WO2012043023A1 - 成分測定装置 - Google Patents

成分測定装置 Download PDF

Info

Publication number
WO2012043023A1
WO2012043023A1 PCT/JP2011/066371 JP2011066371W WO2012043023A1 WO 2012043023 A1 WO2012043023 A1 WO 2012043023A1 JP 2011066371 W JP2011066371 W JP 2011066371W WO 2012043023 A1 WO2012043023 A1 WO 2012043023A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
irradiation light
lens
irradiation
measurement
Prior art date
Application number
PCT/JP2011/066371
Other languages
English (en)
French (fr)
Inventor
森田孝司
長澤靖
村山正美
長岡芳雄
泉永記
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2012536264A priority Critical patent/JP5860810B2/ja
Priority to EP11828584.0A priority patent/EP2623961B1/en
Priority to US13/824,017 priority patent/US9410884B2/en
Priority to CN201180046015.6A priority patent/CN103119422B/zh
Publication of WO2012043023A1 publication Critical patent/WO2012043023A1/ja
Priority to HK13111923.4A priority patent/HK1184540A1/xx

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2513/00Dynamic entities; Timing aspects
    • B65H2513/40Movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/40Sensing or detecting means using optical, e.g. photographic, elements
    • B65H2553/41Photoelectric detectors
    • B65H2553/414Photoelectric detectors involving receptor receiving light reflected by a reflecting surface and emitted by a separate emitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Definitions

  • the present invention relates to a component measuring apparatus for optically measuring a biological component in a body fluid.
  • a component measuring device is used when detecting a biological component in a body fluid such as blood and urine and optically measuring the amount and property of the component.
  • a diffused light reflection reading pad disclosed in Japanese Patent Application Laid-Open No. 09-145614 is a device for detecting glucose in blood, and light (irradiated light) is irradiated from an irradiation means to a reagent test pad colored by blood. Irradiated and the light reflected by the reagent test pad is incident on the optical sensor to detect glucose in the blood.
  • an aperture is usually provided to adjust the irradiation area and the amount of light of the irradiation light.
  • the diffused light reflecting read head disclosed in Japanese Patent Laid-Open No. 09-145614 is provided with an irradiation port through which the light from the LED passes.
  • the irradiation port functions as an aperture that makes light a spot having an appropriate size (area) and intensity (light quantity).
  • some component measuring devices include a device in which a lens for condensing and irradiating irradiation light to a measurement target is provided. Also in this case, it is necessary to install an aperture for adjusting the spot shape of the irradiation light and reducing stray light. That is, the component measuring device adjusts the aperture (area and light amount) of the irradiation light by the aperture provided on the optical path of the irradiation light, and thereby the focal position of the irradiation light is adjusted to be in front of the measurement target and condensed.
  • the distance and angle between the lens and the measurement target are, for example, rattling of the apparatus, arrangement error of the measurement target, etc.
  • the amount of irradiation light applied to the measurement object fluctuates, which causes variations in the accuracy of component measurement.
  • the present invention has been made in view of the above-described problems, and with a simple configuration, irradiation light having a desired amount of light can be irradiated within a predetermined range of a measurement target, thereby improving the accuracy of component measurement. And it aims at providing the component measuring device which can reduce the number of parts and can reduce the manufacturing cost of an apparatus.
  • the present invention has a measuring unit that collects and irradiates measurement light through a lens for irradiation light and receives reflected light from the measurement object.
  • a component measurement device that measures a component of a liquid absorbed by the measurement object based on a detection result of the reflected light, wherein the irradiation light lens has a focal position of the irradiation light that is greater than an arrangement position of the measurement object. Is also provided in the measurement unit so as to be located far away.
  • the focal position of the irradiation light is positioned farther than the measurement target, for example, the distance between the irradiation light lens and the measurement target due to the rattling of the apparatus, the placement error of the measurement target, etc.
  • the change in the amount of irradiation light becomes gentler than in the case where the focal position of the irradiation light lens is set closer to the measurement object. For this reason, the irradiation light of the stable light quantity will be irradiated in the predetermined range of a measuring object, and measurement accuracy can be stabilized.
  • the measurement unit includes a light emitting element that emits the irradiation light, and the light emitting element is disposed to face the irradiation light lens, and the irradiation light is used for the irradiation light from the arrangement position of the light emitting element.
  • a photometric block having an optical path for irradiation light penetrating to the lens arrangement position.
  • the irradiation light emitted from the light emitting element can be guided to the lens through the optical path for the irradiation light.
  • an interval from the light emitting element to the irradiation light lens may be set to be equal to an interval from the irradiation light lens to the measurement object.
  • the lens for irradiation light is unevenly distributed toward the light emitting element or the measurement object, if an error in arrangement occurs, the influence on measurement is strongly exerted.
  • the effect on the measurement can be reduced by arranging them in a row.
  • stray light guiding means for guiding stray light reflected on the inner peripheral surface of the irradiation light optical path to the outside of the measurement range of the measurement object via the irradiation light lens in the irradiation light optical path of the photometry block May be provided.
  • the stray light guiding means by providing the stray light guiding means, the stray light reflected by the inner peripheral surface of the irradiation light optical path can be guided outside the measurement range of the measurement target, and the measurement unit receives the reflected light. It becomes possible to reduce the stray light contained in. Thereby, the measurement part can receive the reflected light which consists of the stable light quantity which does not contain a stray light, and can perform the component measurement of a measuring object accurately.
  • the inner peripheral surface of the irradiation light optical path may be formed in a cylindrical shape, and the stray light guiding means may be formed in a female screw shape.
  • the optical path for irradiation light can be formed using a male screw for molding at the time of molding the photometric block. Therefore, the trouble of forming the photometric block molding die in a complicated manner is reduced, and the photometric block can be easily molded.
  • the inner peripheral surface of the irradiation light optical path may be formed in a tapered shape that decreases in diameter toward the irradiation light lens.
  • the inner peripheral surface of the irradiation light optical path is formed in a tapered shape, when the irradiation light optical path of the photometry block is formed into a female screw shape, it can be easily removed by turning the male screw for molding. Can do. As a result, the work of forming the photometric block can be made more efficient.
  • the stray light guiding means is formed by continuously forming uneven portions on the inner peripheral surface of the irradiation light optical path, and the angle of the surface of the convex portion on the light emitting element side of the uneven portions is determined by the stray light. Is preferably set so as not to enter the lens for irradiation light. As described above, the angle of the surface of the convex portion on the light emitting element side is set so that the stray light does not enter the irradiation light lens, so that the stray light reflected by the irradiation light optical path is condensed by the irradiation light lens. It will not be done. For this reason, it can prevent more reliably that stray light is contained in the reflected light which a measurement part receives.
  • a plurality of the light emitting elements may be arranged to face one irradiation light lens.
  • one irradiation light lens for a plurality of light emitting elements, it is possible to measure an irradiation light lens having a larger planar area than a plurality of light emitting elements corresponding to each light emitting element. Can be provided. According to this irradiation light lens, it is possible to capture a large amount of irradiation light and focus and irradiate the measurement target, thereby further improving the accuracy of component measurement.
  • the measurement unit may include a light receiving element that receives the reflected light
  • the irradiation light lens may be integrally formed with a reflected light lens that collects the reflected light on the light receiving element.
  • the photometric block has an optical path for reflected light penetrating from an arrangement position of the reflected light lens to an arrangement position of the light receiving element. As a result, it is not necessary to separately provide an optical path for reflected light, and the manufacturing cost can be reduced.
  • the present invention it is possible to irradiate irradiation light having a desired light amount within a predetermined range of a measurement target with a simple configuration, improve the accuracy of component measurement, and reduce the number of parts, thereby manufacturing the apparatus. Cost can be greatly reduced.
  • FIG. 5 is a cross-sectional view taken along line VV of the blood sugar level measuring apparatus shown in FIG.
  • disassembled perspective view which shows the measurement part of the blood glucose level measuring apparatus which concerns on embodiment of this invention.
  • It is a rear view of the measurement part of the blood glucose level measuring apparatus shown in FIG. It is side surface sectional drawing of the measurement part of the blood glucose level measuring apparatus shown in FIG. FIG.
  • FIG. 6 is a cross-sectional plan view of a measurement unit of the blood sugar level measuring apparatus shown in FIG. 5. It is explanatory drawing which shows the state which actually detects a blood component with the blood glucose level measuring apparatus which concerns on this Embodiment. It is explanatory drawing which shows typically the irradiation state of the irradiation light of a measurement part, FIG. 11A shows the irradiation state of the measurement part which concerns on this Embodiment, and FIG. 11B is the irradiation state of the conventional measurement part provided with the aperture Is shown. 12A is an explanatory view showing the irradiation state of the irradiation light of FIG. 11A, FIG.
  • FIG. 12B is an explanatory view showing the irradiation state of the irradiation light of FIG. 11B
  • It is an expanded sectional view showing typically the optical path for irradiation light concerning this embodiment. It is a graph which shows the relationship between the irradiation range of the irradiation light irradiated in the optical path for irradiation light of FIG. 13, and light quantity.
  • a blood sugar level measuring apparatus that mainly measures blood sugar levels among blood components will be described in detail as a component measuring apparatus.
  • This blood glucose level measuring device is a device in which a doctor, a nurse, a diabetic patient, or the like collects blood, measures the blood glucose level, and manages the measurement data of the blood glucose level.
  • the component measuring device is not limited to the blood glucose level measuring device.
  • FIG. 1 is a perspective view showing the overall configuration of a blood glucose level measuring apparatus (component measuring apparatus) according to an embodiment of the present invention
  • FIG. 2 is a side view of the apparatus
  • FIG. 3 is a front view of the apparatus
  • FIG. 4 is an exploded perspective view of the apparatus
  • FIG. 5 is a side sectional view taken along line VV of FIG.
  • the blood sugar level measuring apparatus 10 has a casing 12 that constitutes an external appearance, and this casing 12 can be easily operated by one person holding the operation switch 14 with one hand. Furthermore, it is formed in a three-dimensional shape that is slightly elongated and fits the hand.
  • the housing 12 includes an upper case 16, a lower case 18, and a tip case 20, and the upper case 16 and the lower case 18 are stacked one above the other and at the tips of the upper case 16 and the lower case 18.
  • the tip case 20 is assembled and attached.
  • the housing 12 is provided with a display unit 22 for displaying information items necessary for blood glucose measurement, confirmation items, measurement results, and the like, and an operation unit 24 including two operation switches 14. Yes.
  • a liquid crystal cover 28 is fitted into an opening window 26 formed in the upper case 16 in the display unit 22 of the blood sugar level measuring apparatus 10, and a liquid crystal panel 30 is placed under the liquid crystal cover 28.
  • a front panel 32 formed in an appropriate size is attached to the upper surface of the upper case 16 so as to cover the liquid crystal cover 28 and the two operation switches 14.
  • two operation switches 14 are respectively inserted into insertion holes 34 provided on the upper surface of the upper case 16, and various operations such as an on / off operation of the blood glucose level measuring apparatus 10 are performed via these operation switches 14. Is possible.
  • a liquid crystal panel 30 of the display unit 22 and a main wiring board 36 for controlling the blood glucose level measuring device 10 are disposed on the back side (inside the housing 12) of the upper case 16 provided with the display unit 22 and the operation unit 24. Has been.
  • On the main wiring board 36 an electric circuit formed in a predetermined shape is provided by printed wiring or the like.
  • the main wiring board 36 is mounted with a microcomputer for executing a predetermined process set in advance, a storage device such as a ROM and a RAM in which a predetermined program is stored, a capacitor, a resistor, and other electronic components. (Both not shown).
  • a battery storage unit 38 is provided on the upper surface side of the lower case 18 (inside the housing 12).
  • the battery storage unit 38 stores a button type battery 40 as a portable power source.
  • the battery housing portion 38 is covered with a battery lid 42 that can be attached to and detached from the lower case 18 so as to be opened and closed.
  • the blood glucose level measuring apparatus 10 controls the main wiring board 36 or the like, or displays the display unit 22 by the power of the button-type battery 40.
  • the power source used in the blood glucose level measuring apparatus 10 is not limited to the button type battery, and may be configured to be connected to a round battery, a square battery, a secondary battery, or an external power source via a power cord. .
  • the casing 12 in which the upper case 16 and the lower case 18 are overlapped is formed so as to taper from the intermediate portion to the tip portion and bend toward the lower case 18 as a whole.
  • the tip case 20 is attached to the tip portion, and is configured as a housing of the measurement unit 50 that detects blood.
  • a long hole 46 for guiding the movement of the eject operator 44 is provided near the tip of the upper surface of the upper case 16 (see FIG. 4).
  • the long hole 46 extends linearly by a predetermined length in the front-rear direction of the housing 12, and the leg portion 44a of the eject operator 44 is slidably inserted (see FIG. 5).
  • An eject member 48 is screwed to the leg portion 44 a inside the housing 12. That is, the eject operator 44 can manipulate the sliding of the eject member 48.
  • the tip case 20 includes a rectangular tube portion 52 attached to the upper case 16 and the lower case 18, and a cylindrical portion 54 formed on the distal end side of the rectangular tube portion 52.
  • Various members for optically measuring blood are attached to the inside of the rectangular tube portion 52.
  • the cylindrical portion 54 has an open front end surface, and a measuring chip 58 is detachably attached to the opening 56.
  • the measurement chip 58 includes a base portion 60 formed in a disc shape, a nozzle 62 formed on the tip surface side of the base portion 60, and an engagement portion 64 formed on the opposite surface side of the nozzle 62.
  • the base portion 60 is formed so that the outer diameter substantially matches the outer diameter of the cylindrical portion 54.
  • a nozzle 62 is erected in the center of the base portion 60.
  • the nozzle 62 has a sampling hole 62a penetrating from the tip surface to the back surface on the central axis (see FIG. 5). Further, a concave groove 62b for facilitating blood absorption is provided on the tip surface of the nozzle 62 (see FIG. 3).
  • the engaging portion 64 of the measuring chip 58 is formed in a cylindrical shape and has an outer diameter that fits into the opening 56 of the cylindrical portion 54.
  • the engaging portion 64 is formed so that four locking claws (locking portions) 66 having elastic force protrude rearward.
  • Each locking claw 66 is formed with a convex portion 66a that engages with a protrusion 54a formed in the cylindrical portion 54 when inserted into the cylindrical portion 54, and this convex portion 66a is formed on the protruding portion 54a.
  • the measurement tip 58 can be attached to the cylindrical portion 54 (see FIG. 8).
  • a test paper container 68 that communicates with the sampling hole 62a is provided inside the engaging portion 64.
  • the test paper storage unit 68 stores a test paper (measuring object) 70 into which blood is permeated when blood is collected.
  • the blood glucose level measuring apparatus 10 measures the blood component by irradiating the test paper 70 with irradiation light and receiving the reflected light from the test paper 70.
  • FIG. 6 is an exploded perspective view showing the measurement unit 50 of the blood glucose level measuring apparatus 10 according to the embodiment of the present invention
  • FIG. 7 is a rear view of the measurement unit 50
  • FIG. 8 is a side sectional view of the measurement unit 50
  • FIG. 9 is a plan sectional view of the measurement unit 50.
  • the measuring unit 50 of the blood sugar level measuring apparatus 10 is a part that optically measures blood components collected on the measuring chip 58.
  • the measurement unit 50 includes a tip case 20, a photometric block 72, a substrate 74, an eject member 48, and the like.
  • the tip case 20 includes the rectangular tube portion 52 and the cylindrical portion 54, and is attached to the tip portion of the casing 12 in which the upper case 16 and the lower case 18 are overlapped.
  • the tip case 20 is formed of synthetic resin such as ASB resin or polycarbonate, for example.
  • the photometric block 72 is a member that holds a substrate 74 that detects blood components and is attached to the inside of the tip case 20.
  • the photometric block 72 can be formed of the same material as that of the distal end case 20 and includes a flat base end portion 76 and a projecting portion 78 projecting from the proximal end portion 76 in the distal end direction.
  • the base end portion 76 of the photometric block 72 has a protrusion 78 formed on the front surface and a substrate placement portion 80 on the rear surface.
  • the substrate placement portion 80 is formed in a flat shape on which the substrate 74 can be placed, and the substrate placement portion 80 is provided with a positioning projection 80a for positioning the substrate 74 in a substantially central portion.
  • the positioning protrusion 80a penetrates the substrate 74 and is interposed between a light emitting element 100 and a light receiving element 102, which will be described later, to prevent direct light propagation from the light emitting element 100 to the light receiving element 102.
  • two screw holes 82 for attachment are formed in the base end portion 76 (see FIG. 7).
  • the photometric block 72 is inserted into the mounting screw hole 82 from behind, and is fixed to the tip case 20 by being screwed to a mounting female screw (not shown) formed in the tip case 20. It is attached.
  • the projecting portion 78 of the photometric block 72 is formed in an eccentric cylindrical body whose both side surfaces are linear and whose upper and lower surfaces are arcuate.
  • a protrusion-side opening 86 is formed on the front surface of the protrusion 78, and a lens 88 is attached to the protrusion-side opening 86.
  • the lens 88 attached to the photometry block 72 is an integral type in which an irradiation light lens 88a is formed on the upper side and a reflected light lens 88b is formed on the lower side.
  • the lens 88 is fitted in the protruding portion side opening 86 by fitting the O-ring 90 on the side peripheral surface thereof, so that the protruding portion side opening 86 is sealed by the lens 88.
  • the substrate 74 of the measurement unit 50 is formed in a shape that can be arranged on the substrate arrangement unit 80, and substrate side screw holes 92 are formed at predetermined locations (two locations) of the substrate 74.
  • the board 74 is disposed in the photometry block 72 by inserting a board screw 94 from behind into the board side screw hole 92 and screwing it into a board fixing hole 96 formed in the board placement portion 80. (See FIG. 7).
  • the substrate 74 has two light emitting elements 100 (first light emitting element 100a and second light emitting element 100b: see FIG. 9) that irradiate irradiation light on the surface facing the substrate arrangement portion 80, and light reception that receives reflected light.
  • the element 102 and various electronic components necessary for detecting blood components are mounted.
  • a light emitting diode (LED) that emits light of a predetermined wavelength can be applied as the light emitting element 100 that irradiates irradiation light
  • PD photodiode
  • the light emitting element 100 and the light receiving element 102 that do not have a shell-shaped exterior (transmitter) are mounted on the substrate 74, thereby reducing the size of the substrate 74 and the size of the blood glucose level measuring device 10. Has been realized.
  • the light emitting element 100 and the light receiving element 102 are arranged toward the substrate arrangement portion 80.
  • two openings irradiation light substrate side opening 104 and reflected light substrate side opening 1066 are formed in the substrate placement portion 80 of the photometry block 72.
  • the light emitting element 100 enters the irradiation light substrate side opening 104 and the light receiving element 102 enters the reflected light substrate side opening 106.
  • the irradiation light substrate side opening 104 communicates with the irradiation light optical path 108
  • the reflected light substrate side opening 106 communicates with the reflection light optical path 110.
  • the irradiation light optical path 108 and the reflected light optical path 110 pass through the inside of the base end portion 76 and the protruding portion 78, respectively, and communicate with the protruding portion side opening 86 on the distal end side.
  • the blood glucose level measuring apparatus 10 can reduce the number of components and reduce the manufacturing cost by forming both the irradiation light optical path 108 and the reflected light optical path 110 in the photometry block 72. It becomes.
  • the light emitting element 100 is on the proximal end side of the irradiation light optical path 108, and the irradiation light emitted from the light emitting element 100 is transmitted from the irradiation light optical path 108 to the lens 88. Then, the test paper 70 can be irradiated through the lens 88.
  • the light receiving element 102 is on the base end side of the reflected light optical path 110 and receives reflected light reflected from the test paper 70 via the lens 88 and the reflected light optical path 110.
  • a partition wall 112 protruding rearward from the substrate placement portion 80 is formed on the rear surface of the base end portion 76 of the photometric block 72 according to the present embodiment.
  • the partition 112 is formed so as to surround the entire rear surface of the photometry block 72 and to protrude rearward from the substrate 74 in a state where the substrate 74 is disposed in the substrate placement portion 80. It has the function of preventing liquid contact and dust adhesion.
  • a clearance 114 is formed between the inner peripheral surface of the tip case 20 and the side surface of the projecting portion 78 of the photometric block 72.
  • An eject member 48 is slidably disposed in the clearance 114.
  • the ejecting member 48 of the measuring unit 50 includes an extruding part 116 formed on the tip side, and a sliding plate 118 to which the extruding part 116 is fixed and slidable by a predetermined distance. It is the composition which includes.
  • the extruding portion 116 is formed in an arc shape in which a cylindrical lower portion is cut out by a predetermined amount.
  • the sliding plate 118 is formed in a flat plate shape extending backward from the pushing portion 116.
  • the sliding plate 118 has a central portion cut out in the longitudinal direction, and a spring projection 120 is formed at the rear end of the cutout portion 118a.
  • an eject member side screw hole 124 is formed in the rear portion of the sliding plate 118 so as to be screwed into the leg portion 44a of the eject operation element 44 by an eject screw 122 (see FIG. 5).
  • the tip case 20 is formed with an eject member placement portion 126 that houses the tip side of the eject member 48.
  • the eject member placement portion 126 is formed on the upper side in the rectangular tube portion 52, and includes support pieces 128 that support both end portions of the sliding plate 118, and a spring placement projection 130 that protrudes rearward in the upper center portion. (See FIG. 8).
  • the eject member 48 is arranged in the eject member arrangement portion 126 with the spring member 132 arranged in the notch portion 118 a.
  • the spring protrusion 120 is inserted into one end of the spring member 132 and the spring arrangement protrusion 130 is inserted into the other end.
  • the pushing portion 116 is arranged on the outer peripheral surface (upper surface and both side surfaces) of the projecting portion 78 of the photometric block 72. Further, the eject member 48 is slidably disposed in the front end and rear end directions of the housing 12, and the ejecting portion 116 is moved on the outer periphery of the projecting portion 78 by sliding the eject member 48. (Ie, clearance 114) moves forward and backward.
  • the pushing portion 116 pushes out the locking claw 66 of the measurement tip 58 by the movement of the eject member 48 in the tip direction. As a result, the measurement chip 58 can be removed from the housing 12.
  • the user's blood is collected using the housing 12 to which the measurement chip 58 is attached.
  • the fingertip is punctured with a dedicated puncture device (not shown), and a small amount of blood (eg, about 0.3 to 1.5 ⁇ L) is allowed to flow out onto the skin.
  • a small amount of blood eg, about 0.3 to 1.5 ⁇ L
  • the tip of the nozzle 62 of the measurement chip 58 attached to the tip of the blood glucose level measuring device 10 is brought into contact with the blood that has flowed out of the fingertip.
  • FIG. 10 is an explanatory diagram showing a state where blood components are actually detected by the blood sugar level measuring apparatus 10 according to the present embodiment. That is, the blood sugar level measuring apparatus 10 emits the irradiation light Li from the first light emitting element 100a (or the second light emitting element 100b). The irradiation light Li emitted from the first light emitting element 100a (or the second light emitting element 100b) passes through the irradiation light optical path 108 and enters the irradiation light lens 88a. The irradiation light Li incident on the irradiation light lens 88a is condensed by the irradiation light lens 88a and applied to the test paper 70.
  • Irradiation light Li applied to the test paper 70 is reflected by the test paper 70 and enters the reflected light lens 88b as reflected light Lr. Then, the reflected light Lr incident on the reflected light lens 88b is collected by the reflected light lens 88b, passes through the reflected light optical path 110, is received by the light receiving element 102, and the amount of light is measured. Is done. Thereby, the blood sugar level measuring apparatus 10 can measure the degree of coloration of the test paper 70.
  • the irradiation light Li of the first light emitting element 100a and the second light emitting element 100b is emitted alternately.
  • dye produced by reaction with a coloring reagent and glucose is detected with the irradiation light Li which the 1st light emitting element 100a irradiates, and the color density according to the quantity of glucose is measured.
  • red blood cells are detected by the irradiation light Li emitted from the second light emitting element 100b, and the red density of the red blood cells is measured. Then, the blood glucose level can be determined by quantifying the glucose concentration while correcting the glucose value obtained from the color concentration using the hematocrit value obtained from the red concentration.
  • the eject operation member 44 When the measurement chip 58 is removed from the housing 12 after the measurement is completed, the eject operation member 44 is pressed toward the tip side, and the eject member 48 is slid forward (tip side). Thereby, the pushing part 116 of the ejection member 48 presses the locking claw 66 of the measurement tip 58 forward, and the measurement tip 58 can be removed.
  • a new measurement chip 58 is attached to the tip case 20.
  • the measuring chip 58 can be easily replaced, it is possible to efficiently measure blood components.
  • the user can easily remove the measuring chip 58 from the blood glucose level measuring apparatus 10 by one-hand operation.
  • the measurement chip 58 is attached to the tip of the housing 12 curved to the lower case 18 side, the measurement chip 58 can be easily and quickly operated without touching the measurement chip 58 by operating the eject operator 44. 58 disposal processes can be performed.
  • FIG. 11 is an explanatory diagram schematically showing an irradiation state of the irradiation light Li of the measurement unit 50
  • FIG. 11A shows an irradiation state of the measurement unit 50 according to the present embodiment
  • FIG. 11B is provided with an aperture 150.
  • the irradiation state of the conventional measuring unit 50 ′ is shown.
  • 12A and 12B are explanatory diagrams showing the irradiation states of the irradiation lights Li and Li ′ in FIGS. 11A and 11B, respectively.
  • FIGS. 12C and 12D are the irradiation ranges of the irradiation lights Li and Li ′, respectively. It is a graph which shows the relationship of a light quantity.
  • the focal position P ′ of the irradiation light Li ′ by the irradiation light lens 88a ′ is irradiated from the arrangement position of the test paper 70 ′. It is set on the optical lens 88a ′ side.
  • the irradiation light Li ′ emitted from the light emitting element 100 ′ first passes through the aperture 150, thereby changing the area and shape of the parallel rays, and then converged by the irradiation light lens 88a ′ to be converged on the test paper 70. 'Is irradiated to the surface.
  • the measurement unit 50 ' measures the blood glucose level mainly by detecting the reflected light Lr' near the central portion 202 'of the irradiation range 200'.
  • the focal position P of the irradiation light Li by the irradiation light lens 88a is set to be located farther from the arrangement position of the test paper 70. That is, the measurement unit 50 is provided with an irradiation light lens 88a having a focal length (b + c) sufficiently longer than the interval b from the irradiation light lens 88a to the test paper 70. In this case, the irradiation light Li irradiated from the irradiation light lens 88a is irradiated onto the surface of the test paper 70 in a dispersed state before being focused on the focal point.
  • the irradiation light Li irradiated on the test paper 70 has a relatively uniform light amount distribution within the irradiation range 200 or the light amount of the outer edge portion 204 rather than the center portion 202.
  • the light quantity distribution becomes larger. Therefore, it is possible to clearly distinguish the irradiation range 200 irradiated with the irradiation light Li from other ranges not irradiated with the irradiation light Li. Therefore, it is easy to aim at the colored portion of the test paper 70, and a certain amount of light can be irradiated.
  • the irradiation light lens 88a is configured such that the focal position P of the irradiation light Li is located farther than the test paper 70, a lens having a large curvature radius (that is, a small curvature), Alternatively, a thin lens can be used. As described above, the measurement unit 50 can be further reduced in size by reducing the thickness of the irradiation light lens 88a. As shown in FIG. 11A, although a plano-convex lens is applied as the irradiation light lens 88a in this embodiment, the present invention is not limited to this, and a biconvex lens, a convex meniscus lens, or the like may be applied. Of course.
  • the light emitting element 100 is formed in a rectangular shape (strip shape) from a semiconductor manufacturing process. Yes. Therefore, the irradiation light Li emitted from the light emitting element 100 also has a substantially rectangular shape.
  • the inner peripheral surface of the irradiation light optical path 108 is formed in a cylindrical shape, the irradiation light Li irradiated on the test paper 70 can be circular (see FIG. 12A).
  • the test paper 70 when blood is soaked into the test paper 70, the blood spreads radially from the position soaked in the test paper 70, so that a circular soak portion is usually formed on the test paper 70. Accordingly, by irradiating the test paper 70 with the circular irradiation light Li, the irradiation light Li can be easily adjusted within the infiltrated portion and can be easily measured within a predetermined range of the test paper 70. It becomes.
  • the measurement unit 50 includes two light emitting elements 100 (first optical elements) that emit irradiation light Li having different wavelengths to one irradiation light lens 88a.
  • a light emitting element 100a and a second light emitting element 100b) are arranged side by side in the horizontal direction. Therefore, the irradiation locations of the first and second light emitting elements 100a and 100b are slightly shifted in the lateral direction with respect to the test paper 70.
  • the measurement unit 50 determines that the focal position P changes the irradiation diameter with respect to the deviation in the optical axis direction of the test paper 70 because the focal position P of the irradiation light Li is located farther than the arrangement position of the test paper 70. It can be made smaller than when it is in front of the test paper 70.
  • the irradiation light lens 88a having a large planar area is arranged in the measurement unit 50. Can be set. According to this irradiation light lens 88a, it is possible to capture a large amount of irradiation light Li emitted from the first and second light emitting elements 100a and 100b, respectively, and to focus and irradiate the test paper 70. The accuracy can be further improved.
  • the lens 88 is integrally formed with a reflected light lens 88 b that collects the reflected light Lr reflected by the test paper 70 onto the light receiving element 102 together with the irradiation light lens 88 a.
  • a reflected light lens 88 b that collects the reflected light Lr reflected by the test paper 70 onto the light receiving element 102 together with the irradiation light lens 88 a.
  • the measurement unit 50 is configured such that the interval a from the light emitting element 100 to the irradiation light lens 88 a is equal to the interval b from the irradiation light lens 88 a to the test paper 70. It is configured. Thereby, when the blood glucose level measuring apparatus 10 is assembled, an operator can easily grasp the shape error and assembly state of each member (for example, the tip case 20 and the photometric block 72) and appropriately set the two intervals a and b. It is possible to adjust, and it is possible to reduce assembly variation for each apparatus.
  • the light emitting element 100, the irradiation light lens 88a, and the test paper 70 are arranged at substantially equal intervals, so that the influence on the irradiation light Li due to the variation in the respective shapes and arrangements. Can be minimized.
  • the focal length (b + c) of the irradiation light lens 88a is set to be sufficiently longer than the interval b from the irradiation light lens 88a to the test paper 70. Therefore, the angle ⁇ of the outer edge portion 204 of the irradiation light Li irradiated on the test paper 70 is close to 90 degrees (see FIGS. 11A and 12A).
  • the reflected light Lr reflected by the test paper 70 of the measuring unit 50 is divided into specularly reflected light (surface reflected light) that hardly contains blood component information and scattered light that contains blood component information. For this reason, the blood sugar level measuring apparatus 10 receives scattered light including information on blood components in the reflected light Lr and performs component measurement.
  • the regular reflection light of the reflected light Lr is reflected in the direction of 90 degrees (that is, the direction of the irradiation light lens 88a). Therefore, only the scattered light is easily reflected on the reflected light lens 88b, and the measurement unit 50 can receive only the scattered light, and the accuracy of component measurement can be further improved.
  • the focal position P of the irradiation light Li is positioned farther from the arrangement position of the test paper 70, for example, from the irradiation light lens 88a due to the rattling of the apparatus, the arrangement error of the test paper 70, or the like.
  • the change in the amount of irradiation light Li becomes gradual. That is, in the measurement unit 50, the light amount change of the irradiation light Li accompanying the change in the interval b is proportional to the area change rate of the irradiation range 200.
  • FIG. 13 is an enlarged cross-sectional view schematically showing the irradiation light optical path 108 according to the present embodiment
  • FIG. 14 shows the irradiation range and amount of irradiation light Li irradiated in the irradiation light optical path 108 of FIG. It is a graph which shows the relationship.
  • the measurement unit 50 according to the present embodiment is provided with stray light guiding means 109 having a convex portion 109a and a concave portion 109b for guiding stray light SL (Stright Light) outside the measurement range of the test paper 70. It has been.
  • stray light guiding means 109 having a convex portion 109a and a concave portion 109b for guiding stray light SL (Stright Light) outside the measurement range of the test paper 70. It has been.
  • the stray light SL in this description refers to light that is reflected when the irradiation light Li emitted from the light emitting element 100 hits the inner circumferential surface of the irradiation light optical path 108 even once.
  • the stray light SL has a light quantity that is reduced compared to the irradiation light Li emitted from the light emitting element 100, and the measurement wavelength of the irradiation light Li may deviate from the wavelength, but the stray light SL is applied to the test paper 70 together with the irradiation light Li.
  • the measurement unit 50 detects noise such as flare and ghost (see the boxed portion in FIG. 14).
  • This stray light SL is likely to be generated when the light beam spreads radially without the aperture 150 being interposed on the optical path of the irradiation light Li. That is, in the configuration in which the irradiation light optical path 108 penetrates from the arrangement position of the light emitting element 100 to the arrangement position of the irradiation light lens 88a as in the present embodiment, it is required to prevent the influence of the stray light SL.
  • the stray light guiding means 109 has a function of preventing the reflection of the stray light SL.
  • the stray light guiding means 109 has a female screw shape in which convex portions 109a and concave portions 109b are alternately and continuously formed on the inner peripheral surface of the irradiation light optical path.
  • the inner peripheral surface of the irradiation light optical path 108 into a female screw shape, it is possible to form the irradiation light optical path 108 using a molding male screw (not shown) when the photometry block 72 is formed. It becomes. Therefore, the trouble of forming the photometry block 72 in a complicated shape is reduced, and the photometry block 72 can be easily formed.
  • the inner peripheral surface of the irradiation light optical path 108 is formed in a taper shape having a diameter reduced toward the irradiation light lens 88a. For this reason, when the optical path 108 for irradiation light is shape
  • the stray light guiding means 109 is not limited to a female screw shape or a tapered shape. For example, a staircase having a plurality of steps, or a plurality of ring-shaped projections or grooves, etc. Alternatively, the inner peripheral surface of the irradiation light optical path 108 may be coated with a material that absorbs light.
  • the uneven portion (stray light guiding means) 109 is designed, for example, the angle ⁇ of the surface of the convex portion 109a on the light emitting element 100 side with respect to the inner peripheral surface of the irradiation light optical path 108 is the stray light SL. It is preferable to form it at an angle (inclination) that does not enter 88a.
  • the uneven portion 109 can be designed by the following steps.
  • a straight line L1 indicating the irradiation light Li incident on the tip of the convex portion 109a closest to the irradiation light lens 88a is drawn from the light emitting element 100 (first step).
  • a tangent line L2 is drawn with respect to the surface (curved surface) of the irradiation light lens 88a from the intersection Pi (the tip of the convex portion 109a) of the straight line L1 and the convex portion 109a (second step).
  • a center line Lo that bisects the angle formed by the straight line L1 and the tangent line L2 is drawn (third step).
  • a reference line Lb perpendicular to the center line Lo is drawn at the intersection Pi (fourth step).
  • the angle ⁇ is increased with respect to the angle ⁇ between the reference line Lb obtained by the above steps and the inner peripheral surface of the irradiation light optical path 108.
  • the irradiation light Li emitted from the light emitting element 100 and impinging on the uneven portion 109 is reflected in a direction not entering the irradiation light lens 88a. Therefore, the incidence of the stray light SL on the irradiation light lens 88a is significantly reduced, and the stray light SL can be prevented from being included in the reflected light Lr received by the measurement unit 50.
  • the stray light guiding means 109 can prevent the stray light SL from being included in the reflected light Lr received by the measuring unit 50, and the measuring unit 50 receives the reflected light Lr having a stable light amount.
  • the component measurement of the test paper 70 can be accurately performed.
  • the blood sugar level measuring apparatus 10 is configured to irradiate the test paper 70 with a stable light amount within a predetermined range by setting the focal position P of the irradiation light Li far from the arrangement position of the test paper 70.
  • Light Li can be irradiated, and the accuracy of component measurement can be improved.
  • the measuring unit 50 and the entire apparatus can be reduced in size, and the number of parts can be reduced to reduce the manufacturing cost of the apparatus.
  • the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.
  • the component measuring apparatus according to the present invention may be applied as an apparatus for measuring urine components, or may be applied as an apparatus for measuring components such as waste water and industrial water.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 成分測定装置である血糖値測定装置(10)は、測定用の照射光(Li)を照射光用レンズ(88a)を介して試験紙(70)に集光照射して該試験紙(70)からの反射光(Lr)を受光する測定部(50)を有し、反射光(Lr)の検出結果に基づいて血液の成分を測定する。照射光用レンズ(88a)は、照射光(Li)の焦点位置(P)が試験紙(70)の配置位置よりも遠方に位置するように測定部(50)に備えられる。

Description

成分測定装置
 本発明は、体液中の生体成分を光学的に測定する成分測定装置に関する。
 従来、血液や尿などの体液中の生体成分を検出し、その成分量や性質等を光学的に測定する際には成分測定装置が用いられている。例えば、特開平09-145614号公報に開示されている拡散光反射読取パッドは、血液中のグルコースを検出する装置であり、血液によって呈色した試薬試験パッドに照射手段から光(照射光)を照射して、この試薬試験パッドが反射した光を光センサに入射して、血液中のグルコースを検出している。
 さて、上記の光学系を利用した成分測定装置では、通常、照射光の照射面積や光量を調整するためにアパーチャ(開口部)が設けられている。例えば特開平09-145614号公報の拡散光反射読取ヘッドには、LEDの光を通過させる照射口が設けられている。この照射口は、光を適切な大きさ(面積)や強さ(光量)のスポットにするアパーチャとして機能する。
 また、特開平09-145614号公報には開示されていないものの、成分測定装置には、測定対象に照射光を集光照射させるレンズが配設される装置もある。この場合にも、照射光のスポット形状の調整や迷光の低減のためにアパーチャの設置が必要とされている。すなわち、成分測定装置は、照射光の光路上に設けられたアパーチャによって照射光の絞り(面積や光量)が調整され、これにより照射光の焦点位置が測定対象の手前に合わせられ、集光される。
 しかしながら、このようなアパーチャを成分測定装置に設けることで、部品点数が増加する、或いは部品の形状が複雑になる等の不都合が生じる。その結果、部品の製造工数が増加するとともに、装置の組立作業も煩雑になり、装置全体の製造コストを増加させる等の課題が露呈する。また、アパーチャによって光量が低減されるので、測定感度が低下するという課題も生じる。
 さらに、照射光がレンズによって集光される構成では、特に焦点位置が測定対象の手前にある場合、レンズと測定対象の間隔や角度が、例えば、装置のがたつきや測定対象の配置誤差等によって変動すると、これにともなって測定対象に照射される照射光の光量が変動することになり、成分測定の精度にばらつきを生じさせる原因となる。
 本発明は、上述した課題に鑑みてなされたものであって、簡単な構成によって、測定対象の所定範囲内に所望の光量からなる照射光を照射させることができ、成分測定の精度を向上させ、しかも部品点数を削減して装置の製造コストを低減させることが可能な成分測定装置を提供することを目的とする。
 前記の目的を達成するために、本発明は、測定用の照射光を照射光用レンズを介して測定対象に集光照射して該測定対象からの反射光を受光する測定部を有し、前記反射光の検出結果に基づいて前記測定対象に吸収された液体の成分を測定する成分測定装置であって、前記照射光用レンズは、前記照射光の焦点位置が前記測定対象の配置位置よりも遠方に位置するように前記測定部に備えられることを特徴とする。
 上記によれば、照射光の焦点位置が測定対象よりも遠方に位置する構成としていることで、例えば、装置のがたつきや測定対象の配置誤差等によって照射光用レンズと測定対象の間隔や角度が変動した時に、照射光用レンズの焦点位置を測定対象より近位に合わせた場合と比較して、照射光の光量の変化が緩やかになる。このため、測定対象の所定範囲内に安定した光量の照射光が照射されることになり、測定精度を安定化させることができる。
 成分測定装置の具体的な構成として、前記測定部は、前記照射光を出射する発光素子と、前記発光素子を前記照射光用レンズに対向配置させるとともに前記発光素子の配置位置から前記照射光用レンズの配置位置まで貫通する照射光用光路を有する測光ブロックと、を備えることができる。
 このように、発光素子とレンズを対向配置させることで、発光素子から出射した照射光を、照射光用光路を介してレンズに導くことができる。
 また、前記発光素子から前記照射光用レンズまでの間隔は、前記照射光用レンズから前記測定対象までの間隔と等しくなるように設定してもよい。発光素子からレンズまでの間隔と、レンズから測定対象までの間隔とを等しくすれば、作業員が各部材の形状誤差や組立状態を容易に把握して、前記二つの間隔を適宜調整することができ、装置毎の組立ばらつきを低減することができる。また、前記発光素子、前記照射光用レンズ及び前記測定対象をほぼ等間隔に並べることで、各部材の形状誤差や組立誤差の影響を最小にできる。すなわち、前記照射光用レンズを前記発光素子或いは前記測定対象の方に偏在させると、配置の誤差が生じた場合、測定への影響が強く出てしまうことになるが、上記構成要素を等間隔に並べることで測定への影響を小さくすることができる。
 ここで、前記測光ブロックの前記照射光用光路には、前記照射光用光路の内周面で反射した迷光を、前記照射光用レンズを介して前記測定対象の測定範囲外に導く迷光誘導手段が設けられていてもよい。
 このように、迷光誘導手段が設けられていることで、照射光用光路の内周面が反射した迷光を、測定対象の測定範囲外に導くことができ、測定部が受光する反射光の中に含まれる迷光を低減することが可能となる。これにより、測定部は、迷光を含まない安定した光量からなる反射光を受光して、測定対象の成分測定を精度よく行うことができる。
 また、前記照射光用光路の内周面は円筒形状に形成され、前記迷光誘導手段は雌ねじ形状に形成されていてもよい。照射光用光路の内周面を雌ねじ形状とすることで、測光ブロックの成形時に成形用の雄ねじを用いて照射光用光路を成形することが可能となる。よって、測光ブロックの成形型を複雑に形成する等の手間が軽減され、測光ブロックを容易に成形することができる。
 さらに、前記照射光用光路の内周面は、前記照射光用レンズに向かって縮径するテーパ形状に形成されていてもよい。このように、照射光用光路の内周面がテーパ形状に形成されていることで、測光ブロックの照射光用光路を雌ねじ形状に成形した時に、成形用の雄ねじを回すことで容易に取り外すことができる。その結果、測光ブロックの成形作業をより効率化することができる。
 この場合、前記迷光誘導手段は、前記照射光用光路の内周面に凹凸部を連続的に形成したものであり、前記凹凸部のうち凸部の発光素子側の面の角度が、前記迷光を前記照射光用レンズに入射させないように設定されていることが好ましい。このように、凸部の発光素子側の面の角度が、迷光を照射光用レンズに入射させないように設定されていることで、照射光用光路が反射した迷光は照射光用レンズによって集光されることがなくなる。このため、測定部が受光する反射光の中に迷光が含まれることを一層確実に防ぐことができる。
 また、前記測定部には、1つの前記照射光用レンズに対して複数の前記発光素子が対向配置されていてもよい。このように、複数の発光素子に対して照射光用レンズを1つ配設することで、個々の発光素子に対応して複数配設するよりも、平面面積が大きい照射光用レンズを測定部に設けることができる。この照射光用レンズによれば、照射光の光量を多く取り込んで測定対象に集光照射することができ、成分測定の精度をより向上させることができる。
 さらに、前記測定部は、前記反射光を受光する受光素子を有するとともに、前記照射光用レンズには、前記反射光を前記受光素子に集光する反射光用レンズが一体形成されていてもよい。照射光用レンズと反射光用レンズを一体形成することで、組立時の位置合わせなどの手間が省略でき、さらに部品点数を少なくすることで、装置の製造コストを低減することができる。
 またさらに、前記測光ブロックは、前記反射光用レンズの配置位置から前記受光素子の配置位置まで貫通する反射光用光路を有することが好ましい。これにより、別途反射光用光路を設ける必要がなくなるため、製造コストを低減することができる。
 本発明によれば、簡単な構成によって、測定対象の所定範囲内に所望の光量からなる照射光を照射させることができ、成分測定の精度を向上させ、しかも部品点数を削減して装置の製造コストを大幅に低減させることができる。
本発明の実施の形態に係る血糖値測定装置の全体構成を示す斜視図である。 図1に示す血糖値測定装置の側面図である。 図1に示す血糖値測定装置の正面図である。 図1に示す血糖値測定装置の分解斜視図である。 図1に示す血糖値測定装置のV-V線断面図である。 本発明の実施の形態に係る血糖値測定装置の測定部を示す分解斜視図である。 図5に示す血糖値測定装置の測定部の背面図である。 図5に示す血糖値測定装置の測定部の側面断面図である。 図5に示す血糖値測定装置の測定部の平面断面図である。 本実施の形態に係る血糖値測定装置によって実際に血液成分の検出を行う状態を示す説明図である。 測定部の照射光の照射状態を模式的に示す説明図であり、図11Aは本実施の形態に係る測定部の照射状態を示し、図11Bはアパーチャが設けられた従来の測定部の照射状態を示している。 図12Aは図11Aの照射光の照射状態を示す説明図であり、図12Bは図11Bの照射光の照射状態を示す説明図であり、図12Cは、図11Aの照射光の照射範囲と光量の関係を示すグラフであり、図12Dは、図11Bの照射光の照射範囲と光量の関係を示すグラフである。 本実施の形態に係る照射光用光路を模式的に示す拡大断面図である。 図13の照射光用光路において照射される照射光の照射範囲と光量の関係を示すグラフである。
 以下、本発明に係る成分測定装置について好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。
 本実施の形態の説明では、成分測定装置として、血液成分のうち主に血糖値を測定する血糖値測定装置について詳述する。この血糖値測定装置は、医師や看護師、或いは糖尿病患者等が、血液を採取して血糖値を測定し、その血糖値の測定データを管理する装置である。なお、成分測定装置は、本血糖値測定装置に限定されないことは勿論である。
 図1は、本発明の実施の形態に係る血糖値測定装置(成分測定装置)の全体構成を示す斜視図であり、図2は同装置の側面図、図3は同装置の正面図、図4は同装置の分解斜視図、図5は図1のV-V線の側面断面図である。
 図1~図3に示すように、血糖値測定装置10は、外観を構成する筐体12を有し、この筐体12は、人が片手で持って操作スイッチ14を容易に押圧操作できるように、少し細長であって手にフィットする立体形状に形成されている。この筐体12は、上ケース16と、下ケース18と、先端ケース20とを含み、上ケース16と下ケース18とが上下に重ね合わされるとともに、上ケース16及び下ケース18の先端部に先端ケース20が装着されることで組み立てられる。また、筐体12には、血糖値の測定に必要な情報の入力事項や確認事項、測定結果等が表示される表示部22と、2つの操作スイッチ14からなる操作部24とが配置されている。
 図4に示すように、血糖値測定装置10の表示部22には、上ケース16に形成された開口窓26に液晶カバー28が嵌め込まれており、この液晶カバー28の下層に液晶パネル30が内蔵されている。なお、上ケース16の上面には、液晶カバー28及び2つの操作スイッチ14を覆うため適宜な大きさに形成された正面パネル32が貼り付けられる。
 操作部24は、2つの操作スイッチ14が、上ケース16の上面に設けた挿通孔34にそれぞれ挿入されて、これら操作スイッチ14を介して血糖値測定装置10のオン/オフ操作等の各種操作が可能とされている。
 表示部22及び操作部24が備えられた上ケース16の裏面側(筐体12内部)には、表示部22の液晶パネル30と、本血糖値測定装置10を制御するメイン配線基板36が配置されている。メイン配線基板36には、所定形状に形成された電気回路が印刷配線等によって設けられている。そしてメイン配線基板36には、予め設定された所定の処理を実行するためのマイクロコンピュータ、予め所定のプログラムが記憶されたROMやRAM等の記憶装置、コンデンサや抵抗その他の電子部品等が実装されている(ともに図示せず)。
 また、下ケース18の上面側(筐体12内部)には、電池収納部38が設けられている。電池収納部38には、携帯用電源としてのボタン型電池40が収納されている。この電池収納部38は、下ケース18に対して着脱可能に構成された電池蓋42によって開閉可能に覆われている。血糖値測定装置10は、ボタン型電池40の電力により、メイン配線基板36等の制御、或いは表示部22の表示等が行われる。なお、血糖値測定装置10に用いられる電源は、ボタン型電池に限られるものではなく、丸型乾電池や角型乾電池、又は二次電池や外部電源に電源コードを介して接続する構成としてもよい。
 図1及び図2に示すように、上ケース16及び下ケース18が重ね合わされた筐体12は、中間部から先端部にかけて先細となり、且つ全体的に下ケース18側に湾曲するように形成されている。先端ケース20は、この先端部に取り付けられ、血液を検出する測定部50の筐体として構成されている。
 また、上ケース16上面の先端部寄りには、イジェクト操作子44の移動を案内する長孔46が設けられている(図4参照)。この長孔46は、筐体12の前後方向へ所定の長さだけ直線的に延在しており、イジェクト操作子44の脚部44aが摺動可能に挿入される(図5参照)。この脚部44aには、筐体12内部においてイジェクト部材48がねじ止めされる。すなわち、イジェクト操作子44は、イジェクト部材48の摺動を操作することができる。
 図4に示すように、先端ケース20は、上ケース16及び下ケース18に取り付けられる角筒部52と、この角筒部52の先端側に形成された円筒部54と、を有する。角筒部52の内部には、血液を光学的に測定するための種々の部材が取り付けられる。一方、円筒部54は先端面が開口しており、この開口部56には測定チップ58が着脱自在に取り付けられる。
 測定チップ58は、円板状に形成されたベース部60と、このベース部60の先端面側に形成されたノズル62と、ノズル62の反対面側に形成された係合部64と、を備える。ベース部60は、外径が円筒部54の外径と略一致するように形成されている。このベース部60の中央にはノズル62が立設されている。ノズル62は、先端面から背面に貫通する採取孔62aが中心軸上に形成されている(図5参照)。また、ノズル62の先端面には血液を吸収しやすくするための凹溝62bが設けられている(図3参照)。
 測定チップ58の係合部64は、円筒状に形成され、円筒部54の開口部56に嵌合する外径に形成されている。この係合部64は、弾性力を有した4つの係止爪(係止部)66が後方に突出するように形成されている。各係止爪66は、円筒部54に挿入された時に円筒部54内に形成された突条54aに係合する凸部66aが外周側に形成されており、この凸部66aが突条54aを乗り越えて、該突条54aに係止されることにより、測定チップ58を円筒部54に取り付けることができる(図8参照)。
 また、係合部64の内側には、図5に示すように、採取孔62aに連通する試験紙収容部68が設けられている。この試験紙収容部68には、血液を採取した際に該血液が染み込む試験紙(測定対象)70が収容されている。血糖値測定装置10は、この試験紙70に照射光を照射して、試験紙70からの反射光を受光することで血液成分の測定を行う。
 図6は、本発明の実施の形態に係る血糖値測定装置10の測定部50を示す分解斜視図であり、図7は、測定部50の背面図、図8は測定部50の側面断面図、図9は測定部50の平面断面図である。
 血糖値測定装置10の測定部50は、測定チップ58に採取した血液成分を光学的に測定する部位である。図6に示すように、測定部50は、先端ケース20、測光ブロック72、基板74及びイジェクト部材48等を含む構成である。先端ケース20は、既述したように、角筒部52と円筒部54からなり、上ケース16と下ケース18を重ね合わせた筐体12の先端部に取り付けられる。この先端ケース20は、例えば、ASB樹脂やポリカーボネート等の合成樹脂によって成形される。
 測光ブロック72は、血液成分の検出を行う基板74を保持して、先端ケース20内部に取り付けられる部材である。この測光ブロック72は、先端ケース20と同じ材料で成形することができ、平板状の基端部76と、基端部76から先端方向に突出する突出部78とからなる。
 図8に示すように、測光ブロック72の基端部76は、前面に突出部78が形成され、後面に基板配置部80が備えられている。基板配置部80は、基板74が配置可能な平坦状に形成されており、この基板配置部80には、基板74を位置決めする位置決め突起80aが略中央部に立設されている。位置決め突起80aは基板74を貫通し、後述する発光素子100と受光素子102の間に介在して、発光素子100から受光素子102への直接的な光の伝搬を阻止している。
 また基端部76には、取付用ねじ孔82が二箇所形成されている(図7参照)。測光ブロック72は、この取付用ねじ孔82に後方から取付用ねじ84が挿通されて、先端ケース20に形成された取付用雌ねじ(図示せず)にねじ止めされることで、先端ケース20に取り付けられる。
 一方、図6に示すように、測光ブロック72の突出部78は、両側面が直線状で且つ上下面が円弧状となった偏円筒体に形成されている。この突出部78の前面は、突出部側開口部86が形成されており、この突出部側開口部86にはレンズ88が装着される。測光ブロック72に取り付けられるレンズ88は、上部側に照射光用レンズ88aが形成され、下部側に反射光用レンズ88bが形成された一体型となっている。また、レンズ88は側周面にOリング90を嵌め込んで突出部側開口部86に装着されることで、突出部側開口部86がレンズ88によって密封状態となる。
 測定部50の基板74は、前記基板配置部80に配置可能な形状に形成されており、この基板74の所定の箇所(二箇所)には基板側ねじ孔92が穿設されている。基板74は、この基板側ねじ孔92に後方から基板用ねじ94が挿通されて、基板配置部80に形成された基板固定孔96にねじ止めされることで、測光ブロック72に配設される(図7参照)。
 基板74は、基板配置部80と対向する面に、照射光を照射する二つの発光素子100(第1の発光素子100a、第2の発光素子100b:図9参照)、反射光を受光する受光素子102、及び血液成分の検出に必要な各種電子部品が実装されている。照射光を照射する発光素子100としては、例えば、所定波長の光を発光する発光ダイオード(LED)を適用することができ、受光素子としては、例えば、フォトダイオード(PD)を適用することができる。なお、本実施の形態では、砲弾形状の外装(透過体)を有していない発光素子100及び受光素子102を基板74に実装することで、基板74の小型化及び血糖値測定装置10の小型化を実現している。
 図8に示すように、測光ブロック72の基板配置部80に基板74を配設する場合は、発光素子100及び受光素子102を基板配置部80に向けて配設する。ここで、測光ブロック72の基板配置部80には、2つの開口部(照射光基板側開口部104、反射光基板側開口部106)が形成されている。基板配置部80に基板74を配設した状態では、発光素子100が照射光基板側開口部104に入り込み、受光素子102が反射光基板側開口部106に入り込む構成となっている。
 また、照射光基板側開口部104は、照射光用光路108に連通し、反射光基板側開口部106は、反射光用光路110に連通している。照射光用光路108及び反射光用光路110は、基端部76及び突出部78の内部をそれぞれ貫通して、先端側では共に突出部側開口部86に連通している。このように、血糖値測定装置10は、照射光用光路108及び反射光用光路110を共に測光ブロック72に形成することで、部品点数を少なくすることができ、製造コストを低減することが可能となる。
 したがって、基板配置部80に基板74を配設した状態では、発光素子100が照射光用光路108の基端側にあり、発光素子100が出射する照射光を、照射光用光路108からレンズ88に導き、さらにレンズ88を介して試験紙70に照射すること可能となる。一方、受光素子102は、反射光用光路110の基端側にあり、試験紙70から反射される反射光を、レンズ88及び反射光用光路110を介して受光する。
 さらに、本実施の形態に係る測光ブロック72の基端部76には、基板配置部80から後方に突出する隔壁112が後面に形成されている。隔壁112は、基板配置部80に基板74を配設した状態において、測光ブロック72の後面の全辺を囲い、且つ基板74よりも後方に突出するように形成されており、基板74に対して液体の接触や埃等の付着を防ぐ機能を有している。
 また、測光ブロック72を先端ケース20に取り付けた状態では、先端ケース20の内周面と測光ブロック72の突出部78側面との間にクリアランス114が形成される。このクリアランス114には、イジェクト部材48が摺動可能に配置される。
 図6に示すように、測定部50のイジェクト部材48は、先端側に形成された押出部116と、この押出部116が固定されるとともに所定距離だけ摺動可能な摺動プレート118と、を含む構成である。押出部116は、円筒形状の下部が所定量切り欠かれた円弧状に形成されている。
 摺動プレート118は、押出部116から後方に延在する平板状に成形されている。この摺動プレート118は、中央部が長手方向に切り欠かれており、この切り欠き部118aの後端にバネ用突起120が形成されている。また、摺動プレート118の後部には、イジェクト用ねじ122によってイジェクト操作子44の脚部44aに螺合されるイジェクト部材側ねじ孔124が穿設されている(図5参照)。
 一方、先端ケース20には、図7に示すように、イジェクト部材48の先端側を収容するイジェクト部材配置部126が形成されている。このイジェクト部材配置部126は、角筒部52内の上側に形成されており、摺動プレート118の両側端部を支持する支持片128と、上部中央部において後方側に突出するバネ配置突起130(図8参照)と、によって構成される。
 イジェクト部材48は、図6及び図8に示すように、バネ部材132を切り欠き部118aに配して、イジェクト部材配置部126に配置される。この場合、バネ部材132の一端にバネ用突起120が挿入され、他端にバネ配置突起130が挿入される。
 測光ブロック72及びイジェクト部材48を先端ケース20に配置した状態では、押出部116が測光ブロック72の突出部78の外周面(上面及び両側面)上に配置される。また、イジェクト部材48は、筐体12の先端及び後端方向に摺動自在に配置されることになり、このイジェクト部材48が摺動することで、この押出部116が突出部78の外周上(すなわち、クリアランス114)を進退移動する。測定チップ58が先端ケース20に取り付けられている場合は、イジェクト部材48の先端方向への移動により、押出部116が測定チップ58の係止爪66を押し出す。これによって、筐体12から測定チップ58を取り外すことができる。
 次に、本実施の形態に係る血糖値測定装置10による血液成分の測定について説明する。血液成分の測定では、まず測定チップ58が装着された筐体12を用いてユーザの血液を採取する。具体的には、指先を専用の穿刺器具(図示せず)で穿刺し、皮膚上に少量(例えば、0.3~1.5μL程度)の血液を流出させる。そして、指先から流出した血液に、血糖値測定装置10の先端に装着されている測定チップ58のノズル62先端を当接させる。
 これにより、血液は、ノズル62先端の凹溝62bを経て採取孔62a内に入り込み、毛細管現象によって後端に吸引される。そして、試験紙収容部68内に収容されている試験紙70に染み込み、試験紙70の径方向外側へ向かって円形状に広がっていく。この血液の展開と同時に、血液中のブドウ糖と試験紙70に含まれている発色試薬とが反応を開始し、ブドウ糖の量に応じて試験紙70が呈色する。
 図10は、本実施の形態に係る血糖値測定装置10によって実際に血液成分の検出を行う状態を示す説明図である。すなわち、血糖値測定装置10は、第1の発光素子100a(又は第2の発光素子100b)から照射光Liを出射する。第1の発光素子100a(又は第2の発光素子100b)から出射された照射光Liは、照射光用光路108を通過し、照射光用レンズ88aに入射される。そして、照射光用レンズ88aに入射された照射光Liは、この照射光用レンズ88aによって集光されて試験紙70に照射される。
 試験紙70に照射された照射光Liは、試験紙70によって反射され、反射光Lrとして反射光用レンズ88bに入射される。そして、反射光用レンズ88bに入射された反射光Lrは、この反射光用レンズ88bによって集光された後、反射光用光路110を通過し、受光素子102で受光されて、その光量が測定される。これにより、血糖値測定装置10は、試験紙70の呈色の度合いを測定することができる。
 血糖値測定装置10による血糖値の測定には、第1の発光素子100aと第2の発光素子100bの照射光Liが交互に出射される。そして、第1の発光素子100aが照射する照射光Liによって発色試薬とブドウ糖との反応で生じた色素を検出し、ブドウ糖の量に応じた呈色濃度を測定する。また、第2の発光素子100bが照射する照射光Liによって赤血球を検出し、赤血球の赤色濃度を測定する。そして、呈色濃度から得られるグルコース値を赤色濃度から得られるヘマトクリット値を用いて補正しつつグルコース濃度を定量化して、血糖値を求めることができる。
 測定終了後、測定チップ58を筐体12から取り外す場合は、イジェクト操作子44を先端側に押圧してイジェクト部材48を前方(先端側)にスライドさせる。これにより、イジェクト部材48の押出部116が測定チップ58の係止爪66を前方に押圧し、測定チップ58を取り外すことができる。また、改めて血液成分の測定を行う場合は、新しい測定チップ58を先端ケース20に取り付ける。このように、測定チップ58を簡単に交換することができるため、血液成分の測定を効率的に行うことが可能となる。
 この場合、ユーザは、片手操作によって測定チップ58を血糖値測定装置10から容易に取り外すことができる。しかも、測定チップ58は下ケース18側に湾曲した筐体12の先端に取り付けられているため、イジェクト操作子44の操作によって、測定チップ58に手を触れることなく、簡単且つ迅速に該測定チップ58の廃棄処理を行うことができる。
 次に、本実施の形態に係る測定部50の特徴部分について、従来の測定部50’と対比しながら詳述する。図11は、測定部50の照射光Liの照射状態を模式的に示す説明図であり、図11Aは本実施の形態に係る測定部50の照射状態を示し、図11Bはアパーチャ150が設けられた従来の測定部50’の照射状態を示している。また、図12A及び図12Bは、それぞれ図11A及び図11Bの照射光Li、Li’の照射状態を示す説明図であり、図12C及び図12Dは、同じく照射光Li、Li’の照射範囲と光量の関係を示すグラフである。
 図11Bに示すように、アパーチャ150が測定部50’に設けられている従来の装置では、照射光用レンズ88a’による照射光Li’の焦点位置P’が試験紙70’の配置位置より照射光用レンズ88a’側に設定されている。この場合、発光素子100’から出射した照射光Li’は、最初にアパーチャ150を通過することによって平行光線の面積及び形状が変えられ、次に照射光用レンズ88a’により収束されて試験紙70’の表面に照射される。
 このため、照射光用レンズ88a’の焦点位置P’が試験紙70’の配置位置より手前にある場合、図12B及び図12Dに示すように、試験紙70’に照射される照射光Li’は、その照射範囲200’の中でも中心部202’に光量が集まる。すなわち、中心部202’の光量が大きく、外縁部204’に向うに従って徐々に光量が小さくなる山形の光量分布を見せ、照射範囲200’の外縁部204’付近では、その少ない光量によって境界部分がぼけることになる。よって、測定部50’は、主に照射範囲200’の中心部202’付近の反射光Lr’を検出して血糖値を測定している。
 一方、図11Aに示すように、本実施の形態では、照射光用レンズ88aによる照射光Liの焦点位置Pが、試験紙70の配置位置よりも遠方に位置するように設定されている。すなわち、測定部50には、照射光用レンズ88aから試験紙70までの間隔bよりも充分に長い焦点距離(b+c)を有する照射光用レンズ88aが配設される。この場合、照射光用レンズ88aから照射される照射光Liは、焦点に集光される前の分散された状態で試験紙70表面に照射される。
 このため、図12A及び図12Cに示すように、試験紙70に照射される照射光Liは、照射範囲200内において比較的均一な光量分布、或いは、中心部202よりも外縁部204の光量のほうが大きい光量分布となる。したがって、照射光Liが照射される照射範囲200と、照射光Liが照射されない他の範囲と、を明確に区別することが可能となる。よって、試験紙70の呈色部分に対して、照準を合わせやすくなり、また一定の光量を照射することが可能となる。
 また、本実施の形態に係る照射光用レンズ88aは、照射光Liの焦点位置Pを試験紙70よりも遠方に位置する構成としているため、曲率半径が大きい(すなわち、曲率が小さい)レンズ、又は薄肉のレンズを用いることができる。このように、照射光用レンズ88aを薄くすることで、測定部50をより小型化することが可能となる。なお、図11Aに示すように、本実施の形態では照射光用レンズ88aとして平凸レンズを適用しているが、これに限定されるものではなく、両凸レンズや凸メニスカスレンズ等を適用してよいことは勿論である。
 一方、発光素子100は、測定波長の照射光Liを出射する一般的なLEDを用いることができるが、この場合、発光素子100は、半導体の製造過程から矩形状(短冊状)に形成されている。したがって、この発光素子100から出射される照射光Liも略矩形状となる。しかしながら、照射光用光路108の内周面は円筒形状に形成されているので、試験紙70に照射される照射光Liを円形とすることができる(図12A参照)。
 ここで、試験紙70に血液を染み込ませた場合、血液は試験紙70に染み込んだ位置から放射状に広がっていくため、通常、試験紙70には円形の染み込み部分が形成される。したがって、試験紙70に対して円形の照射光Liを照射することで、照射光Liを染み込み部分内に簡単に合わせることができ、試験紙70の所定範囲の中で容易に測定することが可能となる。
 また、図9に示すように、本実施の形態に係る測定部50には、1つの照射光用レンズ88aに対して、波長の異なる照射光Liを出射する2つの発光素子100(第1の発光素子100a、第2の発光素子100b)が横方向に並べて配置されている。したがって、試験紙70に対して第1及び第2の発光素子100a、100bの照射箇所が横方向にわずかにずれている。しかしながら、測定部50は、照射光Liの焦点位置Pが試験紙70の配置位置よりも遠方に位置することで、試験紙70の光軸方向のずれに対する照射径の変動を、焦点位置Pが試験紙70の手前にある場合よりも、小さくできる。
 このように、第1及び第2の発光素子100a、100bに対して照射光用レンズ88aを1つだけ配設する構成であるため、平面面積が大きい照射光用レンズ88aを測定部50に配設することができる。この照射光用レンズ88aによれば、第1及び第2の発光素子100a、100bがそれぞれ出射する照射光Liの光量を多く取り込んで試験紙70に集光照射することが可能となり、成分測定の精度をより向上させることができる。
 また、レンズ88には、図8に示すように、照射光用レンズ88aとともに、試験紙70が反射した反射光Lrを受光素子102に集光する反射光用レンズ88bが一体形成されている。このように、照射光用レンズ88aと反射光用レンズ88bを一体形成することで、組立時の位置合わせなどの手間が省略でき、さらに部品点数を少なくすることで、装置の製造コストを低減することができる。
 図11に戻り、本実施の形態に係る測定部50は、発光素子100から照射光用レンズ88aまでの間隔aと、照射光用レンズ88aから試験紙70までの間隔bとが等しくなるように構成されている。これにより、血糖値測定装置10を組み立てる場合に、作業員が各部材(例えば、先端ケース20や測光ブロック72等)の形状誤差や組立状態を容易に把握して二つの間隔a、bを適宜調整することができ、装置毎の組立ばらつきを低減することができる。また、形状誤差や組立誤差が生じても、発光素子100、照射光用レンズ88a及び試験紙70をほぼ等間隔に並べることで、それぞれの形状や配置のばらつきに起因する照射光Liへの影響を最小にできる。
 また、本実施の形態では、照射光用レンズ88aの焦点距離(b+c)を、照射光用レンズ88aから試験紙70までの間隔bと比較して充分に長くなるように設定している。したがって、試験紙70に照射される照射光Liの外縁部204の角度θが90度に近くなる(図11A、図12A参照)。ここで、測定部50の試験紙70が反射した反射光Lrは、血液成分の情報をほとんど含まない正反射光(表面反射光)と、血液成分の情報を含む散乱光とに分けられる。このため、血糖値測定装置10は、反射光Lrのうち血液成分の情報を含む散乱光を受光して成分測定を行う。
 照射光Liの角度θが90度に近くなることで、反射光Lrのうち正反射光が90度の方向(すなわち、照射光用レンズ88aの方向)に反射されることになる。よって、反射光用レンズ88bには散乱光のみが反射され易くなり、測定部50は散乱光のみを受光することができ、成分測定の精度をより向上させることができる。
 さらに、照射光Liの焦点位置Pを試験紙70の配置位置よりも遠方に位置する構成としていることで、例えば、装置のがたつきや試験紙70の配置誤差等によって照射光用レンズ88aから試験紙70までの間隔bが変動した時に、照射光Liの光量の変化が緩やかになる。すなわち、測定部50は、間隔bの変動にともなう照射光Liの光量変化が照射範囲200の面積変化率に比例する。
 図11Bに示すように、照射光用レンズ88a’の焦点位置P’が試験紙70’の配置位置より手前にある場合は、間隔b’の変動にともなう照射範囲200’の面積変化率が大きいため、光量の変化も大きくなる。これに対し、図11Aに示すように、照射光Liの焦点位置Pが試験紙70の配置位置よりも遠方に位置している場合は、間隔bの変動にともなう照射範囲200の面積変化率が小さいため、光量の変化も小さくなる。その結果、間隔bが変動した場合でも、試験紙70の測定範囲内に安定した光量の照射光Liが照射されることになり、成分測定の精度をより一層向上させることができる。
 図13は、本実施の形態に係る照射光用光路108を模式的に示す拡大断面図であり、図14は、図13の照射光用光路108において照射される照射光Liの照射範囲と光量の関係を示すグラフである。図13に示すように、本実施の形態に係る測定部50には、迷光SL(Stray Light)を、試験紙70の測定範囲外に導く凸部109a、凹部109bを有する迷光誘導手段109が設けられている。
 なお、本説明における迷光SLとは、発光素子100から出射された照射光Liが照射光用光路108の内周面に1度でも当たって反射された光を指すものである。この迷光SLは、発光素子100が出射する照射光Liと比較して光量が減少し、また照射光Liの測定波長と波長がずれる場合もあるが、迷光SLが照射光Liとともに試験紙70に照射されて該試験紙70が反射する反射光Lrに含まれると、測定部50はフレアやゴースト等のノイズを検出することになる(図14中の囲み部分を参照)。この迷光SLは、照射光Liの光路上にアパーチャ150が介在せず光線が放射状に広がる場合に発生しやすくなる。すなわち、本実施の形態のように、照射光用光路108が発光素子100の配置位置から照射光用レンズ88aの配置位置まで貫通する構成では、迷光SLの影響を防ぐことが求められる。迷光誘導手段109は、この迷光SLの反射を防止する機能を有している。
 図13に示すように、本実施の形態に係る迷光誘導手段109は、照射光用光路108の内周面に凸部109a及び凹部109bを交互に連続形成した雌ねじ形状としている。このように、照射光用光路108の内周面を雌ねじ形状とすることで、測光ブロック72の成形時に成形用の雄ねじ(図示せず)を用いて照射光用光路108を成形することが可能となる。よって、測光ブロック72の成形型を複雑に形成する等の手間が軽減され、測光ブロック72を容易に成形することができる。
 また、照射光用光路108の内周面は、照射光用レンズ88aに向かって縮径するテーパ形状に形成されている。このため、照射光用光路108を雌ねじ形状に成形した時に、成形用の雄ねじを回すことで容易に取り外すことができる。その結果、測光ブロック72の成形作業をより効率化することができる。なお、迷光誘導手段109は、雌ねじ形状やテーパ形状に限定されるものではなく、例えば、複数の段差からなる階段、又は複数のリング状の突起や溝等が照射光用光路108の内周面に形成されてもよく、或いは光を吸収する材質で照射光用光路108の内周面をコーティングしてもよい。
 また、凹凸部(迷光誘導手段)109を設計する場合は、例えば、照射光用光路108の内周面に対する凸部109aの発光素子100側の面の角度αが、迷光SLを照射光用レンズ88aに入射させない角度(傾き)となるように形成することが好ましい。具体的には、以下のステップによって凹凸部109を設計することができる。
 先ず、発光素子100から凹凸部109のうち最も照射光用レンズ88aに近い凸部109aの先端に入射する照射光Liを示す直線L1を引く(第1のステップ)。そして、直線L1と凸部109aの交点Pi(凸部109aの先端)から、照射光用レンズ88aの表面(曲面)に対して接線L2を引く(第2のステップ)。さらに、直線L1と接線L2によって形成される角度を2等分する中心線Loを引く(第3のステップ)。最後に、交点Piにおいて中心線Loと垂直に交差する基準線Lbを引く(第4のステップ)。
 凹凸部109を設計する場合は、上記の各ステップにより求めた基準線Lbと照射光用光路108の内周面との角度βに対して、角度αを大きくする。これにより、発光素子100から出射して凹凸部109に当たった照射光Liが照射光用レンズ88aに入射しない方向に反射される。したがって、迷光SLが照射光用レンズ88aに入射することが大幅に低減されることになり、測定部50が受光する反射光Lrの中に迷光SLが含まれないようにすることができる。
 図14に示すように、迷光誘導手段109を設けておらず反射光Lrに迷光SLが含まれる場合(図14中の点線部分)は、照射光Liの所定の照射範囲よりも外側に少量の光量からなるノイズ(迷光部分)が現れる。これに対し、迷光誘導手段109が設けられ反射光Lrに迷光SLが含まれない場合(図14中の実線部分)は、所定の照射範囲よりも外側の光量がほとんどゼロとなり、ノイズを防ぐことができる。このように、迷光誘導手段109によって、測定部50が受光する反射光Lrの中に迷光SLが含まれることを防ぐことができ、測定部50は、安定した光量からなる反射光Lrを受光して、試験紙70の成分測定を精度よく行うことができる。
 以上のように、血糖値測定装置10は、照射光Liの焦点位置Pが試験紙70の配置位置よりも遠方に位置することで、試験紙70の所定範囲内に安定的な光量からなる照射光Liを照射することができ、成分測定の精度を向上させることができる。しかも、アパーチャ150を設ける必要がないため、測定部50及び装置全体を小型化するとともに、部品点数を削減して装置の製造コストを低減させることができる。
 なお、本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは勿論である。例えば、本発明に係る成分測定装置は、尿の成分の測定する装置として適用してもよく、或いは、排水や工業用水等の成分測定を行う装置として適用することもできる。

Claims (10)

  1.  測定用の照射光を照射光用レンズ(88a)を介して測定対象(70)に集光照射して該測定対象(70)からの反射光を受光する測定部(50)を有し、前記反射光の検出結果に基づいて前記測定対象(70)に吸収された液体の成分を測定する成分測定装置(10)であって、
     前記照射光用レンズ(88a)は、前記照射光の焦点位置が前記測定対象(70)の配置位置よりも遠方に位置するように前記測定部(50)に備えられることを特徴とする成分測定装置(10)。
  2.  請求項1記載の成分測定装置(10)において、
     前記測定部(50)は、前記照射光を出射する発光素子(100)と、前記発光素子(100)を前記照射光用レンズ(88a)に対向配置させるとともに前記発光素子(100)の配置位置から前記照射光用レンズ(88a)の配置位置まで貫通する照射光用光路(108)を有する測光ブロック(72)と、を備えることを特徴とする成分測定装置(10)。
  3.  請求項2記載の成分測定装置(10)において、
     前記発光素子(100)から前記照射光用レンズ(88a)までの間隔は、前記照射光用レンズ(88a)から前記測定対象(70)までの間隔と略等しいことを特徴とする成分測定装置(10)。
  4.  請求項2記載の成分測定装置(10)において、
     前記測光ブロック(72)の前記照射光用光路(108)には、前記照射光用光路(108)の内周面で反射した迷光を、前記照射光用レンズ(88a)を介して前記測定対象(70)の測定範囲外に導く迷光誘導手段(109)が設けられていることを特徴とする成分測定装置(10)。
  5.  請求項4記載の成分測定装置(10)において、
     前記照射光用光路(108)の内周面は円筒形状に形成され、前記迷光誘導手段(109)は雌ねじ形状に形成されていることを特徴とする成分測定装置(10)。
  6.  請求項5記載の成分測定装置(10)において、
     前記照射光用光路(108)の内周面は、前記照射光用レンズ(88a)に向かって縮径するテーパ形状に形成されていることを特徴とする成分測定装置(10)。
  7.  請求項4記載の成分測定装置(10)において、
     前記迷光誘導手段(109)は、前記照射光用光路(108)の内周面に凹凸部を連続的に形成したものであり、前記凹凸部のうち凸部(109a)の発光素子(100)側の面の角度が、前記迷光を前記照射光用レンズ(88a)に入射させないように設定されていることを特徴とする成分測定装置(10)。
  8.  請求項2記載の成分測定装置(10)において、
     前記測定部(50)には、1つの前記照射光用レンズ(88a)に対して複数の前記発光素子(100)が対向配置されていることを特徴とする成分測定装置(10)。
  9.  請求項2記載の成分測定装置(10)において、
     前記測定部(50)は、前記反射光を受光する受光素子(102)を有するとともに、
     前記照射光用レンズ(88a)には、前記反射光を前記受光素子(102)に集光する反射光用レンズ(88b)が一体形成されていることを特徴とする成分測定装置(10)。
  10.  請求項9記載の成分測定装置(10)において、
     前記測光ブロック(72)は、前記反射光用レンズ(88b)の配置位置から前記受光素子(102)の配置位置まで貫通する反射光用光路(110)を有することを特徴とする成分測定装置(10)。
PCT/JP2011/066371 2010-09-30 2011-07-19 成分測定装置 WO2012043023A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012536264A JP5860810B2 (ja) 2010-09-30 2011-07-19 成分測定装置
EP11828584.0A EP2623961B1 (en) 2010-09-30 2011-07-19 Component measurement device
US13/824,017 US9410884B2 (en) 2010-09-30 2011-07-19 Component measurement device
CN201180046015.6A CN103119422B (zh) 2010-09-30 2011-07-19 成分测定装置
HK13111923.4A HK1184540A1 (en) 2010-09-30 2013-10-23 Component measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010223067 2010-09-30
JP2010-223067 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043023A1 true WO2012043023A1 (ja) 2012-04-05

Family

ID=45892501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066371 WO2012043023A1 (ja) 2010-09-30 2011-07-19 成分測定装置

Country Status (6)

Country Link
US (1) US9410884B2 (ja)
EP (1) EP2623961B1 (ja)
JP (1) JP5860810B2 (ja)
CN (1) CN103119422B (ja)
HK (1) HK1184540A1 (ja)
WO (1) WO2012043023A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045347A1 (ja) * 2012-09-19 2014-03-27 テルモ株式会社 成分測定装置
JPWO2012128014A1 (ja) * 2011-03-23 2014-07-24 テルモ株式会社 成分測定装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291875B2 (ja) * 2014-01-31 2018-03-14 セイコーエプソン株式会社 血糖値計測装置及び血糖値計測方法
KR102092325B1 (ko) * 2017-05-24 2020-03-23 주식회사 필로시스 자동으로 인식되는 코드 시퀀스를 제공하는 테스트 스트립 및 생체 물질 측정 장치
US10739296B2 (en) 2017-05-24 2020-08-11 Philosys Co., Ltd. Test strip providing code sequence to be automatically recognized, and biological analyte monitoring device
JP7241033B2 (ja) * 2018-01-15 2023-03-16 テルモ株式会社 成分測定システム及び測定装置
BR112022012673A2 (pt) * 2019-12-24 2022-09-06 Satake Eng Co Ltd Dispositivo de classificação óptica
CN111811998B (zh) * 2020-09-01 2020-12-01 中国人民解放军国防科技大学 一种目标波段下强吸收性生物颗粒组分的确定方法
KR102310367B1 (ko) * 2021-03-12 2021-10-07 한상현 차량용 미세 먼지 감지 센서

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247605A (ja) * 1989-03-21 1990-10-03 Satoshi Kawada レーザ走査蛍光顕微鏡
JPH08304287A (ja) * 1995-05-12 1996-11-22 Bayer Corp 光ファイバ拡散光反射率センサ
JPH09145614A (ja) * 1995-09-05 1997-06-06 Bayer Corp 拡散光反射読取りヘッド
JP2006058044A (ja) * 2004-08-18 2006-03-02 Yokogawa Electric Corp バイオチップ用カートリッジおよびバイオチップ読取装置
JP3155843U (ja) * 2009-09-18 2009-12-03 テルモ株式会社 温度センサ及び成分測定装置
WO2010140407A1 (ja) * 2009-06-05 2010-12-09 テルモ株式会社 成分測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222634A (ja) * 2002-01-31 2003-08-08 Sharp Corp 光学式移動検出装置および搬送システムおよび搬送処理システム
US7173704B2 (en) * 2003-02-26 2007-02-06 Hamamatsu Photonics K.K. Measuring device for immunochromatography test piece and light source device
US7173705B2 (en) * 2003-02-26 2007-02-06 Hamamatsu Photonics K.K. Measuring device for immunochromatography test piece
US7586610B2 (en) * 2003-05-21 2009-09-08 Terumo Kabushiki Kaisha Component measuring device
US7349091B2 (en) * 2004-06-04 2008-03-25 Sharp Kabushiki Kaisha Optical object discriminating device
EP1878379B1 (de) * 2006-07-11 2019-10-16 F. Hoffmann-La Roche AG Testbandsystem, insbesondere für Blutzuckeranalyse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247605A (ja) * 1989-03-21 1990-10-03 Satoshi Kawada レーザ走査蛍光顕微鏡
JPH08304287A (ja) * 1995-05-12 1996-11-22 Bayer Corp 光ファイバ拡散光反射率センサ
JPH09145614A (ja) * 1995-09-05 1997-06-06 Bayer Corp 拡散光反射読取りヘッド
JP2006058044A (ja) * 2004-08-18 2006-03-02 Yokogawa Electric Corp バイオチップ用カートリッジおよびバイオチップ読取装置
WO2010140407A1 (ja) * 2009-06-05 2010-12-09 テルモ株式会社 成分測定装置
JP3155843U (ja) * 2009-09-18 2009-12-03 テルモ株式会社 温度センサ及び成分測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012128014A1 (ja) * 2011-03-23 2014-07-24 テルモ株式会社 成分測定装置
JP5941905B2 (ja) * 2011-03-23 2016-06-29 テルモ株式会社 成分測定装置
WO2014045347A1 (ja) * 2012-09-19 2014-03-27 テルモ株式会社 成分測定装置

Also Published As

Publication number Publication date
CN103119422B (zh) 2015-11-25
US20130177479A1 (en) 2013-07-11
US9410884B2 (en) 2016-08-09
JP5860810B2 (ja) 2016-02-16
EP2623961A4 (en) 2017-12-13
JPWO2012043023A1 (ja) 2014-02-06
EP2623961B1 (en) 2020-02-12
EP2623961A1 (en) 2013-08-07
HK1184540A1 (en) 2014-01-24
CN103119422A (zh) 2013-05-22

Similar Documents

Publication Publication Date Title
JP5860810B2 (ja) 成分測定装置
JP5290058B2 (ja) 成分測定装置
US7808645B2 (en) Analysis system for analyzing a sample on an analytical test element
JP2008544265A5 (ja)
JP7442461B2 (ja) 成分測定システム
JPWO2015146238A1 (ja) 成分測定装置
JP2010261970A (ja) 分析用具、分析用具における反応槽の特定方法および分析装置
JP2008086705A (ja) 測定補助材およびそれを用いた光学測定方法
JP7241033B2 (ja) 成分測定システム及び測定装置
JP5941905B2 (ja) 成分測定装置
WO2014045346A1 (ja) 成分測定装置
JP5587722B2 (ja) 成分測定装置
JP5693639B2 (ja) 血糖値測定装置
JP3155843U (ja) 温度センサ及び成分測定装置
JP2013011565A (ja) 成分測定装置
JP6430845B2 (ja) 測定用チップ及び成分測定システム
TW201413237A (zh) 成分測定裝置
JP2012198165A (ja) 成分測定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046015.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536264

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13824017

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011828584

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE