WO2014162711A1 - 無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局 - Google Patents

無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局 Download PDF

Info

Publication number
WO2014162711A1
WO2014162711A1 PCT/JP2014/001843 JP2014001843W WO2014162711A1 WO 2014162711 A1 WO2014162711 A1 WO 2014162711A1 JP 2014001843 W JP2014001843 W JP 2014001843W WO 2014162711 A1 WO2014162711 A1 WO 2014162711A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
base station
parameter
dead
dead area
Prior art date
Application number
PCT/JP2014/001843
Other languages
English (en)
French (fr)
Inventor
弘人 菅原
尚 二木
航生 小林
高道 井上
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015509902A priority Critical patent/JPWO2014162711A1/ja
Priority to US14/781,239 priority patent/US9949144B2/en
Publication of WO2014162711A1 publication Critical patent/WO2014162711A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a radio communication system, and more particularly to a method and apparatus for controlling radio parameters of a base station, a network operation management apparatus, and a radio base station.
  • Non-patent Document 1 SON (Self Organizing Network) that autonomously optimizes wireless parameters and network settings in a wireless communication system such as a cellular system has been actively studied.
  • the types of self-optimization include cell coverage optimization, capacity optimization (Coverage and Capacity Optimization: CCO), handover parameter optimization (Mobility Robustness Optimization: MRO), and load balancing. There is optimization (Mobility Load Balancing: MLB).
  • SON recognizes problems using radio quality information reported from terminals and communication quality statistical information collected by base stations, and autonomously optimizes base station radio parameters so that the problems can be improved. Turn into. As information reported from the terminal, information specified by 3GPP is used, but most of the SONs currently under study use the wireless quality measured by the terminal in the wireless connection state (RRC Connected state). .
  • 3GPP Release 10 has newly defined MDT (Minimization of Drive Test) for the purpose of minimizing (minimizing) driving tests related to wireless network operation management.
  • MDT Minimum of Drive Test
  • a terminal in a wireless connection state performs measurement and reporting, and an immediate report mode (Immediate MDT) and a terminal in an idle state (RRC Idle state) record a measurement result and report it when the wireless connection state is established.
  • the record report mode (Logged MDT) is specified.
  • the information to be measured includes not only wireless quality information but also location information of the measurement terminal (for example, GNSS (Global Navigation Satellite System) information such as GPS (Global Positioning System)).
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the base station parameters can be optimized based on the radio quality information measured by the terminal in the immediate report mode or the record report mode.
  • 3GPP TS36.300v10.5.0 Section 22 (Internet ⁇ URL> http: www.3gpp.org/ftp/Specs/html-info/36300.htm) 3GPP TR36.902 v9.3.0 (Internet ⁇ URL> http: www.3gpp.org/ftp/Specs/html-info/36902.htm)
  • an object of the present invention is to provide a radio parameter control method and apparatus, a network operation management apparatus, and a radio base station that enable optimization control in consideration of a dead zone.
  • a radio parameter control apparatus is a radio parameter control apparatus for controlling radio parameters of a radio base station, wherein the radio base station analyzes data measured by a plurality of radio terminals including radio terminals in an idle state. Measurement data analyzing means for detecting a dead area in a wireless cell controlled by the mobile station, and control means for controlling a radio parameter of the radio base station based on information on the dead area.
  • a radio parameter control method is a method for controlling radio parameters of a radio base station, wherein the measurement data analyzing means analyzes data measured by a plurality of radio terminals including idle radio terminals, and A dead zone in a radio cell controlled by the radio base station is detected, and a control unit controls radio parameters of the radio base station based on information on the dead zone.
  • a network operation management apparatus is a network operation management apparatus that manages a plurality of radio base stations, and analyzes data measured by a plurality of radio terminals including idle radio terminals in the radio base station.
  • a measurement data analysis unit that detects a dead area in a radio cell controlled by a radio base station, and a control unit that controls radio parameters of the radio base station based on information on the dead zone.
  • a radio base station according to the present invention is a radio base station that controls a radio cell, and analyzes data measured by a plurality of radio terminals including idle radio terminals in the radio cell to detect insensitivity in the radio cell.
  • Measurement data analysis means for detecting the ground, and control means for controlling the radio parameters of the own station based on the information on the dead area.
  • the dead zone of the cell is detected using the data measured by the radio terminal in the radio cell, and the radio parameters of the base station are controlled based on the information about the dead zone.
  • FIG. 1 is a network diagram showing a schematic configuration of a wireless communication system to which an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing a functional configuration of the radio parameter control system according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a data configuration example of the measurement data storage unit in the present embodiment.
  • FIG. 4 is a flowchart showing a radio parameter control method according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing a radio parameter control method according to the second embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing an antenna radiation direction for explaining an example of position-based control in the second embodiment.
  • FIG. 7 is a flowchart showing a radio parameter control method according to the third embodiment of the present invention.
  • FIG. 1 is a network diagram showing a schematic configuration of a wireless communication system to which an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing a functional configuration of the radio parameter control system
  • FIG. 8A is a schematic diagram showing the configuration of a cell having a dead zone
  • FIG. 8B shows a display example of a dead zone for explaining an example of control based on the size in the third embodiment.
  • FIG. 9 is a block diagram showing a functional configuration of a radio parameter control system according to the second embodiment of the present invention.
  • FIG. 10 is a flowchart showing a radio parameter control method according to the fourth embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing an example of a radio parameter change value determination method in the fourth embodiment of the present invention.
  • FIG. 12 is a block diagram showing a functional configuration of a network operation management apparatus according to the third embodiment of the present invention.
  • FIG. 13 is a block diagram showing a functional configuration of a radio base station according to the fourth embodiment of the present invention.
  • the dead zone of the cell is detected using the data measured by the terminal moving in the cell, and the radio parameters of the base station are controlled based on the information about the dead zone. This makes it possible to optimize the base station parameters in consideration of the dead zone.
  • embodiments and examples of the present invention will be described in detail using the wireless communication system shown in FIG. 1 as an example.
  • a radio parameter control apparatus 10 determines radio parameters optimized for each radio base station 20 using measurement data stored in a measurement data storage unit 11. To do.
  • the cell managed by each radio base station 20 includes a terminal in a wireless connection state and a terminal in an idle state.
  • the terminal in a connection state reports measurement data to the radio base station in an immediate report mode (Immediate MDT), and is idle.
  • the terminal in the state can record the measurement data in the record report mode (Logged MDT), and can report the measurement data to the radio base station when connected wirelessly.
  • the dead zone 21 exists in the cell 20a managed by the radio base station 20, and the idle terminal 30 passes through the dead zone 21, and the measurement data at that time (pause acquisition of the measurement log is suspended). It is assumed that the record is later reported to the radio base station 20.
  • the plurality of radio cells illustrated in FIG. 1 may be adjacent to each other, or may be a small cell in which one radio cell is provided in another radio cell.
  • the terminal is a mobile station or user equipment (User Equipment) that can be wirelessly connected to the radio base station, such as a mobile phone or a portable information terminal.
  • User Equipment User Equipment
  • the measurement data reported from each terminal as described above is collected by the radio parameter control device 10 including the data measured by each radio base station, and stored in the measurement data storage unit 11.
  • the measurement data collection device 12 provided separately from the radio parameter control device 10 may collect measurement data from each radio base station and store it in the measurement data storage unit 11.
  • the measurement data storage unit 11 may be provided separately from the wireless parameter control device 10 or may be provided in the wireless parameter control device 10.
  • the radio parameter control apparatus 10 may be provided in a network operation management apparatus (not shown) that manages a plurality of radio base stations.
  • a network operation management device or SON server can have the functions of the wireless parameter control device 10, the measurement data storage unit 11, and the measurement data collection device 12.
  • the radio parameter control device 10 may be provided in the radio base station 20, and the radio base station 20 may have a radio parameter control function.
  • a wireless parameter control apparatus 10 includes a measurement data analysis unit 101 and a wireless parameter control unit 102 as functions.
  • the measurement data analysis unit 101 acquires the measurement data of the selected cell from the measurement data storage unit 11 and analyzes it, and based on the analysis result, the radio parameter control unit 102 controls the radio parameter of the cell.
  • the wireless control device 10 is provided with a computer (CPU: Central Processing Unit) and a storage device for storing a program, the measured electric power and other analysis unit 101 and the wireless parameter control are executed by executing the program on the computer. Functions similar to those of the unit 102 can also be realized.
  • FIG. 3 is an example of measurement data.
  • the measurement position and measurement time data include the radio signal, the radio access method, the frequency band, and pilot signals (or reference signals) measured by a plurality of terminals. Stored together with the received signal level (received power) and received quality.
  • the received signal level is, for example, RSRP (Reference Signal Received Power) in LTE, and RSCP (Received Signal Code Power) in UMTS.
  • the reception quality is the received signal quality of the pilot signal (or reference signal) .
  • LTE is RSRQ (Reference Signal Received Quality)
  • UMTS is Ec / No (The received energy, per chip, divided, by power, density) It is.
  • the measurement position is, for example, latitude / longitude, or x, y coordinates in a UTM (Universal Transverse® Mercator) coordinate system or 19 coordinate system, and preferably includes z coordinates (elevation information). Furthermore, the information regarding the reliability of position information may be included. The information on the reliability of the position information includes a confidence interval and a reliability.
  • the position can also be estimated using information such as the transmission signal level. Specifically, the path loss between the base station antenna position and the terminal is calculated from the difference between the transmission signal level and the reception signal level. Assuming that this path loss is proportional to the distance between the base station antenna position and the terminal, the position is specified by three-point surveying.
  • the position may be estimated using position information measured at a measurement time different from the measurement. For example, the position information acquired immediately before the measurement and the position information acquired immediately after the measurement are used, and the average is set as the position where the measurement is performed.
  • the measurement data includes data measured by not only the terminal in the connected state but also the terminal in the idle state.
  • the measurement data from the terminal in the idle state can be acquired by the recording report mode function.
  • the measurement data analysis unit 101 detects the presence of a dead zone, the geographical characteristics of the dead zone, and the like from the measurement data described above. Based on the analysis result, the radio parameter control unit 102 determines the radio parameter (for example, transmission power) of the cell. , Antenna beam angle such as antenna tilt angle and horizontal beam angle).
  • the geographical characteristics of the dead area are specifically the position and size of the dead area.
  • the size of the dead area is a time rate (a ratio of time spent in the dead area in the measurement time) or a place ratio (a ratio of the dead area in the entire area).
  • the measurement data analysis unit 101 specifies the dead area (first embodiment), detects the position of the dead area (second embodiment), detects the size of the dead area (third embodiment), and detects them.
  • the wireless parameter control by the wireless parameter control unit 102 based on the result will be described in detail with reference to the drawings.
  • the measurement data analysis unit 101 analyzes the measurement data and grasps the presence of a dead zone.
  • the measurement data analysis unit 101 sets the measurement data at the measurement point of the measurement data. Recognize that there is a dead zone. At this time, the radio cell having the highest received signal level of the pilot signal (or reference signal) immediately before entering the dead zone or immediately after exiting the dead zone is recognized as a cell including the dead zone.
  • the measurement point of the measurement data includes content where the reception signal level (or reception signal quality) of the pilot signal (or reference signal) is less than a predetermined value for all radio cells, the measurement point of the measurement data It is recognized that there is a dead zone. Also in this case, for each measurement, a radio cell having the highest received signal level of the pilot signal (or reference signal) is recognized as a cell where the dead zone has occurred.
  • the wireless parameter control unit 102 determines a change value of the wireless parameter based on the dead area grasped by the measurement data analysis unit 101. For example, when a dead zone occurs in a certain radio cell, the radio parameters are controlled so as to increase the transmission power of the radio cell or move the antenna tilt angle upward (up-tilt). To do.
  • the radio parameter control apparatus 10 first selects one radio cell from radio cells under its jurisdiction (operation S201), and uses the radio cell as a serving cell (Serving Cell) or measurement data or a pilot signal of the radio cell. Measurement data having the largest received signal level (or reference signal) is collected (operation S202).
  • the measurement data to be acquired may include measurement data measured before and after these measurement data.
  • the measurement data analysis unit 101 analyzes the measurement data as described above, thereby grasping the presence of a dead zone in the wireless cell. If a dead zone has occurred (operation S204; YES), the wireless parameter control unit 102 determines a change value of the wireless parameter so as to eliminate the dead zone (operation S205). Specifically, for example, the transmission power of the wireless cell is increased or the antenna tilt angle is uptilted. If there is no dead spot (operation S204; NO), the process is terminated.
  • the measurement data analysis unit 101 analyzes the measurement data and grasps the position of the dead area.
  • the radio parameter control apparatus 10 acquires measurement data related to the selected radio cell (operations S301 and S302) in the same manner as the operations S201 and S202 of FIG. 4 described above.
  • the position of the dead area in the cell is grasped (operation S303). Specifically, position information included in the measurement data is used. If the dead area has a spread, for example, the center of gravity is used as the representative point.
  • the wireless parameter control unit 102 considers the position of the dead zone and determines a change value of the wireless parameter so as to eliminate the dead zone ( Operation S305). For example, the antenna tilt angle and / or the horizontal beam angle of the base station antenna is controlled so that the main axis of the base station antenna is directed toward the dead zone. This antenna beam angle control will be described.
  • the azimuth (elevation angle ⁇ 1 ) from the base station antenna 20 of the radio cell 20a toward the dead zone 21 is calculated using the following equation:
  • (x BS , y BS , z BS ) is the base station antenna position
  • (x DS , y DS , z DS ) is the position of the dead zone.
  • the horizontal azimuth is 0 degree in the y-axis direction (north) and positive in the x-axis direction (east), and the vertical azimuth is 0 degree in horizontal and positive in the lower part.
  • the current antenna tilt angle (elevation angle) (vertical angle at which the antenna gain is maximum) is ⁇ 2 , up tilt if ⁇ 1 ⁇ 2 and down tilt if ⁇ 1 > ⁇ 2 Do.
  • the measurement data analysis unit 101 analyzes the measurement data and grasps the size of the dead area.
  • the radio parameter control apparatus 10 acquires measurement data related to the selected radio cell (operations S401 and S402), similarly to the operations S201 and S202 of FIG. By analyzing the measurement data, the size of the dead area in the cell is grasped (operation S403).
  • the size of the dead area can be grasped by, for example, a time rate (ratio of time spent in the dead area in the measurement time) or a place ratio (ratio of dead area in the entire area).
  • operation S404 it is determined whether or not the size of the dead area is equal to or larger than a predetermined value (operation S404). If the size of the dead area is equal to or larger than the predetermined value (operation S404; YES), the same as in the first embodiment. Then, a change value of the wireless parameter is determined so as to eliminate the dead zone (operation S405). Specifically, for example, the transmission power of the wireless cell is increased or the antenna tilt angle is uptilted. If there is no dead spot (operation S404; NO), the process is terminated.
  • the wireless parameter control can be performed by combining the position-based control according to the second embodiment and the magnitude-based control according to the third embodiment.
  • the measurement data analysis unit 101 uses the time information of the measurement data to obtain the time during which the measurement terminal was present in the dead area (dead area).
  • the dead zone time rate obtained by calculating the length of the dead zone time with respect to the total measurement time is used as an index of the size of the dead zone.
  • the presence of the dead area, the geographical characteristics of the dead area, and the like are detected from the data measured by the terminal, and the analysis result
  • the radio parameters transmission power, antenna beam angle, etc.
  • a radio parameter control apparatus 10a includes functions of a measurement data analysis unit 101, a radio parameter control unit 102a, and a received signal level estimation unit 103.
  • the measurement data analysis unit 101 is the same as that of the first embodiment shown in FIG.
  • the reception signal level estimation unit 103 has a function of estimating the reception signal level after the radio parameter change of the radio cell, and specifically estimates the reception signal level in the dead area after the radio parameter change.
  • the radio parameter control unit 102 a generates a change candidate value of the radio parameter of the cell based on the analysis result of the measurement data analysis unit 101, and receives it in the dead zone after the parameter change estimated by the reception signal level estimation unit 103.
  • the radio parameter change value is determined with reference to the signal level.
  • the measurement data analysis unit 101 specifies the dead zone (first example) and / or detects the position of the dead zone (second example), and the wireless parameter control unit 102a based on the detection results.
  • the wireless parameter control (fourth embodiment) according to the above will be described with reference to the drawings.
  • the radio parameter control apparatus 10a acquires measurement data related to the selected radio cell, as in the operations S301 to S303 of FIG. (Operations S501 and S502) Subsequently, the measurement data analysis unit 101 analyzes the measurement data to grasp the position of the dead area in the cell (Operation S503).
  • the wireless parameter control unit 102a determines a wireless parameter change candidate value in consideration of the position of the dead area (operation S505). For example, candidate values for the antenna tilt angle and / or horizontal beam angle of the base station antenna are determined so that the principal axis of the base station antenna is directed toward the dead zone. These candidate values are passed to the received signal level estimation unit 103.
  • the reception signal level estimation unit 103 uses the position information of the dead zone detected by the measurement data analysis unit 101 and the change candidate value of the radio parameter to receive the signal in the dead zone when the radio parameter change candidate value is applied.
  • the level is estimated as follows:
  • the received signal level in the dead zone before changing the radio parameter is RSRP_0 and the transmission output is changed from the current P_0 to P_1
  • the received signal level RSRP_1 in the dead zone is estimated by the following equation as changing by the transmission power change it can.
  • RSRP_1 RSRP_0 + (P_1-P_0)
  • the radio parameter control unit 102a determines, as a final change value, a radio parameter change candidate value that eliminates the dead zone most, based on the estimated value of the received signal level for all the radio parameter change candidate values (operation). S506). As a result of estimation of the received signal level, if it is found that the dead zone is not resolved (that is, the received signal level of the dead zone does not reach the predetermined value for all change candidate values), the radio parameter There is no need to make changes.
  • the method for determining the radio parameter change value will be described using the setting of the tilt angle of the antenna beam as an example.
  • radio parameter (antenna beam setting) change candidate i for one measurement data n of measurement data measured in a predetermined cell during a predetermined period, estimation of a received signal level for the antenna beam setting change The value is RSRPn_i.
  • the average received signal level for all measurement data measured in a predetermined cell during a predetermined period can be obtained by the following equation.
  • the base station 20 has a predetermined antenna gain pattern, and the terminals 31 and 32 are respectively at predetermined positions with respect to the antenna of the base station 20.
  • the antenna angle of the base station 20 is ⁇ A
  • the antenna angle of the base station 20 is ⁇ B and ⁇ A ⁇ B.
  • the received power RSRP1_A of the terminal 31 is very small (that is, a dead zone occurs), and the received power RSRP2_A of the terminal 32 is sufficient.
  • the radio parameter change candidate B is set, the received power RSRP1_A of the terminal 31 and the received power RSRP2_A of the terminal 32 are improved to some extent. Therefore, in this case, when the calculation is performed using the index of the above formula, the index value of B is larger than the radio parameter change candidate A as shown in the following formula, and the radio parameter change candidate B is determined as the change value. be able to.
  • the presence / absence of a dead zone, the geographical characteristics of the dead zone, and the like are detected from the data measured by the terminal, and based on the analysis result.
  • the radio parameter change candidate having the highest effect of dead zone elimination is determined as the change value. This makes it possible to eliminate the dead zone more effectively.
  • reception signal level estimation method used in the fourth embodiment, it is also possible to estimate the reception signal level when the radio parameter of the radio cell is changed using the radio wave propagation estimation method. Specifically, statistical methods (such as ⁇ Equation, Sakagami Equation, ITU-R P.1546) and deterministic methods (such as ray tracing method) can be used.
  • the network operation management apparatus 600 that manages the radio base stations of the radio communication system includes the radio parameter control apparatus 10 or 10a, the measurement data storage unit 11, and the measurement data collection apparatus 12 described above. May be included. Since the basic operation is the same as in the first to fourth embodiments, description thereof is omitted.
  • the radio base station 700 of the radio communication system includes the radio parameter control device 10 or 10a and the measurement data storage in addition to the radio transceiver 13 for radio connection with a radio terminal.
  • the unit 11 may further include a measurement data collection device 12. Since the basic operation is the same as in the first to fourth embodiments, description thereof is omitted.
  • the present invention is applicable to a system for controlling radio parameters of a base station in a radio communication system.
  • Measurement data storage unit 12 Measurement data collection device 20 Radio base station 20a Cell 21, 22 Dead zone 21a, 22a Dead zone grid 30, 31, 32 Terminal 101 Measurement data analysis unit 102, 102a Radio parameter Control unit 103 Received signal level estimation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】不感地を考慮した最適化制御を可能にする無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局を提供する。 【解決手段】無線基地局(20)の無線パラメータを制御する無線パラメータ制御装置(10)は、アイドル状態の無線端末を含む複数の無線端末で測定されたデータを分析して無線セル内の不感地を検出する測定データ分析部(101)と、不感地に関する情報に基づいて無線基地局の無線パラメータを制御する無線パラメータ制御部(102)と、を有する。

Description

無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局
 本発明は無線通信システムに係り、特に基地局の無線パラメータを制御する方法および装置、ネットワーク運用管理装置ならびに無線基地局に関する。
 近年、オペレーションコスト(OPEX)削減の観点などから、セルラシステムなどの無線通信システムにおける無線パラメータやネットワーク設定の最適化を自律的に行うSON(Self Organizing Network)の検討が盛んに行われている。3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)においてもSON機能の標準化が行われている(非特許文献1)。
 SONには、
・自己構成(Self-Configuration)
・自己最適化(Self-Optimization)
・自己修復(Self-Healing)
などの機能があり、それぞれ異なった目的を達成するための技術である。この中で自己最適化の種類としては、セルのカバレッジ最適化や容量(キャパシティ)の最適化(Coverage and Capacity Optimization:CCO)、ハンドオーバパラメータの最適化(Mobility Robustness Optimization:MRO)、負荷分散の最適化(Mobility Load Balancing:MLB)などがある(非特許文献2)。
 SONでは、端末から報告される無線品質情報や基地局で集計される通信品質統計情報を用いて問題点を認識し、その問題点が改善されるように基地局の無線パラメータを自律的に最適化する。端末から報告される情報としては、3GPPで規定されたものが用いられるが、現在検討されているSONの多くは、無線接続状態(RRC Connected状態)にある端末で測定された無線品質が用いられる。
 一方、無線ネットワークの運用管理に関わる走行試験をできる限り抑える(最小化する)ことを目的に、3GPPのRelease 10では、MDT(Minimization of Drive Test)が新たに規定された。MDTには、無線接続状態にある端末が測定および報告を行う即時報告モード(Immediate MDT)と、アイドル状態(RRC Idle状態)にある端末が測定結果を記録し無線接続状態になった時に報告する記録報告モード(Logged MDT)と、が規定されている。また、測定対象である情報は、無線品質情報だけでなく、測定端末の位置情報(たとえばGPS(Global Positioning System)などのGNSS(Global Navigation Satellite System)情報)も含まれる。
 したがって、SONでは、即時報告モードあるいは記録報告モードで端末が測定した無線品質情報に基づいて基地局パラメータを最適化することができる。
3GPP TS36.300v10.5.0, section 22(インターネット<URL> http:www.3gpp.org/ftp/Specs/html-info/36300.htm) 3GPP TR36.902 v9.3.0(インターネット<URL> http:www.3gpp.org/ftp/Specs/html-info/36902.htm)
 しかしながら、基地局が設置される環境は様々であり、セル内に高層ビル等の障害物があると、電波が届きにくい場所(不感地)が生じうる。このような不感地を考慮しない無線品質情報に基づいて一律にセルの最適化制御を行っても、不感地が解消されるとは限らず、結果的にセルの最適化が達成されない場合がある。
 そこで、本発明の目的は、不感地を考慮した最適化制御を可能にする無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局を提供することにある。
 本発明による無線パラメータ制御装置は、無線基地局の無線パラメータを制御する無線パラメータ制御装置であって、アイドル状態の無線端末を含む複数の無線端末で測定されたデータを分析して前記無線基地局が制御する無線セル内の不感地を検出する測定データ分析手段と、前記不感地に関する情報に基づいて前記無線基地局の無線パラメータを制御する制御手段と、を有することを特徴とする。
 本発明による無線パラメータ制御方法は、無線基地局の無線パラメータを制御する方法であって、測定データ分析手段が、アイドル状態の無線端末を含む複数の無線端末で測定されたデータを分析して前記無線基地局が制御する無線セル内の不感地を検出し、制御手段が、前記不感地に関する情報に基づいて前記無線基地局の無線パラメータを制御する、ことを特徴とする。
 本発明によるネットワーク運用管理装置は、複数の無線基地局を管理するネットワーク運用管理装置であって、無線基地局におけるアイドル状態の無線端末を含む複数の無線端末で測定されたデータを分析して前記無線基地局が制御する無線セル内の不感地を検出する測定データ分析手段と、前記不感地に関する情報に基づいて前記無線基地局の無線パラメータを制御する制御手段と、を有することを特徴とする。
 本発明による無線基地局は、無線セルを制御する無線基地局であって、前記無線セル内のアイドル状態の無線端末を含む複数の無線端末で測定されたデータを分析し前記無線セル内の不感地を検出する測定データ分析手段と、前記不感地に関する情報に基づいて自局の無線パラメータを制御する制御手段と、を有することを特徴とする。
 本発明によれば、無線セル内の無線端末により測定されたデータを用いて当該セルの不感地を検出し、不感地に関する情報に基づいて基地局の無線パラメータを制御する
図1は本発明の実施形態を適用した無線通信システムの概略的構成を示すネットワーク図である。 図2は本発明の第1実施形態による無線パラメータ制御システムの機能的構成を示すブロック図である。 図3は本実施形態における測定データ格納部のデータ構成例を示す模式図である。 図4は本発明の第1実施例による無線パラメータ制御方法を示すフローチャートである。 図5は本発明の第2実施例による無線パラメータ制御方法を示すフローチャートである。 図6は第2実施例における位置に基づく制御の一例を説明するためのアンテナ放射方向を示す模式図である。 図7は本発明の第3実施例による無線パラメータ制御方法を示すフローチャートである。 図8(A)は不感地を有するセルの構成を示す模式図であり、図8(B)は第3実施例における大きさに基づく制御の一例を説明するための不感地の表示例を示す模式図である。 図9は本発明の第2実施形態による無線パラメータ制御システムの機能的構成を示すブロック図である。 図10は本発明の第4実施例による無線パラメータ制御方法を示すフローチャートである。 図11は本発明の第4実施例における無線パラメータ変更値決定方法の一例を示す模式図である。 図12は本発明の第3実施形態によるネットワーク運用管理装置の機能的構成を示すブロック図である。 図13は本発明の第4実施形態による無線基地局の機能的構成を示すブロック図である。
 本発明の実施形態によれば、セル内を移動する端末により測定されたデータを用いて当該セルの不感地を検出し、不感地に関する情報に基づいて基地局の無線パラメータを制御する。これにより不感地を考慮した基地局パラメータの最適化が可能となる。以下、本発明の実施形態および実施例について図1に示す無線通信システムを一例として詳細に説明する。
 図1において、本発明の一実施形態による無線パラメータ制御装置10は、測定データ格納部11に格納されている測定データを用いて、各無線基地局20に対して最適化された無線パラメータを決定する。各無線基地局20が管理するセルには無線接続状態の端末やアイドル状態の端末が存在し、接続状態の端末は即時報告モード(Immediate MDT)で測定データを当該無線基地局へ報告し、アイドル状態の端末は記録報告モード(Logged MDT)で測定データを記録し、無線接続したときに測定データを当該無線基地局へ報告することができる。以下の説明では、無線基地局20が管理するセル20a内に不感地21が存在するものとし、アイドル状態の端末30が不感地21を通過し、その際の測定データ(測定ログの取得を休止した記録)が後で無線基地局20へ報告されるものとする。なお、図1に示す複数の無線セルは互いに隣接してもよく、あるいは1つの無線セルが他の無線セル内に設けられたスモールセルであってもよい。また、端末は無線基地局と無線接続可能な移動局あるいはユーザ機器(User Equipment)等であり、たとえば携帯電話、携帯情報端末などである。
 このように各端末から報告された測定データは、各無線基地局により測定されたデータも含めて、無線パラメータ制御装置10により収集され、測定データ格納部11に格納される。あるいは、無線パラメータ制御装置10とは別に設けられた測定データ収集装置12が各無線基地局から測定データを収集し、測定データ格納部11に格納してもよい。また、測定データ格納部11は、無線パラメータ制御装置10とは別に設けられてもよいし、無線パラメータ制御装置10内に設けられてもよい。
 また、無線パラメータ制御装置10が複数の無線基地局を管理するネットワーク運用管理装置(図示せず。)に設けられてもよい。あるいは、1つのネットワーク運用管理装置あるいはSONサーバが無線パラメータ制御装置10、測定データ格納部11および測定データ収集装置12の機能を備えることもできる。あるいは、無線パラメータ制御装置10が無線基地局20に設けられ、無線基地局20が無線パラメータ制御機能を備えてもよい。
 1.第1実施形態
 図2に示すように、本発明の第1実施形態による無線パラメータ制御装置10は、測定データ分析部101および無線パラメータ制御部102を機能として備える。測定データ分析部101は、選択されたセルの測定データを測定データ格納部11から取得して分析し、この分析結果に基づいて、無線パラメータ制御部102は当該セルの無線パラメータを制御する。なお、無線制御装置10にコンピュータ(CPU: Central Processing Unit)およびプログラムを格納する記憶装置が設けられていれば、プログラムをコンピュータ上で実行することにより、上記測定電他分析部101および無線パラメータ制御部102と同様の機能を実現することもできる。
 <測定データ>
 図3は測定データの一例である。図3に例示するように、測定データ格納部11には、測定位置および測定時間のデータが、無線セル、無線アクセス方式、周波数帯域、複数の端末で測定されたパイロット信号(またはリファレンス信号)の受信信号レベル(受信電力)および受信品質と共に格納されている。
 受信信号レベルは、例えばLTEの場合ではRSRP(Reference Signal Received Power)、UMTSの場合ではRSCP(Received Signal Code Power)である。受信品質は、パイロット信号(またはリファレンス信号)の受信信号品質であり、例えばLTEの場合ではRSRQ(Reference Signal Received Quality)、UMTSの場合ではEc/No(The received energy per chip divided by the power density)である。
 測定位置としては、例えば、緯度・経度、またはUTM(Universal Transverse Mercator)座標系や19座標系におけるx, y座標であり、さらにz座標(標高情報)を含むことが好ましい。さらに、位置情報の信頼性に関する情報を含んでいても良い。位置情報の信頼性に関する情報とは信頼区間や信頼度などが挙げられる。
 上記受信信号レベルの測定位置に関するデータが利用できない場合には、複数の無線セルに対するパイロット信号(またはリファレンス信号)の受信信号レベル、上記無線セルの基地局アンテナ位置、パイロット信号(またはリファレンス信号)の送信信号レベル等の情報を用いて位置を推定することもできる。具体的には、上記した送信信号レベルと受信信号レベルとの差から、基地局アンテナ位置と端末との間のパスロスを算出する。このパスロスが基地局アンテナ位置と端末との間の距離に比例するものと仮定し、3点測量により位置を特定する。
 また、測定位置に関するデータが利用できず、さらに受信信号レベルも取得できないような場合には、当該測定とは別の測定時刻に測定された位置情報を用いて位置を推定してもよい。たとえば、当該測定の直前に取得された位置情報と当該測定の直後に取得された位置情報とを用い、その平均を当該測定が実施された位置とする。
 なお、測定データは、接続状態にある端末だけでなく、アイドル状態にある端末で測定されたデータも含む。上述したように、アイドル状態にある端末からの測定データは記録報告モード機能により取得できる。
 <測定データ分析およびパラメータ制御>
 測定データ分析部101は、上述した測定データから不感地の存在、不感地の地理的特性等を検出し、この分析結果に基づいて、無線パラメータ制御部102は当該セルの無線パラメータ(たとえば送信電力、アンテナチルト角、水平方向ビーム角などのアンテナビーム角)を制御する。ここで、不感地の地理的特性とは、具体的には不感地の位置、大きさ等のことである。さらに、不感地の大きさとは、時間率(測定時間の中で不感地にいた時間の割合)または場所率(エリア全体の中での不感地の割合)のことである。
 以下、測定データ分析部101による不感地の特定(第1実施例)、不感地の位置の検出(第2実施例)および不感地の大きさの検出(第3実施例)と、それらの検出結果に基づいた無線パラメータ制御部102による無線パラメータ制御について図面を参照しながら詳細に説明する。
 1.1)第1実施例
 本発明の第1実施例による無線パラメータ制御装置10では、測定データ分析部101が測定データを分析し不感地の存在を把握する。
 例えば、記録報告モードの測定データに、不感地に侵入したために一時的に測定ログの取得を休止したことを示す内容が含まれていれば、測定データ分析部101は当該測定データの測定地点に不感地が含まれているものと認識する。その際、当該不感地に侵入する直前の、または当該不感地から脱出した直後のパイロット信号(またはリファレンス信号)の受信信号レベルが最も大きい無線セルを当該不感地を含むセルとして認識する。
 あるいは、測定データにおいて、全ての無線セルに対してパイロット信号(またはリファレンス信号)の受信信号レベル(あるいは受信信号品質)が所定値未満である内容が含まれている場合、当該測定データの測定地点に不感地が含まれているものと認識する。この場合も、各測定に対して、パイロット信号(またはリファレンス信号)の受信信号レベルが最も大きな無線セルを当該不感地が発生したセルとして認識する。
 無線パラメータ制御部102は、測定データ分析部101で把握された不感地に基づいて無線パラメータの変更値を決定する。例えば、ある無線セルにおいて不感地が発生している場合、当該無線セルの送信電力を増大させるように、あるいはアンテナチルト角を上向きにする(アップチルトする)方向に移動させるように無線パラメータを制御する。
 図4において、無線パラメータ制御装置10は、まず管轄下の無線セルから一つの無線セルを選択し(動作S201)、当該無線セルをサービングセル(Serving Cell)とする測定データあるいは当該無線セルのパイロット信号(またはリファレンス信号)の受信信号レベルが最も大きな測定データを収集する(動作S202)。なお、取得する測定データには、これらの測定データの前後に測定された測定データを含んでもよい。
 続いて、測定データ分析部101は、上述したように測定データを分析することで当該無線セル内の不感地の存在を把握する。無線パラメータ制御部102は、不感地が発生していれば(動作S204;YES)、当該不感地を解消するように無線パラメータの変更値を決定する(動作S205)。具体的には、例えば当該無線セルの送信電力を増大させるか、アンテナチルト角をアップチルトする。不感地がなければ(動作S204;NO)、処理を終了する。
 1.2)第2実施例
 本発明の第2実施例による無線パラメータ制御装置10では、測定データ分析部101が測定データを分析し不感地の位置を把握する。
 図5において、無線パラメータ制御装置10は、上述した図4の動作S201およびS202と同様に、選択した無線セルに関する測定データを取得し(動作S301、S302)、続いて、測定データ分析部101が測定データを分析することで当該セルにおける不感地の位置を把握する(動作S303)。具体的には、測定データに含まれる位置情報を用いる。不感地に広がりがある場合は、代表点として例えばその重心を用いる。
 続いて、無線パラメータ制御部102は、不感地が発生していれば(動作S304;YES)、不感地の位置を考慮し、当該不感地を解消するように無線パラメータの変更値を決定する(動作S305)。例えば、基地局アンテナの主軸が当該不感地の方角に向かうように基地局アンテナのアンテナチルト角および/または水平方向ビーム角を制御する。このアンテナビーム角の制御について説明する。
 <アンテナビーム角制御>
 図6に示すように、無線セル20aの基地局アンテナ20から不感地21に向かう方位(仰俯角θ)を、次式を用いて算出する
Figure JPOXMLDOC01-appb-M000001
 
 
 
 
ここで、(xBS, yBS, zBS)は基地局アンテナ位置、(xDS, yDS, zDS)は不感地の位置である。なお、水平方位はy軸性方向(北)を0度としてx軸性方向(東)が正、垂直方位は水平を0度として下方が正である。
 現行のアンテナチルト角(仰俯角)(アンテナゲインが最大となる垂直方向の角度)をθとしたとき、θであればアップチルト、 θであればダウンチルトを行う。
 1.3)第3実施例
 本発明の第3実施例による無線パラメータ制御装置10では、測定データ分析部101が測定データを分析し不感地の大きさを把握する。
 図7において、無線パラメータ制御装置10は、上述した図4の動作S201およびS202と同様に、選択した無線セルに関する測定データを取得し(動作S401、S402)、続いて、測定データ分析部101が測定データを分析することで当該セルにおける不感地の大きさを把握する(動作S403)。不感地の大きさは、たとえば時間率(測定時間の中で不感地にいた時間の割合)または場所率(エリア全体の中での不感地の割合)により把握できる。
 続いて、不感地の大きさが所定値以上であるか否かを判定し(動作S404)、不感地の大きさが所定値以上であれば(動作S404;YES)、第1実施例と同様に、当該不感地を解消するように無線パラメータの変更値を決定する(動作S405)。具体的には、例えば当該無線セルの送信電力を増大させるか、アンテナチルト角をアップチルトする。不感地がなければ(動作S404;NO)、処理を終了する。
 なお、第2実施例による位置に基づく制御と第3実施例による大きさに基づく制御とを組み合わせて無線パラメータ制御を行うこともできる。
 <時間率による不感地の大きさの把握>
 不感地の大きさを時間率により把握する場合、測定データ分析部101は、測定データの時刻情報を用いて、測定端末が不感地に存在していた時間(不感地時間)を求め、続いて、全測定時間に対する不感地時間の長さを計算することで求めた不感地の時間率を不感地の大きさの指標とする。
 <場所率による不感地の大きさの把握>
 図8(A)に示す実際のセル20aに不感地21および22が存在するものとする。また、図8(B)に示すように、不感地の大きさを場所率により把握する場合、測定データ分析部101は、無線セル20aがカバーするエリアをグリッドに分割し、不感地21が所定の個数(または割合)以上発生しているグリッドを求める。図8(A)に示す実際のセル20aに不感地21および22が存在すれば、図8(B)に示すように、それらに対応する不感地グリッド21aおよび22aを特定することができる。したがって、無線セル20aの全エリアのグリッド数に対する不感地グリッド21aおよび22aの各々の個数を不感地の大きさ(場所率)として求めることができる。
 1.4)効果
 以上述べたように、本発明の第1~第3実施例によれば、端末が測定したデータから不感地の存在や不感地の地理的特性等を検出し、この分析結果に基づいて当該セルの無線パラメータ(送信電力やアンテナビーム角など)を制御することで、不感地を効果的に解消することができる。
 2.第2実施形態
 図9に示すように、本発明の第2実施形態による無線パラメータ制御装置10aは、測定データ分析部101、無線パラメータ制御部102aおよび受信信号レベル推定部103の機能を備える。測定データ分析部101は図1に示す第1実施形態と同様であるから説明は省略する。
 受信信号レベル推定部103は、無線セルの無線パラメータ変更後の受信信号レベルを推定する機能を有し、具体的には無線パラメータ変更後の不感地における受信信号レベルを推定する。無線パラメータ制御部102aは、測定データ分析部101の分析結果に基づいて当該セルの無線パラメータの変更候補値を生成し、受信信号レベル推定部103により推定されたパラメータ変更後の不感地での受信信号レベルを参照しながら無線パラメータ変更値を決定する。
 以下、測定データ分析部101が不感地の特定(第1実施例)および/または不感地の位置の検出(第2実施例)を行うものとして、それらの検出結果に基づいた無線パラメータ制御部102aによる無線パラメータ制御(第4実施例)について図面を参照しながら説明する。
 2.1)第4実施例
 図10において、本発明の第4実施例による無線パラメータ制御装置10aは、上述した図5の動作S301~S303と同様に、選択した無線セルに関する測定データを取得し(動作S501、S502)、続いて、測定データ分析部101が測定データを分析することで当該セルにおける不感地の位置を把握する(動作S503)。
 続いて、無線パラメータ制御部102aは、不感地が発生していれば(動作S504;YES)、不感地の位置を考慮して無線パラメータの変更候補値を決定する(動作S505)。例えば、基地局アンテナの主軸が当該不感地の方角に向かうように基地局アンテナのアンテナチルト角および/または水平方向ビーム角の候補値を決定する。これらの候補値は受信信号レベル推定部103へ渡される。
 受信信号レベル推定部103は、測定データ分析部101により検出された不感地の位置情報と無線パラメータの変更候補値とを用いて、無線パラメータの変更候補値を適用した場合の不感地における受信信号レベルを次のように推定する。
 無線パラメータ変更前の不感地における受信信号レベルをRSRP_0とし、送信出力を現在のP_0からP_1に変更した場合、当該不感地における受信信号レベルRSRP_1は送信電力変更分だけ変動するものとして次式により推定できる。
RSRP_1 = RSRP_0 + (P_1 - P_0)
 無線パラメータ制御部102aは、全ての無線パラメータ変更候補値に対する受信信号レベルの推定値に基づき、不感地が最も解消されるような無線パラメータの変更候補値を最終的な変更値として決定する(動作S506)。なお、受信信号レベル推定の結果、当該不感地が解消されない(すなわち、全ての変更候補値に対して不感地の受信信号レベルが所定値に到達しない)ことが判明した場合には、無線パラメータの変更を行わなくてもよい。次に、アンテナビームのチルト角の設定を一例として、無線パラメータ変更値の決定方法について説明する。
 まず、無線パラメータ(アンテナビーム設定)の変更候補iにおいて、所定期間に所定のセルで測定された測定データのうちの1つの測定データnに対して、当該アンテナビーム設定変更に対する受信信号レベルの推定値をRSRPn_iとする。この場合、所定期間に所定のセルで測定された全ての測定データに対する平均の受信信号レベルは次式で求めることができる。
Figure JPOXMLDOC01-appb-M000002
 
 
 
 
 この式の値を指標とし、全ての変更候補の指標のうち最も高い指標を与えた変更候補を、アンテナビーム設定の変更値として決定する。図11に示す簡単な例を用いて説明する。
 図11に示すように、基地局20は所定のアンテナゲインパタンを有しており、端末31および32が基地局20のアンテナに対してそれぞれ所定の位置にあるものとする。また、無線パラメータ変更候補Aでは基地局20のアンテナ府角がθ、無線パラメータ変更候補Bでは基地局20のアンテナ府角がθで、θ<θであるとする。
 この場合、図11に示すようなアンテナゲインパタンでは、無線パラメータ変更候補Aに設定すると、端末31の受信電力RSRP1_Aは非常に小さく(すなわち不感地が生じる。)、端末32の受信電力RSRP2_Aは十分に大きくなり、無線パラメータ変更候補Bに設定すると、端末31の受信電力RSRP1_Aも端末32の受信電力RSRP2_Aもある程度良好になる。したがって、このケースでは、上記式の指標を用いて計算すると、次式のように無線パラメータ変更候補AよりもBの方が指標の値が大きくなり、無線パラメータ変更候補Bを変更値として決定することができる。
Figure JPOXMLDOC01-appb-M000003
 
 
 
 
 2.2)効果
 以上述べたように、本発明の第4実施例によれば、端末が測定したデータから不感地の有無や不感地の地理的特性等を検出し、この分析結果に基づいて当該セルの無線パラメータ変更候補を算出し、それぞれの変更候補を設定した場合の端末側の受信信号レベルを推定することで、不感地解消の効果が最も高い無線パラメータ変更候補を変更値として決定することができ、より効果的な不感地解消が可能となる。
 2.3)その他実施例
 第4実施例で用いた受信信号レベル推定方法の他に、電波伝搬推定方法を用いて、無線セルの無線パラメータを変更したときの受信信号レベルを推定することもできる。具体的には、統計論的手法(秦式、坂上式、ITU-R P.1546など)や決定論的手法(レイトレーシング法など)を用いることができる。
 3.第3実施形態
 図12に示すように、無線通信システムの無線基地局を管理するネットワーク運用管理装置600が上述した無線パラメータ制御装置10あるいは10aおよび測定データ格納部11、更に測定データ収集装置12を含んでもよい。基本的な動作は上記第1~第4実施例と同様であるから説明は省略する。
 4.第4実施形態
 図13に示すように、無線通信システムの無線基地局700は無線端末との無線接続のための無線送受信器13に加えて、上述した無線パラメータ制御装置10あるいは10aおよび測定データ格納部11、更に測定データ収集装置12を含んでもよい。基本的な動作は上記第1~第4実施例と同様であるから説明は省略する。
 本発明は無線通信システムにおいて基地局の無線パラメータを制御するシステムに適用可能である。
10、10a 無線パラメータ制御装置
11 測定データ格納部
12 測定データ収集装置
20 無線基地局
20a セル
21、22 不感地
21a、22a 不感地グリッド
30、31、32 端末
101 測定データ分析部
102、102a 無線パラメータ制御部
103 受信信号レベル推定部

Claims (33)

  1.  無線基地局の無線パラメータを制御する無線パラメータ制御装置であって、
     アイドル状態の無線端末を含む複数の無線端末で測定されたデータを分析して前記無線基地局が制御する無線セル内の不感地を検出する測定データ分析手段と、
     前記不感地に関する情報に基づいて前記無線基地局の無線パラメータを制御する制御手段と、
     を有することを特徴とする無線パラメータ制御装置。
  2.  前記無線パラメータを変更したときの前記無線セルにおける無線品質を推定する推定手段を更に有し、前記制御手段は前記推定された無線品質に基づいて前記無線パラメータの変更値を決定することを特徴とする請求項1に記載の無線パラメータ制御装置。
  3.  前記制御手段は前記不感地に関する情報に基づいて少なくとも1つの無線パラメータ変更候補値を生成し、
     前記推定手段は前記無線パラメータ変更候補値について無線品質を推定し、
     前記制御手段は前記推定された無線品質に基づいて前記無線パラメータの変更値を決定する、
    ことを特徴とする請求項2に記載の無線パラメータ制御装置。
  4.  前記測定データ分析手段は前記測定データを用いて前記不感地の地理的特性を検出することを特徴とする請求項1-3のいずれか1項に記載の無線パラメータ制御装置。
  5.  前記不感地の地理的特性は前記不感地の位置情報および/または前記不感地の大きさであることを特徴とする請求項4に記載の無線パラメータ制御装置。
  6.  前記不感地の位置情報は、前記測定とは別の測定時刻に測定された位置情報を用いて特定することを特徴とする請求項5に記載の無線パラメータ制御装置。
  7.  前記不感地の大きさは前記無線端末が測定時間の中で前記不感地にいた時間の割合または前記無線セル全体の中での前記不感地の割合に基づく値であることを特徴とする請求項5に記載の無線パラメータ制御装置。
  8.  前記制御手段は前記無線パラメータにより前記無線基地局の送信電力および/またはアンテナチルト角を制御することを特徴とする請求項1-7のいずれか1項に記載の無線パラメータ制御装置。
  9.  無線基地局の無線パラメータを制御する方法であって、
     測定データ分析手段が、アイドル状態の無線端末を含む複数の無線端末で測定されたデータを分析して前記無線基地局が制御する無線セル内の不感地を検出し、
     制御手段が、前記不感地に関する情報に基づいて前記無線基地局の無線パラメータを制御する、
    ことを特徴とする無線パラメータ制御方法。
  10.  推定手段が、前記無線パラメータを変更したときの前記無線セルにおける無線品質を推定し、
     前記制御手段が、前記推定された無線品質に基づいて前記無線パラメータの変更値を決定する、
    ことを特徴とする請求項9に記載の無線パラメータ制御方法。
  11.  前記制御手段が前記不感地に関する情報に基づいて少なくとも1つの無線パラメータ変更候補値を生成し、
     前記推定手段が前記無線パラメータ変更候補値について無線品質を推定し、
     前記制御手段が前記推定された無線品質に基づいて前記無線パラメータの変更値を決定する、
    ことを特徴とする請求項10に記載の無線パラメータ制御方法。
  12.  前記測定データ分析手段が前記測定データを用いて前記不感地の地理的特性を検出する、ことを特徴とする請求項9-11のいずれか1項に記載の無線パラメータ制御方法。
  13.  前記不感地の地理的特性は、前記不感地の位置情報および/または前記不感地の大きさであることを特徴とする請求項12に記載の無線パラメータ制御方法。
  14.  前記不感地の位置情報は、前記測定とは別の測定時刻に測定された位置情報を用いて特定することを特徴とする請求項13に記載の無線パラメータ制御方法。
  15.  前記不感地の大きさは前記無線端末が測定時間の中で前記不感地にいた時間の割合または前記無線セル全体の中での前記不感地の割合に基づく値であることを特徴とする請求項13に記載の無線パラメータ制御方法。
  16.  前記制御手段が前記無線パラメータにより前記無線基地局の送信電力および/またはアンテナチルト角を制御する、ことを特徴とする請求項9-15いずれか1項に記載の無線パラメータ制御方法。
  17.  複数の無線基地局を管理するネットワーク運用管理装置であって、
     無線基地局におけるアイドル状態の無線端末を含む複数の無線端末で測定されたデータを分析して前記無線基地局が制御する無線セル内の不感地を検出する測定データ分析手段と、
     前記不感地に関する情報に基づいて前記無線基地局の無線パラメータを制御する制御手段と、
     を有することを特徴とするネットワーク運用管理装置。
  18.  前記無線パラメータを変更したときの前記無線セルにおける無線品質を推定する推定手段を更に有し、前記制御手段は前記推定された無線品質に基づいて前記無線パラメータの変更値を決定することを特徴とする請求項17に記載のネットワーク運用管理装置。
  19.  前記制御手段は前記不感地に関する情報に基づいて少なくとも1つの無線パラメータ変更候補値を生成し、
     前記推定手段は前記無線パラメータ変更候補値について無線品質を推定し、
     前記制御手段は前記推定された無線品質に基づいて前記無線パラメータの変更値を決定する、
    ことを特徴とする請求項18に記載のネットワーク運用管理装置。
  20.  前記測定データ分析手段は前記測定データを用いて前記不感地の地理的特性を検出することを特徴とする請求項17-19のいずれか1項に記載のネットワーク運用管理装置。
  21.  前記不感地の地理的特性は前記不感地の位置情報および/または前記不感地の大きさであることを特徴とする請求項20に記載のネットワーク運用管理装置。
  22.  前記不感地の位置情報は、前記測定とは別の測定時刻に測定された位置情報を用いて特定することを特徴とする請求項21に記載のネットワーク運用管理装置。
  23.  前記不感地の大きさは前記無線端末が測定時間の中で前記不感地にいた時間の割合または前記無線セル全体の中での前記不感地の割合に基づく値であることを特徴とする請求項21に記載のネットワーク運用管理装置。
  24.  前記制御手段は前記無線パラメータにより前記無線基地局の送信電力および/またはアンテナチルト角を制御することを特徴とする請求項17-23のいずれか1項に記載のネットワーク運用管理装置。
  25.  無線セルを制御する無線基地局であって、
     前記無線セル内のアイドル状態の無線端末を含む複数の無線端末で測定されたデータを分析し前記無線セル内の不感地を検出する測定データ分析手段と、
     前記不感地に関する情報に基づいて自局の無線パラメータを制御する制御手段と、
     を有することを特徴とする無線基地局。
  26.  前記無線パラメータを変更したときの前記無線セルにおける無線品質を推定する推定手段を更に有し、前記制御手段は前記推定された無線品質に基づいて前記無線パラメータの変更値を決定することを特徴とする請求項25に記載の無線基地局。
  27.  前記制御手段は前記不感地に関する情報に基づいて少なくとも1つの無線パラメータ変更候補値を生成し、
     前記推定手段は前記無線パラメータ変更候補値について無線品質を推定し、
     前記制御手段は前記推定された無線品質に基づいて前記無線パラメータの変更値を決定する、
    ことを特徴とする請求項26に記載の無線基地局。
  28.  前記測定データ分析手段は前記測定データを用いて前記不感地の地理的特性を検出することを特徴とする請求項25-27のいずれか1項に記載の無線基地局。
  29.  前記不感地の地理的特性は前記不感地の位置情報および/または前記不感地の大きさであることを特徴とする請求項28に記載の無線基地局。
  30.  前記不感地の位置情報は、前記測定とは別の測定時刻に測定された位置情報を用いて特定することを特徴とする請求項29に記載の無線基地局。
  31.  前記不感地の大きさは前記無線端末が測定時間の中で前記不感地にいた時間の割合または前記無線セル全体の中での前記不感地の割合に基づく値であることを特徴とする請求項29に記載の無線基地局。
  32.  前記制御手段は前記無線パラメータにより前記無線基地局の送信電力および/またはアンテナチルト角を制御することを特徴とする請求項25-31のいずれか1項に記載の無線基地局。
  33.  無線基地局の無線パラメータを制御する無線パラメータ制御装置としてコンピュータを機能させるプログラムであって、
     アイドル状態の無線端末を含む複数の無線端末で測定されたデータを分析して前記無線基地局が制御する無線セル内の不感地を検出する測定データ分析機能と、
     前記不感地に関する情報に基づいて前記無線基地局の無線パラメータを制御する制御機能と、
     を前記コンピュータで実現することを特徴とするプログラム。
PCT/JP2014/001843 2013-04-01 2014-03-28 無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局 WO2014162711A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015509902A JPWO2014162711A1 (ja) 2013-04-01 2014-03-28 無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局
US14/781,239 US9949144B2 (en) 2013-04-01 2014-03-28 Method and apparatus for controlling radio parameters, network operation management apparatus, and radio base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013076151 2013-04-01
JP2013-076151 2013-04-01

Publications (1)

Publication Number Publication Date
WO2014162711A1 true WO2014162711A1 (ja) 2014-10-09

Family

ID=51658024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001843 WO2014162711A1 (ja) 2013-04-01 2014-03-28 無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局

Country Status (3)

Country Link
US (1) US9949144B2 (ja)
JP (1) JPWO2014162711A1 (ja)
WO (1) WO2014162711A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565347B (zh) * 2015-03-31 2017-01-01 佳世達科技股份有限公司 估算基站位置的方法
WO2023218547A1 (ja) * 2022-05-11 2023-11-16 日本電気株式会社 情報処理装置、情報処理方法、情報処理システム及び情報処理プログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140369336A1 (en) * 2009-05-08 2014-12-18 Qualcomm Incorporated Apparatus and method for distributed updating of a self organizing network
US10034189B2 (en) * 2013-04-01 2018-07-24 Nec Corporation Method and system for controlling radio parameter, network operation management apparatus, and radio station
US10098007B2 (en) * 2016-08-15 2018-10-09 T-Mobile Usa, Inc. Coverage management for wireless communication network
CN108243447B (zh) * 2016-12-23 2020-11-24 中国移动通信集团设计院有限公司 一种外部干扰的定位方法及装置
US10542442B2 (en) 2018-06-08 2020-01-21 T-Mobile Usa, Inc. Dominance-based coverage management for wireless communication network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004013840A (ja) * 2002-06-11 2004-01-15 Seiko Epson Corp 位置通知システム、ホスト装置、gps装置及び位置通知方法
WO2005013632A1 (ja) * 2003-08-04 2005-02-10 Nec Corporation 無線通信システムにおけるアンテナのチルト角決定方法、およびチルト角決定装置
WO2011081122A1 (ja) * 2010-01-04 2011-07-07 日本電気株式会社 評価システム、評価装置、評価方法、およびプログラム
WO2012043796A1 (ja) * 2010-10-01 2012-04-05 日本電気株式会社 無線通信システムと方法と無線端末、無線局並びに運用管理サーバ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6650896B1 (en) * 1998-08-13 2003-11-18 International Business Machines Corporation Error correlation for wireless networks
US20050163047A1 (en) * 2003-03-20 2005-07-28 Christopher M. Mcgregor, Gregory M. Mcgregor And Travis M. Mcgregor Method and system for processing quality of service (QOS) performance levels for wireless devices
US7215969B2 (en) * 2003-07-21 2007-05-08 Lucent Technologies Inc. Method for RF dead zone data collection using mobile station
KR100789773B1 (ko) * 2006-12-08 2007-12-28 한국전자통신연구원 다중 홉 무선 근거리통신망에서 메쉬 네트워킹 자동 설정방법과, 가상 링크 설정 방법과, 패킷 전송 방법 및 이를위한 무선 단말기
JP4850296B2 (ja) * 2010-04-07 2012-01-11 三菱電機株式会社 基地局および伝送制御方法
EP2579638A4 (en) * 2010-05-31 2016-04-06 Fujitsu Ltd COMMUNICATION DEVICE, SERVING AREA SETTING METHOD, AND MOBILE COMMUNICATION SYSTEM
WO2012042730A1 (ja) * 2010-09-28 2012-04-05 日本電気株式会社 無線通信システムとその無線リソース決定方法、通信管理装置及びその制御方法と制御プログラム
US9014085B2 (en) * 2011-11-28 2015-04-21 At&T Intellectual Property I, L.P. Internet protocol session persistence for mobile communications
US9338747B1 (en) * 2012-06-12 2016-05-10 Amazon Technologies, Inc. Wireless coverage assist
US9596670B2 (en) * 2013-01-16 2017-03-14 Apple Inc. Location assisted service capability monitoring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004013840A (ja) * 2002-06-11 2004-01-15 Seiko Epson Corp 位置通知システム、ホスト装置、gps装置及び位置通知方法
WO2005013632A1 (ja) * 2003-08-04 2005-02-10 Nec Corporation 無線通信システムにおけるアンテナのチルト角決定方法、およびチルト角決定装置
WO2011081122A1 (ja) * 2010-01-04 2011-07-07 日本電気株式会社 評価システム、評価装置、評価方法、およびプログラム
WO2012043796A1 (ja) * 2010-10-01 2012-04-05 日本電気株式会社 無線通信システムと方法と無線端末、無線局並びに運用管理サーバ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565347B (zh) * 2015-03-31 2017-01-01 佳世達科技股份有限公司 估算基站位置的方法
WO2023218547A1 (ja) * 2022-05-11 2023-11-16 日本電気株式会社 情報処理装置、情報処理方法、情報処理システム及び情報処理プログラム

Also Published As

Publication number Publication date
US20160057634A1 (en) 2016-02-25
JPWO2014162711A1 (ja) 2017-02-16
US9949144B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2014162711A1 (ja) 無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局
US10034189B2 (en) Method and system for controlling radio parameter, network operation management apparatus, and radio station
US11349582B2 (en) Enhanced system and method for detecting non-cellular RF interference sources to cellular networks
US11101903B2 (en) Locating external interference in a wireless network
US9544868B2 (en) Radio communication system, radio terminal, radio network, radio communication method and program
CN107197421B (zh) E-utra网络中的覆盖调整
US8831586B2 (en) Method and system for reporting neighbor cell information
US20210099942A1 (en) Context-specific customization of handover parameters using characterization of a device&#39;s radio environment
US20170311180A1 (en) Cell shaping in wireless communications networks
EP3596976A1 (en) Altitude position state based mobile communications
WO2018060315A1 (en) Beam management for interference mitigation for wireless networks
US10390180B1 (en) Geolocation determination with power fingerprinting
US8391890B2 (en) Method and apparatus for geo-locating mobile station
CN110557775B (zh) 弱覆盖小区的确定方法及装置
JP6070957B2 (ja) 無線パラメータ制御システム、無線パラメータ制御装置、無線基地局、無線パラメータ制御方法及びプログラム
CN102098703B (zh) 小区切换中确定终端测量频率的方法和装置
JP2014204161A (ja) 無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局
CN116133037A (zh) 一种无线网络评估方法及装置
CN111225408B (zh) 基于SmallCell基站的无线环境监控方法、装置、设备和存储介质
US9794893B2 (en) Wireless communication control device and wireless communication control method
US11742963B2 (en) Real-time optimization of network parameters
KR102103457B1 (ko) 무선랜 시스템의 액세스 포인트 검색 방법 및 접속 관리 방법
EP2753113B1 (en) Method and apparatus for cell outage handling
CN108235338B (zh) 一种td-lte用户类型识别方法及基站
JP6409768B2 (ja) 無線ネットワーク制御方法およびシステム、ネットワーク運用管理装置ならびに無線局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509902

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14781239

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778586

Country of ref document: EP

Kind code of ref document: A1