WO2012053222A1 - ボイラ及びその運転方法 - Google Patents

ボイラ及びその運転方法 Download PDF

Info

Publication number
WO2012053222A1
WO2012053222A1 PCT/JP2011/005901 JP2011005901W WO2012053222A1 WO 2012053222 A1 WO2012053222 A1 WO 2012053222A1 JP 2011005901 W JP2011005901 W JP 2011005901W WO 2012053222 A1 WO2012053222 A1 WO 2012053222A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
combustion
air
oxygen
boiler
Prior art date
Application number
PCT/JP2011/005901
Other languages
English (en)
French (fr)
Inventor
洋文 岡▲崎▼
倉増 公治
健一 越智
直哉 芋岡
パウリ デルニヤティン
Original Assignee
バブコック日立株式会社
フォータム コーポレーション
沖本 英雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社, フォータム コーポレーション, 沖本 英雄 filed Critical バブコック日立株式会社
Priority to AU2011319286A priority Critical patent/AU2011319286B2/en
Priority to CA2814859A priority patent/CA2814859A1/en
Priority to EP11834068.6A priority patent/EP2631539A1/en
Priority to US13/877,522 priority patent/US9476588B2/en
Publication of WO2012053222A1 publication Critical patent/WO2012053222A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/003Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07001Injecting synthetic air, i.e. a combustion supporting mixture made of pure oxygen and an inert gas, e.g. nitrogen or recycled fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07005Injecting pure oxygen or oxygen enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07006Control of the oxygen supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/12Recycling exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/24Controlling height of burner
    • F23N2237/26Controlling height of burner oxygen-air ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a boiler and an operation method thereof, and more particularly to a technique for switching from an air combustion mode to an oxyfuel combustion mode or vice versa at the time of startup or the like.
  • CO 2 carbon dioxide
  • Patent Document 1 air is separated into a gas mainly composed of oxygen and nitrogen, and the fuel is produced by a combustion gas in which the separated oxygen-rich gas (hereinafter referred to as oxygen-rich gas) and combustion exhaust gas are mixed. It has been proposed to burn in a so-called oxyfuel combustion mode and to separate and recover CO 2 from the combustion exhaust gas by increasing the CO 2 concentration in the combustion exhaust gas. Moreover, since the combustion exhaust gas is not enough at the time of the startup of a boiler, patent document 1 burns fuel with air, and after the startup is completed, the air is switched to a mixed gas of oxygen-rich gas and combustion exhaust gas to burn the fuel. I try to let them.
  • oxygen-rich gas oxygen-rich gas
  • combustion exhaust gas since the combustion exhaust gas is not enough at the time of the startup of a boiler, patent document 1 burns fuel with air, and after the startup is completed, the air is switched to a mixed gas of oxygen-rich gas and combustion exhaust gas to burn the fuel. I try to let them.
  • Patent Document 2 since the combustion gas contains a large amount of CO 2 having a large specific heat in the oxyfuel combustion mode, the temperature rise time of the fuel ejected from the fuel nozzle becomes long and the flame becomes unstable. It has been proposed to increase the oxygen concentration of the working gas.
  • Patent Documents 1 and 2 consider how to control air, combustion exhaust gas, and oxygen-rich gas when switching air used as combustion gas to a mixed gas of combustion exhaust gas and oxygen-rich gas. Absent. Therefore, when the combustion gas is switched between the air combustion mode in which the fuel is burned with air and the oxyfuel combustion mode, the combustion may become unstable.
  • the problem to be solved by the present invention is to switch between air used as a combustion gas and a mixed gas of combustion exhaust gas and oxygen-rich gas while maintaining stable combustion.
  • the present invention burns fossil fuel with a first combustion gas and a second combustion gas that compensates for insufficient oxygen in the first combustion gas.
  • Method for operating a boiler by switching between an air combustion mode using air as the combustion gas for the first gas and an oxyfuel combustion mode using a mixed gas of fossil fuel combustion exhaust gas and oxygen-rich gas as the first and second combustion gases.
  • an oxygen-rich gas is mixed with the air of the first combustion gas used in the air combustion mode.
  • the air used as the first combustion gas is switched to the mixed gas of the combustion exhaust gas and the oxygen rich gas at the time of start-up or the like, after the oxygen rich gas is mixed with the air, the air and the combustion exhaust gas are replaced. To do.
  • the oxygen concentration of the first combustion gas used for primary combustion is maintained high. Therefore, since the ignitability of the fuel can be maintained high, stable combustion can be maintained. This is the same when the mixed gas used as the first combustion gas is switched to air.
  • the oxygen concentration of the first combustion gas can be made higher than the oxygen concentration of air in the process of switching between the air combustion mode and the oxyfuel combustion mode.
  • the oxygen-rich gas is mixed with the air used as the first combustion gas, and then the oxygen-rich gas is mixed with the air used as the second combustion gas. it can.
  • the mixed gas used as the second combustion gas is switched to air, and then the oxygen-rich gas mixed with the air used as the first combustion gas is supplied. Stop.
  • the oxygen concentrations of the first and second combustion gases are made the same, or the oxygen concentration of the first combustion gas is set for the second combustion. It can be made lower than the oxygen concentration of the gas.
  • the first combustion gas is used as a fossil fuel, for example, a carrier gas for pulverized coal, depending on the type of pulverized coal, spontaneous ignition may occur during the transfer. In this case, the spontaneous combustion is prevented by lowering the oxygen concentration of the first combustion gas.
  • a part of 2nd combustion gas with high oxygen concentration is supplied to a primary combustion area
  • a boiler for carrying out the operation method of the present invention fossil fuel, a first combustion gas for burning the fossil fuel, and a second combustion gas for supplementing deficient oxygen in the first combustion gas are supplied.
  • An air combustion mode using air as the first and second combustion gases, and oxygen using a mixed gas of fossil fuel combustion exhaust gas and oxygen-rich gas as the first and second combustion gases In a boiler provided with a control device that controls an operation for switching the combustion mode, the control device is a process of switching the air combustion mode from the oxyfuel combustion mode, and oxygen-rich gas is contained in the air of the first combustion gas used in the air combustion mode.
  • the flow rate of air, the flow rate of combustion exhaust gas, and the flow rate of oxygen-rich gas are controlled so as to be mixed.
  • FIG. 2 is a diagram illustrating an operation state according to the first embodiment, in which (a) is a time chart illustrating a time change of oxygen concentration, and (b) is a time chart illustrating a time change of air, exhaust gas, and oxygen-rich gas amount. It is a figure which shows the other driving
  • FIG. It is a block diagram of the boiler plant containing the boiler of Embodiment 2.
  • FIG. It is a conceptual diagram of the control apparatus with which the boiler of Embodiment 2 is equipped. It is a block diagram of the boiler plant containing the boiler of Embodiment 3.
  • FIG. It is a conceptual diagram of the control apparatus with which the boiler of Embodiment 3 is equipped. It is a figure which shows the driving
  • FIG. 4 It is a figure which shows the other driving
  • the oxyfuel boiler 1 of Embodiment 1 is provided in a boiler plant.
  • the boiler 1 can be operated by switching between an air combustion mode in which air is used as the combustion gas and an oxyfuel combustion mode in which a mixed gas of oxygen-rich gas and combustion exhaust gas is used as the combustion gas.
  • the boiler 1 is supplied with fossil fuel, for example, pulverized coal, a first combustion gas for burning the pulverized coal, and a second combustion gas for supplementing deficient oxygen in the first combustion gas. Is provided.
  • a burner 11 for burning pulverized coal is provided on the furnace wall of the furnace 10.
  • a fuel supply pipe 20 that supplies pulverized coal to the burner 11 using the first combustion gas as a carrier gas is connected to the burner 11.
  • the burner 11 is connected to a combustion gas supply pipe 30 that supplies the burner 11 with a second combustion gas that compensates for insufficient oxygen in the first combustion gas.
  • a hopper 21 that stores coal a coal supply machine 22 that supplies the coal stored in the hopper 21 to the pulverizer 23, and coal supplied from the coal supply machine 22 are set.
  • a pulverized coal supply device composed of a pulverizer 23 for pulverizing into sizes.
  • Connected upstream of the fuel supply pipe 20 is a carrier gas supply pipe 24 that supplies the first combustion gas as a carrier gas to the pulverizer 23.
  • a bypass pipe 24b that bypasses the supply pipe 24 is disposed.
  • the supply pipe 24 and the bypass pipe 24b are provided with flow rate regulators 25a and 25b capable of adjusting the supply amount of the carrier gas flowing through the respective pipes.
  • the flow rate regulators 25a and 25b are adapted to adjust the flow rate of the carrier gas flowing through the respective pipes.
  • the flow rate adjusters 25a and 25b output a valve opening signal for calculating the flow rate of the carrier gas to the control device 100 described later.
  • the supply pipe 30 that supplies the second combustion gas to the burner 11 is provided with a flow rate regulator 32 that adjusts the supply amount of the second combustion gas.
  • the flow rate regulator 32 outputs a valve opening signal for calculating the flow rate of the second combustion gas flowing through the pipe to the control device 100 described later.
  • the supply pipes 24 and 30 are connected to oxygen-rich gas supply pipes 26 and 33, respectively.
  • the supply pipes 26 and 33 are provided with flow rate regulators 27 and 34 that can adjust the supply amount of the oxygen-rich gas flowing through the respective pipes.
  • the supply pipe 26 mixes oxygen-rich gas with the carrier gas upstream of the pulverizer 23.
  • the flow rate regulators 27 and 34 are configured to output a valve opening signal for calculating the flow rate of the oxygen-rich gas flowing in the pipe to the control device 100 described later.
  • the oxygen production apparatus 18 that generates oxygen-rich gas is connected to the supply pipes 26 and 33.
  • the oxygen production apparatus 18 for example, a cryogenic separation apparatus that separates air into a gas mainly composed of oxygen and nitrogen can be used. Thereby, when burning pulverized coal in oxyfuel combustion mode, oxygen required for combustion of pulverized coal can be supplied to the furnace 10.
  • the combustion exhaust gas obtained by burning pulverized coal in the furnace 10 is cooled by the heat exchanger 13 through the flue 12.
  • the combustion exhaust gas discharged from the heat exchanger 13 is introduced into the chimney 15 and the CO 2 recovery device 16.
  • the CO 2 recovery device 16 for example, a known device that liquefies CO 2 in the exhaust gas and separates it from the exhaust gas can be used.
  • the flue 12 is provided with an exhaust gas purification device (not shown) so as to purify the exhaust gas introduced into the chimney 15 and the CO 2 recovery device 16.
  • the combustion exhaust gas downstream of the heat exchanger 13 is branched to the pipe 52 by the exhaust gas fan 51.
  • the pipe 52 is provided with a flow rate regulator 53 that adjusts the branching amount of the exhaust gas.
  • the flow rate regulator 53 outputs a valve opening signal for calculating the flow rate of the exhaust gas flowing through the pipe to the control device 100 described later.
  • the exhaust gas that has passed through the flow rate regulator 53 is supplied to the supply pipes 24 and 30 via the pipe 50.
  • the flow rate of the exhaust gas supplied to the carrier gas supply pipe 24 is adjusted by the flow rate regulators 25a and 25b.
  • the flow rate of the exhaust gas supplied to the second combustion gas supply pipe 30 is adjusted by a flow rate regulator 32.
  • an air combustion mode is performed in which pulverized coal is burned with air.
  • air is supplied from the air fan 41 to the supply pipe 40 via the pipe 42.
  • the air supply amount can be adjusted by the flow rate regulator 43.
  • the flow rate regulator 43 is configured to output a valve opening signal for calculating the air supply amount to the control device 100 described later.
  • the boiler 1 has a control for controlling an operation of switching and supplying the carrier gas, air as the second combustion gas, and a mixed gas of pulverized coal combustion exhaust gas and rich oxygen gas to each other.
  • An apparatus 100 is provided.
  • the control device 100 calculates the flow rate of the fluid flowing down each flow regulator based on the valve opening signal input from the flow regulators 43, 32, 25a, 25b, 27, 34, 53. Yes.
  • control device 100 outputs a command signal for adjusting the valve opening degree of each flow rate regulator 43, 32, 25a, 25b, 27, 34, 53 based on the calculated flow rate, and each flow rate regulator 43, By adjusting the valve opening degree of 32, 25a, 25b, 27, 34, 53, the flow rate of each part is adjusted.
  • the control device 100 determines the flow rate regulators 43, 32, 25 a, 25 b, 27 based on the comparison between each set value determined in advance along the operation procedure for switching from the air combustion mode to the oxyfuel combustion mode. , 34 and 53, command signals for adjusting the respective valve openings are output. Thereby, combustion of the pulverized coal in the furnace 10 can be switched from the air combustion mode to the oxyfuel combustion mode.
  • FIG. 3 is a time chart showing an operation of switching from the air combustion mode to the oxyfuel combustion mode, such as when the boiler 1 is started.
  • FIG. 3A is a time chart showing temporal changes in the oxygen concentrations of the carrier gas and the second combustion gas
  • FIG. 3B shows temporal changes in the flow rates of air, exhaust gas, and oxygen. It is a time chart.
  • the oxygen concentration (A) in FIG. 3A is the oxygen concentration of the carrier gas at point A in FIG. 1
  • the oxygen concentration (B) is the oxygen in the second combustion gas at point B in FIG. Concentration.
  • the air fan 41 is driven to perform the air combustion mode.
  • the flow regulators 53, 27, and 34 are closed, and the flow regulators 43, 32, 25a, and 25b are set to the set opening.
  • the flow rate regulator 27 is set to a set opening degree, and oxygen-rich gas is mixed with the air used as the carrier gas.
  • the oxygen concentration of the carrier gas at the point A in FIG. 1 is maintained at a concentration exceeding the oxygen concentration of air, for example.
  • the exhaust gas fan 51 is driven to branch the exhaust gas, and the flow rate regulator 53 is opened stepwise to start exhaust gas circulation.
  • the flow rate regulator 34 is opened stepwise simultaneously with the circulation of the combustion exhaust gas, and the oxygen-rich gas is supplied to the supply pipe 30 through which the second combustion gas flows.
  • the flow regulator 43 is closed gradually, the air fan 41 is stopped, and supply of air is stopped, so that the first used as the carrier gas supplied to the furnace 10 is used.
  • the combustion gas and the second combustion gas are switched from air to a mixed gas of exhaust gas and oxygen-rich gas, and the furnace 10 is switched from the air combustion mode to the oxyfuel combustion mode.
  • the oxygen content gas is supplied to the second combustion gas by opening the flow rate regulator 34 step by step simultaneously with the exhaust gas circulation. It is possible to supply oxygen-rich gas after the start.
  • the oxygen concentration of the carrier gas (first combustion gas) used for the primary combustion can be kept high in the process of switching from the air combustion mode to the oxyfuel combustion mode, such as at startup, ignition of pulverized coal
  • the stability can be improved and stable combustion can be maintained.
  • the oxygen concentration decreases and the ignitability decreases. Therefore, by mixing the exhaust gas after mixing the oxygen-rich gas with the air and increasing the oxygen concentration of the air, pulverized coal It can suppress that the ignitability of this falls, and pulverized coal can be burned stably.
  • the concentration of gas components such as oxygen, carbon dioxide, and water vapor in the combustion exhaust gas varies depending on the extraction amount of the exhaust gas and the supply amount of air and oxygen,
  • the oxygen concentration of combustion gas tends to fluctuate.
  • the formation of the flame becomes unstable due to blown off or misfiring in the fuel flame ejected from the burner 11 of the furnace 10.
  • the amount of heat transfer generated in the boiler 1 becomes uneven, and it may be difficult to obtain a desired amount of steam. Therefore, when switching between the air combustion mode and the oxyfuel combustion mode, the flame can be stably formed by keeping the oxygen concentration of the carrier gas used for the primary combustion high. Therefore, for example, there is no need to supplement with oil or gas when switching from the air combustion mode to the oxyfuel combustion mode, and the equipment cost required for supplemental combustion can be reduced.
  • the oxygen concentration of the combustion gas is 22 to 36%.
  • the oxygen concentration is set higher than that of air.
  • the upper limit of oxygen concentration is set to about 32% in order to prevent spontaneous ignition of pulverized coal during transportation.
  • the oxygen concentration is constant because the combustion gas is air, whereas in oxygen combustion, the oxygen concentration of the combustion gas varies depending on the variation of the oxygen concentration of the combustion exhaust gas. For example, when the oxygen concentration of the combustion exhaust gas is reduced, the combustion exhaust gas having a reduced oxygen concentration is supplied to the furnace 10 as a combustion gas. For this reason, since the oxygen concentration in the furnace 10 further decreases, it is preferable to keep the oxygen concentration of the combustion gas high.
  • Embodiment 1 demonstrated the example which switches from air combustion mode to oxyfuel combustion mode, However, the procedure mentioned above is performed in reverse, that is, the flow rate adjustment procedure in FIG. It is possible to switch from combustion to air combustion.
  • the exhaust gas increase rate can be maximized, and thereafter, the exhaust gas can be gradually increased to switch from the air combustion mode to the oxyfuel combustion mode.
  • nitrogen is not included in the combustion gas, and nitrogen in the exhaust gas generated when the fossil fuel is burned in the furnace 10 remains in the fuel-derived nitrogen. Therefore, the amount of exhaust gas can be reduced compared to the air combustion mode. In addition, since no nitrogen oxides are generated due to nitrogen in the air, the amount of nitrogen oxides produced is reduced.
  • FIG. 2 The block diagram of the boiler plant provided with the boiler 1 of Embodiment 2 is shown in FIG.
  • the second embodiment differs from the first embodiment in that the second combustion gas is branched at the inlet side of the burner 11, one branched combustion gas is supplied to the burner 11, and the other combustion gas is piped. This is the point that the pulverized coal is burned in two stages by being supplied to the combustion gas supply port 17 via the. Further, the oxygen-rich gas supply pipe 26 is connected to the fuel supply pipe 20 connected to the downstream side of the pulverizer 23. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the combustion gas for the two-stage combustion is supplied from the supply port 17 provided above the burner 11 of the furnace 10, the burner 11 is burned with a small amount of oxygen, and the furnace 10 is downstream of the burner 11. The remaining oxygen is supplied from the installed supply port 17. And, the oxygen-deficient reduction zone can be formed in the furnace 10. And the nitrogen oxide produced
  • the oxygen jet gas is mixed with the carrier gas downstream of the pulverizer 23
  • the oxygen concentration of the carrier gas introduced into the pulverizer 23 is kept low, so the pulverized coal spontaneously ignites in the pulverizer 23. Can be suppressed.
  • the third embodiment differs from the first embodiment in that a pipe 35 branched from the supply pipe 30 is connected to the burner 11 side of the fuel supply pipe 20 through which the pulverized coal is air-carrying, and the carrier gas accompanying the pulverized coal is used.
  • the second combustion gas is supplied.
  • the oxygen concentration of the carrier gas is controlled to be lower than the oxygen concentration of the second combustion gas. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • FIG. 9A is a time chart showing temporal changes in oxygen concentrations of the carrier gas and the second combustion gas
  • FIG. 9B is a time chart showing temporal changes in the flow rates of air, exhaust gas, and oxygen. It is.
  • the oxygen concentration (A) in FIG. 9A is the oxygen concentration of the carrier gas at point A in FIG. 7, and the oxygen concentration (B) is the oxygen in the second combustion gas at point B in FIG. Concentration.
  • the air fan 41 When the exhaust gas or oxygen-rich gas cannot be obtained sufficiently, such as when starting up, the air fan 41 is driven to perform the air combustion mode. At this time, the flow regulators 53, 27, and 34 are closed, and the flow regulators 43, 32, 25a, and 25b are set to the set opening. Thereby, pulverized coal and air are supplied to the furnace 10 to start the air combustion mode. Next, when necessary exhaust gas or the like is obtained in the air combustion mode, the flow rate regulator 27 is set to a set opening degree, and oxygen-rich gas is mixed with air used as the carrier gas. As a result, as shown in FIG. 9A, the oxygen concentration of the carrier gas at the point A in FIG. 7 is maintained at a concentration exceeding the oxygen concentration of air, for example.
  • the exhaust gas fan 51 is driven to branch the exhaust gas, and the flow rate regulator 53 is opened stepwise to start exhaust gas circulation. Further, simultaneously with the circulation of the exhaust gas, the flow rate regulator 34 is opened stepwise to supply the oxygen-rich gas to the supply pipe 30 through which the second combustion gas flows. And according to the opening degree of the flow regulator 53, the flow regulator 43 is closed gradually, the air fan 41 is stopped, and supply of the air is stopped by stopping the air fan 41 and the second combustion.
  • the working gas is switched from air to a mixed gas of exhaust gas and oxygen-rich gas, and the furnace 10 is switched from the air combustion mode to the oxyfuel combustion mode.
  • valve opening of the flow rate regulator 27 is gradually reduced, Reduce the oxygen concentration of the carrier gas step by step.
  • the valve opening degree of the flow rate regulator 27 is set so that the oxygen concentration of the carrier gas during oxyfuel combustion is lower than the oxygen concentration of air, for example.
  • the oxygen concentration of the carrier gas can be set as appropriate depending on the type of pulverized coal and the like, and can be set below the oxygen concentration of the air, for example, 18% or less.
  • the exhaust gas increase rate is maximized. Thereafter, the combustion exhaust gas is gradually increased, and the combustion exhaust gas can be supplied in a stepped manner.
  • the oxygen concentration of the carrier gas and the second combustion gas is reduced at the start of the supply of the combustion exhaust gas, but since the primary combustion is performed by the carrier gas in which the oxygen-rich gas is mixed with the air, the oxygen of the carrier gas Concentration is maintained high and flame stability can be maintained.
  • region of pulverized coal can be suppressed, the heat-transfer characteristic in the furnace 10 becomes favorable, and heat absorption can be performed with high efficiency.
  • the second combustion gas is supplied to the fuel supply pipe 20 to supplement the oxygen in the carrier gas.
  • the oxygen-rich gas is supplied directly to the fuel supply pipe 20 to reduce the oxygen in the carrier gas. Can be supplemented.
  • FIG. 11 A burner 11 shown in FIG. 11 includes a fuel nozzle 61 that is supplied with pulverized coal accompanied by a carrier gas and burned at the center, and air that supplies a combustion gas concentrically around the outer periphery of the fuel nozzle 61.
  • the structure includes nozzles 62 and 63, and the wind box 92 is installed on the furnace wall 93.
  • a combustion gas nozzle 64 is provided on the tube wall of the combustion nozzle 61, and an additional combustion gas 68 having a high oxygen concentration is supplied into the fuel nozzle 61 from a supply source (not shown). .
  • an additional combustion gas 68 is jetted vertically to the pulverized coal flowing through the fuel nozzle 61 and the carrier gas flow 67. Therefore, mixing of the additional combustion gas 68 having a high oxygen concentration and the carrier gas is promoted. Furthermore, by providing the distributor 65 that divides the flow path inside the fuel nozzle 61, the high-concentration oxygen-containing gas is supplied only to the vicinity of the outer peripheral partition wall 66 of the fuel nozzle 61.
  • the fuel flowing around the outer periphery of the fuel nozzle 61 is a portion that starts to ignite first after being ejected from the burner 11 into the furnace 10, and burns fuel in the furnace 10 to form a flame contour 91. For this reason, the flame stability is improved by increasing the oxygen concentration only in the vicinity of the outer peripheral partition wall 66 of the fuel nozzle 61.
  • the gas supply amount can be reduced as compared with the case where the overall oxygen concentration is increased. Further, since the residence time after the high-concentration oxygen-containing gas is mixed with the fuel is short, abnormal combustion in the fuel nozzle 61 hardly occurs.
  • the combustion gas is all supplied from the burner 11.
  • the combustion gas is branched and a part is supplied from the supply port 17 downstream of the burner 11. You may do it.
  • the burner 11 burns fuel with a small amount of oxygen and supplies the remaining deficient oxygen from the supply port 17 of the furnace 10 downstream of the burner 11, thereby forming an oxygen-deficient reduction zone in the furnace 10. Nitrogen oxides generated from the nitrogen content in the fuel can be reduced by passing the gas in the furnace through this reduction zone.
  • FIG. 4 The block diagram of the boiler plant provided with the boiler 1 of Embodiment 4 is shown to FIG.
  • the fourth embodiment is different from the first embodiment in that oxygen-rich gas is mixed through a pipe 33b including a flow rate regulator 34 to a pipe 50 through which branched combustion exhaust gas flows. Furthermore, oxygen-rich gas is supplied to the fuel supply pipe 20 on the downstream side of the pulverizer 23. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • FIG. 14A is a time chart showing the time change of the oxygen concentration of the carrier gas and the second combustion gas
  • FIG. 14B is the time showing the time change of the flow rates of air, combustion exhaust gas, and oxygen. It is a chart.
  • the oxygen concentration (A) in FIG. 14A is the oxygen concentration of the carrier gas at point A in FIG. 12, and the oxygen concentration (B) is the oxygen in the second combustion gas at point B in FIG. Concentration.
  • the air fan 41 is driven to perform the air combustion mode.
  • the flow regulators 53, 27, and 34 are closed, and the flow regulators 43, 32, 25a, and 25b are set to the set opening.
  • the flow rate regulator 27 is set to a set opening degree, and oxygen-rich gas is mixed with air used as the carrier gas.
  • the oxygen concentration of the carrier gas at the point A in FIG. 12 is maintained at a concentration exceeding the oxygen concentration of air, for example.
  • the exhaust gas fan 51 is driven to branch the combustion exhaust gas, and the flow rate regulator 53 is opened stepwise to start exhaust gas circulation. Further, simultaneously with the circulation of the combustion exhaust gas, the flow rate regulator 34 is opened stepwise to supply oxygen-rich gas to the exhaust gas flowing through the pipe 50. And according to the opening degree of the flow regulator 53, the flow regulator 43 is closed gradually, the air fan 41 is stopped, and supply of air is stopped. Thereby, the carrier gas and the second combustion gas supplied to the furnace 10 are switched from air to a mixed gas of exhaust gas and oxygen-rich gas, and the furnace 10 is switched from the air combustion mode to the oxyfuel combustion mode.
  • the flow rate regulator 34 is opened, and after a set time has elapsed, the flow rate regulator 27 is closed, and supply of the oxygen-rich gas to the carrier gas through the supply pipe 26 is stopped. That is, in Embodiment 4, oxygen-rich gas is mixed with the exhaust gas before branching to the carrier gas and the second combustion gas, so that the oxygen of the carrier gas and the second combustion gas is used in the oxyfuel combustion mode.
  • the concentration can be adjusted with one flow regulator 34.
  • the first half requires control of both the flow rate regulator 27 and the flow rate regulator 34 for adjusting the supply amount of the oxygen-rich gas.
  • the flow rate regulator 34 it is only necessary to control the flow rate regulator 34, and the oxygen concentrations of the carrier gas and the second combustion gas are matched, so that the control becomes easy.
  • the exhaust gas increase rate can be maximized, and then the exhaust gas can be gradually increased to supply the exhaust gas in steps.
  • Embodiment 5 The block diagram of the boiler plant provided with the boiler 1 of Embodiment 5 is shown to FIG. Embodiment 5 is different from Embodiment 1 in that gas or oil is used as fuel instead of pulverized coal. That is, since the gas and oil are supplied without using the carrier gas (first combustion gas), the first combustion gas is not used as the carrier gas, and is supplied to the burner 11 separately from the fossil fuel. It is a point. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the fuel supply pipe 20a is connected to the burner 11.
  • the fuel supply pipe 20a is supplied with natural gas or heavy oil, which is a gas or liquid fossil fuel, from a supply facility (not shown).
  • the first combustion gas is supplied from the supply pipe 30 to the burner 11 to burn the fuel. Further, a supply port 17 through which the second combustion gas is supplied is provided on the downstream side of the burner 11 so as to supplement deficient oxygen with the second combustion gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

 第1の燃焼用ガスと、第1の燃焼用ガスの不足酸素を補う第2の燃焼用ガスとにより化石燃料を燃焼させ、第1及び第2の燃焼用ガスとして空気を用いる空気燃焼モードと、第1及び第2の燃焼用ガスとして化石燃料の燃焼排ガスと富酸素ガスとの混合ガスを用いる酸素燃焼モードを切り替えて運転するボイラの運転方法において、空気燃焼モードと酸素燃焼モードを切り替える過程で、空気燃焼モードに用いる第1の燃焼用ガスの空気に富酸素ガスを混合することにより、安定した燃焼を維持したまま、空気燃焼モードと酸素燃焼モードを切り換えることができる。

Description

ボイラ及びその運転方法
 本発明は、ボイラ及びその運転方法に係り、特に、起動時等において、空気燃焼モードから酸素燃焼モードに、又はその逆に切り替えるときの技術に関する。
 地球温暖化等の環境負荷を低減するため、社会的に、二酸化炭素(CO)の排出量削減が要請されている。COは、例えば、石炭、石油、天然ガスなどの化石燃料などを燃焼すると発生するから、化石燃料を燃焼するボイラは、燃焼で発生するCOの排出量を削減することが望まれている。
 そこで、特許文献1では、空気を酸素と窒素を主体とするガスに分離し、分離された酸素に富んだガス(以下、富酸素ガスという。)と燃焼排ガスを混合した燃焼用ガスで燃料を燃焼させる、いわゆる酸素燃焼モードで燃焼し、燃焼排ガス中のCO濃度を高くして燃焼排ガスからCOを分離して回収することが提案されている。また、特許文献1は、ボイラの起動時は、燃焼排ガスが十分でないことから、空気で燃料を燃焼させ、起動完了後は、空気を富酸素ガスと燃焼排ガスの混合ガスに切り替えて燃料を燃焼させるようにしている。
 一方、特許文献2は、酸素燃焼モードは、比熱の大きなCOが燃焼用ガスに多く含まれるので、燃料ノズルから噴出された燃料の昇温時間が長くなり火炎が不安定になるから、燃焼用ガスの酸素濃度を高くすることが提案されている。
特開2001-336736号公報 特開平6-313509号公報
 しかしながら、特許文献1、2は、燃焼用ガスとして用いる空気を燃焼排ガスと富酸素ガスの混合ガスに切り替えるときに、空気と燃焼排ガスと富酸素ガスとをどのように制御するかについて配慮されていない。したがって、燃料を空気で燃焼する空気燃焼モードと酸素燃焼モードで燃焼用ガスを切り換えるときに、燃焼が不安定になるおそれがある。
 本発明が解決しようとする課題は、安定した燃焼を維持したまま、燃焼用ガスとして用いる空気と、燃焼排ガスと富酸素ガスの混合ガスとを切り替えることにある。
 上記の課題を解決するため、本発明は、第1の燃焼用ガスと、第1の燃焼用ガスの不足酸素を補う第2の燃焼用ガスとにより化石燃料を燃焼させ、第1及び第2の燃焼用ガスとして空気を用いる空気燃焼モードと、第1及び第2の燃焼用ガスとして化石燃料の燃焼排ガスと富酸素ガスとの混合ガスを用いる酸素燃焼モードを切り替えて運転するボイラの運転方法において、空気燃焼モードと前記酸素燃焼モードを切り替える過程で、空気燃焼モードに用いる第1の燃焼用ガスの空気に富酸素ガスを混合することを特徴とする。
 これによれば、例えば、起動時等、第1の燃焼用ガスとして用いる空気を燃焼排ガスと富酸素ガスの混合ガスに切り替える場合、空気に富酸素ガスを混合した後、空気と燃焼排ガスを置換する。その結果、燃焼用ガスを空気から混合ガスに切り替える過程は、1次燃焼に用いられる第1の燃焼用ガスの酸素濃度を高く維持される。そのため、燃料の着火性を高く維持できるから、安定した燃焼を維持できる。これは、第1の燃焼用ガスとして用いる混合ガスを空気に切り替える場合も同様である。
 この場合において、空気燃焼モードと酸素燃焼モードを切り換える過程で、第1の燃焼用ガスの酸素濃度を空気の酸素濃度よりも高くすることができる。
 また、空気燃焼モードと酸素燃焼モードを切り換える過程で、空気と燃焼排ガスの流量を次第に変化させて切り替えることができる。これによれば、酸素濃度が異なる空気と燃焼排ガスの置換が緩やかになり、第1と第2の燃焼用ガスの酸素濃度が急に変化することを抑制できるから、化石燃料を安定して燃焼できる。
 なお、空気燃焼モードから酸素燃焼モードを切り換える過程は、第1の燃焼用ガスとして用いる空気に富酸素ガスを混合した後、第2の燃焼用ガスとして用いる空気に富酸素ガスを混合することができる。一方、酸素燃焼モードから空気燃焼モードを切り換える過程は、第2の燃焼用ガスとして用いる混合ガスを空気に切り替えた後、第1の燃焼用ガスとして用いる空気に混合される富酸素ガスの供給を停止する。
 また、化石燃料を混合ガスで燃焼する酸素燃焼モードのときは、第1と第2の燃焼用ガスの酸素濃度を同じにする、又は第1の燃焼用ガスの酸素濃度を第2の燃焼用ガスの酸素濃度よりも低くすることができる。例えば、第1の燃焼用ガスを化石燃料、例えば、微粉炭の搬送ガスとして用いる場合、微粉炭の種類によっては、搬送途中で自然着火するおそれがある。この場合、第1の燃焼用ガスの酸素濃度低くして自然着火を防止する。そして、酸素濃度が高い第2の燃焼用ガスの一部を1次燃焼領域に供給して第1の燃焼用ガスの不足酸素を補う。これにより、化石燃料の着火性を向上でき、安定した燃焼を確保できる。
 また、本発明の運転方法を実施するボイラとしては、化石燃料と、化石燃料を燃焼させる第1の燃焼用ガスと、第1の燃焼用ガスの不足酸素を補う第2の燃焼用ガスが供給される火炉を備え、第1及び第2の燃焼用ガスとして空気を用いる空気燃焼モードと、第1及び第2の燃焼用ガスとして化石燃料の燃焼排ガスと富酸素ガスとの混合ガスを用いる酸素燃焼モードを切り替える動作を制御する制御装置とを備えるボイラにおいて、制御装置は、酸素燃焼モードから空気燃焼モードを切り替える過程で、空気燃焼モードに用いる第1の燃焼用ガスの空気に富酸素ガスが混合されるように、空気の流量と燃焼排ガスの流量と富酸素ガスの流量を制御することを特徴とする。
 本発明によれば、安定した燃焼を維持したまま、燃焼用ガスとして用いる空気と、燃焼排ガスと富酸素ガスの混合ガスとを切り替えることができる。
実施形態1のボイラを含むボイラプラントのブロック図である。 実施形態1のボイラに備えられる制御装置の概念図である。 実施形態1の運転状態を示す図であり(a)は酸素濃度の時間変化を示すタイムチャートであり、(b)は空気、排ガス及び富酸素ガス量の時間変化を示すタイムチャートである。 実施形態1の他の運転状態を示す図であり、(a)は酸素濃度の時間変化を示すタイムチャートであり、(b)は空気、排ガス及び富酸素ガス量の時間変化を示すタイムチャートである。 実施形態2のボイラを含むボイラプラントのブロック図である。 実施形態2のボイラに備えられる制御装置の概念図である。 実施形態3のボイラを含むボイラプラントのブロック図である。 実施形態3のボイラに備えられる制御装置の概念図である。 実施形態3の運転状態を示す図であり、(a)は酸素濃度の時間変化を示すタイムチャートであり、(b)は空気、排ガス及び富酸素ガス量の時間変化を示すタイムチャートである。 実施形態3の他の運転状態を示す図であり、(a)は酸素濃度の時間変化を示すタイムチャートであり、(b)は空気、排ガス及び富酸素ガス量の時間変化を示すタイムチャートである。 実施形態3のボイラに好適なバーナの断面図である。 実施形態4のボイラを含むボイラプラントのブロック図である。 実施形態4のボイラに備えられる制御装置の概念図である。 実施形態4の運転状態を示す図であり、(a)は酸素濃度の時間変化を示すタイムチャートであり、(b)は空気、排ガス及び富酸素ガス量の時間変化を示すタイムチャートである。 実施形態4の他の運転状態を示す図であり、(a)は酸素濃度の時間変化を示すタイムチャートであり、(b)は空気、排ガス及び富酸素ガス量の時間変化を示すタイムチャートである。 実施形態5のボイラを含むボイラプラントのブロック図である。 実施形態5のボイラに備えられる制御装置の概念図である。
 以下、本発明を実施の形態に基づいて説明する。
(実施形態1)
 図1に示すように、実施形態1の酸素燃焼式のボイラ1は、ボイラプラントに設けられている。ボイラ1は、燃焼用ガスに空気を用いる空気燃焼モードと、燃焼用ガスに富酸素ガスと燃焼排ガスの混合ガスを用いる酸素燃焼モードを切り換えて運転できるようになっている。ボイラ1には、化石燃料、例えば、微粉炭と、微粉炭を燃焼させる第1の燃焼用ガスと、第1の燃焼用ガスの不足酸素を補う第2の燃焼用ガスが供給される火炉10が備えられている。火炉10の炉壁には、微粉炭を燃焼させるバーナ11が設けられている。
 バーナ11には、第1の燃焼用ガスを搬送ガスとして微粉炭をバーナ11に供給する燃料供給管20が接続されている。また、バーナ11には、第1の燃焼用ガスの不足酸素を補う第2の燃焼用ガスをバーナ11に供給する燃焼用ガスの供給管30が接続されている。燃料供給管20の管路の途中には、石炭を貯蔵するホッパ21と、ホッパ21に貯蔵した石炭を粉砕機23に供給する石炭供給機22と、石炭供給機22から供給された石炭を設定サイズに粉砕する粉砕機23とから構成される微粉炭供給装置が配置されている。燃料供給管20の上流側には、第1の燃焼用ガスを搬送ガスとして粉砕機23に供給する搬送ガスの供給管24が接続されている。
 供給管24の流路途中には、供給管24をバイパスするバイパス管24bが配設されている。供給管24とバイパス管24bには、それぞれの配管を流れる搬送ガスの供給量を調節可能な流量調整器25a,25bが設けられている。流量調整器25a,25bは、それぞれの配管を流れる搬送ガスの流量を調節するようになっている。また、流量調整器25a,25bは、搬送ガスの流量を演算するための弁開度信号を後述する制御装置100に出力するようになっている。
 一方、バーナ11に第2の燃焼用ガスを供給する供給管30には、第2の燃焼用ガスの供給量を調節する流量調整器32が設けられている。流量調整器32は、配管を流れる第2の燃焼用ガスの流量を演算するための弁開度信号を後述する制御装置100に出力するようになっている。
 供給管24,30には、それぞれ富酸素ガスの供給管26,33が接続されている。供給管26,33には、それぞれの配管内を流れる富酸素ガスの供給量を調節可能な流量調整器27,34が設けられている。供給管26は、粉砕機23の上流側の搬送ガスに富酸素ガスを混合するようになっている。流量調整器27,34は、管内を流れる富酸素ガスの流量を演算するための弁開度信号を後述する制御装置100に出力するようになっている。
 供給管26,33には、富酸素ガスを発生させる酸素製造装置18が接続されている。酸素製造装置18は、例えば、空気を酸素と窒素を主体とするガスに分離する深冷分離方式の装置を用いることができる。これにより、微粉炭を酸素燃焼モードで燃焼する際に、微粉炭の燃焼に必要な酸素を火炉10に供給できるようになっている。
 火炉10で微粉炭を燃焼した燃焼排ガスは、煙道12を介して熱交換器13で冷却される。熱交換器13から排出された燃焼排ガスは、煙突15とCO回収装置16に導入されるようになっている。CO回収装置16は、例えば、排ガス中のCOを液化して排ガスから分離する周知の装置を用いることができる。なお、煙道12には、図示していない排ガス浄化装置が設けられ、煙突15とCO回収装置16に導入される排ガスを浄化するようになっている。
 微粉炭を酸素燃焼モードで燃焼する際は、熱交換器13の下流側の燃焼排ガスを排ガスファン51により配管52に分岐する。配管52には、排ガスの分岐量を調節する流量調整器53が設けられている。流量調整器53は、管内を流れる排ガスの流量を演算するための弁開度信号を、後述する制御装置100に出力するようになっている。流量調整器53を通過した排ガスは、配管50を介して供給管24,30に供給されるようになっている。搬送ガスの供給管24に供給される排ガスの流量は、流量調整器25a,bにより調節されるようになっている。第2の燃焼用ガスの供給管30に供給される排ガスの流量は、流量調整器32により調節されるようになっている。これらにより、微粉炭を富酸素ガスと燃焼排ガスの混合ガスで酸素燃焼モードで燃焼できるようになっている。
 一方、起動時等、排ガスが十分でないときは、微粉炭を空気で燃焼する空気燃焼モードを行う。空気燃焼モードの際は、空気ファン41から配管42を介して供給管40に空気を供給するようになっている。空気の供給量は、流量調整器43で調節できるようになっている。流量調整器43は、空気の供給量を演算するための弁開度信号を後述する制御装置100に出力するようになっている。
 次に、実施形態1の特徴構成を説明する。図2に示すように、ボイラ1には、搬送ガスと第2の燃焼用ガスとして空気と、微粉炭の燃焼排ガスと富酸素ガスの混合ガスと、を互いに切り替えて供給する動作を制御する制御装置100が設けられている。制御装置100は、流量調整器43,32,25a,25b,27,34,53から入力された弁開度信号に基づいて各流量調整器を流下する流体の流量をそれぞれ演算するようになっている。さらに、制御装置100は、演算した流量に基づいて各流量調整器43,32,25a,25b,27,34,53の弁開度を調節する指令信号を出力して、各流量調整器43,32,25a,25b,27,34,53の弁開度を調節して、各部の流量を調節するようになっている。例えば、制御装置100は、空気燃焼モードから酸素燃焼モードに切替える操作手順に沿って予め定めた各設定値と演算した各流量の比較に基づいて、流量調整器43,32,25a,25b,27,34,53に対し、それぞれの弁開度を調節する指令信号を出力するようになっている。これにより、火炉10における微粉炭の燃焼を、空気燃焼モードから酸素燃焼モードに切り替えることができる。
 ここで、実施形態1の特徴動作を図3に用いて説明する。なお、図3は、ボイラ1の起動時等、空気燃焼モードから酸素燃焼モードに切り替える動作を示すタイムチャートである。また、図3(a)は、搬送ガスと第2の燃焼用ガスの酸素濃度の時間変化を示すタイムチャートであり、図3(b)は、空気と排ガスと酸素の流量の時間変化を示すタイムチャートである。なお、図3(a)の酸素濃度(A)は、図1のA点における搬送ガスの酸素濃度であり、酸素濃度(B)は、図1のB点における第2の燃焼用ガスの酸素濃度である。
 起動時等、燃焼排ガスや富酸素ガスが十分得られない場合は、空気ファン41を駆動して空気燃焼モードを行う。この際、流量調整器53,27,34を閉とし、流量調整器43,32,25a,25bが設定開度とする。これにより、火炉10に微粉炭と空気が供給されて空気燃焼モードを開始する。次に、空気燃焼モードにより、必要な燃焼排ガス等が得られるようになると、流量調整器27を設定開度にし、搬送ガスとして用いる空気に富酸素ガスを混合する。これにより、図3(a)に示すように、図1のA点における搬送ガスの酸素濃度が、例えば、空気の酸素濃度を超える濃度に維持される。その後、排ガスファン51を駆動して排ガスを分岐するとともに、流量調整器53を段階的に開けて排ガスの循環が開始される。さらに、燃焼排ガスの循環と同時に流量調整器34を段階的に開けて、第2の燃焼用ガスが通流する供給管30に富酸素ガスが供給される。そして、流量調整器53の開度に応じて、流量調整器43を次第に閉じて空気ファン41を停止して空気の供給を停止することで、火炉10に供給される搬送ガスとして用いる第1の燃焼用ガスと第2の燃焼用ガスを空気から排ガスと富酸素ガスの混合ガスに切り替えて、火炉10を空気燃焼モードから酸素燃焼モードに切り替える。なお、実施形態1の図3(b)に示すタイムチャートは、排ガスの循環と同時に流量調整器34を段階的に開けて第2の燃焼用ガスに富酸素ガスを供給したが、排ガスの循環開始後に富酸素ガスを供給することを可能である。
 これによれば、起動時等、空気燃焼モードから酸素燃焼モードに切り替える過程で、1次燃焼に用いられる搬送ガス(第1の燃焼用ガス)の酸素濃度を高く維持できるから、微粉炭の着火性を向上でき、安定した燃焼を維持できる。つまり、搬送ガスである空気に排ガスを混合すると、酸素濃度が下がり着火性が低下するから、富酸素ガスを空気に混合して空気の酸素濃度を上げた後に排ガスを混合することで、微粉炭の着火性が低下することを抑制でき、微粉炭を安定燃焼できる。
 特に、空気燃焼モードと酸素燃焼モードとを切り替える過程は、燃焼排ガス中の酸素、二酸化炭素、水蒸気などのガス成分濃度が排ガスの抽気量や、空気及び酸素の供給量に応じて変動して、燃焼用ガスの酸素濃度が変動しやすい。燃焼用ガスの酸素濃度に変動が生じると、火炉10のバーナ11から噴出した燃料の火炎に吹き飛びや失火等が発生して火炎の形成が不安定になる。その結果、ボイラ1で発生させる伝熱量が不均一となり、所望の蒸気量の発生を得ることが困難になる可能性がある。そこで、空気燃焼モードと酸素燃焼モードとを切り替える際に、1次燃焼に用いる搬送ガスの酸素濃度を高く維持することで、火炎を安定して形成できる。そのため、例えば、空気燃焼モードから酸素燃焼モードへの切り替え時に油やガスで助燃する必要が無く、助燃に要する設備コストを低減することができる。
 なお、酸素燃焼モードは、比熱の大きなCOが燃焼用ガスに多く含まれるから、空気燃焼と同じ熱回収量を得るため実施形態1は、燃焼用ガスの酸素濃度を22~36%になるように設定し、空気よりも酸素濃度を高く設定する。これにより、空気燃焼の伝熱特性に近づけることができる。
 また、着火性の高い石炭を燃料とする場合は、搬送途中における微粉炭の自然着火を防止するため、酸素濃度の上限を約32%に設定することが好ましい。    
 また、空気燃焼モードは、燃焼用ガスが空気であるから酸素濃度が一定であるのに対し、酸素燃焼では燃焼排ガスの酸素濃度の変動によって燃焼用ガスの酸素濃度が変動する。例えば、燃焼排ガスの酸素濃度が低下した場合、酸素濃度が低下した燃焼排ガスが燃焼用ガスとして火炉10に供給される。このため、火炉10内の酸素濃度がさらに低下するから、燃焼用ガスの酸素濃度を高く維持することが好ましい。
 また、実施形態1は、空気燃焼モードから酸素燃焼モードに切り替える例を説明したが、上述した手順を逆に行う、つまり、図3(b)の流量調整の手順を逆にすることで、酸素燃焼から空気燃焼に切り替えることができる。
 また、図4に示すように、排ガスの供給開始時、排ガス増加率を最大にし、その後、次第に排ガスを増加させる制御により、空気燃焼モードから酸素燃焼モードに切り替えることができる。
 また、酸素燃焼モードは、燃焼用ガス中に窒素を含まず、火炉10で化石燃料を燃焼した際に発生する排ガス中の窒素が燃料由来の窒素に留まる。そのため、空気燃焼モードに比べて排ガス量を減らすことができる。また、空気中の窒素に起因し生成する窒素酸化物が無くなるため、窒素酸化物の生成量が減る。
 また、ボイラ1の起動時のような負荷変化率が高い運用条件では燃料を燃焼させる酸化剤として空気を使用して空気燃焼モードで運転し、一定負荷に到達後、酸化剤を燃焼排ガスと富酸素ガスの混合ガスに切り替えて酸素燃焼モードで運転する。このような起動時は、燃焼排ガスの分岐量を増やし、第1及び第2の燃焼用ガス中の酸素濃度を低くすると、火炉10に供給する支燃ガス中の二酸化炭素や水蒸気の比熱が高いため火炎温度が低下し、微粉炭の燃焼反応が抑制される。そこで、実施形態1の運転方法をボイラ1の起動時に実施することで、火炎の吹き飛びや失火など火炎が不安定になることを抑制できる。
 (実施形態2)
 図5に実施形態2のボイラ1を備えたボイラプラントのブロック図を示す。実施形態2が実施形態1と相違する点は、第2の燃焼用ガスをバーナ11の入口側で分岐し、分岐した一方の燃焼用ガスをバーナ11に供給し、他方の燃焼用ガスを配管を介して燃焼用ガスの供給口17に供給し、微粉炭を2段燃焼するようにした点である。さらに、粉砕機23の下流側に接続した燃料供給管20に富酸素ガスの供給管26を接続した点である。その他の構成は実施形態1と同じであることから、同一の符号を付して説明を省略する。
 これによれば、火炉10のバーナ11より上部に設けた供給口17から2段燃焼用の燃焼用ガスを供給するから、バーナ11では少ない酸素量で燃焼させ、バーナ11の下流の火炉10に設置した供給口17から残りの酸素を供給する。そして、ことで、火炉10内に酸素不足の還元域を形成することができる。そして、この還元域を火炉10内のガスが通ることで燃料中の窒素分から生成する窒素酸化物を低減することができる。
 また、粉砕機23の下流側の搬送ガスに噴酸素ガスを混合するようにしたから、粉砕機23に導入する搬送ガスの酸素濃度を低く維持されるので、粉砕機23における微粉炭の自然着火を抑制できる。
(実施形態3)
 図7、8に実施形態3のボイラ1を備えたボイラプラントを示す。実施形態3が実施形態1と相違する点は、微粉炭が気流搬送される燃料供給管20のバーナ11側に、供給管30から分岐した配管35が接続し、微粉炭を同伴する搬送ガスに第2の燃焼用ガスを供給する点である。そして、酸素燃焼モード時は、搬送ガスの酸素濃度を第2の燃焼用ガスの酸素濃度よりも低く制御する点である。その他の構成は実施形態1と同じであることから、同一の符号を付して説明を省略する。
 次に、実施形態3の空気燃料モードから酸素燃焼モードに切り替える動作を図9を用いて説明する。図9(a)は、搬送ガスと第2の燃焼用ガスの酸素濃度の時間変化を示すタイムチャートであり、図9(b)は、空気と排ガスと酸素の流量の時間変化を示すタイムチャートである。なお、図9(a)の酸素濃度(A)は、図7のA点における搬送ガスの酸素濃度であり、酸素濃度(B)は、図7のB点における第2の燃焼用ガスの酸素濃度である。
 起動時等、排ガスや富酸素ガスが十分得られない場合は、空気ファン41を駆動して空気燃焼モードを行う。この際、流量調整器53,27,34を閉とし、流量調整器43,32,25a,25bが設定開度とする。これにより、火炉10に微粉炭と空気が供給されて空気燃焼モードを開始する。次に、空気燃焼モードにより、必要な排ガス等が得られるようになると、流量調整器27を設定開度にし、搬送ガスとして用いる空気に富酸素ガスを混合する。これにより、図9(a)に示すように、図7のA点における搬送ガスの酸素濃度が、例えば、空気の酸素濃度を超える濃度に維持される。その後、排ガスファン51を駆動して排ガスを分岐するとともに、流量調整器53を段階的に開けて排ガスの循環が開始される。さらに、排ガスの循環と同時に流量調整器34を段階的に開けて、第2の燃焼用ガスが通流する供給管30に富酸素ガスを供給する。そして、流量調整器53の開度に応じて、流量調整器43を次第に閉じて空気ファン41を停止して空気の供給を停止することで、火炉10に供給される搬送ガスと第2の燃焼用ガスを空気から排ガスと富酸素ガスの混合ガスに切り替えて、火炉10を空気燃焼モードから酸素燃焼モードに切り替える。この切り替えの過程において、供給管30に富酸素ガスの供給が開始されて第2の燃焼用ガスの酸素濃度が設置濃度になった後、流量調整器27の弁開度を段階的に絞り、搬送ガスの酸素濃度を段階的に下げる。流量調整器27の弁開度は、酸素燃焼の際の搬送ガスの酸素濃度を、例えば、空気の酸素濃度よりも低くなるように設定する。
 これによれば、搬送途中に自然着火するおそれのある微粉炭を燃料とする場合に、微粉炭の自然着火を防止できる。すなわち、空気燃焼モードから酸素燃焼モードに切り替える過程は、排ガスが混合される前の搬送ガスの酸素濃度を高く維持して、排ガスの混合による微粉炭の着火性の低下を抑制する。その後、搬送ガスの酸素濃度を微粉炭が自然着火しない酸素濃度に下げるが、搬送ガスに不足する酸素は、バーナ11の直前で配管35から供給される第2の燃焼用ガスにより補う。これらにより、微粉炭の着火性を向上でき、かつ、微粉炭の自然着火を抑制できるから、燃料として、着火性の高い微粉炭を用いることができる。
 なお、搬送ガスの酸素濃度は、微粉炭の種類等により適宜設定でき、空気の酸素濃度以下、例えば、18%以下に設定できる。
 また、図10に示すように、燃焼排ガスの供給開始時、排ガス増加率を最大にする。その後、燃焼排ガスを次第に増加させ、燃焼排ガスをステップ状に増加させて供給することができる。この場合、燃焼排ガスの供給開始時に搬送ガス及び第2の燃焼用ガスの酸素濃度が低下するが、空気に富酸素ガスを混合した搬送ガスにより1次燃焼を行っていたので、搬送ガスの酸素濃度は高く維持され、火炎の安定性を維持できる。その結果、微粉炭の燃焼領域の変動を抑制できるので、火炉10における伝熱特性が良好となって高い効率で熱吸収を行うことができる。
 また、酸素濃度の上昇が燃料供給管20のみになるため、火炉10に投入する第1の燃焼用ガス(搬送ガス)と第2の燃焼用ガスの酸素濃度の変動は燃焼用ガス全体の酸素濃度を高める場合に比べて小さくなる。
 また、実施形態3は、燃料供給管20に第2の燃焼用ガスを供給して搬送ガスの酸素を補っているが、燃料供給管20に直接富酸素ガスを供給して搬送ガスの不足酸素を補うことができる。
 ここで、実施形態3のボイラ1に好適なバーナを図11を用いて説明する。図11に示したバーナ11は、中心側に搬送ガスに同伴された微粉炭が供給されて燃焼される燃料ノズル61を備え、この燃料ノズル61の外周に同心円状に燃焼用気体を供給する空気ノズル62、63をそれぞれ備えた構造であり、風箱92は火炉壁93に設置されている。また、燃焼ノズル61の管壁には、燃焼用ガスノズル64が設けられ、図示していない供給源から酸素濃度が高い追加の燃焼用ガス68が燃料ノズル61内に供給されるようになっている。
 これによれば、燃料ノズル61を流れる微粉炭と搬送ガスの流れ67に対し、追加の燃焼用ガス68が垂直に噴出されるように構成されている。そのため、酸素濃度が高い追加の燃焼用ガス68と搬送ガスとの混合が促進される。さらに、燃料ノズル61の内部に流路を分割する分配器65を備えることで、高濃度の酸素含有気体は燃料ノズル61の外周隔壁66近傍にのみ供給されることになる。燃料ノズル61の外周部を流れる燃料はバーナ11から火炉10内に噴出後、最初に着火し始める部分であり、火炉10内で燃料を燃焼して火炎輪郭91を形成する。このため、燃料ノズル61の外周隔壁66近傍のみ、酸素濃度を高めることで火炎の安定性が向上する。
 特に、図11に示すバーナ11の場合、燃料ノズル61の一部のみの酸素濃度を高めるので、全体の酸素濃度を高める場合に比べて気体供給量が少なくて済む。さらに、高濃度の酸素含有気体が燃料と混合後の滞留時間は短いため、燃料ノズル61内での異常燃焼は生じにくい。
 なお、排ガスと富酸素ガスを混合した追加の燃焼用ガス68に代えて、富酸素ガスを燃料ノズル61内に供給できる。
 また、図7に示す本実施例の化石燃料ボイラ1では燃焼用ガスを全てバーナ11から供給させる場合について示したが、燃焼用ガスを分岐し、一部をバーナ11下流の供給口17から供給しても良い。バーナ11で少ない酸素量で燃料を燃焼させ、バーナ11よりも下流の火炉10の供給口17から残りの不足酸素を供給することで、火炉10内に酸素不足の還元域を形成する。この還元域を炉内のガスが通ることで燃料中の窒素分から生成する窒素酸化物を低減することができる。
(実施形態4)
 図12、13に実施形態4のボイラ1を備えたボイラプラントのブロック図を示す。実施形態4が実施形態1と相違する点は、分岐した燃焼排ガスが通流する配管50に流量調整器34を備える配管33bを介して富酸素ガスを混合している点である。さらに、粉砕機23の下流側の燃料供給管20に富酸素ガスを供給している点である。その他の構成は、実施形態1と同じであるから、同一の符号を付して説明を省略する。
 次に、実施形態4の動作を図14を用いて説明する。図14(a)は、搬送ガスと第2の燃焼用ガスの酸素濃度の時間変化を示すタイムチャートであり、図14(b)は、空気と燃焼排ガスと酸素の流量の時間変化を示すタイムチャートである。なお、図14(a)の酸素濃度(A)は、図12のA点における搬送ガスの酸素濃度であり、酸素濃度(B)は、図12のB点における第2の燃焼用ガスの酸素濃度である。
 起動時等、燃焼排ガスや富酸素ガスが十分得られない場合は、空気ファン41を駆動して空気燃焼モードを行う。この際、流量調整器53,27,34を閉とし、流量調整器43,32,25a,25bが設定開度とする。これにより、火炉10に微粉炭と空気が供給されて空気燃焼モードを開始する。次に、空気燃焼モードにより、必要な排ガス等が得られるようになると、流量調整器27を設定開度にし、搬送ガスとして用いる空気に富酸素ガスを混合する。これにより、図14(a)に示すように、図12のA点における搬送ガスの酸素濃度が、例えば、空気の酸素濃度を超える濃度に維持される。その後、排ガスファン51を駆動して燃焼排ガスを分岐するとともに、流量調整器53を段階的に開けて排ガスの循環が開始される。さらに、燃焼排ガスの循環と同時に流量調整器34を段階的に開けて、配管50を通流する排ガスに富酸素ガスを供給する。そして、流量調整器53の開度に応じて、流量調整器43を次第に閉じて空気ファン41を停止して空気の供給を停止する。これにより、火炉10に供給される搬送ガスと第2の燃焼用ガスを空気から排ガスと富酸素ガスの混合ガスに切り替えて、火炉10を空気燃焼モードから酸素燃焼モードに切り替える。この切り替えの過程において、流量調整器34を開けて設定時間経過後に、流量調整器27を閉じて供給管26による搬送ガスへの富酸素ガスの供給を停止する。すなわち、実施形態4は、搬送ガスと第2の燃焼用ガスに分岐する前の排ガスに、富酸素ガスを混合することで、酸素燃焼モード時は、搬送ガスと第2の燃焼用ガスの酸素濃度を1つの流量調整器34で調整することができる。
 これによれば、空気燃焼モードから酸素燃焼モードに切り替える過程において、前半は、富酸素ガスの供給量を調整する流量調整器27及び流量調整器34の両方の制御が必要であるが、後半及び酸素燃焼モード時は、流量調整器34の制御のみで済み、搬送ガスと第2の燃焼用ガスの酸素濃度を一致させるから、制御が容易になる。
 なお、図15に示すように、排ガスの供給開始時、排ガス増加率を最大にし、その後、次第に排ガスを増加させ、排ガスをステップ状に増加させて供給することができる。
(実施形態5)
  図16、17に実施形態5のボイラ1を備えたボイラプラントのブロック図を示す。実施形態5が実施形態1と相違する点は、微粉炭の代わりにガスや油を燃料とする点である。つまり、ガスや油は搬送ガス(第1の燃焼用ガス)を用いずに供給されるから、第1の燃焼用ガスを搬送ガスとして用いず、化石燃料と別々にバーナ11に供給するようにしている点である。その他の構成は、実施形態1と同じであるから、同一の符号を付して説明を省略する。
 バーナ11には、燃料供給配管20aが接続されている。燃料供給配管20aには、図示していない供給設備から気体又は液体の化石燃料である天然ガスや重油などが供給されるようになっている。
 一方、第1の燃焼用ガスは、供給管30からバーナ11に供給されて燃料を燃焼するようになっている。また、バーナ11の下流側には第2の燃焼用ガスが供給される供給口17が設けられ、不足酸素を第2の燃焼用ガスで補うようになっている。
 これによれば、空気燃焼モードから酸素燃焼モードに切り替える際、第1の燃焼用ガスとして用いる空気に富酸素ガスを混合して酸素濃度を上げた後に、排ガスを混合することで、微粉炭の着火性が低下することを抑制でき、微粉炭を安定燃焼できる。
 1 ボイラ
 10 火炉
 11 バーナ
 100 制御装置
 
 
 
 

Claims (8)

  1.   第1の燃焼用ガスと、該第1の燃焼用ガスの不足酸素を補う第2の燃焼用ガスとより化石燃料を燃焼させ、前記第1及び前記第2の燃焼用ガスとして空気を用いる空気燃焼モードと、前記第1及び前記第2の燃焼用ガスとして前記化石燃料の燃焼排ガスと富酸素ガスとの混合ガスを用いる酸素燃焼モードを切り替えて運転するボイラの運転方法において、
     前記空気燃焼モードと前記酸素燃焼モードを切り替える過程で、前記空気燃焼モードに用いる前記第1の燃焼用ガスの前記空気に前記富酸素ガスを混合することを特徴とするボイラの運転方法。
  2.  請求項1のボイラの運転方法において、
     前記空気燃焼モードと前記酸素燃焼モードを切り替える過程で、前記空気と前記燃焼排ガスの流量を次第に変化させて切り替えることを特徴とするボイラの運転方法。
  3.  請求項1又は2に記載のボイラの運転方法において、
     前記空気燃焼モードから前記酸素燃焼モードを切り替える過程は、前記第1の燃焼用ガスとして用いる前記空気に前記富酸素ガスを混合した後、前記第2の燃焼用ガスに前記富酸素ガスを混合することを特徴とするボイラの運転方法。
  4.  請求項1又は2に記載のボイラの運転方法において、
     前記酸素燃焼モードから前記空気燃焼モードを切り替える過程は、前記第2の燃焼用ガスとして用いる前記混合ガスを前記空気に切り替えた後、前記第1の燃焼用ガスとして用いる空気に混合される前記富酸素ガスの供給を停止することを特徴とするボイラの運転方法。
  5.  請求項1乃至4のいずれか1項に記載のボイラの運転方法において、
     前記化石燃料を前記混合ガスで燃焼するときは、前記第1と第2の燃焼用ガスの酸素濃度を同じにすることを特徴とするボイラの運転方法。
  6.  請求項1乃至4のいずれか1項に記載のボイラの運転方法において、
     前記化石燃料を前記混合ガスで燃焼するときは、前記第1の燃焼用ガスの酸素濃度を前記第2の燃焼用ガスの酸素濃度よりも低くすることを特徴とするボイラの運転方法。
  7.  請求項1乃至5のいずれか1項に記載のボイラの運転方法において、
     前記第1の燃焼用ガスに化石燃料を混合して前記ボイラに供給することを特徴とするボイラの運転方法。
  8.  化石燃料と、該化石燃料を燃焼させる第1の燃焼用ガスと、該第1の燃焼用ガスの不足酸素を補う第2の燃焼用ガスが供給される火炉を備え、前記第1及び前記第2の燃焼用ガスとして空気を用いる空気燃焼モードと、前記第1及び前記第2の燃焼用ガスとして前記化石燃料の燃焼排ガスと富酸素ガスとの混合ガスを用いる酸素燃焼モードを切り替える動作を制御する制御装置とを備えるボイラにおいて、
     前記制御装置は、前記酸素燃焼モードから前記空気燃焼モードを切り替える過程で、前記空気燃焼モードに用いる前記1の燃焼用ガスの前記空気に前記富酸素ガスが混合されるように、前記空気の流量と前記燃焼排ガスの流量と前記富酸素ガスの流量を制御することを特徴とするボイラ。
     
     
PCT/JP2011/005901 2010-10-22 2011-10-21 ボイラ及びその運転方法 WO2012053222A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2011319286A AU2011319286B2 (en) 2010-10-22 2011-10-21 Boiler and operating method of same
CA2814859A CA2814859A1 (en) 2010-10-22 2011-10-21 Boiler and operating method of same
EP11834068.6A EP2631539A1 (en) 2010-10-22 2011-10-21 Boiler and operating method of same
US13/877,522 US9476588B2 (en) 2010-10-22 2011-10-21 Boiler and operating method of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010237077A JP2012088016A (ja) 2010-10-22 2010-10-22 酸素燃焼式ボイラ及びその運転方法
JP2010-237077 2010-10-22

Publications (1)

Publication Number Publication Date
WO2012053222A1 true WO2012053222A1 (ja) 2012-04-26

Family

ID=45974951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005901 WO2012053222A1 (ja) 2010-10-22 2011-10-21 ボイラ及びその運転方法

Country Status (6)

Country Link
US (1) US9476588B2 (ja)
EP (1) EP2631539A1 (ja)
JP (1) JP2012088016A (ja)
AU (1) AU2011319286B2 (ja)
CA (1) CA2814859A1 (ja)
WO (1) WO2012053222A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528712B2 (en) * 2012-11-05 2016-12-27 Pat Caruso Modulating burner system
US9513001B2 (en) * 2013-09-18 2016-12-06 General Electric Technology Gmbh Oxy-fired boiler unit and method of operating the same
CN105157020B (zh) * 2015-09-25 2018-04-10 中国神华能源股份有限公司 富氧燃烧系统及方法
CN105333440B (zh) * 2015-12-08 2018-02-23 华中科技大学 一种烟气循环式的垃圾热解气化富氧焚烧炉
CN110906320A (zh) * 2019-12-06 2020-03-24 国网河北省电力有限公司电力科学研究院 一种基于空气中氧量浓淡分离的锅炉分级燃烧系统及分级燃烧方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358007A (ja) * 1986-08-27 1988-03-12 Kawasaki Heavy Ind Ltd 微粉炭燃焼ボイラ
JPH05231609A (ja) * 1991-05-28 1993-09-07 Hitachi Ltd 燃焼装置及びその運転方法
WO2009110036A1 (ja) * 2008-03-06 2009-09-11 株式会社Ihi 酸素燃焼ボイラの酸素供給制御方法及び装置
JP2010032173A (ja) * 2008-07-31 2010-02-12 Hitachi Ltd ボイラプラント,ボイラプラントの制御装置及びその制御方法
JP2011075176A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 酸素燃焼ボイラプラント及び酸素燃焼ボイラプラントの運転方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135874A (en) * 1976-03-31 1979-01-23 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Two stage combustion furnace
JP4731293B2 (ja) * 2005-11-28 2011-07-20 電源開発株式会社 酸素燃焼ボイラの燃焼制御方法及び装置
US9651253B2 (en) * 2007-05-15 2017-05-16 Doosan Power Systems Americas, Llc Combustion apparatus
ES2532503T3 (es) * 2008-03-06 2015-03-27 Ihi Corporation Método y aparato para el control del gas de escape en una caldera de oxicombustión
JP5126727B2 (ja) 2008-06-18 2013-01-23 勝治 澤田 車いす型ストレッチャーにおける移載のためのシフトするシート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358007A (ja) * 1986-08-27 1988-03-12 Kawasaki Heavy Ind Ltd 微粉炭燃焼ボイラ
JPH05231609A (ja) * 1991-05-28 1993-09-07 Hitachi Ltd 燃焼装置及びその運転方法
WO2009110036A1 (ja) * 2008-03-06 2009-09-11 株式会社Ihi 酸素燃焼ボイラの酸素供給制御方法及び装置
JP2010032173A (ja) * 2008-07-31 2010-02-12 Hitachi Ltd ボイラプラント,ボイラプラントの制御装置及びその制御方法
JP2011075176A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 酸素燃焼ボイラプラント及び酸素燃焼ボイラプラントの運転方法

Also Published As

Publication number Publication date
US9476588B2 (en) 2016-10-25
CA2814859A1 (en) 2012-04-26
AU2011319286A1 (en) 2013-05-02
US20130273481A1 (en) 2013-10-17
AU2011319286B2 (en) 2015-08-20
JP2012088016A (ja) 2012-05-10
EP2631539A1 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP4896195B2 (ja) 酸素燃焼ボイラプラント及び酸素燃焼ボイラプラントの運転方法
US9651253B2 (en) Combustion apparatus
JP5580320B2 (ja) 燃焼生成物を制御するための方法およびシステム
JP5138028B2 (ja) 酸素燃焼ボイラの酸素供給制御方法及び装置
JP4979615B2 (ja) 燃焼器及び燃焼器の燃料供給方法
WO2009110037A1 (ja) 酸素燃焼ボイラの排ガス制御方法及び装置
JP5999886B2 (ja) 発電プラントおよびその運転方法
WO2009110033A1 (ja) 酸素燃焼ボイラの排ガス制御方法及び装置
EP2623861A1 (en) Combustion system and method for operating same
WO2012053222A1 (ja) ボイラ及びその運転方法
JP2011247265A (ja) 煙道ガス再循環を備えるコンバインドサイクル発電プラント
CN105464806B (zh) 燃气涡轮设备
WO2009110034A1 (ja) 酸素燃焼ボイラの一次再循環排ガス流量制御方法及び装置
KR20100110826A (ko) 순산소 연료 연소에 의해 전력을 생성하는 공정을 제어하는 방법
JP5159741B2 (ja) ガスタービン燃焼器の制御装置およびガスタービン燃焼器の制御方法
AU2011315008B2 (en) Boiler combustion system and operation method therefor
US20140202365A1 (en) Combustion apparatus with direct firing system
KR101880382B1 (ko) 가스화로 설비, 가스화 복합 발전 설비, 및 가스화로 설비의 기동 방법
JP2007071188A (ja) ガスタービンの燃料制御装置
JP2012021652A (ja) 石炭焚きボイラの燃焼炉及び石炭焚きボイラの燃焼炉の運転方法
JP6357701B1 (ja) 燃焼状態判定システム
JPH0794199A (ja) 燃料電池発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834068

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2814859

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2011834068

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011834068

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011319286

Country of ref document: AU

Date of ref document: 20111021

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13877522

Country of ref document: US