WO2012049803A1 - ランプ - Google Patents

ランプ Download PDF

Info

Publication number
WO2012049803A1
WO2012049803A1 PCT/JP2011/004913 JP2011004913W WO2012049803A1 WO 2012049803 A1 WO2012049803 A1 WO 2012049803A1 JP 2011004913 W JP2011004913 W JP 2011004913W WO 2012049803 A1 WO2012049803 A1 WO 2012049803A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion member
emitting element
circuit unit
light emitting
Prior art date
Application number
PCT/JP2011/004913
Other languages
English (en)
French (fr)
Inventor
俊明 磯貝
泰久 上田
和繁 杉田
永井 秀男
隆在 植本
三貴 政弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180003526XA priority Critical patent/CN102549329B/zh
Priority to US13/392,047 priority patent/US8439512B2/en
Priority to JP2012503806A priority patent/JP4989791B2/ja
Publication of WO2012049803A1 publication Critical patent/WO2012049803A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a lamp using a semiconductor light emitting element such as an LED (light emitting diode) as a light source, and more particularly to an LED lamp which is a substitute for a high intensity discharge lamp (HID lamp).
  • a semiconductor light emitting element such as an LED (light emitting diode)
  • HID lamp high intensity discharge lamp
  • Patent Document 1 discloses an LED lamp that is an alternative to an incandescent bulb.
  • the LED lamp has a structure in which an LED module as a light source and a circuit unit for lighting the LED module are stored in an envelope including a globe and a base. It is arranged between the LED module and the base so as not to disturb the emitted light.
  • the circuit unit since the circuit unit exists on the heat conduction path from the LED module to the base, the electronic components of the circuit unit may be thermally destroyed and the life of the lamp may be shortened. is there.
  • the HID lamp has a light distribution characteristic close to that of a point light source, and mainly has a structure in which the central region in the tube axis direction of the outer tube shines. Therefore, like the LED lamp described in Patent Document 1, By adopting a structure in which the entirety of the outer tube shines), it is not possible to obtain a light distribution characteristic approximate to that of an HID lamp.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a lamp in which electronic components of a circuit unit are not easily destroyed by heat and the central region in the tube axis direction of the outer tube is mainly shining. .
  • a semiconductor light emitting element as a light source and a circuit unit for causing the semiconductor light emitting element to emit light
  • a semiconductor light emitting element as a light source and a circuit unit for causing the semiconductor light emitting element to emit light
  • a cylindrical outer tube and a base A lamp stored in the envelope, and in the tube axial direction central region in the outer tube, a wavelength conversion member that converts the wavelength of incident light is disposed, and closer to the base than the wavelength conversion member, The semiconductor light emitting element is arranged with the main emission direction facing away from the base, and the wavelength conversion of light emitted from the semiconductor light emitting element is performed between the wavelength conversion member and the semiconductor light emitting element.
  • An optical member leading to the member is disposed, and at least a part of the circuit unit is disposed on the opposite side of the semiconductor light emitting element with the wavelength conversion member interposed therebetween, and at least a part of the circuit unit and the wavelength Strange Between the member and the ramp, characterized in that are arranged reflector for reflecting at least a part of the light emitted to the wavelength conversion member side from the wavelength conversion member.
  • the semiconductor light emitting element is disposed closer to the base than the wavelength conversion member, and at least a part of the circuit unit is disposed on the opposite side of the semiconductor light emitting element with the wavelength conversion member interposed therebetween. . Therefore, the portion disposed on the opposite side of the semiconductor light emitting element across the wavelength conversion member does not exist on the heat conduction path from the semiconductor light emitting element to the base, and the electronic components constituting the portion are not easily destroyed by heat. . Therefore, the lamp has a long life.
  • a wavelength conversion member that converts the wavelength of incident light is disposed in the central region in the tube axis direction in the outer tube, and a semiconductor light emitting element is disposed with the main emission direction facing away from the base, thereby converting the wavelength.
  • An optical member that guides light emitted from the semiconductor light emitting element to the wavelength conversion member is disposed between the member and the semiconductor light emitting element. Therefore, the light emitted from the semiconductor light emitting element is guided to the wavelength conversion member by the optical member, and the color mixture of the light emitted from the semiconductor light emitting element from the wavelength conversion member and the light wavelength-converted by the wavelength conversion member.
  • the mixed color light generated by the above is emitted. That is, since mixed color light is emitted from the central region in the tube axis direction in the outer tube, the central region in the tube axis direction mainly shines. Therefore, it has a light distribution characteristic approximate to that of an HID lamp.
  • a mirror is arranged. Therefore, if there is no reflecting mirror, light that can reach and be absorbed by the circuit unit disposed on the side opposite to the semiconductor light emitting element is reflected by the reflecting mirror and guided again to the wavelength conversion member. This reflected light is scattered in the wavelength conversion member by wavelength conversion or the like, and as a result, at least a part is emitted to the outside of the outer tube. Therefore, the loss of the amount of light emitted to the outside of the outer tube can be reduced.
  • FIG. 1 is a cross-sectional view showing a structure of an LED lamp according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view taken along line AA in FIG. It is a figure for demonstrating the center area
  • FIG. 11 is a cross-sectional view showing the structure of an LED lamp according to Modification 1-1.
  • FIG. 6 is a cross-sectional view showing the structure of an LED lamp according to Embodiment 2.
  • FIG. 11 is a cross-sectional view showing the structure of an LED lamp according to Modification 2-1.
  • FIG. 1 is a cross-sectional view showing the structure of the LED lamp according to Embodiment 1
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • an LED lamp (corresponding to the “lamp” of the present invention) 1 according to Embodiment 1 is an LED lamp that is a substitute for an HID lamp, and includes an LED module 10 serving as a light source.
  • the lamp 1 has a structure in which the LED module 10 and the circuit unit 40 are housed in an envelope 2 constituted by a pedestal 20, an outer tube 30, and a base 60.
  • a wavelength conversion member 90 that converts the wavelength of incident light is disposed in the central region in the tube axis direction in the tube 30, and the main emission direction is directed in the direction opposite to the base 60 on the base 60 side of the wavelength conversion member 90.
  • the LED module 10 is disposed, and between the wavelength conversion member 90 and the LED module 10, a light guide member 80 that guides the light emitted from the LED module to the wavelength conversion member 90 is disposed.
  • Reflecting mirror 50 for reflecting the wavelength conversion member 90 side is disposed.
  • the LED module 10 includes a mounting substrate 11, a plurality of LEDs 12 as light sources mounted on the surface of the mounting substrate 11, and a sealing body provided on the mounting substrate 11 so as to cover the LEDs 12. 13.
  • the sealing body 13 consists of a translucent material, for example, can utilize a silicone resin.
  • the LED 12 is a light emitting color of blue light (such a light is hereinafter also referred to as “blue LED”).
  • the pedestal 20 has a bottomed cylindrical shape that is open at one end and closed at the other end.
  • the pedestal 20 extends from the cylindrical body 21 and the circuit unit 40 of the cylindrical body 21.
  • a disk-shaped lid 22 that closes the opening on the side.
  • An annular recessed portion 23 into which the opening-side end portion 31 of the outer tube 30 is fitted is provided on the outer peripheral edge of the end portion on the circuit unit 40 side of the pedestal 20, and the opening of the outer tube 30 is provided in the recessed portion 23.
  • the pedestal 20 and the outer tube 30 are joined by fitting the side end portion 31 and fixing with the adhesive 3.
  • a base 60 is externally fitted to the end of the base 20 opposite to the circuit unit 40, thereby closing the opening of the cylindrical body 21 opposite to the circuit unit 40.
  • a recess 25 is provided in the center of the end of the lid 22 on the circuit unit 40 side.
  • the LED module 10 On the bottom surface 25a of the recess 25, the LED module 10 has its main emission direction opposite to the base 60 (wavelength conversion member). 90) mounted in a posture directed toward the direction.
  • a method for mounting the LED module 10 on the pedestal 20 it is conceivable to use, for example, a screw, an adhesive, or an engagement structure.
  • the heat generated in the LED 12 at the time of lighting is transmitted to the base 60 through the pedestal 20, and is transmitted from the base 60 to a lighting fixture (not shown).
  • the outer tube 30 has a bottomed cylindrical shape that is open at one end and closed at the other end, and has a cylindrical tube portion 32 and a hemispherical top portion 33 that extends to the tube portion 32.
  • a straight type outer tube 30 simulating the outer tube of a straight tube type HID lamp is used in the present embodiment.
  • the outer tube 30 is not limited to a bottomed cylindrical shape that is open at one end and closed at the other end, and may be a cylindrical shape that is open at both ends.
  • the outer tube 30 is colorless and transparent, and is formed of a light-transmitting material such as glass, ceramic, or resin.
  • the light incident on the inner surface 34 of the outer tube 30 passes through the outer tube 30 without being diffused and is extracted outside.
  • the outer tube 30 need not be colorless and transparent, and may be colored and transparent.
  • the inner surface 34 of the outer tube 30 may be subjected to a diffusion treatment with, for example, silica or a white pigment so that light emitted from the LED module 10 is diffused.
  • the circuit unit 40 includes a disk-shaped circuit board 41 and various electronic components 42 and 43 mounted on the circuit board 41, and the electronic components 42 and 43 are included in the circuit board 41. It is arranged on the side opposite to the base 60. In the drawings, only some of the electronic components are denoted by reference numerals, and there are electronic components that are not denoted by reference numerals.
  • the circuit unit 40 is disposed in the top portion 33 of the outer tube 30 in a state where the circuit unit 40 is supported by the pair of supporters 70.
  • the circuit board 41 is fixed to the support tool 70 by bonding the circuit board 41 to one end of each of the pair of support tools 70.
  • the method of fixing the circuit unit 40 to the support tool 70 is not limited to the above, and a method using a screw or an engagement structure may be used.
  • circuit unit 40 Since the circuit unit 40 is disposed at the farthest position from the LED module 10 in the top portion 33 of the outer tube 30, the heat of the LED 12 is not easily transmitted to the circuit unit 40, and the electronic components 42 and 43 of the circuit unit 40 are thermally destroyed. It is hard to be done.
  • the electronic component 43 having the highest height among the electronic components constituting the circuit unit 40 is disposed at the center of the circuit board 41.
  • the circuit unit 40 can be stored in a small space and at a position farthest from the LED module 10.
  • the light guide member 80 is made of, for example, acrylic resin, and has a columnar shape (here, a columnar shape). In addition, you may form not only an acrylic resin but with another translucent material.
  • the light guide member 80 is attached to the pedestal 20 by fixing one end thereof to the step portion 25c of the pedestal 20 with an adhesive. In this state, the one end surface is opposed to the light emitting portion of the LED module 10, and the one end surface is a light incident surface.
  • a wavelength conversion member to be described later is located on the other end surface of the light guide member 80, and the other end surface of the light guide member 80 and the surface of the wavelength conversion member 90 on the light guide member side 80 coincide with each other.
  • a reflective film is formed on the inner surface of the light guide member 80.
  • the reflective film is made of, for example, an aluminum vapor deposition film. Therefore, the light incident from one end surface of the light guide member 80 is repeatedly reflected in the light guide member 80 and guided to the wavelength conversion unit 90.
  • the wavelength conversion member 90 is formed by mixing a translucent material with a conversion material that converts the wavelength of light, and has a plate shape (here, a disc shape), for example.
  • a translucent material for example, a silicone resin can be used as in the sealing body 13. Further, for example, phosphor particles can be used as the conversion material.
  • phosphor particles that convert blue light into yellow light are used as the conversion material.
  • white light mixed with blue light emitted from the LED 12 and yellow light wavelength-converted by the phosphor particles is emitted from the wavelength conversion member 90. Since white light is emitted radially around the wavelength conversion member 90, a light distribution characteristic approximate to that of an HID lamp can be obtained.
  • the plate 91 is made of a translucent material, and for example, glass, ceramic, resin, or the like can be used. As shown in FIG. 2, the plate 91 has an annular shape (here, an annular shape), and the wavelength conversion member 90 is fitted into the hollow portion. In this state, the wavelength conversion member 90 and the plate 91 are fixed by, for example, an adhesive, so that the wavelength conversion member 90 is attached to the plate 91.
  • the plate 91 is made of a translucent material, the white light emitted from the wavelength conversion member 90 is emitted to the plate 91 side without being blocked by the plate 91.
  • the plate 91 is provided with through holes 92 and 93 for allowing a pair of support tools 70 to pass therethrough, and is fixed to the support tool 70 inserted through the through holes 92 and 93 with an adhesive. 91 is supported by the support 70.
  • Reflecting mirror The reflecting mirror 50 has a concave reflecting surface 51 and is arranged in a state of being supported by a pair of support tools 70 so that the reflecting surface 51 faces the wavelength conversion member 90.
  • the reflecting mirror 50 is fixed to the pair of supporting tools 70 by pouring an adhesive into the engaging portions in a state where a part of the supporting tools 70 is engaged. Since the engagement structure and the adhesive are used for fixing at two locations, the reflecting mirror 50 is unlikely to be detached from the pair of supports 70.
  • the method of fixing the reflecting mirror 50 to the pair of support tools 70 is not limited to the above, and as with the support of the plate 91, the reflecting mirror 50 is provided with a through hole and fixed by inserting and fixing the support tool into the through hole. Alternatively, a screw or the like may be used.
  • the reflecting mirror 50 having the concave reflecting surface 51 most of the light reaching the reflecting mirror 50 is reflected toward the wavelength conversion member 90.
  • the reflected light that has been reflected by the reflecting mirror 50 and reached the wavelength conversion member 90 includes transmitted light that has been transmitted without being wavelength-converted by the wavelength conversion member 90 and converted light that has been wavelength-converted.
  • the light guided to the wavelength conversion member 90 again a part of the transmitted light is wavelength-converted by the wavelength conversion member 90 and scattered.
  • the converted light is not wavelength-converted again, and is diffusely reflected within the wavelength conversion member 90 and emitted to the outside.
  • the reflecting mirror 50 is not present, the light that can reach and be absorbed by the circuit unit 40 is guided again to the wavelength conversion member 90, and as a result of wavelength conversion and irregular reflection, at least a part of the light is the outer tube 30. Since the light is emitted to the outside, the loss of the amount of light emitted to the outside of the outer tube 30 can be reduced.
  • the reflecting mirror 50 is disposed at a position closer to the wavelength conversion member 90 between the circuit unit 40 and the wavelength conversion member 90. Specifically, it is located in the tube axis direction central region described later. Thus, since the wavelength conversion member 90 and the reflecting mirror 50 are arranged close to each other, a light distribution characteristic closer to that of a point light source can be obtained.
  • the base 60 is for receiving electric power from the socket of the lighting fixture when the lamp 1 is attached to the lighting fixture and turned on.
  • the type of the base 60 is not particularly limited, but here, an E26 base that is an Edison type is used.
  • the base 60 includes a shell portion 61 that has a cylindrical shape and a peripheral surface that is a male screw, and an eyelet portion 63 that is attached to the shell portion 61 via an insulating material 62.
  • Support tool Each support tool 70 is, for example, a glass, metal, or resin cylinder, and one end of each support is fixed to the circuit unit 40, and the other end is a lid of the base 20. In a state of being inserted into through holes 26 and 27 provided in the body 22, the body 22 is bonded to the lid body 22.
  • Each support tool 70 has one end fixed to the circuit unit 40 with an adhesive or the like, so that it is thermally connected to the circuit unit 40, and the other end is bonded to the cover body 22. It is thermally connected to the base 60 through 22. For this reason, the heat released from the circuit unit 40 can be efficiently transmitted to the base 60 via each support tool 70.
  • the pair of supporters 70 are arranged on both sides of the LED module 10 with the lamp axis Z as the center. Therefore, these support tools 70 are unlikely to interfere with the light emitted from the LED module 10, and can support the circuit unit 40, the plate 91, and the reflecting mirror 50 in a well-balanced manner. Moreover, since the circuit unit 40, the plate 91, and the reflecting mirror 50 are supported by a common support, an increase in the number of components can be suppressed. Note that the number of support members 70 is not necessarily two, and may be one or three or more. Moreover, in this Embodiment, although the circuit unit 40, the plate 91, and the reflective mirror 50 are supported by the common support tool 70, the structure each pointed by a separate support tool may be sufficient.
  • emitted from LED12 is hard to be prevented by the support tool 70 by forming the support tool 70 with a transparent material.
  • the support tool 70 is formed of an opaque material, the light reflectance is improved by, for example, mirroring the outer surface of the support tool 70, and the emitted light is not easily absorbed by the support tool 70. Can be considered.
  • the support 70 may be other cylindrical shapes such as a rectangular tube shape instead of the cylindrical shape. Furthermore, it may be a columnar shape such as a cylinder or a prism instead of a cylindrical shape. When the support tool 70 has a columnar shape, it is conceivable that electric wirings 44 to 47 to be described later are wound around the support tool 70 or along the support tool 70.
  • the output terminal of the circuit unit 40 and the input terminal of the LED module 10 are electrically connected by electrical wirings 44 and 45.
  • the electrical wirings 44 and 45 are led out from the circuit unit 40 through the inside of one support 70 to the base 60 side of the lid body 22 of the base 20, and further, through holes 28 provided in the lid body 22.
  • the LED module 10 is connected to the LED module 10.
  • the input terminal of the circuit unit 40 and the base 60 are electrically connected by electrical wirings 46 and 47.
  • the electric wirings 46 and 47 are led out from the circuit unit 40 to the base 60 side of the lid body 22 of the base 20 through the inside of the other support tool 70.
  • the electrical wiring 46 is connected to the shell portion 61 of the base 60 through the through hole 29 provided in the cylindrical body 21 of the base 20.
  • the electrical wiring 47 is connected to the eyelet portion 63 of the base 60 through the opening 24 on the base 60 side of the cylindrical body 21.
  • lead wires that are insulation-coated on the electrical wirings 44 to 47 are used.
  • the circuit unit 40, the plate 91, and the reflecting mirror 50 may be supported by the electric wires 44 to 47 by increasing the wire diameter of the electric wires 44 to 47.
  • the electrical wirings 44 to 47 are supporting tools, and the circuit unit 40, the plate 91, and the reflecting mirror 50 are fixed to the electrical wirings 44 to 47.
  • the LED module 10 has a plan view of the lamp 1 (when the lamp 1 is viewed in the direction along the lamp axis Z from the side opposite to the base 60, that is, in FIG. When viewed from below, the LED module 10 is completely covered by the light guide member 80. Therefore, almost all of the light emitted from the LED module 10 in the main emission direction (light emitted directly above in FIG. 2) is guided to the wavelength conversion member 90 via the light guide member 80.
  • the reflecting mirror 50 is disposed at a position close to the wavelength converting member 90, and the entire area of the wavelength converting member 90 is positioned within the area of the reflecting mirror 50. That is, the outer edge of the reflecting mirror 50 is wider than the outer edge of the wavelength conversion member 90. For this reason, the light emitted from the wavelength conversion member 90 is blocked by the reflecting mirror 50, hardly reaches the circuit unit 40, and is not easily absorbed by the circuit unit 40.
  • FIG. 3 is a view for explaining the center of the outer tube and the central region in the tube axis direction of the outer tube.
  • the light guided by the light guide member 80 is emitted from the wavelength conversion member 90. Further, most of the emitted light directed toward the reflecting mirror 50 is reflected toward the wavelength conversion member 90 and is emitted from the wavelength conversion member 90 again. Therefore, the center of the wavelength conversion member 90 becomes the light center of the lamp.
  • the wavelength conversion member 90 has a center O (see FIG. 1) of the wavelength conversion member 90 serving as an optical center of the lamp 1 and a center M of the outer tube 30 (see FIG. 3) in the central region in the tube axis direction in the outer tube 30. Are placed in a state where they match. In the present embodiment, the lamp axis Z and the tube axis J of the outer tube 30 coincide.
  • the center M of the outer tube 30 is defined as a point P at the intersection of the plane including the opening-side end surface 35 of the outer tube 30 and the tube axis J of the outer tube 30, and the outer surface 36 and the outer surface 36 of the top 33 of the outer tube 30. This is an intermediate point between the point P and the point Q when the point of intersection of the tube 30 with the tube axis J is the point Q.
  • the central region in the tube axis direction in the outer tube 30 refers to the tube axis from the center M of the outer tube 30 when the length of the outer tube 30 (the same as the distance between the points P and Q) is L.
  • the wavelength conversion member 90 does not necessarily have its center O coincident with the center M of the outer tube 30, but it is preferable that at least the center O exists in the central region in the tube axis direction of the outer tube 30. More preferably, the mirror 50 is also located in the central region in the tube axis direction.
  • the number of LEDs 12 can be increased or the input current to the LEDs 12 can be increased.
  • the number of LEDs 12 is increased or the input current to the LEDs 12 is increased, the amount of heat generated by the LED module 10 increases, and the heat is conducted from the base 60 to the lighting fixture side.
  • the circuit unit 40 does not exist between the LED module 10 and the base 60, the distance between the LED module 10 and the base 60 can be shortened, and conduction from the LED module 10 to the base 60 is conducted. The amount of heat can be increased.
  • the circuit unit 40 is transferred to the LED module 10.
  • the heat load acting on the circuit unit 40 is reduced as a result of being stored inside the outer tube 30 on the side opposite to the base 60.
  • the heat load on the circuit unit 40 does not increase. There is no need to provide a means, and the lamp 1 is not enlarged by a heat sink or the like.
  • the circuit unit 40 in the outer tube 30, it is not necessary to secure a space for the circuit unit 40 between the LED module 10 and the base 60, so that the base 20 can be reduced in size. At this time, the temperature rises at the pedestal 20 on which the LED module 10 is mounted. However, as described above, since the circuit unit 40 does not exist between the LED module 10 and the base 60, the LED module 10 and the pedestal 20 There is no need to force the temperature down.
  • FIG. 4 is a cross-sectional view showing the structure of the LED lamp 1 according to Modification 1-1.
  • the difference from the LED lamp 1 shown in FIG. 1 is the shape of the reflecting mirror 50. More specifically, in FIG. 1, the reflecting mirror 50 has a concave reflecting surface 51, but here has a hemispherical reflecting surface.
  • the light after wavelength conversion has already been diffusely reflected in the wavelength conversion member 90 and emitted to the outside, but naturally it is also emitted to the LED module side.
  • the light emitted to the LED module side is absorbed by the mounting substrate 11 as described above.
  • the reflecting mirror 50 having a hemispherical reflecting surface since the reflecting mirror 50 having a hemispherical reflecting surface is used, the light emitted from the wavelength converting member 90 is directed toward the wavelength converting member 90. In addition to being reflected, it is also reflected to the outside of the outer tube 30.
  • FIG. 5 is a cross-sectional view showing the LED lamp 1 according to the second embodiment.
  • the LED lamp 1 of the present embodiment has basically the same configuration as the LED lamp 1 of the first embodiment except that the shape of the pedestal 20 and the optical members are mainly different. Therefore, in FIG. 5, the description of the same components as those of the LED lamp 1 according to Embodiment 1 is omitted, and the following description focuses on the different portions.
  • the pedestal 20 of the present embodiment is different from the pedestal 20 of the first embodiment in that the LED module 10 is mounted on the main surface 250 of the lid 22 on the circuit unit 40 side.
  • the reflecting mirror 50 is provided with through holes 520 and 530, and the reflecting mirror 50 is formed by inserting each support tool 70 into the through holes 520 and 530 and fixing them with an adhesive. It is attached to each support tool 70.
  • the optical member in the first embodiment is the light guide member 80
  • the optical member in the second embodiment is a lens 81 that condenses the light emitted from the LED module on the wavelength conversion member.
  • the lens 81 is a lens for collecting the light emitted from the LED module 10 on the wavelength conversion member 90, and is a double-sided convex lens in the present embodiment.
  • the lens 81 changes the light emitted from the LED module 10 into parallel light parallel to the lamp axis Z.
  • the lens 81 is not limited to a double-sided convex lens, and may be a single-sided convex lens or the like.
  • the lens 81 is not limited to a lens that changes the light emitted from the LED module 10 into parallel light parallel to the lamp axis Z, and may be any lens that can collect light on the wavelength conversion member 90.
  • FIG. ⁇ Modification 2-1> A modification in which the shape of the reflecting mirror is changed will be described.
  • FIG. 6 is a cross-sectional view showing the structure of the LED lamp 1 according to Modification 2-1.
  • the difference from the LED lamp 1 shown in FIG. 5 is the shape of the reflecting mirror. More specifically, in FIG. 5, the reflecting mirror 50 has a concave reflecting surface 51, but here has a hemispherical reflecting surface.
  • the LED lamp according to the present invention has been described based on the embodiment, the present invention is of course not limited to the above embodiment. 1.
  • the inside of the base and the base is hollow, but for example, an insulating material having a higher conductivity than air may be filled. Thereby, the heat from the LED module at the time of light emission is transmitted to the lighting fixture via the base and the socket, and the heat dissipation characteristics of the entire lamp can be improved. Examples of the material include a silicone resin. 2.
  • LED Module (1) Mounting Substrate As the mounting substrate, an existing mounting substrate such as a resin substrate, a ceramic substrate, or a metal base substrate composed of a resin plate and a metal plate can be used.
  • the blue LED is used. However, instead of the blue LED, an LED having another emission color may be used.
  • the LED mounted on the LED module 10 may be an ultraviolet LED.
  • the wavelength conversion member 90 includes R, G, and B phosphor particles in a translucent material.
  • Sealing body The sealing body covers all the LEDs mounted on the mounting substrate. For example, one LED may be covered with one sealing body, or a plurality of LEDs may be covered.
  • LEDs may be grouped and a predetermined number of LEDs may be covered with one sealing body. 3.
  • the shape of the plate 91 is annular, and the wavelength conversion member 90 is fitted in the hollow portion.
  • the plate is plate-shaped (for example, disk-shaped), and the plate is guided.
  • a wavelength conversion layer made of a wavelength conversion member may be formed on the surface on the optical member side.
  • the wavelength conversion member 90 is configured to be attached to the hollow portion of the plate 91, but may be mounted and fixed on the light guide member without using the plate 91.
  • a fixing method for example, fixing with a transparent adhesive can be considered.
  • the reflector has a concave reflecting surface 51 or a hemispherical reflecting surface.
  • the outer tube shape of the reflecting mirror is at least one of the light reaching the reflecting mirror. If it is a shape which can reflect a part toward a wavelength conversion member, it will not restrict to these.
  • it may be a regular polyhedron other than a regular icosahedron such as a regular tetrahedron, a regular hexahedron, a regular octahedron, or a regular dodecahedron.
  • regular polyhedrons truncated tetrahedron, truncated hexahedron, truncated octahedron, truncated dodecahedron, truncated icosahedron, oblique icosahedron, dodecahedron, oblique truncated cuboid
  • It may be a regular polyhedron such as a face, an oblique truncated icosahedron, a dodecahedron, a deformed cube and a dodecahedron.
  • a semi-regular polyhedron may be a regular polyhedron such as a regular tetrahedron, a regular hexahedron, a regular octahedron, a regular dodecahedron, and a regular icosahedron.
  • the polyhedrons are cubic octahedron, twentieth dodecahedron, twelve dodecahedron, large twenty twelve dodecahedron, small double triangle twenty dodecahedron, double triangle twelve dodecahedron It may be a quasi-regular polyhedron such as a hexahedron, a large double triangle icosahedron, a tetrahedron hexahedron, an octahedron octahedron, a cubic half octahedron, and a small icosahedron dodecahedron.
  • it may be a star-shaped regular polyhedron such as a small star dodecahedron, large dodecahedron, large star dodecahedron and large icosahedron, or a small cubic octahedron, a large cubic octahedron, or a cubic truncated cone.
  • Cubic octahedron Uniform large rhombohedral octahedron, Small rhombohedral hexahedron, Precious cubic octahedron, Large rhombohedron, Small twenty, twenty, twelve, Small deformation twenty, twenty, twelve Facets, small twelve, twenty-two dodecahedrons, truncated dodecahedrons, oblique twelve dodecahedrons, large truncated dodecahedrons, small star-shaped truncated dodecahedron, large star-shaped truncated A uniform polyhedron such as a dodecahedron, a large double rhombohedral dodecahedron, and a large double deformed dodecahedron dodecahedron may also be used.
  • Circuit Unit In the above-described embodiment, etc., a circuit unit in which a plurality of electronic components are mounted on one circuit board is used, and the entire circuit unit is disposed on the opposite side of the LED module 10 with the wavelength conversion member 90 interposed therebetween. However, a configuration in which a part of the circuit unit is arranged in another area may be used.
  • circuit unit in which a plurality of electronic components are separately mounted on two circuit boards, one circuit board and the electronic components mounted on the circuit board are sandwiched between the LED modules 10 with the wavelength conversion member 90 interposed therebetween.
  • the other circuit board and the electronic component mounted on the circuit board may be arranged in a region different from the region where one is disposed. In this case, it is not necessary to arrange all the electronic components in the outer tube.
  • an electronic component that is resistant to heat may be arranged between the LED module and the base. With such a configuration, the circuit unit housed in the outer tube can be reduced in size by the volume of the electronic component disposed between the LED module and the base.
  • the circuit board of the circuit unit is arranged in a posture in which the main surface is orthogonal to the lamp axis Z.
  • a posture in which the main surface of the circuit board is parallel to the lamp axis Z It may be arranged, or may be arranged in a posture inclined with respect to the lamp axis Z.
  • the support tool 70 functions as a heat radiating member. Separately from the support tool 70, heat for transferring heat of the circuit unit to the base between the circuit unit and the base.
  • a pipe may be further provided.
  • a columnar heat pipe made of a material having good thermal conductivity is connected to the circuit unit and the base so that one end is thermally connected to the circuit unit and the other end is thermally connected to the base. You may arrange
  • the present invention can be used to reduce the size of an LED lamp or improve the luminance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

 半導体発光素子12と、回路ユニット40とが外囲器2内に格納されたランプ1であって、外管30内の管軸方向中央領域には入射した光を波長変換する波長変換部材90が配され、波長変換部材90の口金60側には、主出射方向を口金60と反対方向に向けた状態で半導体発光素子12が配され、波長変換部材90と半導体発光素子12との間には、半導体発光素子12から出射された光を波長変換部材90に導く導光部材80が配され、回路ユニット40の少なくとも一部は波長変換部材90を挟んで半導体発光素子12とは反対側に配置され、回路ユニット40の少なくとも一部と波長変換部材90との間に、波長変換部材90から出射された光の少なくとも一部を波長変換部材90側へ反射させる反射鏡50が配されているランプ。

Description

ランプ
 本発明は、LED(発光ダイオード)などの半導体発光素子を光源とするランプに関し、特に、高輝度放電ランプ(HIDランプ)の代替品となるLEDランプに関する。
 近年、高輝度LEDの実用化を契機として、LEDモジュールを光源とするLEDランプが普及しつつある。その一例として、特許文献1には、白熱電球の代替品となるLEDランプが開示されている。当該LEDランプは、光源としてのLEDモジュールと当該LEDモジュールを点灯させるための回路ユニットとが、グローブと口金とを含む外囲器内に格納された構造であって、回路ユニットは、LEDモジュールから出射される光を妨げないように、LEDモジュールと口金との間に配置されている。
特開2006-313717号公報
 しかしながら、上記のような回路ユニットの配置では、LEDモジュールから口金に至る熱伝導経路上に回路ユニットが存在することになるため、回路ユニットの電子部品が熱破壊され、ランプの寿命が縮まるおそれがある。
 特に、LEDランプを、白熱電球よりも高輝度であるHIDランプの代替品として利用する場合は、HIDランプと同等の輝度を得るためにLEDの数量を増やしたり、大電流を投入したりする必要がある。そうするとLEDモジュールの発熱量が増大してしまうため、電子部品の熱破壊の問題がより顕著になる。
 また、HIDランプは、点光源に近い配光特性を有し、主として外管の管軸方向中央領域が光る構造であるため、特許文献1に記載のLEDランプのように、グローブ(HIDランプの外管に相当)の全体が光る構造を採用したのでは、HIDランプと近似した配光特性を得ることはできない。
 本発明は、上記のような課題に鑑みてなされたもので、回路ユニットの電子部品が熱破壊され難く、かつ、主として外管の管軸方向中央領域が光るランプを提供することを目的とする。
 上記課題を解決するために、本発明の一態様に係るランプは、光源としての半導体発光素子と、当該半導体発光素子を発光させるための回路ユニットとが、筒状の外管と口金とを含む外囲器内に格納されたランプであって、前記外管内の管軸方向中央領域には、入射した光を波長変換する波長変換部材が配され、当該波長変換部材よりも口金寄りには、主出射方向を前記口金と反対方向に向けた状態で前記半導体発光素子が配され、前記波長変換部材と前記半導体発光素子との間には、前記半導体発光素子から出射された光を前記波長変換部材に導く光学部材が配されており、前記回路ユニットの少なくとも一部は前記波長変換部材を挟んで前記半導体発光素子とは反対側に配されており、前記回路ユニットの少なくとも一部と前記波長変換部材との間に、前記波長変換部材から出射された光の少なくとも一部を前記波長変換部材側へ反射させる反射鏡が配されていることを特徴とするランプとした。
 本発明の一態様に係るランプは、波長変換部材よりも口金寄りに半導体発光素子が配置され、波長変換部材を挟んで半導体発光素子とは反対側に回路ユニットの少なくとも一部が配置されている。そのため、波長変換部材を挟んで半導体発光素子とは反対側に配置されている部分は半導体発光素子から口金に至る熱伝導経路上に存在せず、その部分を構成する電子部品が熱破壊され難い。したがって、ランプが長寿命である。
 また、外管内の管軸方向中央領域には、入射した光を波長変換する波長変換部材が配され、主出射方向を前記口金と反対方向に向けた状態で半導体発光素子が配され、波長変換部材と半導体発光素子との間に、半導体発光素子から出射された光を波長変換部材に導く光学部材が配されている。このため、半導体発光素子から出射された光は、光学部材により波長変換部材に導かれ、当該波長変換部材から、半導体発光素子から出射された光と波長変換部材により波長変換された光との混色により生成される混色光が放出されることになる。すなわち、外管内の管軸方向中央領域から混色光が放出されるので、管軸方向中央領域が主として光ることになる。したがって、HIDランプに近似した配光特性を有する。
 ところで、上述のように、光出射方向に回路ユニットの少なくとも一部を配したことにより、その存在が原因で外管外側に放出される光量が低減されてしまうおそれがある。
 この点に関し、本発明の一態様に係るランプでは、回路ユニットの少なくとも一部と波長変換部材との間に、波長変換部材から放出された光の少なくとも一部を波長変換部材側へ反射させる反射鏡が配されている。したがって、反射鏡が存在しなければ半導体発光素子とは反対側に配置されている回路ユニット部分に到達し吸収され得る光が、反射鏡により反射され再び波長変換部材に導かれることになる。この反射光は波長変換等により波長変換部材内で散乱し、その結果、少なくとも一部が外管外側へ放出されることになる。よって、外管外側へ放出される光量の損失を低減することができる。
実施の形態1に係るLEDランプの構造を示す断面図である。 図1におけるA-A線に沿った断面矢視図である。 外管の中心および外管の管軸方向中央領域を説明するための図である。 変形例1-1に係るLEDランプの構造を示す断面図である。 実施の形態2に係るLEDランプの構造を示す断面図である。 変形例2-1に係るLEDランプの構造を示す断面図である。
 以下、本実施の形態に係るランプについて、図面を参照しながら説明する。なお、本実施の形態で記載している、材料、数値等は好ましいものを例示しているだけであり、それに限定されることはない。また、本発明の技術的思想の範囲を逸脱しない範囲で、適宜変更は可能である。さらに、異なる実施の形態の構成の一部同士を組み合わせることは、矛盾が生じない範囲で可能である。
 また、以下では、半導体発光素子としてLEDを利用する形態について説明するが、半導体発光素子は、例えば、LD(レーザダイオード)であっても良く、EL素子(エレクトリックルミネッセンス素子)であっても良い。
<実施の形態1>
 [概略構成]
 図1は、実施の形態1に係るLEDランプの構造を示す断面図であり、図2は、図1におけるA-A線に沿った断面矢視図である。
 図1に示すように、実施の形態1に係るLEDランプ(本発明の「ランプ」に相当する。)1は、HIDランプの代替品となるLEDランプであって、光源としてのLEDモジュール10と、LEDモジュール10が搭載された台座20と、LEDモジュール10を覆う外管30と、LEDモジュール10を発光させるための回路ユニット40と、LEDモジュール10から出射された光を波長変換部材に導く光学部材としての導光部材80と、入射した光を波長変換する波長変換部材90と、波長変換部材から出射された光の少なくとも一部を波長変換部材側へ反射させる反射鏡50と、回路ユニット40と電気的に接続された口金60とを備える。
 別の表現をすれば、ランプ1は、LEDモジュール10と回路ユニット40とが、台座20と外管30と口金60とで構成される外囲器2内に格納された構造であって、外管30内の管軸方向中央領域には、入射した光を波長変換する波長変換部材90が配され、当該波長変換部材90の口金60側には、主出射方向を口金60と反対方向に向けた状態でLEDモジュール10が配され、波長変換部材90とLEDモジュール10との間には、LEDモジュールから出射された光を波長変換部材90に導く導光部材80が配されており、回路ユニット40は波長変換部材90を挟んでLEDモジュール10とは反対側に配置されており、回路ユニット40と波長変換部材90との間に、波長変換部材90から出射された光の少なくとも一部を波長変換部材90側へ反射させる反射鏡50が配されている。
 [各部構成]
(1)LEDモジュール
 LEDモジュール10は、実装基板11と、実装基板11の表面に実装された光源としての複数のLED12と、それらLED12を被覆するように実装基板11上に設けられた封止体13とを有する。封止体13は、透光性材料からなり、例えばシリコーン樹脂を利用することができる。
 また、ここでは、LED12は青色光を発光色とするもの(このようなものを以下「青色LED」とも記す。)である。
(2)台座
 台座20は、一端側が開口し他端側が閉塞した有底筒状であって、円筒状の筒体21と、当該筒体21に延設されており筒体21の回路ユニット40側の開口を塞ぐ円板状の蓋体22とを有する。台座20の回路ユニット40側の端部の外周縁には、外管30の開口側端部31が嵌め込まれる円環状の凹入部23が設けられており、当該凹入部23に外管30の開口側端部31を嵌め込んで接着剤3で固定することによって、台座20と外管30とが接合されている。また、台座20の回路ユニット40とは反対側の端部には口金60が外嵌されており、これによって筒体21の回路ユニット40とは反対側の開口が塞がれている。
 蓋体22の回路ユニット40側の端部には中央に凹部25が設けられており、この凹部25の底面25a上に、LEDモジュール10が、その主出射方向を口金60と反対(波長変換部材90)方向に向けた姿勢で搭載されている。LEDモジュール10を台座20へ搭載する方法としては、例えば、ネジ、接着剤、係合構造を利用することが考えられる。点灯時のLED12で発生する熱は、台座20を介して口金60へと伝えられ、口金60から照明器具(不図示)へと伝えられる。
 また、凹部25の内周壁面25bには段差部25cが設けられており、この段差部25cには、後述する導光部材が接着剤により固着されている。
(3)外管
 外管30は、一端側が開口し他端側が閉塞した有底筒状であって、円筒状の筒部32と、当該筒部32に延設された半球状の頂部33とを有する。外管30の形状(タイプ)は特に限定されるものではないが、本実施の形態では直管形のHIDランプの外管を模したストレートタイプの外管30が利用されている。なお、外管30は、一端側が開口し他端側が閉塞した有底筒状に限定されず、両端が開口した筒状であっても良い。
 本実施の形態では、外管30は無色透明であって、例えばガラス、セラミック、樹脂等の透光性材料で形成されている。外管30の内面34に入射した光は、拡散されることなく外管30を透過し外部へ取り出される。なお、外管30は無色透明である必要はなく有色透明であっても良い。また、外管30の内面34に例えばシリカや白色顔料等による拡散処理を施して、LEDモジュール10から発せられた光が拡散される構成としても良い。
(4)回路ユニット
 回路ユニット40は、円板状の回路基板41と、当該回路基板41に実装された各種の電子部品42,43とを有し、各電子部品42,43は回路基板41における口金60とは反対側に配置されている。なお、図面では一部の電子部品にのみ符号を付しており、符号を付していない電子部品も存在する。
 回路ユニット40は、一対の支持具70によって支持された状態で外管30の頂部33内に配置されている。回路基板41は、一対の支持具70のそれぞれの一端部に回路基板41を接着することによって、支持具70に固定されている。なお、支持具70へ回路ユニット40を固定する方法は上記に限定されず、ネジや係合構造を利用した方法であっても良い。
 回路ユニット40が外管30の頂部33内であるLEDモジュール10から最も遠い位置に配置されているため、LED12の熱が回路ユニット40に伝わり難く、回路ユニット40の電子部品42,43が熱破壊され難い。
 また、回路ユニット40を構成する電子部品のうち最も高さが高い電子部品43が回路基板41の中心部に配置されていることが好ましい。これにより、外管30の頂部に回路ユニット40を収納する際、少ないスペースで、かつ、LEDモジュール10から最も離れた位置に収納することができる。
(5)導光部材
 導光部材80は、例えばアクリル樹脂からなり、その形状は柱状(ここでは円柱状)である。なお、アクリル樹脂に限らず、その他の透光性材料で形成しても構わない。
 導光部材80は、その一端部が台座20の段差部25cに接着剤により固着されることで、台座20に取り付けられている。この状態で、前記一端面は、LEDモジュール10の光の出射部に対向しており、当該一端面が光の入射面となっている。
 導光部材80の他端面上には、後述する波長変換部材が位置しており、導光部材80の他端面と波長変換部材90の導光部材側80の面とが合致している。また、導光部材80の内面には、反射膜が形成されている。反射膜は、例えばアルミニウムの蒸着膜からなる。したがって、導光部材80の一端面から入射した光が、導光部材80内で反射を繰り返し波長変換部財90に導光されることになる。
(6)波長変換部材
 波長変換部材90は、透光性材料に光の波長を変換する変換材料が混入されてなり、その形状は例えば板状(ここでは円板状)である。透光性材料としては封止体13と同様、例えばシリコーン樹脂を利用することができる。また、変換材料としては例えば蛍光体粒子を利用することができる。
 ここでは、変換材料として青色光を黄色光に変換する蛍光体粒子が利用されている。これにより、LED12から出射された青色光と、蛍光体粒子により波長変換された黄色光とにより混色された白色光が波長変換部材90から発せられることとなる。波長変換部材90を中心として白色光が放射状に放たれるため、HIDランプに近似した配光特性を得ることができる。
(7)プレート
 プレート91は、透光性材料からなり、例えばガラス、セラミック、樹脂等を利用することができる。図2に示すように、プレート91の形状は環状(ここでは円環状)であり、その中空部分に波長変換部材90が嵌め込まれている。この状態で波長変換部材90とプレート91とが例えば接着剤により固着されることにより、波長変換部材90がプレート91に取り付けられている。
 プレート91が透光性材料からなるため、波長変換部材90から発せされた白色光は、プレート91で遮られることなくプレート91側へも放出される。
 また、プレート91には、一対の支持具70を通すための貫通孔92,93が設けられており、貫通孔92,93に挿通された支持具70と接着剤により固着されることにより、プレート91は支持具70に支持されている。
(8)反射鏡
 反射鏡50は、凹形状の反射面51を有し、反射面51を波長変換部材90に向けるようにして、一対の支持具70によって支持された状態で配置されている。
 反射鏡50の外表面には、一対の支持具70に係合させるための2条の係合溝52,53が、ランプ軸Z沿って形成されており、それら係合溝52,53に各支持具70の一部分を係合させた状態で、それら係合部に接着剤を流し込むことによって、反射鏡50が一対の支持具70に固定されている。係合構造および接着剤を利用して2箇所で固定しているため、反射鏡50は一対の支持具70から外れ難い。なお、一対の支持具70に対する反射鏡50の固定方法は上記に限定されず、プレート91の支持と同様、反射鏡50に貫通孔を設けこの貫通孔に支持具を挿通し固着することで固定してもよいし、ネジなどを利用したものであっても良い。
 凹形状の反射面51を有する反射鏡50では、この反射鏡50に到達した光の大部分が波長変換部材90に向かって反射されることになる。反射鏡50により反射されて波長変換部材90に到達した反射光は、波長変換部材90で波長変換されることなく透過した透過光と、波長変換された後の変換光とを含んでいる。再び波長変換部材90に導かれた光のうち、透過光の一部が波長変換部材90で波長変換され散乱することになる。一方、変換光は、再び波長変換されることはなく、波長変換部材90内で乱反射し外部に放出される。このように、反射鏡50が存在しなければ回路ユニット40に到達し吸収され得る光が、再び波長変換部材90に導かれ、波長変換及び乱反射した結果、当該光の少なくとも一部が外管30外側へ放出されるので、外管30外側へ放出される光量の損失を低減することができる。
 また、反射鏡50は、回路ユニット40と波長変換部材90との間の、波長変換部材90により近い位置に配されている。具体的には、後述する管軸方向中央領域内に位置している。このように、波長変換部材90と反射鏡50とが近接して配されているため、より点光源に近い配光特性を得ることができる。
(9)口金
 口金60は、ランプ1が照明器具に取り付けられ点灯された際に、照明器具のソケットから電力を受けるためのものである。口金60の種類は、特に限定されるものではないが、ここではエジソンタイプであるE26口金が使用されている。口金60は、筒状であって周面が雄ネジとなっているシェル部61と、シェル部61に絶縁材料62を介して装着されたアイレット部63とを有する。
(10)支持具
 各支持具70は、例えば、ガラス製、金属製または樹脂製の円筒状であって、それぞれの一端部が回路ユニット40に固定され、それぞれの他端部が台座20の蓋体22に設けられた貫通孔26,27に差し込まれた状態で、蓋体22に接着されている。
 各支持具70は、一端部が接着剤等で回路ユニット40に固定されることで、回路ユニット40と熱的に接続され、他端部が蓋体22に接着されることで、当該蓋体22を介して口金60と熱的に接続されている。このため、回路ユニット40から放出された熱を、各支持具70を介して効率よく口金60に伝えることができる。
 図2に示すように、一対の支持具70は、ランプ軸Zを中心として、LEDモジュール10を挟んで両側に配置されている。そのため、それら支持具70がLEDモジュール10から出射される光の妨げになり難いと共に、回路ユニット40、プレート91および反射鏡50をバランス良く支持することができる。また、回路ユニット40、プレート91および反射鏡50を共通の支持具で支持しているので、部品数の増加を抑制することができる。なお、支持具70は必ずしも2本である必要はなく、1本でも良いし、3本以上であっても良い。また、本実施の形態では、回路ユニット40、プレート91および反射鏡50を共通の支持具70で支持しているが、各々が別々の支持具により指示される構成であっても良い。
 なお、支持具70を透明の材料で形成することによって、LED12から出射された光が支持具70によって妨げられ難い構成とすることができる。一方、支持具70を不透明な材料で形成する場合は、例えば支持具70の外表面を鏡面処理するなどして光反射率を向上させ、支持具70によって出射光が吸収され難い構成とすることが考えられる。
 また、支持具70は、円筒状ではなく角筒状など他の筒状であっても良い。さらに、筒状ではなく円柱や角柱など柱状であっても良い。支持具70が柱状である場合は、後述する電気配線44~47を支持具70に巻き付けたり、沿わせたりすることが考えられる。
 回路ユニット40の出力端子とLEDモジュール10の入力端子とは、電気配線44,45によって電気的に接続されている。電気配線44,45は、回路ユニット40から一方の支持具70の内部を通って、台座20の蓋体22よりも口金60側へ導出されており、さらに蓋体22に設けられた貫通孔28を通ってLEDモジュール10と接続されている。
 回路ユニット40の入力端子と口金60とは、電気配線46,47によって電気的に接続されている。電気配線46,47は、回路ユニット40から他方の支持具70の内部を通って、台座20の蓋体22よりも口金60側へ導出されている。さらに、電気配線46は、台座20の筒体21に設けられた貫通孔29を通って、口金60のシェル部61と接続されている。また、電気配線47は、筒体21の口金60側の開口24を通って、口金60のアイレット部63と接続されている。
 なお、本実施の形態では、電気配線44~47に絶縁被覆されたリード線が利用されている。
 支持具70を用いる代わりに、電気配線44~47の線径を太くすることによって、電気配線44~47で回路ユニット40、プレート91および反射鏡50を支持しても良い。その場合は、電気配線44~47が支持具であり、電気配線44~47に回路ユニット40、プレート91および反射鏡50が固定される。
 [LEDモジュール10、導光部材80、波長変換部材90および反射鏡50の位置関係]
 図2に示すように、LEDモジュール10は、ランプ1を平面視したときに(ランプ1を口金60とは反対側からランプ軸Zに沿った方向に見たときに、すなわち図2において紙面上方から下方を見たときに)、導光部材80の真下に位置し、LEDモジュール10は導光部材80によって完全に覆われる。したがって、LEDモジュール10から主出射方向に出射された光(図2において真上に出射された光)は、略全てが導光部材80を経て波長変換部材90に導光されることになる。
 また、上述のように、反射鏡50が波長変換部材90に近接した位置に配されているとともに、波長変換部材90の全領域が反射鏡50の領域内に位置している。すなわち、反射鏡50の外縁が、波長変換部材90の外縁より広くなっている。そのため、波長変換部材90から放出された光は、反射鏡50で遮られて回路ユニット40に到達しにくく、回路ユニット40により吸収され難い構成となっている。
 [管軸中央領域]
 図3は、外管の中心および外管の管軸方向中央領域を説明するための図である。上述したように、導光部材80により導光された光は、波長変換部材90から放出される。また、放出された光のうち反射鏡50に向かった光の大部分が波長変換部材90に向かって反射され、再び波長変換部材90から放出されることになる。したがって、波長変換部材90の中心がランプの光中心となる。波長変換部材90は、外管30内の管軸方向中央領域に、ランプ1の光中心となる波長変換部材90の中心O(図1参照。)と外管30の中心M(図3参照)とが一致した状態で配置されている。なお、本実施の形態では、ランプ軸Zと外管30の管軸Jとが一致している。
 ここで、外管30の中心Mとは、外管30の開口側端面35を含む平面と外管30の管軸Jとの交点を点Pとし、外管30の頂部33の外面36と外管30の管軸Jとの交点を点Qとした場合の、点Pと点Qとの中間点である。また、外管30内の管軸方向中央領域とは、外管30の長さ(点Pと点Qとの距離と同じ)をLとした場合に、外管30の中心Mから、管軸Jに沿って、点Pおよび点Qのそれぞれの方向にLの25%(L/4)ずつ離れた、点Rと点Sとの間に相当する領域(図3において格子状のハッチングを付した領域)である。
 なお、波長変換部材90は、その中心Oが必ずしも外管30の中心Mと一致している必要はないが、少なくとも中心Oが外管30の管軸方向中央領域に存在することが好ましく、反射鏡50も管軸方向中央領域に収まっていることがより好ましい。
 [放熱経路]
 本実施の形態に係るランプ1は、上記構成を有するため、例えば、LED12の数量を増やしたりLED12への投入電流を高めたりすることができる。LED12の数量を増やしたりLED12への投入電流を高めたりすると、LEDモジュール10の発熱量が増加し、その熱が口金60から照明器具側へ伝導される。このとき、LEDモジュール10と口金60との間には回路ユニット40が存在していないため、LEDモジュール10と口金60との距離を短くすることができ、LEDモジュール10から口金60へと伝導する熱量を増加させることができる。
 また、LED12で発生した熱のすべてが口金60側に伝導せずにLEDモジュール10や台座20に残留し、LEDモジュール10や台座20の温度が上昇したとしても、回路ユニット40がLEDモジュール10に対して口金60とは反対側であって外管30の内部に格納されているため、回路ユニット40に作用する熱負荷は結果的に小さくなる。
 このようにLEDモジュール10や台座20の温度が上昇しても、回路ユニット40への熱負荷が増大しない構成であるため、LEDモジュール10や台座20の温度を下げるために新たにヒートシンク等の放熱手段を設ける必要がなく、ヒートシンク等によってランプ1が大型化するようなこともない。
 また、回路ユニット40を外管30内に配置することで、LEDモジュール10と口金60との間に回路ユニット40用のスペースを確保する必要がなくなるため、台座20を小型化することができる。この際、LEDモジュール10が搭載される台座20で温度上昇が生じるが、上述したように、LEDモジュール10と口金60との間には回路ユニット40が存在しないため、LEDモジュール10や台座20の温度を無理に下げる必要がない。
 [その他]
 本実施の形態では、外管30内に回路ユニット40が格納されているため、台座20と口金60との間に回路ユニット40を格納するスペースが不要であり、台座20を小型化することが可能であるため、HIDランプに近い形状・大きさのランプ1にすることができる。これにより、従来の照明器具への装着適合率を向上させることができる。さらに、台座20の小型化により外管30を大きくすることができるため、外管30内における回路ユニット40を格納するスペースを十分に確保することができる。
<変形例1-1>
 反射鏡の形状を替えた一変形例について説明する。
 図4は、変形例1-1に係るLEDランプ1の構造を示す断面図である。図1で示したLEDランプ1との差異は、反射鏡50の形状である。より詳細には、図1では、反射鏡50は凹形状の反射面51を有する構成であったが、ここでは、半球状の反射面を有している。
 上述のように、凹形状の反射面を有する反射鏡では、当該反射鏡に到達した光の大部分が波長変換部材90に向かって反射されることになる。しかしながら、反射鏡50により反射されて波長変換部材90に到達した光の一部は波長変換されるものの、波長変換部材90を透過しLEDモジュール側に向かう光も存在する。透過した光は、LEDモジュールの実装基板11により吸収されるため、外管30外側へは放出されない。
 また、上述したように、すでに波長変換された後の光は、波長変換部材90内で乱反射し外部に放出されるが、当然のことながらLEDモジュール側にも放出される。LEDモジュール側に放出された光は、上述のように、実装基板11により吸収されてしまう。
 これに対し、変形例1-1に係るLEDランプ1では、半球状の反射面を有する反射鏡50が用いられているため、波長変換部材90から出射された光は、波長変換部材90に向かって反射されるだけでなく、外管30外側へも反射される。
 反射鏡50により反射された光が、波長変換部材90に向かうだけでなく、直接、外管30外側へも向かうので、外管30外側へ放出される光量をより多くすることができ、輝度をさらに向上させることができる。
<実施の形態2>
 図5は、実施の形態2に係るLEDランプ1を示す断面図である。本実施の形態のLEDランプ1は、主として台座20の形状及び光学部材が異なる以外は、基本的に実施の形態1のLEDランプ1と同様の構成をしている。したがって、図5において、実施の形態1に係るLEDランプ1と同様の構成部分の説明は省略し、以下異なる部分を中心に説明する。
 本実施の形態の台座20は、蓋体22の回路ユニット40側の主面250上にLEDモジュール10が搭載されている点で実施の形態1の台座20と異なる。
 また、本実施の形態の反射鏡50には、貫通孔520、530が設けられており、この貫通孔520、530に各支持具70を挿通し接着剤により固着することで、反射鏡50は各支持具70に取り付けられている。
 さらに、実施の形態1における光学部材が導光部材80であったのに対し、実施の形態2における光学部材は、LEDモジュールから出射された光を波長変換部材に集光させるレンズ81である。
 レンズ81は、LEDモジュール10から出射された光を波長変換部材90に集めるためのレンズであって、本実施の形態では両面凸レンズである。レンズ81によって、LEDモジュール10から出射された光はランプ軸Zと平行な平行光に変えられる。なお、レンズ81は、両面凸レンズに限定されず、片面凸レンズ等であっても良い。また、レンズ81は、LEDモジュール10から出射された光をランプ軸Zと平行な平行光に変えるレンズに限定されず、波長変換部材90に光を集められるようなレンズであれば良い。
 このように光学部材にレンズ81を用いた構成であっても、LEDモジュール10から出射された光を波長変換部材90に導くことができる。
<変形例2-1>
 反射鏡の形状を替えた一変形例について説明する。
 図6は、変形例2-1に係るLEDランプ1の構造を示す断面図である。図5で示したLEDランプ1との差異は、反射鏡の形状である。より詳細には、図5では、反射鏡50は凹形状の反射面51を有する構成であったが、ここでは、半球状の反射面を有している。
 なお、半球状の反射面を有する反射鏡を用いることによる効果は、<変形例1-1>ですでに述べているので、ここではその説明を省略する。
<補足>
 以上、本発明に係るLEDランプについて、実施の形態に基づいて説明したが、本発明は上記実施の形態に限られないことは勿論である。
1.口金
 実施の形態等では、口金や台座の内部は中空であったが、例えば、伝導率が空気よりも高い絶縁性の材料を充填しても良い。これにより、発光時のLEDモジュールからの熱は、口金、ソケットを介して照明器具へと伝わり、ランプ全体としての放熱特性を向上させることができる。なお、上記材料としては、例えばシリコーン樹脂等がある。
2.LEDモジュール
(1)実装基板
 実装基板は、樹脂基板、セラミック基板、樹脂板と金属板とから成る金属ベース基板等、既存の実装基板を利用することができる。
(2)LED
 実施の形態等では、青色LEDを用いたが、青色LEDではなく、他の発光色のLEDを用いてもよい。例えば、LEDモジュール10に搭載されたLEDが紫外LEDであるとしてもよい。この場合には、波長変換部材90は、透光性材料にR,G,Bの蛍光体粒子を含んで構成されることになる。
(3)封止体
 封止体は、実装基板上に実装されたすべてのLEDを被覆していたが、例えば、一つのLEDに対して1つの封止体で被覆しても良いし、複数のLEDをグループ分けして、所定数のLEDに対して1つの封止体で被覆しても良い。
3.プレート
 実施の形態等では、プレート91の形状は環状であり、その中空部分に波長変換部材90が嵌め込まれている構成としたが、プレートが板状(例えば円板状)であり、プレートの導光部材側の表面に波長変換部材からなる波長変換層が形成されているとしてもよい。
 また、プレートの導光部材側の表面に波長変換層を形成するのではなく、変換材料入りのプレートを用いるとしてもよい。これは、プレートを構成する材料に予め変換材料を混入させておくことで作成することができる。
4.波長変換部材
 実施の形態等では、波長変換部材90は、プレート91の中空部分に取り付けられる構成としたが、プレート91を用いず導光部材上に載置固定するとしてもよい。固定方法としては、例えば透明の接着剤により固着することが考えられる。
5.反射鏡
 実施の形態等では、反射鏡は凹形状の反射面51を有する、または半球状の反射面を有する構成としたが、反射鏡の外管形状は、反射鏡に到達した光の少なくとも一部を波長変換部材に向かって反射することができる形状であれば、これらに限らない。
 例えば、正四面体、正六面体、正八面体、正十二面体等の正二十面体以外の正多面体であっても良い。また、正多面体に限定されず、切頂四面体、切頂六面体、切頂八面体、切頂十二面体、切頂二十面体、斜方二十・十二面体、斜方切頂立方八面体、斜方切頂二十・十二面体、斜方立方八面体、変形立方体および変形十二面体等の半正多面体でも良い。
 さらに、半正多面体に限定されず、正四面体、正六面体、正八面体、正十二面体および正二十面体等の正多面体でも良い。さらに、多面体は、立方八面体、二十・十二面体、十二・十二面体、大二十・十二面体、小二重三角二十・十二面体、二重三角十二・十二面体、大二重三角二十・十二面体、四面半六面体、八面半八面体、立方半八面体および小二十面半十二面体等の準正多面体でも良い。
 さらに、小星型十二面体、大十二面体、大星型十二面体および大二十面体等の星型正多面体でも良いし、小立方立方八面体、大立方立方八面体、立方切頂立方八面体、一様大斜方立方八面体、小斜方六面体、大切頂立方八面体、大斜方六面体、小二十・二十・十二面体、小変形二十・二十・十二面体、小十二・二十・十二面体、切頂大十二面体、斜方十二・十二面体、切頂大二十面体、小星型切頂十二面体、大星型切頂十二面体、大二重斜方二十・十二面体および大二重変形二重斜方十二面体等の一様多面体でも良い。
 さらに、アルキメデス双対、デルタ多面体、ジョンソンの立体、星型多面体、ゾーン多面体、平行多面体、等面菱形多面体、複合多面体、複合体、穿孔多面体、ダ・ヴィンチの星、正四面体リングおよびねじれ正多面体等でも良い。
6.回路ユニット
 上記実施の形態等では、複数の電子部品が1つの回路基板に実装された回路ユニットを利用しており、回路ユニット全体が波長変換部材90を挟んでLEDモジュール10とは反対側に配置された構成であったが、回路ユニットの一部が別の領域に配置されている構成であっても良い。例えば、2つの回路基板に複数の電子部品が分けて実装された回路ユニットを利用して、一方の回路基板とその回路基板に実装された電子部品とが波長変換部材90を挟んでLEDモジュール10とは反対側に配置され、他方の回路基板とその回路基板に実装された電子部品とが、一方のものが配置された領域と別の領域に配置されている構成としても良い。この場合、すべての電子部品が外管内に配置される必要はなく、例えば、熱に強い電子部品はLEDモジュールと口金との間に配置しても良い。このような構成とすれば、LEDモジュールと口金との間に配置した電子部品の体積ぶんだけ、外管内に収納する回路ユニットを小型化することができる。
 また、実施の形態等では、回路ユニットの回路基板は、その主面がランプ軸Zと直交する姿勢で配置されていたが、例えば、回路基板の主面がランプ軸Zと平行になる姿勢で配置しても良いし、ランプ軸Zに対して傾斜した姿勢で配置しても良い。
 [その他]
 上記実施の形態等において、支持具70が放熱部材として機能していたが、当該支持具70とは別に、回路ユニットと口金との間に、前記回路ユニットの熱を前記口金に伝えるためのヒートパイプをさらに設けても良い。例えば、熱伝導性の良い材料で形成された柱状のヒートパイプを、一端が回路ユニットと熱的に接続され、他端が口金と熱的に接続されるように、前記回路ユニットと前記口金との間に配置しても良い。その場合、ヒートパイプを介し回路ユニットと口金との間に電気が流れないように、絶縁性を確保することが好ましい。
 本発明は、LEDランプを小型化したり、輝度を向上させたりするのに利用可能である。
1 ランプ
2 外囲器
12 半導体発光素子
20 台座
30 外管
40 回路ユニット
44~47 電気配線
50 反射鏡
51 反射面
60 口金
70 支持具
80 導光部材
81 レンズ
90 波長変換部材
91 プレート

Claims (7)

  1.  光源としての半導体発光素子と、当該半導体発光素子を発光させるための回路ユニットとが、筒状の外管と口金とを含む外囲器内に格納されたランプであって、
     前記外管内の管軸方向中央領域には、入射した光を波長変換する波長変換部材が配され、
     当該波長変換部材よりも口金寄りには、主出射方向を前記口金と反対方向に向けた状態で前記半導体発光素子が配され、
     前記波長変換部材と前記半導体発光素子との間には、前記半導体発光素子から出射された光を前記波長変換部材に導く光学部材が配されており、
     前記回路ユニットの少なくとも一部は前記波長変換部材を挟んで前記半導体発光素子とは反対側に配されており、
     前記回路ユニットの少なくとも一部と前記波長変換部材との間に、前記波長変換部材から出射された光の少なくとも一部を前記波長変換部材側へ反射させる反射鏡が配されている
     ことを特徴とするランプ。
  2.  前記光学部材が柱状の導光部材であり、前記半導体発光素子の光を入射させる入射部を有し、その入射部が前記半導体発光素子の光の出射部に対向させた状態で設けられている
     請求項1記載のランプ。
  3.  前記光学部材が、前記半導体発光素子から出射された光を前記波長変換部材に集めるレンズである
     請求項1記載のランプ。
  4.  前記半導体発光素子は前記口金の開口側に設けられた台座に搭載されており、
     当該台座には、前記回路ユニットの少なくとも一部を支持する筒状の支持具の一端部が取り付けられており、
     前記半導体発光素子と前記回路ユニットの少なくとも一部とを接続する電気配線、および、前記口金と前記回路ユニットの少なくとも一部とを接続する電気配線が、それぞれ前記支持具の内部を通して配線されている
     請求項1から3の何れかに記載のランプ。
  5.  前記支持具はさらに、環状の透光性部材からなるプレートを支持しており、
     前記プレートの中空部分に前記波長変換部材が取り付けられている
     請求項4記載のランプ。
  6.  前記支持具はさらに、前記反射鏡を支持している
     請求項5記載のランプ。
  7.  前記回路ユニットは、一部が前記波長変換部材を挟んで前記半導体発光素子とは反対側に配されており、残りの部分が前記口金と前記半導体発光素子との間に配置されている
     請求項1から6の何れかに記載のランプ。
PCT/JP2011/004913 2010-10-12 2011-09-01 ランプ WO2012049803A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180003526XA CN102549329B (zh) 2010-10-12 2011-09-01
US13/392,047 US8439512B2 (en) 2010-10-12 2011-09-01 Semiconductor lamp with wavelength converter and circuit component axially opposed from light source
JP2012503806A JP4989791B2 (ja) 2010-10-12 2011-09-01 ランプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010229854 2010-10-12
JP2010-229854 2010-10-12

Publications (1)

Publication Number Publication Date
WO2012049803A1 true WO2012049803A1 (ja) 2012-04-19

Family

ID=45938045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004913 WO2012049803A1 (ja) 2010-10-12 2011-09-01 ランプ

Country Status (4)

Country Link
US (1) US8439512B2 (ja)
JP (1) JP4989791B2 (ja)
CN (1) CN102549329B (ja)
WO (1) WO2012049803A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM429802U (en) * 2011-09-30 2012-05-21 Chicony Power Tech Co Ltd Light source module and light-emitting device thereof
JP2013214415A (ja) * 2012-04-02 2013-10-17 Hyundai Motor Co Ltd 車両用多面体型ランプ
SG11201509255YA (en) * 2013-05-09 2015-12-30 Univ Singapore Technology & Design Methods for manufacturing a lens, lens manufacturing systems, and lenses
CN107110455B (zh) * 2014-11-07 2020-05-19 亮锐控股有限公司 具有热屏蔽元件的灯
CN107110434B (zh) * 2014-12-18 2020-07-24 三菱电机株式会社 灯、灯用波长辨别罩、照明装置以及灯的制造方法
EP3770495B1 (en) * 2019-07-24 2023-08-23 Ellego Powertec Oy Led lamp
EP4160081A1 (en) * 2021-08-16 2023-04-05 Shenzhen Lianshang Photoelectric Co., Ltd. Vehicle led lamp

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151305A (ja) * 2001-11-09 2003-05-23 Sotoyoshi Kanayama 発光ダイオードを用いた電球式照明装置
JP2004214036A (ja) * 2002-12-26 2004-07-29 Hakko Automation Kk 遠隔制御可能な可変色発光体
JP2005222750A (ja) * 2004-02-04 2005-08-18 Kenji Kubo 調光機能を持つ照明装置
US20090086492A1 (en) * 2007-09-27 2009-04-02 Osram Sylvania Inc LED lamp with heat sink optic
WO2009089529A1 (en) * 2008-01-10 2009-07-16 Goeken Group Corp. Led lamp replacement of low power incandescent lamp
WO2009149263A1 (en) * 2008-06-04 2009-12-10 Forever Bulb, Llc Led-based light bulb device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482706B2 (ja) 2005-04-08 2010-06-16 東芝ライテック株式会社 電球型ランプ
US7758223B2 (en) 2005-04-08 2010-07-20 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US7942556B2 (en) * 2007-06-18 2011-05-17 Xicato, Inc. Solid state illumination device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151305A (ja) * 2001-11-09 2003-05-23 Sotoyoshi Kanayama 発光ダイオードを用いた電球式照明装置
JP2004214036A (ja) * 2002-12-26 2004-07-29 Hakko Automation Kk 遠隔制御可能な可変色発光体
JP2005222750A (ja) * 2004-02-04 2005-08-18 Kenji Kubo 調光機能を持つ照明装置
US20090086492A1 (en) * 2007-09-27 2009-04-02 Osram Sylvania Inc LED lamp with heat sink optic
WO2009089529A1 (en) * 2008-01-10 2009-07-16 Goeken Group Corp. Led lamp replacement of low power incandescent lamp
WO2009149263A1 (en) * 2008-06-04 2009-12-10 Forever Bulb, Llc Led-based light bulb device

Also Published As

Publication number Publication date
CN102549329A (zh) 2012-07-04
JPWO2012049803A1 (ja) 2014-02-24
CN102549329B (zh) 2013-09-18
JP4989791B2 (ja) 2012-08-01
US8439512B2 (en) 2013-05-14
US20120275145A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP4971530B2 (ja) ランプ
JP4995997B2 (ja) ランプ
JP4989791B2 (ja) ランプ
JP2010055993A (ja) 照明装置および照明器具
JP6217972B2 (ja) 照明器具
WO2012032951A1 (ja) 口金付ランプおよび照明器具
JP2012123907A (ja) ランプ
JP2011054340A (ja) 照明装置
JP5006482B2 (ja) 光源装置
JP2012048950A (ja) 口金付ランプおよび照明器具
JP5934947B2 (ja) ランプ及び発光装置
JP5664964B2 (ja) 口金付ランプおよび照明器具
JP6238199B2 (ja) 照明器具
JP5524793B2 (ja) ランプ
JP5524799B2 (ja) ランプ
JP5491345B2 (ja) ランプ
JP5681969B2 (ja) ランプ
JP5681970B2 (ja) ランプ
JP5824680B2 (ja) ランプ及び照明装置
JP5681971B2 (ja) ランプ
JP2014146570A (ja) ランプ及び照明装置
JP5420118B1 (ja) 電球形ランプ及び照明装置
JP5576989B2 (ja) 照明用光源
JP5574425B2 (ja) ランプ
JP2016115459A (ja) ランプ装置および照明装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003526.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012503806

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13392047

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832249

Country of ref document: EP

Kind code of ref document: A1