WO2012042794A1 - 超音波診断用アダプタ、超音波診断装置、及び、超音波診断方法 - Google Patents

超音波診断用アダプタ、超音波診断装置、及び、超音波診断方法 Download PDF

Info

Publication number
WO2012042794A1
WO2012042794A1 PCT/JP2011/005312 JP2011005312W WO2012042794A1 WO 2012042794 A1 WO2012042794 A1 WO 2012042794A1 JP 2011005312 W JP2011005312 W JP 2011005312W WO 2012042794 A1 WO2012042794 A1 WO 2012042794A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
reflecting member
main surface
ultrasonic
ultrasonic probe
Prior art date
Application number
PCT/JP2011/005312
Other languages
English (en)
French (fr)
Inventor
一也 高木
近藤 敏志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180004643.8A priority Critical patent/CN102665568B/zh
Priority to JP2012502339A priority patent/JP5888229B2/ja
Publication of WO2012042794A1 publication Critical patent/WO2012042794A1/ja
Priority to US13/479,785 priority patent/US9445783B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/429Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by determining or monitoring the contact between the transducer and the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe

Definitions

  • the present invention relates to an ultrasonic diagnostic adapter, an ultrasonic diagnostic apparatus, and an ultrasonic diagnostic method used when a subject is diagnosed using an ultrasonic probe.
  • the ultrasonic diagnostic apparatus is a diagnostic apparatus that acquires and displays in-vivo information as an ultrasonic image using reflection of ultrasonic waves in a living body, and is useful for observing a state in a living body non-invasively. It is used as a device.
  • Fig. 34 shows an overview of the ultrasonic diagnostic apparatus.
  • the ultrasonic probe 13 is the part that transmits and receives ultrasonic waves in the ultrasonic diagnostic apparatus.
  • the ultrasonic probe receives an ultrasonic reflected wave (echo) that is reflected and returned by causing an ultrasonic pulse generated and transmitted by the ultrasonic transducer to enter the subject.
  • the ultrasound diagnostic apparatus displays the characteristics of the echo from the subject as an image.
  • an image display method a two-dimensional image display method in which an echo amplitude is associated with pixel brightness (Brightness) and displayed as a tomographic image of a subject (hereinafter referred to as a B-mode image), or a plurality of B modes
  • a B-mode image a two-dimensional image display method in which an echo amplitude is associated with pixel brightness (Brightness) and displayed as a tomographic image of a subject
  • B-mode image a tomographic image of a subject
  • three-dimensional image display methods for forming and displaying a three-dimensional image using an image.
  • the 3D image display method is very useful in the clinical setting because the operator can easily grasp the positional relationship of the tissue and the objectivity of the diagnosis is improved.
  • a method for forming a three-dimensional image for example, there are a method using a swing probe and a method using a position sensor.
  • an oscillating probe that mechanically oscillates an array element group in which ultrasonic transducer elements are arranged in one dimension is used, and a three-dimensional image is obtained by applying the probe to the body surface of a region of interest. Can be formed. Further, it is possible to realize a 4D function for reproducing a three-dimensional image as a moving image by swinging the swing probe at a high speed.
  • the oscillating probe when it is desired to make a wide range of in-vivo information three-dimensional, the oscillating probe requires a large oscillating mechanism and also increases the weight of the oscillating mechanism. For this reason, the operability of the ultrasonic probe is lowered, and particularly in the diagnosis of the cervix, the difficulty of breathing due to compression becomes a problem.
  • a method using a position sensor there is a method of forming a three-dimensional image by attaching a position sensor to a lightweight and small one-dimensional probe in which transducers are arranged one-dimensionally.
  • position sensors there are already sensors using magnetic sensors and arms, but high cost is a problem.
  • Patent Document 1 a correlation between a plurality of images obtained by scanning an ultrasonic probe is calculated to obtain a distance between images, and an image based on the distance between the images is obtained.
  • a method of forming a three-dimensional image by combining the above is disclosed. According to this method, there is an advantage that the position sensor is not used and the scanning degree of freedom of the ultrasonic probe is high.
  • an ultrasonic probe moving mechanism using a rail and a spring is provided, the ultrasonic probe is moved at a constant speed, and a B-mode image acquired at a predetermined position is combined to provide a three-dimensional view.
  • a method of forming an image is disclosed. According to this method, there is an advantage that a B-mode image at a predetermined position can be accurately obtained and the cost is relatively low.
  • Patent Document 2 it is assumed that the scanning speed of the ultrasonic probe is maintained at a constant speed by the spring, but a moving mechanism for moving at a constant speed is required, and the compactness is impaired. .
  • An object of the present invention is to provide an ultrasonic diagnostic adapter or the like for detecting the position of an ultrasonic probe without impairing the above.
  • the ultrasonic probe and the subject when diagnosing a subject using an ultrasonic probe that transmits and receives ultrasonic waves, the ultrasonic probe and the subject An ultrasonic diagnostic adapter that is interposed between the main surface and a main surface that is a surface on which the ultrasonic probe is disposed, and a surface that faces the main surface and in which the subject is disposed A pad having a back surface that is a surface to be formed, and a first reflecting member that is disposed inside the pad and made of a material having an acoustic impedance different from that of the material constituting the pad, The reflecting member is arranged such that at least one of the distance from the main surface and the width viewed from the main surface side changes according to the position on the main surface.
  • the image of the first reflecting member is included in the B-mode image.
  • At least one of the position and the shape of the image of the first reflecting member on the B-mode image changes according to the position on the main surface of the ultrasonic probe. Therefore, if the position on the main surface of the ultrasonic probe is associated with the position and shape of the first reflecting member in the B-mode image in advance, the first reflecting member on the B-mode image acquired at the time of diagnosis is correlated. The position of the ultrasonic probe can be accurately detected from the position and shape of the image.
  • the first reflecting member is extended inside the pad, and the ultrasonic diagnostic adapter is further connected to the pad along the extending direction of the first reflecting member.
  • a second reflecting member made of a material having an acoustic impedance different from that of the material constituting the pad, wherein the first reflecting member and the second reflecting member are in the extending direction;
  • the tilt angles indicating the degree of change in distance from the main surface are arranged so as to be different from each other.
  • the vertical direction in the B-mode image corresponds to the direction in which the ultrasonic probe transmits and receives the ultrasonic probe, and the image of the first reflecting member and the second reflecting member in the B-mode image.
  • the distance in the vertical direction from the image (hereinafter referred to as the vertical distance) varies depending on the position on the main surface of the ultrasonic probe. Therefore, if the vertical distance between the image of the first reflecting member and the image of the second reflecting member on the B-mode image is associated with the position on the main surface of the ultrasonic probe in advance, it is acquired at the time of diagnosis.
  • the position of the ultrasonic probe can be accurately detected from the vertical distance between the image of the first reflecting member and the image of the second reflecting member on the B-mode image.
  • the vertical distance between the first reflecting member and the second reflecting member is constant regardless of the existence of the gap and the width of the gap. Therefore, the position of the ultrasonic probe can be accurately calculated.
  • the first reflecting member and the second reflecting member are divided into a plurality of portions by a cross section orthogonal to the extending direction of the first reflecting member, and the first reflecting member
  • Each portion is arranged such that the distance from the main surface changes in the extending direction, and the relative positions of the plurality of portions of the first reflecting member coincide with each other.
  • Each part of the second reflecting member is arranged so that the distance from the main surface does not change in the extending direction, and the plurality of parts of the second reflecting member are It arrange
  • an image of the first reflecting member and an image of the second reflecting member appear on the B-mode image.
  • the ultrasonic probe is located divided by the cross section orthogonal to the extending direction of the first reflecting member.
  • the position of the ultrasonic probe in the portion is detected based on the position of the image of the first reflecting member. From these pieces of information, the position of the ultrasonic probe on the pad can be accurately detected.
  • the pad can be made thinner. As a result, it is possible to expand the area where the subject image is displayed on the B-mode image.
  • the ultrasonic diagnostic adapter includes a plurality of pad sets each including the pad, the first reflecting member, and the second reflecting member, and a plurality of pads included in the plurality of pad sets.
  • Each of the first reflecting members is arranged such that the distance from the main surface changes in the extending direction
  • each of the plurality of second reflecting members included in the plurality of pad sets is The plurality of second reflecting members included in the plurality of pad sets have a distance from the main surface in the extending direction, so that the distance from the main surface does not change in the extending direction. They are arranged differently from each other.
  • the ultrasonic diagnostic adapter includes a plurality of pad sets each including the pad and the first reflecting member, and the plurality of first reflections included in the plurality of pad sets.
  • the members are arranged so that the distances from the main surface do not overlap with each other.
  • the ultrasonic diagnostic adapter includes a plurality of pad sets each including the pad and the first reflecting member, and the main surface side of the first reflecting member with respect to the pad. The relative position seen is different for each pad set.
  • the ultrasonic diagnostic adapter further holds a first guide rail arranged along an extending direction of the first reflecting member, the ultrasonic probe, and the first probe. And a slider that moves along the guide rail.
  • the guide rail is arranged along the extending direction of the first reflecting member, the region where the image of the first reflecting member appears on the B-mode image acquired with this configuration is limited to a specific region. . Therefore, if the image of the first reflecting member is detected from the B-mode image only in this specific region, the image of the first reflecting member is detected on the B-mode image more accurately and more efficiently. As a result, the position of the ultrasonic probe can be accurately calculated.
  • the ultrasonic diagnostic adapter further includes two guide rails arranged along an extending direction of the first reflecting member and an extending direction of each of the second reflecting members. And a slider that holds the ultrasonic probe and moves while being held between the two guide rails.
  • the subject can be examined by operating the subject with the ultrasonic probe while being held by the two guide rails along the guide rail. Therefore, the ultrasonic probe can be scanned more accurately along the guide rail, and the region where the image of the reflecting member appears on the B-mode image is more accurately limited to a specific region. Therefore, the image of the reflecting member can be detected on the B-mode image more accurately and efficiently, and as a result, the position of the ultrasonic probe can be accurately calculated.
  • the pad is disposed between the two guide rails when viewed from the main surface side, and the thickness of each of the two guide rails in a direction orthogonal to the main surface. Is greater than the thickness of the pad.
  • the first reflecting member is disposed away from the back surface of the pad.
  • the shape of the reflecting member can be prevented from changing. Therefore, the position of the ultrasonic probe can be accurately calculated even when the ultrasonic probe is pressed against the subject.
  • the pad includes a first pad portion located on the main surface side and a second pad portion located on the back surface side, and the first reflecting member is the first reflecting member. It is arranged inside the pad part.
  • the second pad portion is made of a material having a lower elastic modulus than the first pad portion.
  • the pad is made of a material having a sound velocity of 1450 (m / s) or more and 1585 (m / s) or less and an average of 1530 (m / s).
  • the pad medium has acoustic characteristics similar to those of the human body, and when the subject is a human body, the reflection of ultrasonic waves at the contact surface between the back surface of the pad and the subject can be suppressed.
  • a B-mode image can be obtained. Therefore, also in the ultrasonic diagnosis of the subject through the pad, the image of the reflecting member can be accurately detected on the B-mode image, and the position of the ultrasonic probe can be accurately detected.
  • a portion of the pad between the first reflecting member and the main surface is made of a material having a slower sound speed than other portions inside the pad.
  • the speed of the ultrasonic wave traveling toward the reflecting member and the reflected wave (echo) reflected by the reflecting member and traveling toward the ultrasonic probe can be reduced.
  • the reflecting member can be arranged at a position close to the main surface, and as a result, the thickness of the pad can be reduced. As a result, it is possible to expand the area where the subject image is displayed on the B-mode image.
  • the ultrasonic diagnostic apparatus includes an ultrasonic diagnostic adapter, an ultrasonic probe that transmits and receives ultrasonic waves, and the first reflecting member among signals received by the ultrasonic probe.
  • a reflection member detection unit that detects a signal of a reflected wave from the light source, a distance from the main surface of the first reflection member, and a width viewed from the main surface, based on the signal detected by the reflection member detection unit
  • a probe position calculation unit for detecting the position of the ultrasonic probe based on at least one of them.
  • the ultrasonic probe receives the reflected wave (echo) from the reflection member inside the pad, and an image of the reflection member can be obtained on the B-mode image.
  • the image can be detected, and the distance from the main surface of the reflecting member and the position of the ultrasonic probe can be detected. Therefore, the position of the ultrasonic probe can be accurately calculated.
  • the reflection member detection unit outputs a signal corresponding to the inside of the pad from signals received by the ultrasonic probe and having an amplitude equal to or greater than a predetermined threshold. It detects as a signal from a reflective member.
  • the reflection member detection unit outputs, from the first reflection member, a signal corresponding to the inside of the pad and having a maximum amplitude among signals received by the ultrasonic probe. It detects as a signal.
  • the reflection member detection unit outputs a signal corresponding to the inside of the pad from signals received by the ultrasonic probe and having a differential amplitude value equal to or greater than a predetermined threshold value. It is detected as a signal from the first reflecting member.
  • the reflection member detection unit outputs a signal corresponding to the inside of the pad and having a maximum amplitude differential value from the signals received by the ultrasonic probe. It detects as a signal from a reflective member.
  • the image of the reflecting member on the B-mode image can be detected. Therefore, as a result, the position of the ultrasonic probe can be accurately calculated.
  • the probe position calculation unit corresponds to at least one of a distance from the main surface of the first reflection member detected by the reflection member detection unit and a width viewed from the main surface side.
  • a relational expression indicating a positional relationship of the ultrasonic probe at least one of a distance from the main surface of the first reflecting member detected by the reflecting member detection unit and a width viewed from the main surface side. Based on one, the position of the ultrasonic probe is calculated.
  • the position of the ultrasonic probe can be easily calculated based on the distance from the main surface of the reflecting member obtained from the B-mode image. Therefore, the position of the ultrasonic probe can be accurately calculated from information detected from information on the B-mode image.
  • the probe position calculation unit is configured to move the ultrasonic probe from a first predetermined position to a second predetermined position different from the first predetermined position.
  • the relational expression is calibrated by using at least one of the distance from the main surface of the first reflecting member and the width viewed from the main surface side detected in step (b).
  • the probe position calculation unit further detects the position of the first reflecting member obtained over time and calculates the amount of movement of the position of the ultrasonic probe.
  • the present invention can be realized not only as an ultrasonic diagnostic apparatus, but also as a method that uses processing means constituting the ultrasonic diagnostic apparatus as steps, or as a program that causes a computer to execute the steps, It can also be realized as a recording medium such as a computer-readable CD-ROM in which the program is recorded, or as information, data or a signal indicating the program.
  • These programs, information, data, and signals may be distributed via a communication network such as the Internet.
  • an ultrasonic diagnostic image such as a B-mode image and a three-dimensional image can be obtained by detecting the position and amount of movement of the ultrasonic probe.
  • FIG. 1 is an overview of the ultrasonic diagnostic adapter according to the first embodiment.
  • FIG. 2 is a side view of the ultrasonic diagnostic adapter according to the first embodiment.
  • FIG. 3 is a diagram showing reflected ultrasonic waves (echoes) when an ultrasonic diagnostic adapter is used.
  • FIG. 4 is an overview of the scanning assist mechanism of the ultrasonic probe.
  • FIG. 5 is a schematic view in the case where the ultrasonic diagnostic adapter and the scanning assist mechanism of the ultrasonic probe are combined.
  • FIG. 6 is an overview diagram for explaining an example of the scanning assist mechanism of the ultrasonic probe.
  • FIG. 7 is a general view for explaining an example of a guide rail of the adapter for ultrasonic diagnosis.
  • FIG. 1 is an overview of the ultrasonic diagnostic adapter according to the first embodiment.
  • FIG. 2 is a side view of the ultrasonic diagnostic adapter according to the first embodiment.
  • FIG. 3 is a diagram showing reflected ultrasonic waves (echoes) when an ultras
  • FIG. 8 is an operation explanatory diagram of the ultrasonic diagnostic apparatus according to the second embodiment.
  • FIG. 9 is a diagram illustrating a display example of a three-dimensional image.
  • FIG. 10 is a functional block diagram of the ultrasonic diagnostic apparatus according to the second embodiment.
  • FIG. 11 is an operation explanatory diagram of the three-dimensional image display mechanism according to the second embodiment.
  • FIG. 12A is a diagram showing an acquired B-mode image
  • FIG. 12B is a diagram for explaining unnecessary area deletion in the B-mode image.
  • FIG. 13 is a diagram for explaining detection of the image of the reflecting member on the B-mode image according to the second embodiment.
  • FIG. 14 is a diagram illustrating an example of a lookup table.
  • FIG. 15 is a diagram for explaining interpolation in three-dimensional image formation.
  • FIG. 16 is a diagram for explaining a lookup table calibration method.
  • FIG. 17 is a diagram for explaining the problem of the ultrasonic diagnostic adapter according to the third embodiment.
  • FIG. 18 is a perspective view of a pad in which two reflecting members according to the third embodiment are arranged.
  • FIG. 19 is a side view of a pad according to the third embodiment.
  • FIG. 20 is a diagram illustrating the position of the image of the reflecting member on the B-mode image.
  • FIG. 21A is a diagram showing an acquired B-mode image, and
  • FIG. 21B is a diagram for explaining unnecessary area deletion in the B-mode image.
  • FIG. 22 is a diagram for explaining the effect of problem solving according to the third embodiment.
  • FIG. 22 is a diagram for explaining the effect of problem solving according to the third embodiment.
  • FIG. 23 is a diagram illustrating an ultrasonic diagnostic adapter according to a modification of the third embodiment.
  • FIG. 24 is a diagram illustrating an ultrasonic diagnostic adapter according to the fourth embodiment.
  • FIG. 25 is a side view of the pad according to the fourth embodiment.
  • FIG. 26 is a diagram illustrating a pad according to the first modification of the fourth embodiment.
  • FIG. 27 is a side view of a pad according to Modification 1 of the fourth embodiment.
  • FIG. 28 is a top view (a) and a perspective view (b) of an adapter for ultrasonic diagnosis according to Modification 3 of the fourth embodiment.
  • FIG. 29 is a top view (a) and a perspective view (b) of the adapter for ultrasonic diagnosis according to the fifth embodiment.
  • FIG. 30 is an operation explanatory diagram of the three-dimensional image display mechanism according to the fifth embodiment.
  • FIG. 31 is a diagram showing the position of the reflecting member on the B-mode image according to the fifth embodiment.
  • FIG. 32 is a diagram for explaining the reception time of the reflected wave (echo) of the ultrasonic wave propagating through substances having different sound speeds.
  • FIG. 33 is a diagram showing an ultrasonic diagnostic adapter according to the sixth embodiment.
  • FIG. 34 is an overview of the ultrasonic diagnostic apparatus.
  • FIG. 1 shows an example of an ultrasonic diagnostic adapter according to the present embodiment.
  • the ultrasonic diagnostic adapter 1 is disposed between the ultrasonic probe of the ultrasonic diagnostic apparatus and the body surface (subject) of the region of interest.
  • the ultrasonic diagnostic adapter 1 includes a pad 14 and a reflective member that is disposed inside the pad 14 and includes a material having a different acoustic impedance from the pad material.
  • the pad is made of a member (for example, a polymer gel) that can be easily fitted to the curved shape of the subject.
  • the reflection member is made of a material such as aluminum or stainless steel.
  • the material of the reflecting member is a material that has high hardness and does not proceed with corrosion even if it is placed in the pad for a long time.
  • the material of the pad preferably has a sound speed of 1450 (m / s) or more and 1585 (m / s) or less and an average of 1530 (m / s). In this way, the pad medium has the same acoustic characteristics as the human body, and when the subject is a human body, reflection of ultrasonic waves at the contact surface between the back surface of the pad and the subject can be suppressed. .
  • a scanning region 17 indicates a part or all of a region on the main surface 15 scanned by the ultrasonic probe.
  • the direction perpendicular to the main surface 15 is the y direction
  • the extending direction of the reflecting member is the z direction
  • the direction perpendicular to the y direction and the z direction is the x direction.
  • Similar coordinate systems are used in other drawings.
  • FIG. 2 shows a side view of the ultrasonic diagnostic adapter 1 according to the present embodiment.
  • the ultrasonic diagnostic adapter 1 has a reflecting member 141 inside the pad 14, and the reflecting member 141 passes through a part of the scanning region 17.
  • the reflecting member 141 is arranged to be inclined with respect to the main surface 15 so as to form an angle larger than 0 degrees, and the distance from the main surface of the reflecting member differs depending on the position on the main surface of the pad. Yes.
  • the distance between the reflecting member 141 and the main surface 15 is gradually increased as it proceeds in the z direction in FIG.
  • the reflecting member 141 is substantially linear, and the extending direction (z direction) of the reflecting member when viewed from the main surface 15 side is parallel to the scanning direction of the ultrasonic probe. Further, the reflecting member 141 extends along one side parallel to the scanning direction of the ultrasonic probe in a rectangular parallelepiped or rectangular parallelepiped scanning region.
  • FIG. 3 the horizontal axis indicates time t (horizontal axis) from when the ultrasonic probe transmits an ultrasonic pulse to reception of an echo, and the vertical axis indicates echo reception intensity (amplitude) I.
  • FIGS. 3A and 3B show examples of echoes received at places where the z coordinates are z1 and z2, respectively (provided that the echoes are received from the reflecting member 141).
  • the distance between the reflecting member 141 and the main surface 15 at the point z2 is larger than the distance between the reflecting member 141 and the main surface 15 at the point z1.
  • the ultrasonic probe receives the echo from the reflecting member in addition to the echo from the body after transmitting the ultrasonic wave toward the body.
  • the ultrasonic diagnostic apparatus acquires a B-mode image. It is possible to calculate the position of the ultrasonic probe at the time of being performed, or the relative positional relationship between the B-mode images.
  • the position on the main surface of the ultrasonic probe and B The relative positional relationship between mode images can be detected.
  • This method differs from the conventional method in which the position of the ultrasound probe is determined based on the correlation between images, because the image state of the composition distribution in the body is not used for detecting the position of the ultrasound probe.
  • the position of the ultrasonic probe can be detected with high accuracy, and further, it does not depend on the scanning speed of the ultrasonic probe.
  • the reflecting member of the present embodiment may be disposed at any position as long as it is disposed inside the pad, but the reflecting member is in contact with the back surface (the surface in contact with the subject) of the pad. More preferably not. That is, it is preferable that the point closest to the subject among the reflecting members exists at a position away from the back surface of the pad by a predetermined distance.
  • the shape of the back surface of the pad changes along the shape of the subject. In this case, when a part of the reflecting member is in contact with the back surface of the pad, the shape of the reflecting member is greatly affected by the shape distortion of the pad and may be distorted.
  • the reflective member by disposing the reflective member at a predetermined distance from the back surface of the pad, the influence of the pad shape distortion on the reflective member can be reduced, and the position of the ultrasonic probe can be detected with higher accuracy.
  • the reflection member 141 and the back surface 16 are separated by an interval of 5 mm or more and 10 mm or less, so that the distortion of the reflection member 141 is reduced to an extent that does not cause a problem in observation. It was confirmed.
  • the pad has a first pad portion located on the main surface side and a second pad portion located on the back surface side, and the thickness of the second pad portion located on the back surface side (subject side).
  • the thickness is set to 5 mm or more and 10 mm or less, the distortion of the reflecting member 141 could be reduced.
  • the reflection member is arrange
  • the pads are referred to as the first pad portion and the second pad portion for convenience, it goes without saying that the first pad portion and the second pad portion may be integrated instead of separate. . By integrating the first pad portion and the second pad portion, unnecessary reflection at the boundary surface between the two pad portions does not occur, and noise can be reduced.
  • the pad may be composed of at least two kinds of materials. That is, the second substance is used on the side of the pad that is pressed against the body surface, and the area closer to the ultrasonic probe than the area where the second substance is used is the first substance having higher hardness than the second substance. Is used. And the reflecting member is arrange
  • the second material is used for the second pad portion, and the first material is used for the first pad portion.
  • the material of the first substance and the second substance is preferably a water-based gel from the above-mentioned limitation of sound speed, and the hardness may be changed for each, but is not limited thereto.
  • the function of fitting to the object shape and the function of reducing the shape distortion between the reflecting member and the ultrasonic probe can be achieved. It becomes possible to distribute to. Specifically, by using a material having a relatively low hardness for the second substance, the shape of the back surface of the pad can be changed to conform to the shape of the subject. On the other hand, by using a material with relatively high hardness for the first substance used on the side far from the subject, the ultrasonic probe is pressed against the body surface and the pad shape is distorted. It is difficult to affect the shape of the reflecting member arranged in one substance or the distance from the main surface, and it is possible to reduce errors that occur during position detection.
  • the reflection member 141 may be disposed anywhere as long as it is included in at least the scanning range of the ultrasonic probe. As described above, if the reflecting member is arranged at the end of the scanning range of the ultrasonic probe, the image of the reflecting member appears at the end of the acquired B-mode image. The corresponding area is not divided. Further, when the reflecting member is disposed at a position where the image of the reflecting member appears at a position other than the end of the B-mode image, for example, when the reflecting member is disposed at the center of the scanning region of the ultrasound probe, The effect that the position or the relative position between a plurality of acquired B-mode images can be detected can be achieved.
  • the reflecting member 141 may have an arbitrary shape, but is preferably a linear shape.
  • the reflective member 141 may not be parallel to one side of the scanning region when viewed from the main surface side.
  • the position where the signal detected by the reflecting member 141 is detected among the piezoelectric elements (ultrasonic transducers) of the ultrasonic probe 13. May vary depending on location. Therefore, the process of extracting the signal of the reflecting member 141 from the detection signal becomes complicated. Even in this case, the position of the ultrasonic probe or the relative positional relationship of the B-mode image can be obtained. However, in order to obtain the position of the ultrasonic probe more easily, the distance from the main surface is determined. It is preferable that the reflecting member 141 is linear so that changes monotonously.
  • the reflecting member 141 has a linear shape also in the cross section of the reflecting member in the yz plane.
  • the ultrasonic diagnostic apparatus will previously detect the shape of the reflecting member 141 and the time until the reflecting member 141 is detected, as will be described later. It is possible to store a look-up table (LUT) indicating the relationship between the positions of the ultrasonic probes based on the LUT.
  • LUT look-up table
  • 1 and 2 show an embodiment in which one reflection member 141 is present in the scanning region of the ultrasonic probe, but at least two or more reflection members 141 are disposed in the scanning region. May be. These embodiments will be described later.
  • the reflecting member 141 is not all connected, but may have a shape in which members having a predetermined length are arranged intermittently with a predetermined interval.
  • the portion used as the reflecting member in the above embodiment may be made of a material (absorbing material) having a property of absorbing ultrasonic waves.
  • the ultrasonic diagnostic adapter 1 can avoid multiple reflections that occur between the reflecting member and the ultrasonic probe.
  • a material of the absorbent material for example, cyst is preferable, but is not limited thereto.
  • the operator scans the ultrasonic probe on the pad
  • the operator moves the ultrasonic probe so as to pass above the area of the pad where the reflecting member 141 is present.
  • the operator may move the ultrasonic probe on the pad freehand, but if the ultrasonic probe scanning assist mechanism described later is used, the ultrasonic probe can be moved more linearly. Become.
  • FIG. 4 shows an example of a scanning assist mechanism for moving the ultrasonic probe 13 linearly.
  • the scanning assist mechanism has at least the two guide rails 12 disposed along the extending direction of the reflecting member and the slider 11 disposed between the guide rails 12.
  • the guide rail 12 is formed on the main surface of the pad 14, and is disposed on the main surface along the direction (scanning direction) in which the ultrasonic probe is desired to move.
  • the pad may be integrated with the scanning assist mechanism from the beginning, or may be disposed away from the pad.
  • the slider 11 can fix the ultrasonic probe 13.
  • the operator integrates the slider 11 and the ultrasonic probe 13 by inserting the ultrasonic probe 13 into the slider 11.
  • the slider 11 is formed so as to be movable along the guide rail 12.
  • the ultrasonic probe 13 and the slider 11 can be moved in the scanning direction 10 of the ultrasonic probe indicated by a dotted line in FIG. 4. it can.
  • the operator can move the ultrasonic probe 13 more linearly than when moving the ultrasonic probe 13 freehand. Thereby, a plurality of B-mode images of a part desired to be displayed three-dimensionally can be acquired.
  • two guide rails 12 parallel to each other are arranged on the main surface of the pad. Even when the number of guide rails 12 is one, the slider 11 is pressed against the guide rail 12 by pressing the slider 11 against the guide rail 12 (or a mechanism that prevents the slider 11 from being separated from the guide rail 12). Can be moved along. By providing two guide rails 12, both ends of the slider 11 are sandwiched between the guide rails 12, so that the ultrasonic probe can be moved along the guide rails 12 more accurately. Note that when the ultrasonic probe can be moved in a predetermined direction, the above-described scanning assist mechanism may be omitted.
  • the ultrasonic diagnostic apparatus acquires a plurality of B-mode images while moving the ultrasonic probe 13 held by the slider 11 along the guide rail 12. Then, a three-dimensional image of the target part is generated by combining a plurality of B-mode images.
  • the configuration of FIG. 4 is shown as the scanning assistance mechanism, but the scanning assistance mechanism is not limited to the configuration of FIG.
  • the guide rail may not be configured to be attached to the pad, but the groove 62 may be formed in the pad 61 to assist the movement of the ultrasonic probe. Also with this configuration, the ultrasonic probe can be moved along the groove 62. Since the guide rail and the pad are integrated, it is not necessary to adjust the position of the guide rail and the pad.
  • the display of the reflecting member is omitted.
  • the guide rail may be arranged along the extending direction of the reflecting member, and may be separated from the pad. The reason is that even if the pad and the guide rail are separated, if the reflecting member of the present embodiment is disposed inside the pad, the ultrasonic probe is moved along the reflecting member to move the ultrasonic probe. This is because the position can be detected. Needless to say, the ultrasonic probe and the pad may be separated from each other.
  • the ultrasonic diagnostic adapter uses a guide rail made of a material harder than the pad, the guide rail is made thicker than or equal to the thickness of the pad, and the guide rail is arranged on the side of the pad. Also good.
  • An example of the ultrasonic diagnostic adapter 2 having this configuration is shown in FIG. According to this configuration, when the force is applied to the main surface and the side surface of the pad, for example, when the ultrasonic probe is pressed against the subject through the pad, the shape of the main surface and the side surface of the pad changes. Can be suppressed. Thereby, the shape of the reflective member arrange
  • the position of the ultrasound probe can be calculated by detecting the image of the reflecting member from the B-mode image including the pad and the image of the subject using the pad in which the reflecting member is disposed. It is characterized by.
  • the initial state is the freeze mode (802).
  • this state no ultrasonic wave is transmitted from the ultrasonic probe.
  • the mode is changed to the B-mode image recording mode (801), and the B-mode image can be recorded.
  • the operator moves the ultrasonic probe integrated with the slider and acquires a plurality of B-mode images.
  • B-mode images that can form three-dimensional images equal to the number of scans are obtained. For example, a scan break is detected from the movement history of the ultrasonic probe, and a three-dimensional image is formed each time a break occurs. Specifically, when the ultrasonic probe is reciprocated once, two three-dimensional images are formed. When a plurality of 3D images are formed, for example, the operator selects a 3D image to be displayed on the operation screen as shown in FIG. When the confirmation of the 3D image is finished, the mode is returned to the freeze mode (802) (814: 3D image display OFF).
  • the ultrasonic diagnostic apparatus includes an ultrasonic transmission / reception unit 1001 that transmits / receives ultrasonic waves, a tomographic image formation unit 1002 that forms a B-mode image from received echoes, and a reflection member detection that detects an image of a reflection member in the B-mode image.
  • the image memory unit 1006 includes a three-dimensional image forming unit 1007 that forms a three-dimensional image from a plurality of recorded B-mode images, and a display unit 1008 that displays the B-mode image, the three-dimensional image, and the like.
  • the ultrasonic transmission / reception unit 1001 transmits an ultrasonic wave to a subject through a pad in which a reflecting member is disposed, receives an echo, and converts it into a corresponding echo signal.
  • the echo signal D1011 is output to the tomographic image forming unit 1002.
  • the tomographic image forming unit 1002 receives the echo signal D1011 output from the ultrasonic transmission / reception unit 1001, and converts the echo signal into a luminance value to form a B-mode image. Then, the formed B-mode image D1012 is output to the reflection member detection unit 1003 and the unnecessary region deletion unit 1004.
  • the reflection member detection unit 1003 receives the B-mode image D1012 output from the tomographic image formation unit 1002, and detects the image of the reflection member on the B-mode image and coordinates the image in the vertical direction by image processing to be described later. The vertical position corresponding to is calculated. Then, the vertical position information D1013 of the reflecting member is output to the probe position calculation unit 1005.
  • the unnecessary area deleting unit 1004 receives the B mode image D1012 output from the tomographic image forming unit 1002 as an input, and deletes an area in which an image of a pad or a reflecting member that is not necessary for diagnosis exists in the B mode image. Then, the B-mode image D1014 from which the unnecessary area is deleted is output to the tomographic image memory unit 1006 and the display unit 1008.
  • the probe position calculation unit 1005 calculates ultrasonic probe position information D1015 at the time of B-mode image acquisition from the reflection member vertical direction position information D1013 output from the reflection member detection unit 1003. Then, the calculated position information of the ultrasonic probe is output to the tomographic image memory unit 1006.
  • region deletion part 1004 does not need to be provided. Further, the unnecessary area deletion unit 1004 may not be provided, and only a predetermined area may be selected and transmitted to the display unit 1008 from the 3D image formed by the 3D image forming unit 1007 described later.
  • the tomographic image memory unit 1006 is a storage device that records the B-mode image D1014 output from the unnecessary region deletion unit 1004 and the ultrasonic probe position information D1015 output from the probe position calculation unit 1005.
  • the ultrasonic probe position information D1015 corresponding to the B-mode image D1014 recorded in the tomographic image memory unit 1006 is read, and the three-dimensional image is arranged based on the position information, thereby three-dimensionally. Form an image. Then, the formed three-dimensional image D1017 is output to the display unit 1008.
  • the display unit 1008 receives the B-mode image output from the unnecessary area deletion unit 1004 and the 3D image D1017 output from the 3D image forming unit 1007, and displays them on a display device such as a display.
  • the ultrasonic transmission / reception unit 1001 in FIG. 10 corresponds to an ultrasonic probe, but the ultrasonic probe may be configured to further include some or all of the other functional blocks 1002 to 1008.
  • the functional blocks 1002 to 1005 and 1007 may be realized as software by a CPU, a memory, a program, or the like, or may be realized as hardware by a dedicated electronic circuit or the like.
  • the operator sets the ultrasonic probe 13 on the slider 11. Then, after placing the pad on the body surface of the part to be three-dimensionalized, the freeze state is released, and the ultrasonic probe starts to move together with the slider.
  • the ultrasonic transmission / reception unit 1001 transmits ultrasonic waves from the ultrasonic probe and receives echoes from within the subject line by line. Further, the tomographic image forming unit 1002 performs processing such as envelope detection and logarithmic compression on the reception echoes (echoes from the subject) of each line, converts them into luminance values, and generates a B-mode image. .
  • the reflection member detection unit 1003 detects the image of the reflection member on the B-mode image.
  • FIG. 12A shows an example of a B-mode image.
  • the pad area which is an area where the pad image exists, is an area where the information obtained from the subject in contact with the back surface of the pad is shown in the upper area (1201) of the B-mode image.
  • the upper area (1201) of the B-mode image are located in a region (1202) below the pad region.
  • a reflective member having an acoustic impedance different from that of the pad material is disposed in the pad, and a signal from the reflective member appears as a high luminance region (1203) in the B-mode image.
  • the reflection member detection unit 1003 detects a high luminance region (echo from the reflection member) that appears in the B-mode image, and the probe position calculation unit 1005 calculates the position of the ultrasonic probe from the position of the high luminance region. To do.
  • the area used for detecting the image of the reflection member is narrowed down to the reflection member detection area (1204) that is the end of the pad, and the edge of the reflection member is detected by detecting the edge in line units. The position of is detected. Specifically, in the reflecting member detection area, a portion where the differential value of luminance with respect to a change in the vertical direction is maximized is detected as an image of the reflecting member.
  • FIG. 13 shows an enlarged view of the reflective member detection area of the B-mode image.
  • a portion (1301) where the differential value of the luminance with respect to the change in the vertical direction is maximized is detected by the reflecting member detection unit 1003 as the reflecting member image.
  • the distance from the main surface of the reflecting member corresponds to the number of pixels (1303) between the image of the reflecting member shown in FIG. 13 and the upper end of the B-mode image.
  • the probe position calculation unit 1005 calculates the position of the ultrasonic probe at the time of B-mode image acquisition from the detected position of the reflecting member.
  • a lookup table 1401 as shown in FIG. 14 is used.
  • the number of pixels from the upper end of the B-mode image to the image of the reflecting member and the position of the ultrasonic probe are associated one-to-one. For example, assuming that the position of the ultrasonic probe when the image of the reflection member obtained from the reflection member detection unit 1003 is at a position of 5 pixels from the upper end of the B-mode image is the reference position, the image of the reflection member is 7 pixels.
  • the position of the ultrasonic probe when it appears in the position is a position moved 10 mm from the reference position.
  • the lookup table 1401 can be reset. For example, it is possible to reset by arranging the ultrasonic probe at a predetermined position and associating the position of the ultrasonic probe with the vertical position of the image of the reflecting member. Specifically, as shown in FIG. 16, when the ultrasonic probe is placed at position A, the pixel number a from the upper end to the reflecting member on the B-mode image, and when the ultrasonic probe is placed at position B. A straight line passing through the point (a, A) and the point (b, B) is obtained using the pixel number b from the upper end to the reflecting member on the B-mode image.
  • This linear expression means a relational expression between the vertical position of the image of the reflecting member and the position of the ultrasonic probe.
  • the lookup table 1401 is regenerated from this relational expression.
  • the position of the ultrasonic probe may be calculated directly from this linear equation.
  • step S1104 in order to extract only the subject area used for diagnosis from the B-mode image, the unnecessary area deletion unit 1004 deletes the pad area and the reflection member image in the B-mode image. (1205) is deleted. An example of deletion is shown in FIG.
  • step S1101 to step S1104 described above are processes during the release of freeze, and the B-mode image from which the unnecessary area is deleted and the position information of the ultrasonic probe are associated and recorded in the tomographic image memory unit 1006. .
  • the operator sets the ultrasonic diagnostic apparatus to the freeze mode, and further shifts to the three-dimensional image display mode.
  • the three-dimensional image forming unit 1007 reads out the B-mode image and the position information of the ultrasonic probe recorded in the tomographic image memory unit 1006, and sets the luminance value of the B-mode image to the corresponding three-dimensional space.
  • a three-dimensional image is formed by setting a voxel at a position. An example of the formed three-dimensional image is shown in FIG. When a voxel for which a luminance value is not set is generated due to B-mode image acquisition timing, scanning start and end timing, or a change in scanning speed, the luminance value is determined by interpolation from neighboring voxels.
  • the position of the ultrasonic probe can be detected by signal processing on the B-mode image without using an expensive position sensor such as a conventional magnetic sensor or arm.
  • an expensive position sensor such as a conventional magnetic sensor or arm.
  • the position of the ultrasonic probe is determined from one B-mode image, there is no error accumulation as in Patent Document 1 or constant speed movement restriction as in Patent Document 2.
  • the image of the reflecting member is detected after the B-mode image is formed.
  • it may be detected by a signal before being converted into the B-mode image.
  • the amplitude value of the echo is a predetermined value.
  • a large position may be detected as an image of the reflecting member.
  • the signal having the maximum luminance differential value with respect to the vertical change in the pad area is detected as an image of the reflecting member.
  • the threshold value the luminance differential value with respect to the vertical change is first calculated. A portion that exceeds the threshold may be detected as an image of the reflecting member.
  • the threshold value for example, a value that can distinguish the reflecting member from the pad, such as a half value range (dynamic range) of the differential value of the luminance of the pad area, is set.
  • the determination may be based on the luminance value instead of the differential value of the luminance. For example, a portion having the maximum luminance value in the pad area is detected as an image of the reflecting member.
  • a threshold value for example, a signal whose luminance value is initially equal to or higher than the threshold value may be detected as an image of the reflecting member.
  • the threshold value for example, a value that can distinguish the image of the reflecting member from the pad, such as a half value range (dynamic range) of the luminance value of the pad area, is set.
  • the position of the ultrasonic probe is directly converted from the detected position of the image of the reflecting member.
  • the position of the image of the reflecting member is recorded at each detection timing, and a value obtained by smoothing the position is recorded. You may use it.
  • the smoothing method include a median filter and an average filter, but are not limited thereto. Further, the smoothing may be performed after conversion into the position of the ultrasonic probe.
  • the position of the ultrasonic probe is calculated using the lookup table 1401, but the amount of change in the detection position of the reflection member image obtained each time the B-mode image is acquired may be used. For example, if the vertical positions of the three B-mode images X, Y, and Z in the reflecting member image are x, y, and z, respectively, the image X acquisition position is 0, and the scaling value is s.
  • the position of the ultrasonic probe at the time of acquisition is given by Equation 1.
  • Equation 2 The position of the ultrasonic probe when the image Z is acquired is given by Equation 2.
  • the scaling value s can be obtained and converted to the absolute amount of movement of the ultrasonic probe.
  • the three-dimensional image forming unit 1007 arranges a B-mode image using this ultrasonic probe movement amount and forms a three-dimensional image.
  • the vertical position of the image of the reflecting member is not associated with the position and amount of movement of the ultrasonic probe, it is possible to appropriately arrange the B-mode image.
  • B-mode image 1 B-mode image 2,... B-mode image N
  • the vertical position of the image of the reflecting member arranged on each image is Assume that position 1, position 2,...
  • the position information of each B-mode image, position 1, position 2,..., Position N is associated with the B-mode image 1, the B-mode image 2,.
  • N) and the B-mode images are arranged so that the ratio of the difference y between the position 1 and the position 1 is always constant to generate a three-dimensional image.
  • the reflecting member 141 disposed inside the pad is substantially linear and extends from the main surface 15 according to the position on the main surface 15 of the pad.
  • the distance of is changing gradually. Therefore, by arranging the B-mode image so that the displacement in the vertical position of the image of the reflecting member 141 from a certain reference point and the position displacement of the ultrasonic probe from a certain reference point are constant, a three-dimensional image is obtained. Although the expansion / contraction magnification of the image in the z direction is separately required, the continuity of the image can be displayed more accurately.
  • the reflecting member 141 need not be a continuous single member, and may have a shape divided into a plurality of members. That is, the cross-sectional shape of the reflecting member in the yz plane of the pad of FIG. 2 looks like a dotted line shape composed of a plurality of members.
  • the shape of the reflecting member is such, there is an image in which the image of the reflecting member is not displayed on the acquired B-mode image.
  • the arrangement of the images is determined for the B-mode image in which the image of the reflecting member is displayed, and the arrangement position of the image in which the image of the reflecting member is not displayed is considered in consideration of the similarity with the image. You may decide.
  • the B-mode image on which the image of the reflecting member is displayed is arranged, and the B-mode image on which the image of the reflecting member is not displayed is arranged based on the order in which the images are formed by the tomographic image forming unit 1002. Good.
  • FIG. 17A is a cross-sectional view of the pad 14 when the ultrasonic probe 13 is in close contact with the main surface 15 of the pad 14, and
  • FIG. 17B is a cross-sectional view of the ultrasonic probe 13 and the main surface 15 of the pad 14.
  • FIG. 6 is a cross-sectional view of the pad when there is a gap 1701 between them and the ultrasonic probe is not in close contact with the main surface 15 of the pad.
  • the position of the ultrasonic probe is calculated based on the vertical distance from the main surface of the pad to the reflecting member.
  • the ultrasonic probe may float from the main surface of the pad for reasons such as camera shake.
  • the distance from the surface of the ultrasonic probe to the reflecting member becomes longer than the distance from the main surface 15 of the pad to the reflecting member, causing a problem that the position of the ultrasonic probe cannot be calculated accurately. Therefore, in the present embodiment, a configuration that can accurately calculate the position of the ultrasonic probe even when the ultrasonic probe floats from the main surface of the pad will be described.
  • FIG. 18 is a perspective view and FIG. 19 is a side view of the ultrasonic diagnostic adapter 3 according to the present embodiment.
  • the pad 1800 has a linear reflecting member including a reflecting member 1801 and a reflecting member 1802 along both sides of the pad.
  • the at least one pair of reflecting members have different inclination angles with respect to the main surface 15 of the pad 1800. That is, the difference between the distance from the main surface of the reflecting member 1801 and the distance from the main surface of the reflecting member 1802 varies depending on the position of the pad in the z direction.
  • the configuration of the three-dimensional image display mechanism is the same as that of the second embodiment and the configuration of FIG.
  • FIG. 20 shows a B-mode image formed by the tomographic image forming unit 1002 using the pad according to the third embodiment.
  • images of the reflecting member 1801 and the reflecting member 1802 are displayed as high brightness areas 2002 and 2004, respectively.
  • the vertical distance between the images of the two reflecting members is counted, for example, with the number of pixels 2005 as a unit.
  • the reflection member detection unit 1003 detects reflection member images 2002 and 2004 corresponding to the reflection member 1801 and reflection member 1802 images from the B-mode image, respectively. In addition, about the specific detection method of a reflection member, since it is the same as that of 2nd embodiment, description is abbreviate
  • the probe position calculation unit 1005 calculates the position of the ultrasonic probe based on the vertical position of the reflection member image on the B-mode image received from the reflection member detection unit 1003.
  • the reflection member detection unit 1003 does not calculate the position of the ultrasonic probe based on the vertical position of the image of one reflection member, but instead of calculating the position of the ultrasonic probe based on the vertical distance between the images of the two reflection members.
  • the position of the acoustic probe is calculated.
  • the probe position calculation unit 1005 has a lookup table in which the vertical distances of the reflection member images 2002 and 2004 are associated one-to-one with the position of the ultrasonic probe. And the vertical distance between the images of the two reflecting members are used to calculate the position of the ultrasonic probe.
  • An example of the look-up table is the same as that shown in FIG. 14 except that the number of pixels is the vertical distance of the image of the reflecting member.
  • the lookup table can be reset as in the second embodiment.
  • the ultrasonic probe is disposed at a predetermined position, and the vertical distance between the two reflecting members is associated with the position of the ultrasonic probe.
  • the images of the two reflecting members detected when the ultrasonic probe is placed at position A are obtained using the pixel number a between the two reflection members detected when the ultrasonic probe is placed at the position B. , B).
  • a lookup table is regenerated from this linear expression.
  • the position of the ultrasonic probe may be calculated directly from this linear equation.
  • the probe position calculation unit 1005 calculates the position information of the ultrasonic probe when a predetermined B-mode image is acquired, and transmits it to the tomographic image memory unit 1006. Whether the B-mode image and the position information of the ultrasonic probe are associated with each other and stored in the tomographic image memory unit 1006, or whether the B-mode image and the position information of the ultrasonic probe are stored in time series, respectively. Is optional.
  • the unnecessary area deleting unit 1004 deletes the pad area in the B-mode image and the deletion area (2107) where the reflecting member exists, and uses the object used for diagnosis from the B-mode image. Extract only the region.
  • the 3D image forming unit arranges the B mode images based on the position information of the ultrasonic probe stored in the tomographic image memory unit 1006 to form a 3D image.
  • the method described in the first embodiment can be used for both the method for detecting the image of the reflecting member on the B-mode image and the method for calculating the position of the ultrasonic probe from the image of the reflecting member. .
  • the distance from the main surface of the reflecting member is used in the first embodiment, whereas in the present embodiment, the first reflecting member and the second reflecting member are used.
  • the distance in the y direction from the reflecting member is used.
  • the scaling value s of the ultrasonic diagnostic apparatus that is, the absolute movement amount of the ultrasonic probe
  • B-mode image 1 has a probe position calculation unit 1005 and directly arranges B-mode images based on the vertical distance between the image of the first reflection member and the image of the second reflection member obtained by the reflection member detection unit 1003. May be.
  • B-mode image 1 when a plurality of B-mode images such as B-mode image 1, B-mode image 2,... B-mode image N are formed, the image of the first reflecting member and the second reflecting member appearing on each image. It is assumed that the distance in the vertical direction from the image is distance 1, distance 2,.
  • distance 1, distance 2,... Distance N which is position information of each B-mode image, is associated with B-mode image 1, B-mode image 2.
  • a difference between a difference distance z between a predetermined B-mode image i (i ⁇ N) and the B-mode image 1, a distance i (i ⁇ N) in the B-mode image i and a distance 1 in the B-mode image 1 A three-dimensional image is generated by arranging the B-mode images so that the ratio to y is always constant. This method of generating a three-dimensional image makes it possible to display the continuity of the image more accurately, although the expansion / contraction magnification of the image in the z direction of the three-dimensional image is separately required.
  • FIG. 18 shows a structure in which the first reflecting member 1801 is parallel to the main surface 15 and the second reflecting member 1802 is non-parallel to the main surface 15.
  • the reflecting members 1801 and 1802 may be non-parallel to the main surface 15.
  • the configuration including one set of reflecting members (1801 and 1802) has been described, but it goes without saying that the pad may include two or more sets of reflecting members.
  • the position of the ultrasonic probe can be calculated from the distance in the y direction between the two reflecting members. As a result, the effects of camera shake and the like can be mitigated.
  • FIG. 23 shows an ultrasonic diagnostic adapter 4 according to the third embodiment.
  • 23A is a perspective view
  • FIG. 23B is a side view near the first reflecting member
  • FIG. 23C is a side view near the second reflecting member.
  • the pad 2300, the first reflecting member portion 2301, and the second reflecting member 2304 are separated by a cross section 2313 orthogonal to the extending direction (z direction) of the reflecting member. .
  • these portions are referred to as a first area (2311) of the pad and a second area (2312) of the pad.
  • the first reflecting member includes a portion 2302 in the first region (2311) of the pad and a portion 2303 in the second region of the pad.
  • the reflecting member portions 2302 and 2303 are arranged so that the relative positional relationship with the main surface coincides with each other.
  • the second reflecting member is disposed in parallel with the extending direction of the first reflecting member when viewed from the main surface side, and is disposed in the first region (2311) of the pad.
  • the image of the first reflecting member portion 2301 and the image of the second reflecting member 2304 are B. Appears on the mode image.
  • the image of the second reflecting member 2304 it is detected that the ultrasonic probe is in the first region, and the position in the first region (2311) is detected by the distance from the main surface of the portion 2301. .
  • the ultrasonic probe is in the second region of the pad, only the portion 2303 appears on the B-mode image.
  • the ultrasonic probe was in the second region, and the position in the second region (2312) was detected based on the distance from the main surface of the portion 2303.
  • the position of the ultrasonic probe can be detected. According to this configuration, even if the inclination angle with respect to the main surface of the first reflecting member is the same as in the first embodiment, the thickness of the pad can be halved, and the B-mode image The subject area can be enlarged.
  • the pad is divided into two areas. However, it is of course possible to divide the pad into more areas. According to this configuration, the thickness of the pad can be reduced to 1 / (number of regions), and the subject region in the B-mode image can be further increased.
  • the present embodiment is characterized in that the position of the ultrasonic probe can be calculated even when it is desired to make a wide area three-dimensional using a plurality of pads.
  • FIG. 24 shows an example of the ultrasonic diagnostic adapter of the present embodiment.
  • the ultrasonic diagnostic adapter 5 recognizes in which pad the ultrasonic probe is disposed, or appropriately obtains the obtained B-mode image in a direction perpendicular to the scanning direction of the ultrasonic probe. It can be rearranged.
  • the ultrasonic diagnostic adapter 5 of the present embodiment has two or more pads (pad 2400 and pad 2410), and each pad is provided with one or more sets of reflecting members. That is, in the ultrasonic diagnostic adapter 5, a total of four or more reflecting members are arranged inside.
  • the reflection member 2401 and the reflection member 2402 are arranged inside the first pad 2400, and the reflection member 2411 and the reflection member 2412 are arranged on the second pad 2410.
  • the reflecting member 2401 and the reflecting member 2411 are reflecting members (first reflecting members) arranged so that the distance from the main surface 15 changes in the extending direction.
  • the reflecting member 2402 and the reflecting member 2412 are arranged so that the distance from the main surface 15 in the extending direction is the same, and the distance from the main surface of the pad of each reflecting member is different from each other. It is a member (second reflecting member).
  • FIG. 25 shows a side view of each pad.
  • the pad on which the ultrasonic probe is on is identified from the pad 2400 or the pad 2410, and the second reflecting members 2402 and 2412 are identified.
  • the position of the ultrasonic probe on the pad can be identified from the distance from the main surface 15.
  • the ultrasonic diagnostic apparatus uses this ultrasonic diagnostic adapter 5 to determine on which pad the ultrasonic probe is arranged, that is, the position of the ultrasonic probe in the x direction.
  • the reflection member detection unit 1003 detects the images of the reflection member 2401 and the reflection member 2411 on the B-mode image, and detects the vertical position of the image of each reflection member.
  • the probe position calculation unit 1005 has a lookup table indicating the relationship between the position of the ultrasonic probe in the x direction and the vertical position of the image of the reflecting member, and the vertical direction of the lookup table and the image of the reflecting member. It is possible to recognize on which pad the ultrasonic probe is located by using the position. With this configuration, it becomes possible to recognize which B-mode image is acquired when the ultrasonic probe is on which pad.
  • the distance from the main surface of the first reflecting member monotonously decreases or monotonously increases as the pad arrangement position advances in the x direction.
  • the pad can be identified from the second reflecting members 2402 and 2412 and the position of the ultrasonic probe on the pad can be identified from the first reflecting members 2401 and 2411, a wide range using two pads. However, the position of the ultrasonic probe can be calculated.
  • the position of the ultrasonic probe is calculated from the distance from the main surface of the reflecting member.
  • the pad is described as having two surfaces, but the number of surfaces may be increased.
  • the first reflecting members 2401 and 2411 are used for calculating the position of the ultrasonic probe in the z direction, and may be arranged so as to be inclined with respect to the main surface of the pad.
  • FIG. 26 shows an ultrasonic diagnostic adapter 6 according to Modification 1 of the fourth embodiment.
  • the reflecting members are arranged on both sides of the scanning area of each pad.
  • the reflecting members are arranged on only one side of the scanning area, and between the pads from the main surface of the reflecting member. The distances may not overlap. It is not necessary to arrange them on both sides of the scanning area.
  • the ultrasonic diagnostic adapter 6 has two or more pads. And at least 1 or more reflective member (1st reflective member) which inclines with respect to the main surface 15 is arrange
  • the modification of the fourth embodiment is characterized in that the distance from the main surface of the reflecting member does not overlap each other for each pad.
  • FIG. 27 shows a side view of the pad of the first modification of the fourth embodiment.
  • FIGS. 23A and 23B show side views of different pads. As shown in FIGS. 23A and 23B, the pads are arranged such that the distances from the main surface of the reflecting member of the pads do not overlap each other.
  • the ultrasonic diagnostic apparatus has, for example, a look-up table indicating the relationship between the position of the reflecting member at the end of the pad and the position of the pad in the x direction (that is, the position of the ultrasonic probe in the x direction). It becomes possible to add position information in the x direction to the B-mode image.
  • the acquired B-mode images can be appropriately rearranged in the x direction without using a lookup table.
  • FIG. 27 shows an embodiment in which the first reflecting members 2601 and 2611 arranged on each pad are inclined at the same angle with respect to the main surface, but these inclinations may not be the same. Good.
  • the inclination of the first reflecting member arranged on each pad is changed by the pad, and the ultrasonic probe is positioned on any pad using the value of the inclination. It may be determined whether the image is a B-mode image acquired at the time. For example, as the arrangement position of the pad increases in the x direction, the inclination of the reflecting member may be monotonously increased or monotonously decreased. Then, the reflection member detection unit 1003 of the ultrasonic diagnostic apparatus calculates the inclination of the reflection member from the vertical position of the reflection member of the series of B-mode images, adds the inclination information, and then stores the B-mode image in the tomographic image memory. Is stored. The three-dimensional image forming unit 1007 generates a three-dimensional image by arranging B-mode images in the z direction, and arranges the generated three-dimensional image in the x direction based on tilt information.
  • a B-mode image can be more accurately arranged to generate a three-dimensional image, and further, the three-dimensional image is appropriately arranged in a direction (x direction) perpendicular to the scanning direction of the ultrasonic probe. It becomes possible to do.
  • the ultrasonic diagnostic adapter has two or more pads, and the relative position of each pad as viewed from the main surface side of the first reflecting member with respect to the pad is different for each pad. It may be different.
  • FIG. 28 shows an example of the ultrasonic diagnostic adapter 7 of Modification 3 of the present embodiment.
  • FIG. 28A shows a top view
  • FIG. 28B shows a perspective view.
  • the relative position when viewed from the main surface side of the first reflecting member with respect to the pad is arranged to be different for each pad. That is, in the top view of FIG. 28A, the reflecting member 2801 is disposed at the left end of the pad 2800, and the reflecting member 2811 is disposed at the right end of the pad 2810.
  • the reflection member detection areas of the images of the reflection members 2801 and 2811 are different on the B-mode image. Therefore, if the reflection part detection area is not overlapped for each pad, the pad scanned by the ultrasonic probe can be detected based on the area where the image of the reflection member is detected. Furthermore, the position of the ultrasonic probe on the pad can be detected from the distances from the main surfaces of the reflecting member 2311 and the reflecting member 2321.
  • the ultrasonic probe is detected from the distance from the main surface of each reflection member at the same time as detecting the pad from the relative position viewed from the main surface side. Can be detected.
  • FIG. 29 shows a top view of the ultrasonic diagnostic adapter 8 of the present embodiment.
  • the piezoelectric elements (ultrasonic transducers) in the ultrasonic probe are arranged in one or more rows in the x direction in FIG. 29, and the ultrasonic probe is moved in the z direction.
  • a scanning assist mechanism such as a guide rail is arranged so that the ultrasonic probe can be moved substantially linearly in the z direction.
  • the ultrasonic diagnostic adapter 8 has a pad and a reflecting member 2901 disposed inside the pad.
  • the reflecting member 2901 is made of a material having a different acoustic impedance from that of the pad.
  • the reflecting member 2901 is characterized in that the width viewed from the main surface 15 side differs depending on the position on the main surface 15. That is, the reflection member 2401 has a shape in which the width of the reflection member gradually changes along a predetermined direction when viewed from the main surface 15 side. Specifically, in FIG. 29, the width of the reflecting member gradually increases as it proceeds in the z direction. Therefore, the width of the reflecting member 2401 in the x direction changes as the ultrasonic probe moves. Therefore, it is possible to calculate the position of the ultrasonic probe more accurately using the shape of the reflecting member 2901.
  • the vertical position of the image of the reflecting member 2901 may be constant, or may be different depending on the position as in the first to fourth embodiments.
  • the configuration of the ultrasonic diagnostic apparatus is the same as that shown in FIG.
  • the first to fourth embodiments are different in that D1013, which is the output of the reflecting member detection unit 1003, calculates the width of the reflecting member image, not the reflecting member image position, and transmits it to the probe position calculating unit. Is different.
  • Step S3003 in FIG. 30 is different from step S1103 in FIG.
  • the other steps S3001, S3002, S3004, and S3005 are the same as steps S1101, S1102, S1104, and S1105 in FIG.
  • the ultrasonic transmitting / receiving unit 1001 receives an echo, and the tomographic image forming unit 1002 generates a B-mode image.
  • FIG. 31 shows a B-mode image formed.
  • the reflection member 2901 has a shape in which the width gradually changes depending on the scanning direction of the ultrasonic probe, the width 3103 of the reflection member image displayed in the B-mode image changes depending on the position of the ultrasonic probe. .
  • the width 3103 of the image of the reflecting member 2901 is detected by, for example, edge detection.
  • the ultrasonic diagnostic apparatus has a lookup table in which the width of the image of the reflecting member and the position of the ultrasonic probe are associated one-to-one, and the ultrasonic probe is determined from the width of the image of the reflecting member using the table. Calculate the position. Based on the position of the ultrasonic probe, the images are appropriately arranged to generate a three-dimensional image.
  • the look-up table can be updated, the step S3004 for deleting the unnecessary region from the B-mode image is not essential, and the position of the ultrasonic probe is calculated, and the images are not arranged.
  • Common points with the second, third, and fourth embodiments such as the point that a three-dimensional image may be directly formed so that the width 3103 of the image of the reflecting member displayed in the image monotonously increases or decreases Is omitted.
  • the part between the reflecting member and the main surface is made of a material whose sound speed is slower than the other part of the pad. In this way, it is possible to lengthen the time required for the ultrasonic probe to transmit an ultrasonic wave until receiving an echo, to reduce the thickness of the pad, and as a result, in the B-mode image.
  • the subject area can be enlarged.
  • FIG. 32 shows the relationship between the time (horizontal axis) when the reflected wave (echo) is received and the sound pressure (vertical axis) of the echo at that time when the ultrasonic probe transmits an ultrasonic wave at time 0. .
  • (A) shows a case where the portion between the reflecting member and the main surface is made of a material having the same speed of sound as the other portions, and (b) shows the portion between the reflecting member and the main surface from the other portions. Shows the case of a material composed of a material with a slow sound speed. From this relationship, it can be seen that the time until the echo is received can be increased if the portion between the reflecting member and the main surface is made of a material having a slower sound speed than the other portions.
  • the reflecting member In order to reduce the thickness of the pad, it is preferable to arrange the reflecting member at a position close to the main surface, but in this case, the time required for the ultrasonic probe to receive the echo after transmitting the ultrasonic wave is shortened. Although it is necessary to increase the sampling frequency of the ultrasonic probe in order to accurately receive the echo, it is necessary to improve the hardware performance of the ultrasonic diagnostic apparatus, leading to an increase in cost. Therefore, if the material between the reflecting member and the main surface is made of a material having a slower sound speed, the time required for the ultrasonic probe to receive the echo after transmitting the ultrasonic wave is lengthened. be able to.
  • FIG. 33 shows the adapter 9 for ultrasonic diagnosis according to the present embodiment.
  • 33A is a perspective view
  • FIG. 33B is a side view
  • FIG. 33C is a cross-sectional view of a plane orthogonal to the extending direction of the reflecting member.
  • a first reflecting member 3301 is disposed inside the pad 3300.
  • the portion of the substance between the first reflecting member 3301 and the main surface 15 is made of a material 3302 having a slower sound speed than the other portion of the pad. In this way, it is possible to lengthen the time required from when the ultrasonic probe transmits an ultrasonic wave until it receives an echo.
  • the reflecting member can be arranged at a position close to the main surface without increasing the sampling frequency of the ultrasonic probe, the thickness of the pad can be reduced, and as a result, in the B-mode image The subject area can be enlarged.
  • the material between the reflecting member and the back surface may be the same material as the reflecting member, the same material as the substance of the other part of the pad, or a material having a slower sound speed than the substance of the other part of the pad. Good.
  • the present invention is not limited to this embodiment. Unless it deviates from the meaning of this invention, the form which carried out the various deformation
  • the system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. .
  • a computer program is stored in the RAM.
  • the system LSI achieves its functions by the microprocessor operating according to the computer program.
  • each part of the constituent elements constituting each of the above devices may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the system LSI is called here, but it may be called IC, LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • an FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention relates to an ultrasonic diagnostic adapter and an ultrasonic diagnostic apparatus, in particular, as an ultrasonic diagnostic adapter and an ultrasonic diagnostic apparatus capable of three-dimensionalizing a wide range of in-vivo information. Available for comparison. In particular, since it does not require a large-scale device and is compact, it is excellent in portability and useful for business trip diagnosis and the like.
  • Ultrasonic diagnostic adapter 11 Slider 12 Guide rail 13 Ultrasonic probe 14 Pad 15 Main surface 16 Back surface 17 Scanning region 141
  • Reflective member 1001 Ultrasonic transmitting / receiving unit 1002
  • Tomographic image forming unit 1003 Reflecting member detecting unit 1004 Unnecessary region deleting unit 1005
  • Probe position calculating unit 1006 Tomographic image memory unit 1007 Dimensional image forming unit 1008 Display unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

超音波プローブの走査速度や被検体の組成分布に依存せず、簡便な機構で超音波プローブの位置を検出する。超音波を送受信する超音波プローブ(13)を用いて被検体を診断する際に用いられる超音波診断用アダプタ(1)であって、超音波プローブ(13)が配置される側の面である主面(15)と、主面(15)と対向する面であって被検体が配置される側の面である裏面(16)とを有するパッド(14)と、パッド(14)の内部に配置され、パッドを構成する材料と音響インピーダンスが異なる材料からなる第一の反射部材(141)とを備え、第一の反射部材(141)は、主面(15)からの距離と主面側から見た幅とのうちの少なくとも一方が、主面(15)上の位置に応じて変化するように配置されている。

Description

超音波診断用アダプタ、超音波診断装置、及び、超音波診断方法
 本発明は、超音波プローブを用いて被検体を診断するときに用いられる超音波診断用アダプタ、超音波診断装置、及び、超音波診断方法に関する。
 超音波診断装置は、生体内での超音波の反射を利用して生体内情報を超音波画像として取得及び表示する診断装置であり、非侵襲で生体内の状態を観測することができる有用な装置として利用されている。
 超音波診断装置の概観図を図34に示す。超音波診断装置において超音波の送受信を行う部分が超音波プローブ13である。超音波プローブの内部には超音波の送信及び受信を行う超音波振動子がある。超音波プローブは、超音波振動子が生成及び送信する超音波のパルスを被検体に入射させ、反射して戻ってくる超音波の反射波(エコー)を受信する。超音波診断装置は、被検体からのエコーの特性を画像として表示する。画像表示方式の例として、エコーの振幅を画素の輝度(Brightness)に対応づけて被検体の断層画像(以下、Bモード画像と称する)として表示する2次元画像表示方式、又は、複数のBモード画像を用いて3次元画像を形成し表示する3次元画像表示方式等がある。
 3次元画像表示方式は、操作者が組織の位置関係を容易に把握でき、診断の客観性が向上するので、臨床の場で大変有用である。3次元画像を形成する方法としては、例えば、揺動プローブを用いる方法と位置センサを用いる方法とがある。
 揺動プローブを用いる方法では、1次元に超音波振動子の素子が配列されたアレイ素子群を機械的に揺動させる揺動プローブを用い、関心部位の体表に当てることで3次元画像を形成できる。さらに、揺動プローブを高速に揺動させることによって、3次元画像を動画として再生する4D機能の実現も可能である。
 しかしながら、広範囲の生体内情報を3次元化したい場合、揺動プローブでは揺動機構が大掛かりになり、また、揺動機構の重量も増す。そのため、超音波プローブの操作性の低下や、特に、頚部の診断等では圧迫による息苦しさが問題になる。
 位置センサを用いる方法では、1次元に振動子が配列された、軽量かつ小型の1次元プローブに位置センサを付けて、3次元画像を形成する方法がある。位置センサとしては、磁気センサやアームを用いたセンサが既にあるが、高コストが課題になっている。
 こうした課題に対して、特許文献1では、超音波プローブを走査することにより得られる複数枚の画像の相関関係を算出することで、画像間の距離を求め、その画像間の距離に基づいて画像を組み合わせることで3次元画像を形成する方法が開示されている。この方法によれば、位置センサを使わず、また、超音波プローブの走査自由度が高いという利点がある。
 また、特許文献2には、レールとゼンマイとを利用した超音波プローブ移動機構を設け、超音波プローブを一定速度に動かし、所定の位置で取得されたBモード画像を組合せることで、3次元画像を形成する方法が開示されている。この方法によれば、正確に所定の位置におけるBモード画像を取得でき、比較的低コストであるという利点がある。
特開2003-334192号公報 特開2008-200096号公報
 しかしながら、特許文献1に開示される方法では、画像間距離を画像間の相関関係から判断するため、被検体の組織分布の類似性(連続性)が高い場合には、超音波プローブが物理的に移動していることを検出することが難しいという問題がある。また、超音波プローブの移動距離と共に、誤差が累積するという問題がある。
 また、特許文献2では、超音波プローブの走査速度がゼンマイによって一定速度に保たれていることが前提となっているが、等速で動かすための移動機構が必要となり、コンパクト性を損なってしまう。
 そこで本発明は、このような状況に鑑みてなされたものであり、超音波プローブの走査速度や被検体の組成分布(類似性)に依存せず、誤差が蓄積することなく、さらに、コンパクト性を損なわずに超音波プローブの位置を検出するための超音波診断用アダプタ等を提供することを目的とする。
 上記目的を達成するために、本発明の一様態に係る超音波プローブ位置検出方法では、超音波を送受信する超音波プローブを用いて被検体を診断する際に、前記超音波プローブと前記被検体との間に介在して用いられる超音波診断用アダプタであって、前記超音波プローブが配置される側の面である主面と、前記主面と対向する面であって前記被検体が配置される側の面である裏面とを有するパッドと、前記パッドの内部に配置され、前記パッドを構成する材料とは音響インピーダンスが異なる材料からなる第一の反射部材とを備え、前記第一の反射部材は、前記主面からの距離と前記主面側から見た幅とのうちの少なくとも一方が、前記主面上の位置に応じて変化するように配置されている。
 これにより、Bモード画像内に第一の反射部材の像が含まれる。Bモード画像上の第一の反射部材の像の位置及び形状のうち少なくとも一方は、超音波プローブの主面上の位置に応じて変化する。よって、予め超音波プローブの主面上の位置とBモード画像内の第一の反射部材の位置及び形状とを関連付けておけば、診断時に取得されたBモード画像上の第一の反射部材の像の位置及び形状から、超音波プローブの位置を正確に検出することができる。
 また、好ましくは、前記第一の反射部材は、前記パッドの内部に延設されており、前記超音波診断用アダプタは、さらに、前記第一の反射部材の延設方向に沿って前記パッドの内部に延設されており、前記パッドを構成する材料と音響インピーダンスが異なる材料からなる第二の反射部材を備え、前記第一の反射部材と前記第二の反射部材とは、延設方向における前記主面からの距離の変化度合いを示す傾斜角度が互いに異なるように配置されている。
 これにより、Bモード画像内に第一の反射部材の像と第二の反射部材の像とが現れるようになる。Bモード画像における上下方向(以下、垂直方向と称する)は超音波プローブが超音波プローブを送信及び受信する方向に対応し、Bモード画像内の第一の反射部材の像と第二の反射部材の像との垂直方向の距離(以下、垂直方向距離と称する)は、超音波プローブの主面上の位置に応じて変化する。よって、予め超音波プローブの主面上の位置に対してBモード画像上の第一の反射部材の像と第二の反射部材の像との垂直方向距離を関連付けておけば、診断時に取得されたBモード画像上の第一の反射部材の像と第二の反射部材の像との垂直方向距離から、超音波プローブの位置を正確に検出することができる。特に、超音波プローブとパッドの主面との間に隙間がある場合にも、第一の反射部材と第二の反射部材との垂直方向距離は隙間の有無及び隙間の幅によらず一定であるため超音波プローブの位置を正確に算出することができる。
 また、好ましくは、前記第一の反射部材と前記第二の反射部材とは、前記第一の反射部材の延設方向に直交する断面によって複数の部分に分けられ、前記第一の反射部材の各部分は、前記主面からの距離が延設方向で変化するように配置されており、前記第一の反射部材の複数の部分は、前記主面との相対的な位置関係が互いに一致するように配置されており、前記第二の反射部材の各部分は、前記主面からの距離が延設方向で変化しないように配置されており、前記第二の反射部材の複数の部分は、前記主面からの距離が互いに異なるように配置されている。
 これにより、Bモード画像上に第一の反射部材の像と第二の反射部材の像とが現れるようになる。Bモード画像上での第二の反射部材の像の位置に基づいて、前記第一の反射部材の延設方向に直交する断面によって分けられたいずれの部分に超音波プローブが位置しているかを検出する。同時に、第一の反射部材の像の位置に基づいて、当該部分の中での超音波プローブの位置を検出する。これらの情報から、パッド上の超音波プローブの位置を正確に検出することができる。特に、第一の反射部材を配置するために必要なパッドの厚さを小さくすることができるため、パッドを薄くすることができる。その結果、Bモード画像上で被検体の像が表示される領域を広げることができる。
 また、好ましくは、前記超音波診断用アダプタは、各々が前記パッドと前記第一の反射部材と前記第二の反射部材とを含む複数のパッドセットを備え、前記複数のパッドセットに含まれる複数の前記第一の反射部材の各々は、延設方向において前記主面からの距離が変化するように配置されており、前記複数のパッドセットに含まれる複数の前記第二の反射部材の各々は、延設方向において前記主面からの距離が変化しないように配置されており、前記複数のパッドセットに含まれる複数の前記第二の反射部材は、延設方向において前記主面からの距離が互いに異なるように配置されている。
 これにより、複数のパッドを利用して検査する際に、各パッドの第二の反射部材の主面からの距離に基づいてどのパッド上に超音波プローブが位置するかを検出するとともに、第一の反射部材の主面からの距離に基づいて超音波プローブの当該パッド上での位置を検出する。よって、複数のパッドを利用した検査においても、超音波プローブの位置を正確に算出することができる。
 また、好ましくは、前記超音波診断用アダプタは、各々が、前記パッドと前記第一の反射部材とを含む複数のパッドセットを備え、前記複数のパッドセットに含まれる複数の前記第一の反射部材は、前記主面からの距離が互いに同一とならない重複しないように配置されている。
 これにより、複数のパッドを利用して検査する際に、各パッドの第一の反射部材の主面からの距離に基づいて、どのパッドであるか、及び、超音波プローブの当該パッド上でどの位置にあるかを検出する。よって、複数のパッドを利用した検査においても、超音波プローブの位置を正確に算出することができる。特に、内部に1個の反射部材を有するパッドを複数個利用するだけでよいため、内部に2個以上の反射部材を有するパッドを利用する場合に比べて低コストで実現できる。
 また、好ましくは、前記超音波診断用アダプタは、各々が、前記パッドと前記第一の反射部材とを含む複数のパッドセットを備え、前記パッドに対する前記第一の反射部材の前記主面側から見た相対位置が前記パッドセット毎に異なる。
 これにより、複数のパッドを利用して検査する際に、各パッドの第一の反射部材の主面側から見た相対位置に基づいて、どのパッド上に超音波プローブが存在するかを検出するとともに、各パッドの第一の反射部材の主面からの距離に基づいて、超音波プローブの当該パッド上での位置を検出する。よって、複数のパッドを利用した検査においても、超音波プローブの位置を正確に算出することができる。特に、内部に1個の反射部材を有するパッドを複数個利用するだけでよいため、内部に2個以上の反射部材を有するパッドを利用する場合に比べて低コストで実現できる。
 また、好ましくは、前記超音波診断用アダプタは、さらに、前記第一の反射部材の延設方向に沿って配置された第一のガイドレールと、前記超音波プローブを保持し、前記第一のガイドレールに沿って移動するスライダとを備える。
 これにより、ガイドレールに沿って超音波プローブによって被検体を走査することができる。ガイドレールが第一の反射部材の延設方向に沿って配置されているため、この構成で取得されたBモード画像上において第一の反射部材の像が現れる領域が特定の領域に限定される。よって、この特定の領域に限定してBモード画像から第一の反射部材の像を検出すれば、より正確に、かつ、より効率よくBモード画像上で第一の反射部材の像を検出し、結果的に、超音波プローブの位置を正確に算出することができる。
 また、好ましくは、前記超音波診断用アダプタは、さらに、前記第一の反射部材の延設方向及び前記第二の反射部材の各々の延設方向に沿って配置された2本のガイドレールと、前記超音波プローブを保持し、前記2本のガイドレールの間に保持されて移動するスライダとを備える。
 これにより、ガイドレールに沿って2本のガイドレールに保持されながら、超音波プローブによって被検体を操作することにより被検体の検査をすることができる。そのため、より正確にガイドレールに沿って超音波プローブを走査することができ、Bモード画像上において、反射部材の像が現れる領域はより正確に特定の領域に限定される。よって、より正確に、かつ、効率よくBモード画像上で反射部材の像を検出し、結果的に、超音波プローブの位置を正確に算出することができる。
 また、好ましくは、前記パッドは、前記主面側から見た場合に前記2本のガイドレールの間に配置され、前記主面と直交する方向において、前記2本のガイドレールの各々の厚さは、前記パッドの厚さよりも大きい。
 これにより、超音波プローブがパッドを介して被検体に押し当てられた場合のように、パッドの主面及び側面に力がかかる場合に、パッドの主面及び側面の形状の変化を抑え、反射部材の主面からの距離が変化しないようにすることができる。よって、超音波プローブがパッドを介して被検体に押し当てられた際にも超音波プローブの位置を正確に検出することができる。
 また、好ましくは、前記第一の反射部材は、前記パッドの裏面と離れて配置されている。
 これにより、超音波プローブがパッドを介して被検体に押し当てられた際に、パッドの裏面の形状が変化したとしても、反射部材の形状が変化しないようにすることができる。よって、超音波プローブが被検体に押し当てられた際にも超音波プローブの位置を正確に算出することができる。
 また、好ましくは、前記パッドは、主面側に位置する第一のパッド部と、前記裏面側に位置する第二のパッド部とを有し、前記第一の反射部材は、前記第一のパッド部の内部に配置されている。
 また、好ましくは、前記第二のパッド部は、前記第一のパッド部よりも、弾性率が低い材料により構成されている。
 これにより、弾性率がより低い材料が被検体に押し当てられるようになり、被検体の表面の凹凸にフィットし、パッドの裏面と被検体との間に隙間を生じにくくすることができる。よって、表面に凹凸のある被検体に対しても超音波プローブの位置を正確に算出することができる。
 また、好ましくは、前記パッドは、音速が1450(m/s)以上、1585(m/s)以下、平均1530(m/s)である材料により構成される。
 これにより、パッドの媒質が人体と同様の音響特性を有するようになり、被検体が人体である場合、パッドの裏面と被検体との接触面での超音波の反射を抑えることができ、良好なBモード画像を得ることができる。よって、パッドを介した被検体の超音波診断においても、Bモード画像上で反射部材の像を正確に検出し、超音波プローブの位置を正確に検出することが出来る。
 また、好ましくは、前記パッドの部分であって前記第一の反射部材と前記主面との間の部分は、前記パッドの内部の他の部分よりも音速が遅い材料で構成される。
 これにより、反射部材に向かって進む超音波と、反射部材により反射され超音波プローブに向かって進む反射波(エコー)の速度を遅くすることができる。パッド内部のより主面に近い部分に反射部材が存在する場合にも、超音波プローブのサンプリング周波数を上げずに、Bモード画像上の反射部材の像を正確に得ることができる。よって、反射部材を主面に近い位置に配置することができ、結果的にパッドの厚さを小さくすることができる。その結果、Bモード画像上で被検体の像が表示される領域を広げることができる。
 また、本発明の一様態に係る超音波診断装置は、超音波診断用アダプタと、超音波を送受信する超音波プローブと、前記超音波プローブが受信した信号の中から、前記第一の反射部材からの反射波の信号を検出する反射部材検出部と、前記反射部材検出部により検出された信号から、前記第一の反射部材の前記主面からの距離と前記主面から見た幅とのうちの少なくとも一方に基づいて前記超音波プローブの位置を検出するプローブ位置算出部とを備える。
 これにより、超音波プローブがパッド内部の反射部材からの反射波(エコー)を受信し、Bモード画像上に反射部材の像が得られるようになる。その像を検出し、反射部材の主面からの距離及び、超音波プローブの位置を検出することができる。よって、超音波プローブの位置を正確に算出することができる。
 また、好ましくは、前記反射部材検出部は、前記超音波プローブが受信した信号の中から、前記パッドの内部に対応する信号であって、振幅が所定の閾値以上である信号を前記第一の反射部材からの信号として検出する。
 また、好ましくは、前記反射部材検出部は、前記超音波プローブが受信した信号の中から、前記パッドの内部に対応する信号であって、振幅が最大である信号を前記第一の反射部材からの信号として検出する。
 また、好ましくは、前記反射部材検出部は、前記超音波プローブが受信した信号の中から、前記パッドの内部に対応する信号であって、振幅の微分値が所定の閾値以上である信号を前記第一の反射部材からの信号として検出する。
 また、好ましくは、前記反射部材検出部は、前記超音波プローブが受信した信号の中から、前記パッドの内部に対応する信号であって、振幅の微分値が最大である信号を前記第一の反射部材からの信号として検出する。
 これらにより、Bモード画像上の反射部材の像を検出することができる。よって、結果的に、超音波プローブの位置を正確に算出することができる。
 また、好ましくは、前記プローブ位置算出部は、前記反射部材検出部により検出された前記第一の反射部材の前記主面からの距離と前記主面側から見た幅とのうちの少なくとも一方に対する前記超音波プローブの位置の関係を示す関係式に従って、前記反射部材検出部により検出された前記第一の反射部材の前記主面からの距離と前記主面側から見た幅とのうちの少なくとも一方に基づいて前記超音波プローブの位置を算出する。
 これにより、Bモード画像から得られた反射部材の主面からの距離に基づいて、簡便に超音波プローブの位置を算出することができる。よって、Bモード画像上の情報から検出した情報から超音波プローブの位置を正確に算出することができる。
 また、好ましくは、前記プローブ位置算出部は、超音波プローブが第一の所定の位置に配置されてから、第一の所定の位置とは異なる第二の所定の位置へ移動されるまでの間に検出される、前記第一の反射部材の前記主面からの距離と前記主面側から見た幅とのうちの少なくとも一方を利用して、前記関係式を較正する。
 これにより、実際に超音波診断に使用するパッドを使用して関係式を構成することができる。よって、パッドの固体毎に存在しうる測定誤差をより小さくすることができ、結果的に、超音波プローブの位置を正確に算出することができる。
 また、好ましくは、前記プローブ位置算出部は、さらに、経時的に得られる前記第一の反射部材の位置を検出し前記超音波プローブの位置の移動量を算出する。
 これにより、超音波プローブのパッド上における位置だけでなく、基準となる測定時点から診断時点までの超音波プローブの移動距離を算出することができる。よって、ある期間内の超音波プローブの移動距離を正確に算出することができる。
 なお、本発明は、超音波診断装置として実現できるだけでなく、その超音波診断装置を構成する処理手段をステップとする方法として実現したり、それらステップをコンピュータに実行させるプログラムとして実現したり、そのプログラムを記録したコンピュータ読み取り可能なCD-ROMなどの記録媒体として実現したり、そのプログラムを示す情報、データ又は信号として実現したりすることもできる。そして、それらプログラム、情報、データ及び信号は、インターネット等の通信ネットワークを介して配信してもよい。
 本発明により、一般的な超音波診断装置に対する機能追加によって、超音波プローブの走査速度や被検体の組成分布(類似性)に依存せず、誤差が蓄積することなく、コンパクト性を損なわずに超音波プローブの位置及び移動量を検出し、Bモード画像及び3次元画像のような超音波診断画像を得ることができるようになる。
図1は、第一の実施の形態に係る超音波診断用アダプタの概観図である。 図2は、第一の実施の形態に係る超音波診断用アダプタの側面図である。 図3は、超音波診断用アダプタを用いた場合の超音波の反射波(エコー)を示す図である。 図4は、超音波プローブの走査補助機構の概観図である。 図5は、超音波診断用アダプタと超音波プローブの走査補助機構とを組み合わせた場合の概観図である。 図6は、超音波プローブの走査補助機構の一例を説明するための概観図である。 図7は、超音波診断用アダプタのガイドレールの一例を説明するための概観図である。 図8は、第二の実施の形態に係る超音波診断装置の動作説明図である。 図9は、3次元画像の表示例を示す図である。 図10は、第二の実施の形態に係る超音波診断装置の機能ブロック図である。 図11は、第二の実施の形態に係る3次元画像表示機構の動作説明図である。 図12は、取得されたBモード画像を示す図(a)、Bモード画像における不要領域削除を説明するための図(b)である。 図13は、第二の実施の形態に係るBモード画像上での反射部材の像の検出を説明する図である。 図14は、ルックアップテーブルの一例を示す図である。 図15は、3次元画像形成における補間を説明するための図である。 図16は、ルックアップテーブルの較正方法を説明するための図である。 図17は、第三の実施の形態に係る超音波診断用アダプタの課題を説明する図である。 図18は、第三の実施の形態に係る反射部材を内部に2つ配置したパッドの斜視図である。 図19は、第三の実施の形態に係るパッドの側面図である。 図20は、Bモード画像上での反射部材の像の位置を示す図である。 図21は、取得されたBモード画像を示す図(a)、Bモード画像における不要領域削除を説明するための図(b)である。 図22は、第三の実施の形態に係る課題解決の効果を説明する図である。 図23は、第三の実施の形態の変形例の超音波診断用アダプタを示す図である。 図24は、第四の実施の形態に係る超音波診断用アダプタを示す図である。 図25は、第四の実施の形態に係るパッドの側面図である。 図26は、第四の実施の形態の変形例1に係るパッドを示す図である。 図27は、第四の実施の形態の変形例1に係るパッドの側面図である。 図28は、第四の実施の形態の変形例3に係る超音波診断用アダプタの上面図(a)及び斜視図(b)である。 図29は、第五の実施の形態の超音波診断用アダプタの上面図(a)及び斜視図(b)である。 図30は、第五の実施の形態の3次元画像表示機構の動作説明図である。 図31は、第五の実施の形態に係るBモード画像上での反射部材の位置を示す図である。 図32は、音速が異なる物質中を伝播する超音波の反射波(エコー)の受信時刻を説明する図である。 図33は、第六の実施の形態に係る超音波診断用アダプタを示す図である。 図34は、超音波診断装置の概観図である。
 以下、発明の実施の形態について、図面を用いて説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 (第一の実施の形態)
 図1に、本実施の形態に係る超音波診断用アダプタの一例を示す。この超音波診断用アダプタ1は、超音波診断装置の超音波プローブと関心部位の体表(被検体)との間に配置される。超音波診断用アダプタ1は、パッド14と、そのパッド14の内部に配置された、パッドの材料と音響インピーダンスの異なる材料を含む反射部材を備える。パッドは、被検体の曲面形状に容易にフィットさせることが可能な部材(例えば高分子ゲル)からなる。これに対して、反射部材は、例えば、アルミニウム又はステンレス等の材料からなる。なお、反射部材の材料は、硬度が高く、かつパッド中に長時間配置されていても腐食が進まない材料であることが好ましい。また、パッドの材料は、音速が1450(m/s)以上、1585(m/s)以下、平均1530(m/s)であることが好ましい。このようにすると、パッドの媒質が人体と同様の音響特性を有するようになり、被検体が人体である場合、パッドの裏面と被検体との接触面での超音波の反射を抑えることができる。
 ここで、パッド14のうち、超音波プローブが配置されるほうの面を主面15、そして主面15と対向する面を裏面16と呼ぶ。診断時には裏面16と被検体とが接し、主面側から裏面側(被検体側)に向かって超音波が送信される。なお、図1において、走査領域17は、超音波プローブが走査する主面15上の領域の一部、もしくは全部を示している。
 なお、図1において図示するように、主面15に垂直な方向をy方向、反射部材の延設方向をz方向、y方向及びz方向に直交する方向をx方向とし、各方向の向きは図示するとおりとする。他の図面においても同様の座標系を用いる。
 図2に、本実施の形態に係る超音波診断用アダプタ1の側面図を示す。超音波診断用アダプタ1は、パッド14の内部に反射部材141を有し、反射部材141は走査領域17の一部を通過している。そして、反射部材141は主面15に対して0度より大きい角度をなすように傾斜して配置されており、パッドの主面上の位置に応じて反射部材の主面からの距離が異なっている。図2におけるz方向に進むにつれて反射部材141と主面15の距離が徐々に大きくなるように配置されている。
 図1、及び図2では、反射部材141は略直線状であり、主面15側から見たときの反射部材の延設方向(z方向)は超音波プローブの走査方向に平行である。また、反射部材141は、直方体もしくは長方体の走査領域のうち超音波プローブの走査方向に平行な1辺に沿って延設されている。
 図3を用いて、反射部材141と主面15の距離が異なる場合に超音波プローブ13が受信するエコーについて図3を用いて説明する。図3において、横軸は、超音波プローブが超音波パルスを送信してからエコーを受信するまでの時間t(横軸)を示し、縦軸は、エコーの受信強度(振幅)Iを示す。図3の(a)及び(b)に、z座標がそれぞれz1及びz2である場所(ただし、反射部材141からのエコーを受信する領域であるものとする)において受信するエコーの例を示す。ここで、z2の地点における反射部材141と主面15との間の距離が、z1の地点における反射部材141と主面15の間の距離よりも大きいものとする。この反射部材の音響インピーダンスは、パッドを構成する材料の音響インピーダンスとは異なっているため、超音波に対して異なる反射特性を示す。したがって、超音波プローブは体内に向けて超音波を送信した後に体内からのエコーに加えて反射部材からのエコーを受信する。
 なお、この実施の形態では、反射部材141の音響インピーダンスがパッド14よりも大きい場合を想定しており、被検体からのエコーよりも反射部材141からのエコーの振幅強度が大きく検出される。図3の(a)及び(b)では、反射部材141からのエコーを受信するまでの時間tが異なっている。これは反射部材141と主面の間の距離が異なるためである。超音波プローブの位置によって、超音波プローブが超音波を送信してから反射部材141からのエコーが検出されるまでの時間が異なることを利用して、超音波診断装置は、Bモード画像が取得されたときの超音波プローブの位置、もしくは各Bモード画像同士の相対位置関係を算出することが可能になる。
 以上の通り、パッドの内部に、パッドの主面上の位置によってパッドの主面からの距離が異なるように反射部材を配置することで、簡便に、超音波プローブの主面上の位置やBモード画像同士の相対位置関係を検出できる。また、この方法は、画像の相関関係によって超音波プローブ位置を判断する従来の方法と異なり、体内の組成分布の画像状態を超音波プローブの位置検出に利用しないため、体内組成の分布によらず精度よく超音波プローブの位置を検出することができ、さらに、超音波プローブの走査速度に依存しない。
 なお、本実施の形態の超音波診断用アダプタ1を利用して、超音波プローブの位置を具体的に検出したり、取得されたBモード画像の相対位置を算出したりすることが可能になる。この超音波プローブの位置検出方法、及び相対位置情報の算出方法については後述する。
 なお、本実施の形態の反射部材は、パッドの内部に配置されていれば、どのような位置に配置されていてもよいが、反射部材がパッドの裏面(被検体と接する面)に接していないことがより好ましい。すなわち、反射部材のうち最も被検体に近い点が、パッドの裏面から所定距離離れた位置に存在していることが好ましい。超音波プローブがパッドを介して人体に押し当てられることにより、被検体の形状に沿ってパッドの裏面の形状が変化する。この場合に、パッドの裏面に反射部材の一部が接するように配置されている場合には、反射部材の形状がパッドの形状歪みの影響を大きく受け、歪んでしまう可能性がある。そこで、反射部材をパッドの裏面よりも所定距離離した位置に配置することにより、パッドの形状歪みが反射部材に与える影響を低減し、より精度良く超音波プローブの位置検出を行うことが可能になる。例えば、実験によれば、高分子ゲルの場合、反射部材141と裏面16とが5mm以上10mm以下の間隔で離れていることで、反射部材141の歪みが観測上問題とならない程度に低減されることが確認された。
 すなわち、パッドが、主面側に位置する第一のパッド部と、裏面側に位置する第二のパッド部とを有し、裏面側(被検体側)に位置する第二のパッド部の厚さを5mm以上10mm以下とすることで、反射部材141の歪みを低減することができた。なお、反射部材は第一のパッド部のみに配置されている。なお、パッドは第一のパッド部及び第二のパッド部と便宜上呼んでいるが、この第一のパッド部及び第二のパッド部は別体ではなく一体化されていてもよいことは言うまでもない。第一のパッド部及び第二のパッド部が一体化されることで、2つのパッド部の境界面での不要な反射を起こさず、ノイズを低減することができる。
 また、パッドを少なくとも2種類の材質から構成してもよい。すなわち、パッドのうち体表に押し当てられる側に第二物質を使用し、第二物質を使用した領域よりもより超音波プローブに近い領域は、前記第二物質よりも硬度の高い第一物質を使用する。そしてこの硬度の高い第二物質中に反射部材が配置されている。上述の例では、第二のパッド部に第二物質を使用し、第一のパッド部に第一物質を使用する。第一物質及び第二物質の材料としては、前述した音速の制約から水質ゲルが好ましく、それぞれで、硬度を変えるとよいが、これに限定されない。
 このように、互いに硬度が異なる第一物質と第二物質とを利用することにより、被検体形状へのフィッティング機能と、反射部材及び超音波プローブ間の形状歪みの低減という機能とを、各物質に振り分けることが可能になる。具体的には、第二物質に硬度の比較的低い材料を使用することで、パッドの裏面の形状を被検体形状に沿うように変化させることが可能となる。一方で、被検体から遠い側に使用された第一物質に比較的硬度の高い材料を使用することで、超音波プローブが体表に押し当てられ、パッド形状に歪みが生じた場合にも第一物質中に配置された反射部材の形状又は主面からの距離には影響が及びにくく、位置検出時に発生する誤差を低減することが可能になる。
 なお、反射部材141は、少なくとも超音波プローブの走査範囲に含まれていればどこに配置されてもよい。前述したように超音波プローブの走査範囲の端部に反射部材が配置されていれば、取得されるBモード画像の端部に反射部材の像が現れるため、Bモード画像のうちの被検体に対応する領域を分断することがない。また、反射部材の像がBモード画像の端部以外に現れる位置に反射部材が配置されている場合、例えば超音波プローブの走査領域の中央部に配置されている場合にも、超音波プローブの位置、もしくは取得される複数のBモード画像間の相対位置を検出することができるという効果を奏することができる。
 また、反射部材141は任意の形状であってよいが、特に直線状の形状であることが好ましい。反射部材141は、主面側から見た場合に、走査領域の1辺と平行でなくてもよい。例えば、主面15側から見て反射部材141が蛇行した形状である場合には、超音波プローブ13の圧電素子(超音波振動子)のうち反射部材141が検出される信号を検出する位置が場所によって変化する可能性がある。そのため、検出信号から反射部材141の信号を抽出する工程が複雑となる。この場合においても超音波プローブの位置を求めたり、Bモード画像の相対位置関係を求めたりすることは可能であるが、より簡易に超音波プローブの位置を求めるためには、主面との距離が単調に変化するように、反射部材141が直線状であることが好ましい。
 また、図1において、yz平面における反射部材の断面においても、反射部材141が直線状の形状であることが好ましい。例えば、yz平面における反射部材の断面において反射部材141が蛇行した形状である場合にも、後述するように、超音波診断装置は予め反射部材141の形状と反射部材141が検出されるまでの時間の関係を示すルックアップテーブル(LUT)を格納しておき、そのLUTに基づいて超音波プローブの位置を求めることが可能である。しかしながら、反射部材141と主面15の距離が同一となる主面上の位置が複数存在する場合があるため、超音波プローブの場所を簡便に求めるためには、反射部材141は直線状であることが好ましい。
 また、図1及び図2では反射部材141が超音波プローブの走査領域の中に1個存在する実施の形態を示したが、走査領域の中に少なくとも2個以上の反射部材141が配置されていてもよい。これらの実施の形態については後述する。
 なお、反射部材141は全て繋がっている形状ではなく、所定の長さの部材が所定の間隔をあけて間欠的に配置されている形状であってもよい。
 また、上記の実施の形態で反射部材とした部分について、超音波を吸収する性質を有する材料(吸収材)により構成されてもよい。反射部材が吸収材からなることにより、超音波診断用アダプタ1は、反射部材と超音波プローブ間で生じる多重反射を避けることができる。吸収材の材料としては、例えば、シストが好ましいが、これに限定されるものではない。
 なお、操作者は、パッド上で超音波プローブを走査する場合、パッドの中の反射部材141が存在する領域の上部を通過するように超音波プローブを移動させる。この場合、操作者はパッド上をフリーハンドで超音波プローブを移動させてもよいが、後述する超音波プローブの走査補助機構を用いれば、より直線状に超音波プローブを移動させることが可能になる。
 以下、パッドの主面上を超音波プローブ移動させる際に、超音波プローブを直線的に動かすための走査補助機構について説明する。
 図4に超音波プローブ13を直線状に移動させるための走査補助機構の一例を示す。走査補助機構は、反射部材の延設方向に沿って配置された2本のガイドレール12とガイドレール12の間に配置されたスライダ11を少なくとも有している。ガイドレール12は、図5に示すようにパッド14の主面上に形成されており、超音波プローブを移動させたい方向(走査方向)に沿って主面上に配置されている。なお、パッドは、走査補助機構と初めから一体化されていてもよいし、パッドから離れて配置されていてもよい。
 スライダ11は、超音波プローブ13を固定可能である。例えば操作者は超音波プローブ13をスライダ11に差し込むことで、スライダ11と超音波プローブ13とを一体化する。このスライダ11は、ガイドレール12に沿って移動可能に形成されており、例えば、超音波プローブ13及びスライダ11を、図4に点線で示す超音波プローブの走査方向10に向かって移動することができる。スライダ11がガイドレール12に沿って動くことで、操作者は、フリーハンドで超音波プローブ13を移動させる場合に比べて、より直線状に超音波プローブ13を移動させることができる。これにより、3次元表示したい部位のBモード画像を複数枚取得することができる。
 なお、図4では、パッドの主面上に、互いに平行なガイドレール12を2本配置している。ガイドレール12が1本の場合であっても、スライダ11をガイドレール12に押し当てる(もしくは、スライダ11がガイドレール12から離れないような機構とする)ことで、スライダ11をガイドレール12に沿って移動させることができる。ガイドレール12を2本設けることで、スライダ11の両端がガイドレール12に挟まれることにより、超音波プローブをより正確にガイドレール12に沿って動かすことができる。なお、超音波プローブを所定の方向に移動させることが可能である場合には、上記の走査補助機構が無くても構わない。
 また、走査補助機構が平行に配置されたガイドレール12を3本以上有していてもよい。この構成により、超音波プローブをガイドレールに沿って移動できる領域を拡大することができる。
 なお、超音波診断装置は、スライダ11に保持された超音波プローブ13をガイドレール12に沿って移動させながらBモード画像を複数枚取得する。そして、Bモード画像を複数枚組み合わせることにより対象部位の3次元画像を生成する。
 なお、本実施の形態では走査補助機構として図4の構成を示したが、走査補助機構は決して図4の構成に限られるものではない。例えば、図6に一例を示すように、ガイドレールをパッドに付ける構成ではなく、パッド61に溝62を作り、超音波プローブの移動を補助する構成でもよい。この構成によっても、超音波プローブを溝62に沿って移動させることができる。ガイドレールとパッドとが一体となっていることで、ガイドレールとパッドとの位置調整が不要となる。なお、図6は反射部材の表示を省略している。
 さらに、ガイドレールは反射部材の延設方向に沿って配置されていればよく、パッドと分離していてもよい。その理由は、パッドとガイドレールとが分離していても、パッドの内部に本実施の形態の反射部材が配置されていれば、超音波プローブを反射部材に沿って動かすことで超音波プローブの位置を検出することが可能となるためである。また、超音波プローブとパッドとが分離している構成であってもよいことは言うまでも無い。
 また、超音波診断用アダプタは、パッドよりも硬度の高い材料のガイドレールを用い、ガイドレールの厚さをパッドの厚さよりも大きいか等しくし、パッドの側面にガイドレールが配置される構成としてもよい。この構成の超音波診断用アダプタ2の一例を図7に示す。この構成によれば、例えば超音波プローブがパッドを介して被検体に押し当てられた場合のように、パッドの主面及び側面に力がかかる場合に、パッドの主面及び側面の形状の変化を抑えることができる。これにより、パッドの内部に配置されている反射部材の形状が変化しないようにすることができる。
 (第二の実施の形態)
 本実施の形態は、前述した反射部材が内部に配置されたパッドを用い、パッドと被検体の像とを含んだBモード画像から反射部材の像を検出し、超音波プローブの位置を算出できることを特徴とする。
 以下の説明では、複数枚のBモード画像から3次元画像を形成する3次元画像表示機構を例に説明する。
 最初に、本実施の形態に係る3次元画像表示機構の操作概要について、図8の状態遷移図を用いて説明する。初期状態は、フリーズモード(802)である。この状態では、超音波プローブから超音波が送信されない。そして、操作者がこのフリーズ状態を解除(811:フリーズOFF)すると、Bモード画像記録モード(801)へ遷移し、Bモード画像を記録できるようになる。この状態の時に、操作者は、スライダと一体となった超音波プローブを移動させ、複数枚のBモード画像を取得する。
 Bモード画像を取得後、フリーズモードに戻す(812:フリーズON)。その後、3次元画像表示モード(803)に切り替える(813:3次元画像表示ON)と、3次元画像が形成される。
 超音波プローブを往復させる場合のように、同一の被検体に対して超音波プローブにより複数回走査すると、走査した回数に等しい数の3次元画像を形成できるだけのBモード画像が得られる。例えば、超音波プローブの移動履歴から走査の切れ目を検出し、切れ目が発生した都度、3次元画像が形成されるようにする。具体的には、超音波プローブを1往復させた場合、3次元画像が2つ形成される。3次元画像が複数形成された場合、操作者は、例えば、図9に示す通り、操作画面上で表示したい3次元画像を選択する。3次元画像の確認が終わったらフリーズモード(802)に戻す(814:3次元画像表示OFF)。
 次に、本実施の形態に係る超音波診断装置の機能ブロックについて、図10を用いて説明する。
 超音波診断装置は、超音波を送受信する超音波送受信部1001と、受信したエコーからBモード画像を形成する断層画像形成部1002と、Bモード画像中の反射部材の像を検出する反射部材検出部1003と、Bモード画像から不要領域を削除する不要領域削除部1004と、反射部材の位置から超音波プローブの位置を算出するプローブ位置算出部1005と、複数枚のBモード画像を記録する断層画像メモリ部1006と、記録された複数枚のBモード画像から3次元画像を形成する3次元画像形成部1007と、Bモード画像及び3次元画像等を表示する表示部1008とから構成される。
 以下、データの流れについて説明する。
 超音波送受信部1001は、反射部材を内部に配置するパッドを介して被検体に超音波を送信し、エコーを受信し、対応するエコー信号に変換する。そして、エコー信号D1011を、断層画像形成部1002へ出力する。
 断層画像形成部1002は、超音波送受信部1001より出力されたエコー信号D1011を入力とし、エコー信号を輝度値に変換してBモード画像を形成する。そして、形成されたBモード画像D1012を、反射部材検出部1003と不要領域削除部1004とへ出力する。
 反射部材検出部1003は、断層画像形成部1002より出力されたBモード画像D1012を入力とし、後述する画像処理により、Bモード画像上の反射部材の像の検出と、その像の垂直方向の座標に対応する垂直方向位置の算出とを行う。そして、反射部材の垂直方向位置情報D1013を、プローブ位置算出部1005へ出力する。
 不要領域削除部1004は、断層画像形成部1002より出力されたBモード画像D1012を入力とし、Bモード画像の中で診断に必要としないパッドや反射部材の像が存在した領域を削除する。そして、不要領域が削除されたBモード画像D1014を、断層画像メモリ部1006と表示部1008へ出力する。
 プローブ位置算出部1005では、反射部材検出部1003より出力された反射部材の垂直方向位置情報D1013からBモード画像取得時の超音波プローブの位置情報D1015を算出する。そして、算出された超音波プローブの位置情報を、断層画像メモリ部1006へ出力する。なお、表示する画像上に、反射部材の像が表示されていてもよい場合は、不要領域削除部1004は無くてもかまわない。また不要領域削除部1004を有さず、後述する3次元画像形成部1007によって形成される3D画像のうち、所定の領域のみを選択して表示部1008に送信してもよい。
 断層画像メモリ部1006は、不要領域削除部1004より出力されたBモード画像D1014とプローブ位置算出部1005より出力される超音波プローブの位置情報D1015を記録しておく記憶装置である。
 3次元画像形成部1007では、断層画像メモリ部1006に記録されているBモード画像D1014と対応する超音波プローブの位置情報D1015を読み出し、位置情報に基づいてBモード画像を配列することで3次元画像を形成する。そして、形成された3次元画像D1017を、表示部1008へ出力する。
 表示部1008では、不要領域削除部1004より出力されるBモード画像と3次元画像形成部1007より出力された3次元画像D1017を入力とし、ディスプレイ等の表示機器に表示する。
 なお、図10における超音波送受信部1001は超音波プローブに相当するが、超音波プローブがさらにその他の機能ブロック1002~1008の一部又は全部を有するように構成してもよい。
 なお、機能ブロック1002~1005及び1007は、CPU、メモリ、プログラム等によってソフトウェア的に実現されてもよいし、専用の電子回路等によってハードウェア的に実現されてもよい。
 以上が、超音波診断装置の機能ブロックに関する説明である。
 次に、本実施の形態に係る超音波診断装置の動作の流れについて、図11のフローチャートと図12のBモード画像を用いて説明する。
 準備として、図5に示す通り、操作者は、超音波プローブ13をスライダ11にセットする。そして、3次元化したい部位の体表にパッドを置いた後、フリーズ状態を解除し、スライダと共に超音波プローブを動かし始める。
 超音波診断装置では、ステップS1101において、超音波送受信部1001が、超音波プローブから超音波を送信し、被検体内からのエコーをライン単位に受信する。さらに、断層画像形成部1002が、各ラインの受信エコー(被検体からのエコー)に対して、包絡線検波、対数圧縮、等の処理を行い、輝度値に変換し、Bモード画像を生成する。
 次に、ステップS1102において、反射部材検出部1003はBモード画像上の反射部材の像を検出する。図12の(a)にBモード画像の例を示す。Bモード画像上で、パッドの像が存在する領域であるパッド領域はBモード画像の上部の領域(1201)に、パッドの裏面に接する被検体から得られる情報が示される領域である被検体領域は、パッド領域より下部の領域(1202)にそれぞれ位置する。ここで、パッドの中には、パッドの材料とは音響インピーダンスが異なる反射部材が配置されており、この反射部材からの信号はBモード画像中において高輝度領域(1203)として現れる。ここで、反射部材検出部1003が、Bモード画像中に現れる高輝度領域(反射部材からのエコー)を検出し、プローブ位置算出部1005がこの高輝度領域の位置から超音波プローブの位置を算出する。
 反射部材検出部1003では、例えば、反射部材の像を検出するために使用する領域をパッドの端部である反射部材検出領域(1204)に絞り、ライン単位にエッジ検出することで反射部材の像の位置を検出する。具体的には、反射部材検出領域の中で、垂直方向の変化に対する輝度の微分値が最大となる部分を反射部材の像として検出する。
 図13に、Bモード画像の反射部材検出領域の拡大図を示す。図13において白色の長方形で示す反射部材の像1302に対し、垂直方向の変化に対する輝度の微分値が最大となる部分(1301)が、反射部材検出部1003により反射部材の像として検出される。ここで、反射部材の主面からの距離は、図13に示す反射部材の像とBモード画像の上端との間の画素数(1303)に相当する。
 さらに、ステップS1103において、プローブ位置算出部1005は、検出した反射部材の位置からBモード画像取得時の超音波プローブの位置を算出する。算出には、図14に示すようなルックアップテーブル1401を用いる。ルックアップテーブル1401には、Bモード画像の上端から反射部材の像までの画素数と超音波プローブの位置とが一対一に関連付けられている。例えば、反射部材検出部1003から得られた反射部材の像が、Bモード画像の上端から5画素の位置にあるときの超音波プローブの位置を基準位置とすると、反射部材の像が7画素の位置に表れていたときの超音波プローブの位置は基準位置から10mm移動した位置となる。
 ルックアップテーブル1401は再設定可能である。例えば、所定の位置に超音波プローブを配置し、超音波プローブの位置と反射部材の像の垂直方向位置とを関連付けることにより、再設定可能である。具体的には、図16に示すように、超音波プローブを位置Aに置いたときのBモード画像上での上端から反射部材までの画素数aと、超音波プローブを位置Bに置いたときのBモード画像上での上端から反射部材までの画素数bとを利用して、点(a、A)と点(b、B)とを通過する直線を得る。この直線式は、反射部材の像の垂直方向位置と超音波プローブの位置との関係式を意味する。この関係式からルックアップテーブル1401を再生成する。もちろん、この直線式から、直接、超音波プローブの位置を算出してもよい。
 次に、ステップS1104において、Bモード画像から診断に使う被検体領域のみを抽出するために、不要領域削除部1004でBモード画像中のパッド領域と反射部材の像が存在する領域である削除領域(1205)を削除する。図12の(b)に削除例を示す。
 以上のステップS1101からステップS1104までの処理は、フリーズ解除中の処理であり、不要領域を削除したBモード画像と超音波プローブの位置情報とが関連付けられて、断層画像メモリ部1006に記録される。
 3次元化したい領域のBモード画像を取得し終えた場合、操作者は超音波診断装置をフリーズモードにし、さらに、3次元画像表示モードに遷移させる。そして、ステップS1105において、3次元画像形成部1007は、断層画像メモリ部1006に記録されているBモード画像と超音波プローブの位置情報とを読み出し、Bモード画像の輝度値を対応する3次元空間位置のボクセルに設定することにより、3次元画像を形成する。形成された3次元画像の例を図15に示す。Bモード画像の取得タイミング、走査の開始及び終了のタイミング、或いは、走査速度の変化などにより、輝度値が設定されないボクセルが生じる場合は、周辺ボクセルからの補間により、輝度値を決定する。
 以上が、動作の流れである。
 以上の構成により、従来のような、磁気センサやアームのような高価な位置センサを使わなくても、Bモード画像に対する信号処理により、超音波プローブの位置を検出できる。また、Bモード画像1枚から超音波プローブの位置が決まるため、特許文献1のような誤差の蓄積や、特許文献2のような等速移動の制約を受けない。
 なお、上記説明では、Bモード画像を形成してから反射部材の像を検出したが、Bモード画像に変換する前の信号で検出しても良く、例えば、エコーの振幅値が所定の値より大きい位置を反射部材の像として検出してもよい。Bモード画像形成前の信号で検出することにより、より細かい分解能で反射部材の像の位置を検出することができる。
 また、上記説明では、パッド領域の、垂直方向の変化に対する輝度の微分値が最大となる信号を反射部材の像として検出したが、閾値を用い、垂直方向の変化に対する輝度の微分値が最初に閾値以上になる部分を反射部材の像として検出してもよい。閾値としては、例えば、パッド領域の輝度の微分値の値域(ダイナミックレンジ)の半値等、反射部材とパッドの区別が可能な値に設定する。
 さらに、検出に際しては、輝度の微分値ではなく、輝度値で判断してもよい。例えば、パッド領域内で、輝度値が最大となる部分を反射部材の像として検出する。また、輝度の微分値による検出と同様、閾値を用いる場合、輝度値が最初に閾値以上になる信号を反射部材の像として検出してもよい。閾値としては、例えば、パッド領域の輝度値の値域(ダイナミックレンジ)の半値等、反射部材の像とパッドの区別が可能な値に設定する。
 また、上記説明では、検出した反射部材の像の位置から直接、超音波プローブの位置を換算したが、検出タイミング毎に反射部材の像の位置を記録しておき、それらを平滑化した値を使ってもよい。平滑化により、ノイズや手振れ等に起因する検出結果の揺らぎを抑えることができる。平滑化方法としては、中央値フィルタや平均値フィルタ等があるが、これに限らない。また、平滑化は、超音波プローブの位置に換算した後でも構わない。
 また、上記説明では、ルックアップテーブル1401により、超音波プローブの位置を算出すると説明したが、Bモード画像取得の都度得られる反射部材の像の検出位置の変化量を利用してもよい。例えば、3枚のBモード画像X、Y及びZの反射部材の像の垂直方向位置がそれぞれx、y及びzの場合、画像X取得時の位置を0、スケーリング値をsとすると、画像Y取得時の超音波プローブの位置は、式1で与えられる。
Figure JPOXMLDOC01-appb-M000001
 画像Z取得時の超音波プローブの位置は、式2で与えられる。
Figure JPOXMLDOC01-appb-M000002
 なお、予め、超音波プローブの移動量と反射部材の像の位置の変化量について対応関係が分かっていれば、スケーリング値sが分かり、超音波プローブの絶対的な移動量に換算できる。3次元画像形成部1007は、この超音波プローブ移動量を用いてBモード画像を配置し、3次元画像を形成する。
 なお、反射部材の像の垂直方向位置と超音波プローブの位置や移動量が対応付けられていなかったとしても、適切にBモード画像を配置することが可能である。例えば、Bモード画像1、Bモード画像2、…Bモード画像Nのように複数のBモード画像が形成されたときに、それぞれの画像上に配置される反射部材の像の垂直方向位置が、位置1、位置2、…位置Nであったと仮定する。ここで、各Bモード画像の位置情報である、位置1、位置2、…位置N、をBモード画像1、Bモード画像2…Bモード画像Nに関連付けておく。その上で、所定のBモード画像i(i≦N)とBモード画像1との間の差分距離zと、所定のBモード画像における反射部材の像の垂直方向位置である位置i(i≦N)と位置1との差分yとの比が常に一定になるように各Bモード画像を配列して3次元画像を生成する。
 第一の実施の形態の記載や図1等に示されるように、パッドの内部に配置された反射部材141は略直線状であり、パッドの主面15上の位置に応じて主面15からの距離が徐々に変化している。そのため、ある基準点からの反射部材141の像の垂直方向位置の変位と、ある基準点からの超音波プローブの位置変位とが一定になるようにBモード画像を配置することで、3次元画像のz方向における画像の伸縮倍率は別途必要になるものの、画像の連続性をより正確に表示することが可能になる。
 なお、第一の実施の形態で述べたように、反射部材141は連続した単一部材である必要は無く、複数の部材に分割された形状であってもよい。すなわち、図2のパッドをyz平面における反射部材の断面形状は複数の部材で構成される点線形状のように見える。反射部材の形状がこのような場合には、取得したBモード画像上に反射部材の像が表示されていない画像が存在する。この場合には、反射部材の像が表示されているBモード画像について画像の配列を決定し、その画像との類似性を考慮して、反射部材の像が表示されていない画像の配列場所を決めてもよい。また、反射部材の像が表示されたBモード画像を配列すると共に、断層画像形成部1002で画像が形成された順番に基づいて反射部材の像が表示されていないBモード画像を配列してもよい。
 (第三の実施の形態)
 本実施の形態では、パッドの別の様態、及び超音波診断装置の別の様態について説明する。
 最初に、本実施の形態で扱う課題について、図17を用いて説明する。
 図17の(a)は超音波プローブ13がパッド14の主面15に密着している場合のパッド14の断面図、図17の(b)は超音波プローブ13とパッド14の主面15との間に隙間1701があり、超音波プローブがパッドの主面15に密着していない場合のパッドの断面図である。
 第一及び第二の実施の形態では、パッドの主面から反射部材までの垂直方向距離に基づき、超音波プローブの位置を算出すると説明した。しかし、超音波プローブがパッドの主面から手振れ等の理由により浮いてしまう場合がある。その場合、超音波プローブ表面から反射部材までの距離が、パッドの主面15から反射部材までの距離よりも長くなってしまい、超音波プローブの位置を正確に算出できないという課題が生じる。そこで本実施の形態では、超音波プローブがパッドの主面から浮いてしまう場合にも正確に超音波プローブの位置を算出できる構成を説明する。
 以下、本実施の形態に係る超音波診断用アダプタ3について、図18に斜視図を、図19に側面図を示す。
 本実施の形態では、パッド1800は、パッドの両辺に沿って反射部材1801と反射部材1802との、直線状の反射部材を有している。このとき、この少なくとも1組の反射部材は、図19に示す通り、パッド1800の主面15に対する傾斜角度が互いに異なっている。すなわち、パッドのz方向の位置によって、反射部材1801の主面からの距離と、反射部材1802の主面からの距離との差が変化する。
 次に、超音波プローブがこのパッド上を移動して得られた信号から、3次元画像を生成する3次元画像表示機構について述べる。
 3次元画像表示機構の構成については、第二の実施の形態及び図10の構成と同一であるため、説明を省略する。
 図20に、第三の実施の形態に係るパッドを用い、断層画像形成部1002で形成されたBモード画像を示す。Bモード画像上には、反射部材1801及び反射部材1802の像が高輝度領域として、それぞれ2002及び2004として表示されている。2つの反射部材の像の垂直方向距離は、図20に示すように、例えば画素数2005を単位としてカウントされる。
 次に、反射部材検出部1003は、Bモード画像から反射部材1801及び反射部材1802の像にそれぞれ対応する反射部材の像2002及び2004を検出する。なお、具体的な反射部材の検出方法については、第二の実施の形態と同様であるため説明を省略する。そして、反射部材検出部は、反射部材の像の垂直方向位置をプローブ位置算出部1005に送信する。
 プローブ位置算出部1005は、反射部材検出部1003から受信したBモード画像上における反射部材の像の垂直方向位置に基づいて、超音波プローブの位置を算出する。ここで、反射部材検出部1003は、1つの反射部材の像の垂直方向位置に基づいて超音波プローブの位置を算出するのではなく、2つの反射部材の像の垂直方向距離に基づいて、超音波プローブの位置を算出することを特徴とする。プローブ位置算出部1005は、超音波プローブの位置に対して、反射部材の像2002及び2004の垂直方向距離が1対1に対応付けられているルックアップテーブルを有しており、このルックアップテーブルと2つの反射部材の像の垂直方向距離とを用いて、超音波プローブの位置を算出する。ルックアップテーブルの例は図14に示すものと同様であるが、画素数が反射部材の像の垂直方向距離である点が異なる。
 なお、第二の実施の形態と同様に、ルックアップテーブルは再設定可能である。具体的には、所定の位置に超音波プローブを配置し、2つの反射部材の垂直方向距離と超音波プローブの位置とを関連付ける。例えば、図16と同様に(ただし、ここでは図16の横軸を2つの反射部材の垂直方向距離と読み替える)、超音波プローブを位置Aに置いたときに検出される2つの反射部材の像の間の画素数aと、超音波プローブを位置Bに置いたときに検出される2つの反射部材の像の間の画素数bとを利用して、点(a、A)と点(b、B)とを通過する直線を得る。この直線式から、ルックアップテーブルを再生成する。もちろん、この直線式から、直接、超音波プローブの位置を算出してもよい。
 以上のように、プローブ位置算出部1005は、所定のBモード画像を取得したときの超音波プローブの位置情報を算出し、断層画像メモリ部1006に送信する。ここで、Bモード画像と超音波プローブの位置情報とを関連付けた上で断層画像メモリ部1006に格納するか、Bモード画像と超音波プローブの位置情報とをそれぞれ時系列で格納しておくかは任意である。
 また、図21に示すように不要領域削除部1004は、Bモード画像中のパッド領域と反射部材が存在する領域である削除領域(2107)とを削除し、Bモード画像から診断に使う被検体領域のみを抽出する。
 3次元画像形成部は、断層画像メモリ部1006に格納された超音波プローブの位置情報を元に、Bモード画像を配列し、3次元画像を形成する。
 なお、Bモード画像上での反射部材の像の検出方法、及び反射部材の像から超音波プローブの位置を算出する方法は、いずれも第一の実施の形態に記載の方法が利用可能である。ただし、超音波プローブの位置算出方法においては、第一の実施の形態では反射部材の主面からの距離を用いていたのに対して、本実施の形態では、第一の反射部材と第二の反射部材とのy方向の距離を用いている。例えば、Bモード画像取得の都度得られる、1組の反射部材の像の垂直方向距離の変化量を利用して、超音波診断装置のスケーリング値s(すなわち、超音波プローブの絶対的な移動量)を算出してもよい。
 また、プローブ位置算出部1005を有し、反射部材検出部1003において求められた第一の反射部材の像と第二の反射部材の像との垂直方向距離に基づいて、直接Bモード画像を配列してもよい。例えば、Bモード画像1、Bモード画像2、…Bモード画像Nのように複数のBモード画像が形成されたときに、各画像上に現れる第一の反射部材の像と第二の反射部材の像との垂直方向距離が、距離1、距離2、…距離Nであったと仮定する。ここで、各Bモード画像の位置情報である、距離1、距離2、…距離N、をBモード画像1、Bモード画像2…Bモード画像Nに関連付けておく。その上で、所定のBモード画像i(i≦N)及びBモード画像1の間の差分距離zと、Bモード画像iにおける距離i(i≦N)及びBモード画像1における距離1の差分yとの比が常に一定になるように各Bモード画像を配列して3次元画像を生成する。この3次元画像の生成方法により、3次元画像のz方向における画像の伸縮倍率は別途必要になるものの、画像の連続性をより正確に表示することが可能になる。
 なお、図18の例では、第一の反射部材1801が主面15に平行であり、第二の反射部材1802が主面15に対して非平行である構造を示している。しかし、反射部材1801及び1802が共に主面15に対して非平行であってもよい。また、図18では、1組の反射部材(1801及び1802)を具備する構成について述べたが、2組以上の反射部材を具備するパッドであってもよいことは言うまでもない。
 上記のパッドを用いることにより、図22に示す通り、超音波プローブがパッドに密着していない場合においても、2つの反射部材のy方向の距離から超音波プローブの位置を算出することできる。そのため、手振れ等の影響を緩和できる。
 次に、第三の実施の形態の変形例について説明する。
 第三の実施の形態に係る超音波診断用アダプタ4を図23に示す。図23において、(a)に斜視図を、(b)に第一の反射部材に近い側の側面図を、(c)に第二の反射部材に近い側の側面図を示す。本実施の形態の変形例では、パッド2300と第一の反射部材の部分2301と第二の反射部材2304とが、反射部材の延設方向(z方向)と直交する断面2313によって分けられている。図23に示すとおり、これらの各部分を、パッドの第一領域(2311)及びパッドの第二領域(2312)と称する。第一の反射部材は、パッドの第一領域(2311)内の部分2302と、パッドの第二領域内の部分2303からなる。これらの反射部材の部分2302及び2303は、主面との相対的な位置関係が互いに一致するように配置される。また、第二の反射部材は主面側から見て第一の反射部材の延設方向に平行に配置され、パッドの第一領域(2311)内に配置される。
 この構成において、超音波プローブで走査すると、超音波プローブがパッドの第一領域(2311)にあるときは、第一の反射部材の部分2301の像と第二の反射部材2304の像とがBモード画像上に現れる。第二の反射部材2304の像が検出されたことにより超音波プローブが第一領域にあることが検出され、部分2301の主面からの距離により第一領域(2311)内の位置が検出される。また、超音波プローブがパッドの第二領域にあるときは、部分2303だけがBモード画像上に現れる。第二の反射部材の像が検出されなかったことから超音波プローブが第二領域にあることがわかり、部分2303の主面からの距離により第二領域(2312)内の位置が検出される。この方法により超音波プローブの位置が検出できる。この構成によれば、第一の反射部材の主面に対する傾斜角度が第一の実施の形態と同様であっても、パッドの厚さを1/2にすることができ、Bモード画像内の被検体領域を大きくすることができる。
 なお、上述の例ではパッドを2つの領域に分ける場合の説明をしたが、より多くの領域に分けることももちろん可能である。この構成によれば、パッドの厚さを1/(領域の数)にすることができ、Bモード画像内の被検体領域をより大きくすることができる。
 (第四の実施の形態)
 本実施の形態は、複数のパッドを用いて広範囲な領域を3次元化したい場合でも、超音波プローブの位置を算出できることを特徴とする。
 図24に、本実施の形態の超音波診断用アダプタの一例を示す。本実施の形態の超音波診断用アダプタ5は、いずれのパッドに超音波プローブが配置されているかを認識すること、もしくは得られたBモード画像を超音波プローブの走査方向と垂直な方向に適宜並べかえることが可能である。
 図24に示すように、本実施の形態の超音波診断用アダプタ5はパッドを2面(パッド2400及びパッド2410)以上有し、さらに各パッドには反射部材が1組以上配置されている。すなわち、超音波診断用アダプタ5は、反射部材が内部に計4つ以上配置されている。
 図24に示す超音波診断用アダプタ5は、第一のパッド2400の内部に、反射部材2401及び反射部材2402が配置され、第二のパッド2410に反射部材2411及び反射部材2412が配置されている。反射部材2401及び反射部材2411は、その延設方向において主面15からの距離が変化するように配置された反射部材(第一の反射部材)である。一方、反射部材2402及び反射部材2412は、その延設方向において主面15からの距離が一致するように、かつ、各反射部材のパッドの主面からの距離が互いに異なるように配置された反射部材(第二の反射部材)である。そのため、第一のパッド2400に超音波プローブが配置された場合と、第二のパッド2410に超音波プローブが配置された場合とで、主面15と平行に配置された第二の反射部材までの距離が異なっている。図25に各パッドの側面図を示す。第一の反射部材2401及び2411において、主面からの距離を比較することにより、パッド2400又はパッド2410のうちから超音波プローブが乗っているパッドを識別し、第二の反射部材2402及び2412の主面15からの距離から、パッド上の超音波プローブの位置を識別することができる。
 超音波診断装置は、この超音波診断用アダプタ5を用いて、いずれのパッドに超音波プローブが配置されているか、すなわち超音波プローブのx方向の位置を判断する。例えば反射部材検出部1003で、Bモード画像上の反射部材2401及び反射部材2411の像を検出し、それぞれの反射部材の像の垂直方向位置を検出する。プローブ位置算出部1005は、x方向の超音波プローブの位置と、反射部材の像の垂直方向位置の関係を示すルックアップテーブルを有しており、このルックアップテーブルと反射部材の像の垂直方向位置を用いていずれのパッドに超音波プローブが位置しているかを認識することができる。この構成により、各Bモード画像が、超音波プローブがいずれのパッド上にあるときに取得されたものであるかを認識することが可能になる。
 また、パッドの配置位置がx方向に進むにつれて、第一の反射部材の主面からの距離が単調減少もしくは単調増加することが好ましい。このパッドを用いることで、ルックアップテーブルを用いなくても得られたBモード画像をx方向に適宜順番に並べ替えることが可能になる。
 以上説明した通り、第二の反射部材2402及び2412からパッドを識別でき、第一の反射部材2401及び2411からパッド上の超音波プローブの位置を識別できるため、2枚のパッドを使った広い範囲でも、超音波プローブの位置を算出できる。
 なお、上記説明では、超音波プローブの位置を反射部材の主面からの距離から算出するとしたが、第三の実施の形態と同様、同パッド内に配置された他方の反射部材との距離から算出してもよい。
 また、上記説明では、パッドを2面にして説明したが、面数を増やしてもよい。
 なお、第一の反射部材2401及び2411は、超音波プローブのz方向の位置を算出するために用いられ、パッドの主面に対して傾斜して配置されていればよい。
 次に、第四の実施の形態の変形例1について説明する。第四の実施の形態の変形例1に係る超音波診断用アダプタ6を図26に示す。
 上述の説明では、各パッドの走査領域の両辺に反射部材を配置するとしたが、図26に示す通り、反射部材を走査領域の1辺のみに配置させ、パッド間で反射部材の主面からの距離が重複しないようにしてもよい。走査領域の両辺に配置させる必要はない。
 第四の実施の形態の変形例1でも、超音波診断用アダプタ6はパッドを2面以上有している。そして、各パッドに少なくとも1つ以上の、主面15に対して傾斜する反射部材(第一の反射部材)が配置されている。ここで、実施の形態4の変形例では、反射部材の主面からの距離が、パッドごとに互いに重複しないことを特徴とする。図27に第四の実施の形態の変形例1のパッドの側面図を示す。図23の(a)及び(b)は、それぞれ異なるパッドの側面図を示す。図23の(a)及び(b)に示すように、それぞれのパッドの反射部材の主面からの距離が互いに重複しないように配置される。超音波診断装置は、例えばパッドの端部における反射部材の位置とパッドのx方向の位置(すなわち超音波プローブのx方向の位置)との関係を示すルックアップテーブルを有し、超音波プローブのx方向の位置情報をBモード画像に付加することが可能になる。
 なお、パッドの端部における反射部材の位置を、パッドの位置がx方向に増加するにつれて単調減少、もしくは単調増加するように変化させることが好ましい。この構成によると、ルックアップテーブルを使用しなくても、取得されたBモード画像をx方向に適宜並べ替えることが可能になる。
 なお、図27では、各パッドに配置された第一の反射部材2601及び2611が、主面に対して同じ角度で傾いている実施の形態を図示したが、これらの傾きは同一でなくてもよい。
 次に、第四の実施の形態の変形例2について説明する。
 第四の実施の形態の変形例2として、各パッドに配置された第一の反射部材の傾きをパッドによって変化させ、その傾きの値を利用して、超音波プローブがいずれのパッド上に位置したときに取得されたBモード画像であるかを判断してもよい。例えば、パッドの配置位置がx方向に増加するにつれて、反射部材の傾きを単調増加、もしくは単調減少させてもよい。その上で、超音波診断装置の反射部材検出部1003で、一連のBモード画像の反射部材の垂直方向位置から反射部材の傾きを算出し傾き情報を付加した上で断層画像メモリにBモード画像を格納する。3次元画像形成部1007では、z方向にBモード画像を配列して3次元画像を生成すると共に、生成された3次元画像を、傾き情報を元にx方向に配列する。
 この構成により、Bモード画像をより正確に配置して3次元画像を生成することが可能になると共に、さらに3次元画像を超音波プローブの走査方向と垂直な方向(x方向)に適切に配列することが可能になる。
 次に、第四の実施の形態の変形例3について説明する。
 第四の実施例の変形例3として、超音波診断用アダプタがパッドを2面以上有し、それぞれのパッドにおいて、パッドに対する第一の反射部材の主面側から見た相対位置が、パッド毎に異なるようにしてもよい。
 図28に本実施の形態の変形例3の超音波診断用アダプタ7の一例を示す。図28の(a)に上面図を、(b)に斜視図を示す。図28において、第一の反射部材2801を内部に有するパッド2800と、第一の反射部材2811を内部に有するパッド2810がある。それぞれのパッドにおいて、パッドに対する第一の反射部材の主面側から見た相対位置が、パッドごとに異なるように配置されている。すなわち、図28の(a)の上面図において、反射部材2801はパッド2800の左端に配置され、反射部材2811はパッド2810の右端に配置されている。
 このようにすると、Bモード画像上において、反射部材2801及び2811の像の反射部材検出領域が異なる。よって、パッド毎に反射部検出領域が重複しないようにしておけば、反射部材の像が検出される領域に基づいて、超音波プローブが走査しているパッドを検出することができる。さらに、反射部材2311及び反射部材2321の主面からの距離から、パッド上の超音波プローブの位置を検出することができる。
 この構成により、予めパッド毎に反射部検出領域が重複しないようにしておけば、主面側から見た相対位置からパッドを検出すると同時に、それぞれの反射部材の主面からの距離から超音波プローブの位置を検出することができる。
 (第五の実施の形態)
 本実施の形態では、パッドの別の様態、及び超音波診断装置の別の様態について説明する。
 図29に本実施の形態の超音波診断用アダプタ8の上面図を示す。超音波プローブ中の圧電素子(超音波振動子)は図29のx方向に、1列又は複数列に並んで配列されており、超音波プローブはz方向に移動される。図示していないが、超音波プローブをz方向に略直線状に動かすことができるよう、ガイドレール等の走査補助機構が配置されている。
 超音波診断用アダプタ8は、パッドと、パッドの内部に配置された反射部材2901を有している。反射部材2901はパッドと音響インピーダンスが異なる材料で構成されている。反射部材2901は、主面15上の位置によって主面15側から見た幅が異なることを特徴としている。すなわち、反射部材2401は主面15側から見たときに、所定の方向に沿って反射部材の幅が徐々に変化する形状を有している。具体的には、図29では、z方向に進むにしたがって、反射部材の幅が徐々に増加するようになっている。よって、超音波プローブの移動に伴って反射部材2401のx方向の幅が変化する。そこで、反射部材2901の形状を用いて超音波プローブの位置をより正確に算出することが可能になる。
 なお、反射部材2901の像の垂直方向位置、すなわち主面15からの距離は一定であってよいし、第一から第四の実施の形態と同様に位置によって異なっていてもよい。
 次に、この反射部材2901を用いた位置検出方法、及び反射部材2901を用いて位置を検出する超音波診断装置について述べる。
 超音波診断装置の構成は、前述した図10と同様の構成であるため説明を省略する。ただし、反射部材検出部1003の出力であるD1013が、反射部材の像の位置ではなく反射部材の像の幅を算出してプローブ位置算出部に送信する点で、実施の形態1~4とは異なっている。
 図30を用いて反射部材2901を用いた超音波プローブの位置算出方法を説明する。図30におけるステップS3003は図11におけるステップS1103と内容が異なる。その他のステップS3001、S3002、S3004及びS3005は、それぞれ、図11におけるステップS1101、S1102、S1104及びS1105と同様であるため説明を省略する。
 ステップS3001及びS3002により、超音波送受信部1001がエコーを受信し、断層画像形成部1002がBモード画像を生成する。図31に形成されたBモード画像を示す。ここで、反射部材2901は超音波プローブの走査方向によって幅が徐々に変化する形状であるため、超音波プローブの位置によって、Bモード画像中に表示される反射部材の像の幅3103は変化する。
 ステップS3003では、反射部材2901の像の幅3103を例えばエッジ検出等により検出する。超音波診断装置は、反射部材の像の幅と超音波プローブの位置とが一対一に関連付けられたルックアップテーブルを有しており、テーブルを用いて反射部材の像の幅から超音波プローブの位置を算出する。そして超音波プローブの位置を元に、画像を適切に配列し、3次元画像を生成する。
 この形態によれば、パッドの内部において反射部材を傾斜させて配置する必要がなく、主面と平行に配置すればよいため、パッドの厚さを小さくすることができる。その結果、Bモード画像上で被検体の像が表示される領域を広げることができる。
 なお、ルックアップテーブルが更新可能である点、Bモード画像から不要領域を削除するステップS3004が必須ではない点、及び、超音波プローブの位置を算出した上で画像を配列するのではなく、各画像に表示される反射部材の像の幅3103が単調増加又は減少するように直接3次元画像を形成してもよい点など、第二、第三及び第四の実施の形態との共通点については省略する。
 (第六の実施の形態)
 本実施の形態では、パッドを構成する物質の別の様態について説明する。本実施の形態では、反射部材と主面との間の部分を、パッドの他の部分よりも音速が遅い材料で構成する。このようにすると、超音波プローブが超音波を送信してからエコーを受信するまでに要する時間を長くすることができ、パッドの厚さを小さくすることができ、結果的にBモード画像内の被検体領域を大きくすることができる。
 図32に、時刻0において超音波プローブが超音波を送信するときの、その反射波(エコー)を受信する時刻(横軸)と、その時刻におけるエコーの音圧(縦軸)の関係を示す。(a)に反射部材と主面との間の部分を他の部分と同等の音速の物質で構成する場合を示し、(b)に反射部材と主面との間の部分を他の部分よりも音速の遅い物質で構成する場合を示す。この関係から、反射部材と主面との間の部分を他の部分よりも音速の遅い材料で構成した方がエコーを受信するまでの時間を長くすることができることがわかる。
 パッドの厚さを小さくするには反射部材を主面に近い位置に配置するとよいが、その場合、超音波プローブが超音波を送信してからエコーを受信するまでに要する時間が短くなる。正確にエコーを受信するために超音波プローブのサンプリング周波数を上げる必要があるが超音波診断装置のハードウェア性能の向上が必要でありコストの向上につながる。そこで、反射部材と主面との間の部分の物質を、より音速の遅い材料を使用するようにすると、超音波プローブが超音波を送信してからエコーを受信するまでに要する時間を長くすることができる。
 図33に、本実施の形態に係る超音波診断用アダプタ9を示す。図33の(a)に斜視図を、(b)に側面図を、(c)に反射部材の延設方向に直交する面における断面図を示す。パッド3300の内部に第一の反射部材3301が配置されている。また、第一の反射部材3301と主面15との間の部分の物質は、パッドの他の部分の物質よりも音速の遅い材料3302で構成されている。このようにすると、超音波プローブが超音波を送信してからエコーを受信するまでに要する時間を長くすることができる。
 このようにすると、超音波プローブのサンプリング周波数を上げずに、反射部材を主面に近い位置に配置することができ、パッドの厚さを小さくすることができ、結果的にBモード画像内の被検体領域を大きくすることができる。
 なお、反射部材と裏面との間の材料は、反射部材と同じ材料でもよいし、パッドの他の部分の物質と同じ材料でもよいし、パッドの他の部分の物質よりも音速の遅い材料でもよい。
 以上、本発明の実装方法について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 なお、上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。上記RAMには、コンピュータプログラムが記憶されている。上記マイクロプロセッサが、上記コンピュータプログラムにしたがって動作することにより、システムLSIは、その機能を達成する。
 また、上記の各装置を構成する構成要素の各部は、個別に1チップ化されていてもよいし、一部またはすべてを含むように1チップ化されていてもよい。
 また、ここでは、システムLSIと呼称したが、集積度の違いにより、IC、LSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限られるものではなく、専用回路または汎用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて構成要素の集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
 本発明は、超音波診断用アダプタ及び超音波診断装置として、特に、広範囲の生体内情報を3次元化できる超音波診断用アダプタ及び超音波診断装置として、例えば、病変存在診断や他モダリティとの比較等で利用できる。特に、大掛かりな装置を必要とせず、コンパクトであるため、携帯性に優れ、出張診断等で有用である。
    1、2、3、4、5、6、7、8、9 超音波診断用アダプタ
   11 スライダ
   12 ガイドレール
   13 超音波プローブ
   14 パッド
   15 主面
   16 裏面
   17 走査領域
  141 反射部材
 1001 超音波送受信部
 1002 断層画像形成部
 1003 反射部材検出部
 1004 不要領域削除部
 1005 プローブ位置算出部
 1006 断層画像メモリ部
 1007 次元画像形成部
 1008 表示部

Claims (24)

  1.  超音波を送受信する超音波プローブを用いて被検体を診断する際に、前記超音波プローブと前記被検体との間に介在して用いられる超音波診断用アダプタであって、
     前記超音波プローブが配置される側の面である主面と、前記主面と対向する面であって前記被検体が配置される側の面である裏面とを有するパッドと、
     前記パッドの内部に配置され、前記パッドを構成する材料とは音響インピーダンスが異なる材料からなる第一の反射部材とを備え、
     前記第一の反射部材は、前記主面からの距離と前記主面側から見た幅とのうちの少なくとも一方が、前記主面上の位置に応じて変化するように配置されている
     超音波診断用アダプタ。
  2.  前記第一の反射部材は、前記パッドの内部に延設されており、
     前記超音波診断用アダプタは、さらに、
     前記第一の反射部材の延設方向に沿って前記パッドの内部に延設されており、前記パッドを構成する材料と音響インピーダンスが異なる材料からなる第二の反射部材を備え、
     前記第一の反射部材と前記第二の反射部材とは、延設方向における前記主面からの距離の変化度合いを示す傾斜角度が互いに異なるように配置されている
     請求項1に記載の超音波診断用アダプタ。
  3.  前記第一の反射部材と前記第二の反射部材とは、前記第一の反射部材の延設方向に直交する断面によって複数の部分に分けられ、
     前記第一の反射部材の各部分は、前記主面からの距離が延設方向で変化するように配置されており、
     前記第一の反射部材の複数の部分は、前記主面との相対的な位置関係が互いに一致するように配置されており、
     前記第二の反射部材の各部分は、前記主面からの距離が延設方向で変化しないように配置されており、
     前記第二の反射部材の複数の部分は、前記主面からの距離が互いに異なるように配置されている
     請求項2に記載の超音波診断用アダプタ。
  4.  前記超音波診断用アダプタは、各々が前記パッドと前記第一の反射部材と前記第二の反射部材とを含む複数のパッドセットを備え、
     前記複数のパッドセットに含まれる複数の前記第一の反射部材の各々は、延設方向において前記主面からの距離が変化するように配置されており、
     前記複数のパッドセットに含まれる複数の前記第二の反射部材の各々は、延設方向において前記主面からの距離が変化しないように配置されており、
     前記複数のパッドセットに含まれる複数の前記第二の反射部材は、延設方向において前記主面からの距離が互いに異なるように配置されている
     請求項2に記載の超音波診断用アダプタ。
  5.  前記超音波診断用アダプタは、各々が、前記パッドと前記第一の反射部材とを含む複数のパッドセットを備え、
     前記複数のパッドセットに含まれる複数の前記第一の反射部材は、前記主面からの距離が互いに同一とならないように配置されている
     請求項1に記載の超音波診断用アダプタ。
  6.  前記超音波診断用アダプタは、各々が、前記パッドと前記第一の反射部材とを含む複数のパッドセットを備え、
     前記パッドに対する前記第一の反射部材の前記主面側から見た相対位置が前記パッドセット毎に異なる
     請求項1に記載の超音波診断用アダプタ。
  7.  前記超音波診断用アダプタは、さらに、
     前記第一の反射部材の延設方向に沿って配置された第一のガイドレールと、
     前記超音波プローブを保持し、前記第一のガイドレールに沿って移動するスライダとを備える
     請求項1~6のいずれか1項に記載の超音波診断用アダプタ。
  8.  前記超音波診断用アダプタは、さらに、
     前記第一の反射部材の延設方向及び前記第二の反射部材の各々の延設方向に沿って配置された2本のガイドレールと、
     前記超音波プローブを保持し、前記2本のガイドレールの間に保持されて移動するスライダとを備える
     請求項2~4のいずれか1項に記載の超音波診断用アダプタ。
  9.  前記パッドは、前記主面側から見た場合に前記2本のガイドレールの間に配置され、
     前記主面と直交する方向において、前記2本のガイドレールの各々の厚さは、前記パッドの厚さよりも大きい
     請求項8に記載の超音波診断用アダプタ。
  10.  前記第一の反射部材は、前記パッドの裏面と離れて配置されている
     請求項1~9のいずれか1項に記載の超音波診断用アダプタ。
  11.  前記パッドは、主面側に位置する第一のパッド部と、前記裏面側に位置する第二のパッド部とを有し、
     前記第一の反射部材は、前記第一のパッド部の内部に配置されている
     請求項1~10のいずれか1項に記載の超音波診断用アダプタ。
  12.  前記第二のパッド部は、前記第一のパッド部よりも、弾性率が低い材料により構成されている
     請求項11に記載の超音波診断用アダプタ。
  13.  前記パッドは、音速が1450(m/s)以上、1585(m/s)以下、平均1530(m/s)である材料により構成される
     請求項1~12のいずれか1項に記載の超音波診断用アダプタ。
  14.  前記パッドの部分であって前記第一の反射部材と前記主面との間の部分は、前記パッドの内部の他の部分よりも音速が遅い材料で構成される
     請求項1~13のいずれか1項に記載の超音波診断用アダプタ。
  15.  請求項1~14のいずれか1項に記載の超音波診断用アダプタと、
     超音波を送受信する超音波プローブと、
     前記超音波プローブが受信した信号の中から、前記第一の反射部材からの反射波の信号を検出する反射部材検出部と、
     前記反射部材検出部により検出された信号から、前記第一の反射部材の前記主面からの距離と前記主面から見た幅とのうちの少なくとも一方に基づいて前記超音波プローブの位置を検出するプローブ位置算出部と
     を備える超音波診断装置。
  16.  前記反射部材検出部は、
     前記超音波プローブが受信した信号の中から、前記パッドの内部に対応する信号であって、振幅が所定の閾値以上である信号を前記第一の反射部材からの信号として検出する
     請求項15に記載の超音波診断装置。
  17.  前記反射部材検出部は、
     前記超音波プローブが受信した信号の中から、前記パッドの内部に対応する信号であって、振幅が最大である信号を前記第一の反射部材からの信号として検出する
     請求項15に記載の超音波診断装置。
  18.  前記反射部材検出部は、
     前記超音波プローブが受信した信号の中から、前記パッドの内部に対応する信号であって、振幅の微分値が所定の閾値以上である信号を前記第一の反射部材からの信号として検出する
     請求項15に記載の超音波診断装置。
  19.  前記反射部材検出部は、
     前記超音波プローブが受信した信号の中から、前記パッドの内部に対応する信号であって、振幅の微分値が最大である信号を前記第一の反射部材からの信号として検出する
     請求項15に記載の超音波診断装置。
  20.  前記プローブ位置算出部は、
     前記反射部材検出部により検出された前記第一の反射部材の前記主面からの距離と前記主面側から見た幅とのうちの少なくとも一方に対する前記超音波プローブの位置の関係を示す関係式に従って、前記反射部材検出部により検出された前記第一の反射部材の前記主面からの距離と前記主面側から見た幅とのうちの少なくとも一方に基づいて前記超音波プローブの位置を算出する
     請求項15~19のいずれか1項に記載の超音波診断装置。
  21.  前記プローブ位置算出部は、
     超音波プローブが第一の所定の位置に配置されてから、第一の所定の位置とは異なる第二の所定の位置へ移動されるまでの間に検出される、前記第一の反射部材の前記主面からの距離と前記主面側から見た幅とのうちの少なくとも一方を利用して、前記関係式を較正する
     請求項15~20のいずれか1項に記載の超音波診断装置。
  22.  前記プローブ位置算出部は、さらに、
     経時的に得られる前記第一の反射部材の位置を検出し前記超音波プローブの位置の移動量を算出する
     請求項15~21のいずれか1項に記載の超音波診断装置。
  23.  請求項1~14のいずれか1項に記載の超音波診断用アダプタと超音波プローブとを用いて被検体を診断する方法であって、
     前記超音波プローブが受信した信号の中から、前記第一の反射部材からの反射波の信号を検出する反射部材検出ステップと、
     前記反射部材検出部により検出された信号から、前記第一の反射部材の前記主面からの距離と前記主面から見た幅とのうちの少なくとも一方に基づいて前記超音波プローブの位置を検出するプローブ位置算出ステップと
     を含む超音波診断方法。
  24.  請求項23に記載の超音波診断方法をコンピュータに実行させるためのプログラム。
PCT/JP2011/005312 2010-09-27 2011-09-21 超音波診断用アダプタ、超音波診断装置、及び、超音波診断方法 WO2012042794A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180004643.8A CN102665568B (zh) 2010-09-27 2011-09-21 超声波诊断用适配器和超声波诊断装置
JP2012502339A JP5888229B2 (ja) 2010-09-27 2011-09-21 超音波診断用アダプタ、超音波診断装置、及び、超音波測定方法
US13/479,785 US9445783B2 (en) 2010-09-27 2012-05-24 Ultrasound diagnostic adapter, ultrasound diagnostic apparatus, and ultrasound diagnostic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-215376 2010-09-27
JP2010215376 2010-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/479,785 Continuation US9445783B2 (en) 2010-09-27 2012-05-24 Ultrasound diagnostic adapter, ultrasound diagnostic apparatus, and ultrasound diagnostic method

Publications (1)

Publication Number Publication Date
WO2012042794A1 true WO2012042794A1 (ja) 2012-04-05

Family

ID=45892287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005312 WO2012042794A1 (ja) 2010-09-27 2011-09-21 超音波診断用アダプタ、超音波診断装置、及び、超音波診断方法

Country Status (4)

Country Link
US (1) US9445783B2 (ja)
JP (1) JP5888229B2 (ja)
CN (1) CN102665568B (ja)
WO (1) WO2012042794A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138638A (ja) * 2013-01-21 2014-07-31 Seiko Epson Corp 超音波測定装置、超音波診断装置及び超音波測定用シート
JP2014195498A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 シート及び超音波測定システム
JP2014195499A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 超音波測定システム、超音波プローブ及びシート
JP2018187092A (ja) * 2017-05-08 2018-11-29 コニカミノルタ株式会社 超音波診断装置、合成画像の表示方法及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103845083A (zh) * 2012-12-04 2014-06-11 通用电气公司 扫描组件
CN106264602A (zh) * 2015-06-04 2017-01-04 深圳深超换能器有限公司 一种4d线阵探头
EP3323352B1 (en) * 2015-07-13 2022-03-30 Furuno Electric Co., Ltd. Probe adapter, ultrasonic imaging device, ultrasonic imaging method, and ultrasonic imaging program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389147A (ja) * 1986-10-03 1988-04-20 株式会社東芝 超音波プロ−ブ
JP2008200096A (ja) * 2007-02-16 2008-09-04 Meta Corporation Japan 超音波診断装置
WO2009131028A1 (ja) * 2008-04-25 2009-10-29 株式会社 日立メディコ 超音波診断装置
WO2009131029A1 (ja) * 2008-04-25 2009-10-29 株式会社 日立メディコ 超音波診断装置
JP2009268640A (ja) * 2008-05-02 2009-11-19 Kao Corp 皮膚内部の弾性計測方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3733439A1 (de) * 1986-10-03 1988-04-14 Toshiba Kawasaki Kk Vorsatzstueck fuer diagnostische ultraschallsonde
JPH04183453A (ja) * 1990-11-20 1992-06-30 Terumo Corp 超音波診断装置
JPH07184899A (ja) * 1993-12-28 1995-07-25 Olympus Optical Co Ltd 超音波診断装置
US5485845A (en) * 1995-05-04 1996-01-23 Hewlett Packard Company Rotary encoder for intravascular ultrasound catheter
US5834687A (en) * 1995-06-07 1998-11-10 Acuson Corporation Coupling of acoustic window and lens for medical ultrasound transducers
US7112173B1 (en) * 1998-03-03 2006-09-26 Sunlight Medical Ltd. Determination of acoustic velocity in bone
JP3578685B2 (ja) 1999-12-02 2004-10-20 松下電器産業株式会社 超音波診断装置
US6537223B1 (en) * 2000-09-05 2003-03-25 Medi-Stim As Probe head
JP2002102223A (ja) 2000-10-03 2002-04-09 Mitani Sangyo Co Ltd 超音波断層画像における面座標検出方法ならびにシステムおよび同方法がプログラムされ記録された記録媒体
JP4137516B2 (ja) 2002-05-20 2008-08-20 株式会社東芝 超音波診断装置
MXPA06014441A (es) * 2004-06-16 2007-06-05 Greater Glasgow Nhs Board Guia de onda ultrasonica.
US20050288587A1 (en) * 2004-06-25 2005-12-29 Yongrae Roh Drive machanism for mechanically scanned ultrasound transducers
JP4611064B2 (ja) * 2005-03-11 2011-01-12 パナソニック株式会社 3次元超音波探触子及び3次元超音波診断装置
CN100556367C (zh) * 2005-08-11 2009-11-04 株式会社东芝 超声波诊断装置、超声波探针以及穿刺适配器
US8939911B2 (en) * 2006-01-25 2015-01-27 Kabushiki Kaisha Toshiba Ultrasonic probe and apparatus for obtaining ultrasonic image
US7888847B2 (en) * 2006-10-24 2011-02-15 Dennis Raymond Dietz Apodizing ultrasonic lens
JP2009039149A (ja) * 2007-08-06 2009-02-26 Panasonic Corp 超音波診断装置
US8540707B2 (en) * 2007-12-21 2013-09-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Template system and methods
JP5161954B2 (ja) * 2008-03-27 2013-03-13 パナソニック株式会社 超音波診断装置
US8647279B2 (en) * 2010-06-10 2014-02-11 Siemens Medical Solutions Usa, Inc. Volume mechanical transducer for medical diagnostic ultrasound
JP2012029718A (ja) * 2010-07-28 2012-02-16 Hitachi Aloka Medical Ltd 超音波プローブアダプタ、超音波診断システムおよび超音波診断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389147A (ja) * 1986-10-03 1988-04-20 株式会社東芝 超音波プロ−ブ
JP2008200096A (ja) * 2007-02-16 2008-09-04 Meta Corporation Japan 超音波診断装置
WO2009131028A1 (ja) * 2008-04-25 2009-10-29 株式会社 日立メディコ 超音波診断装置
WO2009131029A1 (ja) * 2008-04-25 2009-10-29 株式会社 日立メディコ 超音波診断装置
JP2009268640A (ja) * 2008-05-02 2009-11-19 Kao Corp 皮膚内部の弾性計測方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138638A (ja) * 2013-01-21 2014-07-31 Seiko Epson Corp 超音波測定装置、超音波診断装置及び超音波測定用シート
JP2014195498A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 シート及び超音波測定システム
JP2014195499A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 超音波測定システム、超音波プローブ及びシート
JP2018187092A (ja) * 2017-05-08 2018-11-29 コニカミノルタ株式会社 超音波診断装置、合成画像の表示方法及びプログラム

Also Published As

Publication number Publication date
JPWO2012042794A1 (ja) 2014-02-03
CN102665568A (zh) 2012-09-12
US9445783B2 (en) 2016-09-20
US20120232401A1 (en) 2012-09-13
CN102665568B (zh) 2015-01-28
JP5888229B2 (ja) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5888229B2 (ja) 超音波診断用アダプタ、超音波診断装置、及び、超音波測定方法
US11944500B2 (en) Determining material stiffness using multiple aperture ultrasound
JP2786334B2 (ja) エコー信号を用いた画像形成装置
JP4958348B2 (ja) 超音波撮像装置
JP5943598B2 (ja) 被検体情報取得装置
KR20090049845A (ko) 서로 마주 보는 트랜스듀서를 구비하는 초음파 진단 장치
JP2015061592A (ja) 超音波診断装置、超音波画像処理方法およびコンピュータ読み取り可能な非一時的な記録媒体
JPWO2012053160A1 (ja) 超音波検査装置及び超音波検査方法
EP2612600A1 (en) Three-dimensional elastic image generation method and ultrasonic diagnosis device
US20130123627A1 (en) Object information acquiring apparatus and control method thereof
JP2009056140A (ja) 超音波診断装置
EP3513734A1 (en) Ultrasonic imaging apparatus and control method thereof
KR20220036339A (ko) 매질의 초음파 특성화 방법 및 시스템
KR20140132811A (ko) 초음파 영상 장치 및 그 제어 방법
KR20150118493A (ko) 초음파 장치 및 그 제어 방법
KR101120726B1 (ko) 복수의 슬라이스 단면 영상을 제공하는 초음파 시스템 및 방법
JP6385518B2 (ja) 被検体情報取得装置
JP5930611B2 (ja) 被検体情報取得装置
JP2009034262A (ja) 超音波診断装置
KR20220036337A (ko) 매질의 초음파 특성화 방법 및 시스템
KR101562209B1 (ko) 서로 마주 보는 트랜스듀서를 구비하는 초음파 진단 장치
JP6141488B2 (ja) 被検体情報取得装置
KR20070105607A (ko) 초음파 영상을 형성하는 초음파 시스템 및 방법
JP2014223171A (ja) 被検体情報取得装置およびその制御方法
KR20190133507A (ko) 초음파 시스템 및 그 동작 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012502339

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828360

Country of ref document: EP

Kind code of ref document: A1