WO2012053191A1 - ガスエンジンの燃料ガス供給システム - Google Patents

ガスエンジンの燃料ガス供給システム Download PDF

Info

Publication number
WO2012053191A1
WO2012053191A1 PCT/JP2011/005818 JP2011005818W WO2012053191A1 WO 2012053191 A1 WO2012053191 A1 WO 2012053191A1 JP 2011005818 W JP2011005818 W JP 2011005818W WO 2012053191 A1 WO2012053191 A1 WO 2012053191A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
fuel gas
valve
electromagnetic
valve body
Prior art date
Application number
PCT/JP2011/005818
Other languages
English (en)
French (fr)
Inventor
二宮 誠
野道 薫
鈴木 豊
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020137007580A priority Critical patent/KR101423012B1/ko
Priority to US13/880,420 priority patent/US9234485B2/en
Priority to CN201180046364.8A priority patent/CN103109070B/zh
Priority to CA2814458A priority patent/CA2814458C/en
Priority to EP11834037.1A priority patent/EP2631459B1/en
Publication of WO2012053191A1 publication Critical patent/WO2012053191A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0239Pressure or flow regulators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0242Shut-off valves; Check valves; Safety valves; Pressure relief valves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • G05D16/2022Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means actuated by a proportional solenoid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel gas supply system for a gas engine that supplies fuel gas to a gas engine.
  • gas engine cars that use fuel gas such as compressed natural gas (CNG) and compressed hydrogen are known.
  • CNG compressed natural gas
  • a fuel gas supply system for example, a fuel supply apparatus for a gas engine as in Patent Document 1 is known.
  • the fuel supply device for a gas engine described in Patent Document 1 includes a fuel injection valve (gas injector), and a pipe is connected between the fuel injection valve and a cylinder (high pressure tank).
  • a main stop valve, a regulator, and a low-pressure fuel cutoff valve are interposed in this order from the cylinder side.
  • the main stop valve and the low-pressure fuel shut-off valve can open and close the passage in the pipe.
  • the passage is closed to shut off the supply of fuel gas to the gas engine.
  • the passage is opened so that the fuel gas can be supplied to the gas engine.
  • the regulator reduces the high-pressure fuel gas flowing from the cylinder to a predetermined pressure and guides it to the fuel injection valve.
  • the fuel gas stored in the cylinder is guided to the regulator through the main stop valve, decompressed by the regulator, and then injected through the low-pressure fuel cutoff valve. Led to the valve.
  • the fuel injection valve injects a fuel gas amount according to a command from the ECU or the like into the gas engine.
  • the fuel injection valve itself needs to have a metering function. For example, the injection amount of fuel gas injected by opening and closing of unit time, or the injection amount of fuel gas injected by one fuel gas injection Is estimated in advance, and the fuel gas injection amount is controlled by the opening / closing time and the number of injections.
  • the fuel gas injection amount per unit time or one time is estimated on the assumption that the fuel gas led to the fuel injection valve has a predetermined constant pressure.
  • the pressure of the fuel gas after decompression that is, the secondary pressure fluctuates in the regulator, and the secondary pressure is not necessarily constant.
  • the fuel gas flowing between the regulator and the fuel injection valve is at a considerably lower pressure than in the tank, where a large pressure loss occurs, and the pressure loss varies greatly with the flow rate.
  • the pressure of the fuel gas guided to the fuel injection valve is not necessarily constant, and may be significantly lower than the estimated value.
  • the injection amount of the fuel gas injected per unit time or once is as follows: May be far from estimated. As a result, a desired output may not be extracted from the gas engine.
  • a first object of the present invention is to provide a fuel gas supply system of a gas engine that can supply a fuel gas of constant pressure with little fluctuation to the fuel gas supply means.
  • the second object of the present invention is to provide a fuel gas supply system for a gas engine in which the number of components is reduced.
  • a fuel gas supply system for a gas engine is a system for supplying a fuel gas to a gas engine, a fuel gas supply means for supplying the fuel gas to the gas engine, and a high pressure at which the high-pressure fuel gas is stored.
  • a supply passage that connects the tank and the fuel gas supply means; an electromagnetic pressure regulating valve that is provided in the supply passage and that adjusts the pressure of the fuel gas flowing through the supply passage to a pressure corresponding to a current that flows; Control means for controlling the current flowing through the pressure regulating valve, and low pressure side pressure detecting means for detecting the pressure of the fuel gas on the fuel gas supply means side of the electromagnetic pressure regulating valve, the electromagnetic pressure regulating valve comprising: When the current flowing from the control means is stopped, it is a normally closed valve that closes the supply passage, and the control means is a gas detected by the low pressure side pressure detection means. Those adapted to control the current so that the target pressure the pressure predetermined.
  • the control means when the pressure of the fuel gas detected by the low pressure side pressure detecting means deviates from the target pressure, the control means generates a current flowing through the electromagnetic pressure regulating valve so that the pressure of the fuel gas becomes the target pressure.
  • the pressure of the fuel gas is adjusted and feedback controlled. By performing feedback control in this way, the pressure of the fuel gas is kept constant at the target pressure, and the fuel gas of constant pressure with little fluctuation can be supplied to the fuel gas supply means.
  • the electromagnetic pressure regulating valve is a normally closed valve
  • the supply passage can be urgently cut off by stopping the current flowing through the electromagnetic pressure regulating valve to adjust the pressure of the fuel gas. it can.
  • the supply passage can be immediately shut off, and the fuel gas supply means can be prevented from being damaged.
  • the electromagnetic pressure regulating valve has a cutoff function
  • the number of cutoff valves provided in the supply passage can be reduced, and the manufacturing cost of the fuel gas supply system can be reduced.
  • the pressure loss in the fuel gas supply system can be reduced and the size can be reduced.
  • the electromagnetic pressure regulating valve includes a housing having a valve passage connecting a primary port connected to the high-pressure tank and a secondary port connected to the gas engine, and is provided in the housing.
  • a valve body that moves between a closed position that closes the passage and an open position that opens the valve passage to control the opening of the valve passage; and a return spring that biases the valve body toward the closed position;
  • An electromagnetic proportional solenoid that applies an exciting force to the valve body according to the current passed from the control means to move the valve body toward the open position, and is interposed between the valve body and the housing, A bearing member that supports the valve body so as to be slidable between the closed position and the open position; and a first seal member and a second seal member that seal both sides of the bearing member;
  • Within the secondary port A pressure feedback chamber is formed, and the second seal member applies an acting force according to an internal pressure of the pressure feedback chamber to the valve body so as to move the valve body toward the closed position. It is preferable that
  • the pressure output from the secondary port by changing the opening of the valve passage by changing the exciting force of the electromagnetic proportional solenoid, that is, the secondary pressure can be regulated.
  • the secondary pressure can be controlled to the target pressure.
  • the secondary pressure is guided to the pressure feedback chamber, and the second seal member applies an acting force corresponding to the internal pressure of the pressure feedback chamber to the valve body to move the valve body in the closed position direction.
  • the valve body that receives such an acting force is up to a position where the forces acting on the valve body such as the secondary pressure received by the valve body, the acting force received from the second seal member, the exciting force, and the biasing force by the return spring are balanced.
  • the opening of the valve passage is adjusted so that the valve body moves and the force is balanced. Thereby, even if the secondary pressure fluctuates, the opening degree of the valve passage is adjusted and the secondary pressure is returned to the target pressure. Therefore, the secondary pressure is held at the target pressure.
  • the electromagnetic pressure regulating valve can maintain the secondary pressure at the target pressure, so that the pressure controllability is high, and the high-pressure fuel gas can be modulated more accurately.
  • the valve element can be smoothly moved by the bearing member, the followability to the target pressure is improved. Since the first and second seal members are provided on both sides of the bearing member, the fuel gas does not flow into the bearing member, and the bearing member is not exposed to the fuel gas. This makes it possible to use a material that does not have corrosion resistance to fuel gas for the bearing member, and increases the choice of material for the bearing member. Further, for example, when the bearing member is lubricated with grease, it is possible to prevent the used grease from flowing out to the secondary port side together with the fuel gas. Thereby, while being able to implement
  • the valve body includes a secondary side pressure receiving portion in which the pressure of the secondary port acts in a direction in which the valve body is directed toward the open position, and a pressure feedback chamber in the direction in which the valve body is directed toward the closed position. It is preferable that the pressure feedback chamber side pressure receiving portion on which pressure acts is provided, and the pressure receiving area of the pressure feedback chamber side pressure receiving portion is larger than the pressure receiving area of the secondary side pressure receiving portion.
  • the secondary pressure is received by both the secondary pressure receiving portion and the pressure feedback chamber side pressure receiving portion, but the pressure receiving area of the pressure feedback chamber side pressure receiving portion is larger than the pressure receiving area of the secondary pressure receiving portion. Since it is large, the force acting on each pressure receiving portion acts in the direction toward the closed position. Therefore, when the electromagnetic proportional solenoid is not driven, the valve body is urged in the direction of the closed position, and a more reliable normally closed valve structure can be realized.
  • the valve body has a first pressure receiving surface on which the pressure of the primary port acts in a direction toward the open position of the valve body, and a pressure on the primary port in a direction toward the closed position of the valve body. It is preferable that the pressure receiving area of the first pressure receiving surface and the pressure receiving area of the second pressure receiving surface are substantially the same.
  • the primary pressure received at the first pressure receiving surface and the second pressure receiving surface is offset.
  • variation of a primary pressure can be made into substantially zero, and the pressure controllability of a secondary pressure can further be improved.
  • the exciting force of the electromagnetic proportional solenoid can be reduced, and the electromagnetic pressure regulating valve can be reduced in size.
  • the low pressure side pressure detection means is preferably provided in the vicinity of the gas supply means.
  • the pressure of the fuel gas guided to the fuel gas supply means can be controlled to the target pressure regardless of the pressure loss of the fuel gas generated in the supply passage and various devices interposed therein.
  • the degree of freedom with respect to the length and the configuration of equipment interposed in the supply passage increases, and the degree of freedom in designing the fuel gas supply system is improved.
  • control means is adapted to stop the current flowing through the electromagnetic pressure regulating valve when the gas pressure detected by the low pressure side pressure detection means is equal to or higher than a predetermined allowable pressure.
  • the supply of the fuel gas to the fuel gas supply means can be stopped when the pressure of the fuel gas guided to the fuel gas supply means suddenly increases. Thereby, it can prevent that the pressure of the fuel gas in a fuel gas supply means rises to the abnormal pressure more than an allowable pressure.
  • an electromagnetic on-off valve provided upstream of the electromagnetic pressure regulating valve in the supply passage and capable of shutting off the supply of fuel gas to the electromagnetic pressure regulating valve.
  • two valves an electromagnetic pressure regulating valve and an electromagnetic opening / closing valve having a shut-off function, are provided between the high pressure tank and the fuel gas supply means, and these two valves provide the high pressure tank and the fuel gas supply. It is possible to shut off between the means.
  • the shut-off function of the fuel gas supply system can be made redundant, and the safety of the fuel gas supply system can be improved.
  • the electromagnetic pressure regulating valve is preferably included in an in-tank or on-tank container base valve installed at a supply port of the high-pressure tank.
  • the electromagnetic pressure regulating valve is arranged at the supply port of the high-pressure tank, the output pressure level from the high-pressure tank becomes low pressure, and the safety of the system is improved.
  • fuel gas supply system (hereinafter also simply referred to as “fuel gas supply system”) 1, 1A to 1C of the gas engine 2 according to the first to fourth embodiments of the present invention will be described with reference to the aforementioned drawings. explain. Note that the fuel gas supply systems 1 and 1A to 1C described below are only one embodiment of the present invention, and the present invention is not limited to the embodiment, and can be added, deleted, and deleted without departing from the spirit of the invention. It can be changed.
  • a vehicle such as a compressed natural gas vehicle or a hydrogen gas vehicle includes a gas engine 2, a high-pressure tank 3, and a fuel supply system 1, and fuel gas (compressed natural gas (CNG), hydrogen gas, etc.) is supplied from the gas engine 2.
  • the driving wheel is moved by obtaining a driving force by burning.
  • the gas engine 2 is connected to the high-pressure tank 3 via the fuel supply system 1.
  • the high-pressure tank 3 can store a high-pressure fuel gas of 35 to 70 MPa or more, for example, and the fuel gas supply system 1 uses the fuel gas stored in the high-pressure tank 3 as a gas engine. 2 is supplied with fuel gas. Below, the structure of the fuel gas supply system 1 is demonstrated.
  • the fuel gas supply system 1 adjusts the amount of fuel gas supplied to the gas engine 2 in accordance with input from an input means (not shown) such as an accelerator pedal, and includes a supply passage 4, a gas injector 5, an electromagnetic type A pressure regulating valve 6, an electromagnetic on-off valve 7, a safety relief valve 8, a low pressure side pressure sensor 9, and a controller 10 are provided.
  • the supply passage 4 is a passage through which fuel gas flows, and the high-pressure tank 3 is connected to one end thereof.
  • a gas injector 5 is provided on the other end side of the supply passage 4. The other end side of the supply passage 4 does not necessarily have to be branched into a plurality of passages.
  • the gas injector 5 as fuel gas supply means is configured to inject fuel gas into the gas engine 2 directly or indirectly and supply it.
  • the gas injector 5 is connected to an ECU (Electronic Control Unit) (not shown).
  • the ECU changes the duty ratio of the gas injector 5 and changes the amount of fuel gas injected into the gas engine 2 (that is, the injection amount).
  • the duty control to be adjusted is executed.
  • An electromagnetic pressure regulating valve 6 is provided on the upstream side of the gas injector 5 in the supply passage 4.
  • the electromagnetic pressure regulating valve 6 is interposed in the supply passage 4 and has a function of regulating the high pressure fuel gas flowing out from the high pressure tank 3 to a constant low pressure and supplying it to the gas engine 2. Although the specific configuration of the electromagnetic pressure regulating valve 6 will be described later, it is a normally closed valve, and has a function of blocking the supply passage 4 by stopping the current flowing therethrough.
  • An electromagnetic on-off valve 7 is interposed upstream from the electromagnetic pressure regulating valve 6.
  • the electromagnetic on-off valve 7 is interposed in the supply passage 4 and has a function of opening and closing the supply passage 4. When operated by an operating means (not shown), the electromagnetic on-off valve 7 opens and closes the supply passage 4.
  • the electromagnetic pressure regulating valve 6 and the electromagnetic on-off valve 7 flow when the pressure on the downstream side of the electromagnetic pressure regulating valve 6 becomes an allowable pressure (for example, a pressure higher than the normal pressure and lower than the pressure resistance of the gas injector 5).
  • the current is cut off to cut off the supply passage 4.
  • the shutoff function of the fuel gas supply system 1 is made redundant by providing the supply passage 4 with the two valves 6 and 7 having the shutoff function. Thereby, the interruption
  • the electromagnetic on-off valve 7 and the electromagnetic pressure regulating valve 6 interposed in the supply passage 4 are provided at the opening of the high-pressure tank 3 and are provided integrally with the valve block 11 that closes the opening.
  • a container base valve 12 is constituted by the two valves 6 and 7.
  • the container original valve 12 is configured as an electromagnetic container original valve provided with these two valves 6 and 7 as an in-tank type or on-tank type electromagnetic valve.
  • a high pressure side pressure sensor 54 is provided between the electromagnetic on-off valve 7 and the electromagnetic pressure regulating valve 6, and the remaining amount in the tank 3 is confirmed by the pressure measured by the high pressure side pressure sensor 54. It has become. Further, a safety relief valve 8 and a low pressure side pressure sensor 9 are connected to the supply passage 4 sequentially from the upstream side between the electromagnetic pressure regulating valve 6 and the gas injector 5.
  • the safety relief valve 8 is a so-called relief valve and is provided in the valve block 11. The safety relief valve 8 is activated when the pressure on the downstream side of the electromagnetic pressure regulating valve 6 becomes higher than a predetermined limit pressure.
  • the low pressure side pressure sensor 9 as low pressure side pressure detecting means detects the pressure downstream of the electromagnetic pressure regulating valve 6, that is, the pressure on the low pressure side of the supply passage 4.
  • the low-pressure sensor 9 is electrically connected to the controller 10 and transmits the detected pressure to the controller 10.
  • the controller 10 as control means is connected to the ECU and the low pressure side pressure sensor 9.
  • the controller 10 receives a target pressure from the ECU.
  • the controller 10 has a function of adjusting the current flowing through the electromagnetic pressure regulating valve 6 and controlling the gas pressure flowing through the gas injector 5. More specifically, the controller 10 adjusts the current flowing through the electromagnetic pressure regulating valve 6 based on the target pressure and the detected pressure of the low-pressure sensor 9, and the gas injector 5 so that the detected pressure becomes the target pressure.
  • the gas pressure flowing through the valve is feedback controlled.
  • the low pressure side pressure sensor 9 responsible for a part of the feedback control may be provided at any position as long as it is downstream of the safety relief valve 8, but in the supply passage 4 near the gas injector 5 ( It is preferable to be provided at a position closer to the gas injector 5. This is because the fuel gas supply system 1 is controlled so that the pressure detected by the low-pressure side pressure sensor 9 becomes the target pressure regardless of the pressure loss of the fuel gas generated in the supply passage 4 and various devices intervening there.
  • the device 10 adjusts the current flowing through the electromagnetic pressure regulating valve 6. Therefore, if the low-pressure sensor 9 is provided near the gas injector 5, fuel gas having a gas pressure closer to the target pressure can be supplied to the gas injector 5. Therefore, the degree of freedom with respect to the length of the supply passage 4 and the configuration of equipment interposed in the supply passage 4 is increased, and the degree of freedom in designing the fuel gas supply system 1 is improved.
  • the fuel gas supply system 1 that supplies a constant pressure
  • the target pressure may be set to a constant value, and the supply system can be realized with a simple control system.
  • controller 10 is electrically connected to the electromagnetic pressure regulating valve 6, and when the pressure detected by the low pressure sensor 9 exceeds the allowable pressure, the electromagnetic pressure regulating valve 6 is operated to shut off the supply passage 4. It is supposed to be.
  • the electromagnetic pressure regulating valve 6 includes a housing 21 as shown in FIG. In the housing 21, a primary port 21a, a valve body hole 21b, and a secondary port 21c are formed.
  • the primary port 21a is connected to the electromagnetic on-off valve 7 (see FIG. 1), and is connected to the valve body hole 21b via a primary side passage 21d formed in the housing 21.
  • the valve element hole 21b extends along the axis L1 extending vertically, and has a circular cross section.
  • the valve body hole 21b has a valve space 21e having a diameter larger than that of the remaining portion at an intermediate portion thereof, and the primary side passage 21d is connected to the valve space 21e. Further, the valve element hole 21b is connected to the secondary passage 21f in the secondary region 21g above the valve space 21e.
  • the secondary side passage 21f is formed in the housing 21, and the valve element hole 21b is connected to the secondary port 21c through the secondary side passage 21f.
  • the secondary port 21c is connected to the gas injector 5 through the supply passage 4 (see FIG. 1).
  • the primary port 21a and the secondary port 21c are connected via the primary side passage 21d, the valve space 21e, the secondary side region 21g, and the secondary side passage 21f, and the primary side passage 21d, the valve space 21e,
  • the secondary side region 21g and the secondary side passage 21f constitute a valve passage 22 that connects the primary port 21a and the secondary port 21c.
  • the housing 21 has a seat 23.
  • the seat portion 23 is located in the vicinity of an opening connecting the secondary side region 21g and the valve space 21e, and is formed so as to surround the opening.
  • the valve body 24 is inserted into the valve body hole 21 b of the housing 21 so as to be seated on the seat portion 23.
  • the valve body 24 is located along the axis L1 of the valve body hole 21b, and the tip end portion (that is, the upper end portion) 24a is located in the secondary region 21g.
  • the valve body 24 is substantially cylindrical, and has a tapered portion 24b on the distal end portion 24a side.
  • the tapered portion 24b has a tapered shape that tapers upward, and when the valve body 24 is located at the closed position as shown in FIG. 2, the seat 24 is seated to block the valve passage 22. Yes.
  • the housing 21 has a seal mounting portion 25 below the valve space 21e.
  • the seal mounting portion 25 is formed on the inner peripheral surface of the housing 21 so as to protrude into the valve body hole 21b, and is formed over the entire circumferential direction on the inner peripheral surface.
  • the seal mounting portion 25 is formed in an annular shape, and its inner diameter substantially matches the hole diameter of the secondary region 21g and the outer diameter of the valve body 24 (the outer diameter of the portion on the lower end 24d side from the tapered portion 24b). ing.
  • the inner diameter below the seal mounting portion 25 of the housing 21 is larger than the inner diameter of the seal mounting portion 25.
  • a generally annular bearing member accommodation space 26 is formed between the housing 21 and the valve body 24.
  • a bearing member 27 is accommodated in the bearing member accommodation space 26.
  • the bearing member 27 is generally formed in a cylindrical shape, and is configured by, for example, a ball guide, a ball bearing, or a slide bearing.
  • the bearing member 27 is externally mounted on the valve body 24 and interposed between the valve body 24 and the housing 21 to support the valve body 24. Thereby, the valve body 24 can move smoothly in the vertical direction along the axis L1 in the housing 21.
  • the bearing member 27 is grease-lubricated so as to further smooth the movement of the valve body 24 and improve durability.
  • a high-pressure seal member 28 is provided on the upper side of the bearing member accommodation space 26 in which the bearing member 27 is arranged in this way so as to close it.
  • the high-pressure seal member 28 is attached so as to be fitted into the inner peripheral portion of the seal attachment portion 25, and is disposed on the outer periphery of the valve body 24.
  • the high-pressure seal member 28 arranged in this manner seals the gap between the valve body 24 and the seal attachment portion 25.
  • a diaphragm seal 29 is provided below the bearing member accommodating space 26 so as to close the space.
  • the diaphragm seal 29 which is the second seal member is a diaphragm formed in a substantially annular shape, and is disposed on the outer periphery of the valve body 24.
  • the inner edge portion of the diaphragm seal 29 is attached to the valve body 24, and the outer edge portion is attached to the housing 21. More specifically, the inner edge of the diaphragm seal 29 is attached to the valve body 24 by being sandwiched between the lower end 24d of the valve body 24 and the attachment member 24c attached thereto.
  • the outer edge portion of the diaphragm seal 29 is configured so that the housing 21 can be divided into two parts up and down, and is attached to the housing 21 by being sandwiched between these two parts.
  • the bearing member accommodation space 26 is isolated and isolated from other spaces (for example, the valve space 21e and the secondary side region 21g) formed in the housing 21. Therefore, since the bearing member 27 is not exposed to the fuel gas, a material that does not have corrosion resistance to the fuel gas can be used for the bearing member, and the choice of the material of the bearing member is increased.
  • the grease that lubricates the bearing member 27 is not exposed to the fuel gas, and the grease does not leak into other spaces in the housing 21, such as the valve space 21e and the secondary port 21c. Therefore, it is possible to prevent the grease from being mixed into the fuel gas, to eliminate the influence on the downstream equipment due to the grease leakage, to suppress the depletion of the grease, and to maintain the lubrication state of the bearing member 27. Thereby, while being able to improve the durability of the bearing member 27, the valve body 24 can be moved smoothly.
  • the bearing member accommodation space 26 is isolated from the other space so that grease does not leak into the other space.
  • the bearing member accommodation space 26 is formed in the atmosphere communication passage 30 formed in the housing 21. It is connected and is opened to the atmosphere through the atmosphere communication path 30. From the atmosphere communication path 30, grease can be injected.
  • a pressure feedback chamber 31 is formed below the diaphragm seal 29 in the valve body hole 21b.
  • the pressure return chamber 31 is a substantially disk-shaped space surrounded by the bottom of the housing 21 and the diaphragm seal 29.
  • the lower end 24 d of the valve body 24 is located in the pressure feedback chamber 31 formed in the housing 21.
  • a space between the pressure feedback chamber 31 and the bearing member accommodating space 26 is closed by a diaphragm seal 29, and the pressure feedback chamber 31 is connected to the secondary side passage 21f by a pressure equalizing passage 32 formed in the valve body 24. It is connected to.
  • the pressure equalizing passage 32 has a secondary side communication portion 32a and a communication portion 32b.
  • the secondary side communication portion 32a extends through the distal end portion 24a of the valve body 24 so as to penetrate in the radial direction, and both ends thereof open to the secondary side region 21g.
  • the communication part 32b is connected to the secondary side communication part 32a.
  • the communication portion 32b is formed along the axis of the valve body 24 (in the present embodiment, substantially coincides with the axis L1), the upper end thereof is connected to the secondary side communication portion 32a, and the lower end is connected to the pressure feedback chamber 31. ing. Accordingly, the secondary port 21 c and the pressure feedback chamber 31 are connected by the pressure equalizing passage 32, and the secondary pressure p 2 guided to the secondary port 21 c is guided to the pressure feedback chamber 31 by the pressure equalizing passage 32.
  • the valve body 24 has a flange 24e.
  • the flange 24e is formed over the entire circumference in the lower side of the tapered portion 24b and protrudes further outward in the radial direction from the tapered portion 24b.
  • the flange 24e is positioned so as to face the upper end of the seal attachment portion 25, and a return spring 33 is disposed between the flange 24e and the upper end of the seal attachment portion 25.
  • the return spring 33 is a so-called compression coil spring, and is externally attached to the valve body 24 in a compressed state, and urges the valve body 24 in the closed position direction (the direction in which the valve body 24 moves toward the closed position).
  • the urged valve body 24 is seated on the seat portion 23 and closes the valve passage 22.
  • An electromagnetic proportional solenoid 34 is provided at the open end (that is, the upper end) of the housing 21 so as to apply a force against the urging force of the return spring 33 to the valve body 24.
  • the electromagnetic proportional solenoid 34 which is an exciting means is screwed and fixed to the outer periphery of the opening end portion of the housing 21.
  • the electromagnetic proportional solenoid 34 has a solenoid coil 35.
  • the solenoid coil 35 is generally formed in a cylindrical shape, and the housing 21 is screwed to the lower end side thereof.
  • the solenoid coil 35 has a substantially cylindrical case 35a in which a bobbin 35b and a coil wire 35c are provided.
  • the bobbin 35b is also formed in a substantially cylindrical shape, and the solenoid coil 35 is configured by winding the bobbin 35b around the coil wire 35c.
  • the coil wire 35 c is electrically connected to the controller 10.
  • a yoke 36 is provided at the lower end and the upper end is closed by a cover 37.
  • a movable member 38 is provided between the yoke 36 and the cover 37.
  • the movable member 38 is made of a magnetic material, is formed in a substantially cylindrical shape, and is disposed along the axis L1.
  • the outer diameter of the movable member 38 is smaller than the inner diameter of the solenoid coil 35.
  • An annular guide member 39 is interposed between the movable member 38 and the solenoid coil 35.
  • the guide member 39 is made of a nonmagnetic material, and supports the movable member 38 so as to be slidable in the vertical direction along the axis L1.
  • the yoke 36 faces the lower end portion of the movable member 38 in the vertical direction and is positioned in a state of being spaced apart from each other.
  • the yoke 36 is made of a magnetic material and is formed in a generally annular shape. The yoke 36 and the movable member 38 are magnetized by passing a current through the solenoid coil 35, and the yoke 36 attracts the movable member 38.
  • a compression coil spring 40 is provided between the upper end portion of the movable member 38 and the cover 37, and the movable member 38 is urged toward the valve body 24 by the compression coil spring 40.
  • a pressing member 41 is provided at the lower end of the movable member 38. The pressing member 41 extends along the axis L ⁇ b> 1 and is inserted into the yoke 36. A proximal end portion of the pressing member 41 is fixed to the movable member 38. The distal end of the pressing member 41 is formed in a partial spherical shape, and is in contact with the distal end portion 24 a of the valve body 24.
  • the pressing member 41 is urged by the compression coil spring 40 via the movable member 38, and the tip thereof is pressed against the tip portion 24 a of the valve body 24. Therefore, the pressing member 41 causes the current to flow through the solenoid coil 35 to attract the movable member 38 toward the yoke 36, thereby pressing the valve body 24 in the open position direction with a force corresponding to the current so as to open the valve passage 22. It has become.
  • the electromagnetic pressure regulating valve 6 configured as described above is guided from the high pressure tank 3 to the valve space 21e by the taper portion 24b of the valve body 24 and the upper surface of the flange 24e (pressure receiving surface P1 corresponding to the first pressure receiving surface). and receiving the primary pressure p 1 in the open position direction, the lower surface of the flange 24e (pressure receiving surface P2 corresponding to the second pressure receiving surface), and receiving the primary pressure p 1 in the closed position.
  • the pressure-receiving surface P1 is a partial region of the tapered surface, and is a region on the outer side in the radial direction from the secondary region 21g in plan view. In each pressure receiving surface P1, P2, the primary pressure p 1 are acting in a direction against each other and cancel each other.
  • Receiving area of the pressure receiving surface P1, P2 has an inner diameter of the outer diameter r 2 of the lower end 24d side of the flange 24e of the valve body 24 and the secondary-side region 21g (i.e., seat diameter r 1) and is substantially have the same diameter So they are almost identical. Therefore, the acting force by the primary pressure p 1 received by the pressure receiving surface P1, and the acting force by the primary pressure p 1 received by the pressure receiving surface P2 are canceled with each other, almost zero to fluctuations in the primary pressure p 1 in the valve body 24 Can be.
  • electromagnetic pressure regulating valve 6 by receiving the secondary pressure p 2 flowing secondary side area 21g in the tapered surface of the distal end and the tapered portion 24b of the valve element 24 (pressure receiving surface P3) in the open position direction, the diaphragm seal 29 and secondary pressure p 2 guided to the pressure feedback chamber 31 at the lower end 24d (pressure receiving surface P4) of the valve body 24 receives the pressure in the closed position.
  • the pressure receiving surface P3 is a region that overlaps the secondary region 21g in plan view. Secondary pressure p 2 to the pressure receiving in pressure receiving surface P3, P4 is acting in a direction against each other.
  • Receiving area of the pressure receiving surface P3 is determined in accordance with the sheet size r 1, pressure receiving area of the pressure receiving surface P4 is dependent on the effective diameter r 3 of the diaphragm seal 29. While the seat diameter r 1 is substantially the same as the outer diameter r 2 of the valve body 24, the effective diameter r 3 of the diaphragm seal 29 is larger than the seat diameter r 1 and the outer diameter r 2 of the valve body 24. ing. Therefore, the pressure receiving surface P4 has a larger pressure receiving area than the pressure receiving surface P3.
  • valve element 24 the action force due to the secondary pressure p 2 received by the pressure receiving surface P3, P4 is not completely canceled, the action force corresponding to the difference between the pressure receiving areas of each pressure receiving surface P3, P4 is closed Acts in the direction of the position.
  • the electromagnetic pressure regulating valve 6 is configured as a normally closed valve in which the valve body 24 is seated on the seat portion 23 in a state where the current to the solenoid coil 35 is interrupted.
  • the electromagnetic pressure regulating valve 6 configured as described above is used as a shut-off valve, and the controller 10 cuts off the current flowing through the solenoid coil 35 when the detected pressure of the low-pressure sensor 9 exceeds the allowable pressure.
  • the valve passage 22 is urgently shut off by the electromagnetic pressure regulating valve 6.
  • the electromagnetic pressure regulating valve 6 Since the electromagnetic pressure regulating valve 6 has a cutoff function, the number of cutoff valves provided in the supply passage 4 can be reduced, the number of components of the fuel gas supply system 1 can be reduced, and the fuel gas supply system 1 can be manufactured. Cost can be reduced. Moreover, the pressure loss in the fuel gas supply system 1 can be reduced by reducing the number of shut-off valves. Thereby, the use limit pressure in the high-pressure tank 3 can be lowered, and the traveling range of the automobile can be greatly increased. Further, the size of the fuel gas supply system 1 can be reduced by reducing the number of shutoff valves.
  • the fuel gas of the secondary pressure p 2 thus reduced in pressure is output from the secondary port 21c through the secondary side passage 21f, and a part of the fuel gas passes through the pressure equalizing passage 32 to the pressure feedback chamber 31.
  • the diaphragm seal 29 receives the secondary pressure p 2 of the fuel gas guided to the pressure feedback chamber 31.
  • the opening of the valve passage 22 (that is, the opening of the orifice) is adjusted.
  • the secondary pressure p 2 even if the variation degree is adjusted secondary pressure p 2 of the valve passage 22 is returned to the target pressure. Therefore, the secondary pressure p 2 is maintained at the target pressure.
  • the secondary pressure p 2 is lower than the target pressure, the force in the open position direction by the excitation force is increased and than the force of the closed position direction by the acting force and the spring force by the secondary pressure p 2
  • the valve body 24 moves in the open position direction so as to be away from the seat portion 23. Therefore, opening the secondary pressure p 2 rises spread of the valve passage 22, the action by the secondary pressure p 2 power, excitation force, and the spring force of the return spring 33 are balanced position, i.e. secondary pressure p 2 moves the valve body 24 to the position where the target pressure, the secondary pressure p 2 is returned to the target pressure.
  • electromagnetic pressure regulating valve 6 can be secondary pressure p 2 controls the opening degree of the valve passage 22 accordingly be varied, pressure regulates the secondary pressure p 2 to the target pressure. Therefore, the electromagnetic pressure regulating valve 6 has high pressure controllability, and can modulate the high pressure fuel gas to the target pressure more accurately.
  • the secondary pressure p 2 is higher than the target pressure, as opposed to the movement to above, the secondary pressure p 2 is the valve body 24 back to the target pressure is moved in the closing direction.
  • the valve body 24 is supported by the bearing member 27 and can move smoothly. Therefore, even if the secondary pressure p 2 fluctuates, the valve body 24 moves quickly so as to return the secondary pressure p 2 to the target pressure, so that the followability of the electromagnetic pressure regulating valve 6 with respect to the target pressure can be improved. Thus, it is possible to reduce the variation range of the secondary pressure p 2.
  • the fuel gas supply operation in the fuel gas supply system 1 will be described with reference to FIG.
  • the electromagnetic on-off valve 7 is actuated by an ECU command or the like to open the supply passage 4, and the fuel gas in the high-pressure tank 3 flows to the electromagnetic pressure regulating valve 6.
  • the flowd fuel gas is regulated to the target pressure by the electromagnetic pressure regulating valve 6 as described above, and thereafter led to the gas injector 5 through the supply passage 4.
  • the gas pressure of the fuel gas is detected by the low-pressure side pressure sensor 9, and the detection result is transmitted to the controller 10.
  • the controller 10 compares the pressure of the fuel gas detected by the low-pressure side pressure sensor 9 (that is, the detected pressure) with the target pressure, and if the detected pressure is lower than the target pressure, the deviation between the detected pressure and the target pressure.
  • the current flowing through the electromagnetic pressure regulating valve 6 is maintained and the opening degree of the valve passage 22 is maintained.
  • the current flowing through the electromagnetic pressure regulating valve 6 is decreased so as to correct the deviation between the detected pressure and the target pressure. to reduce the opening degree of the valve passage 22 lowers the secondary pressure p 2 by.
  • the controller 10 is the pressure of the fuel gas introduced into the gas injector 5 by adjusting the secondary pressure p 2 which is output from the electromagnetic pressure regulating valve 6 (i.e., feed pressure) to a constant target pressure Feedback control, and the supply pressure can be maintained at a target pressure.
  • the supply pressure can be controlled with higher accuracy and kept at a more stable constant pressure, and fuel gas with a higher mass flow rate can be supplied to the gas engine 2 in response to a command from the ECU. it can.
  • the target pressure may be set to a constant value, the control is easy, and the fuel gas supply device 1 can be suitably applied to a gas engine vehicle.
  • electromagnetic pressure regulating valve 6 since the pressure receiving area of the pressure receiving surface P1 and the pressure receiving surface P2 substantially the same, it is canceled acting force the valve element 24 receives from the primary pressure p 1. Thus, even if the remaining amount of the fuel gas is such less primary pressure p 1 in the high-pressure tank 3 variation, to suppress the variation of the force acting on the valve body caused by the change of the primary pressure p 1 Can do. Therefore, it is possible to improve the pressure control over the high pressure of the fuel gas, it is possible to control the secondary pressure p 2 more accurately. In addition, by canceling the action force received from the primary pressure p 1, it is possible to reduce the excitation force required to the electromagnetic proportional solenoid 34, it is possible to miniaturize an electromagnetic pressure regulating valve 6.
  • the pressure receiving areas of the pressure receiving surface P1 and the pressure receiving surface P2 do not necessarily have to be substantially the same, and are feedback-controlled as described above. Therefore, even if the pressure receiving areas are different from each other, the supply pressure is highly accurate and stable. To maintain the target pressure.
  • the fuel gas supply system 1A according to the second embodiment is similar in configuration to the fuel gas supply system 1 according to the first embodiment. Accordingly, the configuration of the fuel gas supply system 1A will be described only with respect to differences from the fuel gas supply system 1 according to the first embodiment, and the same components will be denoted by the same reference numerals and description thereof will be omitted.
  • the electromagnetic on-off valve 7 is provided in the valve block 11, and the electromagnetic on-off valve 7 constitutes a container original valve 12A. Further, the electromagnetic pressure regulating valve 6, the safety relief valve 8, and the high pressure side pressure sensor 54, which are components other than the electromagnetic opening / closing valve 7, are provided separately from the valve block 11 in a separate block 13.
  • the supply pressure to the gas injector 5 can be maintained at the target pressure with high accuracy and stability by feedback control, and the gas injector 5 Therefore, a desired amount of fuel gas can be injected and supplied to the gas engine 2 with high accuracy.
  • the fuel gas supply system 1A according to the second embodiment has the same effects as the fuel gas supply system 1 according to the first embodiment.
  • the fuel gas supply system 1B according to the third embodiment is similar in configuration to the fuel gas supply system 1 according to the first embodiment. Therefore, the configuration of the fuel gas supply system 1B according to the third embodiment will be described only with respect to differences from the fuel gas supply system 1 according to the first embodiment.
  • the valve block 11 is provided with a manual opening / closing valve 14.
  • the manual opening / closing valve 14 is provided further upstream than the electromagnetic opening / closing valve 7 in the supply passage 4, and can open and close the supply passage 4.
  • the manual open / close valve 14 is a manually operated valve that can be operated manually. When a leak occurs in the supply passage 4 or when the separate block 13 is repaired or replaced, the manual open / close valve 14 is operated. The supply passage 4 is closed.
  • the manual on-off valve 14 configured in this way constitutes the container base valve 12B.
  • the supply pressure to the gas injector 5 can be maintained at the target pressure with high accuracy and stability by feedback control.
  • a desired amount of fuel gas can be injected and supplied with high accuracy.
  • the fuel gas supply system 1B according to the third embodiment has the same effects as the fuel gas supply system 1 according to the first embodiment.
  • the fuel gas supply system 1C according to the fourth embodiment is similar in configuration to the fuel gas supply system 1 according to the first embodiment. Therefore, the configuration of the fuel gas supply system 1C according to the fourth embodiment will be described only with respect to differences from the fuel gas supply system 1 according to the first embodiment.
  • the electromagnetic pressure regulating valve 6 and the safety relief valve 8 are provided separately in a separate block 13 different from the valve block 11, and the valve block 11 and the electromagnetic pressure regulating valve 6 are provided separately in the supply passage 4.
  • An intermediate pressure sensor 60 is interposed therebetween.
  • the fuel gas supply system 1 ⁇ / b> C further includes a mechanical pressure reducing valve 61 and an intermediate pressure relief valve 62, and these configurations are provided in the valve block 11 together with the electromagnetic on-off valve 7 and the high pressure side pressure sensor 54. And constitutes a container original valve 12C.
  • the mechanical pressure reducing valve 61 is interposed in the supply passage 4 between the electromagnetic on-off valve 7 and the electromagnetic pressure regulating valve 6, more specifically on the downstream side of the high pressure side pressure sensor 54.
  • the mechanical pressure reducing valve 61 is a valve that adjusts the opening degree of the supply passage 4 in accordance with the downstream pressure and reduces the downstream pressure to a pressure higher than the supply pressure supplied to the gas injector 5.
  • An intermediate pressure relief valve 62 is provided downstream of the mechanical pressure reducing valve 61, and the intermediate pressure relief valve 62 has a predetermined pressure (electromagnetic) between the mechanical pressure reducing valve 61 and the electromagnetic pressure regulating valve 6. When the pressure is less than the pressure resistance of the piping outside the pressure regulating valve 6 and the valve block 11, the fuel gas is released to the atmosphere.
  • the fuel gas is decompressed from the high pressure to the medium pressure by the mechanical decompression valve 61, and then decompressed to the low pressure by the electromagnetic pressure regulating valve 6. Therefore, the fuel gas is more accurately controlled.
  • the pressure can be reduced to a stable and constant pressure. As a result, fuel gas with a high accuracy in mass flow rate can be supplied to the gas engine 2. Further, by reducing the fuel gas from the high pressure to the medium pressure by the mechanical pressure reducing valve 61, the pressure loss in the supply passage 4 is reduced more than when the pressure is reduced to the low pressure at a time while suppressing the output pressure level from the valve block 11. Can be suppressed.
  • the use limit pressure in the high-pressure tank 3 can be further reduced. Therefore, once the fuel gas is reduced from high pressure to medium pressure, the use limit pressure of the high-pressure tank 3 can be lowered while improving the safety of the fuel gas supply system 1C.
  • the supply pressure to the gas injector 5 can be maintained at a high accuracy and a stable pressure by feedback control.
  • a desired amount of fuel gas can be injected and supplied to the gas engine 2 with high accuracy.
  • the fuel gas supply system 1C according to the fourth embodiment has the same effects as the fuel gas supply system 1 according to the first embodiment.
  • the secondary pressure p 2 in the pressure feedback chamber 31 is pressure in the diaphragm seal 29 may not necessarily be a diaphragm seal, even low-pressure sealing member such as O-ring Good.
  • the electromagnetic pressure regulating valve 6 of the present embodiment is a push type electromagnetic pressure regulating valve, but may be a pull type electromagnetic pressure regulating valve.
  • the basic configuration circuit is not changed, for example, the mechanical pressure reducing valve 61 is arranged in another block in the fourth embodiment.
  • the arrangement may be changed.
  • components are added or deleted without departing from the spirit of the invention, such as eliminating the intermediate pressure relief valve 62 or adding an electromagnetic on-off valve that urgently shuts off the supply passage 4 downstream of the electromagnetic pressure regulating valve 6. It may be changed.
  • the case where the fuel gas is supplied to the gas engine 2 by the gas injector 5 has been described, but a low-pressure regulating valve may be used instead of the gas injector 5.
  • a low-pressure regulating valve may be used instead of the gas injector 5.
  • ECU and the controller 10 are comprised separately, the controller 10 may be integrated in ECU.
  • the present invention can be applied to a fuel gas supply system of a gas engine that supplies fuel gas to a gas engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Magnetically Actuated Valves (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 変動の少ない一定圧力の燃料ガスを燃料ガス供給手段に供給できるガスエンジンの燃料ガス供給システムを提供する。燃料ガス供給システム1では、高圧タンク3とガスインジェクタ5とが供給通路4で接続されており、この供給通路4に電磁式調圧弁6が介在している。電磁式調圧弁6は、供給通路4を流れる燃料ガスのガス圧をそこに流される電流に応じた圧力に調圧するようになっており、電磁式調圧弁6より下流側のガス圧が低圧側圧力センサ9によって検出されている。また、電磁式調圧弁6には制御器10が電気的に接続されており、前記制御器10は、低圧側圧力センサ9の検出圧が予め定められた目標圧力になるように電磁式調圧弁6に流す電流を制御している。

Description

ガスエンジンの燃料ガス供給システム
 本発明は、ガスエンジンに燃料ガスを供給するガスエンジンの燃料ガス供給システムに関する。
 自動車として、ガソリンを使用するガソリン自動車や軽油を使用するディーゼル車等があるが、それらの他にも圧縮天然ガス(CNG)や圧縮水素等の燃料ガスを使用するガスエンジン自動車が知られている。ガスエンジン自動車では、燃料ガスが高圧タンク等に貯蔵されており、貯蔵された高圧の燃料ガスが燃料ガス供給システムを介してガスエンジンに供給される。燃料ガス供給システムとしては、例えば特許文献1のようなガスエンジンの燃料供給装置が知られている。
 特許文献1に記載のガスエンジンの燃料供給装置は、燃料噴射弁(ガスインジェクタ)を備えており、燃料噴射弁とボンベ(高圧タンク)との間が配管によって繋がっている。この配管には、ボンベ側から順に主止弁、レギュレータ、及び低圧燃料遮断弁が介在している。主止弁及び低圧燃料遮断弁は、配管内の通路を開閉可能になっており、ガスエンジンを停止する際に通路を閉じてガスエンジンへの燃料ガスの供給を遮断し、逆にガスエンジンを作動させる際に通路を開いてガスエンジンに燃料ガスを供給可能な状態にする。レギュレータは、ボンベから流れてくる高圧の燃料ガスを所定圧に減圧して燃料噴射弁へ導くようになっている。
 このような構成を有するガスエンジンの燃料供給装置では、ボンベに貯留された燃料ガスが主止弁を通ってレギュレータに導かれ、レギュレータにて減圧された後、低圧燃料遮断弁を通って燃料噴射弁に導かれる。燃料噴射弁は、ECU等から指令に応じた燃料ガス量をガスエンジンに噴射する。
特開2002-295313号公報
 特許文献1に記載のガスエンジンの燃料供給装置のような燃料ガス供給システムでは、燃料噴射弁から噴射される燃料ガスを計量するセンサが設けられておらず、またセンサ等で計量することが困難である。そのため、燃料噴射弁自体が計量機能を有している必要があり、例えば、単位時間の開閉により噴射される燃料ガスの噴射量や、1回の燃料ガス噴射により噴射される燃料ガスの噴射量を予め推定しておき、開閉時間や噴射回数によって燃料ガスの噴射量を制御している。
 単位時間又は1回当りの燃料ガスの噴射量は、燃料噴射弁に導かれる燃料ガスが所定の一定圧力であるという仮定で推定されている。しかし、一般的にレギュレータは、減圧後の燃料ガスの圧力、つまり二次圧が変動しており、二次圧は必ずしも一定ではない。また、レギュレータから燃料噴射弁の間を流れる燃料ガスは、タンク内に比べてかなり低圧になっており、そこで大きな圧力損失が生じ、圧力損失は流量により大きく変動する。このように燃料噴射弁に導かれる燃料ガスの圧力は、必ずしも一定ではなく、また推定値より大幅に下回っていることがあり、単位時間又は1回当りに噴射される燃料ガスの噴射量は、推定量から大きく離れていることがある。そうすると、ガスエンジンから所望の出力を取り出すことができないことがある。
 そこで本発明は、変動の少ない一定圧力の燃料ガスを燃料ガス供給手段に供給できるガスエンジンの燃料ガス供給システムを提供することを第1の目的としている。
 また、本発明は、構成機器の点数が低減されたガスエンジンの燃料ガス供給システムを提供することを第2の目的としている。
 本発明のガスエンジンの燃料ガス供給システムは、ガスエンジンに燃料ガスを供給するシステムであって、前記ガスエンジンに燃料ガスを供給する燃料ガス供給手段と、高圧の前記燃料ガスが貯蔵される高圧タンクと前記燃料ガス供給手段とを接続する供給通路と、前記供給通路に設けられ、前記供給通路を流れる燃料ガスの圧力を流される電流に応じた圧力に調圧する電磁式調圧弁と、前記電磁式調圧弁に流す電流を制御する制御手段と、前記電磁式調圧弁より前記燃料ガス供給手段側において、燃料ガスの圧力を検出する低圧側圧力検出手段とを備え、前記電磁式調圧弁は、前記制御手段から流される電流が止められると前記供給通路を閉じるノーマルクローズ形の弁であり、前記制御手段は、前記低圧側圧力検出手段で検出されるガス圧力が予め定められた目標圧力になるように前記電流を制御するようになっているものである。
 本発明に従えば、低圧側圧力検出手段が検出する燃料ガスの圧力が目標圧力から外れていると、制御手段が前記燃料ガスの圧力が目標圧力になるように電磁式調圧弁に流れる電流を調整し、前記燃料ガスの圧力をフィードバック制御する。このようにフィードバック制御することで、前記燃料ガスの圧力が目標圧力で一定に保持され、変動の少ない一定圧力の燃料ガスを燃料ガス供給手段に供給できる。
 また、本発明では、電磁式調圧弁がノーマルクローズ形の弁であるので、燃料ガスの圧力を調整すべく電磁式調圧弁に流していた電流を止めることで、供給通路を緊急遮断することができる。これにより、例えば、燃料ガス供給手段に意図しない高圧の燃料ガスが供給されても供給通路を直ぐに遮断することができ、燃料ガス供給手段が損傷することを防ぐことができる。また、電磁式調圧弁が遮断機能を有するので、供給通路に設ける遮断弁の数を減らすことができ、燃料ガス供給システムの製造コストを低減することができる。また、燃料ガス供給システムの構成機器を低減することで、燃料ガス供給システムにおける圧力損失を低減し、且つ小形化を図ることができる。
 上記発明において、前記電磁式調圧弁は、前記高圧タンクに接続される一次ポートと前記ガスエンジンに接続される二次ポートとを繋ぐ弁通路を有するハウジングと、前記ハウジング内に設けられ、前記弁通路を閉じる閉位置と前記弁通路を開く開位置との間で移動して前記弁通路の開度を制御する弁体と、前記弁体を前記閉位置の方に付勢する復帰用ばねと、前記制御手段から流される電流に応じた励磁力を前記弁体に与えて、前記弁体を開位置の方に移動させる電磁比例ソレノイドと、前記弁体と前記ハウジングとの間に介在し、前記閉位置と前記開位置との間で摺動できるように前記弁体を支持する軸受部材と、前記軸受部材の両側を封止する第1シール部材及び第2シール部材とを備え、前記ハウジング内には、前記二次ポートに繋がる圧力帰還室が形成され、前記第2シール部材は、前記圧力帰還室の内圧に応じた作用力を前記弁体に与えて、前記弁体を前記閉位置の方へと移動させるようになっていることが好ましい。
 上記構成に従えば、電磁比例ソレノイドの励磁力を変えることで弁通路の開度を変えて二次ポートから出力される圧力、つまり二次圧を調圧することができるようになっており、前記励磁力を目標圧力に応じた力に設定することで二次圧を目標圧力に制御することができる。また、二次圧は圧力帰還室に導かれており、第2シール部材は、この圧力帰還室の内圧に応じた作用力を弁体に与えて弁体を閉位置方向に移動させるようになっている。このような作用力を受ける弁体は、弁体が受ける二次圧、第2シール部材から受ける作用力、励磁力、並びに復帰用ばねによる付勢力等、弁体に作用する力が釣り合う位置まで弁体が移動し、前記力が釣り合うように弁通路の開度が調整される。これにより、二次圧が変動しても、前記弁通路の開度が調整されて前記二次圧が目標圧力に戻される。そのため、二次圧が目標圧力にて保持される。このように前記電磁式調圧弁は、二次圧を目標圧力で保持することができるため、圧力制御性が高く、高圧の燃料ガスをより正確に可変調圧することができる。
 また、更に、本発明では、軸受部材により弁体が円滑に移動できるようになっているので、目標圧力に対する追従性が向上している。そして、軸受部材の両側に第1及び第2シール部材が設けられているので、燃料ガスが軸受部材の方に流入することがなく、軸受部材が燃料ガスに曝されることがない。これにより、燃料ガスに対する腐食耐性がない材料を軸受部材に使用することが可能になり、軸受部材の材料の選択肢が増加する。更に、例えば軸受部材をグリス潤滑したときに、使用したグリスが燃料ガスと共に二次ポート側に流出することを防ぐことができる。これにより、弁体の円滑な移動を実現するとともに、燃料ガスへのグリスの混入を防ぐことができる。
 上記発明において、前記弁体は、前記弁体が開位置に向かう方向に前記二次ポートの圧力が作用する二次側受圧部と、前記弁体が閉位置に向かう方向に前記圧力帰還室の圧力が作用する圧力帰還室側受圧部とを備え、前記圧力帰還室側受圧部の受圧面積は、前記二次側受圧部の受圧面積よりも大きいことが好ましい。
 上記構成に従えば、二次側受圧部及び圧力帰還室側受圧部で共に二次圧を受圧するが、前記圧力帰還室側受圧部の受圧面積が前記二次側受圧部の受圧面積よりも大きいので、各受圧部に作用する力が閉位置に向かう方向に作用する。それ故、電磁比例ソレノイドが駆動していないときに弁体が閉位置の方向に付勢されるようになり、より信頼性の高いノーマルクローズ形の弁構造を実現することができる。
 上記発明において、前記弁体は、前記弁体が開位置に向かう方向に前記一次ポートの圧力が作用する第一受圧面と、前記弁体が閉位置に向かう方向に前記一次ポートの圧力が作用する第二受圧面とを備え、前記第一受圧面の受圧面積と前記第二受圧面の受圧面積は略同一であることが好ましい。
 上記構成に従えば、第一受圧面及び第二受圧面で夫々受ける一次圧が相殺される。これにより、一次圧の変動に起因する弁体への作用力の変動を略ゼロとすることができ、二次圧の圧力制御性を更に向上させることができる。また、電磁比例ソレノイドの励磁力を小さくすることができ、電磁式調圧弁を小形化することができる。
 上記発明において、前記低圧側圧力検出手段は、前記ガス供給手段付近に設けられていることが好ましい。
 上記構成に従えば、供給通路やそこに介在する様々な機器で生じる燃料ガスの圧力損失に関係なく燃料ガス供給手段に導かれる燃料ガスの圧力を目標圧力に制御することができるので、供給通路の長さや供給通路に介在させる機器の構成等に対する自由度が増し、燃料ガス供給システムの設計の自由度が向上する。
 上記発明において、前記制御手段は、前記低圧側圧力検出手段で検出されるガス圧力が予め定められた許容圧力以上になると、前記電磁式調圧弁に流す電流を止めるようになっていることが好ましい。
 上記構成に従えば、燃料ガス供給手段に導かれる燃料ガスの圧力が急激に上昇した時に燃料ガス供給手段への燃料ガス供給を止めることができる。これにより、燃料ガス供給手段における燃料ガスの圧力が許容圧力以上の異常圧力に上昇することを防ぐことができる。
 上記発明において、前記供給通路において前記電磁式調圧弁より上流側に設けられ、前記電磁式調圧弁への燃料ガスの供給を遮断可能な電磁式開閉弁を更に備えることが好ましい。
 上記構成に従えば、高圧タンクと燃料ガス供給手段との間に、遮断機能を有する電磁式調圧弁及び電磁式開閉弁の2つの弁が設けられ、これら2つの弁により高圧タンクと燃料ガス供給手段との間を遮断することができる。このように遮断機能を有する2つの弁を設けることで燃料ガス供給システムの遮断機能を冗長化させることができ、燃料ガス供給システムの安全性を向上させることができる。
 上記発明において、前記電磁式調圧弁は、前記高圧タンクの供給口に設置されるインタンク型又はオンタンク型の容器元弁に含まれていることが好ましい。
 上記構成に従えば、高圧タンクの供給口に電磁式調圧弁が配置されるので、高圧タンクからの出力圧力レベルが低圧になり、システムの安全性が向上する。
 本発明によれば、変動の少ない一定圧力の燃料ガスを燃料ガス供給手段に供給できるガスエンジンの燃料ガス供給システムを提供することができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
第1実施形態の燃料ガス供給システムの構成を示す回路図である。 第1実施形態の燃料ガス供給システムに備わる電磁式調圧弁の構成を示す断面図である。 第2実施形態の燃料ガス供給システムの構成を示す回路図である。 第3実施形態の燃料ガス供給システムの構成を示す回路図である。 第4実施形態の燃料ガス供給システムの構成を示す回路図である。
 以下では、前述する図面を参照しながら、本発明の第1乃至第4実施形態に係るガスエンジン2の燃料ガス供給システム(以下、単に「燃料ガス供給システム」ともいう)1,1A~1Cについて説明する。なお、以下に説明する燃料ガス供給システム1,1A~1Cは、本発明の一実施形態に過ぎず、本発明は実施の形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。
 [第1実施形態]
 圧縮天然ガス自動車や水素ガス自動車等の車両は、ガスエンジン2、高圧タンク3及び燃料供給システム1を備えており、このガスエンジン2で燃料ガス(圧縮天然ガス(CNG)や水素ガス等)を燃焼することによって駆動力を得て駆動輪を動かすようになっている。ガスエンジン2は、燃料供給システム1を介して高圧タンク3に接続されている。高圧タンク3は、例えば35~70MPa、又はそれ以上の高圧の燃料ガスを貯留することができるようになっており、燃料ガス供給システム1は、高圧タンク3に貯留されている燃料ガスをガスエンジン2に燃料ガスを供給するようになっている。以下では、燃料ガス供給システム1の構成について説明する。
 <供給回路>
 燃料ガス供給システム1は、アクセルペダル等の図示しない入力手段の入力に応じてガスエンジン2への燃料ガスの供給量を調整するようになっており、供給通路4と、ガスインジェクタ5、電磁式調圧弁6と、電磁式開閉弁7と、安全リリーフ弁8と、低圧側圧力センサ9と、制御器10とを備えている。供給通路4は、燃料ガスが流れる通路であり、その一端に高圧タンク3が繋がっている。また、供給通路4の他端側には、ガスインジェクタ5が設けられている。なお、供給通路4の他端側は、必ずしも複数の通路に分岐している必要はない。
 燃料ガス供給手段であるガスインジェクタ5は、ガスエンジン2内に燃料ガスを直接又は間接的に噴射して供給するようになっている。ガスインジェクタ5は、図示しないECU(Electronic Control unit)に接続されており、ECUは、ガスインジェクタ5に対してデューティー比を変えてガスエンジン2に噴射する燃料ガスの量(つまり、噴射量)を調整するデューティー制御を実行している。また、供給通路4のガスインジェクタ5の上流側には、電磁式調圧弁6が設けられている。
 電磁式調圧弁6は、供給通路4に介在しており、高圧タンク3から流出する高圧の燃料ガスを低圧の一定圧力に調圧してガスエンジン2に供給する機能を有している。電磁式調圧弁6は、その具体的な構成については後述するが、ノーマルクローズ形の弁であり、そこに流れる電流を止めることで供給通路4を遮断する機能を有している。そして、この電磁式調圧弁6より上流側には、電磁式開閉弁7が介在している。電磁式開閉弁7は、供給通路4に介在し、供給通路4を開閉する機能を有しており、図示しない操作手段で操作されると、供給通路4を開閉するようになっている。また、電磁式調圧弁6及び電磁式開閉弁7は、電磁式調圧弁6の下流側の圧力が許容圧力(例えば、常用の圧力よりも高くガスインジェクタ5の耐圧より低い圧力)になると、流れる電流が遮断されて供給通路4を遮断するようになっている。このように、供給通路4に遮断機能を有する2つの弁6,7が介在させることで、燃料ガス供給システム1の遮断機能を冗長化さている。これにより、供給通路4の遮断性能が向上し、燃料ガス供給システム1の安全性を向上させることができる。
 このように供給通路4に介在する電磁式開閉弁7及び電磁式調圧弁6は、高圧タンク3の開口部に設けられ、前記開口部を塞ぐバルブブロック11に一体的に設けられており、それら2つの弁6,7によって容器元弁12が構成されている。容器元弁12は、これら2つの弁6,7をインタンク型又はオンタンク型の電磁弁として備える電磁式容器元弁として構成されている。このように電磁式調圧弁6を容器元弁12に含めることで、高圧タンク3からの出力圧力レベルを低圧にすることができ、燃料ガス供給システム1の安全性が大幅に向上する。また、電磁式開閉弁7は、電流により遠隔操作可能であるので、例えば緊急時に高圧タンク3を緊急遮断することができ、燃料ガス供給システム1の安全性を向上させることができる。
 また、電磁式開閉弁7と電磁式調圧弁6との間には、高圧側圧力センサ54が設けられ、この高圧側圧力センサ54により測定される圧力によりタンク3内の残量を確認するようになっている。更に、供給通路4には、電磁式調圧弁6とガスインジェクタ5との間において、上流側から順に安全リリーフ弁8及び低圧側圧力センサ9が繋がっている。安全リリーフ弁8は、いわゆるリリーフ弁であり、バルブブロック11内に設けられている。安全リリーフ弁8は、電磁式調圧弁6より下流側の圧力が予め定められた制限圧力より高くなると、作動するようになっている。また、低圧側圧力検出手段である低圧側圧力センサ9は、電磁式調圧弁6より下流側の圧力、即ち供給通路4の低圧側の圧力を検出するようになっている。この低圧側圧力センサ9は、制御器10に電気的に接続され、検出された圧力を制御器10に送信するようになっている。
 制御手段である制御器10は、ECUと低圧側圧力センサ9とに接続されている。制御器10は、ECUから目標圧力を受信するようになっている。制御器10は、電磁式調圧弁6に流す電流を調整してガスインジェクタ5に流れるガス圧を制御する機能を有している。具体的に説明すると、制御器10は、目標圧力と低圧側圧力センサ9の検出圧とに基づいて電磁式調圧弁6に流す電流を調整し、検出圧が目標圧力になるようにガスインジェクタ5に流れるガス圧をフィードバック制御するようになっている。
 このようにフィードバック制御の一部の機能を担う低圧側圧力センサ9は、安全リリーフ弁8より下流側であれば何れの位置に設けられてもよいが、供給通路4においてガスインジェクタ5の近く(ガスインジェクタ5に近ければ近いほど望ましい)に設けられることが好ましい。というのも、燃料ガス供給システム1では、供給通路4やそこに介在する様々な機器において生じる燃料ガスの圧力損失に関係なく、低圧側圧力センサ9が検出する圧力が目標圧力になるように制御器10が電磁式調圧弁6に流れる電流を調整している。そのため、低圧側圧力センサ9をガスインジェクタ5の近くに設けると、より目標圧力に近いガス圧の燃料ガスをガスインジェクタ5に供給することができる。それ故、供給通路4の長さや供給通路4に介在させる機器の構成等に対する自由度が増し、燃料ガス供給システム1の設計の自由度が向上する。
 ガスエンジン自動車では、ガスインジェクタ5及びガスエンジン2に一定圧力の燃料ガスが供給されていることが望ましく、前述する燃料ガス供給システム1が好適に適用できる。また、一定圧力を供給する燃料ガス供給システム1では、目標圧力を一定値にすればよく、簡単な制御システムで供給システムを実現できる。
 更に、制御器10は、電磁式調圧弁6に電気的に接続され、低圧側圧力センサ9で検出された圧力が許容圧力を超えると、電磁式調圧弁6を作動させて供給通路4を遮断するようになっている。
 <電磁式調圧弁>
 以下では、前述した燃料ガス供給システム1にて設けられている電磁式調圧弁6の構成について、詳述する。なお、以下の説明における上下、左右、及び前後等の方向の概念は、説明の便宜上使用するものであって、電磁式調圧弁6に関して、それらの構成の配置及び向き等をその方向に限定することを示唆するものではない。また、以下で説明する電磁式調圧弁6は、電磁式調圧弁の一実施形態に過ぎず、後述する形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。
 電磁式調圧弁6は、図2に示すようにハウジング21を備えている。ハウジング21には、一次ポート21a、弁体孔21b、及び二次ポート21cが形成されている。一次ポート21aは、電磁式開閉弁7(図1参照)に繋がっており、ハウジング21に形成されている一次側通路21dを介して弁体孔21bに繋がっている。
 弁体孔21bは、上下に延在する軸線L1に沿って延在しており、その断面が円形状になっている。弁体孔21bは、その中間部分に残余部より大径に形成された弁空間21eを有しており、この弁空間21eに一次側通路21dが繋がっている。また、弁体孔21bは、前記弁空間21eより上側の二次側領域21gで二次側通路21fと繋がっている。二次側通路21fは、ハウジング21に形成されており、弁体孔21bは、この二次側通路21fを介して二次ポート21cに繋がっている。また、二次ポート21cは、供給通路4(図1参照)を介してガスインジェクタ5と繋がっている。このように一次ポート21aと二次ポート21cとは、一次側通路21d、弁空間21e、二次側領域21g及び二次側通路21fを介して繋がっており、一次側通路21d、弁空間21e、二次側領域21g及び二次側通路21fによって、一次ポート21aと二次ポート21cとを繋ぐ弁通路22が構成されている。
 また、ハウジング21は、座部23を有している。座部23は、二次側領域21gと弁空間21eとを繋ぐ開口付近に位置しており、この開口を外囲するように形成されている。そして、この座部23に着座するように、ハウジング21の弁体孔21bに弁体24が挿入されている。弁体24は、弁体孔21bの軸線L1に沿って位置しており、その先端部(つまり、上端部)24aが二次側領域21gに位置している。弁体24は、大略的に円柱状になっており、先端部24a側にテーパ部24bを有している。テーパ部24bは、上側に向かって先細りのテーパ形状になっており、弁体24が図2に示すような閉位置に位置しているときに座部23に着座して弁通路22を塞いでいる。
 更に、ハウジング21は、弁空間21eより下側にシール取付部25を有している。シール取付部25は、ハウジング21の内周面に弁体孔21bに突き出すように形成されており、前記内周面において周方向全周にわたって形成されている。シール取付部25は、円環状に形成されており、その内径は、二次側領域21gの孔径及び弁体24の外径(テーパ部24bより下端24d側の部分の外径)と略一致している。他方、ハウジング21のシール取付部25より下側の内径は、シール取付部25の内径より大径になっている。これにより、ハウジング21と弁体24との間には、大略円環状の軸受部材収容空間26が形成されている。この軸受部材収容空間26には、軸受部材27が収容されている。
 軸受部材27は、大略的に円筒状に形成されており、例えばボールガイド、ボール軸受、又はすべり軸受によって構成されている。軸受部材27は、弁体24に外装されて弁体24とハウジング21との間に介在し、弁体24を支持している。これにより、弁体24は、ハウジング21内を軸線L1に沿って上下方向に円滑に移動できるようになっている。なお、軸受部材27は、弁体24の動きを更に滑らかにし、且つ耐久性を向上させるべくグリス潤滑されている。
 このように軸受部材27が配置された軸受部材収容空間26の上側には、そこを塞ぐべく、高圧シール部材28が設けられている。高圧シール部材28は、シール取付部25の内周部に嵌め込むように取付けられ、弁体24の外周に配置されている。このように配置された高圧シール部材28は、弁体24とシール取付部25との間隙を封止している。
 また、軸受部材収容空間26の下側には、そこを塞ぐべく、ダイヤフラムシール29が設けられている。第2シール部材であるダイヤフラムシール29は、大略的に円環状に形成されたダイヤフラムであり、弁体24の外周に配置されている。ダイヤフラムシール29の内縁部は弁体24に取付けられ、外縁部はハウジング21に取付けられている。詳述すると、ダイヤフラムシール29の内縁部は、弁体24の下端24dとそこに取り付けられた取付け部材24cとで挟むことで、弁体24に取付けられている。他方、ダイヤフラムシール29の外縁部は、ハウジング21を上下に2つに分割可能に構成し、それら2つの部分の間に挟まれることでハウジング21に取付けられている。
 このように軸受部材27の上下両側が2つのシール部材28,29によって封止される。これにより、軸受部材収容空間26は、ハウジング21内に形成されている他の空間(例えば、弁空間21eや二次側領域21g等)から遮断されて隔離されている。それ故、軸受部材27が燃料ガスに曝されることがないので、燃料ガスに対する腐食耐性がない材料も軸受部材に使用することが可能になり、軸受部材の材料の選択肢が増加する。
 また、軸受部材27を潤滑するグリスも燃料ガスに曝されることがなく、更にグリスがハウジング21内の他の空間、例えば弁空間21eや二次ポート21cに漏れることがない。従って、グリスが燃料ガスに混入することを防いでグリス漏れによる下流側の機器への影響をなくすことができると共に、グリスの枯渇を抑制し、軸受部材27の潤滑状態を維持することができる。これにより、軸受部材27の耐久性を向上させ得ると共に、弁体24を円滑に移動させることができる。このように前記他の空間から隔離され、グリスが前記他の空間に漏れることがない軸受部材収容空間26であるが、この軸受部材収容空間26は、ハウジング21に形成された大気連通路30に繋がっており、この大気連通路30より大気に開放されている。この大気連通路30からは、グリスを注入することができる。
 また、弁体孔21bのダイヤフラムシール29より下側には、圧力帰還室31が形成されている。圧力帰還室31は、ハウジング21の底部、及びダイヤフラムシール29によって囲まれた大略円板状の空間である。このようにハウジング21内に形成される圧力帰還室31内には、弁体24の下端24dが位置している。この圧力帰還室31と軸受部材収容空間26との間は、ダイヤフラムシール29によって塞がれており、圧力帰還室31は、弁体24に形成されている均圧通路32によって二次側通路21fに繋がっている。
 均圧通路32は、二次側連通部32aと、連通部32bとを有している。二次側連通部32aは、弁体24の先端部24aにその半径方向に貫通するように延在しており、その両端が二次側領域21gに開口している。また、二次側連通部32aには、連通部32bが繋がっている。連通部32bは、弁体24の軸線(本実施形態では、軸線L1に略一致)に沿って形成されており、その上端が二次側連通部32aに繋がり、下端が圧力帰還室31に繋がっている。従って、二次ポート21cと圧力帰還室31とは、均圧通路32によって接続され、二次ポート21cに導かれる二次圧pが均圧通路32により圧力帰還室31に導かれる。
 また、弁体24は、フランジ24eを有している。フランジ24eは、テーパ部24bより下側に周方向全周にわたって形成されており、テーパ部24bから更に半径方向外方に向かって突出している。フランジ24eは、シール取付部25の上端に対向するように位置しており、フランジ24eとシール取付部25の上端との間には、復帰用ばね33が配置されている。復帰用ばね33は、いわゆる圧縮コイルばねであり、圧縮された状態で弁体24に外装され、弁体24を閉位置方向(弁体24が閉位置に向かう方向)に付勢している。付勢された弁体24は、座部23に着座し、弁通路22を塞いでいる。ハウジング21の開口端部(即ち、上端部)には、復帰用ばね33の付勢に抗する力を弁体24に与えるべく、電磁比例ソレノイド34が設けられている。
 励磁手段である電磁比例ソレノイド34は、ハウジング21の開口端部の外周に螺合して固定されている。電磁比例ソレノイド34は、ソレノイドコイル35を有している。ソレノイドコイル35は、大略的に円筒状に形成され、その下端側にハウジング21が螺合されている。ソレノイドコイル35は、大略円筒状のケース35aを有し、その中にボビン35bとコイル線35cとが設けられている。ボビン35bもまた大略円筒状に形成され、このボビン35bにコイル線35cに巻きつけることによってソレノイドコイル35が構成されている。コイル線35cは、制御器10に電気的に接続されている。また、ソレノイドコイル35内には、下端部にヨーク36が設けられ、上端部がカバー37によって塞がれている。そして、ヨーク36とカバー37との間に可動部材38が設けられている。
 可動部材38は、磁性材料から成り、大略円柱状に形成されており、軸線L1に沿って配置されている。可動部材38の外径は、ソレノイドコイル35の内径より小さくなっている。可動部材38とソレノイドコイル35との間には、円環状のガイド部材39が介在している。ガイド部材39は、非磁性体から成り、可動部材38を軸線L1に沿って上下方向に摺動可能に支持している。ヨーク36は、可動部材38の下端部に上下方向に対向し、互いに間隔をあけた状態で位置している。ヨーク36は、磁性材料から成り、大略円環状に形成されている。ヨーク36と可動部材38は、ソレノイドコイル35に電流を流すことで磁化し、ヨーク36は、可動部材38を吸引するようになっている。
 また、可動部材38の上端部とカバー37との間には、圧縮コイルばね40が設けられており、圧縮コイルばね40により可動部材38が弁体24側へと付勢されている。可動部材38の下端部には、押圧部材41が設けられている。押圧部材41は、軸線L1に沿って延在し、ヨーク36内に挿通されている。押圧部材41の基端部は、可動部材38に固定されている。押圧部材41の先端は、部分球面状に形成されており、弁体24の先端部24aに当接している。また、押圧部材41は、可動部材38を介して圧縮コイルばね40により付勢されており、その先端が弁体24の先端部24aに押し付けられている。それ故、押圧部材41は、ソレノイドコイル35に電流を流して可動部材38をヨーク36の方に吸引させることで電流に応じた力で弁体24を開位置方向に押して弁通路22を開くようになっている。
 このように構成されている電磁式調圧弁6は、弁体24のテーパ部24b及びフランジ24eの上面(第1受圧面に相当する受圧面P1)で高圧タンク3から弁空間21eに導かれた一次圧pを開位置方向に受圧し、フランジ24eの下面(第2受圧面に相当する受圧面P2)において、前記一次圧pを閉位置方向に受圧している。なお、受圧面P1は、テーパ面の一部分の領域であって、平面視で二次側領域21gより半径方向外側の領域である。各受圧面P1,P2において、一次圧pは、互いに抗する方向に作用しており、互いに打ち消し合っている。受圧面P1,P2の受圧面積は、弁体24のフランジ24eより下端24d側の外径rと二次側領域21gの内径(つまり、シート径r)とが略同じ径を有しているので、略同一になっている。それ故、受圧面P1で受ける一次圧pによる作用力と、受圧面P2で受ける一次圧pによる作用力とが互いに相殺され、弁体24における一次圧pの変動による影響を略ゼロにすることができる。
 また、電磁式調圧弁6は、弁体24の先端及びテーパ部24bのテーパ面(受圧面P3)において二次側領域21gを流れる二次圧pを開位置方向に受圧し、ダイヤフラムシール29及び弁体24の下端24d(受圧面P4)において圧力帰還室31に導かれた二次圧pを閉位置方向に受圧する。なお、受圧面P3は、平面視で二次側領域21gに重なる領域である。受圧面P3,P4で受圧する二次圧pは、互いに抗する方向に作用している。
 受圧面P3の受圧面積は、シート径rに応じて決まり、受圧面P4の受圧面積は、ダイヤフラムシール29の有効径rに応じて決まる。シート径rが弁体24の外径rと略同じであるのに対して、ダイヤフラムシール29の有効径rは、前記シート径r及び弁体24の外径rより大きくなっている。それ故、受圧面P3に比べて受圧面P4の方が受圧面積が大きくなっている。これにより、弁体24には、各受圧面P3,P4で受ける二次圧pによる作用力が完全に相殺されず、各受圧面P3,P4における受圧面積の差に応じた作用力が閉位置方向に作用している。
 また、弁体24は、このような作用力を受けているだけでなく復帰用ばね33によっても閉位置方向に付勢されている。そのため、電磁式調圧弁6は、ソレノイドコイル35への電流が遮断された状態で弁体24が座部23に着座するようになっており、ノーマルクローズ形の弁として構成されている。このように構成される電磁式調圧弁6は、遮断弁として利用されており、制御器10は、低圧側圧力センサ9の検出圧が許容圧力以上になると、ソレノイドコイル35に流す電流を遮断して電磁式調圧弁6によって弁通路22を緊急遮断する。このように緊急遮断することにより、例えば、ガスインジェクタ5に意図しない高圧の燃料ガスが供給されても供給通路4を直ぐに遮断することができ、ガスインジェクタ5が損傷することを防ぐことができる。
 電磁式調圧弁6が遮断機能を有するので、供給通路4に設ける遮断弁の数を減らすことができ、燃料ガス供給システム1の構成機器の数を減らすことができ、燃料ガス供給システム1の製造コストを低減することができる。また、遮断弁の数を減らすことで、燃料ガス供給システム1における圧力損失を低減することができる。これにより、高圧タンク3における使用限界圧力を低くすることができ、自動車の走行航続距離を大幅に長くすることができる。また、遮断弁の数を減らすことで、燃料ガス供給システム1の小形化を図ることができる。
 <電磁式調圧弁の動作>
 以下では、図2を参照しながら電磁式調圧弁6の動作について説明する。まず、制御器10がECUから受信する目標圧力に応じた電流をソレノイドコイル35に流す。そうすると、可動部材38に励磁力が作用し、可動部材38がヨーク36の方へ吸引される。これにより、押圧部材41によって弁体24が開位置方向に押されて座部23から離れる。そうすると、弁通路22が開いて弁空間21eの燃料ガスが二次側領域21gへと流れる。この際、弁体24と座部23との間に形成されるオリフィス(図示せず)により弁空間21eから二次側領域21gに流れる燃料ガスが二次圧pに減圧される。
 このようにして減圧された二次圧pの燃料ガスは、二次側通路21fを通って二次ポート21cから出力されると共に、一部が均圧通路32を通って圧力帰還室31に導かれる。ダイヤフラムシール29は、圧力帰還室31に導かれた燃料ガスの二次圧pを受圧する。弁体24は、可動部材38が受ける励磁力、受圧面P3,P4で夫々受ける二次圧pによる作用力、及び復帰用ばね33のばね力が釣り合う位置まで移動し、前記力が釣り合うように弁通路22の開度(つまり、オリフィスの開度)を調整する。これにより、二次圧pが変動しても、弁通路22の開度が調整されて二次圧pが目標圧力に戻される。そのため、二次圧pが目標圧力にて保持される。
 更に具体的に説明すると、例えば、二次圧pが目標圧力より低い場合、励磁力による開位置方向の力が二次圧pによる作用力及びばね力による閉位置方向の力より大きくなり、弁体24が座部23から離れるように開位置方向に移動する。それ故、弁通路22の開度が広がって二次圧pが上昇し、二次圧pによる作用力、励磁力、及び復帰用ばね33のばね力が釣り合う位置、つまり二次圧pが目標圧力になる位置まで弁体24が移動し、二次圧pが目標圧力に戻される。このように、電磁式調圧弁6は、二次圧pが変動してもそれに合わせて弁通路22の開度を制御し、二次圧pを目標圧力に調圧することができる。従って、電磁式調圧弁6は、圧力制御性が高く、高圧の燃料ガスをより正確に目標圧力に可変調圧することができる。なお、二次圧pが目標圧力より高い場合、前述する動きとは逆に、二次圧pが目標圧力に戻すように弁体24が閉方向に移動する。
 このように動作する電磁式調圧弁6では、弁体24が軸受部材27により支持されて円滑に移動できるようになっている。それ故、二次圧pが変動しても二次圧pを目標圧力に戻すべく弁体24が素早く動くので、電磁式調圧弁6の目標圧力に対する追従性を向上させることができる。これにより、二次圧pの変動幅を小さくすることができる。
 <燃料ガスの供給動作>
 以下では、燃料ガス供給システム1における燃料ガスの供給動作について図1を参照しながら説明する。燃料ガス供給システム1では、ECUの指令等により電磁式開閉弁7が作動して供給通路4を開き、高圧タンク3内の燃料ガスを電磁式調圧弁6に流す。流された燃料ガスは、電磁式調圧弁6によって前述のように目標圧力に調圧され、その後、供給通路4を通ってガスインジェクタ5に導かれる。その際、低圧側圧力センサ9によって燃料ガスのガス圧が検出され、その検出結果が制御器10に送信される。
 制御器10は、低圧側圧力センサ9で検出された燃料ガスの圧力(つまり、検出圧)と目標圧力とを比較し、検出圧が目標圧力よりも低い場合、検出圧と目標圧力との偏差を補正するように電磁式調圧弁6に流す電流を大きくして弁通路22の開度を大きくし、電磁式調圧弁6の二次圧pを上昇させる。そして、検出圧が目標圧力に達すると、電磁式調圧弁6に流す電流を保持して弁通路22の開度を維持する。なお、電磁式調圧弁6に流す電流を大きくしすぎて検出圧が目標圧力より高くなっている場合、検出圧と目標圧力との偏差を補正するように電磁式調圧弁6に流す電流を小さくして弁通路22の開度を小さくして二次圧pを下降させる。
 このように、制御器10は、電磁式調圧弁6から出力される二次圧pを調整してガスインジェクタ5に導かれる燃料ガスの圧力(つまり、供給圧)を一定の目標圧力になるようにフィードバック制御し、そして前記供給圧を目標圧力に保持することができる。これにより、供給圧をより高精度に制御し、且つより安定した一定圧力に保つことができ、ECUからの指令に対してより高精度な質量流量の燃料ガスをガスエンジン2に供給することができる。ガスエンジン自動車ではガスインジェクタ5への供給圧を一定に保つことが望ましい。そこで、本発明の燃料供給システム1では目標圧力を一定値にすればよく、制御が容易であり、燃料ガス供給装置1を好適にガスエンジン自動車に適用することができる。
 このように構成される電磁式調圧弁6では、受圧面P1及び受圧面P2の受圧面積を略同一にしているので、弁体24が一次圧pから受ける作用力を相殺されている。これにより、高圧タンク3内の燃料ガスの残量が少なくなる等して一次圧pが変動しても、その一次圧pの変動に起因する弁体への作用力の変動を抑えることができる。それ故、高圧の燃料ガスに対する圧力制御性を向上させることができ、二次圧pをより正確に制御することができる。また、一次圧pから受ける作用力を相殺することで、電磁比例ソレノイド34に必要とされる励磁力を小さくすることができ、電磁式調圧弁6を小形化することができる。なお、受圧面P1及び受圧面P2の受圧面積は、必ずしも略同一する必要なく、上述するようにフィードバック制御しているので、前記受圧面積同士が異なっていても、供給圧を高精度且つ安定して目標圧力に保つことができる。
 [第2実施形態]
 第2実施形態に係る燃料ガス供給システム1Aは、第1実施形態に係る燃料ガス供給システム1と構成が類似している。従って、燃料ガス供給システム1Aの構成については、第1実施形態に係る燃料ガス供給システム1と異なる点についてだけ説明し、同一の構成については同一の符号を付してその説明を省略する。
 第2実施形態に係る燃料ガス供給システム1Aでは、バルブブロック11に電磁式開閉弁7だけが設けられ、電磁式開閉弁7により容器元弁12Aが構成されている。また、電磁式開閉弁7以外の構成である電磁式調圧弁6、安全リリーフ弁8、及び高圧側圧力センサ54は、バルブブロック11と異なる別ブロック13に設けられて別置きとなっている。
 このように電磁式調圧弁6等の構成を別ブロック13に設けても、フィードバック制御することでガスインジェクタ5への供給圧を高精度且つ安定して目標圧力に保つことができ、ガスインジェクタ5からガスエンジン2に所望の量の燃料ガスを高精度で噴射して供給することができる。
 その他、第2実施形態に係る燃料ガス供給システム1Aは、第1実施形態に係る燃料ガス供給システム1と同様の作用効果を奏する。
 [第3実施形態]
 第3実施形態に係る燃料ガス供給システム1Bは、第1実施形態に係る燃料ガス供給システム1と構成が類似している。従って、第3実施形態に係る燃料ガス供給システム1Bの構成について、第1実施形態に係る燃料ガス供給システム1と異なる点についてだけ説明する。
 第3実施形態に係る燃料ガス供給システム1Bでは、電磁式調圧弁6、電磁式開閉弁7、安全リリーフ弁8、及び高圧側圧力センサ54の全ての構成がバルブブロック11と異なる別ブロック13に設けられて別置きとなっている。また、バルブブロック11には、手動開閉弁14が設けられている。手動開閉弁14は、供給通路4において電磁式開閉弁7より更に上流側に設けられ、供給通路4を開閉することができる。手動開閉弁14は、手動で作動させることができる手動操作弁であり、供給通路4で漏れが生じた場合や別ブロック13を修理したり取替えたりする際に手動開閉弁14を操作することで供給通路4が閉じられる。このように構成される手動開閉弁14が容器元弁12Bを構成している。
 このように供給通路4に手動開閉弁14を設けても、フィードバック制御することでガスインジェクタ5への供給圧を高精度且つ安定して目標圧力に保つことができ、ガスインジェクタ5からガスエンジン2に所望の量の燃料ガスを高精度で噴射して供給することができる。
 その他、第3実施形態に係る燃料ガス供給システム1Bは、第1実施形態に係る燃料ガス供給システム1と同様の作用効果を奏する。
 [第4実施形態]
 第4実施形態に係る燃料ガス供給システム1Cは、第1実施形態に係る燃料ガス供給システム1と構成が類似している。従って、第4実施形態に係る燃料ガス供給システム1Cの構成について、第1実施形態の燃料ガス供給システム1と異なる点についてだけ説明する。
 燃料ガス供給システム1Cでは、電磁式調圧弁6及び安全リリーフ弁8がバルブブロック11と異なる別ブロック13に設けられて別置きとなっており、供給通路4においてバルブブロック11と電磁式調圧弁6との間には、中圧用圧力センサ60が介在している。また、燃料ガス供給システム1Cは、機械式減圧弁61と、中圧用リリーフ弁62とを更に有し、これらの構成が電磁式開閉弁7、及び高圧側圧力センサ54と共にバルブブロック11に設けられており、容器元弁12Cを構成している。
 機械式減圧弁61は、供給通路4において、電磁式開閉弁7と電磁式調圧弁6との間、更に具体的に言うと高圧側圧力センサ54の下流側に介在している。機械式減圧弁61は、下流側の圧力に応じて供給通路4の開度を調整し、下流側の圧力をガスインジェクタ5に供給する供給圧より高い圧力に減圧する弁である。この機械式減圧弁61の下流側に中圧用リリーフ弁62が設けられており、中圧用リリーフ弁62は、機械式減圧弁61と電磁式調圧弁6との間が予め定められた圧力(電磁式調圧弁6やバルブブロック11外の配管の耐圧未満の圧力)になると作動して燃料ガスを大気開放するようになっている。
 このように構成される燃料ガス供給システム1Cでは、機械式減圧弁61により燃料ガスが高圧から中圧に減圧された後に電磁式調圧弁6により低圧に減圧されるので、燃料ガスをより高精度で安定した一定圧に減圧することができる。これにより、高精度な質量流量の燃料ガスをガスエンジン2に供給することができる。また、機械式減圧弁61により燃料ガスを高圧から中圧に減圧することで、バルブブロック11からの出力圧力レベルを抑えつつ、一度に低圧に減圧する場合よりも供給通路4での圧力損失を抑えることができる。供給通路4での圧力損失を抑えることで、高圧タンク3における使用限界圧をより低くすることができる。従って、燃料ガスを高圧から中圧に一旦減圧することで、燃料ガス供給システム1Cの安全性を向上させつつ、高圧タンク3の使用限界圧力を低くすることができる。
 また、本実施形態のように、供給通路4に様々な構成を設けても、フィードバック制御することでガスインジェクタ5への供給圧を高精度且つ安定した圧力に保つことができ、ガスインジェクタ5からガスエンジン2に所望の量の燃料ガスを高精度で噴射して供給することができる。
 その他、第4実施形態に係る燃料ガス供給システム1Cは、第1実施形態に係る燃料ガス供給システム1と同様の作用効果を奏する。
 [その他の形態について]
 第1乃至第4実施形態では、圧力帰還室31の二次圧pをダイヤフラムシール29で受圧しているが、必ずしもダイヤフラムシールでなくてもよく、Oリングなどの低圧シール部材であってもよい。この場合、弁体24の下端側の外径をシート径より大きくすることによって、第1実施形態の電磁式調圧弁6と同様の作用効果を達成することができる。また、本実施形態の電磁式調圧弁6は、プッシュ型の電磁式調圧弁であるが、プル型の電磁式調圧弁であってもよい。
 また、第1乃至第4実施形態では、各機器配設の例を示しているが、例えば第4実施形態で機械式減圧弁61を別ブロックに配設するなど基本構成回路を変更せずに配置を変えても良い。また、中圧用リリーフ弁62を排除したり、供給通路4を緊急遮断する電磁開閉弁を電磁式調圧弁6の下流に追加するなど、発明の趣旨を逸脱しない範囲で構成機器を追加、削除、変更しても良い。
 さらに、第1乃至第4実施形態では、ガスインジェクタ5によってガスエンジン2に燃料ガスが供給される場合について説明しているけれども、ガスインジェクタ5に代えて低圧用調圧弁であってもよい。また、ECUと制御器10とが別々に構成されているけれども、制御器10がECUに組み込まれていてもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明は、ガスエンジンに燃料ガスを供給するガスエンジンの燃料ガス供給システムに適用することができる。
 1,1A~1C 燃料ガス供給システム
 2 ガスエンジン
 3 高圧タンク
 4 供給通路
 5 ガスインジェクタ
 6 電磁式調圧弁
 7 電磁式開閉弁
 9 低圧側圧力センサ
 10 制御器
 12,12A~12C 容器元弁
 21 ハウジング
 21a 一次ポート
 21c 二次ポート
 22 弁通路
 24 弁体
 27 軸受部材
 28 高圧シール部材
 29 ダイヤフラムシール
 31 圧力帰還室
 33 復帰用ばね
 34 電磁比例ソレノイド

Claims (8)

  1.  ガスエンジンに燃料ガスを供給するガスエンジンの燃料ガス供給システムにおいて、
     前記ガスエンジンに燃料ガスを供給する燃料ガス供給手段と、
     高圧の前記燃料ガスが貯蔵される高圧タンクと前記燃料ガス供給手段とを接続する供給通路と、
     前記供給通路に設けられ、前記供給通路を流れる燃料ガスの圧力を流される電流に応じた圧力に調圧する電磁式調圧弁と、
     前記電磁式調圧弁に流す電流を制御する制御手段と、
     前記電磁式調圧弁より前記燃料ガス供給手段側において、燃料ガスの圧力を検出する低圧側圧力検出手段とを備え、
     前記電磁式調圧弁は、前記制御手段から流される電流が止められると前記供給通路を閉じるノーマルクローズ形の弁であり、
     前記制御手段は、前記低圧側圧力検出手段で検出されるガス圧力が予め定められた目標圧力になるように前記電流を制御するようになっている、ガスエンジンの燃料ガス供給システム。
  2.  前記電磁式調圧弁は、
      前記高圧タンクに接続される一次ポートと前記ガスエンジンに接続される二次ポートとを繋ぐ弁通路を有するハウジングと、
      前記ハウジング内に設けられ、前記弁通路を閉じる閉位置と前記弁通路を開く開位置との間で移動して前記弁通路の開度を制御する弁体と、
      前記弁体を前記閉位置の方に付勢する復帰用ばねと、
      前記制御手段から流される電流に応じた励磁力を前記弁体に与えて、前記弁体を開位置の方に移動させる電磁比例ソレノイドと、
      前記弁体と前記ハウジングとの間に介在し、前記閉位置と前記開位置との間で摺動できるように前記弁体を支持する軸受部材と、
      前記軸受部材の両側を封止する第1シール部材及び第2シール部材とを備え、
      前記ハウジング内には、前記二次ポートに繋がる圧力帰還室が形成され、
      前記第2シール部材は、前記圧力帰還室の内圧に応じた作用力を前記弁体に与えて、前記弁体を前記閉位置の方へと移動させるようになっている、請求項1に記載のガスエンジンの燃料ガス供給システム。
  3.  前記弁体は、前記弁体が開位置に向かう方向に前記二次ポートの圧力が作用する二次側受圧部と、前記弁体が閉位置に向かう方向に前記圧力帰還室の圧力が作用する圧力帰還室側受圧部とを備え、
     前記圧力帰還室側受圧部の受圧面積は、前記二次側受圧部の受圧面積よりも大きい、請求項2に記載のガスエンジンの燃料ガス供給システム。
  4.  前記弁体は、前記弁体が開位置に向かう方向に前記一次ポートの圧力が作用する第一受圧面と、前記弁体が閉位置に向かう方向に前記一次ポートの圧力が作用する第二受圧面とを備え、
     前記第一受圧面の受圧面積と前記第二受圧面の受圧面積は略同一である、請求項2又は3に記載のガスエンジンの燃料ガス供給システム。
  5.  前記低圧側圧力検出手段は、前記ガス供給手段付近に設けられている、請求項1乃至4の何れか1つに記載のガスエンジンの燃料ガス供給システム。
  6.  前記制御手段は、前記低圧側圧力検出手段で検出されるガス圧力が予め定められた許容圧力以上になると、前記電磁式調圧弁に流す電流を止めるようになっている、請求項1乃至5の何れか1つに記載のガスエンジンの燃料ガス供給システム。
  7.  前記供給通路において前記電磁式調圧弁より上流側に設けられ、前記電磁式調圧弁への燃料ガスの供給を遮断可能な電磁式開閉弁を更に備える、請求項1乃至6の何れか1つに記載のガスエンジンの燃料ガス供給システム。
  8.  前記電磁式調圧弁は、前記高圧タンクの供給口に設置されるインタンク型又はオンタンク型の容器元弁に含まれている、請求項1乃至7の何れか一つに記載のガスエンジンの燃料ガス供給システム。
PCT/JP2011/005818 2010-10-19 2011-10-18 ガスエンジンの燃料ガス供給システム WO2012053191A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137007580A KR101423012B1 (ko) 2010-10-19 2011-10-18 가스 엔진의 연료 가스 공급 시스템
US13/880,420 US9234485B2 (en) 2010-10-19 2011-10-18 Fuel gas supply system of gas engine
CN201180046364.8A CN103109070B (zh) 2010-10-19 2011-10-18 燃气发动机的燃料气体供给系统
CA2814458A CA2814458C (en) 2010-10-19 2011-10-18 Fuel gas supply system of gas engine
EP11834037.1A EP2631459B1 (en) 2010-10-19 2011-10-18 Fuel gas supply system of gas engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-234648 2010-10-19
JP2010234648A JP5416676B2 (ja) 2010-10-19 2010-10-19 ガスエンジンの燃料ガス供給システム

Publications (1)

Publication Number Publication Date
WO2012053191A1 true WO2012053191A1 (ja) 2012-04-26

Family

ID=45974921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005818 WO2012053191A1 (ja) 2010-10-19 2011-10-18 ガスエンジンの燃料ガス供給システム

Country Status (7)

Country Link
US (1) US9234485B2 (ja)
EP (1) EP2631459B1 (ja)
JP (1) JP5416676B2 (ja)
KR (1) KR101423012B1 (ja)
CN (1) CN103109070B (ja)
CA (1) CA2814458C (ja)
WO (1) WO2012053191A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104285089A (zh) * 2012-05-17 2015-01-14 五十铃自动车株式会社 阀装置、液化气燃料的储存系统、车辆以及液化气燃料的储存方法
CN107165746A (zh) * 2017-06-28 2017-09-15 哈尔滨工程大学 一种旁通式带浮动阀座的外导向燃气喷射阀
CN111566332A (zh) * 2018-01-10 2020-08-21 罗伯特·博世有限公司 用于气体压力调节的阀组件,具有用于气体压力调节的阀组件的燃料系统
DE102013114237B4 (de) 2013-01-31 2022-06-02 GM Global Technology Operations LLC Validierungsverfahren für ein Drucksensorsignal in elektrisch kontollierten Hochdruckgasspeichersystemen

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023900B2 (ja) * 2014-01-10 2016-11-09 川崎重工業株式会社 ガスエンジンの燃料ガス供給装置
CN104791142B (zh) * 2015-04-22 2017-05-03 济南大学 一种船用发动机燃料供给系统及方法
CN107420225B (zh) * 2017-06-28 2023-05-30 哈尔滨工程大学 一种轴向进气的集成式环歧管壁面气体燃料喷射混合装置
CN107061058B (zh) * 2017-06-28 2023-05-30 哈尔滨工程大学 一种旁通式混合进气的内导向燃气喷射阀
CN107091172B (zh) * 2017-06-28 2023-06-09 哈尔滨工程大学 一种直通式轴向进气的内导向燃气喷射阀
CN107143438B (zh) * 2017-06-28 2023-05-30 哈尔滨工程大学 一种直通式带浮动阀座的外导向燃气喷射阀
EP3654128B1 (en) * 2018-11-15 2022-06-01 Motonic Corporation Pressure control method for high-pressure regulator to prevent internal leak, and high-pressure shut-off valve
DE102018220542A1 (de) * 2018-11-29 2020-06-04 Robert Bosch Gmbh Tankvorrichtung zur Speicherung von verdichteten Fluiden mit einer Sensormodulanordnung
KR102160662B1 (ko) * 2019-03-15 2020-09-28 주식회사 유니크 차량용 수소 충전 및 방전 제어용 수동 밸브
CH717258A1 (de) * 2020-03-24 2021-09-30 Liebherr Machines Bulle Sa Vorrichtung zum Zuführen eines gasförmigen Kraftstoffs an einen Motor.
CN111520238A (zh) * 2020-04-27 2020-08-11 一汽解放汽车有限公司 一种气体燃料供给压力控制装置
CN113464288B (zh) * 2021-06-30 2022-10-28 潍柴动力股份有限公司 一种气罐压力控制方法、系统、存储介质及电子设备
US20230068586A1 (en) 2021-09-01 2023-03-02 American CNG, LLC Supplemental fuel system for compression-ignition engine
CN114658531B (zh) * 2022-02-24 2023-03-21 潍柴动力股份有限公司 一种预燃室气体发动机、工作方法及车辆、发电系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486362A (ja) * 1990-07-30 1992-03-18 Nippon Carbureter Co Ltd 気体燃料の圧力調整装置
JP2001090615A (ja) * 1999-09-27 2001-04-03 Daihatsu Motor Co Ltd ガスエンジンの運転方法
JP2006118519A (ja) * 2006-01-26 2006-05-11 Denso Corp ガスエンジンの燃料漏れ検出装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0420599B1 (en) 1989-09-29 1995-06-21 Ortech Corporation Flow control system
CA2298324A1 (en) 2000-02-09 2001-08-09 Michael T. Sulatisky High volume electronic gas regulator
JP3949348B2 (ja) * 2000-04-20 2007-07-25 本田技研工業株式会社 ガス燃料供給装置
JP3802753B2 (ja) * 2000-12-11 2006-07-26 株式会社ケーヒン 車両用燃料ガス供給装置
US6629544B2 (en) * 2000-12-11 2003-10-07 Keihin Corporation Gas pressure-reducing valve
JP2002256980A (ja) * 2001-03-05 2002-09-11 Fujitsu Ten Ltd 燃料遮断弁制御装置
JP2002295313A (ja) 2001-03-30 2002-10-09 Nissan Diesel Motor Co Ltd ガスエンジンの燃料供給装置
AU2003254897A1 (en) * 2002-08-09 2004-02-25 Isuzu Motors Limited Gas fuel feed device
DE102005016281B4 (de) * 2005-04-08 2010-01-14 Continental Automotive Gmbh Betriebsverfahren und Vorrichtung für eine gasbetriebene Brennkraftmaschine
DE102006025857A1 (de) * 2006-06-02 2007-12-06 GM Global Technology Operations, Inc., Detroit Verfahren zum Betrieb einer Brennkraftmaschinenanordnung
ES2317482T3 (es) * 2006-12-12 2009-04-16 C.R.F. Societa Consortile Per Azioni Unidad electronica reductora o reguladora de la presion para alimentar gas, en particular metano o hidrogeno a un motor de combustion interna, y sistema de alimentacion de gas que incluye esta unidad.
ITMO20070004A1 (it) 2007-01-11 2008-07-12 Landi Renzo Spa Regolatore di pressione
EP1950409B1 (en) * 2007-01-29 2015-12-02 Robert Bosch Gmbh Method and device for operating a gas injection system of a gas fuel and a liquid fuel operated internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486362A (ja) * 1990-07-30 1992-03-18 Nippon Carbureter Co Ltd 気体燃料の圧力調整装置
JP2001090615A (ja) * 1999-09-27 2001-04-03 Daihatsu Motor Co Ltd ガスエンジンの運転方法
JP2006118519A (ja) * 2006-01-26 2006-05-11 Denso Corp ガスエンジンの燃料漏れ検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2631459A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104285089A (zh) * 2012-05-17 2015-01-14 五十铃自动车株式会社 阀装置、液化气燃料的储存系统、车辆以及液化气燃料的储存方法
DE102013114237B4 (de) 2013-01-31 2022-06-02 GM Global Technology Operations LLC Validierungsverfahren für ein Drucksensorsignal in elektrisch kontollierten Hochdruckgasspeichersystemen
CN107165746A (zh) * 2017-06-28 2017-09-15 哈尔滨工程大学 一种旁通式带浮动阀座的外导向燃气喷射阀
CN107165746B (zh) * 2017-06-28 2023-06-09 哈尔滨工程大学 一种旁通式带浮动阀座的外导向燃气喷射阀
CN111566332A (zh) * 2018-01-10 2020-08-21 罗伯特·博世有限公司 用于气体压力调节的阀组件,具有用于气体压力调节的阀组件的燃料系统

Also Published As

Publication number Publication date
KR20130042646A (ko) 2013-04-26
CA2814458A1 (en) 2012-04-26
EP2631459B1 (en) 2017-07-05
CN103109070A (zh) 2013-05-15
KR101423012B1 (ko) 2014-07-23
US9234485B2 (en) 2016-01-12
EP2631459A1 (en) 2013-08-28
CN103109070B (zh) 2015-07-22
EP2631459A4 (en) 2014-05-07
CA2814458C (en) 2015-07-07
JP2012087671A (ja) 2012-05-10
JP5416676B2 (ja) 2014-02-12
US20130247876A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5416676B2 (ja) ガスエンジンの燃料ガス供給システム
JP5427158B2 (ja) 燃料ガス供給充填システム
KR101455945B1 (ko) 가스용 조압 밸브
JP5458178B2 (ja) 燃料電池システムの水素ガス供給装置
JP5406993B2 (ja) ガス用調圧弁
JP5406992B2 (ja) ガス用調圧弁
JP5779432B2 (ja) 燃料ガス供給システム、及びその圧力制御方法
JP2012026421A (ja) 減圧弁

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046364.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137007580

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2814458

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011834037

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011834037

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13880420

Country of ref document: US