WO2005013632A1 - 無線通信システムにおけるアンテナのチルト角決定方法、およびチルト角決定装置 - Google Patents

無線通信システムにおけるアンテナのチルト角決定方法、およびチルト角決定装置 Download PDF

Info

Publication number
WO2005013632A1
WO2005013632A1 PCT/JP2004/011152 JP2004011152W WO2005013632A1 WO 2005013632 A1 WO2005013632 A1 WO 2005013632A1 JP 2004011152 W JP2004011152 W JP 2004011152W WO 2005013632 A1 WO2005013632 A1 WO 2005013632A1
Authority
WO
WIPO (PCT)
Prior art keywords
tilt angle
antenna
deterioration rate
communication system
wireless communication
Prior art date
Application number
PCT/JP2004/011152
Other languages
English (en)
French (fr)
Inventor
Akio Aoyama
Kojiro Hamabe
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US10/528,070 priority Critical patent/US7218955B2/en
Priority to GB0506607A priority patent/GB2414634B/en
Priority to JP2005512563A priority patent/JP4106570B2/ja
Publication of WO2005013632A1 publication Critical patent/WO2005013632A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations

Definitions

  • Wireless communication 1 angle determination method, and tilt angle
  • the present invention relates to a wireless communication system including a plurality of base stations, and more particularly, to determining a tilt angle of an antenna arranged in each base station in order to reduce the deterioration rate of the entire wireless communication system.
  • a wireless communication system including a plurality of base stations that provide a wireless communication line to fixed users and mobile users distributed over a plurality of areas
  • a wireless communication system may be used when establishing a wireless communication system or when a wireless communication system already exists.
  • the tilt angle of the antenna having directivity in the vertical plane arranged in each base station is determined so as to provide a high-quality radio communication line.
  • Determining the tilt angle is not performed for all of the antennas installed in each base station, but by changing the tilt angle from a predetermined initial angle, a higher quality wireless communication can be achieved. This is done only for antennas that seem to be effective in providing communication lines.
  • the selection of the antenna and the determination of the tilt angle of the selected antenna are performed by the person in charge according to the following procedure.
  • a propagation simulator determines a propagation loss from an antenna to a predetermined point based on information such as the position, altitude, building, and terrain of a base station on which an antenna for determining a tilt angle is installed. Then, based on the transmission power from the antenna, the orientation of the antenna, the beam pattern in the horizontal and vertical planes of the antenna, and the propagation loss obtained previously, the reception power when the signal transmitted from the antenna is received at a predetermined point is determined. Calculate and also calculate the reception quality indicated by the S / N (Signal to Noise) ratio and SIR (Signal Power to Interference Ratio).
  • S / N Signal to Noise
  • SIR Synignal Power to Interference Ratio
  • the coverage degradation rate of each antenna is calculated.
  • the coverage of an antenna is defined as an area where the received power of a signal from each antenna is greater than the received power of a signal from any other antenna and is equal to or greater than a certain value.
  • the area to be covered by the radio communication system is divided and allocated to each radio station constituting the radio communication system. The allocated area becomes the coverage, and the coverage of the entire system is the sum of the coverage of each antenna. Area.
  • the degradation rate is
  • the degradation rate of the coverage of each antenna and the degradation rate of the entire system are obtained.
  • the display device provided in the propagation simulator displays the coverage of each antenna so that the degradation point in the antenna can be identified.
  • the person who determines the tilt angle of the antenna selects the antenna whose tilt angle is to be changed from the displayed contents. And its tilt angle.
  • FIG. 5 is a diagram showing an operation of adjusting the tilt angle of the antenna.
  • Patent Document 1 Japanese Utility Model Laid-Open No. 02-135884 discloses a calculator that calculates a tilt angle from a search distance and an installation height when searching for a target using a radar antenna. And a comparison controller for controlling the tilt angle by comparing the output of the arithmetic unit and the tilt angle signal output from the antenna.
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2002-095040 discloses that when designing and adjusting or operating a wireless network, an operation parameter is determined using an optimization process.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-166964 discloses that when correcting the angle of an antenna by a step track method for performing satellite tracking, the angle of the antenna is increased with a large step size in the initial stage of the correction.
  • a method is disclosed in which the antenna is oriented in an optimal direction by correcting the distance and then gradually reducing the step size.
  • Patent Document 1 relates to radar, and in a wireless communication system in which a plurality of antennas are provided, the tilt angle control of the antenna in consideration of the deterioration rate of the entire system is used. Let's talk about it.
  • Patent Document 2 describes that, when designing and adjusting and operating a wireless network, an operation parameter including an antenna direction is determined using an optimization process. The only practical method is simply based on the network optimization process, and the content is not clear.
  • Patent Document 3 corrects the angle of the antenna by a step track method in order to perform satellite tracking, and similarly to Patent Document 1, deteriorates the entire system in a wireless communication system. No mention is made of tilt angle control of the antenna in consideration of the ratio.
  • Patent Document 1 Japanese Utility Model Application Laid-Open No. 02-135884
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-095040
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-166964
  • the selection of an antenna for changing the tilt angle and the determination of the tilt angle in a wireless communication system are performed by a person in charge of the propagation environment, and the result varies depending on the experience of the person in charge. Therefore, the deterioration rate of the whole system will be different, and stable quality cannot be maintained. Also, selecting from a large number of antennas and determining the angle was a very time-consuming and laborious task.
  • the propagation simulation may be performed a plurality of times with the tilt angle being changed for the same antenna. At this time, if the update angle is increased, the antenna may jump away from the optimum value and go away. Conversely, a smaller value requires a large number of updates, so setting the update angle when adjusting is also important.
  • the present invention has been made in view of the above-mentioned problems of the conventional technology, and is a method for determining a tilt angle capable of sufficiently reducing a deterioration rate of the entire system in a wireless communication system.
  • the purpose is to provide. It is another object of the present invention to provide a tilt angle determination method that can obtain the same tilt angle that can sufficiently reduce the deterioration rate of the entire system if the wireless communication system is the same regardless of the person.
  • the method for determining an antenna tilt angle in a wireless communication system includes: A method for determining a tilt angle of an antenna having in-plane directivity provided in a plurality of radio base stations constituting
  • a sixth step is performed after the first step and the second step, and determines whether or not to continue the processing in each of these steps,
  • a seventh step which is performed after the third step and the fourth step and determines whether or not to continue the processing in each of these steps;
  • An eighth step that is performed after the first to seventh steps and determines whether or not to continue the processing in each of these steps;
  • the processing is performed according to the cumulative number of continuations.
  • the second step may have a ninth step of changing the step angle used to change the tilt angle.
  • the fourth step may include a 10th step of changing a step angle used to change the tilt angle.
  • a first step of selecting an antenna for reducing the tilt angle, and a tilt angle may select an antenna based on the coverage degradation rate of the antenna.
  • the antenna tilt angle determining device of the wireless communication system of the present invention is an antenna tilt angle determining device provided with a plurality of wireless base stations constituting a wireless communication system and having directivity in a vertical plane.
  • First antenna selecting means for selecting an antenna for which the tilt angle should be reduced; second antenna selecting means for selecting an antenna for which the tilt angle should be increased; and the first antenna selecting means or the second antenna selecting means Means for calculating the deterioration rate of the entire system after changing the tilt angle of the antenna selected at least once by changing the tilt angle, and
  • Data storage means for storing the deterioration rate calculated by the deterioration rate calculation means together with its tilt angle
  • one or both of the first antenna selecting means and the second antenna selecting means may select an antenna based on the degradation rate of the coverage of the antenna.
  • the processing switching means for outputting switching information for selecting one of the operation by the first antenna selecting means, the operation by the second antenna selecting means, and the end of the processing;
  • a switching number counter for counting the switching information to be output, and a tilt angle of the antenna selected by the first antenna selecting means or the second antenna selecting when the number of switching counted by the switching number counter becomes a certain value or more.
  • Tilt angle update parameter setting means for changing the update angle of the
  • selection of an antenna for reducing the tilt angle and selection of an antenna for increasing the tilt angle are performed independently as a first step and a third step.
  • the deterioration rate of the entire system after the tilt angle is changed for the antenna is calculated.
  • the tilt angle is obtained based on the calculated deterioration rate of the entire system.
  • the selection of the antenna for adjusting the tilt angle is performed independently in the direction in which the update of the tilt angle is reduced and in the direction in which the update of the tilt angle is increased, so that the selection result becomes different by selecting the selection criterion. It is a big one.
  • the tilt angle of one antenna When the tilt angle of one antenna is determined and then the antenna is selected again to set the tilt angle, the antenna of a certain tilt angle interferes with an adjacent area, and the optimum antenna of another antenna is used. Even in a wireless communication system that affects a large tilt angle, the tilt angle of each antenna can be set to sufficiently reduce the deterioration rate of the entire system.
  • the first effect is that a tilt angle that reduces the deterioration rate of the entire system as compared with the initial value of the tilt angle is obtained.
  • the second effect is that, by automating the tilt angle determination, anyone with the same initial setting can obtain the same optimal tilt angle result regardless of experience.
  • a third effect is that the tilt angle can be determined quickly and accurately S.
  • FIG. 1 is a flowchart showing a process of the tilt angle determination method performed in the first embodiment of the present invention.
  • the present embodiment determines the tilt angle of an antenna in a wireless communication system including a plurality of wireless base stations each provided with an antenna having vertical in-plane directivity such as a CDMA cellular system.
  • the deterioration rate of each antenna is calculated by a simulator having a simulation function.
  • the processing in the present embodiment includes steps AO-All described below.
  • a step of setting an initial value of the tilt angle (Step AO), a step of calculating a deterioration rate at the initial value of the tilt angle (Step A1), and selecting an antenna for reducing the tilt angle by a predetermined evaluation index (Step A2), the step of reducing the tilt angle of the selected antenna (Step A3), the step of calculating the deterioration rate when the tilt angle is reduced (Step A4), and the steps A2 to A4.
  • Step A6 Selecting the antenna with a predetermined evaluation index (Step A6), increasing the tilt angle of the selected antenna (Step A7), and calculating the deterioration rate when the tilt angle is increased (Step A8)
  • Step A9 A step of determining whether to repeat the process of increasing the tilt angle performed in steps A6 to A8 (step A9), and a step of outputting the tilt angle at which the deterioration rate decreases (step A10).
  • Step A2 Continuousue to determine whether to repeat the processing performed in A10.
  • an initial value of some tilt angle is usually used. Is set to In that case, those chinoret angles are set as initial values in step AO.
  • the initial value can be set to any angle, but if the initial tilt angle is not set, for example, the angle when the peak of the beam pattern in the vertical plane of the antenna is directed to a point that bisects the distance between base stations As good as, Thereafter, the deterioration rate is calculated from the initial value set in step AO (step Al).
  • Steps A2 to A5 are, as described above, a state in which the transmission power is concentrated inside (near) the original coverage of the antenna by reducing the tilt angle of the antenna from a large state to a small state. This is done taking into account the characteristic that the received power within the coverage of the antenna tends to increase by distributing the transmission power within the original coverage of the antenna.
  • step A2 The step of selecting an antenna for reducing the tilt angle (step A2) will be described.
  • an antenna whose tilt angle is to be reduced is selected according to a predetermined evaluation index.
  • the predetermined evaluation indices include the degradation rate of the coverage of each antenna at the tilt angle at the time when step A2 is processed. Used. Furthermore, the evaluation index may be weighted by the importance of coverage. [0045] Then, an "antenna having a deterioration rate of coverage of the antenna equal to or more than a predetermined value" is selected as an antenna whose tilt angle should be reduced. Alternatively, a method of selecting “the top several antennas in descending order of the antenna coverage degradation rate” as the target antenna for which the tilt angle should be reduced is adopted.
  • step A3 the step of reducing the tilt angle
  • the tilt angle of one or more antennas selected in step A2 is set small.
  • the tilt angle is updated at a constant angle (for example, 1 degree).
  • step A4 the step of calculating the deterioration rate.
  • the degradation rate of the coverage of the antenna and the degradation rate of the entire system after the chinoleto angle of the antenna is reduced in step A3 are calculated.
  • step A5 the continuation determination step (step A5) of the process of reducing the tilt angle will be described.
  • this step it is determined whether or not the series of steps A2, A3, and A4 is to be repeated.
  • the steps A2, A3, and A4 are repeated and a predetermined “deterioration rate of the entire system” is obtained. If it is less than the above, the repetition of steps A2, A3, and A4 ends, and the process proceeds to the next processing.
  • steps A2, A3, and A4 Since the processes in steps A2, A3, and A4 are performed for all the antennas selected in step A2, "the antenna whose coverage degradation rate is equal to or more than a predetermined value" or "the antenna coverage is reduced.” Steps A2, A3, and A3 until the “deterioration rate of the entire system” after updating the tilt angle of the “deterioration rate of The process of A4 is repeated.
  • step A5 may be combined with the number of times steps A2, A3, and A4 are repeated. Even if the deterioration rate of the entire system obtained in step A4 is equal to or higher than the predetermined deterioration rate, the processing is terminated if the predetermined number of repetitions is equal to or more than the predetermined number of repetitions, thereby limiting the processing time by repeating steps A2, A3, and A4. can do.
  • the steps A6 to A9 are performed by increasing the tilt angle of the antenna from a small state to a large angle, in other words, changing the antenna from the state where sufficient transmission power is spread within the original coverage to the original state of the antenna. Concentrate transmission power inside (in front of) coverage This tends to reduce the transmit power within the coverage of that antenna. As a result, the degradation rate of the antenna tends to increase, but in a coverage where the degradation rate is sufficiently small, the increase in the degradation rate by increasing the tilt angle is often small. At this time, consideration is given to the property that the interference power to the coverage of the adjacent antenna is reduced, and the degradation rate of the coverage of the antenna in P contact is often reduced.
  • the step of selecting an antenna to increase the tilt angle (Step A6), the step of increasing the tilt angle (Step A7), the degradation rate of the coverage of each antenna with the increased tilt angle, and the degradation rate of the entire system (Step A8), the processing of repeating the processing of Steps A6, A7, and A8, and the continuation determination step of the repeated processing (Step A9) include the above-described steps A2, A3, A4, A5, and tilt
  • the processing itself is the same, only the difference in the direction of updating the angle (the force vj to increase and the force to reduce).
  • the evaluation index for selecting the antenna whose tilt angle is to be updated, and the predetermined index for updating the tilt angle The constant angle is set independently of the process of reducing the tilt angle.
  • an evaluation index when selecting an antenna for updating the tilt angle a degradation rate of coverage of each antenna at the tilt angle at the time when step A6 is processed is used. Further, the evaluation index may be weighted by the importance of the coverage.
  • an antenna whose coverage degradation rate is equal to or less than a predetermined value is selected as an antenna whose tilt angle should be increased.
  • a method is used in which “the top several antennas in ascending order of the antenna coverage degradation rate” are selected as antennas for which the tilt angle should be increased.
  • step A6 The step of selecting an antenna for increasing the tilt angle (step A6) will be described.
  • an antenna whose tilt angle is to be increased is selected according to a predetermined evaluation index.
  • the predetermined evaluation indices include the degradation rate of the coverage of each antenna at the tilt angle at the time when step A6 is processed. Used. Furthermore, the evaluation index may be weighted by the importance of coverage. Then, “an antenna whose coverage degradation rate is equal to or less than a predetermined value” is selected as an antenna whose tilt angle should be increased. Alternatively, a method is used in which “the top several antennas in ascending order of the antenna coverage degradation rate” are selected as antennas for which the tilt angle should be increased.
  • step A7 the step of increasing the tilt angle (step A7) will be described.
  • the tilt angles of one or more antennas selected in step A6 are set to be large.
  • the tilt angle is updated at a constant angle (for example, 1 degree).
  • step A8 the step of calculating the deterioration rate.
  • the degradation rate of the coverage of the antenna and the degradation rate of the entire system after the chinoleto angle of the antenna is increased in step A7 are calculated.
  • step A9 the continuation determination step (step A9) of the process of increasing the tilt angle will be described.
  • this step it is determined whether or not a series of steps A6, A7, A8 is to be repeated.
  • a judgment index if the deterioration rate of the entire system obtained in step A8 is equal to or more than a predetermined deterioration rate, the steps A6, A7, and A8 are repeated, and a predetermined “deterioration rate of the entire system” is obtained. If it is less than the above, the repetition of steps A6, A7, and A8 ends, and the process proceeds to the next processing.
  • the predetermined deterioration rate used in step A9 may be the same as or different from the predetermined deterioration rate used in step S5.
  • steps A6, A7, and A8 Since the processes in steps A6, A7, and A8 are performed for all the antennas selected in step A6, the "antennas whose antenna coverage degradation rate is equal to or greater than a predetermined value" or the "antenna coverage" Steps A6, A7, and A7 until the “deterioration rate of the entire system” after updating the tilt angle of the “deterioration rate of The process of A8 is repeated.
  • step A9 may be used in combination with the number of times steps A6, A7, and A8 are repeated. Even if the deterioration rate of the entire system obtained in step A8 is equal to or greater than the predetermined deterioration rate, if the number of repetitions is equal to or greater than the predetermined number of times, the processing is terminated, thereby limiting the processing time due to the repetition of steps A6, A7, and A8. can do.
  • step A10 the step of outputting a tilt angle at which the deterioration rate becomes small.
  • step A10 finalize each antenna in step A3 or step A7. It outputs the set tilt angle, in other words, the tilt angle that minimizes the deterioration rate of the entire system among the tilt angles set so far for each antenna.
  • step Al 1 the processing continuation determining step (step Al 1) will be described.
  • the deterioration rate of the entire system based on the tilt angle of each antenna output in step A10 is calculated.If this value is equal to or greater than a predetermined value, the repetition of steps A2 to A10 is continued, and the value is less than the predetermined value If so, the process ends.
  • the predetermined deterioration rate used in step All may be the same as or different from the predetermined deterioration rate used in step S5. Further, the predetermined deterioration rate used in step All may be the same as or different from the predetermined deterioration rate used in step S9.
  • step All may be used in combination with the number of times a series of processing from step A2 to A10 is repeated. Even if the deterioration rate of the entire system obtained in step Al 1 is equal to or higher than the predetermined deterioration rate, if the number of repetitions is equal to or greater than the predetermined number of times, the process is terminated, and a series of processing from step A2 to A10 is repeated. The ability to limit processing time.
  • FIG. 2 is a block diagram showing the configuration of an apparatus that executes the processing shown in the flowchart of FIG. 1, and shows the directivity in the vertical plane arranged in each of a plurality of wireless base stations constituting the wireless communication system.
  • This is a device for determining the tilt angle of a held antenna.
  • This device is for determining the tilt angles of a plurality of antennas, and can be realized by a general computer, and the arrangement location is not particularly limited.
  • Each antenna is set according to the tilt angle determined by this device, but the setting may be made manually.Also, each radio station controls the tilt angle of the antenna according to the output of this device. It is also possible to provide a control device, supply the output of the present device to the angle control device, and automatically set the tilt angle of the antenna.
  • the tilt angle determination device of the present embodiment includes a means 5 for outputting an initial value of the tilt angle, and an initial value for calculating and outputting a deterioration rate at the initial value of the tilt angle.
  • An antenna selecting means for selecting an antenna for increasing the tilt angle; an antenna selecting means for increasing the tilt angle; a first tilt angle updating means for reducing the selected antenna by a fixed angle; and a fixed angle for the selected antenna.
  • the means 5 for outputting the initial value of the tilt angle will be described. This means performs the same processing as in step AO described above, and outputs an initial value of the tilt angle.
  • the means 10 for calculating the deterioration rate at the initial tilt angle will be described.
  • the degradation rate calculation means 10 at the initial tilt angle receives the tilt angle output from the tilt angle output means 5 as an input, and receives the degradation rate of the coverage of each antenna at the tilt angle and the degradation rate of the entire system. Is calculated.
  • the method of calculating these deterioration rates is the same as in step A1. Then, the above-described deterioration rate as a calculation result is output.
  • the output destination is the processing switching means 20.
  • the process switching unit 20 receives the output information from the process switching control unit 50 as an input, and according to the input, reduces the separately input deterioration rate, the antenna selecting unit 30 that increases the tilt angle, or the antenna selection unit 30 that reduces the tilt angle. Then, the processing is terminated by switching to the antenna selecting means 60 to be performed or terminating without outputting to any of them.
  • the deterioration rate separately input to the process switching means 20 is the deterioration rate of each antenna supplied from the deterioration rate calculating means 10 or the updated deterioration rate calculating means 45 at the initial tilt angle. This is information on the rate and the deterioration rate of the entire system.
  • the antenna selection means 30 for reducing the tilt angle selects an antenna for reducing the tilt angle using the coverage degradation rate of each antenna input from the processing switching means 20, and stores information on the selected antenna as a fourth information. It is supplied to the tilt angle updating means 40 of 1. Based on evaluation index The operation of selection is the same as step A2 described above.
  • the antenna selecting means 60 for increasing the tilt angle is different from the antenna selecting means 30 for decreasing the tilt angle in that an antenna for increasing the tilt angle is selected.
  • the information of the antenna selected here is supplied to the second tilt angle updating means 70.
  • the first tilt angle updating means 40 receives the antenna information which is the output information of the antenna selecting means 30 for reducing the tilt angle as an input, reduces the tilt angle of the selected antenna by a predetermined angle, and reduces the tilt angle.
  • the value of the tilt angle is supplied to the deterioration rate calculation means 45 at the updated tilt angle and the data storage means 80 for the tilt angle and the deterioration rate.
  • the second tilt angle updating means 70 differs from the first tilt angle updating means 40 in the direction in which the tilt angle is updated. That is, the antenna information, which is the output information of the antenna selecting means 60 for increasing the tilt angle, is input, the tilt angle of the selected antenna is increased by a predetermined angle, and the value of the increased tilt angle is updated.
  • the data are supplied to the deterioration rate calculation means 45 and the tilt angle and deterioration rate data storage means 80 in FIG.
  • the process switching control means 50 receives the degradation rate of the coverage of each antenna and the degradation rate of the entire system, which are outputs from the degradation rate calculation means 45 at the updated tilt angle, and receives the degradation rate of the entire system. If the value is equal to or more than the predetermined value, the current processing is not switched and the current processing is continued. If the deterioration rate of the entire system is less than the predetermined value, the processing is switched and the processing is switched to the next processing operation. Supply control signal to 20. At this time, the switching operation may be performed according to the number of times of inputting the deterioration rate of the entire system in combination with the deterioration rate of the entire system.
  • control signal is supplied to the process switching means 20 so as to switch the system.
  • a control signal for terminating the processing is supplied when the number of times of switching becomes equal to or more than a predetermined number.
  • the process switching control means 50 receives the input of the deterioration rate of the entire system, which is the output of the tilt angle for reducing the deterioration rate, and outputs the tilt rate of the entire system as a predetermined value. If it is below, a control signal for terminating the process is supplied to the process switching means 20.
  • the tilt angle and deterioration rate data storage means 80 stores the tilt angle information output by the first tilt angle update means 40 and the second tilt angle update means 70, and the deterioration rate at the updated tilt angle.
  • Calculation means The degradation rate of coverage of each antenna output by 45 and the degradation rate of the whole system Is input. Then, the tilt angle information and the deterioration rate data of the entire system are stored and stored. Then, the information on the tilt angle and the information on the deterioration rate of the entire system are supplied to means 90 for outputting a tilt angle for reducing the deterioration rate.
  • the means 90 for outputting the tilt angle for reducing the deterioration rate stores the data of the tilt angle and the deterioration rate of the entire system output from the tilt angle and the deterioration rate data storage means 80 to minimize the deterioration rate of the entire system. Is output as the optimum tilt angle. Further, the means 90 for outputting a tilt angle for reducing the deterioration rate supplies information on the deterioration rate of the entire system at the optimum tilt angle to the process switching control means 50.
  • the means 5 for outputting the initial value of the tilt angle supplies the initial value of the tilt angle to the deterioration rate calculating means 10 at the initial value of the tilt angle. Then, the degradation rate calculation means 10 at the initial tilt angle supplies the calculated degradation rate of the coverage of each antenna and the degradation rate of the entire system to the processing switching means 20.
  • the process switching unit 20 supplies the supplied degradation rate to either the antenna selecting unit 30 for reducing the tilt angle or the antenna selecting unit 60 for increasing the tilt angle.
  • the antenna selecting means 30 for reducing the tilt angle selects the antenna based on the supplied degradation rate of the coverage of each antenna, and selects the antenna.
  • the information is supplied to the first tilt angle updating means 40.
  • the first tilt angle updating means 40 reduces the tilt angle of the selected antenna by a certain angle, and the deterioration rate calculating means 45 for the tilt angle after the tilt angle is updated, and data storage of the tilt angle and the deterioration rate. Supply to means 80.
  • the degradation rate calculation means 45 at the updated tilt angle calculates the coverage degradation rate of each antenna and the degradation rate of the entire system based on the tilt angle, and performs processing switching means 20, processing switching control means 50, and The tilt angle and the deterioration rate are supplied to the data storage means 80.
  • the process switching means 20 again supplies the coverage of each antenna and the deterioration rate of the entire system supplied from the deterioration rate calculating means 45 at the updated tilt angle to the antenna selecting means 30 for reducing the tilt angle. In this operation, the resupply operation in the switching means 20 is performed under the control of the processing switching control means 50.
  • the process switching control means 50 supplies a switching control signal to the switching disconnector 20 based on the value of the deterioration rate of the entire system or the number of times of inputting the deterioration rate of the entire system. Based on the control signal from the processing switching control means 50, the processing switching means 20 changes the coverage degradation rate of each antenna from the antenna selecting means 30 for reducing the tilt angle to the antenna selecting means 60 for increasing the tilt angle. Switch the supply destination of the deterioration rate of the entire system.
  • the process switching control means 50 supplies a control signal for terminating the process to the processor switching 20 when the switching control signal output reaches a predetermined number.
  • the tilt angle and degradation rate data storage means 80 stores the input tilt angle, coverage degradation rate of each antenna, and degradation rate data of the entire system, and stores the tilt angle and degradation rate of the entire system. Is supplied to a means 90 for outputting a tilt angle for reducing the deterioration rate.
  • the means 90 for outputting the tilt angle for reducing the deterioration rate outputs the optimum tilt angle and also the deterioration rate of the entire system at the chinole angle.
  • the degradation rate of the entire system at that tilt angle is supplied to the processing switching control means 50. If the degradation rate of the entire system is equal to or less than a predetermined value, the processing switching control means 50 outputs a control signal for terminating the processing to the processing switching means. Supply 20.
  • the processing switching means 20 ends the processing based on the control signal for ending the processing.
  • the deterioration rate of the entire system at the initial value of the tilt angle is calculated, and further, the deterioration rate of the entire system is calculated at the changed tilt angle after updating the tilt angle. Then, a tilt angle at which the deterioration rate is reduced is output. Therefore, it is possible to obtain a tilt angle at which the deterioration rate of the entire system is smaller than the deterioration rate of the entire system at the initial value.
  • the method of updating the tilt angle is divided into two simple steps of making the angle smaller or larger, and a method of repeating those steps is adopted. Therefore, it can be processed by a computer and is suitable for automating tilt angle adjustment.
  • the present embodiment instead of a person predicting the propagation environment and updating to the tilt angle expected to be optimized all at once as in the past and trying many tilt angles using the propagation simulator, By repeating the update at a fixed angle each time, the optimal It is possible to approach the Noret angle.
  • the selection of an antenna to be adjusted is conventionally performed in order to implement the selection of an antenna for which the tilt angle should be updated, which has been empirically performed by a human, using a predetermined evaluation index. Can also be automated. As described above, according to the present embodiment, the labor and time required for determining the tilt angle can be significantly reduced.
  • each step since each step operates according to a predetermined evaluation index, it does not have an operation based on empirical judgment. Therefore, the obtained result can be given certain reliability. In other words, if the same evaluation index and the same initial parameter are set in a certain wireless communication system, the embodiment of the present invention can obtain the same result regardless of experience.
  • an antenna whose antenna coverage degradation rate is equal to or more than a predetermined value or “an antenna coverage degradation rate is small, large, large, high, and small” Antenna ".
  • this selection makes it possible to reduce the tilt angle only for an antenna having a large antenna coverage degradation rate.
  • the received power within the coverage of the antenna tends to increase, so that the coverage degradation rate of the antenna decreases.
  • an antenna with a small deterioration rate of antenna coverage is not selected.
  • the antenna having a small degradation rate of the coverage S of the antenna does not reduce the tilt angle, and thus does not increase the degradation rate of the interference wave which does not increase the interference wave power to the coverage of the adjacent antenna.
  • the degradation rate of the entire system is reduced by reducing the degradation rate of the antenna and reducing the degradation rate of other antennas by reducing the degradation rate of other coverage areas. S can.
  • an antenna effective for reducing the deterioration rate of the entire system is selected from a large number of antennas, and the tilt angle is changed to further improve the system.
  • the overall deterioration rate can be reduced.
  • FIG. 3 is a flowchart showing the operation of the second exemplary embodiment of the present invention.
  • the tilt angle is reduced between step A1 and step A2 in the flowchart showing the operation of the first embodiment shown in FIG. 1 in accordance with the cumulative number of processes of repeating the entire process.
  • a parameter setting step (Step A12) is added, and a parameter setting step (Step A13) is added between Step A5 and Step A6 to increase the tilt angle in accordance with the cumulative number of times of the process of repeating the entire process. It is.
  • the parameter setting step (step A12) for reducing the tilt angle is a series of steps of "steps A12, A2, A3, A4, A5, A13, A6, A7, A8, A9, A10, Al1"
  • the tilt angle update parameter in the step of reducing the tilt angle (step A3) is set as follows in accordance with the number of times that the process is repeated.
  • the amount of change at each update for reducing the tilt angle is set to a predetermined constant angle (for example, 1.0 degree).
  • the update range is set between the tilt angle at which the deterioration rate of the entire system has been the smallest and the tilt angle at which the deterioration rate of the entire system has become the second smallest, and Set the amount of change for each update that reduces the tilt angle to half the angle set in the previous step A12 (for example, 0.5 degrees).
  • the tilt angle is reduced in a range and a change amount according to the set tilt angle update parameter.
  • the parameter setting step for increasing the tilt angle is the same as the step for decreasing the tilt angle (step A3), as in steps A12, A2, A3, A4, A5, A13, A6, A7, A8, A9, A10, All, depending on the number of times the series
  • the tilt angle update parameter in the step of increasing the tilt angle is set as follows.
  • the amount of change for each update that increases the tilt angle is set to a predetermined constant angle (for example, 1.0 degree).
  • the update range is set between the tilt angle at which the deterioration rate of the entire system has been the smallest and the tilt angle at which the deterioration rate of the entire system has become the second smallest, and Set the amount of change for each update that increases the tilt angle to half the angle set in the previous step A13 (for example, 0.5 degrees).
  • the tilt angle is increased in the range and the variation according to the set tilt angle update parameter.
  • FIG. 4 is a block diagram showing the configuration of a system in which the processing flow of FIG. 3 is executed.
  • the tilt angle update parameter is set to the first number of times.
  • a tilt angle updating parameter setting means 110 is provided for setting the tilt angle updating means 40 and the first tilt angle updating means 70.
  • the other configuration is the same as that shown in FIG. 2, and the description is omitted.
  • the switching number counter 100 counts switching information output from the processing switching unit 20, and supplies a start instruction to the tilt angle update parameter setting unit 110 when the number of switching becomes equal to or more than a predetermined constant number. I do.
  • the tilt angle updating parameter setting means 110 previously set the first tilt angle updating means 40 with respect to the first tilt angle updating means 40 based on the start instruction from the switching number counter 100.
  • the update tilt angle (for example, 1.0 degrees) of the tilt angle update parameter is set to half (0.5 degrees) this time.
  • the tilt angle update parameter setting means 110 inputs the tilt angle, the degradation rate of coverage of each antenna, and the degradation rate of the entire system, which are the past calculation results output from the tilt angle and degradation rate data storage means 80. From the input data, the tilt angle that minimizes the deterioration rate of the entire system so far and the second A tilt angle update range is set between the tilt angle and the tilt angle that reduces the body deterioration rate.
  • the tilt angle update parameter setting means 110 similarly transmits the second tilt angle to the second tilt angle update means 70 based on the activation instruction from the switching number counter 100 in the same manner.
  • the update tilt angle (for example, 1.0 degrees) of the tilt angle update parameter set by the update means 70 is set to half (0.5 degrees) this time.
  • the tilt angle update parameter setting means 110 inputs the tilt angle, the degradation rate of the coverage of each antenna, and the degradation rate of the entire system, which are the past calculation results output from the tilt angle and degradation rate data storage means 80, as inputs. Then, from the input data, a tilt angle update range is set between the tilt angle that minimizes the deterioration rate of the entire system and the second tilt angle that minimizes the deterioration rate of the entire system.
  • the tilt angle update parameter setting means 110 is activated when the switching frequency counter 100 is equal to or greater than a predetermined cumulative switching frequency.
  • the tilt angle update parameters are set in the first tilt angle update means 40 and the tilt second tilt angle update means 70.
  • the operation of the second embodiment of the present invention has an effect that the tilt angle can be determined quickly and accurately, in addition to the operation of the first embodiment.
  • the angle of updating the tilt angle is initially increased, so that the number of updates until the tilt angle approaches the optimum value can be reduced. That is, it is possible to quickly approach the optimum value in which the processing time is short.
  • the angle of the update is reduced, the difference between the tilt angle after the update and the optimum value can be further reduced. That is, an accurate tilt angle closer to the optimum value can be obtained.
  • the tilt angle can be updated. Since the angle update range is limited, the number of tilt angle updates can be reduced. In other words, the processing time is short and fast, and the optimum value can be approached. Therefore, if the processing time is the same, the deterioration rate can be further reduced.
  • the present invention can be used to determine the following so that the deterioration rate of the entire wireless communication system is reduced.
  • FIG. 1 is a processing flow according to the first embodiment of the present invention.
  • FIG. 2 is a system diagram according to the first embodiment of the present invention.
  • FIG. 3 is a processing flow according to a second embodiment of the present invention.
  • FIG. 4 is a system diagram according to a second embodiment of the present invention.
  • FIG. 5 shows an overview of adjusting the tilt angles of two antennas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

 無線通信システムにおいてシステム全体の劣化率を小さくするチルト角を得られるチルト角決定方法、およびシステムを提供することにある。チルト角の初期値を設定するステップと、チルト角が初期値での劣化率を計算するステップと、チルト角を小さくするアンテナを選出するステップと、選出したアンテナのチルト角を小さくするステップと、チルト角を小さくしたときの劣化率を計算するステップと、それら一連のチルト角を小さくする処理を繰り返し、繰り返しの継続判定をするステップと、同様にチルト角を繰り返し大きくする処理を有する。さらに、劣化率が小さくなるチルト角を出力するステップと、上記、全体を繰り返す処理の終了を判定するステップとを有する。このように定められた処理によって、チルト角の初期値と比べてシステム全体の劣化率を小さくするチルト角を得ることができる。

Description

無線通 1 、角決定方法、およびチルト角
技術分野
[0001] 本発明は、複数の基地局を含む無線通信システムに関し、特に、無線通信システ ム全体の劣化率を小さくするために各基地局に配置されているアンテナのチルト角 を決定する際に用いられるアンテナのチルト角決定方法、およびチルト角決定装置 明
に関するものである。
背景技術
[0002] 複数のエリアにわたって分布する固定ユーザや移動体ユーザに無線通信回線を 提供する複数の基地局を含む無線通信システムにおレ、て、無線通信システムを構築 する際やすでに存在する無線通信システムに無線局を追加配置するような場合には 、高品質な無線通信回線を提供できるように各基地局に配置される垂直面内指向性 を持つアンテナのチルト角が決定される。
[0003] チルト角を決定することは、各基地局に配設されたアンテナのすべてについて行な われるのではなぐチルト角を予め定められた初期角度から変更することで、より高品 質な無線通信回線を提供することに効果的と思われるアンテナについてのみ行なわ れる。アンテナの選択および選択したアンテナのチルト角の決定は、担当者により、 以下の手順にて行なわれる。
[0004] まず、伝搬シミュレータにより、チルト角を決定するアンテナが設置されている基地 局の位置、標高、建物、地形等の情報に基づき、アンテナから所定の地点までの伝 搬ロスを求める。そして、アンテナからの送信電力、アンテナの向き、アンテナの水平 面および垂直面内ビームパターン、先に求めた伝搬ロスから、アンテナから送信され た信号が所定の地点で受信されるときの受信電力を計算し、また、 S/N (信号対雑 音)比や SIR (信号電力対干渉比)で示される受信品質を計算する。ここで、所定の 値の受信電力や受信品質を満たしていない地点を、「劣化地点」と定義する。
[0005] 上記の計算結果から、各アンテナのカバレージの劣化率を算出する。ここで、各ァ ンテナのカバレージとは、各アンテナからの信号の受信電力が他のどのアンテナから の信号の受信電力よりも大きぐかつ、一定値以上である領域として定義される。無 線通信システムがカバーすべきエリアは分割されて無線通信システムを構成する各 無線局に割り当てられるが、この割り当てられた領域がカバレージとなり、システム全 体のカバレージは、各アンテナのカバレージを合計した領域である。また、劣化率は
、指定のカバレージ内における劣化地点の占める割合により定義される。
[0006] 以上の定義のもと、各アンテナのカバレージの劣化率と、システム全体の劣化率と が得られる。伝搬シミュレータに備えられた表示装置には各アンテナのカバレージが その中の劣化地点が判別できるように表示され、アンテナのチルト角を決定する担当 者は表示内容からチルト角を変更するアンテナを選択し、そのチルト角を指定する。
[0007] 図 5はアンテナのチルト角の調整動作を示す図である。それぞれがビームパターン を有するアンテナ 1, 2のチルト角を調整することによって、各アンテナのカバレージ 内の通信品質を表す劣化率 (各アンテナのカバレージの劣化率) Χ° ^Υ%が改善 されるように調整を施すともに、システム全体の劣化率2%を改善するように調整する
[0008] アンテナのチルト角を大きい状態から小さくすることによって、換言するとアンテナの 本来のカバレージよりも内側(手前)に送信電力を集中させていた状態からアンテナ の本来のカバレージ内に送信電力を行き渡らせることによって、そのアンテナのカバ レージ内の受信電力は大きくなる傾向がある。
[0009] 逆に、アンテナのチルト角を小さい状態から大きくすることによって、換言すると本 来のカバレージ内に十分な送信電力を行き渡らせていた状態からアンテナの本来の カバレージよりも内側(手前)に送信電力を集中させることによって、そのアンテナの カバレージ内の受信電力は小さくなる傾向がある。その結果、そのアンテナの劣化率 は大きくなる傾向があるものの、その劣化率が十分小さいカバレージにおいては、チ ルト角を大きくすることによる劣化率の増加は僅かであることが多レ、。このとき、 P 接 するアンテナのカバレージへの干渉電力は小さくなるため、隣接するアンテナのカバ レージの劣化率は小さくなることが多い。
[0010] 上記のような一般的な傾向を踏まえ、劣化率が小さくなるように担当者がチルト角を 決定していた。
[0011] アンテナのチルト角の調整について、特許文献 1 (実開平 02-135884号公報)に はレーダの空中線によって目標を捜索するときに、捜索距離と設置高さからチルト角 を演算する演算器と、演算器出力と空中線から出力されるチルト角信号とを比較して チルト角を制御する比較制御器が開示されてレ、る。
[0012] 特許文献 2 (特開 2002—095040号公報)には、無線ネットワークを設計 ·調整する 際や動作させる際に、最適化プロセスを利用して動作パラメータを決定することにより
、無線ネットワークの設計 ·調整を容易にすることが記述されており、この動作パラメ ータの一つとしてアンテナの向きが挙げられている。
[0013] 特許文献 3 (特開平 11—166964号公報)には、衛星追尾を行なうためにステップト ラック方式でアンテナの角度を補正する際に、補正の初期の段階では大きなステップ サイズでアンテナの角度を補正し、その後ステップサイズを徐々に小さくしてアンテナ を最適な方向に向ける方法が開示されている。
[0014] 上述した従来技術のうち、特許文献 1に記載されている技術はレーダに関するもの であり、アンテナが複数設けられる無線通信システムにおいてシステム全体の劣化率 を考慮したアンテナのチルト角制御にっレ、ては述べられてレ、なレ、。
[0015] 特許文献 2に開示される技術は、無線ネットワークを設計'調整させる際および動作 させる際に、最適化プロセスを利用してアンテナの向きを含む動作パラメータを決定 すると記述されているが具体的な手法としては単にネットワーク最適化プロセスによる とされているだけであり、その内容が明確ではない。
[0016] 特許文献 3に開示される技術は、衛星追尾を行なうためにステップトラック方式でァ ンテナの角度を補正するものであり、特許文献 1と同様に、無線通信システムにおい てシステム全体の劣化率を考慮したアンテナのチルト角制御については述べられて いない。
[0017] 特許文献 1 :実開平 02— 135884号公報
特許文献 2:特開 2002 - 095040号公報
特許文献 3:特開平 11 - 166964号公報
発明の開示 発明が解決しょうとする課題
[0018] 上述したように、無線通信システムにおけるチルト角を変更するアンテナの選出とそ のチルト角の決定は、伝搬環境を考慮した担当者により行なわれるが、その結果は 担当者の経験により変動するものであり、システム全体の劣化率も異なるものとなり、 安定した品質が保たれない。また、多数のアンテナから選出し、角度を決定すること は非常に時間の力、かる作業であった。
[0019] また、チルト角の決定において、同じアンテナについてチルト角を変えて伝播シミュ レーシヨンを複数回行なうことがあるが、このとき、更新角度を大きくすると、最適値を 飛び越えて遠ざかることがあり、反対に小さくすると数多くの更新回数が必要なので、 調整する際の更新角度の設定も重要となる。
[0020] 特に、非常に多くのアンテナが配置される大規模な無線通信システムの場合、限ら れた時間内にて、システム全体の劣化率を十分に小さくするチルト角を得るのは大変 困難であった。
[0021] さらに、あるチルト角のアンテナが隣接するエリアに干渉を与え、他のアンテナの最 適なチルト角に影響を与える場合、すなわち、相互に影響を及ぼしあう関係を持つ無 線通信システムの場合(例えば CDMA(Code Division Multiple Access))、チルト角 の最適化はさらに困難であった。各アンテナが相互に影響を及ぼしあっているため、 1つのアンテナを調整すると、その調整結果が他のアンテナに影響を与え、影響を及 ぼされたアンテナの調整がさらに必要となるためである。し力、も、必ずしも隣接エリア だけに影響を及ぼすわけではないことが最適化をより一層困難とし、システム全体の 劣化率を十分に小さくするチルト角を得ることは非常に難しかった。
[0022] 本発明は、上述したような従来の技術が有する課題に鑑みてなされたものであって 、無線通信システムにおいて、システム全体の劣化率を十分に小さくすることができ るチルト角決定方法を提供することを目的とする。また、人の違いによらず、同じ無線 通信システムであれば、システム全体の劣化率を十分小さくする同一のチルト角が得 られるチルト角決定方法を提供することを目的とする。
課題を解決するための手段
[0023] 本発明の無線通信システムのアンテナのチルト角決定方法は、無線通信、: を構成する複数の無線基地局に設けられた垂直面内指向性を持ったアンテナのチ ルト角決定方法であって、
チルト角を小さくするべきアンテナを選出する第 1のステップと、
前記第 1のステップにて選出されたアンテナのチルト角が小さくされたときのシステ ム全体の劣化率をチルト角を変えて 1回以上計算する第 2のステップと、
チルト角を大きくするべきアンテナを選出する第 3のステップと、
前記第 3のステップにて選出されたアンテナのチルト角が大きくされたときのシステ ム全体の劣化率をチルト角を変えて 1回以上計算する第 4のステップと、
前記第 2のステップにて計算されたシステム全体の劣化率および第 4のステップに て計算されたシステム全体の劣化率のうちの最小の劣化率に対応するチルト角を出 力する第 5のステップと、
を有することを特徴とする。
[0024] この場合、第 1のステップおよび第 2のステップの後に行なわれ、これらの各ステツ プでの処理を継続して行なうかの継続判定を行う第 6のステップと、
第 3のステップおよび第 4のステップの後に行なわれ、これらの各ステップでの処理 を継続して行なうかの継続判定を行う第 7のステップと、
第 1のステップないし第 7のステップの後に行なわれ、これらの各ステップでの処理 を継続して行なうかの継続判定を行う第 8のステップと、
を有することとしてもよい。
[0025] また、第 1のステップの直前に行なわれ、第 8のステップにて第 1のステップないし第 7のステップでの処理を継続して行なうと判定された場合には累積継続回数に応じて 第 2のステップにおレ、てチルト角を変えるために利用されるステップ角を変更する第 9 のステップを有することとしてもよレ、。
[0026] また、第 3のステップの直前に行なわれ、第 8のステップにて第 1のステップないし第 7のステップでの処理を継続して行なうと判定された場合には累積継続回数に応じて 第 4のステップにおレ、てチルト角を変えるために利用されるステップ角を変更する第 1 0のステップを有することとしてもよい。
[0027] さらに、チルト角を小さくするアンテナを選出する第 1のステップ、および、チルト角 を大きくするアンテナを選出する第 3のステップの一方または両方が、前記アンテナ のカバレージの劣化率に基づきアンテナを選出することとしてもよい。
[0028] 本発明の無線通信システムのアンテナのチルト角決定装置は、無線通信システム を構成する複数の無線基地局に設けられた垂直面内指向性を持ったアンテナのチ ルト角決定装置であって、
チルト角を小さくするべきアンテナを選出する第 1のアンテナ選出手段と、 チルト角を大きくするべきアンテナを選出する第 2のアンテナ選出手段と、 前記第 1のアンテナ選出手段または第 2のアンテナ選出手段により選出されたアン テナのチルト角変更後のシステム全体の劣化率をチルト角を変えて 1回以上計算す る劣化率計算手段と、
前記劣化率計算手段により計算された劣化率をそのチルト角とともに記憶するデー タ記憶手段と、
前記データ記憶手段に記憶されているチルト角と劣化率のデータのな力からシステ ム全体の劣化率を最も小さくするチルト角を出力する手段と、
を有することを特徴とする。
[0029] この場合、第 1のアンテナ選出手段および第 2のアンテナ選出手段の一方または両 方力 前記アンテナのカバレージの劣化率に基づレ、てアンテナを選出することとして あよい。
[0030] また、第 1のアンテナ選出手段による動作、第 2のアンテナ選出手段による動作、ま たは処理の終了のいずれかを選択する切替情報を出力する処理切替手段と、 前記処理切替手段から出力される切替情報をカウントする切替回数カウンタと、 前記切替回数カウンタでカウントされた切替回数が一定以上となると前記第 1のァ ンテナ選出手段または第 2のアンテナ選出により選出されたアンテナのチルト角の更 新角度を変更するチルト角更新パラメータ設定手段と、
を有することとしてもよい。
[0031] 上記のように構成される本発明においては、チルト角を小さくするアンテナの選出と チルト角を大きくするアンテナの選出とが第 1のステップと第 3のステップとして独立に 行なわれ、各アンテナについてチルト角変更後のシステム全体の劣化率が計算され 、この計算されたシステム全体の劣化率に基づいてチルト角が求められる。このように 、チルト角を調整するアンテナの選出もチルト角の更新を小さくする方向と大きくする 方向とに独立に行なわれるので、その選出基準を選択することによりその調整結果が 異なるものとなり、 自由度の大きなものとなっている。
[0032] また、 1つのアンテナのチルト角を決定した後に再度アンテナを選択してチルト角の 設定を行なう場合には、あるチルト角のアンテナが隣接するエリアに干渉を与え、他 のアンテナの最適なチルト角に影響を与える無線通信システムであっても、各アンテ ナのチルト角をシステム全体の劣化率を十分に小さくするものとできる。
発明の効果
[0033] 第 1の効果は、チルト角の初期値と比べてシステム全体の劣化率を小さくするチル ト角が得られることである。
[0034] 第 2の効果は、チルト角決定の自動化によって、同一の初期設定であれば誰でも経 験によらない同一の最適なチルト角の結果を得ることができる。
[0035] 第 3の効果は、チルト角の決定を、速く正確にすること力 Sできることである。
発明を実施するための最良の形態
[0036] 次に本発明の実施の形態について、図面を参照して詳細に説明する。
[0037] 図 1は、本発明の第 1の実施の形態で行なわれるチルト角決定方法の処理を示す フローチャートである。本実施の形態は、 CDMA方式のセルラシステムのような垂直 面内指向性を持ったアンテナがそれぞれ設けられた複数の無線基地局により構成さ れる無線通信システムでのアンテナのチルト角を決定するために行われる処理であり 、各アンテナの劣化率はシミュレーション機能を備えたシミュレータで計算される。
[0038] 本実施形態における処理は以下に説明するステップ AO— Al lから構成される。
[0039] チルト角の初期値を設定するステップ (ステップ AO)と、初期値のチルト角での劣化 率を計算するステップ (ステップ A1)と、チルト角を小さくするアンテナを所定の評価 指標によって選出するステップ (ステップ A2)と、選出したアンテナのチルト角を小さく するステップ (ステップ A3)と、チルト角を小さくしたときの劣化率を計算するステップ( ステップ A4)と、ステップ A2— A4で行なわれるチルト角を繰り返し小さくする処理を 繰り返し行なうかの継続判定をするステップ (ステップ A5)と、チルト角を大きくするァ ンテナを所定の評価指標によって選出するステップ (ステップ A6)と、選出したアンテ ナのチルト角を大きくするステップ(ステップ A7)と、チルト角を大きくしたときの劣化 率を計算するステップ(ステップ A8)と、ステップ A6— A8で行なわれるチルト角を繰 り返し大きくする処理を繰り返し行なうかの継続判定をするステップ (ステップ A9)と、 劣化率が小さくなるチルト角を出力するステップ (ステップ A10)と、ステップ A2— A1 0で行なわれる処理を繰り返し行なうかの継続を判定- で構成される。
[0040] 本実施形態の動作について、まず、チルト角の初期値を設定- プ AO)に関して説明する。
[0041] 垂直面内指向性を持ったアンテナを有する複数の無線基地局で構成される無線 通信システムにおいて、チルト角の最適化作業が施されていない場合、通常何らか のチルト角の初期値に設定されている。その場合には、ステップ AOにて、それらのチ ノレト角を初期値として設定する。初期値は任意の角度に設定できるが、初期チルト角 が設定されていない場合には、例えば基地局間距離を二等分する地点へアンテナ の垂直面内ビームパターンのピークを向けたときの角度としても良レ、。この後、ステツ プ AOにて設定された初期値により、劣化率が計算される(ステップ Al)。
[0042] ステップ A2乃至 A5は、上述したように、アンテナのチルト角を大きい状態から小さ くすることによって、換言するとアンテナの本来のカバレージよりも内側(手前)に送信 電力を集中させていた状態からアンテナの本来のカバレージ内に送信電力を行き渡 らせることによって、そのアンテナのカバレージ内の受信電力は大きくなる傾向がある という特性を考慮して行われる。
[0043] チルト角を小さくするアンテナを選出するステップ (ステップ A2)について説明する 。このステップでは所定の評価指標によってチルト角を小さくすべき対象のアンテナ を選出する。
[0044] 所定の評価指標にはいくつかのものがあるが、ここでは例として、所定の評価指標 に、このステップ A2が処理される時点のチルト角の、個々のアンテナのカバレージの 劣化率を用いる。さらにその評価指標はカバレージの重要度で重み付けしても良い [0045] そして、「アンテナのカバレージの劣化率が所定値以上のアンテナ」を、チルト角を 小さくすべきアンテナとして選出する。または「アンテナのカバレージの劣化率にぉレヽ て大きい順で上位いくつかのアンテナ」を、チルト角を小さくすべき対象のアンテナと して選出する方法をとる。
[0046] 次に、チルト角を小さくするステップ (ステップ A3)について説明する。このステップ では、ステップ A2にて選出された 1又は 2以上のアンテナのチルト角を小さく設定す る。小さくする際の、チルト角の更新角度は一定角度とする (例えば 1度)。
[0047] 次に、劣化率を計算するステップ (ステップ A4)について説明する。このステップで は、ステップ A3にてアンテナのチノレト角が小さくされた後のアンテナのカバレージの 劣化率とシステム全体の劣化率を計算する。
[0048] 次に、チルト角を小さくする処理の継続判定ステップ (ステップ A5)について説明す る。このステップでは、ステップ A2、 A3、 A4の一連の処理を繰り返すか否かの判定 をする。判定指標としては、ステップ A4で得られたシステム全体の劣化率が予め決 めた所定の劣化率以上であればステップ A2、 A3、 A4の繰り返しを継続し、所定の「 システム全体の劣化率」未満であればステップ A2、 A3、 A4の繰り返しを終了して次 の処理へ移る。
[0049] ステップ A2、 A3、 A4による処理はステップ A2にて選出されたアンテナの全てにつ いて行なわれるので、「アンテナのカバレージの劣化率が所定値以上のアンテナ」ま たは「アンテナのカバレージの劣化率にぉレ、て大きレ、順で上位レ、くつかのアンテナ」 のチルト角を更新した後の「システム全体の劣化率」が所定値未満となるまで、ステツ プ A2、 A3、 A4の処理は繰り返される。
[0050] なお、ステップ A5における判定指標をステップ A2、 A3、 A4を繰り返した回数を併 用するとしてもよレ、。ステップ A4で得られたシステム全体の劣化率が所定の劣化率 以上であっても、所定の繰り返し回数以上であれば終了とすることにより、ステップ A 2、 A3、 A4の繰り返しによる処理時間を制限することができる。
[0051] ステップ A6乃至 A9は、上述したように、アンテナのチルト角を小さい状態から大き くすることによって、換言すると本来のカバレージ内に十分な送信電力を行き渡らせ ていた状態からアンテナの本来のカバレージよりも内側(手前)に送信電力を集中さ せることによって、そのアンテナのカバレージ内の送信電力は小さくなる傾向がある。 その結果、そのアンテナの劣化率は大きくなる傾向があるものの、その劣化率が十分 小さいカバレージにおいては、チルト角を大きくすることによる劣化率の増加は僅か であることが多レ、。このとき、隣接するアンテナのカバレージへの干渉電力は小さくな るため、 P 接するアンテナのカバレージの劣化率は小さくなることが多いという性質を 考慮して行われる。
[0052] チルト角を大きくするアンテナを選出するステップ (ステップ A6)と、チルト角を大き くするステップ(ステップ A7)と、チルト角を大きくした各アンテナのカバレージの劣化 率とシステム全体の劣化率を計算するステップ (ステップ A8)と、ステップ A6、 A7、 A 8の処理を繰り返す処理と、その繰り返し処理の継続判定ステップ(ステップ A9)は、 上述のステップ A2、 A3、 A4、 A5と、チルト角の更新の方向(大きくする力 vj、さくする 力 の違いのみで、処理自体は同じである。ただし、チルト角を更新するアンテナを選 出する際の評価指標や、チルト角を更新する所定の一定角度などはチルト角を小さ くする処理とは、独立に設定されるものとする。
[0053] 例えば、チルト角を更新するアンテナを選出する際の評価指標としては、このステツ プ A6が処理される時点のチルト角での、個々のアンテナのカバレージの劣化率を用 いる。さらにその評価指標はカバレージの重要度で重み付けしても良い。
[0054] そして、「アンテナのカバレージの劣化率が所定値以下のアンテナ」を、チルト角を 大きくすべきアンテナとして選出する。または「アンテナのカバレージの劣化率にぉレヽ て小さい順で上位いくつかのアンテナ」を、チルト角を大きくすべき対象のアンテナと して選出する方法をとる。
[0055] チルト角を大きくするアンテナを選出するステップ (ステップ A6)について説明する 。このステップでは所定の評価指標によってチルト角を大きくすべき対象のアンテナ を選出する。
[0056] 所定の評価指標にはいくつかのものがあるが、ここでは例として、所定の評価指標 に、このステップ A6が処理される時点のチルト角の、個々のアンテナのカバレージの 劣化率を用いる。さらにその評価指標はカバレージの重要度で重み付けしても良い [0057] そして、「アンテナのカバレージの劣化率が所定値以下のアンテナ」を、チルト角を 大きくすべきアンテナとして選出する。または「アンテナのカバレージの劣化率にぉレヽ て小さい順で上位いくつかのアンテナ」を、チルト角を大きくすべき対象のアンテナと して選出する方法をとる。
[0058] 次に、チルト角を大きくするステップ(ステップ A7)について説明する。このステップ では、ステップ A6にて選出された 1又は 2以上のアンテナのチルト角を大きく設定す る。大きくする際の、チルト角の更新角度は一定角度とする (例えば 1度)。
[0059] 次に、劣化率を計算するステップ (ステップ A8)について説明する。このステップで は、ステップ A7にてアンテナのチノレト角が大きくされた後のアンテナのカバレージの 劣化率とシステム全体の劣化率を計算する。
[0060] 次に、チルト角を大きくする処理の継続判定ステップ (ステップ A9)について説明す る。このステップでは、ステップ A6、 A7、 A8の一連の処理を繰り返すか否かの判定 をする。判定指標としては、ステップ A8で得られたシステム全体の劣化率が予め決 めた所定の劣化率以上であればステップ A6、 A7、 A8の繰り返しを継続し、所定の「 システム全体の劣化率」未満であればステップ A6、 A7、 A8の繰り返しを終了して次 の処理へ移る。ここで、ステップ A9で利用する所定の劣化率は、ステップ S 5で利用 する所定の劣化率と同一であっても異なっていてもよい。
[0061] ステップ A6、 A7、 A8による処理はステップ A6にて選出されたアンテナの全てにつ いて行なわれるので、「アンテナのカバレージの劣化率が所定値以上のアンテナ」ま たは「アンテナのカバレージの劣化率にぉレ、て大きレ、順で上位レ、くつかのアンテナ」 のチルト角を更新した後の「システム全体の劣化率」が所定値未満となるまで、ステツ プ A6、 A7、 A8の処理は繰り返される。
[0062] なお、ステップ A9における判定指標をステップ A6、 A7、 A8を繰り返した回数を併 用するとしてもよレ、。ステップ A8で得られたシステム全体の劣化率が所定の劣化率 以上であっても、所定の繰り返し回数以上であれば終了とすることにより、ステップ A 6、 A7、 A8の繰り返しによる処理時間を制限することができる。
[0063] 次に、劣化率が小さくなるチルト角を出力するステップ (ステップ A10)について説 明する。このステップでは、ステップ A3またはステップ A7にて各アンテナに最終的に 設定されたチルト角、換言すると、これまでに各アンテナに対して設定されたチルト角 の中で、システム全体の劣化率が最も小さくなるチルト角を出力する。
[0064] 次に、処理継続判定ステップ (ステップ Al 1)につレ、て説明する。このステップでは 、上述のステップ A2から A10までの一連の処理を、繰り返すか否かの判定をする。 判定指標としては、ステップ A10で出力された各アンテナのチルト角によるシステム 全体の劣化率を求め、この値が所定の値以上であればステップ A2から A10の繰り 返しを継続し、所定の値未満であれば終了する。ここで、ステップ Al lで利用する所 定の劣化率は、ステップ S5で利用する所定の劣化率と同一であっても異なっていて もよレ、。また、ステップ Al lで利用する所定の劣化率は、ステップ S 9で利用する所定 の劣化率と同一であっても異なっていてもよい。
[0065] なお、ステップ Al lにおける判定指標をステップ A2から A10までの一連の処理を 繰り返した回数を併用するとしてもよレヽ。ステップ Al 1で得られたシステム全体の劣 化率が所定の劣化率以上であっても、所定の繰り返し回数以上であれば終了とする ことにより、ステップ A2から A10までの一連の処理の繰り返しによる処理時間を制限 すること力 Sできる。
[0066] 次に、本発明による装置の構成について、図 2を参照して説明する。
[0067] 図 2は、図 1のフローチャートに示した処理を実行する装置の構成を示すブロック図 であり、無線通信システムを構成する複数の無線基地局にそれぞれ配置された垂直 面内指向性を持ったアンテナのチルト角を決定するための装置である。本装置は複 数のアンテナのチルト角を決定するためのものであり、一般的なコンピュータにより実 現可能なもので、その配置箇所は特に限定されない。本装置により決定されたチルト 角によって各アンテナは設定されることとなるが、その設定は人手によるとしてもよぐ また、各無線局に本装置の出力に応じてアンテナのチルト角を制御する角度制御装 置を設け、該角度制御装置に本装置の出力を供給し、アンテナのチルト角を自動設 定するものとしてもよい。
[0068] 本実施形態のチルト角決定装置は、図 2に示されるように、チルト角の初期値を出 力する手段 5と、上記チルト角の初期値における劣化率を計算して出力する初期値 のチルト角における劣化率計算手段 10と、チルト角を小さくするか大きくするかを選 択、または終了の処理切替をする処理切替手段 20と、入力された劣化率に基づきチ ノレト角を小さくするアンテナを選出するチルト角を小さくするアンテナ選出手段 30と、 入力された劣化率に基づきチルト角を大きくするアンテナを選出するチルト角を大き くするアンテナ選出手段 60と、選出されたアンテナを一定の角度だけ小さくする第 1 のチルト角更新手段 40と、選出されたアンテナを一定の角度大きくする第 2のチルト 角更新手段 70と、更新後のチルト角における劣化率計算手段 45と、システム全体の 劣化率の値、または劣化率の入力回数に応じて、処理切替手段 20の動作を制御す る処理切替制御手段 50と、入力されるチルト角と劣化率のデータを記憶するチルト 角と劣化率のデータ記憶手段 80と、チルト角と劣化率のデータ記憶手段 80の出力 を受け、これを各アンテナの最適チルト角として出力する手段 90と、を有する。
[0069] まず、チルト角の初期値を出力する手段 5について説明する。この手段は、上述の ステップ AOと同様の処理をし、チルト角の初期値を出力する。
[0070] 初期値のチルト角における劣化率計算手段 10について説明する。初期値のチルト 角における劣化率計算手段 10は、チルト角の初期値を出力する手段 5から出力され たチルト角を入力として、そのチルト角における各アンテナのカバレージの劣化率と システム全体の劣化率を計算する。それらの劣化率の計算方法は、ステップ A1と同 様である。そして、計算結果である上記の劣化率を出力する。出力先は、処理切替 手段 20である。
[0071] 処理切替手段 20は、処理切替制御手段 50からの出力情報を入力として、入力に 従い、別途入力される劣化率を、チルト角を大きくするアンテナ選出手段 30、または 、チルト角を小さくするアンテナ選出手段 60へ切り替える、もしくはいずれにも出力す ることなく終端し、処理を終了とする。
[0072] 処理切替手段 20に別途入力される劣化率とは、初期値のチルト角における劣化率 計算手段 10または更新後の劣化率計算手段 45から供給される各アンテナの力バレ ージの劣化率とシステム全体の劣化率との情報である。
[0073] チルト角を小さくするアンテナ選出手段 30は、処理切替手段 20から入力される各 アンテナのカバレージの劣化率を用いてチルト角を小さくするアンテナを選出し、選 出したアンテナの情報を第 1のチルト角更新手段 40へ供給する。評価指標に基づく 選出の動作は、上述のステップ A2と同じである。
[0074] チルト角を大きくするアンテナ選出手段 60は、チルト角を大きくするアンテナを選出 する点がチルト角を小さくするアンテナ選出手段 30とは異なる。ここで選出したアン テナの情報は、第 2のチルト角更新手段 70へ供給する。
[0075] 第 1のチルト角更新手段 40は、チルト角を小さくするアンテナ選出手段 30の出力 情報であるアンテナ情報を入力として、選出されたアンテナのチルト角を所定の角度 だけ小さくし、小さくしたチルト角の値を更新後のチルト角における劣化率計算手段 4 5とチルト角と劣化率のデータ記憶手段 80へ供給する。
[0076] 第 2のチルト角更新手段 70は、第 1のチルト角更新手段 40と、チルト角の更新方向 が違う。すなわち、チルト角を大きくするアンテナ選出手段 60の出力情報であるアン テナ情報を入力として、選出されたアンテナのチルト角を所定の角度だけ大きくし、 大きくしたチルト角の値を更新後のチルト角における劣化率計算手段 45とチルト角と 劣化率のデータ記憶手段 80へ供給する。
[0077] 処理切替制御手段 50は、更新後のチルト角における劣化率計算手段 45からの出 力である各アンテナのカバレージの劣化率とシステム全体の劣化率を入力として、シ ステム全体の劣化率が所定の値以上であれば切り替えず、現在の処理を継続するも のとし、システム全体の劣化率が所定の値未満であれば切り替えを行い、次の処理 動作に移行するように処理切替手段 20へ制御信号を供給する。このとき、システム 全体の劣化率と併用してシステム全体の劣化率の入力回数により切替動作を行なう こととしてもよレ、。すなわち、システム全体の劣化率の入力が所定の回数以上であれ ば切替えるように処理切替手段 20に制御信号を供給する。また、切替回数が所定の 回数以上となったら処理を終了する制御信号を供給する。
[0078] さらに、処理切替制御手段 50は、劣化率を小さくするチルト角を出力する手段 90 力、らの出力であるシステム全体の劣化率を入力とし、そのシステム全体の劣化率が 所定の値以下であれば、処理切替手段 20に処理を終了する制御信号を供給する。
[0079] チルト角と劣化率のデータ記憶手段 80は、第 1のチルト角更新手段 40と第 2のチ ノレト角更新手段 70が出力するチルト角の情報と、更新後のチルト角における劣化率 計算手段 45が出力する各アンテナのカバレージの劣化率とシステム全体の劣化率と を入力とする。そして、入力されたうち、チルト角の情報とシステム全体の劣化率のデ ータを保存し記憶する。そして、チルト角の情報とシステム全体の劣化率の情報を劣 化率を小さくするチルト角を出力する手段 90へ供給する。
[0080] 劣化率を小さくするチルト角を出力する手段 90は、チルト角と劣化率のデータ記憶 手段 80から出力されるチルト角とシステム全体の劣化率のデータをシステム全体の 劣化率を最も小さくする最適チルト角として出力する。また、劣化率を小さくするチル ト角を出力する手段 90は、最適チルト角におけるシステム全体の劣化率の情報を、 処理切替制御手段 50に供給する。
[0081] 次に、本実施形態の具体的な動作について詳述する。
[0082] 最初に、チルト角の初期値を出力する手段 5は、チルト角の初期値を初期値のチル ト角における劣化率計算手段 10に供給する。そして、初期値のチルト角における劣 化率計算手段 10は、計算した各アンテナのカバレージの劣化率とシステム全体の劣 化率を、処理切替手段 20に供給する。
[0083] 処理切替手段 20は、供給された上記の劣化率をチルト角を小さくするアンテナ選 出手段 30かチルト角を大きくするアンテナ選出手段 60のいずれかに供給する。例え ばチルト角を小さくするアンテナ選出手段 30に供給した場合、チルト角を小さくする アンテナ選出手段 30は、供給された各アンテナのカバレージの劣化率に基づいてァ ンテナを選出し、選出したアンテナの情報を第 1のチルト角更新手段 40に供給する。 第 1のチルト角更新手段 40は、選出されたアンテナのチルト角を一定の角度だけ小 さくして、そのチルト角を更新後のチルト角における劣化率計算手段 45およびチルト 角と劣化率のデータ記憶手段 80へ供給する。
[0084] 更新後のチルト角における劣化率計算手段 45は、チルト角に基づき各アンテナの カバレージの劣化率とシステム全体の劣化率を計算して処理切替手段 20と処理切 替制御手段 50、および、チルト角と劣化率のデータ記憶手段 80へ供給する。
[0085] 処理切替手段 20は、更新後のチルト角における劣化率計算手段 45から供給され た各アンテナのカバレージとシステム全体の劣化率をチルト角を小さくするアンテナ 選出手段 30へ再び供給する。この動作は切替手段 20における再供給動作は処理 切替制御手段 50の制御にしたがって行われる。 [0086] 処理切替制御手段 50は、システム全体の劣化率の値、またはシステム全体の劣化 率の入力回数に基づいて切替'切断器 20に切替制御信号を供給する。処理切替手 段 20は、処理切替制御手段 50からの制御信号に基づき、チルト角を小さくするアン テナ選出手段 30からチルト角を大きくするアンテナ選出手段 60へと、各アンテナの カバレージの劣化率とシステム全体の劣化率を供給する先を切り替える。処理切替 制御手段 50は、切替の制御信号出力が所定の回数に達した場合、処理を終了する 制御信号を処理機切替 20に供給する。
[0087] チルト角と劣化率のデータ記憶手段 80は、入力されたチルト角と各アンテナのカバ レージの劣化率とシステム全体の劣化率のデータを記憶し、そのチルト角とシステム 全体の劣化率を劣化率を小さくするチルト角を出力する手段 90に供給する。劣化率 を小さくするチルト角を出力する手段 90は、最適チルト角を出力するほかに、そのチ ノレト角におけるシステム全体の劣化率を出力する。そのチルト角におけるシステム全 体の劣化率は処理切替制御手段 50に供給され、処理切替制御手段 50はシステム 全体の劣化率が所定の値以下であれば、処理を終了する制御信号を処理切替手段 20に供給する。処理切替手段 20は処理を終了する制御信号に基づレ、て処理を終 了する。
[0088] 次に、本発明の第 1の実施の形態の作用について説明する。
[0089] 本発明の第 1の実施の形態では、チルト角の初期値でのシステム全体の劣化率を 計算し、さらに、チルト角を更新した変更後のチルト角でもシステム全体の劣化率を 計算し、その劣化率が小さくなるチルト角を出力する。このため、初期値でのシステム 全体の劣化率に比べて、システム全体の劣化率が小さくなるチルト角を得ることがで きる。
[0090] また、チルト角の更新を、小さくするか大きくするかの単純な 2つのステップに分け、 さらにそれらのステップを繰り返す方法をとつている。そのため、コンピュータでの処 理が可能で、チルト角調整を自動化するのに適している。従来のように人が伝搬環 境を予想して、一度に最適化と予想されるチルト角へ更新して伝搬シミュレータにて 多くのチルト角の場合を試すのではなぐ本実施の形態では、少しずつ一定の角度 だけ更新を繰り返すことでシステム全体の劣化率に与える影響を抑えつつ最適なチ ノレト角へと近づけることができる。
[0091] また、本実施の形態では、従来、人が経験的に行ってきたチルト角を更新すべきァ ンテナの選出を所定の評価指標を用いて実現するため、調整を行なうアンテナの選 出も自動化できる。このように本実施の形態によって、チルト角の決定に要する手間 と時間を大幅に減少することができる。
[0092] また、各ステップは所定の評価指標によって動作するため、経験的な判断に基づく 動作を持たない。そのため、得られた結果に一定の信頼性を持たせることができる。 言い換えれば、ある無線通信システムにおいて同一の評価指標と初期パラメータを 設定すれば、本発明の実施の形態によって誰でも経験によらない同一の結果を得る こと力 Sできる。
[0093] さらに、チノレト角を小さくするとき、「アンテナのカバレージの劣化率が所定値以上 のアンテナ」や「アンテナのカバレージの劣化率にぉレ、て大きレ、順で上位レ、くつかの アンテナ」を選出する。すなわち、この選出により、アンテナのカバレージの劣化率が 大きいアンテナのみ、チルト角を小さくすることができる。チルト角を小さくすると、そ のアンテナのカバレージ内の受信電力は大きくなる傾向があるので、そのアンテナの カバレージの劣化率は小さくなる。また、この選出では、アンテナのカバレージの劣 化率が小さいアンテナは選出されない。そのため、アンテナのカバレージの劣化率 力 S小さいアンテナはチルト角を小さくしないので、隣接するアンテナのカバレージへ の干渉波電力を増やすことがなぐその劣化率を増やすことがない。こうして、各アン テナのカバレージにおいて、劣化率の大きレ、ものを小さくし、劣化率の小さいものは 、他のカバレージの劣化率を増加させないことによって、システム全体の劣化率を小 さくすること力 Sできる。
[0094] 他方、チルト角を大きくするとき、「アンテナのカバレージの劣化率が所定値以下の アンテナ」や「アンテナのカバレージの劣化率にぉレ、て小さレ、順で上位レ、くつかのァ ンテナ」を選出する。すなわち、この選出により、劣化率が小さいアンテナのみ、チル ト角を大きくすることができる。チルト角を大きくすると、そのアンテナのカバレージ内 の受信電力は小さくなり、そのアンテナのカバレージの劣化率は大きくなる傾向があ る力 劣化率が十分小さいカバレージでは、この劣化率の増加は僅かである場合が 多ぐ一方、隣接するアンテナのカバレージへの干渉電力は小さくなるため、隣接す るアンテナのカバレージの劣化率は小さくなることが多い。従って、全体としては、チ ノレト角を大きくするアンテナのカバレージの劣化率の増加分よりも、隣接するアンテ ナのカバレージの劣化率の減少分の方が大きレ、場合が比較的多レ、。
[0095] 上記のようにして、チルト角決定において、多数のアンテナの中からシステム全体 の劣化率を小さくするのに効果的なアンテナを選出し、チルト角を変更することで、さ らにシステム全体の劣化率を小さくすることができる。
[0096] 次に、本発明の第 2の実施の形態について図面を参照して詳細に説明する。
[0097] 図 3は、本発明の第 2の実施の形態の動作を示すフローチャートである。本実施の 形態は、図 1に示した第 1の実施の形態の動作を示すフローチャートにおけるステツ プ A1とステップ A2との間に、全体を繰り返す処理の処理累積回数に応じてチルト角 を小さくするパラメータ設定ステップ (ステップ A12)を加え、ステップ A5とステップ A6 との間に、全体を繰り返す処理の処理累積回数に応じてチルト角を大きくするパラメ ータ設定ステップ (ステップ A13)とを加えたものである。
[0098] チルト角を小さくするパラメータ設定ステップ (ステップ A12)は、ステップ A12、 A2 、 A3、 A4、 A5、 A13、 A6、 A7、 A8、 A9、 A10、 Al 1の一連の「全体を繰り返す処 理」を繰り返した回数に応じて、チルト角を小さくするステップ (ステップ A3)における チルト角更新パラメータを以下のように設定する。
[0099] 1回目の処理では、チルト角を小さくする更新毎の変化量を所定の一定角度に設 定する(例えば 1. 0度)。 2回目以降の処理では、これまでにシステム全体の劣化率 が最小となったチルト角と、システム全体の劣化率が 2番目に小さくなつたチルト角と の間に、更新の範囲を設定し、チルト角を小さくする更新毎の変化量を、前回のステ ップ A12で設定した半分の角度(例えば 0. 5度)に設定する。また、チルト角を小さく するステップ (ステップ A3)は、設定されたチルト角更新パラメータに従った範囲と変 化量でチルト角を小さくする。
[0100] チルト角を大きくするパラメータ設定ステップ (ステップ A13)は、チルト角を小さくす るステップ(ステップ A3)と同じように、ステップ A12、 A2、 A3、 A4、 A5、 A13、 A6、 A7、 A8、 A9、 A10、 Al lの一連の「全体を繰り返す処理」を繰り返した回数に応じ て、チルト角を大きくするステップ (ステップ A7)におけるチルト角更新パラメータを以 下のように設定する。
[0101] 1回目の処理では、チルト角を大きくする更新毎の変化量を所定の一定角度に設 定する(例えば 1. 0度)。 2回目以降の処理では、これまでにシステム全体の劣化率 が最小となったチルト角と、システム全体の劣化率が 2番目に小さくなつたチルト角と の間に、更新の範囲を設定し、チルト角を大きくする更新毎の変化量を、前回のステ ップ A13で設定した半分の角度(例えば 0. 5度)に設定する。チルト角を大きくするス テツプ (ステップ A7)は、設定されたチルト角更新パラメータに従った範囲と変化量で チルト角を大きくする。
[0102] 次に、本発明の第 2の実施の形態の構成について図 4を参照して詳細に説明する
[0103] 図 4は図 3の処理フローが実行されるシステムの構成を示すブロック図であり、図 2 に示された第 1の実施の形態におけるシステム構成に加えて、処理切替手段 20から 出力される切替情報をカウントする切替回数カウンタ 100と、上記切替回数が一定以 上となると、チルト角と劣化率のデータ記憶手段 80からの情報を用いて、チルト角更 新パラメータを、第 1のチルト角更新手段 40と第 1のチルト角更新手段 70とに設定す るチルト角更新パラメータ設定手段 110と、を設けたものである。この他の構成は図 2 に示したものと同様であるため、説明は省略する。
[0104] 切替回数カウンタ 100は、処理切替手段 20から出力される切替情報をカウントし、 切替回数が所定の一定の回数以上になったら、チルト角更新パラメータ設定手段 11 0へ起動の指示を供給する。
[0105] チルト角更新パラメータ設定手段 110は、切替回数カウンタ 100からの起動の指示 に基づき、第 1のチルト角更新手段 40に対して前回に第 1のチルト角更新手段 40で 設定していたチルト角更新パラメータの更新チルト角(例えば 1. 0度)を今回は半分( 0. 5度)に設定する。また、チルト角更新パラメータ設定手段 110は、チルト角と劣化 率のデータ記憶手段 80から出力される過去の計算結果であるチルト角と各アンテナ のカバレージの劣化率とシステム全体の劣化率とを入力として、その入力データから 、これまでで最もシステム全体の劣化率を小さくするチルト角と、 2番目にシステム全 体の劣化率を小さくするチルト角との間にチルト角更新の範囲を設定する。
[0106] また同時に、チルト角更新パラメータ設定手段 110は、切替回数カウンタ 100から の起動の指示に基づき、第 2のチルト角更新手段 70に対しても同じように、前回に第 2のチルト角更新手段 70で設定してレ、たチルト角更新パラメータの更新チルト角(例 えば 1. 0度)を今回は半分 (0. 5度)に設定する。また、チルト角更新パラメータ設定 手段 110は、チルト角と劣化率のデータ記憶手段 80から出力される過去の計算結果 であるチルト角と各アンテナのカバレージの劣化率とシステム全体の劣化率を入力と して、その入力データから、これまでで最もシステム全体の劣化率を小さくするチルト 角と、 2番目にシステム全体の劣化率を小さくするチルト角との間にチルト角更新の 範囲を設定する。
[0107] 上記の他の本発明の第 2の実施の形態の動作は、第一の実施の形態と同じである 。新たに追加される動作として、切替回数カウンタ 100が所定の切替累積回数以上 の時にチルト角更新パラメータ設定手段 110が起動する。チルト角更新パラメータ設 定手段 110が起動すると、第 1のチルト角更新手段 40とチルト第 2のチルト角更新手 段 70とにチルト角更新パラメータを設定する。
[0108] 本発明の第 2の実施の形態の作用は、第 1の実施の形態の作用に加えて、チルト 角の決定を、速く正確にすることができる効果を持つ。
[0109] なぜなら、本発明の第 2の実施の形態では、最初はチルト角の更新の角度を大きく するので、チルト角の最適値に近づけるまでの更新の回数は少なくて済むからである 。すなわち、処理時間が短ぐ最適値に速く近づかせることができる。そして次に、更 新の角度を小さくするので、更新後のチルト角と最適値との差をより小さくすることで きる。すなわち、より最適値に近い正確なチルト角を得ることができる。さらに、チルト 角の更新範囲を、それまでの処理で得たシステム全体の劣化率を最小とするチルト 角と 2番目にシステム全体の劣化率を小さくするチルト角との間とすることで、チルト 角の更新範囲を限定しているため、チルト角の更新回数が少なくて済む。すなわち、 処理時間が短ぐ速く最適値に近づけることができるからである。したがって、同じ処 理時間であれば、劣化率をより小さくすることができる。
産業上の利用可能性 [0110] 本発明は、無線通信システム全体の劣化率が小さくなるように、 を決定するために利用することができる。
図面の簡単な説明
[0111] [図 1]本発明の第 1の実施の形態の処理フローである。
[図 2]本発明の第 1の実施の形態のシステム図である。
[図 3]本発明の第 2の実施の形態の処理フローである。
[図 4]本発明の第 2の実施の形態のシステム図である。
[図 5]2つのアンテナのチルト角を調整する概観を示す。
符号の説明
[0112] 5 チルト角の初期値を出力する手段
10 初期値のチルト角における劣化率計算手段
20 処理切替手段
30 チルト角を小さくするアンテナ選出手段
40 第 1のチルト角更新手段
45 更新後のチルト角における劣化率計算手段
50 処理切替制御手段
60 チルト角を大きくするアンテナ選出手段
70 第 1のチルト角更新手段
80 チルト角と劣化率のデータ記憶手段
90 劣化率を小さくするチルト角を出力する手段
100 切替回数カウンタ
110 チルト角更新パラメータ設定手段
AO チルト角の初期値設定ステップ
A1 初期値での劣化率計算ステップ
A2 チルト角を小さくするアンテナ選出ステップ
A3 チルト角を小さくするステップ
A4 劣化率を計算するステップ
A5 チルト角を小さくする処理の継続判定ステップ A6 チルト角を大きくするアンテナ選出ステップ
A7 チルト角を大きくするステップ
A8 劣化率を計算するステップ
A9 チルト角を大きくする処理の継続判定ステップ
A10 劣化率が小さくなるチルト角を出力するステップ
Al l 処理継続判定ステップ
A12 チルト角を小さくするパラメータ設定ステップ
A13 チルト角を大きくするパラメータ設定ステップ

Claims

請求の範囲
[1] 無線通信システムを構成する複数の無線基地局に設けられた垂直面内指向性を 持ったアンテナのチルト角決定方法であって、
チルト角を小さくするべきアンテナを選出する第 1のステップと、
前記第 1のステップにて選出されたアンテナのチルト角が小さくされたときのシステ ム全体の劣化率をチルト角を変えて 1回以上計算する第 2のステップと、
チルト角を大きくするべきアンテナを選出する第 3のステップと、
前記第 3のステップにて選出されたアンテナのチルト角が大きくされたときのシステ ム全体の劣化率をチルト角を変えて 1回以上計算する第 4のステップと、
前記第 2のステップにて計算されたシステム全体の劣化率および第 4のステップに て計算されたシステム全体の劣化率のうち最小の劣化率に対応するチルト角を出力 する第 5のステップと、
を有することを特徴とする無線通信システムのアンテナのチルト角決定方法。
[2] 請求項 1記載の無線通信システムのアンテナのチルト角決定方法において、 第 1のステップおよび第 2のステップの後に行なわれ、これらの各ステップでの処理 を継続して行なうかの継続判定を行う第 6のステップと、
第 3のステップおよび第 4のステップの後に行なわれ、これらの各ステップでの処理 を継続して行なうかの継続判定を行う第 7のステップと、
第 1のステップないし第 7のステップの後に行なわれ、これらの各ステップでの処理 を継続して行なうかの継続判定を行う第 8のステップと、
を有することを特徴とする無線通信システムのアンテナのチルト角決定方法。
[3] 請求項 2に記載の無線通信システムのアンテナのチルト角決定方法において、 第 1のステップの直前に行なわれ、第 8のステップにて第 1のステップないし第 7のス テツプでの処理を継続して行なうと判定された場合には累積継続回数に応じて第 2 のステップにおレヽてチルト角を変えるために利用されるステップ角を変更する第 9の ステップを有することを特徴とする無線通信システムのアンテナのチルト角決定方法
[4] 請求項 2または請求項 3に記載の無線通信システムのアンテナのチルト角決定方 法において、
第 3のステップの直前に行なわれ、第 8のステップにて第 1のステップないし第 7のス テツプでの処理を継続して行なうと判定された場合には累積継続回数に応じて第 4 のステップにおレヽてチルト角を変えるために利用されるステップ角を変更する第 10の ステップを有することを特徴とする無線通信システムのアンテナのチルト角決定方法
[5] 請求項 1ないし請求項 4のいずれかに記載の無線通信システムのアンテナのチルト 角決定方法において、
チルト角を小さくするアンテナを選出する第 1のステップ、および、チルト角を大きく するアンテナを選出する第 3のステップの一方または両方力 前記アンテナの力バレ ージの劣化率に基づきアンテナを選出することを特徴とする無線通信システムのアン テナのチルト角決定方法。
[6] 無線通信システムを構成する複数の無線基地局に設けられた垂直面内指向性を 持ったアンテナのチルト角決定装置であって、
チルト角を小さくするべきアンテナを選出する第 1のアンテナ選出手段と、 チルト角を大きくするべきアンテナを選出する第 2のアンテナ選出手段と、 前記第 1のアンテナ選出手段または第 2のアンテナ選出手段により選出されたアン テナのチルト角変更後のシステム全体の劣化率をチルト角を変えて 1回以上計算す る劣化率計算手段と、
前記劣化率計算手段により計算された劣化率をそのチルト角とともに記憶するデー タ記憶手段と、
前記データ記憶手段に記憶されているチルト角と劣化率のデータのな力、からシステ ム全体の劣化率を最も小さくするチルト角を出力する手段と、
を有することを特徴とする無線通信システムのアンテナのチルト角決定装置。
[7] 請求項 6に記載の無線通信システムのアンテナのチルト角決定装置において、 第 1のアンテナ選出手段および第 2のアンテナ選出手段の一方または両方が、前 記アンテナのカバレージの劣化率に基づいてアンテナを選出することを特徴とする 無線通信システムのアンテナのチルト角決定装置。 [8] 請求項 6または請求項 7に記載の無線通信システムのアンテナのチルト角決定装 置において、
第 1のアンテナ選出手段による動作、第 2のアンテナ選出手段による動作、または 処理の終了のいずれかを選択する切替情報を出力する処理切替手段と、
前記処理切替手段から出力される切替情報をカウントする切替回数カウンタと、 前記切替回数カウンタでカウントされた切替回数が一定以上となると前記第 1のァ ンテナ選出手段または第 2のアンテナ選出により選出されたアンテナのチルト角の更 新角度を変更するチルト角更新パラメータ設定手段と、
を有することを特徴とする無線通信システムのアンテナのチルト角決定装置。
PCT/JP2004/011152 2003-08-04 2004-08-04 無線通信システムにおけるアンテナのチルト角決定方法、およびチルト角決定装置 WO2005013632A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/528,070 US7218955B2 (en) 2003-08-04 2004-08-04 Method for deciding tilt angle of antenna in radio communication system and apparatus for deciding the same
GB0506607A GB2414634B (en) 2003-08-04 2004-08-04 Method for deciding tilt angle of antenna in radio communication system and apparatus for deciding the same
JP2005512563A JP4106570B2 (ja) 2003-08-04 2004-08-04 無線通信システムにおけるアンテナのチルト角決定方法、およびチルト角決定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003285731 2003-08-04
JP2003-285731 2003-08-04

Publications (1)

Publication Number Publication Date
WO2005013632A1 true WO2005013632A1 (ja) 2005-02-10

Family

ID=34113895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011152 WO2005013632A1 (ja) 2003-08-04 2004-08-04 無線通信システムにおけるアンテナのチルト角決定方法、およびチルト角決定装置

Country Status (5)

Country Link
US (1) US7218955B2 (ja)
JP (1) JP4106570B2 (ja)
CN (1) CN100433887C (ja)
GB (1) GB2414634B (ja)
WO (1) WO2005013632A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114430A1 (ja) * 2010-03-15 2011-09-22 富士通株式会社 無線基地局及び無線パラメータの調整方法
JP2012016015A (ja) * 2010-06-30 2012-01-19 Fujitsu Ltd カバレッジホールを補償するための方法、無線通信ネットワーク、基地局及びネットワーク最適化装置
US8795235B2 (en) 2006-10-06 2014-08-05 Surgiquest, Inc. Devices for and methods of performing minimally-invasive surgical procedures through a single incision
WO2014162711A1 (ja) * 2013-04-01 2014-10-09 日本電気株式会社 無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局
US8886254B2 (en) 2011-01-21 2014-11-11 Fujitsu Limited Radio base station and antenna weight setting method

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060094485A1 (en) * 2004-10-28 2006-05-04 Interdigital Technology Corporation Method and apparatus for preventing communication link degradation due to the detrimental orientation of a mobile station
US20060094449A1 (en) * 2004-10-28 2006-05-04 Interdigital Technology Corporation Method and apparatus for preventing communication link degradation due to the disengagement or movement of a self-positioning transceiver
US8326217B2 (en) * 2006-01-18 2012-12-04 Overhorizon (Cyprus) Plc Systems and methods for satellite communications with mobile terrestrial terminals
US7962134B2 (en) * 2006-01-18 2011-06-14 M.N.C. Microsat Networks (Cyprus) Limited Systems and methods for communicating with satellites via non-compliant antennas
US20080045146A1 (en) * 2006-01-18 2008-02-21 Per Wahlberg Systems and methods for establishing modular and flexible satellite communications networks
US8713324B2 (en) * 2006-01-18 2014-04-29 Overhorizon (Cyprus) Plc Systems and methods for tracking mobile terrestrial terminals for satellite communications
US8078141B2 (en) * 2006-01-18 2011-12-13 Overhorizon (Cyprus) Plc Systems and methods for collecting and processing satellite communications network usage information
US7693108B2 (en) * 2006-08-01 2010-04-06 Intel Corporation Methods and apparatus for providing a handover control system associated with a wireless communication network
CN101413999B (zh) * 2008-11-12 2011-07-20 张鹿平 在倾斜状态下天线角度的测量方法
US20120015684A1 (en) * 2009-03-26 2012-01-19 Kyocera Corporation Antenna controller device, radio communication system, and antenna controlling method
US8521106B2 (en) * 2009-06-09 2013-08-27 Broadcom Corporation Method and system for a sub-harmonic transmitter utilizing a leaky wave antenna
JP5249863B2 (ja) * 2009-06-12 2013-07-31 株式会社日立製作所 基地局装置及び干渉低減方法
JP5218346B2 (ja) * 2009-09-02 2013-06-26 富士通株式会社 基地局装置、移動局装置及びアンテナのチルト角の制御方法
EP2405686B1 (en) * 2010-07-09 2016-09-21 Alcatel Lucent Method of operating a base station and base station
US8831684B2 (en) * 2010-11-22 2014-09-09 Kathrein-Werke Kg Base transceiver station with radiation beam steering and active antenna
US8971302B2 (en) * 2011-12-06 2015-03-03 At&T Mobility Ii Llc Cluster-based derivation of antenna tilts in a wireless network
JP6085950B2 (ja) * 2012-11-12 2017-03-01 富士通株式会社 基地局及びアンテナチルト角制御方法
WO2014101138A1 (zh) * 2012-12-28 2014-07-03 华为技术有限公司 多载波通信的方法、装置、设备和系统
US10129763B1 (en) * 2017-04-04 2018-11-13 Sprint Spectrum L.P. Method and system for controlling radio frequency interference to public safety communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112681A (ja) * 1996-10-07 1998-04-28 Oki Electric Ind Co Ltd 基地局
JP2000269723A (ja) * 1999-02-01 2000-09-29 Lucent Technol Inc 無線通信網におけるアンテナのダウンチルト/アップチルトを制御するためのシステムおよび方法
JP2002204468A (ja) * 2000-09-26 2002-07-19 Scoreboard Inc 移動電話システムの成長管理のための経路損失データ正規化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135884A (ja) 1988-11-16 1990-05-24 Matsushita Electric Ind Co Ltd 文字放送受信装置
US6104936A (en) * 1997-09-30 2000-08-15 Telefonaktiebolaget Lm Ericsson Method and apparatus for optimizing antenna tilt
JPH11166964A (ja) * 1997-12-04 1999-06-22 Nec Eng Ltd アンテナ制御方法及び装置
US6282434B1 (en) * 1998-06-10 2001-08-28 Telefonaktiebolaget Lm Ericsson Uplink and downlink transmission quality improvement by differentiated base station antenna pattern downtilt
JP2001095040A (ja) 1999-09-24 2001-04-06 Toshiba Corp 移動無線システム
JP3576065B2 (ja) 2000-03-06 2004-10-13 日本電信電話株式会社 アンテナ最適設計法、アンテナ最適設計プログラムを格納した記録媒体、及びアンテナ装置
JP2002024468A (ja) * 2000-07-12 2002-01-25 Javanet:Kk インターネットを利用した抽選システム
US7142523B1 (en) * 2000-07-31 2006-11-28 Lucent Technologies Inc. Methods and apparatus for design, adjustment or operation of wireless networks using pre-frequency-assignment optimization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112681A (ja) * 1996-10-07 1998-04-28 Oki Electric Ind Co Ltd 基地局
JP2000269723A (ja) * 1999-02-01 2000-09-29 Lucent Technol Inc 無線通信網におけるアンテナのダウンチルト/アップチルトを制御するためのシステムおよび方法
JP2002204468A (ja) * 2000-09-26 2002-07-19 Scoreboard Inc 移動電話システムの成長管理のための経路損失データ正規化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MORITA K. ET AL.: "UHF-tai Toshina Ido Musen Kairo no Sekkeiho", 1995 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU B-372, 1995, XP002985603 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795235B2 (en) 2006-10-06 2014-08-05 Surgiquest, Inc. Devices for and methods of performing minimally-invasive surgical procedures through a single incision
WO2011114430A1 (ja) * 2010-03-15 2011-09-22 富士通株式会社 無線基地局及び無線パラメータの調整方法
US8849218B2 (en) 2010-03-15 2014-09-30 Fujitsu Limited Radio base station and method of adjusting radio parameter
JP2012016015A (ja) * 2010-06-30 2012-01-19 Fujitsu Ltd カバレッジホールを補償するための方法、無線通信ネットワーク、基地局及びネットワーク最適化装置
US8886254B2 (en) 2011-01-21 2014-11-11 Fujitsu Limited Radio base station and antenna weight setting method
WO2014162711A1 (ja) * 2013-04-01 2014-10-09 日本電気株式会社 無線パラメータ制御方法および装置、ネットワーク運用管理装置ならびに無線基地局
US9949144B2 (en) 2013-04-01 2018-04-17 Nec Corporation Method and apparatus for controlling radio parameters, network operation management apparatus, and radio base station

Also Published As

Publication number Publication date
JP4106570B2 (ja) 2008-06-25
CN100433887C (zh) 2008-11-12
GB2414634A (en) 2005-11-30
CN1701622A (zh) 2005-11-23
GB2414634B (en) 2008-10-01
US20050250542A1 (en) 2005-11-10
GB0506607D0 (en) 2005-05-11
JPWO2005013632A1 (ja) 2006-09-28
US7218955B2 (en) 2007-05-15

Similar Documents

Publication Publication Date Title
WO2005013632A1 (ja) 無線通信システムにおけるアンテナのチルト角決定方法、およびチルト角決定装置
EP2434795B1 (en) Method and system for obtaining wireless local area network access point deployment plan
CN113038387B (zh) 低轨卫星网络中基于q学习的切换判决方法
US8150413B2 (en) Radio network designing apparatus and method
CN102428607B (zh) 通信天线自动定向装置、方法
US6198910B1 (en) Cellular network having improved method for managing RF channels
US6141565A (en) Dynamic mobile parameter optimization
US8112089B2 (en) Radio parameter determination method and device for a radio communication system
KR100453442B1 (ko) 자율 영역형성 통신장치 및 자율 영역형성 방법
US20100167728A1 (en) Apparatus and method for femto cell coverage mapping using macro base station
US7263389B2 (en) Wireless communication method, base station, and receiving terminal
CN111082840B (zh) 一种天线广播波束的优化方法和装置
CN112911664B (zh) 一种基于概率排序的低轨卫星切换方法
CN104581741A (zh) 网络覆盖优化方法
CN111436053B (zh) 一种覆盖范围调整方法和无线接入网节点
CN114650567B (zh) 一种无人机辅助v2i网络任务卸载方法
WO2010010009A2 (en) Resource allocation method and apparatus thereof
US7088288B1 (en) Method and circuit for controlling an antenna system
US7349712B2 (en) Communications system with transmitting power control and method for the same
EP1937023B1 (en) Wireless communication connection destination selecting method and device
CN102164379B (zh) 频率调整方法和装置
CN108064051B (zh) 确定网络射频优化方案的方法、装置及设备
JP2001326525A (ja) アレーアンテナの指向性制御方法
US20140011503A1 (en) Wireless communication network area designing method, computer readable non-transitory medium and wireless communication network area designing device
GB2442153A (en) Method and apparatus for deciding tilt angles of antennas in a radio communication system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10528070

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005512563

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048009424

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 0506607

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20040804

WWE Wipo information: entry into national phase

Ref document number: 0506607.1

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase