WO2012043096A1 - 時刻と物理量の両方を示すための目盛を備えた時計 - Google Patents

時刻と物理量の両方を示すための目盛を備えた時計 Download PDF

Info

Publication number
WO2012043096A1
WO2012043096A1 PCT/JP2011/068913 JP2011068913W WO2012043096A1 WO 2012043096 A1 WO2012043096 A1 WO 2012043096A1 JP 2011068913 W JP2011068913 W JP 2011068913W WO 2012043096 A1 WO2012043096 A1 WO 2012043096A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical quantity
time
scale
pointer
contrast
Prior art date
Application number
PCT/JP2011/068913
Other languages
English (en)
French (fr)
Inventor
英一 馬本
Original Assignee
日本テクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2012009656A priority Critical patent/MX2012009656A/es
Application filed by 日本テクノ株式会社 filed Critical 日本テクノ株式会社
Priority to US13/581,706 priority patent/US8976631B2/en
Priority to ES11828657T priority patent/ES2885756T3/es
Priority to RU2012137111/28A priority patent/RU2012137111A/ru
Priority to CN201180009434.2A priority patent/CN102763045B/zh
Priority to DK11828657.4T priority patent/DK2624079T3/da
Priority to BR112012022922-2A priority patent/BR112012022922B1/pt
Priority to EP11828657.4A priority patent/EP2624079B1/en
Priority to JP2012502346A priority patent/JP5493237B2/ja
Priority to KR1020127015785A priority patent/KR101333343B1/ko
Priority to TW100133362A priority patent/TWI451214B/zh
Publication of WO2012043096A1 publication Critical patent/WO2012043096A1/ja
Priority to HK13105126.1A priority patent/HK1178269A1/xx

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/04Hands; Discs with a single mark or the like
    • G04B19/048Hands; Discs with a single mark or the like having the possibility of indicating on more than one scale, e.g. hands with variable length which work on different scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/10Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods using digital techniques
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/02Detectors of external physical values, e.g. temperature
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G9/00Visual time or date indication means
    • G04G9/0064Visual time or date indication means in which functions not related to time can be displayed
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R11/00Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
    • G01R11/56Special tariff meters

Definitions

  • the present invention relates to a timepiece that indicates both time and physical quantity.
  • Patent Document 1 discloses a digital target display clock that can numerically display the current degree of achievement for a target desired to be achieved in a certain period.
  • Patent Document 2 discloses an analog-type countdown timepiece that can numerically display the number of days remaining until a specific target date.
  • a dual-use scale for indicating a time and a physical quantity to be described later
  • a pointer drive unit for driving a pointer for pointing the dual-use scale according to the time, and information on a physical quantity starting from a predetermined time
  • a physical quantity indicator drive for driving a physical quantity indicator for indicating the magnitude of the acquired physical quantity with a dual-purpose scale, with the scale position of the dual-use scale indicated by the pointer at the predetermined time as the origin position of the physical quantity.
  • a timepiece having a part.
  • a dual scale for indicating a time and a physical quantity to be described later, a pointer driving section for driving a pointer for pointing the dual scale according to the time, and a physical quantity acquisition section for acquiring physical quantity information starting from a predetermined time
  • a physical quantity prediction unit that predicts a physical quantity at a predetermined time ahead of the predetermined time based on the acquired physical quantity information, and a scale position of a dual scale pointed to by the pointer at the predetermined time is used as the physical quantity origin position
  • a timepiece having a prediction amount indicator driving section for driving a prediction amount indicator for indicating the magnitude of a physical quantity with a dual scale is proposed.
  • a contrast scale for indicating the magnitude of the physical quantity with respect to the time and the target level described later, a pointer driving unit for driving a pointer for pointing the dual scale according to the time, and a physical quantity for each time segment in a predetermined time unit
  • a target level acquisition unit for acquiring a target level
  • a physical quantity acquisition unit for acquiring a physical quantity from a start time of a time section to which the current time belongs to the current time, at predetermined intervals until an end time of the time division to which the current time belongs
  • the contrast physical quantity indicator for indicating the magnitude of the physical quantity acquired by the contrast physical quantity acquisition unit with respect to the target level at the current time on the contrast scale, and the contrast scale indicated by the pointer at the start time of the time section to which the current time belongs
  • the scale position is the origin position of the physical quantity with respect to the target level
  • the scale of the contrast scale indicated by the pointer at the current time As the scale positions on the target level of the physical quantity at the current time location, it proposes a
  • a contrast scale for indicating the magnitude of the physical quantity with respect to the time and the target level described later, a pointer driving unit for driving a pointer for pointing the dual scale according to the time, and a physical quantity for each time segment in a predetermined time unit
  • a target level acquisition unit for acquiring a target level
  • a physical quantity acquisition unit for acquiring a physical quantity from a start time of a time section to which the current time belongs to the current time, at predetermined intervals until an end time of the time division to which the current time belongs
  • a comparison physical quantity prediction unit that predicts a physical quantity at the end time of a time segment to which the current time belongs based on the physical quantity acquired by the comparison physical quantity acquisition unit, and a time division to which the current time of the physical quantity predicted by the comparison physical quantity prediction unit belongs
  • a contrast prediction quantity indicator for indicating the magnitude of the target level at the end time with a contrast scale, and the start of the time segment to which the current time belongs At this time, the scale position of the contrast scale indicated by the
  • FIG. 10 is a diagram illustrating another example of the timepiece according to the first embodiment.
  • 1 is a diagram illustrating an example of a hardware configuration of a timepiece according to a first embodiment.
  • the figure showing the target level information which a target level acquisition part acquires
  • FIG. 11 shows another example of the watch of the tenth embodiment.
  • FIG. (2) showing another example of the watch of the tenth embodiment.
  • the first embodiment mainly corresponds to claims 1 and 9.
  • the second embodiment mainly corresponds to claims 2 and 9.
  • the third embodiment mainly corresponds to claims 3 and 9.
  • the fourth embodiment mainly corresponds to claims 4 and 9.
  • the fifth embodiment mainly corresponds to claims 5 and 9.
  • the sixth embodiment mainly corresponds to claims 6 and 9.
  • the seventh embodiment mainly corresponds to claims 7 and 9.
  • the eighth embodiment mainly corresponds to claims 8 and 9.
  • the ninth embodiment mainly corresponds to claims 10, 11, 12, 15, and 16.
  • the tenth embodiment mainly corresponds to claims 13, 14, 15, and 16.
  • this invention is not limited to these embodiments at all, and can be implemented in various modes without departing from the scope of the invention.
  • FIG. 1 is a diagram showing an overview of a timepiece according to the present embodiment.
  • the “clock” of this embodiment is the physical position starting from 12:30, and the scale position of the “double scale” 0102 indicated by the “minute hand” 0101 at 30 minutes (the 30th scale position). ) Is the origin position of the physical quantity, and the “physical quantity indicator” 0103 for indicating the magnitude of the physical quantity as “both scales” 0102 is driven.
  • the “physical quantity indicator” 0103 for indicating the magnitude of the physical quantity as “both scales” 0102 is driven.
  • FIG. 2 is a diagram illustrating an example of functional blocks of the timepiece according to the present embodiment.
  • the “clock” 0200 of the present embodiment includes a “double scale” 0201, a “pointer” 0202, a “pointer drive unit” 0203, a “physical quantity acquisition unit” 0204, and a “physical quantity indicator”. 0205 and a “physical quantity indicator driving unit” 0206.
  • a dual scale is a scale for indicating time and physical quantities described later. That is, it is possible to indicate the time and physical quantity with one scale. As shown in FIG. 1, the position where the dual scales are arranged is mainly considered to be the edge of the time display dial, but is not particularly limited as long as the time and the physical quantity can be indicated. .
  • the number of dual scales is considered to be 60 as in a general clock, but it is also possible to use a scale that is a multiple of that scale (for example, 120), and the scale number that is the common divisor. It is also possible (for example, 12).
  • the size of the physical quantity (the ratio of the dual scale to the physical quantity) relative to one scale of the dual scale can be arbitrarily set.
  • the unit of the physical quantity expected to change per basic unit time for example, 1 kWh
  • the number of scales of the dual scale indicating the basic unit time for example, one scale
  • the physical quantity to be targeted in the predetermined time segment for example, 5 kWh
  • the predetermined time segment for example, 5 kWh
  • the pointer driving unit drives a pointer for pointing the dual scale according to the time.
  • the pointer means any one of an hour hand, a minute hand, and a second hand.
  • the shape of the pointer of the pointer driving unit does not necessarily have to be a needle shape, as long as it can indicate the time on the dual scale. For example, a small light spot or icon displayed near the scale position of the dual scale so as to correspond to the time is also included.
  • a step motor or the like is mainly conceivable if the pointer is a physical one. A configuration in which the time display dial is displayed and output as a display is also conceivable.
  • the “physical quantity acquisition unit” acquires physical quantity information starting from a predetermined time.
  • the number of steps taken, the number of push-ups, the number of squats, etc. are not limited to these.
  • the predetermined time is not fixed. For example, in the case of acquiring travel distance information starting from 12:15, when it becomes 12:30, this time, information of travel distance starting from 12:30 is acquired. Is also possible.
  • a configuration for acquiring a physical quantity a configuration for acquiring via a detector such as a temperature sensor or an acceleration sensor, a configuration for acquiring via a wired or wireless communication line, and a configuration for acquiring via a manipulation input device are conceivable. .
  • the configuration for acquiring the physical quantity includes a configuration for acquiring the physical quantity through the arithmetic processing of the internal processing device. For example, it is conceivable that information on latitude and longitude at each time is acquired via a GPS receiver at a predetermined time and the current time, and a movement amount from the predetermined time to the current time is calculated by an internal calculation process. It is also conceivable to acquire information on power consumption up to each time through a power amount monitor at a predetermined time and the current time, and calculate the amount of power consumed from the predetermined time to the current time.
  • the “physical quantity indicator driving unit” drives the physical quantity indicator for indicating the magnitude of the acquired physical quantity with the dual-purpose scale, with the scale position of the dual-use scale pointed to by the pointer at the predetermined time as the origin position of the physical quantity.
  • the pointer here refers to a pointer driven by a pointer driving unit, and corresponds to any of an hour hand, a minute hand, and a second hand.
  • the scale position (15th scale position) of the 15-minute dual scale indicated by the minute hand is used as the physical quantity origin position. If you want to show the change in physical quantity in seconds, the 30-second scale position (30th scale position) pointed to by the second hand is the physical quantity origin position, and if you want to show it in hour units, the 5 o'clock scale position pointed to by the hour hand It is also possible to set (the fifth scale position) as the physical origin position. In this case, the hands driven by the hand drive section mean the second hand and the hour hand, respectively.
  • the physical quantity indicator for example, as shown in FIG. 1, a configuration in which the light emitting elements are arranged so as to correspond to the scale positions of the dual scales of the clock face dial can be considered.
  • the light emitting element is turned on from the origin position to a predetermined scale position, or only the light emitting element at the origin position and the light emitting element at the predetermined scale position are turned on.
  • FIG. 1 a configuration in which the light emitting elements are arranged so as to correspond to the scale positions of the dual scales of the clock face dial can be considered.
  • the light emitting element is turned on from the origin position to a predetermined scale position, or only the light emitting element at the origin position and the light emitting element at the predetermined scale position are turned on.
  • an LED element, an EL element, etc. as a material of a light emitting element.
  • a “physical quantity indicator” 0301 may be configured such that a light emitting element is provided on the inside of the clock face so as to correspond to the “double scale” 0302, or on the dual scale of the clock face. A configuration in which a light emitting element is provided in the case is also possible.
  • the physical quantity indicator can be configured to display and output by a display function.
  • the dual scale when there are a plurality of physical quantities represented using the dual scale, a configuration in which a plurality of physical quantity indicators is provided to indicate each physical quantity with the dual scale is also possible.
  • the physical quantity 1 is indicated by a “physical quantity indicator A” 0401 arranged in an annular shape outside the clock face, and the physical quantity 2 is arranged in an annular shape further outside.
  • a configuration in which the size is indicated by “physical quantity indicator B” 0402 is conceivable.
  • FIG. 5 is a schematic diagram showing an example of a configuration when each functional configuration of the watch is realized as hardware. The operation of each hardware component will be described with reference to this figure.
  • the watch is composed of “CPU” 0501, “RAM” 0502, “ROM” 0503, “nonvolatile memory” 0504, “crystal oscillator” 0505, “pointer control circuit” 0506, , “Pointer driving mechanism” 0507, “light emission control circuit” 0508, “light emitter” 0509, and “communication device” 0510.
  • the configuration is connected to each other by a data communication path of “system bus” 0511 to perform transmission / reception and processing of information.
  • the light emitter is composed of a plurality of light emitting elements arranged in the vicinity of each scale position on the clock face.
  • the CPU transmits a control signal at a predetermined timing to the pointer control circuit based on the signal from the crystal oscillator.
  • the pointer control circuit that has received the control signal controls the pointer through the pointer driving mechanism.
  • the CPU acquires physical quantity information starting from a predetermined time via the communication device and stores it in the RAM. Subsequently, the CPU performs a process of setting the scale position of the dual scale indicated by the minute hand at the predetermined time as the origin position of the physical quantity. Further, the CPU performs a process of determining the number of light emitting elements to be turned on according to the acquired physical quantity. Further, the CPU outputs a control signal for turning on the light emitting elements of the number of light emitting elements based on the origin position to the light emission control circuit. The light emission control circuit that has received the control signal turns on the light emitting element to be turned on.
  • FIG. 6 is a flowchart showing the flow of processing in a timepiece having a dual scale for indicating time and physical quantity.
  • the flow of processing in the figure consists of the following steps. First, in step S0601, a pointer for pointing to the dual scale is driven according to time (pointer instruction step). Next, in step S0602, information on the physical quantity starting from a predetermined time is acquired (physical quantity acquisition step). Next, in step S0603, the physical quantity indicator for indicating the magnitude of the acquired physical quantity with the dual scale is driven using the scale position of the dual scale indicated by the pointer at the predetermined time as the physical origin position (physical quantity display step). .
  • the timepiece of the present embodiment is basically the same as the timepiece shown in the first embodiment, but, as shown in FIG. 7, the “double scale” indicated by the “minute hand” at the current time (10:23:09).
  • FIG. 8 is a diagram illustrating an example of functional blocks of the timepiece according to the present embodiment.
  • the “clock” 0800 of the present embodiment includes a “double scale” 0801, a “pointer” 0802, a “pointer drive unit” 0803, a “physical quantity acquisition unit” 0804, and a “physical quantity indicator”.
  • 0805 and a “physical quantity indicator driving unit” 0806, and the “physical quantity indicator driving unit” includes “first driving means” 0807.
  • the first driving means that is different from the first embodiment will be described.
  • the “first driving means” drives the physical quantity indicator at a ratio such that the scale position of the dual scale indicated by the pointer at the current time is the target level of the physical quantity at the current time.
  • the physical quantity indicator is for indicating the size of the acquired physical quantity with a dual scale.
  • the acquired physical quantity becomes a value that is easier to understand when compared with the target level.
  • the pointer by matching the target level of the physical quantity at the current time with the dual scale indicated by the pointer, it is possible to immediately grasp how much the physical quantity at the current time is compared with the target level by comparing the pointer with the physical quantity indicator. Is possible.
  • the target level of power consumption from 6:00 to 6:30 is 60 kWh.
  • the target level at 6:20 can be calculated to be 40 kWh.
  • the physical quantity indicator indicates the 15-minute scale position (15th scale position) of the dual scale. This makes it possible to determine that the power consumption amount at 6:20 from the position of the physical quantity indicator is 3/4 of the target power consumption amount.
  • Information on the target level of the physical quantity used in the driving means can be stored in an internal storage device in advance, or can be obtained from an external device via a wired or wireless communication line. It is also possible to receive an operation input via an operation input device or obtain it via a storage device such as a USB memory. Note that calculating the target level of the physical quantity at one time based on the target level of the physical quantity at another time is also included as an aspect of acquiring the target level.
  • the hardware configuration of the timepiece of the present embodiment is basically the same as the hardware configuration of the timepiece of the first embodiment described with reference to FIG. Hereinafter, processing that is different from the first embodiment will be described.
  • the CPU reads out the target level data of the physical quantity of each time section stored in the nonvolatile memory into the RAM. Subsequently, a process for calculating the target level of the physical quantity at the current time based on the target level data of the time section to which the current time belongs is performed. For example, when the target level of power consumption in the time segment from 6:00 to 6:30 is 60 kWh, the target level at 6:20 is calculated to be 40 kWh.
  • the CPU performs a process of calculating the ratio of the target level value at the current time to the actual physical quantity value at the current time, and stores the processing result in the RAM. Further, based on the scale position of the dual scale that is the origin position of the physical quantity, the scale position of the dual scale that the minute hand points to at the current time, and the calculated ratio, it is arranged at the scale position of the dual scale that is the origin position. Processing for determining a light emitting element to be lit on the basis of the light emitting element is performed. *
  • FIG. 9 is a flowchart showing the flow of processing in a timepiece having dual scales for indicating time and physical quantities according to this embodiment.
  • the flow of processing in the figure consists of the following steps. First, in step S0901, a pointer for pointing to the dual scale is driven according to time (pointer instruction step). Next, in step S0902, physical quantity information starting from a predetermined time is acquired (physical quantity acquisition step). Next, in step S0903, the scale position of the dual scale pointed to by the pointer at the predetermined time is set as the origin position of the physical quantity, and the scale position of the dual scale scale pointed to by the pointer at the current time becomes the target level of the physical quantity at the current time.
  • the physical quantity indicator for indicating the magnitude of the acquired physical quantity with a dual scale is driven at such a ratio (physical quantity comparison display step).
  • the timepiece according to the present embodiment makes it possible to easily grasp how much the physical quantity at the current time is relative to the target level of the physical quantity at the current time.
  • the timepiece of the present embodiment is basically the same as the timepiece of the second embodiment, but the physical quantity depends on whether or not the physical quantity indicator indicates a scale position of the dual scale that is larger than the scale position of the dual scale indicating the target level. It is possible to control the color of the indicator. With this configuration, the magnitude of the physical quantity with respect to the target level can be easily grasped by the change in the color of the physical quantity indicator.
  • FIG. 10 is a diagram illustrating an example of functional blocks of the timepiece according to the present embodiment.
  • the “clock” 1000 of the present embodiment includes a “double scale” 1001, a “pointer” 1002, a “pointer driving unit” 1003, a “physical quantity acquisition unit” 1004, and a “physical quantity indicator”.
  • the “physical quantity indicator driving unit” includes a “first driving unit” 1007, a “first determination unit” 1008, and a “first color control unit” 1009.
  • the first determination unit and the first color control unit which are different from the first and second embodiments will be described.
  • the “first determination means” determines whether or not the physical quantity indicator indicates a scale position of the dual scale that is larger than the scale position of the dual scale indicating the target level.
  • the first color control means controls the color of the physical quantity indicator according to the judgment of the first judgment means.
  • the control can be performed based on, for example, data (for example, table data) that associates the determination of the guideline reference determination unit with the color of the physical quantity indicator.
  • the hardware configuration of the timepiece of the present embodiment is basically the same as the hardware configuration of the timepiece of the first embodiment described with reference to FIG. Hereinafter, processing that is different from the first to third embodiments will be described.
  • the CPU compares the value of the target level at the current time with the value of the physical quantity, determines whether or not the physical quantity indicator shows a dual scale that is larger than the dual scale at the target level, and stores the processing result in the RAM. To do.
  • the CPU reads out the table data in which the judgment result (whether it is large or not) that can be generated by the above processing stored in the ROM and the color of the physical quantity indicator are related to the RAM, and based on the above processing result and the table data. Processing to determine the color of the physical quantity indicator is performed.
  • the CPU outputs a signal designating the color of the physical quantity indicator to the light emission control circuit.
  • the light emission control circuit that has received the signal designating the color performs processing for controlling the color of the light emitting element.
  • FIG. 11 is a flowchart showing the flow of processing in a timepiece having a dual scale for indicating time and physical quantity.
  • the flow of processing in the figure consists of the following steps. First, in step S1101, a pointer for pointing to the dual scale is driven according to the time (time instruction step). Next, in step S1102, information on the physical quantity starting from a predetermined time is acquired (physical quantity acquisition step). In step S1103, the scale position of the dual scale pointed to by the pointer at the predetermined time is set as the physical quantity origin position, and the scale position of the dual scale scale pointed to by the pointer at the current time becomes the target level of the physical quantity at the current time.
  • step S1104 it is determined whether or not the physical quantity indicator indicates a scale position of the dual scale that is larger than the scale position of the dual scale indicating the target level (physical quantity comparison determination step).
  • step S1105 the color of the physical quantity indicator is controlled according to the judgment in the physical quantity comparison judgment step (physical quantity color control step).
  • FIG. 12 is a diagram showing an overview of the timepiece of the present embodiment.
  • the “clock” of this embodiment is the physical position starting from 12:30, and the scale position (30th scale position) of the “double scale” 1202 indicated by the “minute hand” 1201 at 30 minutes. ) Is the origin position of the physical quantity, and the “predicted quantity indicator” 1203 for driving the physical quantity predicted to be acquired at 13:00 is indicated by a “double scale” 1202. .
  • FIG. 13 is a diagram illustrating an example of functional blocks of the timepiece according to the present embodiment.
  • the “clock” 1300 of this embodiment includes a “double scale” 1301, a “pointer” 1302, a “pointer driving unit” 1303, a “physical quantity acquisition unit” 1304, and a “physical quantity prediction unit”. ”1305,“ Prediction amount indicator ”1306, and“ Prediction amount indicator drive unit ”1307.
  • the physical quantity prediction unit and the prediction quantity indicator driving unit which are different from the first to third embodiments, will be described.
  • the “physical quantity prediction unit” predicts a physical quantity at a predetermined time ahead from the predetermined time based on the acquired physical quantity information.
  • the time ahead of the predetermined time is the end time of the time segment to which the current time belongs (for example, 13:00, which is the end time of the time segment from 12:30 to 13:00).
  • the present invention is not limited to this.
  • a fitting process is performed with a quadratic function. It is conceivable to predict that 9 kWh of electric power will be generated by 3:30. It is also possible to predict the physical quantity at a predetermined time ahead by performing a fitting process using a high-dimensional function by further utilizing physical quantity data from a predetermined time to the current time.
  • the “predicted quantity indicator driving unit” drives a predicted quantity indicator for indicating the magnitude of the predicted physical quantity with the dual scale, with the scale position of the dual scale indicated by the pointer at the predetermined time as the physical origin position.
  • the other specific configuration of the predicted quantity indicator is the same as that of the physical quantity indicator.
  • the hardware configuration of the timepiece of the present embodiment is basically the same as the hardware configuration of the timepiece of the first embodiment described with reference to FIG.
  • the CPU transmits a control signal at a predetermined timing to the pointer control circuit based on the signal from the crystal oscillator.
  • the pointer control circuit that has received the control signal controls the pointer through the pointer driving mechanism.
  • the CPU acquires physical quantity information starting from a predetermined time via the communication device and stores it in the RAM. Subsequently, the CPU performs a process of setting the scale position of the dual scale indicated by the minute hand at the predetermined time as the origin position of the physical quantity. Further, the CPU performs a process of fitting a change in physical quantity from a predetermined time to the current time with a function based on the acquired physical quantity data, and a process of calculating a predicted physical quantity at a predetermined time after the predetermined time. The processing result is stored in the RAM. Further, the CPU performs a process of determining the number of light emitting elements to be turned on according to the predicted physical quantity. Further, the CPU outputs a control signal for turning on the light emitting elements of the number of light emitting elements based on the origin position to the light emission control circuit. The light emission control circuit that has received the control signal turns on the light emitting element to be turned on.
  • FIG. 14 is a flowchart showing the flow of processing in a timepiece having dual scales for indicating time and physical quantities according to this embodiment.
  • the flow of processing in the figure consists of the following steps.
  • step S1401 the dual scale is indicated by a pointer according to the time (time instruction step).
  • step S1402 physical quantity information starting from a predetermined time is acquired (physical quantity acquisition step).
  • step S1403 a physical quantity at a time that is a predetermined time ahead from the predetermined time is predicted based on the acquired physical quantity information (physical quantity prediction step).
  • step S1404 the scale position of the dual scale pointed to by the pointer at the predetermined time is set as the physical position origin position, and the predicted quantity indicator for driving the predicted physical quantity with the dual scale scale is driven (predicted quantity display). Step).
  • the timepiece of the present embodiment is basically the same as the timepiece shown in the fourth embodiment, but as shown in FIG. 15, a predetermined time (30 minutes) from a predetermined time (10:00) as the starting point of the physical quantity.
  • the “scale position (30th scale position)” 1501 of the “bilateral scale” pointed to by the “minute hand” at the time of “first” is the “target level at the physical quantity (36th scale position) at the predetermined time ahead” 1502.
  • the “predicted quantity indicator” is driven at such a ratio (ratio between the dual scale and physical quantity). With this configuration, it is possible to easily grasp how much the physical quantity predicted at the previous time is relative to the target level of the physical quantity at the previous time.
  • FIG. 16 is a diagram illustrating an example of functional blocks of the timepiece according to the present embodiment.
  • the “clock” 1600 of this embodiment includes a “double scale” 1601, a “pointer” 1602, a “pointer driving unit” 1603, a “physical quantity acquisition unit” 1604, and a “physical quantity prediction unit”. 1605, a “prediction amount indicator” 1606, and a “prediction amount indicator drive unit” 1607, and the “prediction amount indicator drive unit” includes “second drive means” 1608.
  • the second drive means that is different from the first to fourth embodiments will be described.
  • the “second drive means” drives the predicted quantity indicator at a ratio such that the scale position of the dual scale indicated by the pointer at the time ahead of the predetermined time becomes the target level of the physical quantity at the time ahead of the predetermined time.
  • the predicted quantity indicator is used to indicate the predicted physical quantity size on the dual-use scale with the scale position of the dual-use scale pointed to by the pointer at the predetermined time as the physical origin position. is there.
  • the predicted physical quantity becomes a value that is easier to understand when compared with the target level of the physical quantity at the time ahead of the predetermined time.
  • the previous time is compared with the scale position of the dual scale and the predicted quantity indicator. It is possible to immediately grasp how much the predicted physical quantity at is compared with the target level.
  • the target level of power consumption from 6:00 to 6:30 is 60 kWh.
  • the value of the power consumption amount from 6:00 to 6:15 is 20 kWh
  • fitting by a linear function is performed, and it is predicted that the power amount of 40 kWh is consumed at 6:30.
  • the prediction amount indicator is the scale position of the dual scale indicating 40 kWh.
  • the scale position of the 20th dual scale is indicated by the lighting range. As a result, it is possible to determine that the 3:1 power consumption predicted at 6:15 from the position of the predicted amount indicator is 2/3 of the target power consumption.
  • the information on the target level of the physical quantity for a predetermined time ahead used in the second drive means can be obtained from an external device via a wired or wireless communication line, or can be operated via an operation input device. It is also possible to receive an input or obtain from a storage device such as a USB memory. In addition, calculating the target level of the physical quantity at one time based on the target level of the physical quantity at another time is also included as an aspect of acquiring the target level.
  • the hardware configuration of the timepiece of the present embodiment is basically the same as the hardware configuration of the timepiece of the first embodiment described with reference to FIG. Hereinafter, processing that is different from the fourth embodiment will be described.
  • the CPU reads data of the target level of the physical quantity at the end time of each time section stored in the nonvolatile memory into the RAM. Further, the CPU calculates a physical quantity that is predicted to be acquired at the end time of the time segment to which the current time belongs. Further, the CPU performs a process of calculating the ratio of the target level value at the end time to the predicted physical quantity value at the end time, and stores the processing result in the RAM. Further, based on the scale position of the dual scale that is the origin position of the physical quantity, the scale position of the dual scale that the minute hand points to at the end time, and the calculated ratio, the scale position of the dual scale that is the origin position is arranged. Processing for determining a light emitting element to be lit on the basis of the light emitting element is performed. *
  • FIG. 17 is a flowchart showing the flow of processing in a timepiece having dual scales for indicating time and physical quantities according to this embodiment.
  • the flow of processing in the figure consists of the following steps.
  • step S1701 the dual scale is indicated by a pointer according to time (time instruction step).
  • step S1702 physical quantity information starting from a predetermined time is acquired (physical quantity acquisition step).
  • step S1703 a physical quantity at a time that is a predetermined time ahead from the predetermined time is predicted based on the acquired physical quantity information (physical quantity prediction step).
  • step S1704 the scale position of the dual scale pointed to by the pointer at the predetermined time is set as the physical origin position, and the scale position of the dual scale pointed to by the pointer at the predetermined time ahead is the predetermined time ahead.
  • a prediction quantity indicator for indicating the magnitude of the predicted physical quantity with a dual scale is driven at a ratio so as to reach the target level of the physical quantity at the time (prediction quantity comparison display step).
  • the timepiece according to the present embodiment makes it possible to easily grasp how much the physical quantity predicted at the previous time is relative to the target level of the physical quantity at the previous time. .
  • the timepiece of the present embodiment is basically the same as the timepiece of the fifth embodiment, but depending on whether or not the prediction amount indicator indicates a scale position of the dual scale that is larger than the scale position of the dual scale that indicates the target level. It is possible to control the color of the prediction quantity indicator. With this configuration, it is possible to easily grasp the magnitude of the predicted physical quantity with respect to the target level by changing the color of the predicted quantity indicator.
  • FIG. 18 is a diagram illustrating an example of functional blocks of the timepiece according to the present embodiment.
  • the “clock” 1800 of this embodiment includes a “double scale” 1801, a “pointer” 1802, a “pointer drive unit” 1803, a “physical quantity acquisition unit” 1804, and a “physical quantity prediction unit”.
  • 1805, “Predicted quantity indicator” 1806, and “Predicted quantity indicator driving unit” 1807, and the “Predicted quantity indicator driving unit” includes “Second driving unit” 1808 and “Second determining unit” 1809.
  • second color control means 1810.
  • the second determination unit and the second color control unit which are different from the first to fifth embodiments will be described.
  • the “second determination means” determines whether or not the prediction amount indicator indicates a scale position of the dual scale that is larger than the scale position of the dual scale at the target level.
  • the “predicted quantity indicator color control means” controls the color of the predicted quantity indicator according to the judgment of the second judging means.
  • the control can be performed based on data (for example, table data) in which the classification of the judgment that can be output from the second judgment unit and the color of the prediction amount indicator are associated with each other.
  • the hardware configuration of the timepiece of the present embodiment is basically the same as the hardware configuration of the timepiece of the first embodiment described with reference to FIG. Hereinafter, processing that is different from the fourth and fifth embodiments will be described.
  • the CPU compares the value of the target level and the value of the predicted physical quantity at a predetermined time ahead of the predetermined time, and indicates whether the scale position of the dual-use scale is larger than the scale position of the dual-use scale at which the predicted quantity indicator is the target level. Processing to determine whether or not is performed, and the processing result is stored in the RAM.
  • the CPU reads table data in which the determination result (large or not) that can be generated by the above processing stored in the ROM is associated with the color of the prediction amount indicator to the RAM, and based on the above processing result and the table data. To determine the color of the prediction amount indicator.
  • the CPU outputs a signal for designating the color of the predicted quantity indicator to the light emission control circuit.
  • the light emission control circuit that has received the signal designating the color performs processing for controlling the color of the light emitting element.
  • FIG. 19 is a flowchart showing a flow of processing in a timepiece having dual scales for indicating time and physical quantities according to the present embodiment.
  • the flow of processing in the figure consists of the following steps. First, in step S1901, the scale for both is indicated by a pointer according to the time (time indicating step). Next, in step S1902, physical quantity information starting from a predetermined time is acquired (physical quantity acquisition step). In step S1903, a physical quantity at a time ahead of the predetermined time is predicted based on the acquired physical quantity information (physical quantity prediction step).
  • step S1904 the scale position of the dual scale pointed to by the pointer at the predetermined time is set as the physical origin position, and the scale position of the dual scale pointed to by the pointer at the predetermined time ahead is the predetermined time ahead.
  • a prediction quantity indicator for displaying the magnitude of the predicted physical quantity with a dual scale is driven at a ratio so as to reach the target level of the physical quantity at the time (prediction quantity comparison display step).
  • step S1905 it is determined whether or not the predicted amount indicator indicates a scale position of the dual scale that is larger than the scale position of the dual scale that is the target level (predicted amount comparison determination step).
  • step S1906 the color of the prediction amount indicator is controlled according to the determination in the prediction amount comparison determination step (prediction amount color control step).
  • the physical quantity acquisition unit acquires the amount of power consumed from the predetermined time to the current time.
  • FIG. 20 is a diagram illustrating an example of functional blocks of the timepiece according to the present embodiment.
  • the “clock” 2000 of this embodiment includes a “double scale” 2001, a “pointer” 2002, a “pointer drive unit” 2003, a “physical quantity acquisition unit” 2004, and a “physical quantity indicator”. 2005 and a “physical quantity indicator drive unit” 2006, and the “physical quantity acquisition unit” includes “electric power acquisition unit” 2007.
  • a configuration based on the configuration of the fourth embodiment is also possible.
  • the electric energy acquisition means which is different from Embodiments 1 to 6 will be described.
  • the “electric energy acquisition means” acquires the electric energy consumed from the predetermined time to the current time.
  • the acquired power consumption information can be temporarily stored in the volatile memory, or can be stored in the nonvolatile memory for a long time.
  • the power amount acquisition means can acquire the power consumption amount in a specific time segment.
  • the timepiece according to the present embodiment may be configured to have a consumption target level acquisition unit that acquires a target level related to the amount of power consumed from the predetermined time to the current time.
  • the target level can be acquired via a wired or wireless communication line, or can be acquired from an internal storage device.
  • a configuration in which the target level is acquired for each specific time segment is also conceivable. For example, it is conceivable to acquire the target level of power consumption from 3:00 to 3:30 and the target level of power consumption from 3:30 to 4:00.
  • the target level can be determined based on past electricity usage history. For example, it is conceivable that the minimum value is calculated for each time section with reference to the power consumption of each time section in the past predetermined period (for example, the past two weeks) and set as the target level of each time section. It is also conceivable that an average value is calculated for each time segment in the past predetermined period and set as a target level for each time segment. A configuration in which a target level is set for each time segment of each day of the week is also conceivable. In this case, by referring to the power consumption of each time segment for each day of the week in the past predetermined period (for example, the past month), the minimum value (average value is also possible) is calculated for each time segment of each day of the week. A configuration may be considered in which the target level is set for each time segment.
  • the hardware configuration of the timepiece of the present embodiment is basically the same as the hardware configuration of the timepiece of the first embodiment described with reference to FIG. Hereinafter, processing that is different from the first to seventh embodiments will be described.
  • the CPU acquires the power consumption up to a predetermined time and the power consumption up to the current time via the communication device, and stores them in the RAM. Subsequently, the CPU performs processing for calculating the amount of power consumed from the predetermined time to the current time, and stores it in the RAM. Subsequently, the CPU performs a process of setting the scale position of the dual scale indicated by the minute hand at the predetermined time as the origin position of the electric energy consumed from the predetermined time to the current time. Further, the CPU performs a process of determining the number of light emitting elements to be turned on according to the amount of power consumed from the predetermined time to the current time. Further, the CPU outputs a control signal for turning on the light emitting elements of the number of light emitting elements based on the origin position to the light emission control circuit. The light emission control circuit that has received the control signal turns on the light emitting element to be turned on.
  • FIG. 21 is a flowchart showing a flow of processing in a timepiece having a dual scale for indicating time and physical quantity.
  • the flow of processing in the figure consists of the following steps. First, in step S2101, a pointer for pointing to the dual scale is driven according to time (pointer instruction step). In step S2102, the amount of power consumed from the predetermined time to the current time is acquired (power consumption acquisition step). Next, in step S2103, the electric power consumed from the predetermined time to the current time is defined as the origin position of the electric energy consumed from the predetermined time to the current time at the scale position of the dual scale pointed by the pointer at the predetermined time.
  • the physical quantity indicator for indicating the magnitude of the quantity with the dual scale is driven (power consumption display step). A process flow based on the process flow of the fourth embodiment is also possible.
  • the watch of this embodiment is basically the same as the watch of Embodiments 1 and 4, but acquires external information and controls the color of the pointer based on the pointer color information that associates the external information with the color of the pointer. It has the composition to do. With this configuration, external information can be represented by the color of the pointer.
  • FIG. 22 is a diagram illustrating an example of functional blocks of the timepiece of the present embodiment.
  • the “clock” 2200 of this embodiment includes a “double scale” 2201, a “pointer” 2202, a “pointer driving unit” 2203, a “physical quantity acquisition unit” 2204, and a “physical quantity indicator”. 2205, a “physical quantity indicator driving unit” 2206, an “external information acquisition unit” 2207, and a “pointer color information holding unit” 2208.
  • the “pointer driving unit” includes “pointer color control means” 2209. .
  • a configuration based on the configuration of the fourth embodiment is also possible.
  • an external information acquisition unit, a pointer color information holding unit, and a pointer color control unit which are different from the first to seventh embodiments, will be described.
  • “External information acquisition unit” acquires external information.
  • external information includes, for example, weather information such as temperature, humidity, precipitation probability, amount of solar radiation, wind speed, barometric pressure, and wave height, and information on electricity such as power generation, power sales, power purchases, and power consumption.
  • weather information such as temperature, humidity, precipitation probability, amount of solar radiation, wind speed, barometric pressure, and wave height
  • information on electricity such as power generation, power sales, power purchases, and power consumption.
  • the external information is information different from the physical quantity acquired by the physical quantity acquisition unit.
  • the external information acquisition unit stores information other than the power consumption amount (for example, information such as the power generation amount). get.
  • External information can be acquired via a wired or wireless communication line, can be received via an operation input device, or can be acquired from an internal storage device.
  • acquiring external information includes generating new information by processing the existing information by an internal processing device.
  • the type of external information to be acquired need not be one, and a configuration in which multiple types of external information are acquired is also possible. For example, it is also conceivable to acquire information on the operating status of electrical appliances in accordance with weather information.
  • the pointer color information holding unit holds pointer color information in which the external information is associated with the color of the pointer. For example, if the probability of precipitation is less than 20%, the color of the pointer is blue, if the probability of precipitation is in the range of 20-60%, the color of the pointer is yellow, and if the probability of precipitation is 60% or more, the pointer It is conceivable to perform association such as making the color of the red color by the pointer color information.
  • the pointer color when electricity is generated and sold, the pointer color is blue. When electricity is generated and purchased, the pointer color is yellow and electricity is generated. If not, it is possible to perform association such as setting the pointer color to red using the pointer color information. When acquiring a plurality of types of external information, it is conceivable to hold pointer color correspondence information corresponding to each external information.
  • the pointer color control means controls the color of the pointer based on the external information and the pointer color information.
  • the hardware configuration of the timepiece of the present embodiment is basically the same as the hardware configuration of the timepiece of the first embodiment described with reference to FIG. Hereinafter, processing that is different from the first embodiment will be described.
  • the CPU acquires external information through a communication device and stores it in RAM. Subsequently, the CPU reads out the pointer color information in which the external information stored in the ROM is associated with the color of the pointer, and stores it in the RAM. Further, the CPU performs a process of determining the color of the pointer based on the acquired external information and the pointer color information, and stores the processing result in the RAM. Further, the CPU outputs a signal for designating the determined pointer color to the pointer control circuit. The pointer control circuit that has received the signal for specifying the color of the pointer controls the pointer to the specified color.
  • FIG. 23 is a flowchart showing the flow of processing in a timepiece having dual scales for indicating time and physical quantity.
  • the flow of processing in the figure consists of the following steps. First, in step S2301, a pointer for pointing to the dual scale is driven according to time (pointer instruction step). Next, in step S2302, information on the physical quantity starting from a predetermined time is acquired (physical quantity acquisition step). Next, in step S2303, the physical quantity indicator for indicating the magnitude of the acquired physical quantity with the dual scale is driven with the scale position of the dual scale indicated by the pointer at the predetermined time as the physical origin position (physical quantity display step). . In step S2304, external information is acquired (external information acquisition step). Next, in step S2305, the pointer color is controlled based on pointer color information that associates the external information, the external information, and the pointer color (pointer color control step). A process flow based on the process flow of the fourth embodiment is also possible.
  • external information can be represented by the color of the hands by having the configuration of the timepiece of the present embodiment.
  • the present embodiment is a summary of the contents described in the first to eighth embodiments so that the invention described in claims 10 to 12, 15, and 16 can be easily understood.
  • the contents added in this embodiment can be applied to the corresponding configurations described in the first to eighth embodiments.
  • FIG. 24 is a diagram illustrating an example of functional blocks of the timepiece of the present embodiment.
  • the “clock” 2400 of the present embodiment includes a “contrast scale” 2401, a “pointer” 2402, a “contrast pointer drive unit” 2403, a “contrast physical quantity acquisition unit” 2404, and “ A “contrast physical quantity indicator” 2405 and a “contrast physical quantity indicator driving unit” 2406 are provided.
  • the “comparative scale” is a scale for indicating the physical quantity with respect to the time and the target level described later.
  • the contrast scales correspond to the scales described in the first and second embodiments. It should be noted that the contrast scale is mainly drawn on the clock face, but when the clock face has a display function, the contrast scale is displayed and output via the display. Also good.
  • The“ contrast pointer driving unit ” has a function of driving a pointer for indicating the contrast scale according to time.
  • the contrast pointer driving unit corresponds to the pointer driving unit described in the first and second embodiments.
  • a control signal is transmitted to the pointer control circuit at a predetermined timing based on a signal from a crystal oscillator, and the control signal is A method is conceivable in which the received pointer control circuit controls the pointer via the pointer driving mechanism.
  • time information can be obtained by counting the signal from the crystal oscillator with a timer in the processing arithmetic unit, but the present invention is not limited to this.
  • time information may be acquired by receiving a radio signal of a predetermined frequency with a communication unit like a general radio timepiece. Further, time information may be received from an external device via an Internet line or a wired / wireless LAN. Information on the current time is used in a contrast physical quantity acquisition unit, a contrast physical quantity indicator, and the like.
  • the “target level acquisition unit” has a function of acquiring a target level of a physical quantity in a time segment in a predetermined time unit.
  • the information on the target level of the physical quantity can be stored in advance in an internal storage device, or acquired from an external device via a wired or wireless communication line It is also possible to accept an operation input via an operation input device, or obtain it via a storage device such as a USB memory.
  • the target level acquisition unit has means (input storage means) that receives and stores an input of a target level of a physical quantity in a time segment in a predetermined time unit from a communication line or an operation input device.
  • the target level acquisition unit acquires a start time and an end time (or a time interval from the start time) at which acquisition of physical quantities is started via an operation input device or a communication device.
  • the target level value of the time segment determined by the start time and the end time is acquired via the operation input device or the communication device. Note that the value of the target level may be calculated based on the minimum value, maximum value, average value, etc. of the past physical quantities.
  • FIG. 25 is a diagram illustrating target level information acquired by the target level acquisition unit.
  • the target level information is a table in which each time segment in units of 30 minutes is associated with the target level of that time segment.
  • the contrast physical quantity acquisition unit and contrast physical quantity indicator drive unit can determine the start time and end time of each time segment from the target level information, and can acquire the target level value of the physical quantity for each time segment It is.
  • any time interval such as 15 minutes or 20 minutes can be specified as the time unit of each time segment. Note that the number of time segments in the predetermined time unit is not necessarily plural, and may be one.
  • the “contrast physical quantity acquisition unit” has a function of acquiring physical quantities from the start time of the time section to which the current time belongs to the current time at predetermined intervals until the end time of the time section to which the current time belongs.
  • the contrast physical quantity acquisition unit corresponds to the physical quantity acquisition unit described in the first and second embodiments.
  • the contrast physical quantity acquisition unit may acquire the power consumption from the start time of the time section to which the current time belongs to the current time at predetermined intervals until the end time to which the current time belongs. It is done.
  • the comparison physical quantity acquisition unit may include a unit (power amount acquisition unit) that acquires a power consumption amount, a power generation amount, a power sale amount, and a power purchase amount.
  • the physical quantity acquired by the contrasting physical quantity acquisition unit is sufficient if it is an amount starting from the start time of each time segment, the distance traveled from the start time of the time segment, the distance swam, the number of steps, the number of push-ups, the squat It may be the number of times.
  • the contrast physical quantity acquisition unit may acquire physical quantity data directly from the detector, or may be wired or wireless from an external device that acquires physical quantity data from the detector. It may be acquired indirectly via the communication means, or may be acquired via the operation input device.
  • the physical quantity can be the amount of water or gas used or the amount of power consumption minus the amount of power generation.
  • the “contrast physical quantity acquisition unit” calculates the amount obtained by subtracting the amount of power generation from the amount of water or gas used or the power consumption from the start time of the time division to which the current time belongs to the current time. It is possible to acquire at predetermined intervals until the end time.
  • the physical quantity may be a value of a charge calculated by multiplying a numerical value such as power consumption, power generation, power sales, power purchase, water or gas usage, etc.
  • the unit price information can be stored in the internal storage device in advance as a table in association with the time zone information, or can be obtained from an external device via a wired or wireless communication line. In addition, it is possible to accept an operation input via an operation input device or obtain it via a storage device such as a USB memory.
  • Information on the time interval for determining the start time and end time for acquiring the physical quantity and information on the predetermined interval for acquiring the physical quantity can be stored in advance in an internal storage device, or wired or wireless communication It is possible to acquire from an external device via a line, accept operation input via an operation input device, or acquire via a storage device such as a USB memory.
  • a physical quantity from the start time of the time segment to which the current time belongs to the current time can be acquired at predetermined intervals until the end time of the time segment to which the current time belongs. It becomes possible.
  • the “contrast physical quantity indicator” is used to indicate the magnitude of the physical quantity acquired by the contrast physical quantity acquisition unit with respect to the target level at the current time on a contrast scale.
  • the contrast physical quantity indicator corresponds to the physical quantity indicator described in the first and second embodiments. As described in the second embodiment, the acquired physical quantity is easier to understand when compared with the target level. By comparing the target level of the physical quantity at the current time with the dual scale indicated by the pointer, the pointer and the physical quantity indicator are compared. It is possible to immediately grasp how much the physical quantity at the current time is compared with the target level.
  • the color of the contrast physical quantity indicator can be controlled in accordance with the magnitude of the physical quantity with respect to the target level. For example, when the target level is 0 to 60%, the contrasting physical quantity indicator is blue, when it is 60 to 80% with respect to the target level, it is green, and when it is 80 to 100% with respect to the target level Is orange, and if it is 100% to the target level, it may be red.
  • the control is performed based on a table in which the physical quantity magnitude with respect to the target level is associated with the color of the contrast physical quantity indicator.
  • the contrast physical quantity indicator is flashed in red.
  • the sound output device in accordance with the physical quantity with respect to the target level.
  • This can be realized by holding table data in which the ratio of the physical quantity to the target level is associated with the audio data to be output from the audio output device. For example, when the magnitude of the physical quantity with respect to the target level is 0 to 80%, an alarm is not output, and when it is 80 to 100%, a voice indicating that the target level is likely to be exceeded is output. If it is% or more, a sound indicating that the level is above the target level is output. Further, the tempo of the sound may be shortened or the volume may be increased as the physical quantity increases with respect to the target level.
  • the “contrast physical quantity indicator driving unit” uses the scale position of the contrast scale indicated by the pointer at the start time of the time section to which the current time belongs as the origin position of the physical quantity with respect to the target level, and points to the pointer at the current time. It has a function of driving the contrast physical quantity indicator with the scale position of the contrast scale as the scale position of the target level of the physical quantity at the current time.
  • the contrast physical quantity indicator driving unit corresponds to the physical quantity indicator driving unit described in the first and second embodiments. Specifically, as described in the second embodiment, the contrast physical quantity indicator drive unit determines the origin position of the physical quantity, the scale position of the contrast scale indicated by the pointer at the current time, and the ratio between the physical quantity and the target level at the current time. Based on this, the physical quantity indicator is driven.
  • the “contrast physical quantity indicator” described above is used as the light emitting element disposed so as to correspond to each scale position of the contrast scale. It is also possible for the “light emitting element” to light up from the origin position to the scale position of the magnitude of the physical quantity with respect to the target level at the current time.
  • the “contrast physical quantity indicator driving unit” is changed from “scale position of physical quantity magnitude (2602) relative to target level (2601) at current time” 2603 to “time division to which current time belongs.
  • the “light emitting element” 2605 may be lit up to “the scale position of the contrast scale indicated by the pointer” at the end time of “2604”.
  • the hardware configuration of the timepiece of the present embodiment is basically the same as the hardware configuration of the timepiece of the first embodiment described with reference to FIG.
  • the CPU transmits a control signal at a predetermined timing to the pointer control circuit based on the signal from the crystal oscillator.
  • the pointer control circuit that has received the control signal controls the pointer through the pointer driving mechanism.
  • the CPU periodically receives the radio clock information via the communicator (for example, six times a day), appropriately corrects the time information held in the RAM, and adjusts the position of the hands. While the radio clock information is not received, the CPU updates the time information using a timer.
  • the CPU reads out data of the target level of power consumption associated with each time segment of 20 minutes stored in the nonvolatile memory to the RAM.
  • the CPU performs a process of calculating a target level of power consumption at the current time based on target level data of the time section to which the current time belongs. Specifically, when the target level of power consumption in the time segment from 6:00 to 6:20 is 40 kWh, the target level at 6:10 is calculated to be 20 kWh.
  • the CPU receives the power consumption from the start time of the time section to which the current time belongs to the current time from an external device via a communication device.
  • the reception process is performed every other minute for the first 10 minutes and every 30 seconds for the second 10 minutes.
  • the CPU performs a process of calculating the ratio of the power consumption value from the start time to the current time and the target level value at the current time, and stores the processing result in the RAM.
  • the CPU sets the scale position of the contrast scale indicated by the minute hand at the start time of the time section to which the current time belongs as the origin position of the amount of power consumption with respect to the target level, and the contrast scale indicated by the minute hand at the current time. Is set as the scale position of the target level of power consumption at the current time.
  • the scale position (0 minute position) of the contrast scale indicated by the minute hand at 6:00 is set as the origin position of the amount of power consumption with respect to the target level, and the current position of the minute hand at 6:10 is set.
  • a process of setting the scale position of the contrast scale to be pointed (position of 10 minutes) as the scale position of the target level of the current power consumption at 6:10 is performed.
  • the CPU performs a process of determining the number of light emitting elements to be lit based on the origin position and the scale position of the target level according to the amount of power consumption with respect to the target level at the current time. Specifically, when the power consumption from 6:00 to 6:10 is 8 kWh, it is determined that the number of light emitting elements to be lit is eight. Further, the CPU outputs a control signal for lighting the light emitting elements of the number of light emitting elements from the origin position to the light emission control circuit. The light emission control circuit that has received the control signal turns on the light emitting element to be turned on.
  • FIG. 27 shows a flow of processing in a timepiece that includes a contrast scale for indicating the magnitude of a physical quantity with respect to a time and a target level, which will be described later, and drives a pointer for indicating the contrast scale according to the time according to the present embodiment.
  • the flow of processing in the figure consists of the following steps. First, in step S2701, the target level of the physical quantity of each time segment in a predetermined time unit is acquired (target level acquisition step). Next, in step S2702, the physical quantity from the start time of the time section to which the current time belongs to the current time is acquired at predetermined intervals until the end time of the time section to which the current time belongs (contrast physical quantity acquisition step).
  • step S2703 at the start time of the time section to which the current time belongs, the scale position of the contrast scale indicated by the pointer is set as the origin position of the physical quantity with respect to the target level, and the contrast scale indicated by the pointer at the current time.
  • a contrast physical quantity indicator is driven to indicate the magnitude of the acquired physical quantity relative to the target level at the current time with a contrast scale, with the position of the scale as the scale position of the target level of the physical quantity at the current time (contrast physical quantity driving step).
  • FIG. 28 is a diagram illustrating an example of functional blocks of the timepiece according to the present embodiment.
  • the “clock” 2800 of this embodiment includes a “comparative scale” 2801, a “pointer” 2802, a “contrast pointer drive unit” 2803, a “contrast physical quantity acquisition unit” 2804, “ A “contrast physical quantity prediction unit” 2805, a “contrast prediction quantity indicator” 2806, and a “contrast prediction quantity indicator drive unit” 2807 are included.
  • the “contrast physical quantity prediction unit”, the “contrast prediction quantity indicator”, and the “contrast prediction quantity indicator driving unit” that are not described in the ninth embodiment will be described.
  • the “contrast physical quantity prediction unit” has a function of predicting the physical quantity at the end time of the time section to which the current time belongs based on the physical quantity acquired by the comparison physical quantity acquisition unit.
  • the contrast physical quantity prediction unit corresponds to the physical quantity prediction unit described in the fourth embodiment.
  • the physical quantity data from the start time to the current time of the time section to which the current time belongs can be fitted with a function to predict the physical quantity at the end time. It is. For example, when 5 kWh of electric power is generated from 3:00 to 3:15, a fitting process using a linear function is performed and 10 kWh of electric power is predicted to be generated by 3:30. Can be considered.
  • the unit time value need not be a fixed value, and may be changed to a smaller value as the end time of the time segment approaches.
  • the unit time is 5 minutes from the start time of the time division to 1/3
  • the unit time is 3 minutes from 1/3 to 2/3
  • the value of the unit time is reduced as the end time of the time segment approaches, the physical quantity at the end time can be predicted with high accuracy while balancing with the processing load.
  • the “contrast prediction quantity indicator” is used to indicate the magnitude of the physical level predicted by the contrast physical quantity prediction unit with respect to the target level at the end time of the time segment to which the current time belongs, using a contrast scale.
  • the contrast prediction amount indicator corresponds to the prediction amount indicator described in the fourth and fifth embodiments.
  • the predicted physical quantity is easier to understand when compared with the target level at the end time, and the target level of the physical quantity at the end time corresponds to the scale position of the contrast scale indicated by the pointer at the end time. It becomes possible to immediately grasp how much the predicted physical quantity at the end time is compared with the target level in comparison with the scale position of the contrast scale and the contrast predicted quantity indicator.
  • the “contrast prediction amount indicator driving unit” uses the scale position of the contrast scale indicated by the pointer at the start time of the time section to which the current time belongs as the origin position of the physical quantity with respect to the target level, and the time to which the current time belongs It has a function of driving the contrast prediction quantity indicator with the scale position of the contrast scale indicated by the pointer at the end time of the section as the scale position of the target level of the physical quantity at the end time of the time section to which the current time belongs.
  • the contrast prediction amount indicator driving unit corresponds to the prediction amount indicator driving unit described in the fourth and fifth embodiments.
  • the contrast prediction amount indicator driving unit includes the physical position of the physical quantity, the scale position of the contrast scale indicated by the pointer at the end time, the predicted physical quantity and the target level at the end time. Based on the ratio, the contrast prediction amount indicator is driven.
  • the above “contrast prediction amount indicator” as a light emitting element arranged so as to correspond to each scale position of the contrast scale, the above “contrast prediction amount indicator drive unit” includes a time segment to which the current time belongs from the origin position. It is also possible to have a configuration in which the light emitting element is lit up to a scale position with a magnitude corresponding to the target level of the physical quantity predicted at the end time. This content is described as a description of the prediction amount indicator and the prediction amount indicator driving unit in the fifth embodiment and FIG.
  • contrast physical quantity indicator described in the ninth embodiment and the contrast physical quantity indicator driving unit are further provided, and as shown in FIG. 29, “the magnitude of the physical quantity with respect to the target level at the current time” 2901 and “the target at the end time”.
  • a configuration in which “the magnitude of the predicted physical quantity with respect to the level” 2902 is simultaneously indicated by a contrast scale is also possible.
  • the “physical quantity relative to the target level at the current time” 2901 indicated by the contrast physical quantity indicator “the range of the contrast scale” 2901 and the predicted physical quantity relative to the target level at the end time are indicated by the contrast predicted quantity indicator.
  • “Comparison scale range” indicating 2902 is partially overlapped, so the overlapping range (physical quantity relative to the target level at the current time) and the display method (color, lighting / flashing) of other ranges , Brightness, pattern, etc.).
  • the contrast prediction amount indicator driving unit displays “the scale position of the contrast scale indicated by the pointer at the end time of the time section to which the current time belongs” 3001 at the end time.
  • the origin position of the magnitude of the predicted physical quantity with respect to the target level is set, and “the scale position of the contrast scale indicated by the pointer at the time further advanced by the length of the same time section from the end time of the time section to which the current time belongs” 3002 ends.
  • a configuration in which the contrast predicted quantity indicator is driven may be considered.
  • the contrast physical quantity indicator and the contrast prediction quantity indicator are displayed in different ways by different display methods (color, lighting / flashing, brightness, pattern, etc.), even if they protrude from each other. Is possible.
  • the hardware configuration of the timepiece of the present embodiment is basically the same as the hardware configuration of the timepiece of the first embodiment described with reference to FIG.
  • the CPU transmits a control signal at a predetermined timing to the pointer control circuit based on the signal from the crystal oscillator.
  • the pointer control circuit that has received the control signal controls the pointer through the pointer driving mechanism.
  • the CPU periodically receives the radio clock information via the communicator (for example, six times a day), appropriately corrects the time information held in the RAM, and adjusts the position of the hands. While the radio clock information is not received, the time information is updated using the CPU timer.
  • the CPU reads out the data of the target level of the power generation amount associated with each time segment in units of 3 hours stored in the nonvolatile memory into the RAM.
  • the CPU acquires the value of the target level of power consumption at the end time of the time section to which the current time belongs from the above data. Specifically, when the target level of the power generation amount in the time segment from 12:00 to 15:00 to which the current time (13:10) belongs is 60 kWh, the value of 60 kWh is acquired.
  • the CPU receives the power generation amount from the start time of the time section to which the current time belongs to the current time from an external device via a communication device.
  • the reception process is performed every 5 minutes for the first half hour and every two minutes for the last half hour.
  • the CPU performs a process of calculating the predicted power generation amount from the start time to the end time based on the acquired power generation amount data, and stores the processing result in the RAM.
  • the CPU performs a process of calculating a ratio between the calculated predicted power generation value and the target level value at the end time, and stores the processing result in the RAM.
  • the CPU sets the scale position of the contrast scale indicated by the hour hand at the start time of the time section to which the current time belongs as the origin position of the predicted power generation amount with respect to the target level, and the contrast scale indicated by the hour hand at the end time. Is set as the scale position of the target level of the predicted power generation amount. Specifically, the scale position (12 o'clock position) of the contrast scale indicated by the hour hand at 12:00 is set as the origin position of the predicted power generation amount with respect to the target level, and the end time is 15:00. , The scale position of the contrast scale indicated by the hour hand (position at 15 o'clock) is set as the scale position of the target level of the predicted power generation amount at the end time.
  • the CPU performs a process of determining the number of light emitting elements to be lit based on the origin position and the scale position of the target level according to the calculated predicted power generation amount. Specifically, when the predicted power generation amount from 12:00 as the start time to 15:00 as the end time is 120 kWh, the number of light emitting elements to be lit is 30 (15 ⁇ 120/60). Determine that there is. Further, the CPU outputs a control signal for lighting the light emitting elements of the number of light emitting elements from the origin position to the light emission control circuit. The light emission control circuit that has received the control signal turns on the light emitting element to be turned on.
  • FIG. 31 shows a flow of processing in a timepiece that includes a contrast scale for indicating the magnitude of a physical quantity with respect to a time and a target level described later according to the present embodiment, and drives a pointer for pointing the contrast scale according to the time. It is a flowchart.
  • the flow of processing in the figure consists of the following steps. First, in step S3101, the target level of the physical quantity for each time segment in a predetermined time unit is acquired (target level acquisition step). Next, in step S3102, the physical quantity from the start time of the time section to which the current time belongs to the current time is acquired at predetermined intervals until the end time of the time section to which the current time belongs (contrast physical quantity acquisition step).
  • step S3103 the physical quantity at the end time of the time segment to which the current time belongs is predicted based on the acquired physical quantity (contrast physical quantity prediction step).
  • step S3104 at the start time of the time section to which the current time belongs, the scale position of the contrast scale indicated by the pointer is set as the origin position of the physical quantity with respect to the target level, and the end time of the time section to which the current time belongs.
  • the scale position of the contrast scale indicated by the pointer is the scale position of the target level of the physical quantity at the end time of the time section to which the current time belongs, and the magnitude relative to the target level at the end time of the time section to which the current time of the predicted physical quantity belongs. Is driven by a contrast prediction amount indicator for indicating the contrast on the contrast scale (contrast prediction amount driving step).
  • 1st color control means 1305 ... Physical quantity prediction part, 1306 ... Prediction quantity indicator, 1307 ... Prediction quantity indicator drive part, 1608 ... 2nd drive means, 1808 ... 2nd judgment means, 1809 ... second color control means, 2007 ... electric power acquisition hand 2207 ... External information acquisition unit, 2208 ... Guide color information holding unit, 2209 ... Guide color control means, 2401 ... Comparison scale, 2402 ... Guide, 2403 ... Contrast guide drive unit, 2404 ... Contrast physical quantity acquisition unit, 2405 ... Contrast Physical quantity indicator, 2406 ... Contrast physical quantity indicator driving unit, 2806 ... Contrast prediction quantity indicator, 2807 ... Contrast prediction quantity indicator driving unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)
  • Measurement Of Unknown Time Intervals (AREA)

Abstract

【課題】従来の時計においては、時計が示す時刻を何気なく見た場合において、そこに付随的に示されている物理量がどの時刻を起点としたものであり、また現在時刻においてどのくらいの大きさになっているかを簡易に把握することができなかった。 【解決手段】以上の課題を解決するために、時刻と後記する物理量を示すための両用目盛と、時刻に応じて両用目盛を指すための指針を駆動する指針駆動部と、所定時刻を起点とする物理量の情報を取得する物理量取得部と、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、取得した物理量の大きさを両用目盛にて示すための物理量インディケータを駆動する物理量インディケータ駆動部と、を有する時計などを提案する。

Description

時刻と物理量の両方を示すための目盛を備えた時計
 本発明は、時刻と物理量の両方を示す時計に関する。
 従来から、置き時計や腕時計の種類に関係なく、時刻の情報に加えて物理量を表示することが可能な時計が知られている。
 例えば、特許文献1においては、一定期間に達成したい目標に対する現在の達成度を数値的に表示可能なデジタル形式の目標表示時計が開示されている。また、特許文献2においては、特定の目標日まであと何日あるのかを数値的に表示可能なアナログ形式のカウントダウン時計が開示されている。
特開2009-85935 特開平8-226982
 しかしながら、従来の時計においては、時計が示す時刻を何気なく見た場合において、そこに付随的に示されている物理量がどの時刻を起点としたものか、また現在時刻においてどのくらいの大きさになっているかなどを簡易に把握することができなかった。このため、特に子供などはその物理量について関心を持ちにくく、物理量の情報をうまく活用できないケースが多かった。
 以上の課題を解決するために、時刻と後記する物理量を示すための両用目盛と、時刻に応じて両用目盛を指すための指針を駆動する指針駆動部と、所定時刻を起点とする物理量の情報を取得する物理量取得部と、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、取得した物理量の大きさを両用目盛にて示すための物理量インディケータを駆動する物理量インディケータ駆動部と、を有する時計を提案する。
また、時刻と後記する物理量を示すための両用目盛と、時刻に応じて両用目盛を指すための指針を駆動する指針駆動部と、所定時刻を起点とする物理量の情報を取得する物理量取得部と、取得した物理量の情報に基づいて前記所定時刻から所定時間先の時刻の物理量を予測する物理量予測部と、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、予測した物理量の大きさを両用目盛にて示すための予測量インディケータを駆動する予測量インディケータ駆動部と、を有する時計を提案する。
 また、時刻と後記目標レベルに対する物理量の大きさを示すための対比両用目盛と、時刻に応じて両用目盛を指すための指針を駆動する指針駆動部と、所定時間単位の各時間区分の物理量の目標レベルを取得する目標レベル取得部と、現在時刻が属する時間区分の開始時刻から現在時刻までの物理量を、現在時刻が属する時間区分の終了時刻まで所定間隔で取得する対比物理量取得部と、前記対比物理量取得部にて取得した物理量の現在時刻における目標レベルに対する大きさを対比両用目盛にて示すための対比物理量インディケータと、現在時刻が属する時間区分の開始時刻において前記指針の指す対比両用目盛の目盛位置を前記目標レベルに対する物理量の大きさの原点位置とし、現在時刻において前記指針の指す対比両用目盛の目盛位置を現在時刻における物理量の目標レベルの目盛位置として、前記対比物理量インディケータを駆動する物理量インディケータ駆動部と、を有する時計を提案する。
 また、時刻と後記目標レベルに対する物理量の大きさを示すための対比両用目盛と、時刻に応じて両用目盛を指すための指針を駆動する指針駆動部と、所定時間単位の各時間区分の物理量の目標レベルを取得する目標レベル取得部と、現在時刻が属する時間区分の開始時刻から現在時刻までの物理量を、現在時刻が属する時間区分の終了時刻まで所定間隔で取得する対比物理量取得部と、前記対比物理量取得部にて取得した物理量に基づいて現在時刻が属する時間区分の終了時刻の物理量を予測する対比物理量予測部と、前記対比物理量予測部にて予測した物理量の現在時刻が属する時間区分の終了時刻における目標レベルに対する大きさを対比両用目盛にて示すための対比予測量インディケータと、前記現在時刻が属する時間区分の開始時刻において前記指針の指す対比両用目盛の目盛位置を前記目標レベルに対する物理量の大きさの原点位置とし、現在時刻が属する時間区分の終了時刻において前記指針の指す対比両用目盛の目盛位置を現在時刻が属する時間区分の終了時刻における物理量の目標レベルの目盛位置として、前記対比予測量インディケータを駆動する対比予測量インディケータ駆動部と、を有する時計を提案する。
 以上の構成をとる本発明によって、時計を何気なく見た場合においても、どの時刻を起点とした物理量であり、現在時刻においてどのくらいの大きさになっているかなどを簡易に把握することが可能になる。
実施形態1の時計の概要を示す図 実施形態1の時計の機能ブロックの一例を示す図 実施形態1の時計の他の例を示す図(1) 実施形態1の時計の他の例を示す図(2) 実施形態1の時計のハードウェア構成の一例を示す図 実施形態1の時計の処理の流れの一例を示す図 実施形態2の時計の概要を示す図 実施形態2の時計の機能ブロックの一例を示す図 実施形態2の時計の処理の流れの一例を示す図 実施形態3の時計の機能ブロックの一例を示す図 実施形態3の時計の処理の流れの一例を示す図 実施形態4の時計の概要を示す図 実施形態4の時計の機能ブロックの一例を示す図 実施形態4の時計の処理の流れの一例を示す図 実施形態5の時計の概要を示す図 実施形態5の時計の機能ブロックの一例を示す図 実施形態5の時計の処理の流れの一例を示す図 実施形態6の時計の機能ブロックの一例を示す図 実施形態6の時計の処理の流れの一例を示す図 実施形態7の時計の機能ブロックの一例を示す図 実施形態7の時計の処理の流れの一例を示す図 実施形態8の時計の機能ブロックの一例を示す図 実施形態8の時計の処理の流れの一例を示す図 実施形態9の時計の機能ブロックの一例を示す図 目標レベル取得部が取得する目標レベルの情報を表す図 実施形態9の時計の一例を示す図 実施形態9の時計の処理の流れの一例を示す図 実施形態10の時計の機能ブロックの一例を示す図 実施形態10の時計の他の例を示す図(1) 実施形態10の時計の他の例を示す図(2) 実施形態10の時計の処理の流れの一例を示す図
 以下に、本発明の実施形態を説明する。実施形態と請求項の相互の関係は、以下のとおりである。実施形態1は、主に請求項1、9に対応する。実施形態2は、主に請求項2、9に対応する。実施形態3は、主に請求項3、9に対応する。実施形態4は、主に請求項4、9に対応する。実施形態5は、主に請求項5、9に対応する。実施形態6は、主に請求項6、9に対応する。実施形態7は、主に請求項7、9に対応する。実施形態8は、主に請求項8、9に対応する。実施形態9は、主に請求項10、11、12、15、16に対応する。実施形態10は、主に請求項13、14、15、16に対応する。なお、本発明はこれらの実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲内において、様々な態様で実施しうる。
<<実施形態1>>
<概要>
 図1は、本実施形態の時計の概要を示す図である。この図にあるように、本実施形態の「時計」は、12時30分を起点とした物理量について、30分において「分針」0101が指す「両用目盛」0102の目盛位置(30番目の目盛位置)を物理量の原点位置として、物理量の大きさを「両用目盛」0102にて示すための「物理量インディケータ」0103を駆動する構成を有している。当該構成を有することにより、時計を何気なく見た場合においても、どの時刻を起点とした物理量であり、現在時刻においてどのくらいの大きさになっているかを簡易に把握することが可能になる。
<構成>
 図2は、本実施形態の時計の機能ブロックの一例を示す図である。この図にあるように、本実施形態の「時計」0200は、「両用目盛」0201と、「指針」0202と、「指針駆動部」0203と、「物理量取得部」0204と、「物理量インディケータ」0205と、「物理量インディケータ駆動部」0206と、から構成される。
 「両用目盛」は、時刻と後記する物理量を示すための目盛である。つまり、一の目盛により時刻と物理量を示すことが可能である。両用目盛を配置する位置は、図1に示すように時刻表示用文字盤の縁とすることが主として考えられるが、時刻と物理量を示すことが可能であれば特にこれに限定されるものではない。両用目盛の数は、一般的な時計と同様に60とすることが考えられるが、その倍数となる目盛数とすることも可能であるし(例えば、120)、その公約数となる目盛数とすることも可能である(例えば、12)。
 また、両用目盛の目盛一つ分に対する物理量の大きさ(両用目盛と物理量の比率)は任意に設定することが可能である。両用目盛と物理量の比率の一例としては、基本単位時間を示す両用目盛の目盛数(例えば、目盛1個)に対して、基本単位時間当たりに変化すると見込まれる物理量の単位(例えば、1kWh)とすることが考えられる。また、所定の時間区分に相当する両用目盛の目盛数(例えば、目盛30個)に対して、当該所定の時間区分において目標とすべき物理量の大きさ(例えば、5kWh)とすることも考えられる。
 「指針駆動部」は、時刻に応じて両用目盛を指すための指針を駆動する。ここで、指針とは、時針、分針、秒針のいずれかをいうものである。なお、指針駆動部が駆動する指針が例えば分針であるとしても、時針、秒針がないことを意味するものではない。また、指針駆動部の指針の形状は必ずしも針形状とする必要はなく、両用目盛において時刻を指し示すことが可能なものであれば足りる。例えば、時刻に対応するよう両用目盛の目盛位置近辺に表示される小さな光点やアイコンなども含まれるものである。指針の駆動手段としては、指針が物理的なものであればステップモーターなどが主として考えられる。また、時刻表示用文字盤をディスプレイとして表示出力する構成も考えられる。
 「物理量取得部」は、所定時刻を起点とした物理量の情報を取得する。取得する物理量としては種々考えられるが、例えば、所定時刻を起点とした発電量や売電量、買電量、消費電力量などや、所定時刻を起点とした走行距離や泳いだ距離、所定時刻を起点とした歩数や腕立て伏せの回数、スクワットの回数などが挙げられるが、これらに限定されるものではない。ここで、所定時刻は固定的なものではない。例えば、12時15分を起点とした走行距離の情報を取得している場合において12時30分になった場合、今度は12時30分を起点とした走行距離の情報を取得する、といった構成も考えられる。
 物理量を取得する構成としては、温度センサや加速度センサなどの検知器を介して取得する構成や、有線又は無線の通信回線を介して取得する構成、操作入力機器を介して取得する構成が考えられる。
 なお、物理量を取得する構成として、内部処理装置の演算処理を介して取得する構成も含まれるものである。例えば、所定時刻及び現在時刻においてGPS受信機を介して各時刻における緯度・経度の情報を取得し、所定時刻から現在時刻までの移動量を内部演算処理により算出することが考えられる。また、所定時刻及び現在時刻において電力量モニターを介して各時刻までの電力消費量の情報を取得し、所定時刻から現在時刻までに消費された電力量を算出することも考えられる。
 「物理量インディケータ駆動部」は、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、取得した物理量の大きさを両用目盛にて示すための物理量インディケータを駆動する。ここでいう前記指針とは、指針駆動部にて駆動される指針をいうものであり、時針、分針、秒針のいずれかに該当する。
 例えば、前記所定時刻が午後5時15分30秒である場合は、分針が指す15分の両用目盛の目盛位置(15番目の目盛位置)を物理量の原点位置とすることが考えられる。なお、物理量の変化を秒単位で示したい場合は秒針が指す30秒の目盛位置(30番目の目盛位置)を物理量の原点位置とし、時単位で示したい場合は時針が指す5時の目盛位置(5番目の目盛位置)を物理量の原点位置とすることも可能である。この場合、指針駆動部にて駆動される指針は、それぞれ秒針、時針を意味するものである。
 物理量インディケータとしては、例えば図1に示したように、時計文字盤の両用目盛の各目盛位置に対応するように発光要素を配置する構成が考えられる。この場合、物理量の大きさに応じて、原点位置から所定の目盛位置まで発光要素を点灯させたり、原点位置の発光要素と所定の目盛位置の発光要素のみを点灯させたりすることが考えられる。なお、発光要素の材料としては、LED素子やEL素子などを用いることが考えられる。また、図3に示すように、「物理量インディケータ」0301として、時計文字盤の内側に「両用目盛」0302に対応するように発光要素を設ける構成も可能であるし、時計文字盤の両用目盛上に発光要素を設ける構成も可能である。なお、物理量インディケータはディスプレイ機能により表示出力させる構成も可能である。
 また、両用目盛を利用して表す物理量が複数ある場合は、各物理量を両用目盛にて示すために複数の物理量インディケータを設ける構成も可能である。例えば、図4に示すように物理量1について時計文字盤の外側にある円環状に配置された「物理量インディケータA」0401でその大きさを示し、物理量2についてはさらに外側にある円環状に配置された「物理量インディケータB」0402でその大きさを示す構成が考えられる。また、さらに物理量が存在する場合は時計文字盤の内側にある物理量インディケータでその大きさを示すことも可能である。当該構成とすることにより、時計を一見するだけで複数の物理量の大きさを把握することが可能になる。
<具体的な構成>
 図5は、上記時計の機能的な各構成をハードウェアとして実現した際の構成の一例を示す概略図である。この図を利用して、それぞれのハードウェア構成部の働きについて説明する。
 この図にあるように、時計は、「CPU」0501と、「RAM」0502と、「ROM」0503と、「不揮発性メモリ」0504と、「水晶発振器」0505と、「指針制御回路」0506と、「指針駆動機構」0507と、「発光制御回路」0508と、「発光器」0509と、「通信器」0510と、を備える。当該構成は、「システムバス」0511のデータ通信経路によって相互に接続され、情報の送受信や処理を行う。ここで、発光器は、時計文字盤の各目盛位置付近に配置された複数の発光要素からなる。
 CPUは、水晶発振器からの信号に基づいて指針制御回路に対して所定タイミングで制御信号を送信する。制御信号を受け取った指針制御回路は指針駆動機構を介して指針を制御する。
 また、CPUは、通信器を介して所定時刻を起点とする物理量の情報を取得し、RAMに格納する。続いて、CPUは、上記所定時刻において分針が指し示す両用目盛の目盛位置を物理量の原点位置として設定する処理を行う。さらに、CPUは、取得した物理量の大きさに応じて点灯させるべき発光要素数を決定する処理を行う。さらに、CPUは、発光制御回路に対して、上記原点位置を基準として上記発光要素数の発光要素を点灯させるための制御信号を出力する。制御信号を受信した発光制御回路は点灯させるべき発光要素を点灯させる。
<処理の流れ>
 図6は、時刻と物理量を示すための両用目盛を備える時計における処理の流れを示すフローチャートである。同図の処理の流れは以下のステップからなる。最初にステップS0601では、時刻に応じて両用目盛を指すための指針を駆動する(指針指示ステップ)。次にステップS0602では、所定時刻を起点とした物理量の情報を取得する(物理量取得ステップ)。次にステップS0603では、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、取得した物理量の大きさを両用目盛にて示すための物理量インディケータを駆動する(物理量表示ステップ)。
<効果>
 本実施形態の時計により、当該構成を有することにより、時計を何気なく見た場合においても、どの時刻を起点とした物理量であり、現在時刻においてどのくらいの大きさになっているかを簡易に把握することが可能になる。
<<実施形態2>>
<概要>
 本実施形態の時計は、基本的に実施形態1で示した時計と同様であるが、図7に示すように、現在時刻(10時23分09秒)において「分針」の指す「両用目盛」の「目盛位置(23番目の目盛位置)」0701が「現在時刻における物理量(18番目の目盛位置)」0702の「目標レベル」となるような比率(両用目盛と物理量の比率)で「物理量インディケータ」を駆動している。当該構成とすることにより、現在時刻の物理量が現在時刻における物理量の目標レベルに対してどれくらいであるかを容易に把握することが可能になる。
<構成>
 図8は、本実施形態の時計の機能ブロックの一例を示す図である。この図にあるように、本実施形態の「時計」0800は、「両用目盛」0801と、「指針」0802と、「指針駆動部」0803と、「物理量取得部」0804と、「物理量インディケータ」0805と、「物理量インディケータ駆動部」0806と、から構成され、「物理量インディケータ駆動部」は「第一駆動手段」0807を有する。以下、実施形態1との相違点である第一駆動手段について説明する。
 「第一駆動手段」は、現在時刻において前記指針の指す両用目盛の目盛位置が現在時刻における物理量の目標レベルとなるような比率で物理量インディケータを駆動する。
 実施形態1で述べたように、物理量インディケータは、取得した物理量の大きさを両用目盛にて示すためのものである。取得した物理量は目標レベルと対比するとさらに理解しやすい値となる。また、現在時刻における物理量の目標レベルを指針の指す両用目盛に対応させることにより、指針と物理量インディケータを対比して現在時刻における物理量が目標レベルと比較してどれくらいであるかを即座に把握することが可能になる。
 一例として、6時00分から6時30分までの消費電力量の目標レベルが60kWhである場合を考える。この場合、6時00分から6時30分までの任意の時刻の目標レベルを算出することが可能である。例えば、6時20分における目標レベルは40kWhであると算出できる。ここで、20分における現実の消費電力量が30kWhである場合は、現実の消費電力量は目標レベルの3/4である。よって、物理量インディケータは、両用目盛の15分の目盛位置(15番目の目盛位置)を指し示すことになる。これにより、物理量インディケータの位置から6時20分現在における消費電力量は目標とする消費電力量の3/4であると判断することが可能になる。
 上記駆動手段において用いる物理量の目標レベルの情報は、予め内部の記憶装置にて保持しておくことも可能であるし、有線又は無線の通信回線を介して外部装置から取得する構成も可能であるし、操作入力機器を介して操作入力を受け付けることや、USBメモリなどの記憶装置などを介して取得することも可能である。なお、一の時刻における物理量の目標レベルを他の時刻における物理量の目標レベルに基づいて算出することも、目標レベルの取得の態様として含まれるものである。
<具体的な構成>
 本実施形態の時計のハードウェア構成は、基本的に図5を用いて説明した実施形態1の時計のハードウェア構成と共通する。以下、実施形態1との相違点である処理について説明する。
 CPUは、不揮発性メモリに格納されている各時間区分の物理量の目標レベルのデータをRAMに読み出す。続いて、現在時刻における物理量の目標レベルを、現在時刻が属する時間区分の目標レベルのデータに基づいて算出する処理を行う。例えば、6時00分から6時30分までの時間区分の消費電力量の目標レベルが60kWhである場合は、6時20分現在における目標レベルは40kWhであると算出する。
 さらにCPUは、現在時刻における現実の物理量の値に対する現在時刻における目標レベルの値の比率を算出する処理を行い、処理結果をRAMに格納する。また、物理量の原点位置となる両用目盛の目盛位置と、現在時刻において分針が指し示す両用目盛の目盛位置と、上記算出された比率に基づいて、原点位置となる両用目盛の目盛位置に配置された発光要素を基準として点灯させるべき発光要素を決定する処理を行う。 
<処理の流れ>
 図9は、本実施形態の時刻と物理量を示すための両用目盛を備える時計における処理の流れを示すフローチャートである。同図の処理の流れは以下のステップからなる。最初にステップS0901では、時刻に応じて両用目盛を指すための指針を駆動する(指針指示ステップ)。次にステップS0902では、所定時刻を起点とした物理量の情報を取得する(物理量取得ステップ)。次にステップS0903では、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、かつ、現在時刻において前記指針の指す両用目盛の目盛位置が現在時刻における物理量の目標レベルとなるような比率で、取得した物理量の大きさを両用目盛にて示すための物理量インディケータを駆動する(物理量対比表示ステップ)。
<効果>
 本実施形態の時計により、実施形態1の効果に加えて、現在時刻の物理量が現在時刻における物理量の目標レベルに対してどれくらいであるかを容易に把握することが可能になる。
<<実施形態3>>
<概要>
  本実施形態の時計は、基本的に実施形態2の時計と同様であるが、物理量インディケータが目標レベルを示す両用目盛の目盛位置よりも大きな両用目盛の目盛位置を示すか否かに応じて物理量インディケータの色を制御することが可能である。当該構成とすることにより、物理量インディケータの色の変化により、目標レベルに対する物理量の大小を容易に把握することが可能になる。
<構成>
 図10は、本実施形態の時計の機能ブロックの一例を示す図である。この図にあるように、本実施形態の「時計」1000は、「両用目盛」1001と、「指針」1002と、「指針駆動部」1003と、「物理量取得部」1004と、「物理量インディケータ」1005と、「物理量インディケータ駆動部」1006と、から構成され、「物理量インディケータ駆動部」は「第一駆動手段」1007と「第一判断手段」1008と「第一色制御手段」1009を有する。以下、実施形態1、2との相違点である第一判断手段と第一色制御手段について説明する。
 「第一判断手段」は、前記物理量インディケータが前記目標レベルを示す両用目盛の目盛位置よりも大きな両用目盛の目盛位置を示すか否か判断する。
 「第一色制御手段」は、第一判断手段の判断に応じて物理量インディケータの色を制御する。当該制御は、例えば指針基準判断手段の判断と物理量インディケータの色とを関連付けたデータ(例えばテーブルデータ)に基づいて行うことが可能である。
<具体的な構成>
 本実施形態の時計のハードウェア構成は、基本的に図5を用いて説明した実施形態1の時計のハードウェア構成と共通する。以下、実施形態1から3との相違点である処理について説明する。
 CPUは、現在時刻における目標レベルの値と物理量の値を比較して、物理量インディケータが目標レベルとなる両用目盛よりも大きな両用目盛を示すか否か判断する処理を行い、処理結果をRAMに格納する。
 さらにCPUは、ROMに格納されている上記処理により発生しうる判断結果(大きいか、否か)と物理量インディケータの色とを関連付けたテーブルデータをRAMに読み出し、上記処理結果とテーブルデータに基づいて物理量インディケータの色を決定する処理を行う。
 さらにCPUは、発光制御回路に対して物理量インディケータの色を指定する信号を出力する。色を指定する信号を受信した発光制御回路は発光要素の色を制御する処理を行う。
<処理の流れ>
 図11は、時刻と物理量を示すための両用目盛を備える時計における処理の流れを示すフローチャートである。同図の処理の流れは以下のステップからなる。最初にステップS1101では、時刻に応じて両用目盛を指すための指針を駆動する(時刻指示ステップ)。次にステップS1102では、所定時刻を起点とした物理量の情報を取得する(物理量取得ステップ)。次にステップS1103では、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、かつ、現在時刻において前記指針の指す両用目盛の目盛位置が現在時刻における物理量の目標レベルとなるような比率で、取得した物理量の大きさを両用目盛にて示すための物理量インディケータを駆動する(物理量対比表示ステップ)。次にステップS1104では、前記物理量インディケータが前記目標レベルを示す両用目盛の目盛位置よりも大きな両用目盛の目盛位置を示すか否か判断する(物理量対比判断ステップ)。次にステップS1105では、物理量対比判断ステップでの判断に応じて物理量インディケータの色を制御する(物理量色制御ステップ)。
<効果>
 本実施形態の時計により、実施形態1、2の効果に加えて、物理量インディケータの色の変化により、目標レベルに対する物理量の大小を直感的に把握することが可能になる。
<<実施形態4>>
<概要>
 図12は、本実施形態の時計の概要を示す図である。この図にあるように、本実施形態の「時計」は、12時30分を起点とした物理量について、30分において「分針」1201が指す「両用目盛」1202の目盛位置(30番目の目盛位置)を物理量の原点位置として、13時00分において取得されると予測される物理量の大きさを「両用目盛」1202にて示すための「予測量インディケータ」1203を駆動する構成を有している。当該構成を有することにより、時計を何気なく見た場合においても、どの時刻を起点とした予測物理量であり、先の時刻において予測される物理量の大きさはどのくらいかを簡易に把握することが可能になる。
<構成>
 図13は、本実施形態の時計の機能ブロックの一例を示す図である。この図にあるように、本実施形態の「時計」1300は、「両用目盛」1301と、「指針」1302と、「指針駆動部」1303と、「物理量取得部」1304と、「物理量予測部」1305と、「予測量インディケータ」1306と、「予測量インディケータ駆動部」1307と、から構成される。以下、実施例1から3との相違点である、物理量予測部と、予測量インディケータ駆動部について説明する。
 「物理量予測部」は、取得した物理量の情報に基づいて前記所定時刻から所定時間先の時刻の物理量を予測する。ここで、所定時間先の時刻としては、現在時刻が属する時間区分の終了時刻(例えば、12時30分から13時00分の時間区分の終了時刻である13時00分)とすることが考えられるが、これに限定されるものではない。
 一例として、前記所定時刻から現在時刻までに発電された電力量に基づいて所定時間先の時刻までに発電される電力量を予測することが考えられる。具体的には、前記所定時刻から現在時刻までの物理量の変化を一次関数又は多次関数でフィッティングする処理を行い、所定時刻先の時刻の物理量を予測することが考えられる。例えば、3時00分から3時15分までに5kWhの電力量が発電された場合は、一次関数でフィッティングする処理を行い、3時30分までに10kWhの電力量が発電されると予測することが考えられる。また、3時00分から3時10分までに1kWhの電力量が発電され、3時00分から3時20分までに4kWhの電力量が発電された場合は、二次関数でフィッティングする処理を行い、3時30分までに9kWhの電力量が発電されると予測することが考えられる。また、所定時刻から現在時刻までの物理量のデータをさらに利用して高次元関数でフィッティングする処理を行い、所定時間先の時刻の物理量を予測することも可能である。
 「予測量インディケータ駆動部」は、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、予測した物理量の大きさを両用目盛にて示すための予測量インディケータを駆動する。
 予測量インディケータのその他の具体的な構成は物理量インディケータと同様である。なお、予測量インディケータと物理量インディケータを両方備える構成とすることも考えられる。
 例えば、予測量インディケータを時計文字盤の外側に設け、物理量インディケータを時計文字盤の内側に設ける構成が考えられる。当該構成とすることにより、現在時刻の物理量と所定時刻から所定時間先の時刻の物理量を一見して把握することが可能になる。
<具体的な構成>
 本実施形態の時計のハードウェア構成は、基本的に図5を用いて説明した実施形態1の時計のハードウェア構成と共通する。
 CPUは、水晶発振器からの信号に基づいて指針制御回路に対して所定タイミングで制御信号を送信する。制御信号を受け取った指針制御回路は指針駆動機構を介して指針を制御する。
 また、CPUは、通信器を介して所定時刻を起点とする物理量の情報を取得し、RAMに格納する。続いて、CPUは、上記所定時刻において分針が指し示す両用目盛の目盛位置を物理量の原点位置として設定する処理を行う。さらに、CPUは、取得した物理量のデータに基づいて、所定時刻から現在時刻までの物理量の変化を関数でフィッティングする処理を行い、前記所定時刻から所定時間先の時刻の予測物理量を算出する処理を行い、処理結果をRAMに格納する。さらに、CPUは、予測物理量の大きさに応じて点灯させるべき発光要素数を決定する処理を行う。さらに、CPUは、発光制御回路に対して、上記原点位置を基準として上記発光要素数の発光要素を点灯させるための制御信号を出力する。制御信号を受信した発光制御回路は点灯させるべき発光要素を点灯させる。
<処理の流れ>
 図14は、本実施形態の時刻と物理量を示すための両用目盛を備える時計における処理の流れを示すフローチャートである。同図の処理の流れは以下のステップからなる。最初にステップS1401では、時刻に応じて両用目盛を指針で指す(時刻指示ステップ)。次にステップS1402では、所定時刻を起点とする物理量の情報を取得する(物理量取得ステップ)。次にステップS1403では、取得した物理量の情報に基づいて前記所定時刻から所定時間先の時刻の物理量を予測する(物理量予測ステップ)。次にステップS1404では、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、予測した物理量の大きさを両用目盛にて示すための予測量インディケータを駆動する(予測量表示ステップ)。
<効果>
 本実施形態の時計により、時計を何気なく見た場合においても、どの時刻を起点とした物理量であり、所定時刻から所定時間先の時刻においてどのくらいの大きさになると予測されるかを簡易に把握することが可能になる。
<<実施形態5>>
<概要>
 本実施形態の時計は、基本的に実施形態4で示した時計と同様であるが、図15に示すように、物理量の起点となる所定時刻(10時00分)から所定時間先(30分先)の時刻において「分針」の指す「両用目盛」の「目盛位置(30番目の目盛位置)」1501が「上記所定時間先の時刻における物理量(36番目の目盛位置)」1502の「目標レベル」となるような比率(両用目盛と物理量の比率)で「予測量インディケータ」を駆動している。当該構成とすることにより、先の時刻において予測される物理量が先の時刻における物理量の目標レベルに対してどれくらいであるかを容易に把握することが可能になる。
<構成>
 図16は、本実施形態の時計の機能ブロックの一例を示す図である。この図にあるように、本実施形態の「時計」1600は、「両用目盛」1601と、「指針」1602と、「指針駆動部」1603と、「物理量取得部」1604と、「物理量予測部」1605と、「予測量インディケータ」1606と、「予測量インディケータ駆動部」1607と、から構成され、「予測量インディケータ駆動部」は「第二駆動手段」1608を有する。以下、実施例1から4との相違点である第二駆動手段について説明する。
 「第二駆動手段」は、前記所定時間先の時刻において前記指針の指す両用目盛の目盛位置が前記所定時間先の時刻における物理量の目標レベルとなるような比率で予測量インディケータを駆動する。
 実施形態4で述べたように、予測量インディケータは、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、予測した物理量の大きさを両用目盛にて示すためのものである。上記予測物理量は上記所定時間先の時刻における物理量の目標レベルと対比するとさらに理解しやすい値となる。また、所定時間先の時刻における物理量の目標レベルを所定時間先の時刻において指針の指す両用目盛の目盛位置に対応させることにより、当該両用目盛の目盛位置と予測量インディケータと対比して先の時刻における予測物理量が目標レベルと比較してどれくらいであるかを即座に把握することが可能になる。
 一例として6時00分から6時30分までの消費電力量の目標レベルが60kWhである場合を考える。6時00分から6時15分までの消費電力量の値が20kWhである場合、一次関数によるフィッティングを行い、6時30分において40kWhの電力量が消費されると予測される。ここで、6時30分において分針の指す両用目盛の目盛位置(30番目の目盛位置)が目標レベルである60kWhに対応しているため、予測量インディケータは40kWhを表す両用目盛の目盛位置である20番目の両用目盛の目盛位置をその点灯範囲で示すことになる。これにより、予測量インディケータの位置から6時15分現在において予測される6時30分の消費電力量は目標とする消費電力量の2/3であると判断することが可能になる。
 上記第二駆動手段において用いる所定時間先の物理量の目標レベルの情報は、有線又は無線の通信回線を介して外部装置から取得する構成とすることも可能であるし、操作入力機器を介して操作入力を受け付けることや、USBメモリなどの記憶装置などから取得することも可能である。また、一の時刻における物理量の目標レベルを他の時刻における物理量の目標レベルに基づいて算出することも、目標レベルの取得の態様として含まれるものである。
<具体的な構成>
 本実施形態の時計のハードウェア構成は、基本的に図5を用いて説明した実施形態1の時計のハードウェア構成と共通する。以下、実施形態4との相違点である処理について説明する。
 CPUは、不揮発性メモリに格納されている各時間区分の終了時刻における物理量の目標レベルのデータをRAMに読み出す。さらにCPUは、現在の時刻が属する時間区分の終了時刻において取得されると予測される物理量を算出する。さらにCPUは、終了時刻における予測物理量の値に対する終了時刻における目標レベルの値の比率を算出する処理を行い、処理結果をRAMに格納する。また、物理量の原点位置となる両用目盛の目盛位置と、終了時刻において分針が指し示す両用目盛の目盛位置と、上記算出された比率に基づいて、原点位置となる両用目盛の目盛位置に配置された発光要素を基準として点灯させるべき発光要素を決定する処理を行う。 
<処理の流れ>
 図17は、本実施形態の時刻と物理量を示すための両用目盛を備える時計における処理の流れを示すフローチャートである。同図の処理の流れは以下のステップからなる。最初にステップS1701では、時刻に応じて両用目盛を指針で指す(時刻指示ステップ)。次にステップS1702では、所定時刻を起点とする物理量の情報を取得する(物理量取得ステップ)。次にステップS1703では、取得した物理量の情報に基づいて前記所定時刻から所定時間先の時刻の物理量を予測する(物理量予測ステップ)。次にステップS1704では、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置とし、かつ、前記所定時間先の時刻において前記指針の指す両用目盛の目盛位置が前記所定時間先の時刻における物理量の目標レベルとなるような比率で、予測した物理量の大きさを両用目盛にて示すための予測量インディケータを駆動する(予測量対比表示ステップ)。
<効果>
 本実施形態の時計により、実施形態4の効果に加えて、先の時刻において予測される物理量が先の時刻における物理量の目標レベルに対してどれくらいであるかを容易に把握することが可能になる。
<<実施形態6>>
<概要>
 本実施形態の時計は、基本的に実施形態5の時計と同様であるが、予測量インディケータが目標レベルを示す両用目盛の目盛位置よりも大きな両用目盛の目盛位置を示すか否かに応じて予測量インディケータの色を制御することが可能である。当該構成とすることにより、予測量インディケータの色の変化により、目標レベルに対する予測物理量の大小を容易に把握することが可能になる。
<構成>
 図18は、本実施形態の時計の機能ブロックの一例を示す図である。この図にあるように、本実施形態の「時計」1800は、「両用目盛」1801と、「指針」1802と、「指針駆動部」1803と、「物理量取得部」1804と、「物理量予測部」1805と、「予測量インディケータ」1806と、「予測量インディケータ駆動部」1807と、から構成され、「予測量インディケータ駆動部」は「第二駆動手段」1808と、「第二判断手段」1809と、「第二色制御手段」1810を有する。以下、実施例1から5との相違点である第二判断手段と、第二色制御手段について説明する。
 「第二判断手段」は、前記予測量インディケータが前記目標レベルとなる両用目盛の目盛位置よりも大きな両用目盛の目盛位置を示すか否か判断する。
 「予測量インディケータ色制御手段」は、第二判断手段の判断に応じて予測量インディケータの色を制御する。当該制御は、第二判断手段から出力され得る判断の区分と予測量インディケータの色とを関連付けたデータ(例えばテーブルデータ)に基づいて行うことが可能である。
<具体的な構成>
 本実施形態の時計のハードウェア構成は、基本的に図5を用いて説明した実施形態1の時計のハードウェア構成と共通する。以下、実施形態4、5との相違点である処理について説明する。
 CPUは、所定時刻より所定時間先の時刻における目標レベルの値と予測物理量の値を比較して、予測量インディケータが目標レベルとなる両用目盛の目盛位置よりも大きな両用目盛の目盛位置を示すか否か判断する処理を行い、処理結果をRAMに格納する。
 さらにCPUは、ROMに格納されている上記処理により発生しうる判断結果(大きいか、否か)と予測量インディケータの色とを関連付けたテーブルデータをRAMに読み出し、上記処理結果とテーブルデータに基づいて予測量インディケータの色を決定する処理を行う。
 さらにCPUは、発光制御回路に対して予測量インディケータの色を指定する信号を出力する。色を指定する信号を受信した発光制御回路は発光要素の色を制御する処理を行う。
<処理の流れ>
 図19は、本実施形態の時刻と物理量を示すための両用目盛を備える時計における処理の流れを示すフローチャートである。同図の処理の流れは以下のステップからなる。最初にステップS1901では、時刻に応じて両用目盛を指針で指す(時刻指示ステップ)。次にステップS1902では、所定時刻を起点とする物理量の情報を取得する(物理量取得ステップ)。次にステップS1903では、取得した物理量の情報に基づいて前記所定時刻から所定時間先の時刻の物理量を予測する(物理量予測ステップ)。次にステップS1904では、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置とし、かつ、前記所定時間先の時刻において前記指針の指す両用目盛の目盛位置が前記所定時間先の時刻における物理量の目標レベルとなるような比率で、予測した物理量の大きさを両用目盛にて示すための予測量インディケータを駆動する(予測量対比表示ステップ)。次にステップS1905では、前記予測量インディケータが前記目標レベルとなる両用目盛の目盛位置よりも大きな両用目盛の目盛位置を示すか否か判断する(予測量対比判断ステップ)。次にステップS1906では、予測量対比判断ステップの判断に応じて予測量インディケータの色を制御する(予測量色制御ステップ)。
<効果>
 本実施形態の時計により、実施形態5の効果に加えて、予測量インディケータの色の変化により、目標レベルに対する予測物理量の大小を容易に把握することが可能になる。
<<実施形態7>>
<概要>
 本実施形態の時計は、物理量取得部は前記所定時刻から現在時刻までに消費された電力量を取得することを特徴とする。当該構成とすることにより、時計を何気なく見た場合においても、どの時刻を起点とした消費電力量であり、現在時刻においてどのくらいの大きさになっているかを簡易に把握することが可能になる。
<構成>
 図20は、本実施形態の時計の機能ブロックの一例を示す図である。この図にあるように、本実施形態の「時計」2000は、「両用目盛」2001と、「指針」2002と、「指針駆動部」2003と、「物理量取得部」2004と、「物理量インディケータ」2005と、「物理量インディケータ駆動部」2006と、から構成され、「物理量取得部」は「電力量取得手段」2007を有する。なお、実施形態4の構成を基本とする構成も可能である。以下、実施形態1から6との相違点である電力量取得手段について説明する。
 「電力量取得手段」は、前記所定時刻から現在時刻までに消費された電力量を取得する。取得した消費電力量の情報は揮発性メモリにおいて一時的に保持する構成とすることも可能であるし、不揮発性メモリにおいて長期的に保持する構成とすることも可能である。
 例えば、30分単位で消費電力量を取得する場合を考える。この場合、3時00分から消費した電力量を3時30分まで所定間隔(例えば、1分ごと)で取得し、新たに3時30分から消費した電力量を4時00分まで所定間隔で取得する。このように、電力量取得手段は特定の時間区分で消費電力量を取得することが可能である。
 また、本実施形態の時計は、前記所定時刻から現在時刻までに消費された電力量に関する目標レベルを取得する消費目標レベル取得部を合わせて有する構成も可能である。当該目標レベルは、有線又は無線の通信回線を介して取得することも可能であるし、内部の記憶装置から取得することも可能である。
 また、特定の時間区分で消費電力量を取得する場合は、特定の時間区分ごとに目標レベルを取得する構成も考えられる。例えば、3時00分から3時30分までの消費電力量の目標レベルと3時30分から4時00分までの消費電力量の目標レベルをそれぞれ取得することが考えられる。
 目標レベルとする値は、過去の電気の使用履歴に基づいて決定する構成も可能である。例えば、過去所定期間(例えば、過去2週間)の各時間区分の消費電力量を参照して時間区分ごとに最小値を算出し、各時間区分の目標レベルとして設定することが考えられる。また、過去所定期間の各時間区分について平均値を算出し、各時間区分の目標レベルとして設定することも考えられる。また、各曜日の各時間区分で目標レベルを設定する構成も考えられる。この場合、過去所定期間(例えば、過去1カ月)の各曜日の各時間区分の消費電力量を参照して各曜日の時間区分ごとに最小値(平均値なども可能)を算出し、各曜日の各時間区分の目標レベルとして設定する構成が考えられる。
<具体的な構成>
 本実施形態の時計のハードウェア構成は、基本的に図5を用いて説明した実施形態1の時計のハードウェア構成と共通する。以下、実施形態1から7との相違点である処理について説明する。
 CPUは、通信器を介して所定時刻までの消費電力量と現在時刻までの消費電力量を取得し、RAMに格納する。続いて、CPUは前記所定時刻から現在時刻までに消費された電力量を算出する処理を行い、RAMに格納する。続いて、CPUは、上記所定時刻において分針が指し示す両用目盛の目盛位置を前記所定時刻から現在時刻までに消費された電力量の原点位置として設定する処理を行う。さらに、CPUは、前記所定時刻から現在時刻までに消費された電力量の大きさに応じて点灯させるべき発光要素数を決定する処理を行う。さらに、CPUは、発光制御回路に対して、上記原点位置を基準として上記発光要素数の発光要素を点灯させるための制御信号を出力する。制御信号を受信した発光制御回路は点灯させるべき発光要素を点灯させる。
<処理の流れ>
 図21は、時刻と物理量を示すための両用目盛を備える時計における処理の流れを示すフローチャートである。同図の処理の流れは以下のステップからなる。最初にステップS2101では、時刻に応じて両用目盛を指すための指針を駆動する(指針指示ステップ)。次にステップS2102では、前記所定時刻から現在時刻までに消費された電力量を取得する(消費電力量取得ステップ)。次にステップS2103では、前記所定時刻において前記指針が指す両用目盛の目盛位置を前記所定時刻から現在時刻までに消費された電力量の原点位置として、前記所定時刻から現在時刻までに消費された電力量の大きさを両用目盛にて示すための物理量インディケータを駆動する(消費電力量表示ステップ)。なお、実施形態4の処理の流れを基本とする処理の流れも可能である。
<効果>
 本実施形態の時計により、当該構成を有することにより、時計を何気なく見た場合においても、どの時刻を起点とした消費電力量であり、現在時刻においてどのくらいの大きさになっているかを簡易に把握することが可能になる。
<<実施形態8>>
<概要>
 本実施形態の時計は、基本的に実施形態1、4の時計と同様であるが、外部情報を取得し、外部情報と指針の色とを関連付けた指針色情報に基づいて指針の色を制御する構成を有する。当該構成により、外部情報を指針の色で表すことが可能になる。
<構成>
 図22は、本実施形態の時計の機能ブロックの一例を示す図である。この図にあるように、本実施形態の「時計」2200は、「両用目盛」2201と、「指針」2202と、「指針駆動部」2203と、「物理量取得部」2204と、「物理量インディケータ」2205と、「物理量インディケータ駆動部」2206と、「外部情報取得部」2207と、「指針色情報保持部」2208と、から構成され、「指針駆動部」は「指針色制御手段」2209を有する。なお、実施形態4の構成を基本とする構成も可能である。以下、実施形態1から7との相違点である外部情報取得部と、指針色情報保持部と、指針色制御部について説明する。
 「外部情報取得部」は、外部情報を取得する。ここで、外部情報としては、例えば気温・湿度・降水確率・日射量・風速・気圧・波の高さなどの天気の情報や、発電量・売電量・買電量・消費電力量などの電気の情報、テレビ・照明装置・空調装置などの電化製品の稼働状況の情報など種々の情報が考えられる。ここで、外部情報は物理量取得部で取得する物理量とは異なる情報であり、物理量が消費電力量である場合は外部情報取得部では消費電力量以外の情報(例えば、発電量などの情報)を取得する。
 外部情報の取得は有線又は無線の通信回線を介して行うことも可能であるし、操作入力機器を介して受け付けることや、内部記憶装置から取得することも可能である。また、外部情報を取得することには、既に存在する情報に対して内部処理装置により処理を行うことにより新たな情報を生成することも含まれる。
 なお、取得する外部情報の種類は一種類である必要はなく、複数の種類の外部情報を取得する構成も可能である。例えば、天気の情報に合わせて電化製品の稼働状況の情報を取得することも考えられる。
 「指針色情報保持部」は、前記外部情報と前記指針の色とを関連付けた指針色情報を保持する。例えば、降水確率が20%未満である場合は指針の色を青色にし、降水確率が20~60%の範囲である場合は指針の色を黄色にし、降水確率が60%以上である場合は指針の色を赤色にする、といった対応付けを指針色情報にて行うことが考えられる。
 また、電気を発電して、かつ、売電している場合は指針の色を青色にし、電気を発電して、かつ、買電している場合は指針の色を黄色にし、電気を発電していない場合は指針の色を赤色にする、といった対応付けを指針色情報にて行うことも可能である。なお、複数の種類の外部情報を取得する場合は、各外部情報に応じた指針色対応情報を保持することが考えられる。
 「指針色制御手段」は、前記外部情報と指針色情報に基づいて前記指針の色を制御する。
<具体的な構成>
 本実施形態の時計のハードウェア構成は、基本的に図5を用いて説明した実施形態1の時計のハードウェア構成と共通する。以下、実施形態1との相違点である処理について説明する。
 CPUは、通信器を介して外部情報を取得して、RAMに格納する。続いて、CPUは、ROMに格納されている前記外部情報と前記指針の色とを関連付けた指針色情報を読み出して、RAMに格納する。さらに、CPUは、取得した外部情報と指針色情報に基づいて指針の色を決定する処理を行い、処理結果をRAMに格納する。さらに、CPUは、決定された指針の色を指定するための信号を指針制御回路に出力する。指針の色を指定するための信号を受信した指針制御回路は、指針を指定された色に制御する。
<処理の流れ>
 図23は、時刻と物理量を示すための両用目盛を備える時計における処理の流れを示すフローチャートである。同図の処理の流れは以下のステップからなる。最初にステップS2301では、時刻に応じて両用目盛を指すための指針を駆動する(指針指示ステップ)。次にステップS2302では、所定時刻を起点とした物理量の情報を取得する(物理量取得ステップ)。次にステップS2303では、前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、取得した物理量の大きさを両用目盛にて示すための物理量インディケータを駆動する(物理量表示ステップ)。次にステップS2304では、外部情報を取得する(外部情報取得ステップ)。次にステップS2305では、前記外部情報と前記外部情報と前記指針の色とを関連付けた指針色情報に基づいて前記指針の色を制御する(指針色制御ステップ)。なお、実施形態4の処理の流れを基本とする処理の流れも可能である。
<効果>
 本実施形態の時計により、当該構成を有することにより、実施形態1、4の効果に加えて、外部情報を指針の色で表すことが可能になる。
実施形態9
<概要>
 本実施形態は、請求項10から12、15、16に記載の発明を把握しやすくするために、上記実施形態1から8に記載の内容をまとめたものである。なお、本実施形態にて追記した内容は、実施形態1から8に記載の対応する構成についても適用することが可能である。
<構成>
 図24は、本実施形態の時計の機能ブロックの一例を示す図である。この図にあるように、本実施形態の「時計」2400は、「対比両用目盛」2401と、「指針」2402と、「対比指針駆動部」2403と、「対比物理量取得部」2404と、「対比物理量インディケータ」2405と、「対比物理量インディケータ駆動部」2406と、から構成される。
 「対比両用目盛」は、時刻と後記目標レベルに対する物理量の大きさを示すための目盛である。対比両用目盛は、実施形態1、2などで説明した両用目盛に対応する。なお、対比両用目盛は時計の文字盤に描かれたものが主として考えられるが、時計の文字盤がディスプレイ機能を有する場合は、対比両用目盛は当該ディスプレイを介して表示出力されたものであってもよい。
 「対比指針駆動部」は、時刻に応じて対比両用目盛を指すための指針を駆動する機能を有する。対比指針駆動部は、実施形態1、2などで説明した指針駆動部に対応する。時刻に応じて指針を駆動する具体的な方法としては、実施形態1に記載したように、水晶発振器からの信号に基づいて指針制御回路に対して所定タイミングで制御信号を送信し、制御信号を受け取った指針制御回路が指針駆動機構を介して指針を制御する方法が考えられる。
 なお、現在時刻の情報は、処理演算装置において、上記水晶発振器からの信号をタイマでカウントすることによって取得することが可能であるが、これに限定されるものではない。例えば、一般的な電波時計のように所定周波数の電波信号を通信手段により受信することで時刻情報を取得してもよい。また、インターネット回線や有線・無線LANを介して外部装置から時刻情報を受信してもよい。現在時刻の情報は、対比物理量取得部や、対比物理量インディケータなどにおいて用いられる。
 「目標レベル取得部」は、所定時間単位の時間区分の物理量の目標レベルを取得する機能を有する。実施形態2で述べたように、物理量の目標レベルの情報は、予め内部の記憶装置にて保持しておくことも可能であるし、有線又は無線の通信回線を介して外部装置から取得する構成も可能であるし、操作入力機器を介して操作入力を受け付けることや、USBメモリなどの記憶装置などを介して取得することも可能である。換言すると、目標レベル取得部は、通信回線又は操作入力機器から所定時間単位の時間区分の物理量の目標レベルの入力を受け付けて記憶する手段(入力記憶手段)を有する。
 具体的には、目標レベル取得部は、物理量の取得を開始する開始時刻及び終了時刻(又は開始時刻からの時間間隔)を操作入力機器又は通信機器を介して取得する。また、開始時刻及び終了時刻などで定まる時間区分の目標レベルの値を操作入力機器又は通信機器を介して取得する。なお、目標レベルの値は、過去の物理量の最小値や最大値、平均値などに基づいて算出されてもよい。
 図25は、目標レベル取得部が取得する目標レベルの情報を表す図である。この図の例では、目標レベルの情報は、30分単位の各時間区分とその時間区分の目標レベルが関連付けられたテーブルになっている。対比物理量取得部や対比物理量インディケータ駆動部は、目標レベルの情報から、各時間区分の開始時刻や終了時刻を判断したり、各時間区分の物理量の目標レベルの値を取得したりすることが可能である。また、各時間区分の時間単位は、30分以外にも15分や20分など任意の時間間隔を指定することが可能である。なお、所定時間単位の時間区分の数は複数である必要はなく、ひとつであってもよい。
 「対比物理量取得部」は、現在時刻が属する時間区分の開始時刻から現在時刻までの物理量を、現在時刻が属する時間区分の終了時刻まで所定間隔で取得する機能を有する。対比物理量取得部は、実施形態1、2などで説明した物理量取得部に対応する。対比物理量取得部は、例えば実施形態6で述べたように、現在時刻が属する時間区分の開始時刻から現在時刻までの消費電力量を、現在時刻が属する終了時刻まで所定間隔で取得することが考えられる。また、実施形態1などの物理量取得部と同様に、対比物理量取得部は、消費電力量、発電量、売電量、買電量を取得する手段(電力量取得手段)を有していてもいい。なお、対比物理量取得部が取得する物理量は、各時間区分の開始時刻を起点とする量であれば足り、時間区分の開始時刻からの走行距離、泳いだ距離、歩数、腕立て伏せの回数、スクワットの回数などであってもよい。
 また、対比物理量取得部は、実施形態1などで説明したように、検知器から直接的に物理量のデータを取得してもよいし、検知器から物理量のデータを取得する外部装置から有線又は無線の通信手段を介して間接的に取得してもよいし、操作入力機器を介して取得してもよい。
 また、物理量は、水やガスの使用量や、消費電力量から発電量を差し引いた量とすることも可能である。この場合、「対比物理量取得部」は、現在時刻が属する時間区分の開始時刻から現在時刻までの水又はガスの使用量や消費電力量から発電量を差し引いた量を、現在時刻が属する時間区分の終了時刻まで所定間隔で取得することが可能である。なお、物理量は、消費電力量や発電量、売電量、買電量、水やガスの使用量などの数値に対して単価をかけて算出される料金の値であってもよい。当該単価の情報は時間帯の情報と関連付けてテーブルとして予め内部の記憶装置にて保持しておくことも可能であるし、有線又は無線の通信回線を介して外部装置から取得する構成も可能であるし、操作入力機器を介して操作入力を受け付けることや、USBメモリなどの記憶装置などを介して取得することも可能である。
 物理量を取得する開始時刻と終了時刻を定める時間区分の情報や、物理量を取得する所定間隔の情報は、予め内部の記憶装置にて保持しておくことも可能であるし、有線又は無線の通信回線を介して外部装置から取得する構成も可能であるし、操作入力機器を介して操作入力を受け付けることや、USBメモリなどの記憶装置などを介して取得することも可能である。当該時間区分及び所定間隔の情報と、時刻情報を用いることによって、現在時刻が属する時間区分の開始時刻から現在時刻までの物理量を現在時刻が属する時間区分の終了時刻まで所定間隔で取得することが可能になる。
 「対比物理量インディケータ」は、前記対比物理量取得部にて取得した物理量の現在時刻における目標レベルに対する大きさを対比両用目盛にて示すためのものである。対比物理量インディケータは、実施形態1、2で説明した物理量インディケータに対応する。実施形態2で述べたように、取得した物理量は目標レベルと対比するとさらに理解しやすく、現在時刻における物理量の目標レベルを指針の指す両用目盛に対応させることにより、指針と物理量インディケータを対比して現在時刻における物理量が目標レベルと比較してどれくらいであるかを即座に把握することが可能になる。
 なお、目標レベルに対する物理量の大きさに応じて対比物理量インディケータの色を制御する構成とすることも可能である。例えば、目標レベルに対して0~60%である場合は対比物理量インディケータを青色とし、目標レベルに対して60~80%である場合は緑色とし、目標レベルに対して80~100%である場合は橙色とし、目標レベルに対して100%~である場合は赤色とすることが考えられる。当該制御は、目標レベルに対する物理量の大きさと対比物理量インディケータの色を関連付けたテーブルに基づいて行う。なお、目標レベルに対する物理量の大きさが対比両用目盛1周分以上になった場合は対比物理量インディケータを赤色のまま点滅させる。なお、さらに別の色にすることによって対比物理量インディケータが2周目であることを示してもいい。これは、対比物理量インディケータが3周目以上になった場合も同様である。
 また、目標レベルに対する物理量の大きさに応じて音声出力機器から音声を出力する構成とすることも可能である。これは、目標レベルに対する物理量の大きさの比率と、音声出力機器から出力すべき音声データを関連付けたテーブルデータとして保持しておくことによって実現可能である。例えば、目標レベルに対して物理量の大きさが0~80%である場合は警報を出力せず、80~100%である場合は目標レベルを超過しそうであることを示す音声を出力し、100%以上である場合は目標レベル以上であることを示す音声を出力する。また、目標レベルに対して物理量が大きくなるにつれて音のテンポが短くなったり、ボリュームが大きくなったりする構成としてもよい。
 「対比物理量インディケータ駆動部」は、現在時刻が属する時間区分の開始時刻において前記指針の指す対比両用目盛の目盛位置を前記目標レベルに対する物理量の大きさの原点位置とし、現在時刻において前記指針の指す対比両用目盛の目盛位置を現在時刻における物理量の目標レベルの目盛位置として、前記対比物理量インディケータを駆動する機能を有する。対比物理量インディケータ駆動部は、実施形態1、2で説明した物理量インディケータ駆動部に対応する。対比物理量インディケータ駆動部は、具体的には実施形態2で説明したように、物理量の原点位置と、現在時刻において指針が指し示す対比両用目盛の目盛位置と、現在時刻における物理量と目標レベルの比率に基づいて、物理量インディケータを駆動する。
(発光要素:カウントアップモード)
 実施形態1、2、図7などで記載したように、上記の「対比物理量インディケータ」を、対比両用目盛の各目盛位置に対応するように配置された発光要素として、上記の「対比物理量インディケータ駆動部」が、前記原点位置から現在時刻における目標レベルに対する物理量の大きさの目盛位置まで、前記発光要素を点灯させる構成とすることも可能である。
(発光要素:カウントダウンモード)
 なお、図26に示すように、上記の「対比物理量インディケータ駆動部」が、「現在時刻における目標レベル(2601)に対する物理量の大きさ(2602)の目盛位置」2603から「現在時刻が属する時間区分の終了時刻において前記指針の指す対比両用目盛の目盛位置」2604まで、「前記発光要素」2605を点灯させる構成とすることも可能である。
<具体的な構成>
 本実施形態の時計のハードウェア構成は、基本的に図5を用いて説明した実施形態1の時計のハードウェア構成と共通する。
 CPUは、水晶発振器からの信号に基づいて指針制御回路に対して所定タイミングで制御信号を送信する。制御信号を受け取った指針制御回路は指針駆動機構を介して指針を制御する。さらに、CPUは、通信器を介して電波時計情報を定期的に受信し(例えば、1日に6回など)、RAMにて保持される時刻情報を適宜修正し、指針の位置を調整する。なお、電波時計情報を受信していない間は、CPUはタイマを用いて時刻情報を更新する。
 また、CPUは、不揮発性メモリに格納されている20分単位の各時間区分と関連付けられた消費電力量の目標レベルのデータをRAMに読み出す。CPUは、現在時刻における消費電力量の目標レベルを、現在時刻が属する時間区分の目標レベルのデータに基づいて算出する処理を行う。具体的には、6時00分から6時20分までの時間区分の消費電力量の目標レベルが40kWhである場合は、6時10分現在における目標レベルは20kWhであると算出する。
 CPUは、現在時刻が属する時間区分の開始時刻から現在時刻までの消費電力量を外部機器から通信器を介して受信する。当該受信処理は、前半の10分に関しては1分おきに行い、後半の10分に関しては30秒おきに行う。続いて、CPUは、開始時刻から現在時刻までの消費電力量の値と、現在時刻における目標レベルの値の比率を算出する処理を行い、処理結果をRAMに格納する。また、CPUは、現在時刻が属する時間区分の開始時刻において分針の指す対比両用目盛の目盛位置を目標レベルに対する消費電力量の大きさの原点位置として設定し、現在時刻において分針の指す対比両用目盛の目盛位置を現在時刻における消費電力量の目標レベルの目盛位置として設定する処理を行う。具体的には、6時00分において分針の指す対比両用目盛の目盛位置(0分の位置)を目標レベルに対する消費電力量の大きさの原点位置として設定し、6時10分現在において分針の指す対比両用目盛の目盛位置(10分の位置)を6時10分現在における消費電力量の目標レベルの目盛位置として設定する処理を行う。
 そして、CPUは、現在時刻における目標レベルに対する消費電力量の大きさに応じて、上記原点位置と目標レベルの目盛位置を基準として点灯させるべき発光要素数を決定する処理を行う。具体的には、6時00分から6時10現在までの電力消費量が8kWhである場合は、点灯させるべき発光要素数は8個であると決定する。さらに、CPUは、発光制御回路に対して、上記発光要素数の発光要素を上記原点位置から点灯させるための制御信号を出力する。制御信号を受信した発光制御回路は点灯させるべき発光要素を点灯させる。
<処理の流れ>
 図27は、本実施形態の時刻と後記目標レベルに対する物理量の大きさを示すための対比両用目盛を備え、時刻に応じて対比両用目盛を指すための指針を駆動する時計における処理の流れを示すフローチャートである。同図の処理の流れは以下のステップからなる。最初にステップS2701では、所定時間単位の各時間区分の物理量の目標レベルを取得する(目標レベル取得ステップ)。次にステップS2702では、現在時刻が属する時間区分の開始時刻から現在時刻までの物理量を、現在時刻が属する時間区分の終了時刻まで所定間隔で取得する(対比物理量取得ステップ)。次にステップS2703では、現在時刻が属する時間区分の開始時刻において前記指針の指す対比両用目盛の目盛位置を前記目標レベルに対する物理量の大きさの原点位置とし、現在時刻において前記指針の指す対比両用目盛の目盛位置を現在時刻における物理量の目標レベルの目盛位置として、取得した物理量の現在時刻における目標レベルに対する大きさを対比両用目盛にて示すための対比物理量インディケータを駆動する(対比物理量駆動ステップ)。
<効果>
 本実施形態の時計により、現在時刻の物理量が目標レベルに対してどれくらいであるかを容易に把握することが可能になる。
実施形態10
<概要>
 本実施形態は、請求項13から16に記載の発明を把握しやすくするために、上記実施形態1から8に記載の内容をまとめたものである。なお、本実施形態にて追記した内容は、実施形態1から8に記載の対応する構成についても適用することが可能である。
<構成>
 図28は、本実施形態の時計の機能ブロックの一例を示す図である。この図にあるように、本実施形態の「時計」2800は、「対比両用目盛」2801と、「指針」2802と、「対比指針駆動部」2803と、「対比物理量取得部」2804と、「対比物理量予測部」2805と、「対比予測量インディケータ」2806と、「対比予測量インディケータ駆動部」2807と、から構成される。以下、実施形態9にて説明していない「対比物理量予測部」と、「対比予測量インディケータ」と、「対比予測量インディケータ駆動部」と、について説明する。
 「対比物理量予測部」は、前記対比物理量取得部にて取得した物理量に基づいて現在時刻が属する時間区分の終了時刻の物理量を予測する機能を有する。対比物理量予測部は、実施形態4などで説明した物理量予測部に対応する。
(平均予測モード)
具体的には、実施形態4で述べたように、現在時刻が属する時間区分の開始時刻から現在時刻までの物理量のデータを関数でフィッティングする処理を行い、終了時刻の物理量を予測することも可能である。例えば、3時00分から3時15分までに5kWhの電力量が発電された場合は、一次関数でフィッティングする処理を行い、3時30分までに10kWhの電力量が発電されると予測することが考えられる。
(瞬時予測モード)
 なお、単位時間(例えば、1分、2分など)あたりの物理量の変化量(微分量)に基づいて、時間区分の終了時刻の物理量を予測することも可能である。例えば、3時00分から3時15分までに5kWhの電力量が消費(又は発電)され、かつ3時14分から3時15分までに0.5kWhの電力量が消費(又は発電)されている場合、3時15分から3時30分までに新たに7.5kWh(0.5kWh×15)の電力量が消費(又は発電)されると予測し、時間区分全体として12.5kWhの電力量が消費(又は発電)されると予測することが考えられる。なお、上記単位時間の値は固定値とする必要はなく、時間区分の終了時刻が近付くにつれて小さい値に変化させていくことも考えられる。例えば、時間区分の開始時刻から3分の1までは単位時間を5分とし、3分の1から3分の2までは単位時間を3分とし、3分の2から終了時刻までを1分とする。このように、時間区分の終了時刻が近付くにつれて単位時間の値を小さくすると、処理負荷とのバランスをとりながら、高い精度で終了時刻の物理量を予測することが可能になる。
 「対比予測量インディケータ」は、前記対比物理量予測部にて予測した物理量の現在時刻が属する時間区分の終了時刻における目標レベルに対する大きさを対比両用目盛にて示すためのものである。対比予測量インディケータは、実施形態4、5などで説明した予測量インディケータに対応する。実施形態5で述べたように、予測物理量は終了時刻における目標レベルと対比するとさらに理解しやすく、終了時刻における物理量の目標レベルを終了時刻において指針の指す対比両用目盛の目盛位置に対応させることにより、対比両用目盛の目盛位置と対比予測量インディケータと対比して終了時刻における予測物理量が目標レベルと比較してどれくらいであるかを即座に把握することが可能になる。
 「対比予測量インディケータ駆動部」は、前記現在時刻が属する時間区分の開始時刻において前記指針の指す対比両用目盛の目盛位置を前記目標レベルに対する物理量の大きさの原点位置とし、現在時刻が属する時間区分の終了時刻において前記指針の指す対比両用目盛の目盛位置を現在時刻が属する時間区分の終了時刻における物理量の目標レベルの目盛位置として、前記対比予測量インディケータを駆動する機能を有する。対比予測量インディケータ駆動部は、実施形態4、5などで説明した予測量インディケータ駆動部に対応する。対比予測量インディケータ駆動部は、具体的には実施形態5で説明したように、物理量の原点位置と、終了時刻において指針が指し示す対比両用目盛の目盛位置と、終了時刻における予測物理量と目標レベルの比率に基づいて、対比予測量インディケータを駆動する。
(発光要素:カウントアップモード)
 上記の「対比予測量インディケータ」を対比両用目盛の各目盛位置に対応するように配置された発光要素として、上記の「対比予測量インディケータ駆動部」が、前記原点位置から現在時刻が属する時間区分の終了時刻において予測される物理量の目標レベルに対する大きさの目盛位置まで、前記発光要素を点灯させる構成とすることも可能である。この内容は、実施形態5、図15において予測量インディケータ、予測量インディケータ駆動部の説明として記載されている。
 なお、実施形態9で述べた対比物理量インディケータと、対比物理量インディケータ駆動部をさらに設けて、図29に示すように、「現在時刻における目標レベルに対する物理量の大きさ」2901と、「終了時刻における目標レベルに対する予測物理量の大きさ」2902を同時に対比両用目盛にて示す構成も可能である。図29の例では、対比物理量インディケータにより「現在時刻における目標レベルに対する物理量の大きさ」2901を示す「対比両用目盛の範囲」と、対比予測量インディケータにより「終了時刻における目標レベルに対する予測物理量の大きさ」2902を示す「対比両用目盛の範囲」が一部重なっているため、重なった範囲(現在時刻における目標レベルに対する物理量の大きさ)と他の範囲のインディケータの表示方法(色、点灯・点滅、明るさ、模様など)を異ならせている。
 また、その他の例として、図30に示すように、対比予測量インディケータ駆動部が、「前記現在時刻が属する時間区分の終了時刻において前記指針の指す対比両用目盛の目盛位置」3001を終了時刻における目標レベルに対する予測物理量の大きさの原点位置とし、「現在時刻が属する時間区分の終了時刻からさらに同じ時間区分の長さだけ進めた時刻において前記指針の指す対比両用目盛の目盛位置」3002を終了時刻における予測物理量の目標レベルとして、前記対比予測量インディケータを駆動する構成も考えられる。なお、図30の例では、対比物理量インディケータと、対比予測量インディケータの表示方法(色、点灯・点滅、明るさ、模様など)を異ならせることによって、互いの領域にはみ出したとしても明確に区別可能である。
<具体的な構成>
 本実施形態の時計のハードウェア構成は、基本的に図5を用いて説明した実施形態1の時計のハードウェア構成と共通する。
 CPUは、水晶発振器からの信号に基づいて指針制御回路に対して所定タイミングで制御信号を送信する。制御信号を受け取った指針制御回路は指針駆動機構を介して指針を制御する。さらに、CPUは、通信器を介して電波時計情報を定期的に受信し(例えば、1日に6回など)、RAMにて保持される時刻情報を適宜修正し、指針の位置を調整する。なお、電波時計情報を受信していない間は、CPUのタイマを用いて時刻情報を更新する。
 また、CPUは、不揮発性メモリに格納されている3時間単位の各時間区分と関連付けられた発電量の目標レベルのデータをRAMに読み出す。CPUは、現在時刻が属する時間区分の終了時刻における消費電力量の目標レベルの値を上記データから取得する。具体的には、現在時刻(13時10分)が属する12時00分から15時00分までの時間区分の発電量の目標レベルが60kWhである場合は、その60kWhという値を取得する。
 CPUは、現在時刻が属する時間区分の開始時刻から現在時刻までの発電量を外部機器から通信器を介して受信する。当該受信処理は、前半の1時間半に関しては5分おきに行い、後半の1時間半に関しては2分おきに行う。さらに、CPUは、取得した発電量のデータに基づいて、開始時刻から終了時刻までの予測発電量を算出する処理を行い、処理結果をRAMに格納する。続いて、CPUは、算出された予測発電量の値と、終了時刻における目標レベルの値の比率を算出する処理を行い、処理結果をRAMに格納する。また、CPUは、現在時刻が属する時間区分の開始時刻において時針の指す対比両用目盛の目盛位置を目標レベルに対する予測発電量の大きさの原点位置として設定し、終了時刻において時針の指す対比両用目盛の目盛位置を予測発電量の目標レベルの目盛位置として設定する処理を行う。具体的には、12時00分において時針の指す対比両用目盛の目盛位置(12時の位置)を目標レベルに対する予測発電量の大きさの原点位置として設定し、終了時刻である15時00分において時針の指す対比両用目盛の目盛位置(15時の位置)を終了時刻における予測発電量の目標レベルの目盛位置として設定する処理を行う。
 そして、CPUは、算出された予測発電量の大きさに応じて、上記原点位置と上記目標レベルの目盛位置を基準として点灯させるべき発光要素数を決定する処理を行う。具体的には、開始時刻である12時00分から終了時刻である15時00分までの予測発電量が120kWhである場合は、点灯させるべき発光要素数は30個(15×120/60)であると決定する。さらに、CPUは、発光制御回路に対して、上記発光要素数の発光要素を上記原点位置から点灯させるための制御信号を出力する。制御信号を受信した発光制御回路は点灯させるべき発光要素を点灯させる。
<処理の流れ>
 図31は、本実施形態の時刻と後記目標レベルに対する物理量の大きさを示すための対比両用目盛を備え、時刻に応じて対比両用目盛を指すための指針を駆動する時計における処理の流れを示すフローチャートである。同図の処理の流れは以下のステップからなる。最初にステップS3101では、所定時間単位の各時間区分の物理量の目標レベルを取得する(目標レベル取得ステップ)。次にステップS3102では、現在時刻が属する時間区分の開始時刻から現在時刻までの物理量を、現在時刻が属する時間区分の終了時刻まで所定間隔で取得する(対比物理量取得ステップ)。次にステップS3103では、取得した物理量に基づいて現在時刻が属する時間区分の終了時刻の物理量を予測する(対比物理量予測ステップ)。次にステップS3104では、前記現在時刻が属する時間区分の開始時刻において前記指針の指す対比両用目盛の目盛位置を前記目標レベルに対する物理量の大きさの原点位置とし、現在時刻が属する時間区分の終了時刻において前記指針の指す対比両用目盛の目盛位置を現在時刻が属する時間区分の終了時刻における物理量の目標レベルの目盛位置として、予測した物理量の現在時刻が属する時間区分の終了時刻における目標レベルに対する大きさを対比両用目盛にて示すための対比予測量インディケータを駆動する(対比予測量駆動ステップ)。
<効果>
 本実施形態の時計により、現在時刻が属する時間区分の終了時刻において予測される物理量が目標レベルに対してどれくらいであるかを容易に把握することが可能になる。
0200…時計、0201…両用目盛、0202…指針、0203…指針駆動部、0204…物理量取得部、0205…物理量インディケータ、0206…物理量インディケータ駆動部、0501…CPU、0502…RAM、0503…ROM、0504…不揮発性メモリ、0505…水晶発振器、0506…指針制御回路、0507…指針駆動回路、0508…発光制御回路、0509…発光器、0510…通信器、0511…システムバス、0807…第一駆動手段、1008…第一判断手段、1009…第一色制御手段、1305…物理量予測部、1306…予測量インディケータ、1307…予測量インディケータ駆動部、1608…第二駆動手段、1808…第二判断手段、1809…第二色制御手段、2007…電力量取得手段、2207…外部情報取得部、2208…指針色情報保持部、2209…指針色制御手段、2401…対比両用目盛、2402…指針、2403…対比指針駆動部、2404…対比物理量取得部、2405…対比物理量インディケータ、2406…対比物理量インディケータ駆動部、2806…対比予測量インディケータ、2807…対比予測量インディケータ駆動部

Claims (16)

  1.  時刻と後記物理量を示すための両用目盛と、
     時刻に応じて両用目盛を指すための指針を駆動する指針駆動部と、
     所定時刻を起点とする物理量の情報を取得する物理量取得部と、
     前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、取得した物理量の大きさを両用目盛にて示すための物理量インディケータを駆動する物理量インディケータ駆動部と、
     を有する時計。
  2.  現在時刻において前記指針の指す両用目盛の目盛位置が現在時刻における物理量の目標レベルとなるような比率で物理量インディケータを駆動する第一駆動手段を有する請求項1に記載の時計。
  3.  物理量インディケータ駆動部は、
     前記物理量インディケータが前記目標レベルを示す両用目盛の目盛位置よりも大きな両用目盛の目盛位置を示すか否か判断する第一判断手段と、
     第一判断手段の判断に応じて物理量インディケータの色を制御する第一色制御手段と、
    をさらに有する請求項2に記載の時計。
  4.  時刻と後記物理量を示すための両用目盛と、
     時刻に応じて両用目盛を指すための指針を駆動する指針駆動部と、
     所定時刻を起点とする物理量の情報を取得する物理量取得部と、
     取得した物理量の情報に基づいて前記所定時刻から所定時間先の時刻の物理量を予測する物理量予測部と、
     前記所定時刻において前記指針が指す両用目盛の目盛位置を物理量の原点位置として、予測した物理量の大きさを両用目盛にて示すための予測量インディケータを駆動する予測量インディケータ駆動部と、
     を有する時計。
  5.  前記所定時間先の時刻において前記指針の指す両用目盛の目盛位置が前記所定時間先の時刻における物理量の目標レベルとなるような比率で予測量インディケータを駆動する第二駆動手段を有する請求項4に記載の時計。
  6.  予測量インディケータ駆動部は、
     前記予測量インディケータが前記目標レベルとなる両用目盛の目盛位置よりも大きな両用目盛の目盛位置を示すか否か判断する第二判断手段と、
     第二判断手段の判断に応じて予測量インディケータの色を制御する第二色制御手段と、
    をさらに有する請求項5に記載の時計。
  7.  物理量取得部は前記所定時刻から現在時刻までに消費された電力量を取得する電力量取得手段を有する請求項1から6のいずれか一に記載の時計。
  8.  外部情報を取得する外部情報取得部と、
     前記外部情報と前記指針の色とを関連付けた指針色情報を保持する指針色情報保持部と、をさらに有し、
     指針駆動部は、前記外部情報と指針色情報に基づいて前記指針の色を制御する指針色制御手段を有する請求項1から7のいずれか一に記載の時計。
  9.  前記指針は分針であることを特徴とする請求項1から8のいずれか一に記載の時計。
  10.  時刻と後記目標レベルに対する物理量の大きさを示すための対比両用目盛と、
     時刻に応じて対比両用目盛を指すための指針を駆動する対比指針駆動部と、
     所定時間単位の時間区分の物理量の目標レベルを取得する目標レベル取得部と、
     現在時刻が属する時間区分の開始時刻から現在時刻までの物理量を、現在時刻が属する時間区分の終了時刻まで所定間隔で取得する対比物理量取得部と、
     前記対比物理量取得部にて取得した物理量の現在時刻における目標レベルに対する大きさを対比両用目盛にて示すための対比物理量インディケータと、
     現在時刻が属する時間区分の開始時刻において前記指針の指す対比両用目盛の目盛位置を前記目標レベルに対する物理量の大きさの原点位置とし、現在時刻において前記指針の指す対比両用目盛の目盛位置を現在時刻における物理量の目標レベルの目盛位置として、前記対比物理量インディケータを駆動する対比物理量インディケータ駆動部と、
    を有する時計。
  11.  前記対比物理量インディケータは、対比両用目盛の各目盛位置に対応するように配置された発光要素であり、
     前記対比物理量インディケータ駆動部は、前記原点位置から現在時刻における目標レベルに対する物理量の大きさの目盛位置まで、前記発光要素を点灯させることを特徴とする請求項10に記載の時計。
  12.  前記対比物理量インディケータは、対比用目盛の各目盛位置に対応するように配置される発光要素であり、
     前記対比物理量インディケータ駆動部は、現在時刻における目標レベルに対する物理量の大きさの目盛位置から現在時刻が属する時間区分の終了時刻において前記指針の指す対比両用目盛の目盛位置まで、前記発光要素を点灯させることを特徴とする請求項10に記載の時計。
  13.  時刻と後記目標レベルに対する物理量の大きさを示すための対比両用目盛と、
     時刻に応じて対比両用目盛を指すための指針を駆動する対比指針駆動部と、
     所定時間単位の時間区分の物理量の目標レベルを取得する目標レベル取得部と、
     現在時刻が属する時間区分の開始時刻から現在時刻までの物理量を、現在時刻が属する時間区分の終了時刻まで所定間隔で取得する対比物理量取得部と、
     前記対比物理量取得部にて取得した物理量に基づいて現在時刻が属する時間区分の終了時刻の物理量を予測する対比物理量予測部と、
     前記対比物理量予測部にて予測した物理量の現在時刻が属する時間区分の終了時刻における目標レベルに対する大きさを対比両用目盛にて示すための対比予測量インディケータと、
     前記現在時刻が属する時間区分の開始時刻において前記指針の指す対比両用目盛の目盛位置を前記目標レベルに対する物理量の大きさの原点位置とし、現在時刻が属する時間区分の終了時刻において前記指針の指す対比両用目盛の目盛位置を現在時刻が属する時間区分の終了時刻における物理量の目標レベルの目盛位置として、前記対比予測量インディケータを駆動する対比予測量インディケータ駆動部と、
    を有する時計。
  14.  前記対比予測量インディケータは、対比両用目盛の各目盛位置に対応するように配置された発光要素であり、
     前記対比予測量インディケータ駆動部は、前記原点位置から現在時刻が属する時間区分の終了時刻において予測される物理量の目標レベルに対する大きさの目盛位置まで、前記発光要素を点灯させることを特徴とする請求項13に記載の時計。
  15.  前記対比物理量取得部は、現在時刻が属する時間区分の開始時刻から現在時刻までの消費電力量又は発電量又は売電量又は買電量を取得する電力量取得手段を有する請求項10から14のいずれか一に記載の時計。
  16.  目標レベル取得部は、通信回線又は操作入力機器から所定時間単位の各時間区分の物理量の目標レベルの入力を受け付けて記憶する入力記憶手段を有する請求項10から15に記載の時計。
PCT/JP2011/068913 2010-10-02 2011-08-23 時刻と物理量の両方を示すための目盛を備えた時計 WO2012043096A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DK11828657.4T DK2624079T3 (da) 2010-10-02 2011-08-23 Tidsmåler, der omfatter skala til at angive både tid og fysisk mængde
US13/581,706 US8976631B2 (en) 2010-10-02 2011-08-23 Timepiece comprising scale for denoting both time and physical quantity
ES11828657T ES2885756T3 (es) 2010-10-02 2011-08-23 Reloj que comprende escala para indicar tanto la hora como la cantidad física
RU2012137111/28A RU2012137111A (ru) 2010-10-02 2011-08-23 Часы, содержащие шкалу для обозначения времени и физической величины
CN201180009434.2A CN102763045B (zh) 2010-10-02 2011-08-23 具有用于表示时刻和物理量这两者的刻度盘的钟表
MX2012009656A MX2012009656A (es) 2010-10-02 2011-08-23 Reloj que comprende graduacion que denota tiempo y cantidad fisica.
BR112012022922-2A BR112012022922B1 (pt) 2010-10-02 2011-08-23 Relógio que indica tanto hora quanto quantidade física
KR1020127015785A KR101333343B1 (ko) 2010-10-02 2011-08-23 시각과 물리량 모두를 나타내기 위한 눈금을 포함하는 시계
JP2012502346A JP5493237B2 (ja) 2011-08-23 2011-08-23 時刻と物理量の両方を示すための目盛を備えた時計
EP11828657.4A EP2624079B1 (en) 2010-10-02 2011-08-23 Timepiece comprising scale for denoting both time and physical quantity
TW100133362A TWI451214B (zh) 2010-10-02 2011-09-16 A watch having a scale for representing both the time and the physical quantity
HK13105126.1A HK1178269A1 (en) 2010-10-02 2013-04-27 Timepiece comprising scale for denoting both time and physical quantity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010224434A JP4775749B1 (ja) 2010-10-02 2010-10-02 時計
JP2010-224434 2010-10-02

Publications (1)

Publication Number Publication Date
WO2012043096A1 true WO2012043096A1 (ja) 2012-04-05

Family

ID=44798038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068913 WO2012043096A1 (ja) 2010-10-02 2011-08-23 時刻と物理量の両方を示すための目盛を備えた時計

Country Status (13)

Country Link
US (1) US8976631B2 (ja)
EP (1) EP2624079B1 (ja)
JP (1) JP4775749B1 (ja)
KR (1) KR101333343B1 (ja)
CN (1) CN102763045B (ja)
BR (1) BR112012022922B1 (ja)
DK (1) DK2624079T3 (ja)
HK (1) HK1178269A1 (ja)
MX (1) MX2012009656A (ja)
PT (1) PT2624079T (ja)
RU (1) RU2012137111A (ja)
TW (1) TWI451214B (ja)
WO (1) WO2012043096A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150085622A1 (en) * 2013-09-23 2015-03-26 Withings Strap Watch With Extended Features
JP2018083067A (ja) * 2013-01-17 2018-05-31 ガーミン スウィッツァランド ゲーエムベーハー フィットネスモニター
JP2018107600A (ja) * 2016-12-26 2018-07-05 株式会社TeNKYU 通知システム、情報通知装置、情報通知方法及び情報通知プログラム
JP2018112503A (ja) * 2017-01-13 2018-07-19 セイコーインスツル株式会社 時計および時計の制御方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335060B1 (en) 2010-06-19 2019-07-02 Dp Technologies, Inc. Method and apparatus to provide monitoring
US9192326B2 (en) 2011-07-13 2015-11-24 Dp Technologies, Inc. Sleep monitoring system
JP5493237B2 (ja) * 2011-08-23 2014-05-14 日本テクノ株式会社 時刻と物理量の両方を示すための目盛を備えた時計
US9459597B2 (en) 2012-03-06 2016-10-04 DPTechnologies, Inc. Method and apparatus to provide an improved sleep experience by selecting an optimal next sleep state for a user
US10791986B1 (en) 2012-04-05 2020-10-06 Dp Technologies, Inc. Sleep sound detection system and use
CN103582849B (zh) * 2012-05-31 2016-12-28 日本特科诺能源管理咨询有限公司 能够一体地表示时刻和物理量的时钟
JP6072505B2 (ja) * 2012-10-23 2017-02-01 セイコークロック株式会社 時計、情報表示装置、情報表示方法、及び情報表示プログラム
JP5876814B2 (ja) * 2012-11-12 2016-03-02 東京瓦斯株式会社 エネルギー消費量表示装置、エネルギー消費量表示方法
US9474876B1 (en) 2012-12-14 2016-10-25 DPTechnologies, Inc. Sleep aid efficacy
PT2937743T (pt) 2012-12-21 2019-11-18 Nihon Techno Co Ltd Dispositivo de visualização de alvo de consumo de energia elétrica
US9594354B1 (en) * 2013-04-19 2017-03-14 Dp Technologies, Inc. Smart watch extended system
CN104915161A (zh) * 2014-03-10 2015-09-16 联想(北京)有限公司 一种信息处理方法及电子设备
US20170370974A1 (en) * 2014-10-07 2017-12-28 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for providing sound data for generation of audible notification relating to power consumption
US20160103425A1 (en) * 2014-10-14 2016-04-14 Big H Ventures, LLC. Computer Implemented Method and System, and Computer Program Product, for Displaying an Intentionally Inaccurate Count of Time
US11883188B1 (en) 2015-03-16 2024-01-30 Dp Technologies, Inc. Sleep surface sensor based sleep analysis system
TWI584087B (zh) * 2015-03-20 2017-05-21 環鴻科技股份有限公司 可測體溫之智慧錶
US10030994B2 (en) 2015-05-21 2018-07-24 Garmin Switzerland Gmbh Analog wellness device
US9639064B2 (en) * 2015-09-18 2017-05-02 Timex Group Usa, Inc. Wearable electronic device with hand synchronization
JP6292219B2 (ja) * 2015-12-28 2018-03-14 カシオ計算機株式会社 電子機器、表示制御方法及びプログラム
CN108762050B (zh) * 2018-04-08 2020-04-17 天芯智能(深圳)股份有限公司 一种指针式智能手表的显示方法及装置
US11382534B1 (en) 2018-10-15 2022-07-12 Dp Technologies, Inc. Sleep detection and analysis system
CN111258206A (zh) * 2020-03-24 2020-06-09 江苏乐芯智能科技有限公司 一种手表
CN111221239A (zh) * 2020-03-24 2020-06-02 江苏乐芯智能科技有限公司 一种手表的显示方法
CN111505930A (zh) * 2020-04-15 2020-08-07 江苏乐芯智能科技有限公司 一种手表
CN111505928A (zh) * 2020-04-15 2020-08-07 江苏乐芯智能科技有限公司 一种手表信号强度的显示方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210172A (en) * 1975-07-15 1977-01-26 Isamu Ikegame Watch with calculating device
JPH08226982A (ja) 1995-02-21 1996-09-03 Kudan Zeminaale:Kk カウントダウン時計
JP2000193695A (ja) * 1998-12-28 2000-07-14 Energy Conservation Center Japan 電力使用状態監視方法及びその装置
JP2003256967A (ja) * 2002-02-27 2003-09-12 Daiwa House Ind Co Ltd エネルギーデータ管理システム及びエネルギーデータ管理装置,エネルギーデータ管理方法並びにエネルギーデータ管理プログラム
JP2009085935A (ja) 2007-09-28 2009-04-23 Sadami Ishibashi 目標値の経過数値をリアルタイムに表示する目標表示時計
JP4635109B1 (ja) * 2010-07-30 2011-02-23 日本テクノ株式会社 略全面がディスプレイ機能を有する時刻表示用文字盤を備えた時計

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312056A (en) * 1979-01-17 1982-01-19 Citizen Watch Company Limited Composite display type electronic timepiece
EP0195636B1 (en) * 1985-03-19 1991-07-10 Citizen Watch Co. Ltd. Wristwatch with pressure sensor
US4995015A (en) * 1988-02-22 1991-02-19 Telux-Pioneer, Inc. Diver's watch with depth gauge
FR2815729B1 (fr) * 2000-10-24 2003-03-28 Isa France Sa Dispositif d'indication de l'etat de piles, destine a equiper une montre
JP2002221580A (ja) * 2001-01-25 2002-08-09 Masaji Yoshida レム睡眠表示盤、レム睡眠表示盤付き時計、レム睡眠表示盤ソフトウェア、レム睡眠表示盤付き時計ソフトウェア及びレム睡眠グラフ
JP3556601B2 (ja) * 2001-02-01 2004-08-18 コナミ株式会社 携帯装置及び方法
US20030138679A1 (en) * 2002-01-22 2003-07-24 Ravi Prased Fuel cartridge and reaction chamber
MXPA02003689A (es) * 2002-03-01 2004-04-05 Fossil Inc Dispositivo de relojeria mejorado.
JP2004012148A (ja) * 2002-06-03 2004-01-15 Daiwa House Ind Co Ltd エネルギーデータ管理システム、エネルギーデータ管理装置、エネルギーデータ管理方法並びにエネルギーデータ管理プログラム
DE60234691D1 (de) * 2002-09-04 2010-01-21 Asulab Sa Elektronische Taucheruhr mit Analoganzeige
US6842402B2 (en) * 2002-09-04 2005-01-11 Asulab S.A. Electronic diving watch with analog display
JP2004271259A (ja) * 2003-03-06 2004-09-30 Casio Comput Co Ltd 時計モジュール
US7035170B2 (en) * 2003-04-29 2006-04-25 International Business Machines Corporation Device for displaying variable data for small screens
US7113450B2 (en) * 2003-05-20 2006-09-26 Timex Group B.V. Wearable electronic device with multiple display functionality
US7362662B2 (en) * 2003-08-04 2008-04-22 Lang Timothy R Color timepiece
EP1571506A1 (fr) * 2004-03-03 2005-09-07 ETA SA Manufacture Horlogère Suisse Dispositif électronique à affichage analogique de l'historique d'au moins une grandeur mesurée par un capteur
CH705956B1 (fr) * 2005-06-23 2013-07-15 Lvmh Swiss Mft Sa Dispositif d'affichage de symboles numériques ou alphanumériques.
DE602005023977D1 (de) * 2005-07-29 2010-11-18 Eta Sa Mft Horlogere Suisse Elektronische Taucheruhr mit einer analogen redundanten Anzeige der momentanen Tiefe
EP1850194A1 (fr) * 2006-04-25 2007-10-31 Piguet, Frédéric Montre de plongée
WO2008013299A1 (fr) * 2006-07-27 2008-01-31 Citizen Holdings Co., Ltd. Dispositif électronique
US20090201772A1 (en) * 2006-12-19 2009-08-13 Billeaudeaux Michael A Systems and methods for providing time using colors
JP5157328B2 (ja) * 2006-12-21 2013-03-06 セイコーエプソン株式会社 指針式表示装置
JP5098382B2 (ja) * 2007-03-14 2012-12-12 セイコーエプソン株式会社 発電機能付き電子時計
JP2009115392A (ja) * 2007-11-07 2009-05-28 Electric Power Dev Co Ltd 省エネルギー制御システム
EP2075654B1 (fr) * 2007-12-27 2011-03-09 ETA SA Manufacture Horlogère Suisse Dispositif électronique portable destiné à afficher la valeur de variables à partir de mesures efffectuées par un capteur et présentant une fonction historique
US7515508B1 (en) * 2008-03-12 2009-04-07 Timex Group B.V. Indicator assembly for a wearable electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210172A (en) * 1975-07-15 1977-01-26 Isamu Ikegame Watch with calculating device
JPH08226982A (ja) 1995-02-21 1996-09-03 Kudan Zeminaale:Kk カウントダウン時計
JP2000193695A (ja) * 1998-12-28 2000-07-14 Energy Conservation Center Japan 電力使用状態監視方法及びその装置
JP2003256967A (ja) * 2002-02-27 2003-09-12 Daiwa House Ind Co Ltd エネルギーデータ管理システム及びエネルギーデータ管理装置,エネルギーデータ管理方法並びにエネルギーデータ管理プログラム
JP2009085935A (ja) 2007-09-28 2009-04-23 Sadami Ishibashi 目標値の経過数値をリアルタイムに表示する目標表示時計
JP4635109B1 (ja) * 2010-07-30 2011-02-23 日本テクノ株式会社 略全面がディスプレイ機能を有する時刻表示用文字盤を備えた時計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2624079A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083067A (ja) * 2013-01-17 2018-05-31 ガーミン スウィッツァランド ゲーエムベーハー フィットネスモニター
US20150085622A1 (en) * 2013-09-23 2015-03-26 Withings Strap Watch With Extended Features
US10444709B2 (en) * 2013-09-23 2019-10-15 Withings Strap watch with extended features
JP2018107600A (ja) * 2016-12-26 2018-07-05 株式会社TeNKYU 通知システム、情報通知装置、情報通知方法及び情報通知プログラム
JP2018112503A (ja) * 2017-01-13 2018-07-19 セイコーインスツル株式会社 時計および時計の制御方法
JP7016216B2 (ja) 2017-01-13 2022-02-04 セイコーインスツル株式会社 時計および時計の制御方法

Also Published As

Publication number Publication date
RU2012137111A (ru) 2014-11-20
CN102763045B (zh) 2014-10-01
JP2012083107A (ja) 2012-04-26
US8976631B2 (en) 2015-03-10
DK2624079T3 (da) 2021-09-20
EP2624079A4 (en) 2016-09-07
KR101333343B1 (ko) 2013-11-28
BR112012022922B1 (pt) 2021-07-13
BR112012022922A2 (pt) 2018-06-05
TW201232205A (en) 2012-08-01
JP4775749B1 (ja) 2011-09-21
US20130286793A1 (en) 2013-10-31
TWI451214B (zh) 2014-09-01
EP2624079A1 (en) 2013-08-07
HK1178269A1 (en) 2013-09-06
PT2624079T (pt) 2021-09-02
KR20120087176A (ko) 2012-08-06
EP2624079B1 (en) 2021-06-30
CN102763045A (zh) 2012-10-31
MX2012009656A (es) 2012-09-07

Similar Documents

Publication Publication Date Title
WO2012043096A1 (ja) 時刻と物理量の両方を示すための目盛を備えた時計
JP4895659B2 (ja) 電子式電力量計
US20100328314A1 (en) Methods, apparatus and system for energy conservation
EP0632351B1 (en) Electronic applicance equipped with sensor capable of visually displaying sensed data
KR101441347B1 (ko) 시각과 물리량을 일체적으로 나타내는 것이 가능한 시계
JP2001522038A (ja) エネルギー消費を測定し且つ表示するための装置及び方法及び該装置を目盛り定めするための方法
CN104698826B (zh) 用于显示计时操作期间的趋势的方法以及相关的钟表
JP6891913B2 (ja) 電子表示装置及び表示制御方法
JP6795313B2 (ja) 電子時計及び付加機能制御システム
JP5493237B2 (ja) 時刻と物理量の両方を示すための目盛を備えた時計
CN108762050B (zh) 一种指针式智能手表的显示方法及装置
JP2006006082A (ja) 電力表示装置及び電力料金換算方法
ES2885756T3 (es) Reloj que comprende escala para indicar tanto la hora como la cantidad física
CN108762038B (zh) 一种指针式智能手表的指示方法及装置
JP6323353B2 (ja) 時計
CN108717255B (zh) 一种指针式智能手表的控制方法及装置
CN203299555U (zh) 一种设有日历显示装置的新型防水机械表
JP3173051B2 (ja) 天気予報装置
JP2005172673A (ja) 電子式電力量計
JP2004251887A (ja) 電子機器及びダイバーズ用情報処理装置
US20070297291A1 (en) Maintenance panel for a generator
JP2022045545A (ja) 報知制御装置、時計、報知制御方法、およびプログラム
JP2013185885A (ja) アナログ表示装置
WO2020118379A1 (en) A secondary indication
JP2001183400A (ja) 時間帯表示装置および電子式電力量計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009434.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012502346

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828657

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011828657

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011828657

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127015785

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7143/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/009656

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13581706

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012137111

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012022922

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012022922

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120911