ることが提案されている(特許文献1)。
国際公開第WO2009/145200号
 導電性マイエナイト化合物は、電極材料(基材)に比べて、水銀や希ガスのイオンのスパッタに対して良好な耐性を有する。従って、電極の導電性マイエナイト化合物が設置された領域は、長時間にわたって比較的安定である。
 しかしながら、特許文献1に記載の技術では、カップ状の電極材料の端面には、導電性マイエナイト化合物が設置されておらず、端面は露出された状態になっている。このため、放電中に電極材料の露出部が水銀や希ガスのイオン等によるスパッタを受けると、露出部から電極材料が飛散するという問題が生じ得る。
 このような現象は、電極の消耗、さらには蛍光ランプの寿命の短時間化につながるため、好ましいものではない。
 また、飛散したスパッタ物質は、電極の外側にあるガラス管の内壁に付着し、付着物を形成する。この付着物は、通常の場合、黒色であるため、ガラス管の内壁にこのような付着物が付着すると、蛍光ランプが薄暗くなるとともに、蛍光ランプの見栄えが悪くなる。さらに、通常の蛍光ランプの場合、電極の外表面とガラス管の内壁の間の間隔は、それ程広くはない。このため、付着物の量が顕著になると、この付着物を介して、ガラス管と電極が電気的に接触してしまう。このような現象が生じると、ガラス管が加熱され、蛍光ランプの劣化が加速されるおそれがある。
 本発明は、このような問題に鑑みなされたものであり、本発明では、イオンによるスパッタに対して有意な耐性を有し、長期にわたって適正に使用することの可能な蛍光ランプ用の電極、およびそのような電極を備える蛍光ランプを提供することを目的とする。
 本発明では、蛍光ランプ用の電極であって、当該電極は、イオンが衝突して放電に関与する放電領域を有し、該放電領域の全体にわたって、導電性マイエナイト化合物が設置されていることを特徴とする電極が提供される。
 ここで、本発明における電極は、カップ状の形状を有しても良い。
 また、本発明における電極は、導電性の基材と、該基材の表面に設置された前記導電性マイエナイト化合物の層とを有しても良い。
 さらに、本発明では、放電ガスが充填された内部空間を有するバルブと、該バルブの内表面に設置された蛍光体と、前記内部空間で放電を発生、維持させる電極と、を有する蛍光ランプであって、前記電極は、前述のような特徴を有する電極であることを特徴とする蛍光ランプが提供される。
 本発明による蛍光ランプにおいて、前記放電ガスは、水銀と、アルゴン、ネオンおよびクリプトンからなる群から選ばれる少なくとも一種のガスとの混合ガス、またはキセノン、キセノンとヘリウム、アルゴンと窒素、もしくは一酸化炭素であっても良い。
 本発明では、イオンによるスパッタに対して有意な耐性を有し、長期にわたって適正に使用することの可能な蛍光ランプ用の電極、およびそのような電極を備える蛍光ランプを提供することが可能となる。
従来の蛍光ランプの一例の概略的な断面図である。 本発明による電極を有する蛍光ランプの概略的な断面図である。 本発明による別の電極を有する蛍光ランプの概略的な断面図である。 本発明によるさらに別の電極を有する蛍光ランプの概略的な断面図である。 本発明によるさらに別の電極を有する蛍光ランプの概略的な断面図である。
 以下、図面を参照して、本発明を説明する。
 まず、本発明の特徴をより良く理解するため、図1を参照して、従来の蛍光ランプの構成および動作について、簡単に説明する。
 図1には、従来の蛍光ランプの概略的な断面図を示す。
 図1に示すように、従来の蛍光ランプ10は、放電空間20を有するガラスなどで構成された管状のバルブ30と、一組の電極40A、40Bと、封止部51とを有する。
 バルブ30の内表面には、保護膜60および蛍光体70が設置されている。放電空間20内には、放電ガスが封入されている。ここで放電ガスとは、放電空間20内に封入されたガスを意味し、具体的には、水銀と、アルゴン、ネオンおよびクリプトンからなる群から選ばれる少なくとも一種のガスとの混合ガス、またはキセノン、キセノンとヘリウム、アルゴンと窒素、もしくは一酸化炭素からなるガスのことである。
 封止部51は、蛍光ランプ10の両端に、バルブ30の放電空間20を密閉するように設けられている。
 各電極40A、40Bは、カップ状の基材42と、該基材42の内表面に設置された導電性マイエナイト化合物の層45とを有する。
 カップ状の基材42の一部には、導電性のリード55の一端が接続される。リード55の他端は、封止部51を貫通して、蛍光ランプ10の外部に導出されている。リード55は、電極40A、40Bに電圧を印加する際の端子として使用される。
 このような蛍光ランプ10の構成において、リード55を介して電極40A、40Bの間に、電圧が印加される。導電性マイエナイト化合物は、2.4eVと比較的仕事関数が低く、かつ導電性がある。このため、導電性マイエナイト化合物を電極に設置した蛍光ランプは、始動時に、小さな印加電圧でも、2次電子放出による放電を開始することができる(なお、通常の場合、両電極40A、40Bには、交流が印加されるため、いずれの電極も、陽極および陰極となる)。
 次に、電子の一部は、バルブ30の放電空間20内に封入されている水銀原子と衝突する。これにより、水銀原子が励起され、励起された水銀が基底状態に戻る際に紫外線が放出される。放出された紫外線は、バルブ30の蛍光体70に照射され、これにより蛍光体70から可視光線が発生する。
 さらに、導電性マイエナイト化合物は、その放電によって自己加熱され、放電の条件によっては熱電子放出段階に速やかに移行する。この場合、より効率的に電子を放出することができる。
 以上の一連の過程により、蛍光ランプ10から可視光線を放射させることができる。
 なお、導電性マイエナイト化合物の層45は、基材42に比べて、放電ガスのイオンのスパッタに対して良好な耐性を有する。従って、電極40A、40Bの「放電領域」のうち導電性マイエナイト化合物の層45が設置された領域は、比較的劣化が少なく、長時間にわたって比較的安定に存在し得る。
 ここで、「放電領域」という用語は、電極のうち、イオンが衝突して放電に関与する領域全体を意味することに留意する必要がある。例えば、図1に示したようなカップ状の電極40A、40Bの場合、「放電領域」は、カップ状の基材42の内表面(導電性マイエナイト化合物の層45で覆われた領域およびカップ状の基材42の底面の部分)と、カップ状の基材42の端面42Cの部分とを合わせた領域を意味する。カップ状の基材42の外表面、すなわち、バルブ30の内表面と対向する面は、バルブ30の内表面との距離が0.2mm程度であるため、放電しない。
 しかしながら、電極40A、40Bの放電領域には、導電性マイエナイト化合物の層45が設置されていない箇所が存在する。すなわち、基材42の端面42Cには、導電性マイエナイト化合物の層45が設置されていない。
 蛍光ランプ10の放電中に、このような基材42が露出された放電領域がイオンによるスパッタを受けると、基材42を構成する物質が周囲に飛散するという問題が生じ得る。
 このような現象は、基材42の消耗、すなわち電極40A、40Bの消耗による蛍光ランプ10の寿命の短時間化につながるため、好ましいものではない。
 また、飛散した物質が、導電性マイエナイト化合物の層45を覆うように堆積した場合、導電性マイエナイト化合物の良好な電子放出特性が発揮されないため好ましくない。さらに、飛散した物質が電極40A、40Bの外側にあるバルブ30の内壁に堆積した場合、この堆積物は、通常の場合、黒色であるため、バルブ30の内壁にこのような堆積物が付着すると、蛍光ランプ10が薄暗くなるとともに、蛍光ランプ10の見栄えが悪くなる。さらに、通常の蛍光ランプ10の場合、電極40A、40Bの外表面とバルブ30の内壁との間隔は、それ程広くはない。このため、バルブ30の内壁への堆積物の量が顕著になると、この堆積物を介して、バルブ30と電極40A、40Bが電気的に接触してしまう。このような現象が生じると、バルブ30が加熱され、蛍光ランプ10の劣化が加速されるおそれがある。
 これに対して、本発明では、以降に詳細に示すように、電極の放電領域全体が、導電性マイエナイト化合物の層で覆われているという特徴を有する。このような電極では、放電ガスのイオンによるスパッタに対する耐性が高く、電極は、長時間にわたって、安定に使用することができる。従って、本発明では、電極、さらには蛍光ランプの寿命を向上させることが可能となる。
 また、本発明では、バルブの内壁に付着する付着物の量が有意に抑制され、これにより、蛍光ランプの外観が悪くなったり、付着物を介してバルブが加熱され、蛍光ランプの劣化が加速されるという問題を軽減することができる。
 さらに、一般に、スパッタにより飛散物が堆積する際、堆積物中に放電空間20に存在する水銀や希ガスなどの放電ガスが取り込まれることが多い。従って、従来の蛍光ランプ10では、飛散物の堆積量の増加とともに、プラズマ源となる放電ガスの量が低下し、これにより蛍光ランプ10の寿命が低下してしまうという問題が生じ得る。しかしながら、本発明では、飛散物の量が少なくなるため、これにより、取り込まれる放電ガスの量が有意に抑制され、蛍光ランプの寿命の低下を有意に抑制することができるという追加の効果が得られる。
 (本発明による蛍光ランプについて)
 以下、図2を参照して、本発明による蛍光ランプについて、詳しく説明する。図2は、本発明による蛍光ランプの概略的な一例を示した断面図である。
 図2に示すように、本発明による蛍光ランプ100は、放電空間120を有するガラス等で構成された管状のバルブ130と、一対の電極140A、140Bと、封止部151とを有する。
 蛍光ランプ100は、例えば、熱陰極蛍光ランプ、冷陰極蛍光ランプ等として使用しても良い。
 バルブ130の内表面には、保護膜160および蛍光体170が設置されている。放電空間120内には、放電ガスが封入されており、放電ガスには、水銀と、アルゴン、ネオンおよびクリプトンからなる群から選ばれる少なくとも一種のガスとの混合ガス、またはキセノン、キセノンとヘリウム、アルゴンと窒素、もしくは一酸化炭素が使用される。保護膜160は、バルブ130に含まれるナトリウムの溶出を防ぎ、主として水銀とナトリウムの化合物が生成することを抑制することにより、蛍光ランプ内壁が黒化することを防ぐ役割を有する。ただし、保護膜160の設置は、任意である。
 封止部151は、蛍光ランプ100の両端に、バルブ130の放電空間を密閉するように設けられている。なお、図2の例では、封止部151は、バルブ130と一体化された単一の部材となっている。しかしながら、封止部151は、バルブ130とは異なる部材で構成されても良い。
 電極140は、基材142と、導電性マイエナイト化合物の層145とを有する。基材142は、カップ状の形状を有する。
 基材142の一部には、導電性のリード155の一端が接続される。リード155は、電極140A、140Bに電圧を印加する際の端子として使用される。図2の例では、リード155の一端は、基材142の中央部に設けられた開口159内に挿入されている。ただし、これは一例であって、基材142とリード155の接続方法は、特に限られない。また、基材142とリード155とは、一体化物として構成されても良い。なお、リード155の他端は、封止部151を貫通して、蛍光ランプ100の外部に導出されている。
 前述のように、導電性マイエナイト化合物の層145は、電極140A、140Bの放電領域全体を覆うようにして、基材142上に設置される。すなわち、電極140A、140Bにおいて、導電性マイエナイト化合物の層145は、基材142の端面142C上にも設置されている。このため、本発明による蛍光ランプ100では、水銀や希ガスのイオン等のスパッタによる基材142の消耗を軽減または抑制することができる。また、これにより、電極140A、140B、さらには蛍光ランプ100を長寿命化させることが可能となる。さらに、バルブ130の内壁への堆積物の量が少なくなり、蛍光ランプ100の外観が悪くなったり、付着物を介してバルブ130が加熱され、蛍光ランプ100の劣化が加速されるという問題を軽減することができる。また、これに付随して、堆積物に取り込まれる放電ガスが有意に抑制され、蛍光ランプ100の寿命の低下を有意に抑制することができる。
 なお、図2において、導電性マイエナイト化合物の層145は、電極140A、140Bの放電領域の他、バルブ130の内表面と対向する面の一部にも設置されている。しかしながら、これは一例であって、導電性マイエナイト化合物の層145の設置部分は、図2に示す態様に限られない。例えば、図3に示すように、導電性マイエナイト化合物の層145は、電極140A、140Bの放電領域にのみ設置されていても良い。
 (本発明の蛍光ランプの各部材の詳細について)
 次に、本発明による蛍光ランプ100の電極140A、140Bおよび蛍光体170について、詳しく説明する。なお、バルブ130、封止部151、および保護膜160等の部材に関しては、その仕様は、当業者には十分に明らかであるので、記載を省略する。
 (電極140A、140B)
 前述のように、本発明による電極140A、140Bは、基材142と、導電性マイエナイト化合物の層145とで構成される。
 基材142は、導電性を有する限り、いかなる材料で構成されても良い。基材142の一般的な材料としては、ニッケル(ニッケル合金を含む)、モリブデン(モリブデン合金を含む)、およびタングステン(タングステン合金を含む)等がある。
 ここで、「導電性マイエナイト化合物」とは、マイエナイト化合物のうち、導電性を示す化合物の総称である。
 また、「マイエナイト化合物」とは、ケージ(籠)構造を有する12CaO・7Al(以下「C12A7」ともいう。)およびC12A7と同等の結晶構造を有する化合物(同型化合物)の総称である。
 一般に、マイエナイト化合物は、ケージの中に酸素イオンを包接しており、この酸素イオンは、特に「フリー酸素イオン」と称される。
 また、この「フリー酸素イオン」は、還元処理等により、その一部もしくは全てを電子で置換することができ、特に、電子密度が1.0×1015cm-3以上のものが「導電性マイエナイト化合物」となる。「導電性マイエナイト化合物」は、その名が示すように導電性を有するため、本発明のような電極材料として使用することができる。
 本発明では、「導電性マイエナイト化合物」の電子密度は、1.0×1018cm-3以上であることが好ましく、1.0×1019cm-3以上であることがより好ましく、1.0×1020cm-3以上であることがさらに好ましい。導電性マイエナイト化合物の電子密度が1.0×1018cm-3よりも低い場合、電極に使用した際の電極の抵抗が大きくなる。
 なお、本願において、導電性マイエナイトの電子密度とは、電子スピン共鳴装置(ESR装置)での測定により得られたスピン密度の測定値、または光吸収測定から得られた吸収係数の測定値により算出された値を意味する。一般には、電子密度が1019cm-3よりも小さい場合は、電子スピン共鳴装置を用いて測定することが好ましく、1018cm-3を超える場合は、以下のようにして、光吸収測定から電子密度を算定することが好ましい。
 まず、分光光度計を用いて、導電性マイエナイトのケージ中の電子による光吸収の強度を測定し、2.8eVでの吸収係数を求める。次に、この得られた吸収係数が電子密度に比例することを利用して、導電性マイエナイトの電子密度を定量する。また、導電性マイエナイトが粉末等であり、光度計によって透過スペクトルを測定することが難しい場合は、積分球を使用して光拡散スペクトルを測定し、クベルカムンク法によって得られた値から、導電性マイエナイトの電子密度が算定される。
 なお、本発明において導電性マイエナイト化合物は、カルシウム(Ca)、アルミニウム(Al)および酸素(O)からなるC12A7結晶構造を有している限り、カルシウム(Ca)、アルミニウム(Al)および酸素(O)の中から選ばれた少なくとも1種の原子の一部または全部が、他の原子や原子団に置換されていても良い。例えば、カルシウム(Ca)の一部は、マグネシウム(Mg)、ストロンチウム(Sr)、バリウム(Ba)、リチウム(Li)、ナトリウム(Na)、クロム(Cr)、マンガン(Mn)、セリウム(Ce)、コバルト(Co)、ニッケル(Ni)および/または銅(Cu)などの原子で置換されていても良い。また、アルミニウム(Al)の一部は、シリコン(Si)、ゲルマニウム(Ge)、ホウ素(B)、ガリウム(Ga)、チタン(Ti)、マンガン(Mn)、鉄(Fe)、セリウム(Ce)、プラセオジウム(Pr)、スカンジウム(Sc)、ランタン(La)、イットリウム(Y)、ヨーロピウム(Eu)、イットリビウム(Yb)、コバルト(Co)、ニッケル(Ni)および/またはテリビウム(Tb)などで置換されても良い。また、ケージの骨格の酸素は、窒素(N)などで置換されていても良い。
 また、導電性マイエナイト化合物は、12CaO・7Al化合物、12SrO・7Al化合物、これらの混晶化合物、またはこれらの同型化合物であることが好ましい。
 本発明では、これらに限定されるものではないが、導電性マイエナイト化合物として、例えば下記の(1)~(4)に示す化合物が考慮される。
 (1)C12A7化合物の骨格を構成するカルシウム(Ca)の一部が、マグネシウム(Mg)またはストロンチウム(Sr)に置換された、カルシウムマグネシウムアルミネート(Ca1-yMg12Al1433、またはカルシウムストロンチウムアルミネート(Ca1-zSr12Al1433。なお、yおよびzは0.1以下であることが好ましい。
 (2)シリコン置換型マイエナイトであるCa12Al10Si35
 (3)ケージ中のフリー酸素イオンがH、H 、H2-、O、O 、OH、F、Cl、Br、S2-またはAuなどの陰イオンによって置換された、例えば、Ca12Al1432:2OHまたはCa12Al1432:2F
 (4)陽イオンと陰イオンがともに置換された、例えばワダライトCa12Al10Si32:6Cl
 本発明において、導電性マイエナイト化合物の導電率は、例えば、還元性雰囲気での熱処理等により、比較的容易に調整することができる。
 導電性マイエナイト化合物の層145の厚さは、特に限られないが、厚さは、例えば0.1μm~2mmの範囲である。0.1μm未満では全体に隙間なく製膜することが難しく、2mm超では基材との熱膨張差によってクラックが発生し、剥離等の欠陥が生じてしまうおそれがある。導電性マイエナイト化合物の層の厚さは1μm~1mmの範囲が好ましく、10~500μmの範囲がさらに好ましい。
 (蛍光体170)
 蛍光体170としては、例えば、ユーロピウム付活酸化イットリウム蛍光体、セリウムテルビウム付活燐酸ランタン蛍光体、ユーロピウム付活ハロ燐酸ストロンチウム蛍光体、ユーロピウム付活バリウムマグネシウムアルミネート蛍光体、ユーロピウムマンガン付活バリウムマグネシウムアルミネート蛍光体、テルビウム付活セリウムアルミネート蛍光体、テルビウム付活セリウムマグネシウムアルミネート蛍光体、およびアンチモン付活ハロ燐酸カルシウム蛍光体などを単独、または混合して使用できる。
 なお蛍光ランプ100において、形状、サイズ、ワット数、ならびに蛍光ランプが放つ光色および演色性などは、特に限定されない。形状については、図2に示すような直管に限られず、例えば、丸形、二重環形、ツイン形、コンパクト形、U字形、電球形などの形状で合っても良い。サイズについては、例えば4形~110形などであっても良い。ワット数については、例えば数ワット~百数十ワットなどであっても良い。光色については、例えば、昼光色、昼白色、白色、温白色、および電球色などがある。
 (蛍光ランプの別の構成について)
 次に、図4を参照して、本発明による蛍光ランプの別の構成について説明する。
 図4は、本発明による蛍光ランプの別の構成について示したものである。なお、図4の蛍光ランプ200において、図2と同様の部材には、図2と同じ参照符号が付されていることに留意する必要がある。
 図4に示すように、この蛍光ランプ200は、図2に示した蛍光ランプ100と同様の構成を有する。ただし、蛍光ランプ200において、電極240A、240Bの構成は、図2における電極140A、140Bとは異なっている。すなわち、蛍光ランプ200の電極240A、240Bは、カップ状ではなく、板状の形状を有する。
 より具体的には、電極240A、240Bは、板状の基材242と、導電性マイエナイト化合物の層245とを有する。板状の基材242は、2つの主表面247U、247Lと、2つの側面(図4では、1つの側面247Sのみが視認される)と、1つの上面247Cと、1つの下面247Dとを有する。導電性マイエナイト化合物の層245は、板状の基材242の放電領域全体に設置されている。
 なお、電極240A、240Bにおける放電領域は、板状の基材242の2つの主表面247U、247Lと、側面247Sを含む2つの側面と、1つの上面247Cとを合わせた領域に相当する。なお、板状の基材242の2つの主表面247U、247Lは、バルブ130の内表面との距離が通常1.0mm程度以上あるため放電する。
 このような電極240A、240Bの構成においても、前述のような本発明の効果が得られることは、当業者には明らかである。
 また、図5に示すように、板状の基材242は、台座260上に設置されても良い。この場合、導電性マイエナイト化合物の層245は、板状の基材242の2つの主表面247U、247Lと、2つの側面(図5では、1つの側面247Sのみが視認される)と、1つの上面247Cとに設置され、これらの面が電極240A、240Bの放電領域となる。
 なお、以上の例では、電極の基材142、242は、カップ状または板状の形状を有する。しかしながら、本発明において、基材の形状は、これらに限られない。例えば、基材の形状は、ロッド状、角錐状、または角柱状などであっても良い。すなわち、本発明において重要なことは、電極の放電領域の全体が導電性マイエナイト化合物の層で被覆されていることであり、これが満たされる限り、基材の形状は、いかなる形状であっても良い。
 ただし、電極の放電領域は、ガラス管の長手方向の断面のみでなく、長手方向にも有することが好ましい。放電領域が狭くなると、電流密度が増加し、イオン衝撃が増加するため、電極のスパッタが加速され、電極の寿命が低下してしまう。そのため、放電電流の上限が低下してしまうため好ましくない。
 次に、本発明の実施例について説明する。
 (実施例1)
 以下の方法により、放電領域に導電性マイエナイト化合物が設置された電極サンプルを製作した。
 (マイエナイト化合物の合成)
 炭酸カルシウム(CaCO)の粉末62.7gと、酸化アルミニウム(Al)の粉末37.3gとを、ボールミルを用いて混合した(CaCO:Al=12:7(モル比))。次に、この混合粉末を大気中、300℃/時間の昇温速度で、1350℃まで昇温し、この温度に6時間保持した。その後、この焼結体を、冷却速度300℃/時間で室温まで降温した。これにより、約72gの白色の固形物が得られた。
 これを自動乳鉢で粉砕し、粉末(以下、粉末A1と称する)を得た。
 レーザ回折散乱法(SALD-2100、島津製作所社製)により、この粉末A1の粒度を測定したところ、平均粒径は、20μmであった。また、X線回折により、粉末A1は、12CaO・7Al構造だけを有し、粉末A1は、(非導電性)マイエナイト化合物であることが確認された。
 (マイエナイト化合物への導電性の付与)
 次に、3gの粉末A1をカーボン製るつぼ(外径50mm、内径40mm、高さ50mm)に入れ、カーボン製の蓋をし、このるつぼを、酸素分圧が10-3Pa以下の雰囲気とした電気炉内に入れ、1300℃で2時間保持した。その後、るつぼを室温まで降温させた。
 これにより、約2.9gの黒緑色固形物が得られた。この固形物を自動乳鉢で粉砕し、粉末(以下、粉末A2と称する)を得た。
 前述のレーザ回折散乱法による測定の結果、粉末A2の平均粒径は、20μmであった。また、X線回折により、粉末A2がC12A7構造のみを有することを確認した。さらに、粉末A2について、光拡散反射スペクトルを測定し、クベルカムンク法により粉末A2の電子密度を求めた。その結果、粉末A2の電子密度は、1.0×1019cm-3であり、粉末A2は、導電性マイエナイト化合物であることが確認された。
 (ペーストの調製)
 次に、粉末A2を、イソプロピルアルコールを溶媒とした湿式ボールミルで粉砕した。粉砕後、吸引ろ過、80℃空気乾燥を経て、粉末(以下、粉末A3と称する)を得た。
 前述のレーザ回折散乱法による測定の結果、粉末A3の平均粒径は、約5μmであった。
 次に、粉末A3に、ブチルカルビトールアセテート、テルピネオール、およびエチルセルロースを、重量比で粉末A3:ブチルカルビトールアセテート:テルピネオール:エチルセルロースが6:2.4:1.2:0.4となるように加え、この混合物を自動乳鉢で混練した。その後、遠心混練機を用いて、混合物をさらに混練し、導電性マイエナイト化合物を含むペーストを得た。
 (電極サンプルの作製)
 外径2.7mm、内径2.4mm、長さ10mmの金属ニッケル製のカップを準備した。このカップの少なくとも内面全体および先端面(図2の端面142Cの部分)に、隙間が生じないようにして、ペーストを塗布した。
 このカップを100℃で1時間保持して乾燥させた後、以下のように焼成処理を行った。
 まず、カップをアルミナ板上に置載し、アルミナ板ごとカーボン容器内に設置した。
 カーボン容器に蓋をした状態で、カーボン容器を電気炉内に入れ、雰囲気を1×10-4Paまで排気した。その後、雰囲気を窒素でパージしてから、カーボン容器を15分間で500℃まで昇温した。この温度に30分以上保持し、バインダー成分を十分に分解除去させてから、カーボン容器を24分間で1300℃まで昇温し、この温度に30分間保持した。その後、カーボン容器を室温まで急冷した。
 これにより、放電領域全体に導電性マイエナイト化合物が形成されたカップ状電極のサンプルを得た(以下、「実施例1に係るサンプル」と称する)。
 サンプルの被覆部は、緑色を呈していた。導電性マイエナイト化合物の膜厚は、約100μmであった。X線回折により、被覆部には、12CaO・7Al構造だけが存在していることが確認された。また、光拡散反射スペクトルを測定し、クベルカムンク法により、被覆部の導電性マイエナイト化合物の電子密度を求めたところ、電子密度は、2.0×1019cm-3であった。
 (比較例1)
 前述の実施例1に係るサンプルの作製方法と同様の方法で、比較例1に係るサンプルを作製した。
 ただし、この比較例1では、導電性マイエナイト化合物のペーストは、カップの放電領域全体には設置しなかった。すなわち、ペーストは、カップの内面にのみ設置し、カップの先端面には設置しなかった。従って、比較例1に係るサンプルでは、完成後の電極のカップの先端面には、導電性マイエナイト化合物が設置されていない。
 (評価)
 前述のようにして得られた実施例1および比較例1に係るサンプルを電極として使用し、それぞれ、図2、図1に示すような蛍光ランプを試作した(それぞれ、「実施例1の蛍光ランプ」、「比較例1の蛍光ランプ」と称する)。また、これらの蛍光ランプを実際に作動させて、運転後の状態を評価した。
 蛍光ランプの両電極の間隔は、250mmとし、内径は、3mmとした。また、蛍光ランプは、放電電流を4mA(実効値)とし、1000時間、連続運転させた。
 運転後に、ガラス管への付着物の付着状況を観察した。その結果、比較例1の蛍光ランプでは、ガラス管の内壁の、電極カップの外面と対面する部分に、黒っぽい付着物が堆積していることが確認された。これに対して、実施例1の蛍光ランプでは、ガラス管の同様の位置には、特に異常は認められなかった。
 表1には、比較例1の蛍光ランプにおけるガラス管の、付着物が付着した部分でのEDX分析結果を示す。表1の数値の単位は原子組成百分率である。なお、表1には、比較のため、使用前のガラス管のEDX分析結果を同時に示した。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、ガラス管の付着物付着部分には、電極のカップ材料であるニッケルと、水銀とが相当量が含まれていることがわかる。この結果から、比較例1の蛍光ランプでは、運転中に、電極(カップ材料)が水銀や希ガスのイオンによるスパッタを受け、消耗していることが推察される。
 一方、実施例1の蛍光ランプでは、ガラス管の内壁に、付着物の付着は認められていない。
 表1には、確認のため、実施例1の蛍光ランプの使用後のガラス管のEDX分析結果を示す。分析場所は、比較例1の蛍光ランプと同位置である。分析結果において、ニッケル(および水銀)は、全く検出されていない。
 この結果から、実施例1の蛍光ランプでは、水銀や希ガスのイオンによる電極のスパッタが有意に抑制され、比較例1の蛍光ランプに比べて、より適正に使用し得ることが確認された。
 本出願は、2010年10月19日に日本国特許庁に出願された特願2010-234168に基づくものであり、その出願を優先権主張するものであり、その出願の全ての内容を参照することにより包含するものである。
 以上、本発明を実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能であることは言うまでもない。
 本発明は、放電用の電極を有する蛍光ランプ等に適用することができる。
 10   従来の蛍光ランプ
 20   放電空間
 30   バルブ
 40A、40B 電極
 42   基材
 42C  端面
 45   導電性マイエナイト化合物の層
 51   封止部
 55   リード
 60   保護膜
 70   蛍光体
 100  本発明による蛍光ランプ
 120  放電空間
 130  バルブ
 140A、140B 電極
 142  基材
 142C 端面
 145  導電性マイエナイト化合物の層
 151  封止部
 155  リード
 159  開口
 160  保護膜
 170  蛍光体
 200  別の蛍光ランプ
 240A、240B 電極
 242  基材
 245  導電性マイエナイト化合物の層
 247C 基材の上面
 247D 基材の下面
 247S 基材の側面
 247U、247L 基材の主表面
 260  台座。

Claims (5)

  1.  蛍光ランプ用の電極であって、
     当該電極は、イオンが衝突して放電に関与する放電領域を有し、該放電領域の全体にわたって、導電性マイエナイト化合物が設置されていることを特徴とする電極。
  2.  当該電極は、カップ状の形状を有することを特徴とする請求項1に記載の電極。
  3.  当該電極は、導電性の基材と、該基材の表面に設置された前記導電性マイエナイト化合物の層とを有することを特徴とする請求項1または2に記載の電極。
  4.  放電ガスが充填された内部空間を有するバルブと、
     該バルブの内表面に設置された蛍光体と、
     前記内部空間で放電を発生、維持させる電極と、
     を有する蛍光ランプであって、
     前記電極は、請求項1乃至3のいずれか一つに記載の電極であることを特徴とする蛍光ランプ。
  5.  前記放電ガスは、水銀と、アルゴン、ネオンおよびクリプトンからなる群から選ばれる少なくとも一種のガスとの混合ガスからなり、またはキセノン、キセノンとヘリウム、アルゴンと窒素、もしくは一酸化炭素からなることを特徴とする請求項4に記載の蛍光ランプ。
PCT/JP2011/073261 2010-10-19 2011-10-07 蛍光ランプ用の電極および蛍光ランプ WO2012053383A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010234168A JP2014006961A (ja) 2010-10-19 2010-10-19 蛍光ランプ用の電極および蛍光ランプ
JP2010-234168 2010-10-19

Publications (1)

Publication Number Publication Date
WO2012053383A1 true WO2012053383A1 (ja) 2012-04-26

Family

ID=45975100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073261 WO2012053383A1 (ja) 2010-10-19 2011-10-07 蛍光ランプ用の電極および蛍光ランプ

Country Status (3)

Country Link
JP (1) JP2014006961A (ja)
TW (1) TW201230136A (ja)
WO (1) WO2012053383A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2897523B2 (es) 2021-08-10 2022-07-18 Advanced Thermal Devices S L Cátodo basado en el material C12A7:e ''electride'' para la emisión termiónica de electrones y procedimiento para el empleo del mismo

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186550A (ja) * 1989-01-12 1990-07-20 Tdk Corp 電極材料
JP2000133201A (ja) * 1998-10-22 2000-05-12 Harison Electric Co Ltd 冷陰極蛍光ランプの電極
JP2001185078A (ja) * 1999-12-22 2001-07-06 Matsushita Electronics Industry Corp 低圧放電ランプおよびその製造方法
JP2005183172A (ja) * 2003-12-19 2005-07-07 Erebamu:Kk 放電ランプ
JP2005209382A (ja) * 2004-01-20 2005-08-04 Sony Corp 放電灯および放電灯用電極
JP2007059210A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 放電灯用冷陰極、冷陰極放電灯及び放電灯用冷陰極の製造方法
WO2009145200A1 (ja) * 2008-05-30 2009-12-03 旭硝子株式会社 蛍光ランプ
WO2011024924A1 (ja) * 2009-08-26 2011-03-03 旭硝子株式会社 放電ランプ用電極、放電ランプ用電極の製造方法、及び放電ランプ
WO2011024824A1 (ja) * 2009-08-25 2011-03-03 旭硝子株式会社 放電ランプ用電極、放電ランプ用電極の製造方法、及び放電ランプ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186550A (ja) * 1989-01-12 1990-07-20 Tdk Corp 電極材料
JP2000133201A (ja) * 1998-10-22 2000-05-12 Harison Electric Co Ltd 冷陰極蛍光ランプの電極
JP2001185078A (ja) * 1999-12-22 2001-07-06 Matsushita Electronics Industry Corp 低圧放電ランプおよびその製造方法
JP2005183172A (ja) * 2003-12-19 2005-07-07 Erebamu:Kk 放電ランプ
JP2005209382A (ja) * 2004-01-20 2005-08-04 Sony Corp 放電灯および放電灯用電極
JP2007059210A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 放電灯用冷陰極、冷陰極放電灯及び放電灯用冷陰極の製造方法
WO2009145200A1 (ja) * 2008-05-30 2009-12-03 旭硝子株式会社 蛍光ランプ
WO2011024824A1 (ja) * 2009-08-25 2011-03-03 旭硝子株式会社 放電ランプ用電極、放電ランプ用電極の製造方法、及び放電ランプ
WO2011024924A1 (ja) * 2009-08-26 2011-03-03 旭硝子株式会社 放電ランプ用電極、放電ランプ用電極の製造方法、及び放電ランプ

Also Published As

Publication number Publication date
TW201230136A (en) 2012-07-16
JP2014006961A (ja) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5534073B2 (ja) 蛍光ランプ
WO2011024924A1 (ja) 放電ランプ用電極、放電ランプ用電極の製造方法、及び放電ランプ
WO2011024821A1 (ja) 放電ランプ用電極およびその製造方法
EP2294604B1 (en) Emissive electrode materials for electric lamps and methods of making
WO2011024824A1 (ja) 放電ランプ用電極、放電ランプ用電極の製造方法、及び放電ランプ
WO2010074092A1 (ja) 高圧放電ランプ
WO2012053383A1 (ja) 蛍光ランプ用の電極および蛍光ランプ
WO2011024823A1 (ja) 放電ランプ用電極およびその製造方法
WO2011152185A1 (ja) 熱陰極蛍光ランプ用の電極、および熱陰極蛍光ランプ
JP2001167687A (ja) 電子放出材料、電極および放電灯
JP2001167731A (ja) 放電灯
JP2001167730A (ja) 放電灯
JP2014013669A (ja) 熱陰極蛍光ランプ
JP2013105527A (ja) 希ガス放電管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP