WO2012042730A1 - 無線通信システムとその無線リソース決定方法、通信管理装置及びその制御方法と制御プログラム - Google Patents

無線通信システムとその無線リソース決定方法、通信管理装置及びその制御方法と制御プログラム Download PDF

Info

Publication number
WO2012042730A1
WO2012042730A1 PCT/JP2011/004605 JP2011004605W WO2012042730A1 WO 2012042730 A1 WO2012042730 A1 WO 2012042730A1 JP 2011004605 W JP2011004605 W JP 2011004605W WO 2012042730 A1 WO2012042730 A1 WO 2012042730A1
Authority
WO
WIPO (PCT)
Prior art keywords
base stations
base station
mobile station
statistical value
stations
Prior art date
Application number
PCT/JP2011/004605
Other languages
English (en)
French (fr)
Inventor
基樹 森田
濱辺 孝二郎
松永 泰彦
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012536157A priority Critical patent/JP5862568B2/ja
Priority to CN2011800454511A priority patent/CN103120011A/zh
Priority to US13/818,155 priority patent/US8971814B2/en
Priority to EP11828299.5A priority patent/EP2624651B1/en
Publication of WO2012042730A1 publication Critical patent/WO2012042730A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/26Monitoring; Testing of receivers using historical data, averaging values or statistics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/225Calculation of statistics, e.g. average, variance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/105PBS [Private Base Station] network

Definitions

  • the present invention relates to a radio resource determination technique in a radio communication system including a plurality of first cells and a second cell including a plurality of first cells.
  • Patent Document 1 discloses a process in which each femto base station controls the downlink transmission power of the femto base station in consideration of the reception level of a reference signal transmitted from the macro base station.
  • the femto base station determines the received power at the femto base station of the reference signal from the macro base station and the received power at the femto base station of the uplink transmission power from the macro mobile station to the macro base station. taking measurement.
  • a femto base station measures the reception quality of a reference signal from a macro base station, adds a power offset, and adds an initial value of transmission power (the maximum value of the transmission power and the transmission power of the reference signal). ) Is set.
  • the femto base station receives the report of the reception quality measurement result based on the initial value from the femto mobile station, and resets the transmission power of the femto base station so that the reception quality at the femto mobile station approaches the target level. This maintains the reception quality at the femto mobile station while preventing interference with the macro mobile station.
  • the femto base station changes the downlink perch channel signal and changes the radius of the downlink femto cell under a predetermined condition in which an unregistered macro mobile device is in the femto cell.
  • the uplink reception sensitivity is changed so that the radius of the uplink femtocell is not significantly different from the radius of the downlink femtocell. This control prevents interference with the femto base station due to the uplink transmission power of the macro mobile device to the macro base station.
  • radio resources for example, transmission power
  • the radio resources of the femto base station and the femto mobile station in each femto cell are set based on the current reception level at which the macro mobile station, the femto base station, and the femto mobile station detect the transmission power of each signal. . Therefore, for the newly set femtocell, it is necessary to set the radio resource by measuring the reception level of the transmission power of each signal.
  • radio resource settings are individually controlled for femtocells in the same macrocell, the load on the femto base station increases and an extra load is also imposed on the macro base station and the like.
  • An object of the present invention is to provide a technique for solving the above-described problems.
  • a system includes: A wireless communication system including a plurality of first base stations and a plurality of first mobile stations connected to the plurality of first base stations, Interference level of radio waves between the plurality of first base stations and a second mobile station connected to a second base station that forms a second cell larger than the first cell formed by the first base station Calculating means for calculating the statistical value by counting Determining means for determining radio resources used by the plurality of first base stations or the plurality of first mobile stations based on the statistical values; It is characterized by providing.
  • the method according to the second aspect of the present invention comprises: A radio resource determination method for a radio communication system including a plurality of first base stations and a plurality of first mobile stations connected to the plurality of first base stations, Interference level of radio waves between the plurality of first base stations and a second mobile station connected to a second base station that forms a second cell larger than the first cell formed by the first base station A calculation step of calculating the statistical value by counting A determination step of determining radio resources used by the plurality of first base stations or the plurality of first mobile stations based on the statistical values; It is characterized by including.
  • an apparatus provides: A communication management device that manages a plurality of first base stations and a plurality of first mobile stations connected to the plurality of first base stations, Interference level of radio waves between the plurality of first base stations and a second mobile station connected to a second base station that forms a second cell larger than the first cell formed by the first base station Calculating means for calculating the statistical value by counting Determining means for determining radio resources used by the plurality of first base stations or the plurality of first mobile stations based on the statistical values; It is characterized by providing.
  • the method according to the fourth aspect of the present invention comprises: A control method for a communication management apparatus that manages a plurality of first base stations and a plurality of first mobile stations connected to the plurality of first base stations, Interference level of radio waves between the plurality of first base stations and a second mobile station connected to a second base station that forms a second cell larger than the first cell formed by the first base station A calculation step of calculating the statistical value by counting A determination step of determining radio resources used by the plurality of first base stations or the plurality of first mobile stations based on the statistical values; It is characterized by including.
  • a program includes: A communication management device control program for managing a plurality of first base stations and a plurality of first mobile stations connected to the plurality of first base stations, Interference level of radio waves between the plurality of first base stations and a second mobile station connected to a second base station that forms a second cell larger than the first cell formed by the first base station A calculation step of calculating the statistical value by counting A determination step of determining radio resources used by the plurality of first base stations or the plurality of first mobile stations based on the statistical values; Is executed on the computer.
  • FIG. 1 shows a radio communication system 100 including a plurality of first base stations 111 and a plurality of first mobile stations 112 connected to the plurality of first base stations 111.
  • Wireless communication system 100 further includes a calculation unit 103 and a determination unit 104.
  • the calculation unit 103 includes a plurality of first base stations 111 and a second mobile station 122 connected to a second base station 121 that forms a second cell 120 that is larger than the first cell 110 formed by the first base station 111.
  • the statistical value 130 is calculated by summing up the interference levels of radio waves between Further, the determination unit 104 determines radio resources used by the plurality of first base stations 111 or the plurality of first mobile stations 112 based on the statistical value 130.
  • the radio resource is determined based on the statistical value, it is possible to efficiently realize the determination of the optimized radio resource.
  • radio resources used by a plurality of femto base stations are determined based on statistical values calculated by aggregation from macro mobile stations.
  • FIG. 2 as a typical example, an example will be described in which downlink transmission power of a plurality of femto base stations 211 is determined based on a first statistical value 230 for a plurality of femto cells 210 in the macro cell 220.
  • the first statistical value refers to a statistical value obtained by totaling the reception levels of radio waves from a plurality of femto base stations at a macro mobile station.
  • FIG. 2 shows a configuration of the wireless communication system 200 according to the second embodiment, which includes a plurality of femto base stations 211 and a plurality of femto mobile stations 212 connected to the plurality of femto base stations 211.
  • a macro cell 220 larger than the femto cell 210 formed by the femto base station 211 includes a macro base station 221 and a macro mobile station 222 connected to the macro base station 221.
  • the femto base station 211 in the femto cell 210 communicates with the femto mobile station 212 by the radio signal 211b having the determined downlink transmission power.
  • the management server 250 calculates a statistical value for the femto cell 210 in an area spanning the plurality of macro cells 220, and the femto base station 211. Radio resources may be determined.
  • the calculation unit 203 and the determination unit 204 are provided in the management server 250 that is a communication management device that manages a plurality of femtocells 210.
  • the functions of the calculation unit 203 and the determination unit 204 are not limited to other components such as the macro base station 221, the femto base station 211, or the other components of the wireless communication system. It may be arranged.
  • the calculation unit 203 transmits a measurement instruction signal 203 a to the macro base station 221 and requests a measurement instruction by the measurement instruction signal 221 a to the macro mobile station 222.
  • the calculation unit 203 calculates the first statistical value 230 by collecting the reception levels 222a of the radio waves 211a from the plurality of femto base stations 211 at the macro mobile station 222 or the reception levels 222b at the macro mobile station 222.
  • the reception level 222 a is reported to the management server 250 as transmission data 221 b from the macro mobile station 222 via the macro base station 221 in response to the measurement instruction signal 221 a from the macro base station 221.
  • the reception level 222b indicates a case where the macro mobile station 222 transmits directly to the management server 250.
  • the determining unit 204 determines the radio resource 204a used by the plurality of femto base stations 211, for example, downlink transmission power, based on the first statistical value 230.
  • FIG. 3 is a block diagram showing the configuration of each component in FIG. In FIG. 3, the report of the measurement result of the reception level 222a via the macro base station 221 is simplified.
  • the measurement instruction unit 373 included in the calculation unit 203 of the management server 250 issues a measurement instruction (via the macro base station 221) to the macro mobile station 222 in the vicinity of each femtocell in the macrocell.
  • Each macro mobile station 222 receives a measurement instruction from the measurement instruction unit 373 by the measurement instruction acquisition unit 321, and measures the interference 211 a from the nearby femto base station 211 at the reception level by the measurement execution unit 322.
  • the measured reception level is reported to the management server 250 by the measurement result reporting unit 323 (via the macro base station 221).
  • the measurement result collection unit 374 of the management server 250 collects the reception level measurement result from each macro mobile station 222 and passes it to the first statistical value calculation unit 375.
  • the first statistical value calculation unit 375 calculates the first statistical value 230 and passes it to the radio resource adjustment unit 381 of the determination unit 204.
  • the radio resource adjustment unit 381 uses the first statistical value 230 to determine a parameter for adjusting the radio resource of the femto base station 211 and sets the parameter for all the femto base stations 211 to be counted.
  • Each femto base station 211 to be aggregated acquires a radio resource / parameter common in the macro cell 220 from the management server 250 by the radio resource parameter acquisition unit 331 and updates the radio resource acquired by the radio resource update unit 332.
  • the transmission unit 333 performs transmission to the femto mobile station 212 using the updated radio resource, in this example, the radio signal 211b having downlink transmission power.
  • FIG. 4 is a flowchart showing the operation procedure of each component of the second embodiment. Also in FIG. 4, the collection of assumed results via the macro base station 221 is omitted.
  • the management server 250 instructs the macro mobile station 222 to perform measurement in step S411.
  • the macro mobile station 222 acquires a measurement instruction from the management server 250 (via the macro base station 221) in step S421, the macro mobile station 222 measures the interference 211a from the nearby femto base station 211 as a reception level in step S423.
  • the macro mobile station 222 reports the reception level of the measurement result to the management server 250 (via the macro base station 221).
  • the management server 250 acquires the measurement result from the macro mobile station 222 in step S413, collects the measurement result from each macro mobile station 222 in step S415, and calculates the first statistical value 230.
  • the management server 250 derives parameters related to radio resources based on the calculated first statistical value 230, and sets the parameters for all femto base stations 211 to be counted. Note that the parameters related to the radio resources may be set for each femto base station 211 or may be simultaneously set by the macro base station 221 for each macro cell 220.
  • Each femto base station 211 that has been subject to aggregation acquires parameters related to radio resources that are common in the macro cell 220 in step S431, and determines whether or not radio resources need to be updated in step S433. If the radio resource needs to be updated, each femto base station 211 changes the radio resource in step S435. On the other hand, if it is not necessary to update the radio resource, each femto base station 211 maintains the radio resource without changing in step S437. In step S439, each femto base station 211 communicates with the femto mobile station 212 using a radio signal 211b using the current radio resource. Here, each femto base station 211 performs transmission with the set downlink transmission power.
  • the processes of the first statistical value calculation unit 375 and the radio resource adjustment unit 381 include various processes based on the first statistical value 230.
  • the processes of the first statistical value calculation unit 375 and the radio resource adjustment unit 381 include various processes based on the first statistical value 230.
  • several examples will be sequentially described as the second to fifth embodiments. Show.
  • FIG. 5 is a block diagram showing the configuration of the management server 250 in the second embodiment.
  • a CPU (Central Processing Unit) 510 is a processor for arithmetic control, and implements each unit of the management server 250 of FIG. 3 by executing a program.
  • a ROM (Read Only Memory) 520 stores fixed data and programs such as initial data and programs.
  • the communication control unit 530 communicates with the femto base station 211, the femto mobile station 212, the macro base station 221, and the macro mobile station 222 via the network.
  • RAM (Random Access Memory) 540 is used by the CPU 510 as a work area for temporary storage.
  • the area 541 stores a macro mobile station ID that identifies the macro mobile station 222 that has measured the acquired reception level.
  • a measurement target femto base station ID for identifying the femto base station 211 that controls the macro cell 220 in the vicinity of the macro mobile station 222 having the macro mobile station ID is stored.
  • Area 543 stores a measured interference value (reception level) measured by macro mobile station 222 having a macro mobile station ID.
  • the first statistical value 230 collected and calculated by the management server 250 is stored.
  • a calculation parameter of the radio resource calculated based on the first statistical value 230 is stored.
  • An area 546 is a program load area for loading a program executed by the CPU 510.
  • the large-capacity storage unit 550 such as a disk stores data such as measurement results collected from the macro mobile station 222 and application programs executed by the CPU 510 in a nonvolatile manner.
  • the large-capacity storage unit 550 stores the following data or programs necessary for realizing the present embodiment.
  • the interference measurement result collection database 551 stores interference values (reception levels) that are measurement results collected from the macro mobile station 222 in association with the macro mobile station ID and the femto base station ID.
  • the first statistical value calculation algorithm 552 stores an algorithm for obtaining the first statistical value 230 from the collected interference values.
  • the first statistical value 553 stores the first statistical value 230 calculated by the first statistical value calculation algorithm 552.
  • the first statistical value calculation module 555 is a module that calculates the first statistical value 230 according to the first statistical value calculation algorithm 552 as shown in FIG. 6A below.
  • the first parameter calculation module 556 is a module that calculates the first parameter of the radio resource set in each femto base station 211 based on the first statistical value 230 as shown in FIG. 6A below.
  • FIG. 6A is a flowchart showing the operation procedure of the second embodiment of statistical value calculation and parameter setting in the management server.
  • the offset of the downlink transmission power of the femto base station 211 is controlled by the cumulative probability distribution of the interference level collected by the macro mobile station 222 (which is represented by a cumulative distribution function, which will be referred to as a CDF hereinafter). To do.
  • step S601 the management server 250 determines whether it is the setting timing of the radio resource parameter.
  • the set timing for example, the timing of a predetermined date and time determined in advance, the timing when the reception level satisfying the calculation condition of the first statistical value is collected, or the interference with the macro mobile station becomes an obstacle. Timing is considered.
  • the management server 250 proceeds to step S603 at the set timing, and extracts the interference value from the femto base station in the same macro cell from the interference values measured and collected by the macro mobile station.
  • step S605 the management server 250 creates a cumulative probability distribution (CDF) at the interference level as shown in FIG. 6B.
  • CDF cumulative probability distribution
  • step S607 the management server 250 obtains an interference level at which the accumulated value is 90% at each offset (in FIG.
  • step S609 it is determined whether the setting has been completed for all macrocells managed by the management server 250. If not, the process returns to step S603 to repeat the process. Therefore, the first statistical value in the second embodiment corresponds to the cumulative probability distribution (CDF), and the radio resource parameter corresponds to the downlink transmission power offset.
  • CDF cumulative probability distribution
  • the downlink transmission power offset is determined based on the cumulative probability distribution (CDF) at the interference level.
  • the offset of the downlink transmission power is determined based on the ratio of femto base stations whose interference detection rate exceeds the threshold within the macro cell.
  • Other configurations and operations are the same as those of the second embodiment, and thus description thereof is omitted here.
  • FIG. 7 is a flowchart showing the operation procedure of the third embodiment of statistical value calculation and parameter setting in the management server.
  • the management server 250 calculates the interference detection rate by each femto base station in the same macro cell from the interference values measured and collected by the macro mobile station.
  • Example 1 When the RSRQ of the femto cell / RSRQ of the macro cell is greater than or equal to the threshold, (Example 2) When the RSRQ of the femto cell is greater than or equal to the threshold, (Example 3) When reported as Detected Cell (Example 4) When RSRP (Reference Signal Received Power) is greater than or equal to the threshold.
  • step S703 the management server 250 calculates the ratio of femto base stations that are in the same macro cell and whose interference detection rate exceeds the threshold.
  • step S705 determines whether the calculated ratio of femto base stations is equal to or greater than the target value ⁇ .
  • step S707 If the calculated ratio of femto base stations is equal to or greater than the target value ⁇ , the management server 250 proceeds to step S707, and offsets ( ⁇ dB) the downlink transmission power of the femto base stations in the same macro cell. On the other hand, if the calculated proportion of femto base stations is not equal to or greater than the target value ⁇ , the management server 250 proceeds to step S709 to determine whether or not the calculated proportion of femto base stations is equal to or less than (target value ⁇ 1). to decide.
  • the management server 250 proceeds to step S711 and offsets (+ ⁇ dB) the downlink transmission power of the femto base stations in the same macro cell. If the calculated ratio of femto base stations is not less than (target value ⁇ 1), management server 250 maintains the current offset. That is, the offset of the downlink transmission power is controlled in steps ( ⁇ dB) so that the calculated ratio of femto base stations falls within the target range between target value ⁇ and (target value ⁇ 1). In the above example, the case is described in which the step width for increasing and decreasing the offset of the downlink transmission power is the same ⁇ dB, but the step width may be different.
  • the management server 250 determines whether it is the setting timing of the radio resource parameter.
  • the set timing for example, the timing of a predetermined date and time determined in advance, the timing when the reception level satisfying the calculation condition of the first statistical value is collected, or the interference with the macro mobile station becomes an obstacle. Timing is considered. If it is the set timing, the management server 250 applies the offset currently held in all femto base stations in the same macro cell in step S715.
  • the management server 250 returns to step S701 and repeats the process. Therefore, the first statistical value in the third embodiment corresponds to the ratio of femto base stations whose interference detection rate exceeds the threshold in the macro cell, and the radio resource parameter corresponds to the offset of the downlink transmission power.
  • the offset is controlled based on the ratio of femto base stations whose interference detection rate exceeds a predetermined value.
  • the interference detection rate An average value may be calculated.
  • the offset of the downlink transmission power is controlled in steps ( ⁇ dB) so that the average value of the interference detection rate falls within the target range between the target value and (target value ⁇ 1 ′). Is done.
  • the step width for increasing and decreasing the offset of the downlink transmission power may be different.
  • the setting of the offset of the downlink transmission power may be performed in units of a plurality of macro base stations. In this case, parameters are commonly set in femto base stations under the control of different macro base stations.
  • the downlink transmission power offset is determined based on the ratio of femto base stations whose interference detection rate exceeds the threshold in the macro cell.
  • the spatial propagation loss between the femto base station and the macro mobile station is set based on the ratio of the femto base stations whose interference detection rate exceeds the threshold in the macro cell.
  • Other configurations and operations are the same as those of the second embodiment, and thus description thereof is omitted here.
  • FIG. 8 is a flowchart showing the operation procedure of the fourth embodiment of statistical value calculation and parameter setting in the management server.
  • the Therefore, the increase in the downlink transmission power of the femto base station considering the building entry loss LE (dB) is optimized.
  • (Ptx_f) is the estimated transmission power of the macro mobile station
  • (Prx_f) is the measured value of the uplink received power at the femto base station.
  • the management server 250 calculates the interference detection rate by each femto base station in the same macro cell from the interference values measured and collected by the macro mobile station. Such interference detection and interference detection rate can be realized as in the third embodiment.
  • the management server 250 calculates the proportion of femto base stations that are in the same macro cell and whose interference detection rate exceeds the threshold.
  • the management server 250 determines whether or not the calculated ratio of femto base stations is equal to or greater than the target value ⁇ .
  • the management server 250 proceeds to step S807, and (+ ⁇ La) is the spatial propagation loss La between the femto base station and the macro mobile station in the same macro cell.
  • the management server 250 proceeds to step S809 to determine whether or not the calculated proportion of femto base stations is equal to or less than (target value ⁇ 2). to decide.
  • the management server 250 proceeds to step S811, and calculates the spatial propagation loss La between the femto base station and the macro mobile station in the same macro cell ( - ⁇ La).
  • the management server 250 maintains the current spatial propagation loss La. That is, the spatial propagation loss La is controlled in ⁇ La steps so that the calculated ratio of femto base stations falls within the target range between the target value ⁇ and (target value ⁇ 2).
  • the step width for increasing and decreasing the spatial propagation loss La is the same ⁇ La has been described, but the step width may be different.
  • the management server 250 determines whether it is the setting timing of the radio resource parameter.
  • the set timing for example, the timing of a predetermined date and time determined in advance, the timing when the reception level satisfying the calculation condition of the first statistical value is collected, or the interference with the macro mobile station becomes an obstacle. Timing is considered. If it is the set timing, the management server 250 applies the currently held spatial propagation loss La to the calculation of the building intrusion loss LE (dB) in the same macro cell in step S815.
  • the same spatial propagation loss La may be applied to a plurality of macro cells. Therefore, the first statistical value in the fourth embodiment corresponds to the proportion of femto base stations whose interference detection rate exceeds the threshold in the macro cell, and the radio resource parameter corresponds to the spatial propagation loss La.
  • the downlink transmission power offset is determined based on the ratio of femto base stations whose interference detection rate exceeds the threshold in the macro cell.
  • the reception quality target value in the femtocell is set based on the ratio of femto base stations whose interference detection rate exceeds the threshold value in the macrocell.
  • the reception quality target value in the femtocell is a parameter for setting the downlink transmission power of the femto base station and the uplink transmission power of the femto mobile station.
  • Other configurations and operations are the same as those of the second embodiment, and thus description thereof is omitted here.
  • FIG. 9 is a flowchart showing the operation procedure of the fifth embodiment of statistical value calculation and parameter setting in the management server.
  • step S901 the management server 250 calculates the interference detection rate by each femto base station in the same macro cell from the interference values measured and collected by the macro mobile station. Such interference detection and interference detection rate can be realized as in the third embodiment.
  • step S903 the management server 250 calculates the ratio of femto base stations that are in the same macro cell and whose interference detection rate exceeds the threshold.
  • step S905 the management server 250 determines whether or not the calculated ratio of femto base stations is equal to or greater than the target value ⁇ . When the calculated ratio of femto base stations is equal to or greater than the target value ⁇ , the management server 250 proceeds to step S907 and sets the reception quality target value Q in the same macro cell ( ⁇ Q).
  • the management server 250 proceeds to step S909 to determine whether or not the calculated proportion of femto base stations is equal to or less than (target value ⁇ 3). to decide.
  • the management server 250 proceeds to step S911 and sets the reception quality target value Q in the same macro cell to (+ ⁇ Q).
  • the calculated ratio of femto base stations is not less than (target value ⁇ 3), management server 250 maintains current reception quality target value Q.
  • reception quality target value Q is controlled in ⁇ Q steps so that the calculated ratio of femto base stations falls within the target range between target value ⁇ and (target value ⁇ 3).
  • the increase and decrease step widths of the reception quality target value Q are the same ⁇ Q has been described, but the step widths may be different.
  • the management server 250 determines whether it is the setting timing of the radio resource parameter.
  • the set timing for example, the timing of a predetermined date and time determined in advance, the timing when the reception level satisfying the calculation condition of the first statistical value is collected, or the interference with the macro mobile station becomes an obstacle. Timing is considered. If it is the set timing, the management server 250 applies the current reception quality target value Q as the reception quality in the femtocell of the same macro cell in step S915.
  • the same reception quality may be applied to a plurality of macro cells. Therefore, the first statistical value in the fifth embodiment corresponds to the ratio of femto base stations whose interference detection rate exceeds the threshold in the macro cell, and the radio resource parameter corresponds to the reception quality target value Q.
  • radio resources used by a plurality of femto mobile stations are determined based on the second statistical value calculated by aggregation from the femto base station.
  • the second statistical value represents a statistical value obtained by totaling reception levels at a plurality of femto base stations of radio waves from the macro mobile station.
  • the interference from the macro mobile station 222 to the femto base station 211 in a plurality of femto cells 210 in the macro cell 220 is aggregated to obtain a second statistical value 1030.
  • the uplink transmission power of the radio signals 212a of the plurality of femto mobile stations 212 is determined based on the second statistical value 1030 will be described.
  • FIG. 10 shows a configuration of a wireless communication system 1000 according to the sixth embodiment, which includes a plurality of femto base stations 211 and a plurality of femto mobile stations 212 connected to the plurality of femto base stations 211.
  • a macro cell 220 larger than the femto cell 210 formed by the femto base station 211 includes a macro base station 221 and a macro mobile station 222 connected to the macro base station 221.
  • the femto mobile station 212 in the femto cell 210 communicates with the femto base station 211 by the radio signal 212a having the determined uplink transmission power.
  • the management server 1050 may calculate a statistical value for the femtocell 210 in an area extending over the plurality of macrocells 220 to determine the radio resource of the femto mobile station 212.
  • the calculation unit 1003 and the determination unit 1004 are provided in a management server 1050 that manages a plurality of femtocells 210 .
  • the functions of the calculation unit 1003 and the determination unit 1004 are not limited to the other components such as the macro base station 221, the femto base station 211, and the other components of the wireless communication system 1000. May be arranged.
  • the calculation unit 1003 transmits the measurement instruction signal 1003a to the macro base station 221 and measures the interference from the femto base station 211 in the macro mobile station 222 by the measurement instruction signal 221a. Ask for instructions.
  • the calculation unit 1003 determines that the measurement instruction to the macro mobile station 222 is a situation in which interference occurs in the nearby femto base station 211.
  • the calculation unit 1003 sends a measurement instruction signal 1003b to measure the interference from the macro mobile station 222 to the femto base station in the vicinity of the macro mobile station 222 that has instructed the measurement.
  • the femto base station 211 measures the reception level of the radio wave 222c from the macro mobile station 222 at the femto base station 211, and when there is interference of a predetermined level or more due to the radio wave 222c of the macro mobile station 222, the femto base station 211 Report.
  • the calculation unit 1003 calculates a second statistical value 1030 obtained by counting the number of interference measurement instructions to the macro mobile station 222 and the interference report from the femto base station 211 for each femto base station 211.
  • the determination unit 1004 determines a radio resource used by all femto mobile stations 212 in the macro cell 220, for example, uplink transmission power, based on the second statistical value 1030.
  • Such uplink transmission power is determined by transmission data 1004 a from the determination unit 1004 to the femto base station 211 and further transmission data 1004 b from the femto base station 211 to the femto mobile station 212.
  • FIG. 11 is a block diagram showing the configuration of each component in FIG.
  • the measurement instruction unit 1175 of the management server 1050 instructs the macro mobile station 222 to measure the interference by the femto base station 211, and simultaneously sends the macro mobile station 222 to the femto base station 211 in the vicinity of the macro mobile station 222 that has instructed the measurement. Instructs measurement of interference.
  • the measurement instruction acquisition unit 1134 of the femto base station 211 receives the measurement instruction
  • the measurement execution unit 1135 measures the interference from the macro mobile station 222 in the vicinity at the reception level.
  • the measurement result report unit 1136 reports the interference power to the management server 1050. Note that this may also be reported when the interference power is not greater than or equal to a predetermined level.
  • the measurement result collection unit 1176 of the management server 1050 collects the measurement result of the reception level from each femto base station 211 and passes it to the second statistical value calculation unit 1177.
  • the second statistical value calculation unit 1177 calculates the second statistical value 1030 from the number of measurement instructions by the measurement instruction unit 1175 and the number of reported interference detections for each femto base station, and the radio resource adjustment unit of the determination unit 1004 Pass to 1182.
  • the radio resource adjustment unit 1182 uses the second statistical value 1030 to determine a parameter for adjusting the radio resource of the femto mobile station 212 and sets the parameter to the femto mobile station 212 connected to all the femto base stations 211 to be aggregated. To do.
  • the femto mobile station 212 connected to each femto base station 211 to be aggregated acquires the radio resource / parameter common within the macro cell 220 from the management server 1050 by the radio resource parameter acquisition unit 1141. Then, the radio resource acquired by the radio resource update unit 1142 is updated.
  • the transmission unit 1143 performs transmission to the femto base station 211 with the updated radio resource, in this example, uplink transmission power.
  • FIG. 12 is a flowchart showing the operation procedure of each component of the sixth embodiment.
  • the management server 1050 issues an interference measurement instruction to the corresponding femto base station 211 together with an interference measurement instruction to the macro mobile station 222 in step S1210.
  • the femto base station 211 acquires the measurement instruction from the management server 1050 in step S1231
  • the femto base station 211 measures the interference of the macro mobile station 222 in the vicinity as the reception level in step S1233.
  • the femto base station 211 reports the reception level of the measurement result to the management server 1050.
  • the management server 1050 acquires the measurement result from the femto base station 211 in step S1211.
  • the management server 1050 measures the number of measurement instructions for interference with the macro mobile station 222 (this number corresponds to the number of measurement instructions for the femto base station 211) and the measurement results collected from each femto base station 211. From the above, the second statistical value 1030 is calculated.
  • the management server 1050 derives parameters related to radio resources based on the calculated second statistical value 1030, and sets the parameters for the femto mobile stations 212 connected to all the femto base stations 211 to be aggregated. .
  • the setting of parameters related to radio resources for the femto mobile station 212 may be performed for each femto mobile station 212. Alternatively, it may be performed by all the femto mobile stations 212 in the femto cell 210 by the femto base station 211 or may be performed simultaneously by the macro base station 221 in units of the macro cell 220.
  • Each femto mobile station 212 acquires parameters related to radio resources common in the macro cell 220 in step S1201, and determines whether or not the radio resources need to be updated in step S1203. If the radio resource needs to be updated, each femto mobile station 212 changes the radio resource in step S1205. On the other hand, if it is not necessary to update the radio resource, each femto mobile station 212 maintains the radio resource without changing in step S1207. In step S1209, each femto mobile station 212 communicates with the femto base station 211 using the current radio resource. Here, all femto mobile stations 212 perform transmission with the determined uplink transmission power.
  • FIG. 13 is a block diagram showing the configuration of the management server 1050 in the sixth embodiment.
  • a CPU 1310 is a processor for arithmetic control, and implements each unit of the management server 1050 in FIG. 10 by executing a program.
  • the ROM 1320 stores fixed data and programs such as initial data and programs.
  • the communication control unit 1330 communicates with the femto base station 211, the femto mobile station 212, the macro base station 221, and the macro mobile station 222 via the network.
  • the RAM 1340 is used by the CPU 1310 as a work area for temporary storage.
  • an area for storing the following data necessary for realizing the present embodiment is secured.
  • the area 1341 stores a femto base station ID for identifying the femto base station 211 that has measured the acquired reception level.
  • the area 1342 stores a measured interference value (reception level) measured by the femto base station 211 having the femto base station ID.
  • the area 1343 stores the second statistical value 1030 collected and calculated by the management server 1050. In the area 1344, a calculation parameter of the radio resource calculated based on the second statistical value 1030 is stored.
  • the program load area 1345 is a storage area for loading a program executed by the CPU 1310, as in the above embodiment.
  • the large-capacity storage unit 1350 such as a disk stores data such as measurement results collected from the macro mobile station 222 and application programs executed by the CPU 1310 in a nonvolatile manner.
  • the large-capacity storage unit 1350 stores the following data or programs necessary for realizing the present embodiment.
  • the interference measurement result collection database 1351 stores interference values (reception levels) that are measurement results collected from the femto base station 211 in association with the femto base station ID.
  • the second statistical value calculation algorithm 1352 stores an algorithm for obtaining a second statistical value from the collected interference values.
  • the second statistical value 1353 stores the second statistical value 1030 calculated by the second statistical value calculation algorithm 1352.
  • a plurality of second statistical values 1030 are stored corresponding to each macrocell 220.
  • a radio resource management program 1354 for executing the entire processing is stored.
  • the second statistical value calculation module 1355 is a module that calculates the second statistical value 1030 according to the second statistical value calculation algorithm 1352 as shown in FIG. 14 below.
  • the second parameter calculation module 1356 is a module that calculates the second parameter of radio resources determined for all femto mobile stations 212 based on the second statistical value 1030 as shown in FIG. 14 below.
  • FIG. 14 is a flowchart showing the operation procedure of the sixth embodiment of statistical value calculation and parameter setting in the management server.
  • the parameter of the uplink transmission power of the femto mobile station is controlled by the interference detection rate by the femto base station.
  • a transmit power parameter that determines the power is selected.
  • the transmission power of the uplink shared channel is determined by the following equation.
  • PPUSCH (i) min ⁇ PCMAX, 10log10 (MPUSCH (i)) + P0_PUSCH (j) + ⁇ (J) ⁇ PL + ⁇ TF (TF (i)) + f (i) ⁇
  • PCMAX is the maximum transmission power of the mobile station UE (User Equipment).
  • MPUSCH is the number of resource blocks of the physical uplink shared channel.
  • PO_PUSCH is a parameter related to power control notified from the radio base station eNB (evolved Node B).
  • ⁇ (j) is a parameter specified by the radio base station eNB.
  • PL is a propagation loss (path loss).
  • ⁇ TF is an offset value determined for each transmission format.
  • TF is an index of a transmission format.
  • f (i) is an offset value for adjustment.
  • i is an index indicating a sub-frame number.
  • j is a flag indicating whether dynamic scheduling is applied or persistent scheduling is applied.
  • PO_PUSCH, ⁇ (j), ⁇ TF, and f (i) are parameters of the uplink transmission power of the femto mobile station.
  • the parameter PO_PUSCH related to power control notified from the radio base station eNB described above includes a value commonly used by mobile stations in a cell and a value used individually by each mobile station UE.
  • the management server 1050 calculates the uplink interference detection rate by each femto base station in the same macro cell from the interference values measured and collected by the femto base station.
  • the number of times that the management server 1050 instructs the macro mobile station 222 to measure interference from the femto base station 211 is the total number of times that the femto base station 211 is susceptible to interference by the macro mobile station 222. It becomes the denominator of the detection rate.
  • the number of reports that the femto base station 211 receives interference of a predetermined level or higher from the macro mobile station 222 is a numerator of the uplink interference detection rate.
  • the interference detection in addition to the reception level at the femto base station, for example, the case where the condition to which the description of the interference detection rate of the third embodiment is applied is satisfied.
  • step S1403 the management server 1050 calculates the ratio of femto base stations that are in the same macro cell and whose interference detection rate exceeds the threshold.
  • step S1405 the management server 1050 determines whether or not the calculated ratio of femto base stations is equal to or greater than the target value ⁇ . When the calculated ratio of femto base stations is equal to or greater than the target value ⁇ , the management server 1050 proceeds to step S1407 and determines whether the uplink transmission power of the femto mobile station is the upper limit. If it is the upper limit, the management server 1050 maintains the current parameter value. This is to limit the uplink transmission power of the femto mobile station so as not to affect the communication power of the macro mobile station.
  • step S1409 sets the parameter P to (+ ⁇ P).
  • the increase in uplink transmission power is represented symbolically by (+ ⁇ P), but this value varies depending on the selected parameter.
  • the management server 1050 proceeds to step S1411 and determines whether the calculated ratio of femto base stations is equal to or less than (target value ⁇ 4). Judge whether or not.
  • management server 1050 proceeds to step S1413 and determines whether or not the uplink transmission power of the femto mobile station is the lower limit. If it is the lower limit, the management server 1050 maintains the current parameter value. This is to prevent the uplink transmission power of the femto mobile station from being in a state where the communication quality cannot be maintained. If the uplink transmission power is not the upper limit, the management server 1050 proceeds to step S1415 and sets the parameter P ( ⁇ P).
  • the parameter of the uplink transmission power is set so that the calculated ratio of femto base stations is the target range between the target value ⁇ and (target value ⁇ 4).
  • Control is performed at ( ⁇ P) step.
  • the step width for increasing and decreasing the parameter of the uplink transmission power is the same ⁇ P, but the step width may be different.
  • step S1417 the management server 1050 applies the uplink transmission power currently held by all femto mobile stations in the same macro cell.
  • Step S1419 is a process of initializing the parameters when the target femto mobile station is handed over to the macro cell (macro base station). If it is not a handover, step S1419 is skipped. Therefore, the second statistical value in the sixth embodiment corresponds to the ratio of femto base stations in which the uplink interference detection rate exceeds the threshold in the macro cell, and the radio resource parameter corresponds to the femto mobile station uplink transmission power parameter. .
  • the uplink transmission power of the femto mobile station 212 is determined so as to exceed the interference of the macro mobile station 222, there is a possibility that interference to the macro mobile station 222 occurs.
  • the above upper limit is for preventing such a situation.
  • the lower limit value is for ensuring the communication quality of uplink transmission in the femtocell 210.
  • the seventh embodiment of the present invention based on the first statistical value and the third statistical value, radio resources used by a plurality of femto base stations are determined in consideration of a trade-off between mutual interference powers between the femto base station and the macro mobile station.
  • the third statistical value represents a statistical value obtained by totaling reception levels of radio waves from a plurality of femto base stations at a femto mobile station.
  • the first statistical value relates to the interference of the femto base station to the macro mobile station
  • the third statistical value relates to the transmission power of the femto base station to the femto mobile station.
  • FIG. 15 shows a configuration of a wireless communication system 1500 according to the seventh embodiment.
  • FIG. 15 illustrates an example in which downlink transmission powers of a plurality of femto base stations 211 are determined by a first statistical value 230 and a third statistical value 1530 in a plurality of femto cells 210 in a macro cell 220 as a typical example.
  • the wireless communication system 1500 includes a plurality of femto base stations 211 and a plurality of femto mobile stations 212 connected to the plurality of femto base stations 211.
  • a macro cell 220 larger than the femto cell 210 formed by the femto base station 211 includes a macro base station 221 and a macro mobile station 222 connected to the macro base station 221.
  • the femto base station 211 in the femto cell 210 communicates with the radio signal 211e having the determined downlink transmission power.
  • FIG. 15 shows one macro cell 220, the present invention is not limited to this.
  • the management server 1550 may calculate a statistical value for the femtocell 210 in an area extending over the plurality of macrocells 220 to determine the radio resource of the femto base station 211.
  • the calculation unit 1503 calculates a first statistical value 230 obtained by aggregating the reception levels 222 a of the radio waves 211 a from the plurality of femto base stations 211 at the macro mobile station 222.
  • the calculation unit 1503 transmits a measurement instruction signal 1503 a to the macro base station 221 and requests a measurement instruction to the macro mobile station 222.
  • the reception level 222 a is reported to the management server 1550 as transmission data 221 b from the macro mobile station 222 via the macro base station 221 in response to the measurement instruction signal 221 a from the macro base station 221.
  • illustration of direct transmission from the macro mobile station 222 to the management server 1550 is omitted.
  • the calculation unit 1503 calculates the third statistical value 1530 by totaling the indoor dead area rates 211d collected from the plurality of femto base stations 211.
  • the indoor dead zone ratio 211d is transmitted from the femto base station 211 to the calculation unit 1503 at the timing when the macro mobile station 222 approaches the femtocell 210 and instructs the interference from the femto base station 211, according to an instruction from the management server 1550. .
  • the indoor dead zone rate 211d is a cumulative probability distribution of reference signal reception quality (hereinafter referred to as RSRQ) 212b collected by each of the femto base stations 211 from the plurality of femto mobile stations 212 in the femto cell 210 (hereinafter referred to as RSRQ) 212b. CDF).
  • RSRQ reference signal reception quality
  • CDF the indoor dead zone rate 211d is, for example, a ratio at which the RSRQ CDF of the femto cell 210 measured by the femto mobile station 212 is equal to or less than a predetermined value.
  • the determination unit 1504 determines radio resources 1504a, for example, downlink transmission power, used by the plurality of femto base stations 211 while considering mutual interference trade-off. .
  • FIG. 16 is a block diagram showing the configuration of each component in FIG. In FIG. 16, the report of the measurement result of the reception level via the macro base station 221 is omitted.
  • the measurement instruction unit 373 included in the calculation unit 1503 of the management server 1550 issues a measurement instruction (via the macro base station 221) to the macro mobile station 222 in the vicinity of each femtocell in the macrocell.
  • Each macro mobile station 222 receives a measurement instruction from the measurement instruction unit 373 by the measurement instruction acquisition unit 321, and measures the interference from the nearby femto base station 211 at the reception level by the measurement execution unit 322.
  • the measured reception level is reported to the management server 1550 by the measurement result report unit 323 (via the macro base station 221).
  • the measurement result collection unit 374 of the management server 1550 collects the reception level measurement result from each macro mobile station 222 and passes it to the first statistical value calculation unit 375.
  • the first statistical value calculation unit 375 calculates the first statistical value 230 and passes it to the radio resource adjustment unit 1683 of the determination unit 1504.
  • the femto base station 211 collects RSRQ from the femto mobile station 212 by the RSRQ CDF creation unit 1631 to create a CDF.
  • the indoor dead area rate calculating unit 1632 calculates the indoor dead area rate
  • the indoor dead area rate reporting unit 1633 reports it to the management server 1550.
  • the indoor dead zone rate collection unit 1671 of the management server 1550 collects the indoor dead zone rate from each femto base station 211 and passes it to the third statistical value calculation unit 1672.
  • the third statistical value calculation unit 1672 calculates the third statistical value 1530 and passes it to the radio resource adjustment unit 1683 of the determination unit 1504.
  • the radio resource adjustment unit 1683 of the management server 1550 uses the first statistical value 230 and the third statistical value 1530 to determine a parameter for adjusting the radio resource of the femto base station 211. And it sets with respect to all the femto base stations 211 of a total object. In this way, the trade-off between mutual interference powers between the femto base station 211 and the macro mobile station 222 is taken into consideration.
  • Each femto base station 211 to be aggregated acquires a radio resource / parameter common in the macro cell 220 from the radio resource adjustment unit 1683 by the radio resource parameter acquisition unit 331 and updates the radio resource acquired by the radio resource update unit 332. To do.
  • Transmitting section 333 performs transmission to femto mobile station 212 with the updated radio resource, in this example, downlink transmission power.
  • FIG. 17 is a flowchart showing the operation procedure of each component of the seventh embodiment.
  • the management server 1550 instructs the macro mobile station 222 to perform measurement in step S411.
  • the macro mobile station 222 receives a measurement instruction from the management server 1550 (via the macro base station 221) in step S421, the macro mobile station 222 measures the interference of the nearby femto base station 211 as a reception level in step S423.
  • the macro mobile station 222 reports the reception level of the measurement result to the management server 1550 (via the macro base station 221).
  • the management server 1550 acquires the measurement results from the macro mobile station 222 in step S413, collects the measurement results from each macro mobile station 222 in step S415, and calculates the first statistical value 230.
  • the femto base station 211 creates a CDF from the RSRQ collected from the femto mobile station 212 in step S1731.
  • the femto base station 211 calculates the indoor dead zone rate from the CDF of RSRQ collected in step S1733.
  • the femto base station 211 reports the calculated indoor dead zone rate to the management server 1550.
  • the management server 1550 acquires the indoor dead zone rate from the femto base station 211 in step S1711.
  • the management server 1550 collects the indoor dead area rate and calculates the third statistical value 1530.
  • step S ⁇ b> 1715 the management server 1550 derives parameters related to radio resources from the first statistical value 230 and the third statistical value 1530 and sets them in the femto base station 211. Since the setting procedure in the femto base station 211 is shown in FIG. 4 and the like, it is omitted in FIG. It should be noted that the setting of the parameters related to the radio resource for the femto base station 211 may be performed for each femto base station 211 or may be performed simultaneously for each macro cell 220 unit or a plurality of macro cell 220 units.
  • FIGS. 15A and 18B are block diagrams showing the configuration of the management server 1550 in the seventh embodiment.
  • a CPU 1810 is a processor for arithmetic control, and implements each unit of the management server 1550 of FIG. 15 by executing a program.
  • the ROM 1820 stores fixed data and programs such as initial data and programs.
  • the communication control unit 1830 communicates with the femto base station 211, the femto mobile station 212, the macro base station 221, and the macro mobile station 222 via a network.
  • the RAM 1840 is used by the CPU 1810 as a work area for temporary storage.
  • an area for storing the following data necessary for realizing the present embodiment is secured.
  • a macro mobile station ID for identifying the macro mobile station 222 whose measured reception level is measured is stored.
  • a measurement target femto base station ID for identifying the femto base station 211 that controls the femto cell 210 in the vicinity of the macro mobile station 222 having the macro mobile station ID is stored.
  • Area 1843 stores a measured interference value (reception level) measured by macro mobile station 222 having a macro mobile station ID.
  • the first statistical value 230 collected and calculated by the management server 1550 is stored.
  • a femto base station ID for identifying the femto base station 211 from which the acquired indoor dead area rate is calculated is stored.
  • the area 1846 stores the indoor dead zone rate calculated by the femto base station 211 having the femto base station ID.
  • the third statistical value 1530 collected and calculated by the management server 1550 is stored.
  • Area 1848 stores radio resource calculation parameters calculated based on first statistical value 230 and third statistical value 1530.
  • the program load area 1849 is a storage area for loading a program executed by the CPU 1810, as in the above embodiment.
  • the large-capacity storage unit 1850 stores data such as measurement results collected from the macro mobile station 222 and application programs executed by the CPU 1810 in a nonvolatile manner.
  • the large-capacity storage unit 1850 stores the following data or programs necessary for realizing the present embodiment.
  • the measurement result collection database 1851 stores interference values (reception levels) that are measurement results collected from the macro mobile station 222 in association with the macro mobile station ID and the femto base station ID.
  • the first statistical value calculation algorithm 1852 stores an algorithm for obtaining the first statistical value 230 from the collected interference values.
  • the first statistical value 1853 stores the first statistical value 230 calculated by the first statistical value calculation algorithm 1852.
  • the indoor dead area rate database 1854 stores the indoor dead place rate, which is the calculation result collected from the femto base station 211, in association with the femto base station ID.
  • the third statistical value calculation algorithm 1855 stores an algorithm for obtaining the third statistical value 1530 from the collected indoor dead area rate.
  • the third statistical value 1856 stores the third statistical value 1530 calculated by the third statistical value calculation algorithm 1855.
  • a radio resource management program 1857 for executing the entire processing is stored.
  • the first statistic / third statistic calculation module 1858 generates the first statistic value 230 and the third statistic value 1530 according to the first statistic value calculation algorithm 1852 and the third statistic value calculation algorithm 1855 as shown in FIG. This module performs calculation.
  • the third parameter calculation module 1859 is a module for calculating a third parameter of radio resources set in all femto mobile stations based on the first statistical value 230 and the third statistical value 1530 as shown in FIG. 19 below. .
  • FIG. 19 is a flowchart showing the operation procedure of the seventh embodiment of statistical value calculation and parameter setting in the management server.
  • the offset of the downlink transmission power of the femto base station is controlled by the interference detection rate by the femto base station and the indoor dead zone rate in the femto cell.
  • the management server 1550 calculates the ratio A of femto base stations that are in the same macro cell and whose interference detection rate exceeds the threshold value.
  • the management server 1550 calculates the ratio B of femto base stations whose indoor dead zone rate exceeds the threshold.
  • step S1907 the management server 1550 determines that the ratio A of femto base stations whose interference detection rate exceeds the threshold is equal to or higher than the target value Th1, and the ratio B of femto base stations whose indoor dead zone rate exceeds the threshold is equal to or lower than the target value Th2. It is judged whether it is.
  • the management server 1550 proceeds to step S1909 and sets the offset of the downlink transmission power of the femto base station in the same macro cell ( ⁇ dB ′).
  • the management server 1550 proceeds to step S1911.
  • step S1911 the management server 1550 determines that the ratio B of femto base stations whose interference detection rate exceeds the threshold is equal to or less than (target value Th1 ⁇ 5) and the ratio B of femto base stations whose indoor dead zone rate exceeds the threshold. It is determined whether or not (target value Th2 + ⁇ 6) or more.
  • the management server 1550 proceeds to step S1913 and offsets (+ ⁇ dB ′) the downlink transmission power of the femto base station in the same macro cell. If neither of the conditions in steps S1907 and S1911 is satisfied, the management server 1550 maintains the current offset.
  • the management server 1550 applies the parameter of the downlink transmission power held in all femto base stations in the same macro cell. That is, in the present embodiment, the downlink transmission power offset is controlled in the ( ⁇ dB ′) step under the following conditions.
  • the condition is that the ratio A of femto base stations whose interference detection rate exceeds the threshold is the target range between the target value Th1 and (target value Th1 ⁇ 5), and the ratio B of the femto base stations whose indoor dead zone rate exceeds the threshold. Is a condition for achieving a target range between the target value Th2 and (target value Th2 + ⁇ 6).
  • the macro base station may collect measurement results of the macro mobile station, determine parameters, and notify the femto base station. Also in this case, since the parameters are set in common for each macro base station, this is equivalent to the case where the function of the management server exists in each macro base station. Further, the femto base station may perform distributed processing. In this case, the management server only collects information, and the idle femto base station may perform calculations.
  • the reception level notification from the macro base station 221 to the femto base station 211 has been described as being performed by data communication via wireless, but it may also be performed via a dedicated or wired connection via a network. good.
  • the wireless communication system to which the present embodiment is applied is not particularly limited, and includes, for example, LTE (Long Term Evolution), W-CDMA (Wideband Code Division Multiple Access), WLAN (Wireless Local Area Network), IEEE (Institute of Electrical). and (Electronics Engineers) is applicable to various wireless communication systems including the specifications defined in 802.16m.
  • the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention is also applicable to a case where a control program that implements the functions of the embodiments is supplied directly to a system or apparatus or executed remotely. Therefore, in order to realize the functions of the present invention on a computer, a control program installed in the computer, a storage medium storing the control program, and a WWW (World Wide Web) server for downloading the control program are also included in the present invention. Included in the category.
  • the control program can be stored and supplied to a computer using various types of non-transitory computer-readable media.
  • the non-transitory computer readable medium includes various types of tangible storage media (tangible storage medium).
  • non-transitory computer-readable media examples include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD- R, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM).
  • the control program may be supplied to the computer by various types of transitory computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the present invention is applied to a radio communication system, a radio resource determination method thereof, a communication management apparatus, a control method thereof, and a control program, and in particular, radio communication including a plurality of first cells and a second cell including the plurality of first cells. It is applied to the use of determining radio resources in the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 適正化された無線リソースを効率的に決定するため、複数の第1基地局(111)と、前記複数の第1基地局(111)に接続された複数の第1移動局(112)とを含む無線通信システム(100)において、前記複数の第1基地局(111)と、前記第1基地局(111)が形成する第1セル(110)よりも大きな第2セル(120)を形成する第2基地局(121)に接続された第2移動局(122)と、の間の電波の干渉レベルを集計して統計値(130)を算出する算出手段(103)と、前記統計値(130)に基づいて、前記複数の第1基地局(111)または前記複数の第1移動局(112)が用いる無線リソースを決定する決定手段(104)と、を備える。

Description

無線通信システムとその無線リソース決定方法、通信管理装置及びその制御方法と制御プログラム
 本発明は、複数の第1セルと複数の第1セルを含む第2セルとからなる無線通信システムにおける無線リソースの決定技術に関する。
 マクロ基地局が制御するマクロセル内に複数のフェムトセルがある無線通信システムにおいて、フェムト基地局の下り送信電力はマクロセルのマクロ移動局に影響を与える。従って、フェムト基地局の下り送信電力によるマクロ移動局の通信への干渉を防ぐ工夫がされている。例えば、特許文献1では、各フェムト基地局がマクロ基地局から発信されるレファレンス信号の受信レベルを考慮して、当該フェムト基地局の下り送信電力を制御する処理が開示されている。
 ところで、フェムトセルが建物内にありフェムト基地局が屋内にある場合、フェムト基地局の下り送信電力を建物の壁などによる建物侵入損失と空間伝播損の分だけ増加したとしても、屋外のマクロ移動局に対する干渉は防ぐことができる。このため、特許文献2では、フェムト基地局が、マクロ基地局からのレファレンス信号のフェムト基地局における受信電力と、マクロ移動局からマクロ基地局への上り送信電力のフェムト基地局における受信電力とを測定する。そして、フェムト基地局において、マクロ移動局の推定送信電力とフェムト基地局が測定した上り送信電力の受信電力とから、フェムト基地局とマクロ移動局間のパスロス(=建物侵入損失+空間伝播損)を求める。このパスロスを考慮して、フェムト基地局の送信電力を求めている。また、特許文献3では、まず、フェムト基地局がマクロ基地局からのレファレンス信号の受信品質を測定し、電力オフセットを加算して送信電力の初期値(レファレンス信号の送信電力及び送信電力の最大値)を設定する。次に、フェムト基地局がフェムト移動局から初期値による受信品質の測定結果の報告を受けて、フェムト移動局における受信品質が目標レベルに近づくように、フェムト基地局の送信電力を再設定する。これにより、マクロ移動局への干渉を防ぎながらフェムト移動局での受信品質を維持する。
 一方、特許文献4では、未登録のマクロ移動機がフェムトセル内にあるような所定の条件で、フェムト基地局が下り止まり木チャネル信号を変更して下りフェムトセルの半径を変更する。その下りフェムトセルの半径の変更に対応して必要であれば上り受信感度を変化させることによって、上りフェムトセルの半径が下りフェムトセルの半径と大きく異ならないように制御する。この制御によって、マクロ移動機のマクロ基地局への上り送信電力によるフェムト基地局への干渉を防いでいる。
イギリス国公開第2428937号公報 国際公開第2009/122778号公報 国際公開第2009/047972号公報 特開2010-004187号公報
 しかしながら、上記従来技術では、フェムトセル内における無線リソース(例えば、送信電力)の設定は、個々のフェムトセル単位で行なわれている。すなわち、マクロ移動局や、フェムト基地局、フェムト移動局が各信号の送信電力を検出した現在の受信レベルに基づいて、個々のフェムトセルにおけるフェムト基地局やフェムト移動局の無線リソースが設定される。そのため、新たに設定されたフェムトセルのためには、各信号の送信電力の受信レベルを測定して無線リソースの設定をすることが必要となる。また、同じマクロセル内にあるフェムトセルについて個別に無線リソースの設定を制御すると、フェムト基地局への負荷が増大するし、マクロ基地局などにも余分な負荷をかけてしまう。
 本発明の目的は、上述の課題を解決する技術を提供することにある。
 上記目的を達成するため、本発明の第1の態様に係るシステムは、
 複数の第1基地局と、前記複数の第1基地局に接続された複数の第1移動局とを含む無線通信システムであって、
 前記複数の第1基地局と、前記第1基地局が形成する第1セルよりも大きな第2セルを形成する第2基地局に接続された第2移動局と、の間の電波の干渉レベルを集計して統計値を算出する算出手段と、
 前記統計値に基づいて、前記複数の第1基地局または前記複数の第1移動局が用いる無線リソースを決定する決定手段と、
 を備えることを特徴とする。
 上記目的を達成するため、本発明の第2の態様に係る方法は、
 複数の第1基地局と、前記複数の第1基地局に接続された複数の第1移動局とを含む無線通信システムの無線リソース決定方法であって、
 前記複数の第1基地局と、前記第1基地局が形成する第1セルよりも大きな第2セルを形成する第2基地局に接続された第2移動局と、の間の電波の干渉レベルを集計して統計値を算出する算出ステップと、
 前記統計値に基づいて、前記複数の第1基地局または前記複数の第1移動局が用いる無線リソースを決定する決定ステップと、
 を含むことを特徴とする。
 上記目的を達成するため、本発明の第3の態様に係る装置は、
 複数の第1基地局と、前記複数の第1基地局に接続された複数の第1移動局とを管理する通信管理装置であって、
 前記複数の第1基地局と、前記第1基地局が形成する第1セルよりも大きな第2セルを形成する第2基地局に接続された第2移動局と、の間の電波の干渉レベルを集計して統計値を算出する算出手段と、
 前記統計値に基づいて、前記複数の第1基地局または前記複数の第1移動局が用いる無線リソースを決定する決定手段と、
 を備えることを特徴とする。
 上記目的を達成するため、本発明の第4の態様に係る方法は、
 複数の第1基地局と、前記複数の第1基地局に接続された複数の第1移動局とを管理する通信管理装置の制御方法であって、
 前記複数の第1基地局と、前記第1基地局が形成する第1セルよりも大きな第2セルを形成する第2基地局に接続された第2移動局と、の間の電波の干渉レベルを集計して統計値を算出する算出ステップと、
 前記統計値に基づいて、前記複数の第1基地局または前記複数の第1移動局が用いる無線リソースを決定する決定ステップと、
 を含むことを特徴とする。
 上記目的を達成するため、本発明の第5の態様に係るプログラムは、
 複数の第1基地局と、前記複数の第1基地局に接続された複数の第1移動局とを管理する通信管理装置の制御プログラムであって、
 前記複数の第1基地局と、前記第1基地局が形成する第1セルよりも大きな第2セルを形成する第2基地局に接続された第2移動局と、の間の電波の干渉レベルを集計して統計値を算出する算出ステップと、
 前記統計値に基づいて、前記複数の第1基地局または前記複数の第1移動局が用いる無線リソースを決定する決定ステップと、
 をコンピュータに実行させる。
 本発明によれば、無線通信システムにおいて適正化された無線リソースの決定を効率的に実現できる。
本発明の第1実施形態の無線通信システムの構成を示す図である。 本発明の第2実施形態の無線通信システムの構成を示す図である。 本発明の第2実施形態の無線通信システムの構成を示すブロック図である。 本発明の第2実施形態の無線通信システムの処理手順を示すフローチャートである。 本発明の第2実施形態に係る管理サーバの構成を示すブロック図である。 本発明の第2実施形態に係る管理サーバの処理手順を示すフローチャートである。 本発明の第2実施形態で決定される下り送信電力のオフセットの例を示す図である。 本発明の第3実施形態に係る管理サーバの処理手順を示すフローチャートである。 本発明の第4実施形態に係る管理サーバの処理手順を示すフローチャートである。 本発明の第5実施形態に係る管理サーバの処理手順を示すフローチャートである。 本発明の第6実施形態に係る無線通信システムの構成を示す図である。 本発明の第6実施形態に係る無線通信システムの構成を示すブロック図である。 本発明の第6実施形態に係る無線通信システムの処理手順を示すフローチャートである。 本発明の第6実施形態に係る管理サーバの構成を示すブロック図である。 本発明の第6実施形態に係る管理サーバの処理手順を示すフローチャートである。 本発明の第7実施形態に係る無線通信システムの構成を示す図である。 本発明の第7実施形態に係る無線通信システムの構成を示すブロック図である。 本発明の第7実施形態に係る無線通信システムの処理手順を示すフローチャートである。 本発明の第7実施形態に係る管理サーバの構成を示すブロック図である。 本発明の第7実施形態に係る大容量記憶部を詳細に示す図である。 本発明の第7実施形態に係る管理サーバの処理手順を示すフローチャートである。
 以下に、図面を参照して、本発明の実施の形態について例示的に詳しく説明する。ただし、以下の実施の形態に記載されている構成要素はあくまで例示であり、本発明の技術範囲をそれらのみに限定する趣旨のものではない。
 [第1実施形態]
 本発明の第1実施形態としての無線通信システムについて、図1を用いて説明する。図1は、複数の第1基地局111と、複数の第1基地局111に接続された複数の第1移動局112とを含む無線通信システム100を示している。
 無線通信システム100は、更に、算出部103と決定部104とを含む。算出部103は、複数の第1基地局111と、第1基地局111が形成する第1セル110よりも大きな第2セル120を形成する第2基地局121に接続された第2移動局122と、の間の電波の干渉レベルを集計して統計値130を算出する。また、決定部104は、統計値130に基づいて、複数の第1基地局111または複数の第1移動局112が用いる無線リソースを決定する。
 このように、統計値に基づいて無線リソース決定をすれば、適正化された無線リソースの決定を効率的に実現できる。
 [第2実施形態]
 本発明の第2実施形態としての無線通信システムについて、図2乃至6Bを用いて説明する。本実施形態では、マクロ移動局から集計して算出した統計値により複数のフェムト基地局が用いる無線リソースを決定する。図2では、典型的な例として、マクロセル220内の複数のフェムトセル210に対して、第1統計値230に基づき複数のフェムト基地局211の下り送信電力を決定する例を説明する。これ以降、第1統計値とは、複数のフェムト基地局からの電波のマクロ移動局における受信レベルを集計して得られる統計値を指す。
 〈第2実施形態の無線通信システムの構成及び動作〉
 図2は、第2実施形態の無線通信システム200の構成であり、複数のフェムト基地局211と、複数のフェムト基地局211に接続された複数のフェムト移動局212とを含む。また、フェムト基地局211が形成するフェムトセル210よりも大きなマクロセル220は、マクロ基地局221と、マクロ基地局221に接続されたマクロ移動局222とを含む。フェムトセル210内のフェムト基地局211は、決定された下り送信電力の無線信号211bによりフェムト移動局212と通信する。なお、図2では、1つのマクロセル220について示したがこれに限定されることなく、管理サーバ250が複数のマクロセル220にまたがる領域内のフェムトセル210について統計値を算出して、フェムト基地局211の無線リソースを決定してもよい。
 第2実施形態では、算出部203と決定部204とは、複数のフェムトセル210を管理する通信管理装置である管理サーバ250内に設けられた例を示している。しかしながら、算出部203と決定部204の機能は、他の構成要素、例えばマクロ基地局221に配置されても、フェムト基地局211に分散配置されても、あるいは無線通信システムの他の構成要素に配置されてもよい。算出部203は、マクロ基地局221に測定指示信号203aを送信して、マクロ移動局222への測定指示信号221aによる測定指示を依頼する。算出部203は、複数のフェムト基地局211からの電波211aのマクロ移動局222における受信レベル222a、または、マクロ移動局222における受信レベル222bを集計して第1統計値230を算出する。ここで、受信レベル222aは、マクロ基地局221からの測定指示信号221aに応答して、マクロ移動局222からマクロ基地局221を介して送信データ221bとして管理サーバ250に報告される。一方、受信レベル222bはマクロ移動局222から管理サーバ250へ直接送信する場合を示している。決定部204は、第1統計値230に基づいて複数のフェムト基地局211が用いる無線リソース204a、例えば下り送信電力を決定する。
 図3は、図2の各構成要素の構成を示したブロック図である。なお、図3には、マクロ基地局221を経由する受信レベル222aの測定結果の報告は簡略化して示してある。
 管理サーバ250の算出部203が有する測定指示部373がマクロセル内の各フェムトセルの近傍のマクロ移動局222に(マクロ基地局221を介して)測定指示を行なう。各マクロ移動局222は測定指示取得部321で測定指示部373からの測定指示を受けて、測定実施部322で近傍のフェムト基地局211からの干渉211aを受信レベルで測定する。測定した受信レベルは測定結果報告部323により(マクロ基地局221を介して)管理サーバ250に報告される。
 管理サーバ250の測定結果収集部374は各マクロ移動局222からの受信レベルの測定結果を収集して、第1統計値算出部375に渡す。第1統計値算出部375は第1統計値230を算出して、決定部204の無線リソース調整部381に渡す。無線リソース調整部381は、第1統計値230を使って、フェムト基地局211の無線リソースを調整するパラメータを決定して、集計対象の全てのフェムト基地局211に設定する。
 集計対象の各フェムト基地局211は、管理サーバ250からのマクロセル220内で共通の無線リソース・パラメータを無線リソースパラメータ取得部331により取得し、無線リソース更新部332で取得した無線リソースを更新する。送信部333は、更新した無線リソース、この例では下り送信電力の無線信号211bでフェムト移動局212への送信を行なう。
 図4に、第2実施形態の各構成要素の動作手順をフローチャートで示す。図4においても、マクロ基地局221を経由する想定結果の収集は省略している。
 管理サーバ250は、ステップS411でマクロ移動局222に測定を指示する。マクロ移動局222は、ステップS421で管理サーバ250からの測定指示を(マクロ基地局221を介して)取得すると、ステップS423で近傍にいるフェムト基地局211からの干渉211aを受信レベルとして測定する。ステップS425では、マクロ移動局222は、測定結果の受信レベルを(マクロ基地局221を介して)管理サーバ250に報告する。
 管理サーバ250は、ステップS413でマクロ移動局222から測定結果を取得して、ステップS415で各マクロ移動局222から測定結果を収集して第1統計値230を算出する。ステップS417では、管理サーバ250は、算出された第1統計値230に基づいて無線リソースに関するパラメータを導出し、集計対象となった全てのフェムト基地局211に対し設定する。なお、無線リソースに関するパラメータのフェムト基地局211に対する設定は、個々のフェムト基地局211に対して行なわれても、マクロセル220単位でマクロ基地局221により一斉に行なわれてもよい。
 集計対象となった各フェムト基地局211は、ステップS431でマクロセル220内で共通の無線リソースに関するパラメータを取得すると、ステップS433で無線リソースの更新が必要か否かを判断する。無線リソースの更新が必要であれば、各フェムト基地局211は、ステップS435で無線リソースを変更する。一方、無線リソースの更新が必要なければ、各フェムト基地局211は、ステップS437で無線リソースを変更せずに維持する。ステップS439では、各フェムト基地局211は、現在の無線リソースを使った無線信号211bでフェムト移動局212との通信を行う。ここでは、設定された下り送信電力で各フェムト基地局211が送信を行なう。
 なお、第1統計値算出部375及び無線リソース調整部381の処理には、種々の第1統計値230による処理が含まれ、以下その数例を、第2実施形態乃至第5実施形態として順に示す。
 〈管理サーバ250の構成〉
 図5は、第2実施形態における管理サーバ250の構成を示すブロック図である。
 図5で、CPU(Central Processing Unit) 510は演算制御用のプロセッサであり、プログラムを実行することで図3の管理サーバ250の各部を実現する。ROM(Read Only Memory) 520は、初期データ及びプログラムなどの固定データ及びプログラムを記憶する。通信制御部530は、ネットワークを介してフェムト基地局211、フェムト移動局212、マクロ基地局221、マクロ移動局222と通信する。
 RAM(Random Access Memory) 540は、CPU510が一時記憶のワークエリアとして使用する。RAM540には、本実施形態の実現に必要な以下のデータを記憶する領域が確保される。領域541には、取得した受信レベルを測定したマクロ移動局222を識別するマクロ移動局IDが記憶される。領域542には、マクロ移動局IDを有するマクロ移動局222が近傍にいるマクロセル220を制御しているフェムト基地局211を識別する測定対象フェムト基地局IDが記憶される。領域543には、マクロ移動局IDを有するマクロ移動局222によって測定された測定干渉値(受信レベル)が記憶される。領域544には、管理サーバ250で収集され算出された第1統計値230が記憶される。領域545には、第1統計値230に基づいて算出された無線リソースの算出パラメータが記憶される。領域546は、CPU510が実行するプログラムをロードするプログラムロード領域である。
 ディスクなどの大容量記憶部550は、マクロ移動局222から収集された測定結果などのデータや、CPU510が実行するアプリケーションプログラムを、不揮発に記憶する。大容量記憶部550には、本実施形態の実現に必要な以下のデータ又はプログラムが記憶されている。干渉測定結果収集データベース551は、マクロ移動局222から収集された測定結果である干渉値(受信レベル)を、マクロ移動局ID及びフェムト基地局IDに対応付けて格納している。第1統計値算出アルゴリズム552は、収集された干渉値から第1統計値230を求めるアルゴリズムを格納している。第1統計値553は、第1統計値算出アルゴリズム552により算出された第1統計値230を格納している。複数のマクロセル220にわたるフェムトセル210を管理する場合には、各マクロセル220に対応して複数の第1統計値230が格納される。次に、プログラムとしては、全体の処理を実行させる無線リソース管理プログラム554を格納する。第1統計値算出モジュール555は、以下の図6Aに示すように第1統計値算出アルゴリズム552に従った第1統計値230の算出を行なうモジュールである。第1パラメータ算出モジュール556は、以下の図6Aに示すように第1統計値230に基づいて各フェムト基地局211に設定される無線リソースの第1パラメータを算出するモジュールである。
 〈管理サーバにおける統計値算出及びパラメータ設定の第2実施形態の動作〉
 図6Aに、管理サーバにおける統計値算出及びパラメータ設定の第2実施形態の動作手順をフローチャートで示す。第2実施形態では、マクロ移動局222が収集した干渉レベルの累積確率分布(累積分布関数:Cummulative Distribution Functionで表わされるので、以下CDFで示す)によりフェムト基地局211の下り送信電力のオフセットを制御する。
 ステップS601では、管理サーバ250は、無線リソースのパラメータの設定タイミングであるか否かを判断する。設定タイミングとしては、例えば、予め決められた所定日時のタイミング、あるいは第1統計値の算出の条件を満たす受信レベルが収集されたタイミング、あるいはマクロ移動局への干渉が障害となる程になったタイミングなどが考えられる。管理サーバ250は、設定タイミングになるとステップS603に進んで、マクロ移動局が測定し収集した干渉値から、同一マクロセル内のフェムト基地局からの干渉値を抽出する。ステップS605では、管理サーバ250は、図6Bに示すような干渉レベルにおける累積確率分布(CDF)を作成する。ステップS607では、管理サーバ250は、かかる図6Bから各オフセット(図6Bでは、オフセット=70dBとオフセット=90dBを示す)において累積値が90%値となる干渉レベルを求める。そして、管理サーバ250は、求めた干渉レベルが閾値以下となるオフセットを選択して、設定する無線リソースのパラメータとする。図6Bの例では、管理サーバ250は、オフセット=70dBを選択する。ステップS609では、管理サーバ250が管理する全マクロセルに対して設定が完了したかを判定し、完了してない場合はステップS603に戻って処理を繰り返す。従って、かかる第2実施形態における第1統計値は累積確率分布(CDF)に相当し、無線リソースのパラメータは下り送信電力のオフセットに相当する。
 [第3実施形態]
 本発明の第3実施形態としての無線通信システムについて、図7を用いて説明する。第2実施形態では、干渉レベルにおける累積確率分布(CDF)に基づいて下り送信電力のオフセットを決定した。これに対し、本実施形態では、マクロセル内で干渉検出率が閾値を超えるフェムト基地局の割合に基づいて下り送信電力のオフセットを決定する。その他の構成及び動作は、第2実施形態と同様であるためここでは説明を省略する。
 〈管理サーバにおける統計値算出及びパラメータ設定の第3実施形態の動作〉
 図7に、管理サーバにおける統計値算出及びパラメータ設定の第3実施形態の動作手順をフローチャートで示す。
 ステップS701で、管理サーバ250は、マクロ移動局が測定して収集した干渉値から同一マクロセル内の各フェムト基地局による干渉検出率を算出する。かかる干渉検出率は、各フェムト基地局について、干渉検出率=(干渉検出報告数/干渉検出指示を行なったマクロ移動局数)によって計算する。上記干渉検出の例としては、マクロ移動局における受信レベルの他、例えば以下の条件を満足したときを含む。(例1)フェムトセルのRSRQ/マクロセルのRSRQが閾値以上のとき、(例2)フェムトセルのRSRQが閾値以上のとき、(例3)Detected Cellとして報告されたとき、(例4)フェムトセルのRSRP(Reference Signal Received Power)が閾値以上のとき、などである。ステップS703では、管理サーバ250は、同一マクロセル内にあって干渉検出率が閾値を超えるフェムト基地局の割合を算出する。ステップS705では、管理サーバ250は、算出したフェムト基地局の割合が目標値α以上であるか否かを判断する。算出したフェムト基地局の割合が目標値α以上である場合、管理サーバ250は、ステップS707に進んで、同一マクロセル内のフェムト基地局の下り送信電力のオフセットを(-ΔdB)する。一方、算出したフェムト基地局の割合が目標値α以上でない場合、管理サーバ250は、ステップS709に進んで、算出したフェムト基地局の割合が(目標値α-Δ1)以下であるか否かを判断する。算出したフェムト基地局の割合が(目標値α-Δ1)以下である場合、管理サーバ250は、ステップS711に進んで、同一マクロセル内のフェムト基地局の下り送信電力のオフセットを(+ΔdB)する。算出したフェムト基地局の割合が(目標値α-Δ1)以下でない場合、管理サーバ250は、現在のオフセットを維持する。すなわち、算出したフェムト基地局の割合が、目標値αと(目標値α-Δ1)間の目標範囲となるように下り送信電力のオフセットを(ΔdB)ステップで制御する。なお、上記例では、下り送信電力のオフセットの増加と減少のステップ幅が同じΔdBの場合について説明したが、ステップ幅が異なってもよい。
 ステップS713では、管理サーバ250は、無線リソースのパラメータの設定タイミングであるか否かを判断する。設定タイミングとしては、例えば、予め決められた所定日時のタイミング、あるいは第1統計値の算出の条件を満たす受信レベルが収集されたタイミング、あるいはマクロ移動局への干渉が障害となる程になったタイミングなどが考えられる。設定タイミングであれば、管理サーバ250は、ステップS715で同一マクロセル内の全てのフェムト基地局に現在保持されているオフセットを適用する。ステップS717では、管理サーバ250は、管理サーバ250が複数のマクロセルを管理している場合で、無処理のマクロセルがあればステップS701で戻って処理を繰り返す。従って、かかる第3実施形態における第1統計値はマクロセル内で干渉検出率が閾値を超えるフェムト基地局の割合に相当し、無線リソースのパラメータは下り送信電力のオフセットに相当する。
 (第3実施形態の変形例)
 なお、上記第3実施形態では、干渉検出率が所定値を超えるフェムト基地局の割合によってオフセットを制御したが、干渉検出率が所定値を超えるフェムト基地局の割合の代わりに、干渉検出率の平均値を計算するようにしても良い。この場合にも、第3実施形態と同様に、干渉検出率の平均値が目標値と(目標値-Δ1')間の目標範囲となるように下り送信電力のオフセットを(ΔdB)ステップで制御される。なお、本例においても、下り送信電力のオフセットの増加と減少のステップ幅が異なってもよい。フェムト基地局の仕様にバラツキが無い場合には、干渉検出率の平均値によっても十分に適正化が可能である。また、マクロ基地局の仕様にバラツキが無い場合は、下り送信電力のオフセットの設定を複数のマクロ基地局のセットを単位として実施してもよい。この場合には、異なるマクロ基地局の配下のフェムト基地局でパラメータを共通に設定することになる。
 [第4実施形態]
 本発明の第4実施形態としての無線通信システムについて、図8を用いて説明する。第3実施形態では、マクロセル内で干渉検出率が閾値を超えるフェムト基地局の割合に基づいて下り送信電力のオフセットを決定した。これに対し、本実施形態では、マクロセル内で干渉検出率が閾値を超えるフェムト基地局の割合に基づいて、フェムト基地局とマクロ移動局間の空間伝播損を設定する。その他の構成及び動作は、第2実施形態と同様であるためここでは説明を省略する。
 〈管理サーバにおける統計値算出及びパラメータ設定の第4実施形態の動作〉
 図8に、管理サーバにおける統計値算出及びパラメータ設定の第4実施形態の動作手順をフローチャートで示す。なお、かかるフェムト基地局とマクロ移動局間の空間伝播損Laは、フェムト基地局とマクロ移動局間の建物侵入損失LE(dB) = (Ptx_f - Prx_f - La )/2を求める場合に使用される。従って、建物侵入損失LE(dB)を考慮したフェムト基地局の下り送信電力の増加を適正化することになる。なお、上式で、(Ptx_f)はマクロ移動局の推定送信電力、(Prx_f)はフェムト基地局における上り受信電力の測定値である。
 まず、ステップS801で、管理サーバ250は、マクロ移動局が測定して収集した干渉値から同一マクロセル内の各フェムト基地局による干渉検出率を算出する。かかる干渉検出及び干渉検出率は、第3実施形態と同様に実現できる。ステップS803では、管理サーバ250は、同一マクロセル内にあって干渉検出率が閾値を超えるフェムト基地局の割合を算出する。ステップS805では、管理サーバ250は、算出したフェムト基地局の割合が目標値β以上であるか否かを判断する。算出したフェムト基地局の割合が目標値β以上である場合、管理サーバ250は、ステップS807に進んで、同一マクロセル内のフェムト基地局とマクロ移動局間の空間伝播損Laを(+ΔLa)する。一方、算出したフェムト基地局の割合が目標値β以上でない場合、管理サーバ250は、ステップS809に進んで、算出したフェムト基地局の割合が(目標値β-Δ2)以下であるか否かを判断する。算出したフェムト基地局の割合が(目標値β-Δ2)以下である場合、管理サーバ250は、ステップS811に進んで、同一マクロセル内のフェムト基地局とマクロ移動局間の空間伝播損Laを(-ΔLa)する。算出したフェムト基地局の割合が(目標値β-Δ2)以下でない場合、管理サーバ250は、現在の空間伝播損Laを維持する。すなわち、算出したフェムト基地局の割合が、目標値βと(目標値β-Δ2)間の目標範囲となるように空間伝播損LaをΔLaステップで制御する。なお、上記例では、空間伝播損Laの増加と減少のステップ幅が同じΔLaの場合について説明したが、ステップ幅が異なってもよい。
 ステップS813では、管理サーバ250は、無線リソースのパラメータの設定タイミングであるか否かを判断する。設定タイミングとしては、例えば、予め決められた所定日時のタイミング、あるいは第1統計値の算出の条件を満たす受信レベルが収集されたタイミング、あるいはマクロ移動局への干渉が障害となる程になったタイミングなどが考えられる。設定タイミングであれば、管理サーバ250は、ステップS815で同一マクロセル内での建物侵入損失LE(dB)の算出には現在保持されている空間伝播損Laを適用する。なお、第4実施形態においても、複数のマクロセルで同じ空間伝播損Laを適用する構成でよい。従って、かかる第4実施形態における第1統計値はマクロセル内で干渉検出率が閾値を超えるフェムト基地局の割合に相当し、無線リソースのパラメータは空間伝播損Laに相当する。
 [第5実施形態]
 本発明の第5実施形態としての無線通信システムについて、図9を用いて説明する。第3実施形態では、マクロセル内で干渉検出率が閾値を超えるフェムト基地局の割合に基づいて下り送信電力のオフセットを決定した。これに対し、本実施形態では、マクロセル内で干渉検出率が閾値を超えるフェムト基地局の割合に基づいて、フェムトセル内での受信品質目標値を設定する。かかるフェムトセルにおける受信品質目標値が、フェムト基地局の下り送信電力及びフェムト移動局の上り送信電力の設定のパラメータとなる。その他の構成及び動作は、第2実施形態と同様であるためここでは説明を省略する。
 〈管理サーバにおける統計値算出及びパラメータ設定の第5実施形態の動作〉
 図9に、管理サーバにおける統計値算出及びパラメータ設定の第5実施形態の動作手順をフローチャートで示す。
 まず、ステップS901で、管理サーバ250は、マクロ移動局が測定して収集した干渉値から同一マクロセル内の各フェムト基地局による干渉検出率を算出する。かかる干渉検出及び干渉検出率は、第3実施形態と同様に実現できる。ステップS903では、管理サーバ250は、同一マクロセル内にあって干渉検出率が閾値を超えるフェムト基地局の割合を算出する。ステップS905では、管理サーバ250は、算出したフェムト基地局の割合が目標値γ以上であるか否かを判断する。算出したフェムト基地局の割合が目標値γ以上である場合、管理サーバ250は、ステップS907に進んで、同一マクロセルにおける受信品質目標値Qを(-ΔQ)する。一方、算出したフェムト基地局の割合が目標値γ以上でない場合、管理サーバ250は、ステップS909に進んで、算出したフェムト基地局の割合が(目標値γ-Δ3)以下であるか否かを判断する。算出したフェムト基地局の割合が(目標値γ-Δ3)以下である場合、管理サーバ250は、ステップS911に進んで、同一マクロセルにおける受信品質目標値Qを(+ΔQ)する。算出したフェムト基地局の割合が(目標値γ-Δ3)以下でない場合、管理サーバ250は、現在の受信品質目標値Qを維持する。すなわち、算出したフェムト基地局の割合が、目標値γと(目標値γ-Δ3)間の目標範囲となるように受信品質目標値QをΔQステップで制御する。なお、上記例では、受信品質目標値Qの増加と減少のステップ幅が同じΔQの場合について説明したが、ステップ幅が異なってもよい。
 ステップS913では、管理サーバ250は、無線リソースのパラメータの設定タイミングであるか否かを判断する。設定タイミングとしては、例えば、予め決められた所定日時のタイミング、あるいは第1統計値の算出の条件を満たす受信レベルが収集されたタイミング、あるいはマクロ移動局への干渉が障害となる程になったタイミングなどが考えられる。設定タイミングであれば、管理サーバ250は、ステップS915で同一マクロセルのフェムトセルにおける受信品質として現在の受信品質目標値Qを適用する。なお、第5実施形態においても、複数のマクロセルで同じ受信品質を適用する構成でよい。従って、かかる第5実施形態における第1統計値はマクロセル内で干渉検出率が閾値を超えるフェムト基地局の割合に相当し、無線リソースのパラメータは受信品質目標値Qに相当する。
 [第6実施形態]
 本発明の第6実施形態としての無線通信システムについて、図10乃至図14を用いて説明する。本実施形態では、フェムト基地局から集計して算出された第2統計値により複数のフェムト移動局が用いる無線リソースを決定する。これ以降、第2統計値とは、マクロ移動局からの電波の複数のフェムト基地局における受信レベルを集計して得られる統計値を表わす。図10では、典型的な例として、マクロセル220内の複数のフェムトセル210においてマクロ移動局222からのフェムト基地局211への干渉を集計して第2統計値1030とする。この第2統計値1030に基づき複数のフェムト移動局212の無線信号212aの上り送信電力を決定する例を説明する。
 〈第6実施形態の無線通信システムの構成及び動作〉
 図10は、第6実施形態の無線通信システム1000の構成であり、複数のフェムト基地局211と、複数のフェムト基地局211に接続された複数のフェムト移動局212とを含む。また、フェムト基地局211が形成するフェムトセル210よりも大きなマクロセル220は、マクロ基地局221と、マクロ基地局221に接続されたマクロ移動局222とを含む。フェムトセル210内のフェムト移動局212は、決定された上り送信電力の無線信号212aによりフェムト基地局211と通信する。なお、図10では、1つのマクロセル220について示したがこれに限定されない。管理サーバ1050が複数のマクロセル220にまたがる領域内のフェムトセル210について統計値を算出して、フェムト移動局212の無線リソースを決定してもよい。
 第6実施形態では、算出部1003と決定部1004とは、複数のフェムトセル210を管理する管理サーバ1050内に設けられた例を示している。しかしながら、算出部1003と決定部1004の機能は、他の構成要素、例えばマクロ基地局221に配置されても、フェムト基地局211に分散配置されても、あるいは無線通信システム1000の他の構成要素に配置されてもよい。算出部1003は、上記第2乃至第5実施形態のように、マクロ基地局221に測定指示信号1003aを送信して、測定指示信号221aによるマクロ移動局222におけるフェムト基地局211からの干渉の測定指示を依頼する。算出部1003は、マクロ移動局222への測定指示は、その近傍のフェムト基地局211へ干渉が起こる状況であると判断する。算出部1003は、測定指示したマクロ移動局222の近傍のフェムト基地局にマクロ移動局222からの干渉を測定するように測定指示信号1003bを送る。フェムト基地局211は、マクロ移動局222からの電波222cのフェムト基地局211における受信レベルを測定して、マクロ移動局222の電波222cにより所定レベル以上の干渉があった場合に、管理サーバ1050に報告する。算出部1003は、上記マクロ移動局222への干渉測定指示の回数とフェムト基地局211からの干渉報告とをフェムト基地局211ごとに集計して得られる第2統計値1030を算出する。決定部1004は、第2統計値1030に基づいてマクロセル220内の全フェムト移動局212が用いる無線リソース、例えば上り送信電力を決定する。かかる上り送信電力は、決定部1004からフェムト基地局211への送信データ1004a、さらにフェムト基地局211からフェムト移動局212への送信データ1004bによって決定される。
 図11は、図10の各構成要素の構成を示したブロック図である。
 管理サーバ1050の測定指示部1175は、マクロ移動局222へのフェムト基地局211による干渉の測定指示を行なうと同時に、測定指示したマクロ移動局222の近傍のフェムト基地局211にマクロ移動局222からの干渉の測定指示を行なう。フェムト基地局211の測定指示取得部1134が測定指示を受けて、測定実施部1135は近傍のマクロ移動局222からの干渉を受信レベルで測定する。マクロ移動局222からフェムト基地局211への干渉電力が所定レベル以上である場合、測定結果報告部1136により管理サーバ1050に報告される。なお、干渉電力が所定レベル以上でない場合にもその旨を報告してよい。
 管理サーバ1050の測定結果収集部1176は各フェムト基地局211からの受信レベルの測定結果を収集して、第2統計値算出部1177に渡す。第2統計値算出部1177は、フェムト基地局ごとの、測定指示部1175による測定指示回数と報告された干渉検知回数とから第2統計値1030を算出して、決定部1004の無線リソース調整部1182に渡す。無線リソース調整部1182は、第2統計値1030を使って、フェムト移動局212の無線リソースを調整するパラメータを決定して、集計対象の全てのフェムト基地局211に接続するフェムト移動局212に設定する。
 集計対象の各フェムト基地局211に接続されたフェムト移動局212は、管理サーバ1050からのマクロセル220内で共通の無線リソース・パラメータを無線リソースパラメータ取得部1141により取得する。そして、無線リソース更新部1142で取得した無線リソースを更新する。送信部1143は、更新した無線リソース、この例では上り送信電力でフェムト基地局211への送信を行なう。
 図12に、第6実施形態の各構成要素の動作手順をフローチャートで示す。
 管理サーバ1050は、ステップS1210でマクロ移動局222への干渉の測定指示と共に対応するフェムト基地局211に干渉の測定指示を行なう。フェムト基地局211は、ステップS1231で管理サーバ1050からの測定指示を取得すると、ステップS1233で近傍にいるマクロ移動局222の干渉を受信レベルとして測定する。そして、ステップS1235で、フェムト基地局211は、測定結果の受信レベルを管理サーバ1050に報告する。
 管理サーバ1050は、ステップS1211でフェムト基地局211から測定結果を取得する。ステップS1213で、管理サーバ1050は、マクロ移動局222への干渉の測定指示回数(この回数は、フェムト基地局211への測定指示回数に相当する)と各フェムト基地局211から収集された測定結果とから、第2統計値1030を算出する。ステップS1215では、管理サーバ1050は、算出された第2統計値1030に基づいて無線リソースに関するパラメータを導出し、集計対象となった全てのフェムト基地局211に接続するフェムト移動局212に対し設定する。なお、無線リソースに関するパラメータのフェムト移動局212に対する設定は、個々のフェムト移動局212に対して行なわれてよい。あるいは、フェムト基地局211によりフェムトセル210内の全フェムト移動局212に行なわれても、マクロセル220単位でマクロ基地局221により一斉に行なわれてもよい。
 各フェムト移動局212は、ステップS1201でマクロセル220内で共通の無線リソースに関するパラメータを取得すると、ステップS1203で無線リソースの更新が必要か否かを判断する。無線リソースの更新が必要であれば、各フェムト移動局212は、ステップS1205で無線リソースを変更する。一方、無線リソースの更新が必要なければ、各フェムト移動局212は、ステップS1207で無線リソースを変更せずに維持する。ステップS1209では、各フェムト移動局212は、現在の無線リソースを使ってフェムト基地局211との通信を行う。ここでは、決定された上り送信電力で全フェムト移動局212が送信を行なう。
 〈第6実施形態の管理サーバ1050の構成〉
 図13は、第6実施形態における、管理サーバ1050の構成を示すブロック図である。
 図13で、CPU1310は演算制御用のプロセッサであり、プログラムを実行することで図10の管理サーバ1050の各部を実現する。ROM1320は、初期データ及びプログラムなどの固定データ及びプログラムを記憶する。通信制御部1330は、ネットワークを介してフェムト基地局211、フェムト移動局212、マクロ基地局221、マクロ移動局222と通信する。
 RAM1340は、CPU1310が一時記憶のワークエリアとして使用する。RAM1340には、本実施形態の実現に必要な以下のデータを記憶する領域が確保される。領域1341には、取得した受信レベルを測定したフェムト基地局211を識別するフェムト基地局IDが記憶される。領域1342には、フェムト基地局IDを有するフェムト基地局211によって測定された測定干渉値(受信レベル)が記憶される。領域1343には、管理サーバ1050で収集され算出された第2統計値1030が記憶される。領域1344には、第2統計値1030に基づいて算出された無線リソースの算出パラメータが記憶される。プログラムロード領域1345は、上記実施形態と同様に、CPU1310が実行するプログラムをロードする記憶領域である。
 ディスクなどの大容量記憶部1350は、マクロ移動局222から収集された測定結果などのデータや、CPU1310が実行するアプリケーションプログラムを、不揮発に記憶する。大容量記憶部1350には、本実施形態の実現に必要な以下のデータ又はプログラムが記憶されている。干渉測定結果収集データベース1351は、フェムト基地局211から収集された測定結果である干渉値(受信レベル)を、フェムト基地局IDに対応付けて格納している。第2統計値算出アルゴリズム1352は、収集された干渉値から第2統計値を求めるアルゴリズムを格納している。第2統計値1353は、第2統計値算出アルゴリズム1352により算出された第2統計値1030を格納している。複数のマクロセル220にわたるフェムトセル210を管理する場合には、各マクロセル220に対応して複数の第2統計値1030が格納される。次に、プログラムとしては、全体の処理を実行させる無線リソース管理プログラム1354を格納する。第2統計値算出モジュール1355は、以下の図14に示すように第2統計値算出アルゴリズム1352に従った第2統計値1030の算出を行なうモジュールである。第2パラメータ算出モジュール1356は、以下の図14に示すように第2統計値1030に基づいて全フェムト移動局212に決定される無線リソースの第2パラメータを算出するモジュールである。
 〈管理サーバにおける統計値算出及びパラメータ設定の第6実施形態の動作〉
 図14に、管理サーバにおける統計値算出及びパラメータ設定の第6実施形態の動作手順をフローチャートで示す。第6実施形態では、フェムト基地局による被干渉検出率によりフェムト移動局の上り送信電力のパラメータを制御する。なお、パラメータとしては、3GPP TS 36.213 (3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 9))に準拠するフェムト移動局の上り送信電力を決定する送信電力パラメータが選択される。例えば、上りリンク共有チャネルの送信電力は、以下の式により決定される。
 PPUSCH(i)=min{PCMAX, 10log10(MPUSCH(i))+P0_PUSCH(j)+α(J)・PL+ΔTF(TF(i))+f(i)}
 ここで、PCMAXは、移動局UE(User Equipment)の最大送信電力である。
 MPUSCHは、物理上りリンク共有チャネルのリソースブロック数である。
 PO_PUSCHは、無線基地局eNB(evolved Node B)より通知される電力制御に関するパラメータである。
 α(j)は、無線基地局eNBより指定されるパラメータである。
 PLは、伝搬損失(パスロス、Pathloss)である。
 ΔTFは、送信フォーマット毎に決定されるオフセット値である。
 TFは、送信フォーマットのIndexである。
 f(i)は、調節用のオフセット値である。
 iは、Sub-frame番号を示すIndexである。
 jは、ダイナミックスケジューリングが適用されるか、パーシステントスケジューリングが適用されるかを示すフラッグである。
 特に、PO_PUSCH、α(j)、ΔTF、f(i)がフェムト移動局の上り送信電力のパラメータとなる。なお、上述した無線基地局eNBより通知される電力制御に関するパラメータPO_PUSCHは、セル内の移動局で共通に用いられる値と、各移動局UEで個別に用いられる値とで構成される。
 ステップS1401で、管理サーバ1050は、フェムト基地局が測定して収集した干渉値から同一マクロセル内の各フェムト基地局による上り被干渉検出率を算出する。かかる上り被干渉検出率は、各フェムト基地局について、上り被干渉検出率=(フェムト基地局の干渉検出報告数/管理サーバがフェムト基地局からの干渉検出指示を行なったマクロ移動局数)によって計算する。すなわち、管理サーバ1050は、マクロ移動局222がフェムトセル210に近づいてフェムト基地局211からの干渉を受け易い時点は、同時にフェムト基地局211がマクロ移動局222による干渉を受け易い状況と判断する。従って、管理サーバ1050がマクロ移動局222にフェムト基地局211からの干渉測定を指示した回数は、フェムト基地局211がマクロ移動局222による干渉を受け易い状況となった総回数として、上り被干渉検出率の分母となる。そして、フェムト基地局211が所定レベル以上の干渉をマクロ移動局222から受けた報告回数は、上り被干渉検出率の分子となる。上記干渉検出の例としては、フェムト基地局における受信レベルの他、例えば第3実施形態の干渉検出率での説明を適用した条件を満足したときを含む。
 ステップS1403では、管理サーバ1050は、同一マクロセル内にあって被干渉検出率が閾値を超えるフェムト基地局の割合を算出する。ステップS1405では、管理サーバ1050は、算出したフェムト基地局の割合が目標値δ以上であるか否かを判断する。算出したフェムト基地局の割合が目標値δ以上である場合、管理サーバ1050は、ステップS1407に進んで、フェムト移動局の上り送信電力が上限であるか否かを判定する。上限であれば、管理サーバ1050は、現在のパラメータ値を維持する。これは、フェムト移動局の上り送信電力がマクロ移動局の通信電力に影響を与えないように制限するためである。上り送信電力が上限でなければ、管理サーバ1050は、ステップS1409に進んでパラメータPを(+ΔP)する。ここでは、象徴的に上り送信電力の増加を(+ΔP)で表わしたが、選択されたパラメータにより異なる値である。一方、ステップS1405で算出したフェムト基地局の割合が目標値δ以上でない場合、管理サーバ1050は、ステップS1411に進んで、算出したフェムト基地局の割合が(目標値δ-Δ4)以下であるか否かを判断する。算出したフェムト基地局の割合が(目標値δ-Δ4)以下である場合、管理サーバ1050は、ステップS1413に進んで、フェムト移動局の上り送信電力が下限であるか否かを判定する。下限であれば、管理サーバ1050は、現在のパラメータ値を維持する。これは、フェムト移動局の上り送信電力が通信品質を維持できない状態になることを防ぐためである。上り送信電力が上限でなければ、管理サーバ1050は、ステップS1415に進んでパラメータPを(-ΔP)する。すなわち、上り送信電力が上限と下限の間である範囲で、算出したフェムト基地局の割合が目標値δと(目標値δ-Δ4)間の目標範囲となるように、上り送信電力のパラメータを(ΔP)ステップで制御する。なお、上記例では、上り送信電力のパラメータの増加と減少のステップ幅が同じΔPの場合について説明したが、ステップ幅が異なってもよい。
 ステップS1417では、管理サーバ1050は、同一マクロセル内の全てのフェムト移動局に現在保持されている上り送信電力を適用する。ステップS1419は、対象のフェムト移動局がマクロセル(マクロ基地局)にハンドオーバーした場合には、そのパラメータを初期化する処理である。ハンドオーバーでなければステップS1419はスキップする。従って、かかる第6実施形態における第2統計値はマクロセル内で上り被干渉検出率が閾値を超えるフェムト基地局の割合に相当し、無線リソースのパラメータはフェムト移動局上り送信電力のパラメータに相当する。
 なお、マクロ移動局222の干渉を超えるようにフェムト移動局212の上り送信電力を決定する本実施形態は、逆にマクロ移動局222への干渉を生む可能性がある。上述の上限値はかかる事態を防ぐためである。一方、下限値は、フェムトセル210内での上り送信の通信品質を確保するためである。
 [第7実施形態]
 本発明の第7実施形態としての無線通信システムについて、図15乃至図19を用いて説明する。本実施形態では、第1統計値及び第3統計値に基づいて、フェムト基地局とマクロ移動局とのお互いの干渉電力のトレードオフを考慮して、複数のフェムト基地局が用いる無線リソースを決定する。なお、以降の説明において、第3統計値とは、複数のフェムト基地局からの電波のフェムト移動局における受信レベルを集計して得られる統計値を表わす。
 ここで、第1統計値はマクロ移動局へのフェムト基地局の干渉に関連し、第3統計値はフェムト移動局へのフェムト基地局の送信電力に関連する。
 〈第7実施形態の無線通信システムの構成及び動作〉
 図15は、第7実施形態の無線通信システム1500の構成である。図15では、典型的な例として、マクロセル220内の複数のフェムトセル210において第1統計値230及び第3統計値1530により複数のフェムト基地局211の下り送信電力を決定する例を説明する。無線通信システム1500は複数のフェムト基地局211と、複数のフェムト基地局211に接続された複数のフェムト移動局212とを含む。また、フェムト基地局211が形成するフェムトセル210よりも大きなマクロセル220は、マクロ基地局221と、マクロ基地局221に接続されたマクロ移動局222とを含む。フェムトセル210内のフェムト基地局211は、決定された下り送信電力の無線信号211eにより通信する。なお、図15では、1つのマクロセル220について示したが、本発明はこれに限定されない。管理サーバ1550が複数のマクロセル220にまたがる領域内のフェムトセル210について統計値を算出して、フェムト基地局211の無線リソースを決定してもよい。
 算出部1503は、複数のフェムト基地局211からの電波211aのマクロ移動局222における受信レベル222aを集計して得られる第1統計値230を算出する。ここで、算出部1503は、マクロ基地局221に測定指示信号1503aを送信して、マクロ移動局222への測定指示を依頼する。そして、受信レベル222aは、マクロ基地局221からの測定指示信号221aに応答して、マクロ移動局222からマクロ基地局221を介して送信データ221bとして管理サーバ1550に報告される。図15には、マクロ移動局222から管理サーバ1550へ直接送信する場合の図示は省略した。また、算出部1503は、複数のフェムト基地局211から収集した屋内不感地率211dを集計して第3統計値1530を算出する。フェムト基地局211から算出部1503への屋内不感地率211dの送信は、マクロ移動局222がフェムトセル210に近づいてフェムト基地局211からの干渉を指示したタイミングで、管理サーバ1550の指示で行なう。また、これに限定されず、フェムト基地局211から定期的にあるいは非定期で報告されてよい。ここで、屋内不感地率211dは、フェムト基地局211の各々がフェムトセル210内の複数のフェムト移動局212から収集したレファレンス信号受信品質(Reference Signal Received Quality:以下RSRQ)212bの累積確率分布(CDF)から算出する。ここでは、屋内不感地率211dは、例えば、フェムト移動局212が測定するフェムトセル210のRSRQのCDFが所定値以下となる割合とする。決定部1504は、第1統計値230と第3統計値1530とに基づいて、お互いの干渉のトレードオフを考慮しながら複数のフェムト基地局211が用いる無線リソース1504a、例えば下り送信電力を決定する。
 図16は、図15の各構成要素の構成を示したブロック図である。なお、図16には、マクロ基地局221を経由する受信レベルの測定結果の報告は省略して示してある。
 管理サーバ1550の算出部1503が有する測定指示部373がマクロセル内の各フェムトセルの近傍のマクロ移動局222に(マクロ基地局221を介して)測定指示を行なう。各マクロ移動局222は測定指示取得部321で測定指示部373からの測定指示を受けて、測定実施部322で近傍のフェムト基地局211からの干渉を受信レベルで測定する。測定した受信レベルは測定結果報告部323により(マクロ基地局221を介して)管理サーバ1550に報告される。管理サーバ1550の測定結果収集部374は各マクロ移動局222からの受信レベルの測定結果を収集して、第1統計値算出部375に渡す。第1統計値算出部375は第1統計値230を算出して、決定部1504の無線リソース調整部1683に渡す。
 一方、フェムト基地局211は、RSRQのCDF作成部1631でフェムト移動局212からRSRQを収集してCDFを作成する。次に、屋内不感地率算出部1632で屋内不感地率を算出して、屋内不感地率報告部1633により管理サーバ1550に報告する。管理サーバ1550の屋内不感地率収集部1671は各フェムト基地局211からの屋内不感地率を収集して、第3統計値算出部1672に渡す。第3統計値算出部1672は第3統計値1530を算出して、決定部1504の無線リソース調整部1683に渡す。
 管理サーバ1550の無線リソース調整部1683は、第1統計値230と第3統計値1530とを使って、フェムト基地局211の無線リソースを調整するパラメータを決定する。そして、集計対象の全てのフェムト基地局211に対して設定する。このようにして、フェムト基地局211とマクロ移動局222とのお互いの干渉電力のトレードオフが考慮される。
 集計対象の各フェムト基地局211は、無線リソース調整部1683からのマクロセル220内で共通の無線リソース・パラメータを無線リソースパラメータ取得部331により取得し、無線リソース更新部332で取得した無線リソースを更新する。送信部333は、更新した無線リソース、この例では下り送信電力でフェムト移動局212への送信を行なう。
 図17に、第7実施形態の各構成要素の動作手順をフローチャートで示す。
 管理サーバ1550は、ステップS411でマクロ移動局222に測定を指示する。マクロ移動局222は、ステップS421で管理サーバ1550からの測定指示を(マクロ基地局221を介して)取得すると、ステップS423で近傍にいるフェムト基地局211の干渉を受信レベルとして測定する。ステップS425では、マクロ移動局222は、測定結果の受信レベルを(マクロ基地局221を介して)管理サーバ1550に報告する。管理サーバ1550は、ステップS413でマクロ移動局222から測定結果を取得して、ステップS415で各マクロ移動局222から測定結果を収集して第1統計値230を算出する。
 一方、フェムト基地局211は、ステップS1731でフェムト移動局212から収集したRSRQからCDFを作成する。次に、フェムト基地局211は、ステップS1733で収集したRSRQのCDFから屋内不感地率を算出する。ステップS1735で、フェムト基地局211は、算出された屋内不感地率を管理サーバ1550に報告する。管理サーバ1550は、ステップS1711で、フェムト基地局211からの屋内不感地率を取得する。ステップS1713で、管理サーバ1550は、屋内不感地率を収集して第3統計値1530を算出する。ステップS1715で、管理サーバ1550は、第1統計値230と第3統計値1530とから無線リソースに関するパラメータを導出してフェムト基地局211に設定する。フェムト基地局211での設定手順は図4などで示したので、図17では省略する。なお、無線リソースに関するパラメータのフェムト基地局211に対する設定は、個々のフェムト基地局211に対して行なわれても、マクロセル220単位あるいは複数のマクロセル220単位で一斉に行なわれてもよい。
 〈第7実施形態の管理サーバ1550の構成〉
 図18A、Bは、第7実施形態における管理サーバ1550の構成を示すブロック図である。
 図18Aにおいて、CPU1810は演算制御用のプロセッサであり、プログラムを実行することで図15の管理サーバ1550の各部を実現する。ROM1820は、初期データ及びプログラムなどの固定データ及びプログラムを記憶する。通信制御部1830は、ネットワークを介してフェムト基地局211、フェムト移動局212、マクロ基地局221、マクロ移動局222と通信する。
 RAM1840は、CPU1810が一時記憶のワークエリアとして使用する。RAM1840には、本実施形態の実現に必要な以下のデータを記憶する領域が確保される。領域1841には、取得した受信レベルを測定したマクロ移動局222を識別するマクロ移動局IDが記憶される。領域1842には、マクロ移動局IDを有するマクロ移動局222が近傍にいるフェムトセル210を制御しているフェムト基地局211を識別する測定対象フェムト基地局IDが記憶される。領域1843には、マクロ移動局IDを有するマクロ移動局222によって測定された測定干渉値(受信レベル)が記憶される。領域1844には、管理サーバ1550で収集され算出された第1統計値230が記憶される。領域1845には、取得した屋内不感地率を算出したフェムト基地局211を識別するフェムト基地局IDが記憶される。領域1846には、フェムト基地局IDを有するフェムト基地局211によって算出された屋内不感地率が記憶される。領域1847には、管理サーバ1550で収集され算出された第3統計値1530が記憶される。領域1848には、第1統計値230及び第3統計値1530に基づいて算出された無線リソースの算出パラメータが記憶される。プログラムロード領域1849は、上記実施形態と同様に、CPU1810が実行するプログラムをロードする記憶領域である。
 図18Bに示すように、大容量記憶部1850は、マクロ移動局222から収集された測定結果などのデータや、CPU1810が実行するアプリケーションプログラムを、不揮発に記憶する。大容量記憶部1850には、本実施形態の実現に必要な以下のデータ又はプログラムが記憶されている。測定結果収集データベース1851は、マクロ移動局222から収集された測定結果である干渉値(受信レベル)を、マクロ移動局ID及びフェムト基地局IDに対応付けて格納している。第1統計値算出アルゴリズム1852は、収集された干渉値から第1統計値230を求めるアルゴリズムを格納している。第1統計値1853は、第1統計値算出アルゴリズム1852により算出された第1統計値230を格納している。屋内不感地率データベース1854は、フェムト基地局211から収集された演算結果である屋内不感地率を、フェムト基地局IDに対応付けて格納している。第3統計値算出アルゴリズム1855は、収集された屋内不感地率から第3統計値1530を求めるアルゴリズムを格納している。第3統計値1856は、第3統計値算出アルゴリズム1855により算出された第3統計値1530を格納している。次に、プログラムとしては、全体の処理を実行させる無線リソース管理プログラム1857を格納する。第1統計値/第3統計値算出モジュール1858は、以下の図19に示すように第1統計値算出アルゴリズム1852及び第3統計値算出アルゴリズム1855に従って第1統計値230及び第3統計値1530の算出を行なうモジュールである。第3パラメータ算出モジュール1859は、以下の図19に示すように第1統計値230及び第3統計値1530に基づいて全フェムト移動局に設定される無線リソースの第3パラメータを算出するモジュールである。
 〈管理サーバにおける統計値算出及びパラメータ設定の第7実施形態の動作〉
 図19に、管理サーバにおける統計値算出及びパラメータ設定の第7実施形態の動作手順をフローチャートで示す。第7実施形態では、フェムト基地局による干渉検出率とフェムトセル内の屋内不感地率とによりフェムト基地局の下り送信電力のオフセットを制御する。
 ステップS1901で、管理サーバ1550は、マクロ移動局が測定して収集した干渉値から同一マクロセル内の各フェムト基地局による干渉検出率を算出する。かかる干渉検出率は、各フェムト基地局について、干渉検出率=(干渉検出報告数/干渉検出指示を行なったマクロ移動局数)によって計算する。上記干渉検出の例としては、マクロ移動局における受信レベルの他、第3実施形態で示した条件を満足したときを含む。ステップS1903では、管理サーバ1550は、同一マクロセル内にあって干渉検出率が閾値を超えるフェムト基地局の割合Aを算出する。ステップS1905では、管理サーバ1550は、屋内不感地率が閾値を超えるフェムト基地局の割合Bを算出する。ステップS1907では、管理サーバ1550は、干渉検出率が閾値を超えるフェムト基地局の割合Aが目標値Th1以上であり、かつ屋内不感地率が閾値を超えるフェムト基地局の割合Bが目標値Th2以下であるかを判断する。割合A及び割合Bが共にステップS1907の条件を満たす場合、管理サーバ1550は、ステップS1909に進んで同一マクロセル内のフェムト基地局の下り送信電力のオフセットを(-ΔdB')する。一方、割合A及び割合Bの少なくとも一方がステップS1907の条件を満たさない場合、管理サーバ1550は、ステップS1911に進む。
 ステップS1911では、管理サーバ1550は、干渉検出率が閾値を超えるフェムト基地局の割合Aが(目標値Th1ーΔ5)以下であり、且つ屋内不感地率が閾値を超えるフェムト基地局の割合Bが(目標値Th2+Δ6)以上であるかを判断する。割合A及び割合Bが共にステップS1911の条件を満たす場合、管理サーバ1550は、ステップS1913に進んで同一マクロセル内のフェムト基地局の下り送信電力のオフセットを(+ΔdB')する。ステップS1907及びS1911のいずれの条件も満足しない場合、管理サーバ1550は、現在のオフセットを維持する。ステップS1915では、管理サーバ1550は、同一マクロセル内の全フェムト基地局に保持されている下り送信電力のパラメータを適用する。すなわち、本実施形態では、以下の条件で下り送信電力のオフセットを(ΔdB')ステップで制御する。その条件は、干渉検出率が閾値を超えるフェムト基地局の割合Aが目標値Th1と(目標値Th1-Δ5)間の目標範囲となり、且つ屋内不感地率が閾値を超えるフェムト基地局の割合Bが目標値Th2と(目標値Th2+Δ6)間の目標範囲となる条件である。かかる処理により、フェムト基地局の送信電力のマクロ移動局への干渉とマクロ移動局の送信電力のフェムト基地局への干渉による品質劣化とのトレードオフを適切に制御することができる。なお、上記例では、下り送信電力の増加と減少のステップ幅が同じΔdB'の場合について説明したが、ステップ幅が異なってもよい。
[他の実施形態]
 なお、管理サーバの代わりに、マクロ基地局がマクロ移動局の測定結果の収集、パラメータの決定、フェムト基地局への通知を実施してもよい。この場合も、マクロ基地局単位でパラメータを共通に設定することになるので、管理サーバの機能が、各マクロ基地局に存在する場合と等価である。更に、フェムト基地局が分散処理をしてもよい。この場合には、管理サーバは情報の収集のみを行ないアイドル状態のフェムト基地局が演算などを行なうようにすればよい。
 また、本実施形態では、マクロ基地局221からフェムト基地局211への受信レベルの通知は無線経由のデータ通信で行なわれるとして説明したが、専用のあるいはネットワークを介した有線経由で行なわれても良い。また、本実施形態が適用される無線通信方式は特に限定されず、例えばLTE(Long Term Evolution)、W-CDMA(Wideband Code Division Multiple Access)、WLAN(Wireless Local Area Network)、IEEE(Institute of Electrical and Electronics Engineers) 802.16mに規定された仕様などを含む種々の無線通信方式に適用可能である。
 以上、本発明の実施形態について詳述したが、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステム又は装置も、本発明の範疇に含まれる。
 また、本発明は、複数の機器から構成されるシステムに適用しても良いし、単体の装置に適用しても良い。さらに、本発明は、実施形態の機能を実現する制御プログラムが、システムあるいは装置に直接あるいは遠隔から供給されて実行される場合にも適用可能である。したがって、本発明の機能をコンピュータで実現するために、コンピュータにインストールされる制御プログラム、あるいはその制御プログラムを格納した記憶媒体、その制御プログラムをダウンロードさせるWWW(World Wide Web)サーバも、本発明の範疇に含まれる。制御プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。ここで、非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM)を含む。制御プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されても良い。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 この出願は、2010年9月28日に出願された日本出願特願2010-217089を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、無線通信システムとその無線リソース決定方法、通信管理装置及びその制御方法と制御プログラムに適用され、特に複数の第1セルと複数の第1セルを含む第2セルとからなる無線通信システムにおいて無線リソースを決定する用途に適用される。
 100, 200, 1000, 1500 無線通信システム
 103, 203, 1003, 1503 算出部
 104, 204, 1004, 1504 決定部
 110 第1セル
 111 第1基地局
 112 第1移動局
 120 第2セル
 121 第2基地局
 122 第2移動局
 130 統計値
 203a, 221a, 1003a, 1003b, 1503a 測定指示信号
 204a, 1504a 無線リソース
 210 フェムトセル
 211 フェムト基地局
 211a, 222c 電波
 211b, 211e, 212a 無線信号
 211d 屋内不感地率
 212 フェムト移動局
 212b RSRQ
 220 マクロセル
 221 マクロ基地局
 221b, 1004a, 1004b 送信データ
 222 マクロ移動局
 222a, 222b 受信レベル
 230, 553, 1853 第1統計値
 250, 1050, 1550 管理サーバ
 321, 1134 測定指示取得部
 322, 1135 測定実施部
 323, 1136 測定結果報告部
 331, 1141 無線リソースパラメータ取得部
 332, 1142 無線リソース更新部
 333, 1143 送信部
 373, 1175 測定指示部
 374, 1176 測定結果収集部
 375 第1統計値算出部
 381, 1182, 1683 無線リソース調整部
 510, 1310, 1810 CPU
 520, 1320, 1820 ROM
 530, 1330, 1830 通信制御部
 540, 1340, 1840 RAM
 541~546, 1341~1345, 1841~1849 領域
 550, 1350, 1850 大容量記憶部
 551, 1351, 1851 干渉測定結果データベース
 552, 1852 第1統計値算出アルゴリズム
 554, 1354, 1857 無線リソース管理プログラム
 555 第1統計値算出モジュール
 556 第1パラメータ算出モジュール
 1030, 1353 第2統計値
 1177 第2統計値算出部
 1352 第2統計値算出アルゴリズム
 1355 第2統計値算出モジュール
 1356 第2パラメータ算出モジュール
 1530, 1856 第3統計値
 1631 RSRQのCDF作成部
 1632 屋内不感地率算出部
 1633 屋内不感地率報告部
 1671 屋内不感地率収集部
 1672 第3統計値算出部
 1854 屋内不感地率データベース
 1855 第3統計値算出アルゴリズム
 1858 第1統計値/第3統計値算出モジュール
 1859 第3パラメータ算出モジュール

Claims (17)

  1.  複数の第1基地局と、前記複数の第1基地局に接続された複数の第1移動局とを含む無線通信システムであって、
     前記複数の第1基地局と、前記第1基地局が形成する第1セルよりも大きな第2セルを形成する第2基地局に接続された第2移動局と、の間の電波の干渉レベルを集計して統計値を算出する算出手段と、
     前記統計値に基づいて、前記複数の第1基地局または前記複数の第1移動局が用いる無線リソースを決定する決定手段と、
     を備えることを特徴とする無線通信システム。
  2.  前記算出手段は、前記複数の第1基地局からの電波の前記第2移動局における受信レベルを集計して得られる累積確率分布を算出し、
     前記決定手段は、前記累積確率分布が所定の確率を超える前記受信レベルが所定の閾値以下となるように、前記複数の第1基地局が用いる下り送信電力のオフセットを決定することを特徴とする請求項1に記載の無線通信システム。
  3.  前記算出手段は、前記複数の第1基地局からの電波の前記第2移動局における受信レベルを集計して得られる干渉検出率を求めて、前記干渉検出率が所定の値を超えている第1基地局の第1割合を算出し、
     前記決定手段は、前記第1割合が第1目標範囲となるように、前記複数の第1基地局が用いる下り送信電力のオフセットを決定することを特徴とする請求項1または2に記載の無線通信システム。
  4.  前記算出手段は、前記複数の第1基地局からの電波の前記第2移動局における受信レベルを集計して得られる干渉検出率を求めて、前記干渉検出率の平均値を算出し、
     前記決定手段は、前記平均値が第2目標範囲となるように、前記複数の第1基地局が用いる下り送信電力のオフセットを決定することを特徴とする請求項1乃至3のいずれか1項に記載の無線通信システム。
  5.  前記算出手段は、前記複数の第1基地局からの電波の前記第2移動局における受信レベルを集計して得られる干渉検出率を求めて、前記干渉検出率が所定の値を超えている第1基地局の第2割合を算出し、
     前記決定手段は、前記第2割合が第3目標範囲となるように、前記複数の第1基地局が建物侵入損失を計算するために用いる空間伝播損を決定することを特徴とする請求項1乃至4のいずれか1項に記載の無線通信システム。
  6.  前記算出手段は、前記複数の第1基地局からの電波の前記第2移動局における受信レベルを集計して得られる干渉検出率を求めて、前記干渉検出率が所定の値を超えている第1基地局の第3割合を算出し、
     前記決定手段は、前記第3割合が第4目標範囲となるように、前記複数の第1基地局の受信品質目標値を決定することを特徴とする請求項1乃至5のいずれか1項に記載の無線通信システム。
  7.  前記算出手段は、前記第2移動局からの電波の前記複数の第1基地局における受信レベルを集計して得られる被干渉検出率を求めて、前記被干渉検出率が所定の値を超えている第1基地局の第4割合を算出し、
     前記決定手段は、前記第4割合が第5目標範囲となるように、前記複数の第1移動局が用いる上り送信電力パラメータを決定することを特徴とする請求項1乃至6のいずれか1項に記載の無線通信システム。
  8.  前記算出手段は、前記複数の第1基地局からの電波の前記第2移動局における受信レベルを集計して得られる第1統計値、または、前記第2移動局からの電波の前記複数の第1基地局における受信レベルを集計して得られる第2統計値を算出し、
     前記決定手段は、前記第1統計値に基づいて前記複数の第1基地局が用いる無線リソースを決定し、または、前記第2統計値に基づいて前記複数の第1移動局が用いる無線リソースを決定することを特徴とする請求項1乃至7の何れか1項に記載の無線通信システム。
  9.  前記算出手段は、前記複数の第1基地局からの電波の前記第2移動局における受信レベルを集計して得られる第1統計値、および、前記第2移動局からの電波の前記複数の第1基地局における受信レベルを集計して得られる第2統計値を算出し、
     前記決定手段は、前記第1統計値及び前記第2統計値に基づいて前記複数の第1基地局が用いる無線リソース及び前記複数の第1移動局が用いる無線リソースを決定することを特徴とする請求項1乃至7の何れか1項に記載の無線通信システム。
  10.  前記算出手段は、前記統計値として、更に、前記複数の第1基地局からの電波の前記第1移動局における受信レベルを集計した値を算出し、
     前記決定手段は、前記統計値に基づいて前記複数の第1基地局が用いる無線リソースを決定することを特徴とする請求項1乃至9のいずれか1項に記載の無線通信システム。
  11.  前記算出手段は、前記複数の第1基地局からの電波の前記第2移動局における受信レベルを集計して得られる第1統計値、および、前記複数の第1基地局からの電波の前記第1移動局における受信レベルを集計して得られる第3統計値を算出し、
     前記決定手段は、前記第1統計値及び前記第3統計値に基づいて前記複数の第1基地局が用いる無線リソースを決定することを特徴とする請求項10に記載の無線通信システム。
  12.  前記算出手段は、前記複数の第1基地局からの電波の前記第2移動局における受信レベルを集計して得られる干渉検出率を求めて、前記干渉検出率が所定の値を超えている第1基地局の第5割合を算出し、且つ、前記複数の第1基地局からの電波の前記第1移動局における受信レベルを集計して得られる屋内不感地率を求めて、前記屋内不感地率が所定の値を超えている第1基地局の第6割合を算出し、
     前記決定手段は、前記第5割合が第6目標範囲となり、且つ、前記第6割合が第7目標範囲となるように、前記複数の第1基地局が用いる下り送信電力のオフセットを決定することを特徴とする請求項11に記載の無線通信システム。
  13.  前記複数の第1基地局及び前記複数の第1移動局を管理する通信管理装置をさらに備え、
     前記通信管理装置が、前記算出手段及び前記決定手段の少なくとも一方の手段を有することを特徴とする請求項1乃至12のいずれか1項に記載の無線通信システム。
  14.  複数の第1基地局と、前記複数の第1基地局に接続された複数の第1移動局とを含む無線通信システムの無線リソース決定方法であって、
     前記複数の第1基地局と、前記第1基地局が形成する第1セルよりも大きな第2セルを形成する第2基地局に接続された第2移動局と、の間の電波の干渉レベルを集計して統計値を算出する算出ステップと、
     前記統計値に基づいて、前記複数の第1基地局または前記複数の第1移動局が用いる無線リソースを決定する決定ステップと、
     を含むことを特徴とする無線リソース決定方法。
  15.  複数の第1基地局と、前記複数の第1基地局に接続された複数の第1移動局とを管理する通信管理装置であって、
     前記複数の第1基地局と、前記第1基地局が形成する第1セルよりも大きな第2セルを形成する第2基地局に接続された第2移動局と、の間の電波の干渉レベルを集計して統計値を算出する算出手段と、
     前記統計値に基づいて、前記複数の第1基地局または前記複数の第1移動局が用いる無線リソースを決定する決定手段と、
     を備えることを特徴とする通信管理装置。
  16.  複数の第1基地局と、前記複数の第1基地局に接続された複数の第1移動局とを管理する通信管理装置の制御方法であって、
     前記複数の第1基地局と、前記第1基地局が形成する第1セルよりも大きな第2セルを形成する第2基地局に接続された第2移動局と、の間の電波の干渉レベルを集計して統計値を算出する算出ステップと、
     前記統計値に基づいて、前記複数の第1基地局または前記複数の第1移動局が用いる無線リソースを決定する決定ステップと、
     を含むことを特徴とする通信管理装置の制御方法。
  17.  複数の第1基地局と、前記複数の第1基地局に接続された複数の第1移動局とを管理する通信管理装置の制御プログラムが格納された非一時的なコンピュータ可読媒体であって、
     前記制御プログラムは、
     前記複数の第1基地局と、前記第1基地局が形成する第1セルよりも大きな第2セルを形成する第2基地局に接続された第2移動局と、の間の電波の干渉レベルを集計して統計値を算出する算出ステップと、
     前記統計値に基づいて、前記複数の第1基地局または前記複数の第1移動局が用いる無線リソースを決定する決定ステップと、
     をコンピュータに実行させる、
     非一時的なコンピュータ可読媒体。
PCT/JP2011/004605 2010-09-28 2011-08-17 無線通信システムとその無線リソース決定方法、通信管理装置及びその制御方法と制御プログラム WO2012042730A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012536157A JP5862568B2 (ja) 2010-09-28 2011-08-17 無線通信システムとその無線リソース決定方法、通信管理装置及びその制御方法と制御プログラム
CN2011800454511A CN103120011A (zh) 2010-09-28 2011-08-17 无线电通信系统及其无线电资源确定方法、通信管理设备以及用于通信管理设备的控制方法和控制程序
US13/818,155 US8971814B2 (en) 2010-09-28 2011-08-17 Radio communication system, radio resource determination method therefor, communication management device, and control method and control program for communication management device
EP11828299.5A EP2624651B1 (en) 2010-09-28 2011-08-17 Wireless communication system, wireless-resource determination method therefor, communication management device, and control method and control program for said communication management device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-217089 2010-09-28
JP2010217089 2010-09-28

Publications (1)

Publication Number Publication Date
WO2012042730A1 true WO2012042730A1 (ja) 2012-04-05

Family

ID=45892227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004605 WO2012042730A1 (ja) 2010-09-28 2011-08-17 無線通信システムとその無線リソース決定方法、通信管理装置及びその制御方法と制御プログラム

Country Status (5)

Country Link
US (1) US8971814B2 (ja)
EP (1) EP2624651B1 (ja)
JP (1) JP5862568B2 (ja)
CN (1) CN103120011A (ja)
WO (1) WO2012042730A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013531A1 (ja) * 2012-07-20 2014-01-23 富士通株式会社 無線通信方法、無線通信システム、基地局および無線端末
JPWO2013108315A1 (ja) * 2012-01-17 2015-05-11 日本電気株式会社 無線通信システム、送信電力制御装置、基地局装置、パラメータ供給装置、及び送信電力制御方法
JP2016116007A (ja) * 2014-12-12 2016-06-23 Kddi株式会社 干渉制御装置、通信システム及び干渉制御方法
JP2017531384A (ja) * 2014-09-30 2017-10-19 日本電気株式会社 ホーム基地局のためのアップリンクターゲット受信電力を設定するための通信システム
KR20210008011A (ko) * 2018-05-10 2021-01-20 소니 주식회사 스펙트럼 관리 장치 및 방법, 무선 네트워크 관리 장치 및 방법, 및 매체

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2496908B (en) 2011-11-28 2017-04-26 Ubiquisys Ltd Power management in a cellular system
EP2832150B1 (en) 2012-03-25 2017-11-22 Intucell Ltd. Communication apparatus and method for optimizing performance of a communication network
KR102227739B1 (ko) * 2012-09-28 2021-03-12 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 전송기 및 그 대응하는 무선 노드의 출력 파워를 조절하기 위한 방법
IL222709A (en) 2012-10-25 2016-02-29 Intucell Ltd A method and mechanism for coordinating interference between communications cells in solar systems
DK2921007T3 (da) 2012-11-13 2020-06-02 Ericsson Telefon Ab L M Fremgangsmåde og indretning til udløsning af specifik driftsmodus for terminaler, der arbejder i forlænget long range
WO2014077766A1 (en) 2012-11-13 2014-05-22 Telefonaktiebolaget L M Ericsson (Publ) Method for modifying parameter values for long range extension and corresponding node
US9167444B2 (en) 2012-12-04 2015-10-20 Cisco Technology, Inc. Method for managing heterogeneous cellular networks
US9961644B2 (en) * 2013-01-18 2018-05-01 Telefonaktiebolaget L M Ericsson (Publ) Fast fading power restriction
US9119178B2 (en) * 2013-02-08 2015-08-25 Telefonaktiebolaget L M Ericsson (Publ) Efficient transmission parameter selection
IL224926A0 (en) 2013-02-26 2013-07-31 Valdimir Yanover A method and system for allocating resources in the @telecommunications@cellphone network
WO2014162711A1 (ja) * 2013-04-01 2014-10-09 日本電気株式会社 無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局
GB2518584B (en) 2013-07-09 2019-12-25 Cisco Tech Inc Power setting
WO2015032437A1 (en) * 2013-09-06 2015-03-12 Huawei Technologies Co.,Ltd. Method for scheduling and/or muting of radio resources in a wireless communication system
US20150071104A1 (en) * 2013-09-12 2015-03-12 Qualcomm Incorporated Autonomously selecting a communication channel having a co-channel operation constraint
CN104869625B (zh) * 2014-02-25 2019-04-19 中兴通讯股份有限公司 一种提高下行发射功率的方法及装置
CN105188070B (zh) * 2014-06-20 2018-06-01 中国电信股份有限公司 单数据业务对无线资源占用情况的获取方法和设备
US9655102B2 (en) 2014-06-20 2017-05-16 Cisco Technology, Inc. Interference control in a cellular communications network
JP6006775B2 (ja) * 2014-12-04 2016-10-12 ソフトバンク株式会社 基地局装置
JP6402623B2 (ja) * 2014-12-26 2018-10-10 富士通株式会社 基地局装置及び基地局装置制御方法
US9918314B2 (en) 2015-04-14 2018-03-13 Cisco Technology, Inc. System and method for providing uplink inter cell interference coordination in a network environment
US10123356B2 (en) 2015-04-27 2018-11-06 Telefonaktiebolaget Lm Ericsson (Publ) Robust selection of PRACH repetition level for MTC enhanced coverage
US9648569B2 (en) 2015-07-25 2017-05-09 Cisco Technology, Inc. System and method to facilitate small cell uplink power control in a network environment
US9860852B2 (en) 2015-07-25 2018-01-02 Cisco Technology, Inc. System and method to facilitate small cell uplink power control in a network environment
KR102375627B1 (ko) * 2015-08-31 2022-03-17 삼성전자주식회사 이동 통신 시스템에서 사용자 단말 및 그 제어 방법
US9820296B2 (en) 2015-10-20 2017-11-14 Cisco Technology, Inc. System and method for frequency and time domain downlink inter-cell interference coordination
US9826408B2 (en) * 2015-12-07 2017-11-21 Cisco Technology, Inc. System and method to provide uplink interference coordination in a network environment
CN108370287B (zh) 2015-12-11 2021-07-02 瑞典爱立信有限公司 无线电网络节点、无线设备及其中的方法
US10143002B2 (en) 2016-01-12 2018-11-27 Cisco Technology, Inc. System and method to facilitate centralized radio resource management in a split radio access network environment
US9813970B2 (en) 2016-01-20 2017-11-07 Cisco Technology, Inc. System and method to provide small cell power control and load balancing for high mobility user equipment in a network environment
US10091697B1 (en) 2016-02-08 2018-10-02 Cisco Technology, Inc. Mitigation of uplink interference within heterogeneous wireless communications networks
US11064443B1 (en) * 2020-07-23 2021-07-13 Samsung Electronics Co., Ltd. Apparatus and method for managing the exposure to electric and magnetic fields (EMF)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428937A (en) 2005-08-01 2007-02-07 Ubiquisys Ltd Self-configuring cellular basestation
WO2009047972A1 (ja) 2007-10-09 2009-04-16 Nec Corporation 無線通信システム、無線通信方法、基地局、基地局の制御方法、及び基地局の制御プログラム
WO2009122778A1 (ja) 2008-03-31 2009-10-08 日本電気株式会社 無線局装置、無線リソースの制御方法、無線局制御プログラムを格納した記録媒体、及び無線通信システム
JP2010004187A (ja) 2008-06-18 2010-01-07 Ntt Docomo Inc 基地局及び移動通信方法
JP2010045782A (ja) * 2008-08-11 2010-02-25 Picochip Designs Ltd 通信ネットワーク
JP2010518668A (ja) * 2007-02-02 2010-05-27 ユビキシス リミテッド アクセスポイントの送信電力を制御するための方法及び基地局
JP2010217089A (ja) 2009-03-18 2010-09-30 Tohoku Univ 中性子線の単色集光装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041845B1 (en) * 1998-09-30 2005-12-07 Mitsubishi Denki Kabushiki Kaisha An interference detection method and an interference avoidance method
US8265562B2 (en) * 2008-03-12 2012-09-11 Qualcomm Incorporated Method and system to indicate a desired transmit power and soft power control in a wireless network
CN101662775B (zh) * 2008-08-27 2013-08-28 上海华为技术有限公司 一种减少基站干扰的方法、装置及系统
JP5197347B2 (ja) * 2008-12-24 2013-05-15 株式会社エヌ・ティ・ティ・ドコモ 無線リソース割当方法、無線基地局、無線リソース割当装置及び無線通信システム
JP5645671B2 (ja) * 2009-01-08 2014-12-24 株式会社Nttドコモ 移動通信方法及び無線基地局
JP2010219579A (ja) * 2009-03-13 2010-09-30 Hitachi Ltd 無線基地局および無線通信システム
US8929881B2 (en) * 2009-08-11 2015-01-06 Kyocera Corporation Radio communication system, small cell base station, radio terminal, transmission power control method, and allocation control method
WO2011024310A1 (ja) * 2009-08-31 2011-03-03 富士通株式会社 移動体通信システム、移動局装置、基地局装置及び電波干渉低減方法
CN101697628A (zh) * 2009-10-23 2010-04-21 北京邮电大学 一种宏蜂窝和家庭基站混合网络中下行链路动态资源分配的方法
US8478342B2 (en) * 2009-11-19 2013-07-02 Texas Instruments Incorporated Inter-cell interference coordination
US9125072B2 (en) * 2010-04-13 2015-09-01 Qualcomm Incorporated Heterogeneous network (HetNet) user equipment (UE) radio resource management (RRM) measurements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428937A (en) 2005-08-01 2007-02-07 Ubiquisys Ltd Self-configuring cellular basestation
JP2010518668A (ja) * 2007-02-02 2010-05-27 ユビキシス リミテッド アクセスポイントの送信電力を制御するための方法及び基地局
WO2009047972A1 (ja) 2007-10-09 2009-04-16 Nec Corporation 無線通信システム、無線通信方法、基地局、基地局の制御方法、及び基地局の制御プログラム
WO2009122778A1 (ja) 2008-03-31 2009-10-08 日本電気株式会社 無線局装置、無線リソースの制御方法、無線局制御プログラムを格納した記録媒体、及び無線通信システム
JP2010004187A (ja) 2008-06-18 2010-01-07 Ntt Docomo Inc 基地局及び移動通信方法
JP2010045782A (ja) * 2008-08-11 2010-02-25 Picochip Designs Ltd 通信ネットワーク
JP2010217089A (ja) 2009-03-18 2010-09-30 Tohoku Univ 中性子線の単色集光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2624651A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013108315A1 (ja) * 2012-01-17 2015-05-11 日本電気株式会社 無線通信システム、送信電力制御装置、基地局装置、パラメータ供給装置、及び送信電力制御方法
US9655055B2 (en) 2012-01-17 2017-05-16 Nec Corporation Wireless communication system, transmission power control apparatus, base station apparatus, parameter providing apparatus, and transmission power control method
WO2014013531A1 (ja) * 2012-07-20 2014-01-23 富士通株式会社 無線通信方法、無線通信システム、基地局および無線端末
US9648508B2 (en) 2012-07-20 2017-05-09 Fujitsu Limited Wireless communication method, wireless communication system, base station, and wireless terminal
US10257726B2 (en) 2012-07-20 2019-04-09 Fujitsu Connected Technologies Limited Wireless communication method, wireless communication system, base station, and wireless terminal
JP2017531384A (ja) * 2014-09-30 2017-10-19 日本電気株式会社 ホーム基地局のためのアップリンクターゲット受信電力を設定するための通信システム
US10045307B2 (en) 2014-09-30 2018-08-07 Nec Corporation Communication system for setting an uplink target received power for a home base station
JP2016116007A (ja) * 2014-12-12 2016-06-23 Kddi株式会社 干渉制御装置、通信システム及び干渉制御方法
KR20210008011A (ko) * 2018-05-10 2021-01-20 소니 주식회사 스펙트럼 관리 장치 및 방법, 무선 네트워크 관리 장치 및 방법, 및 매체
KR102629719B1 (ko) 2018-05-10 2024-01-29 소니그룹주식회사 스펙트럼 관리 장치 및 방법, 무선 네트워크 관리 장치 및 방법, 및 매체

Also Published As

Publication number Publication date
JP5862568B2 (ja) 2016-02-16
CN103120011A (zh) 2013-05-22
EP2624651A4 (en) 2017-01-11
EP2624651B1 (en) 2019-06-12
EP2624651A1 (en) 2013-08-07
US20130157680A1 (en) 2013-06-20
JPWO2012042730A1 (ja) 2014-02-03
US8971814B2 (en) 2015-03-03

Similar Documents

Publication Publication Date Title
JP5862568B2 (ja) 無線通信システムとその無線リソース決定方法、通信管理装置及びその制御方法と制御プログラム
US9326163B2 (en) Methods and systems for reducing interference in networks
US9220017B2 (en) Radio parameter control apparatus, base station apparatus, radio parameter control method, and non-transitory computer readable medium
KR101176375B1 (ko) 매크로셀 내에서 피코셀 통신을 위한 업링크 전력 제어
US8750876B2 (en) Methods and devices for adjusting resource management procedures in heterogeneous communication networks based on cell information
US8670773B2 (en) Control device, communication system, resource allocation method, and recording medium containing program
US8880088B2 (en) Signalling for interference management in HETNETs
KR20150052112A (ko) 기준 신호 세기 맵들에 기초한 이동성 강건성 최적화
JPWO2009008306A1 (ja) 移動通信システムにおける基地局装置及び指向性制御方法
JP2014523159A5 (ja)
WO2014136739A1 (ja) 無線通信システム、制御装置、制御方法及びプログラム
JP5299135B2 (ja) 計算装置、基地局制御装置、無線通信システム、および計算方法
KR20120015848A (ko) 간섭 피해 단말 보호 및 펨토 기지국간 간섭을 제어하기 위한 펨토 기지국 자원 제어 방법 및 장치
CN104168635A (zh) 一种上行功率控制方法及装置
US20150257113A1 (en) Network node and method for managing maximum transmission power levels for a d2d communication link
US10111183B2 (en) Method of controlling power and wireless communication system
JPWO2014119264A1 (ja) 無線通信システム、無線局および上り送信電力制御方法
KR101617466B1 (ko) 셀룰러 상향링크 통신 시스템에서 단말의 스케줄링 방법 및 기지국 장치
CN104349446A (zh) 一种上行功率控制方法及装置
CN104113903A (zh) 基于交互式认知学习的下行功率调整方法和装置
JP4482058B1 (ja) 無線通信システム、ネットワーク側装置、小セル基地局、送信電力制御方法
KR101629950B1 (ko) 기지국제어장치 및 기지국제어장치의 동작 방법
EP2760237A1 (en) Network Node and Method to adjust user association in HetNets
US20170289922A1 (en) Method and Network Node for Obtaining Nominal Power and Pathloss Compensation Factor of a Power Control Process
KR20110097008A (ko) 이동통신 시스템에서 주파수 할당 선택 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045451.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13818155

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011828299

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012536157

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE