WO2012039434A1 - Reflective material composition, reflector, and semiconductor emission device - Google Patents

Reflective material composition, reflector, and semiconductor emission device Download PDF

Info

Publication number
WO2012039434A1
WO2012039434A1 PCT/JP2011/071512 JP2011071512W WO2012039434A1 WO 2012039434 A1 WO2012039434 A1 WO 2012039434A1 JP 2011071512 W JP2011071512 W JP 2011071512W WO 2012039434 A1 WO2012039434 A1 WO 2012039434A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
resin
particles
heat
composition according
Prior art date
Application number
PCT/JP2011/071512
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 坂井
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010214113A external-priority patent/JP2012069794A/en
Priority claimed from JP2010242657A external-priority patent/JP5168337B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2012039434A1 publication Critical patent/WO2012039434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the present invention relates to a reflector composition, a reflector using the reflector composition, and a semiconductor light emitting device.
  • An LED element which is one of semiconductor light emitting devices, is widely used as a light source for an indicator lamp or the like because it is small and has a long life and is excellent in power saving.
  • LED elements with higher brightness have been manufactured at a relatively low cost, and therefore, use as a light source to replace fluorescent lamps and incandescent bulbs has been studied.
  • a plurality of LED elements are arranged on a surface-mounted LED package, that is, a metal substrate (LED mounting substrate) such as aluminum, and each LED element.
  • a system is often used in which a reflector (reflector) that reflects light in a predetermined direction is disposed around the.
  • the LED element since the LED element generates heat at the time of light emission, in such a type of LED lighting device, a temperature increase at the time of light emission of the LED element leads to a decrease in luminance, a shortened life of the LED element, and the like. Accordingly, at least the reflector is required to have heat resistance, and preferably has a good heat dissipation.
  • Patent Document 1 it is reflected by a white thermosetting silicone resin composition containing a thermosetting organopolysiloxane, a white pigment, an inorganic filler (excluding a white pigment), a condensation catalyst, and a predetermined coupling agent.
  • An optical semiconductor case constituting a body has been proposed.
  • Patent Document 2 proposes a package molded body that enhances light reflection by coating a predetermined part with a coating member containing a specific thermosetting resin and an inorganic member.
  • the present invention uses a reflector composition that has a high reflection characteristic even with respect to ultraviolet light having a wavelength of 400 nm or less and can produce a reflector having high heat resistance, and the reflector composition. It is an object to provide a reflector and a semiconductor light emitting device.
  • the present invention is as follows.
  • a reflector composition comprising boron nitride particles or melamine cyanurate particles and a heat-resistant binder.
  • the reflective material composition according to [1] which contains substantially no titanium oxide.
  • the reflector composition according to any one of [1] to [3], wherein the boron nitride contained has a volume average particle size of 0.1 to 300 ⁇ m.
  • An optical semiconductor element and a reflector provided around the optical semiconductor element and reflecting light from the optical semiconductor element in a predetermined direction are provided on a substrate, and at least a light reflecting surface of the reflector
  • the present invention it is possible to produce a reflector having a high reflection characteristic even for ultraviolet light having a wavelength of 400 nm or less and having high heat resistance, and a reflection using the reflector composition. And a semiconductor light emitting device can be provided. Moreover, when boron nitride particles are used, it is possible to provide a reflector composition that can produce a reflector having high heat dissipation.
  • FIG. 1 It is a schematic sectional drawing which shows an example of the semiconductor light-emitting device of this invention. It is a schematic sectional drawing which shows an example of the semiconductor light-emitting device of this invention. It is a figure which shows the relationship between the light reflectivity and wavelength of the initial stage (immediately after preparation) of the molded object which consists of a reflector composition of Example A-1 and Comparative Example A-1, A-3. It is a figure which shows the relationship between the light reflectivity and wavelength of the initial stage (immediately after preparation) of the molded object which consists of a reflector composition of Example A-2 and Comparative example A-2, A-4.
  • FIG. 3 is a diagram showing the relationship between the light reflectance and the wavelength at the initial stage (immediately after production) of the molded articles made of the reflective material compositions of Comparative Examples B-1 to B-4.
  • FIG. 6 is a graph showing the relationship between the light reflectance and wavelength at the initial stage (immediately after production) of a molded article made of the reflective material composition of Comparative Examples B-5 to B-7.
  • the first reflecting material composition of the present invention comprises boron nitride particles and a heat-resistant binder. Due to the presence of boron nitride particles, the reflectance of ultraviolet light having a wavelength of 400 nm or less, more preferably, ultraviolet light having a wavelength in the range of 250 to 400 nm can be made high. And since the boron nitride particles are contained in the heat-resistant binder, the above characteristics can be maintained well even in a relatively high temperature use region. As a result, color rendering can be enhanced by applying to reflectors such as lighting fixtures and televisions. Further, since boron nitride particles themselves do not promote deterioration of the heat-resistant binder even at high temperatures, it is possible to suppress a decrease in the durability of the reflective material composition.
  • the boron nitride particles can be applied to any of hexagonal structure (h-BN), zinc blende structure (c-BN), wurtzite structure (w-BN), and rhombohedral structure (r-BN). From the viewpoints of heat resistance and cost, it is preferable to use scale-like boron nitride particles having a hexagonal structure.
  • the volume average particle size of the boron nitride particles is preferably from 0.1 to 300 ⁇ m, more preferably from 0.1 to 12 ⁇ m, and even more preferably from 1 to 2 ⁇ m from the viewpoint of heat dissipation and heat resistance. .
  • the said volume average particle diameter can be calculated
  • the content of the boron nitride particles is preferably 10 to 300 parts by mass, more preferably 15 to 200 parts by mass, and further preferably 20 to 200 parts by mass with respect to 100 parts by mass of the heat-resistant binder. preferable. In addition, as long as a moldability is not impaired, you may fill 300 parts or more.
  • the second reflective material composition of the present invention comprises melamine cyanurate particles and a heat-resistant binder. Due to the presence of melamine cyanurate particles, the reflectance of ultraviolet light having a wavelength of 400 nm or less, more preferably, ultraviolet light having a wavelength in the range of 250 to 400 nm can be made high. And, by including the melamine cyanurate particles in the heat-resistant binder, the above characteristics can be maintained well even in a relatively high temperature use region. As a result, color rendering can be enhanced by applying to reflectors such as lighting fixtures and televisions. Further, since the melamine cyanurate particles themselves do not promote deterioration of the heat-resistant binder even at high temperatures, it is possible to suppress a decrease in the durability of the reflector composition.
  • melamine cyanurate refers to a compound in which melamine molecules and cyanuric acid molecules are arranged in a plane by hydrogen bonds and represented by the chemical formula C 6 H 9 N 9 O 3. It is represented by a structural formula such as 1) or formula (2).
  • the production method of the melamine cyanurate particles is not particularly limited as long as it can be produced so as to have a specific particle diameter, and can be produced by a conventionally known method, for example, JP-A-5-310716. And JP-A-7-149739 and JP-A-7-224049.
  • melamine powder and cyanuric acid were charged at a predetermined mixing ratio into a device capable of mixing and stirring, and the temperature inside the tank was raised to a predetermined temperature while mixing. Then, when water is gradually added to the tank while stirring and neutralization reaction is performed, a white precipitate is generated, and the precipitate is filtered and dried and granulated.
  • grains of this is mentioned.
  • grains can also be obtained as a commercial item.
  • the average particle size of the melamine cyanurate particles is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 20 ⁇ m, and more preferably 0.5 to 4 ⁇ m from the viewpoint of production and reflection characteristics. Further preferred.
  • the said average particle diameter can be calculated
  • the content of melamine cyanurate particles is preferably 5 to 180 parts by mass, more preferably 10 to 150 parts by mass, and more preferably 5 to 110 parts by mass with respect to 100 parts by mass of the heat-resistant binder. More preferred is 10 to 100 parts by mass. In addition, as long as a moldability is not impaired, 200 parts or more may be filled.
  • the dispersibility is improved in the melamine cyanurate particles and boron nitride particles.
  • a hydrophobization treatment may be performed.
  • the hydrophobizing agent include silane coupling agents, silicone oils, fatty acids, and fatty acid metal salts.
  • a silane coupling agent and silicone oil are preferably used because they have a high effect of improving dispersibility.
  • silane coupling agent examples include disilazane such as hexamethyldisilazane; cyclic silazane; trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, benzyldimethylchlorosilane, methyltrimethoxysilane.
  • Methyltriethoxysilane isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-butyltrimethoxysilane, n-hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, Alkylsilane compounds such as vinyltriacetoxysilane; ⁇ -aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, N-
  • silicone oil examples include dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, and amino-modified silicone oil. These hydrophobizing agents can be used alone or in combination of two or more.
  • the method for hydrophobizing melamine cyanurate particles and boron nitride particles is not particularly limited as long as it is a conventionally known method, and examples thereof include a dry method and a wet method. Specifically, a dry method in which a hydrophobizing agent is dropped or sprayed while stirring melamine cyanurate particles and boron nitride particles at high speed; the hydrophobizing agent is dissolved in an organic solvent, and the organic solvent is stirred Examples thereof include a wet method in which melamine cyanurate particles and boron nitride particles are added.
  • the reflective material composition of the present invention does not substantially contain titanium oxide.
  • the reflectance of ultraviolet light of 400 nm or less can be made good.
  • substantially free of titanium oxide particles means that no titanium oxide material is blended during the production of the reflector composition, specifically, the content of titanium oxide in the reflector composition. Means 0 mass%.
  • the heat-resistant binder in the reflector composition of the present invention may be a resin having at least one of a glass transition temperature and a melting point after molding of 100 ° C. or higher, such as epoxy resin, acrylate resin, urethane resin, silicone resin, poly Heat of siloxane-organic block copolymer, polysiloxane-organic graft copolymer, organic-inorganic hybrid resin containing carbon-carbon double bond reactive with SiH group, cyanate ester resin, phenol resin, polyimide resin, bismaleimide resin, etc.
  • a resin having at least one of a glass transition temperature and a melting point after molding of 100 ° C. or higher such as epoxy resin, acrylate resin, urethane resin, silicone resin, poly Heat of siloxane-organic block copolymer, polysiloxane-organic graft copolymer, organic-inorganic hybrid resin containing carbon-carbon double bond reactive with SiH group, cyanate ester resin, phenol resin
  • curable resins acrylic resins, polycarbonate resins, norbornene derivatives, cycloolefin resins such as resins obtained by ring-opening metathesis polymerization of norbornene derivatives or hydrogenated products thereof, olefin-maleimide resins, polyester resins, polyesters, etc.
  • thermoplastic resin such as a fluororesin or a rubber-like resin
  • a silicone resin is preferable as the thermosetting resin
  • a norbornene polymer is preferable as the thermoplastic resin.
  • examples of the silicone resin include addition type silicone and condensation type silicone as curing types, and examples of the structure include dimethyl silicone and methylphenyl silicone.
  • the condensation type silicone is a thermosetting organopolysiloxane obtained by hydrolysis reaction of methyltrichlorosilane, methyltrimethoxysilane, methyltriethoxysilane, tetrachlorosilane, tetramethoxysilane, tetraethoxysilane or the like.
  • Examples of the norbornene polymer include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening polymer of a monomer having a norbornene structure and another monomer, or a hydride thereof, a norbornene structure.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly preferably used from the viewpoints of moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can do.
  • the reflective material composition of the present invention can be prepared by mixing boron nitride particles and a heat-resistant binder, or mixing melamine cyanurate particles and a heat-resistant binder in a predetermined ratio as described above.
  • known means such as a two-roll or three-roll, a planetary stirring and deaerator, a stirrer such as a homogenizer, a dissolver and a planetary mixer, a melt kneader such as a polylab system and a lab plast mill, etc. Can be applied. These may be performed at normal temperature, cooling state, heating state, normal pressure, reduced pressure state, or pressurized state.
  • Various additives can be added as long as the effects of the present invention are not impaired.
  • various whisker, silicone powder, thermoplastic elastomer, organic synthetic rubber, fatty acid ester, glycerate ester, zinc stearate, calcium stearate and other additives such as internal mold release agents for the purpose of improving the properties of the resin composition Can be blended.
  • the reflective material composition of the present invention as described above can be applied to various uses as a composite material or a molded product of a reflective material composition applied and molded on a substrate.
  • it can be applied as a light reflecting sheet for solar cells, a reflector for LEDs and other light sources for televisions, and light sources for televisions.
  • the reflector of the present invention is formed by molding the above-described reflector composition of the present invention.
  • the reflector may be used in combination with a semiconductor light-emitting device described later, or may be used in combination with a semiconductor light-emitting device (LED mounting substrate) made of another material.
  • the reflector of the present invention mainly has an action of reflecting light from the LED element of the semiconductor light emitting device toward the lens (light emitting portion).
  • the details of the reflector are the same as those of the reflector (reflector 12 described later) applied to the semiconductor light emitting device of the present invention, and are omitted here.
  • the semiconductor light emitting device of the present invention is provided around an optical semiconductor element (for example, an LED element) 10 and the optical semiconductor element 10, and reflects light from the optical semiconductor element 10 in a predetermined direction.
  • the reflecting body 12 is provided on the substrate 14. And at least one part (all in the case of FIG. 1) of the light reflection surface of the reflector 12 is comprised with the molded object of the reflector composition of this invention as stated above.
  • the optical semiconductor element 10 emits radiated light (generally UV or blue light in a white light LED), for example, an active layer made of AlGaAs, AlGaInP, GaP or GaN sandwiched between n-type and p-type cladding layers. It is a semiconductor chip (light emitter) having a double heterostructure, and has a hexahedral shape with a side length of about 0.5 mm, for example. In the case of wire bonding mounting, it is connected to an electrode (connection terminal) (not shown) via a lead wire 16.
  • radiated light generally UV or blue light in a white light LED
  • an active layer made of AlGaAs, AlGaInP, GaP or GaN sandwiched between n-type and p-type cladding layers.
  • It is a semiconductor chip (light emitter) having a double heterostructure, and has a hexahedral shape with a side length of about 0.5 mm, for example.
  • wire bonding mounting
  • the shape of the reflector 12 conforms to the shape of the end portion (joint portion) of the lens 18 and is usually a cylindrical shape such as a square shape, a circular shape, an elliptic shape, or a ring shape.
  • the reflector 12 is a cylindrical body (annular body), and all end surfaces of the reflector 12 are in contact with and fixed to the surface of the substrate 14.
  • the inner surface of the reflector 12 may be expanded upward in a tapered shape (see FIG. 1).
  • the reflector 12 can also function as a lens holder when the end portion on the lens 18 side is processed into a shape corresponding to the shape of the lens 18.
  • the reflector 12 may have only the light reflecting surface side as a light reflecting layer 12a made of the reflecting material composition of the present invention.
  • the thickness of the light reflection layer 12a is preferably 500 ⁇ m or less, and more preferably 300 ⁇ m or less, from the viewpoint of reducing the thermal resistance.
  • the member 12b on which the light reflecting layer 12a is formed can be made of a known heat resistant resin.
  • the lens 18 is provided on the reflector 12, but this is usually made of resin, and various structures may be adopted and colored depending on the purpose and application.
  • the space formed by the substrate 14, the reflector 12, and the lens 18 may be a transparent sealing portion, or may be a gap if necessary.
  • This space portion is usually a transparent sealing portion filled with a light-transmitting and insulating material, and the force applied by directly contacting the lead wire 16 in wire bonding mounting and indirectly. Prevents electrical defects caused by the lead wire 16 being disconnected, cut, or short-circuited from the connection portion with the optical semiconductor element 10 and / or the connection portion with the electrode due to applied vibration, impact, etc. can do.
  • the optical semiconductor element 10 can be protected from moisture, dust, etc., and the reliability can be maintained over a long period of time.
  • Examples of the material (transparent sealant composition) that imparts translucency and insulation usually include silicone resins, epoxy silicone resins, epoxy resins, acrylic resins, polyimide resins, polycarbonate resins, and the like. Of these, silicone resins are preferred from the viewpoints of heat resistance, weather resistance, low shrinkage, and discoloration resistance.
  • the reflector 12 having a predetermined shape is molded from the reflector resin composition of the present invention by transfer molding, compression molding, injection molding or the like using a mold having a cavity space having a predetermined shape.
  • the separately prepared optical semiconductor element 10, electrodes and lead wires 16 are fixed to the substrate 14 with an adhesive or a bonding member, and further fixed to the reflector 12 on the substrate 14.
  • a transparent sealant composition containing a silicone resin or the like is poured into the recess formed by the substrate 14 and the reflector 12, and cured by heating, drying, or the like to form a transparent sealing portion.
  • the lens 18 is disposed on the transparent sealing portion to obtain the semiconductor light emitting device shown in FIG.
  • the composition may be cured.
  • Example A Heat-resistant binder / thermosetting resin: silicone resin (OE-6336A and OE-6336B mixed at a mass ratio of 1: 1: both manufactured by Toray Dow Corning Co., Ltd.) -Thermoplastic resin: norbornene polymer (ZEONOR 1600: manufactured by Nippon Zeon Co., Ltd.)
  • Boron nitride particles A UHP-2 (scale-shaped hexagonal crystal structure, volume average particle diameter 11.8 ⁇ m, Showa Denko KK) (3) Titanium oxide particles: PFC-107 (Ishihara Sangyo Co., Ltd. Rutile structure Volume average particle size 0.25 ⁇ m) (4) Magnesium oxide particles: manufactured by Wako Pure Chemical Industries, Ltd.
  • Boron nitride particles B UHP-EX (manufactured by Showa Denko KK, granular hexagonal crystal structure, volume average particle size 50 ⁇ m)
  • Boron nitride particles C UHP-S1 (manufactured by Showa Denko KK, scaly hexagonal crystal structure, volume average particle size 1.5 ⁇ m)
  • Examples 1 to 11, Comparative Examples 1 to 5 In the formulation shown in Table 1, a heat-resistant binder and various particles were blended and kneaded to obtain a reflector composition. In the blending, the volume fraction of various particles was adjusted to be constant, and kneading was performed with a roll.
  • thermosetting resin when thermosetting resin is blended, 150 ° C., 60 seconds, 10 MPa, and when blending thermoplastic resin, conditions of 230 ° C., 10 seconds, 20 MPa are 750 mm ⁇ 750 mm ⁇
  • the molded body was produced by press molding to a thickness of 1 mm. The following characteristics were measured for this molded body. The results are shown in Tables 1 to 4 below.
  • the reflective material compositions of Examples 1 to 11 have a high reflectance in the region of 250 to 780 nm in both cases of the thermosetting resin and the thermoplastic resin, and particularly good in the ultraviolet region. It was confirmed that it had reflection characteristics. Moreover, it has also confirmed that it was a reflecting material composition holding favorable heat resistance. From Table 2, it was confirmed that the content of boron nitride particles was useful at 15 to 200 parts by mass. From Table 3, it was confirmed that this effect was due to boron nitride particles, and that the reflectance was good when the volume average particle diameter was 1 to 2 ⁇ m. Moreover, it has also confirmed from Table 4 that a reflector composition with high thermal conductivity was obtained by containing boron nitride particles. From the above, it can be said that the reflective material composition of the present invention is useful as a reflector that also reflects ultraviolet rays and a reflective material for semiconductor light emitting devices.
  • Example B Heat-resistant binder / thermosetting resin: silicone resin (OE-6336A and OE-6336B mixed at a mass ratio of 1: 1: both manufactured by Toray Dow Corning Co., Ltd.) -Thermoplastic resin: norbornene polymer (ZEONOR 1600: manufactured by Nippon Zeon Co., Ltd.)
  • Zinc oxide particles LP-ZINC2 (manufactured by Sakai Chemical Industry Co., Ltd., average particle size 2 ⁇ m) (6) Magnesium oxide particles: Magnesium oxide (Wako Pure Chemical Industries, Ltd., average particle size 0.2 ⁇ m) (7) Magnesium hydroxide particles: Magseeds N-6 (manufactured by Kamishima Chemical Co., Ltd., average particle size 1.1 ⁇ m) (8) Calcium carbonate particles: WS-2200 (manufactured by Takehara Chemical Co., Ltd., average particle size 1.3 ⁇ m) (9) Talc particles: Hi-micron HE5 (manufactured by Takehara Chemical Co., Ltd., average particle size 1.6 ⁇ m) (10) Barium sulfate particles: Barium sulfate W-1 (manufactured by Takehara Chemical Co., Ltd., average particle size 1.5 ⁇ m)
  • Examples 1 to 9, Comparative Examples 1 to 14 In the formulations shown in Tables 5 to 7, a heat-resistant binder and various particles were blended and kneaded to obtain a reflector composition. In the blending, the volume fraction of various particles was adjusted to be constant, and kneading was performed with a roll.
  • thermosetting resin when thermosetting resin is blended, 150 ° C., 60 seconds, 10 MPa, and when blending thermoplastic resin, conditions of 230 ° C., 10 seconds, 20 MPa are 750 mm ⁇ 750 mm ⁇
  • the molded body was produced by press molding to a thickness of 1 mm. The following characteristics were measured for this molded body. The results are shown in Tables 5 to 7 below.
  • (B) Light reflectance The light reflectance at a wavelength of 230 to 780 nm of the molded body (before and after standing at 150 ° C. for 24 hours) was measured using a spectrophotometer UV-2550 (manufactured by Shimadzu Corporation). Tables 5 to 7 show the results when the wavelength is 450 nm and the wavelength is 380 nm.
  • FIG. 5 shows the relationship between the light reflectance and wavelength of the molded bodies of Examples 1 and 2
  • FIG. 6 shows the relationship between the light reflectance and wavelength of the molded bodies of Comparative Examples 1 to 4.
  • FIG. 7 shows the relationship between the light reflectance and the wavelength of the molded products of 5 to 7 (all before being allowed to stand at 150 ° C. for 24 hours).

Abstract

Provided on a substrate are: a reflective material composition containing boron nitride particles or melamine cyanurate particles, and a heat-resistant binder; a reflector formed by molding the reflective material composition; optical semiconductor elements; reflectors which surround the optical semiconductor elements and reflect light from the optical semiconductor elements toward a specified direction. In this semiconductor emission device, at least a part of the light reflecting surfaces of the reflectors are material molded from the reflection material composition.

Description

反射材組成物、反射体及び半導体発光装置Reflective material composition, reflector and semiconductor light emitting device
 本発明は、反射材組成物、該反射材組成物を用いた反射体及び半導体発光装置に関する。 The present invention relates to a reflector composition, a reflector using the reflector composition, and a semiconductor light emitting device.
 半導体発光装置の一つであるLED素子は、小型で長寿命であり、省電力性に優れることから、表示灯等の光源として広く利用されている。そして近年では、より輝度の高いLED素子が比較的安価に製造されるようになったことから、蛍光ランプ及び白熱電球に替わる光源としての利用が検討されている。このような光源に適用する場合、大きな照度を得るために、表面実装型LEDパッケージ、即ち、アルミニウム等の金属製の基板(LED実装用基板)上に複数のLED素子を配置し、各LED素子の周りに光を所定方向に反射させる反射体(リフレクター)を配設する方式が多用されている。 An LED element, which is one of semiconductor light emitting devices, is widely used as a light source for an indicator lamp or the like because it is small and has a long life and is excellent in power saving. In recent years, LED elements with higher brightness have been manufactured at a relatively low cost, and therefore, use as a light source to replace fluorescent lamps and incandescent bulbs has been studied. When applying to such a light source, in order to obtain a large illuminance, a plurality of LED elements are arranged on a surface-mounted LED package, that is, a metal substrate (LED mounting substrate) such as aluminum, and each LED element. A system is often used in which a reflector (reflector) that reflects light in a predetermined direction is disposed around the.
 しかし、LED素子は発光時に発熱を伴うため、このような方式のLED照明装置では、LED素子の発光時の温度上昇が輝度の低下、LED素子の短寿命化等を招くこととなる。従って、少なくとも反射体には耐熱性が要求され、さらに良好な放熱性を有することが好ましい。 However, since the LED element generates heat at the time of light emission, in such a type of LED lighting device, a temperature increase at the time of light emission of the LED element leads to a decrease in luminance, a shortened life of the LED element, and the like. Accordingly, at least the reflector is required to have heat resistance, and preferably has a good heat dissipation.
 そこで、特許文献1では、熱硬化性オルガノポリシロキサン、白色顔料、無機充填剤(但し、白色顔料を除く)、縮合触媒、所定のカップリング剤を含有する白色熱硬化性シリコーン樹脂組成物で反射体を構成する光半導体ケースが提案されている。
 また、特許文献2では、特定の熱硬化樹脂及び無機部材を含有するコーティング部材を所定部にコーティングして光の反射を高めるパッケージ成形体が提案されている。
Therefore, in Patent Document 1, it is reflected by a white thermosetting silicone resin composition containing a thermosetting organopolysiloxane, a white pigment, an inorganic filler (excluding a white pigment), a condensation catalyst, and a predetermined coupling agent. An optical semiconductor case constituting a body has been proposed.
Further, Patent Document 2 proposes a package molded body that enhances light reflection by coating a predetermined part with a coating member containing a specific thermosetting resin and an inorganic member.
特開2009-221393号公報JP 2009-221393 A 特開2005-136378号公報JP 2005-136378 A
 これらの特許文献において白色顔料又は無機部材として実際に効果の確認が行われているのは酸化チタンを用いた場合のみであり、他の顔料又は無機部材を用いた場合の効果については具体的な効果の開示はされていない。
 また、短波長の紫外光には殺菌や消臭という効果や、様々な色の蛍光体との組み合わせにより照明やテレビ等の演色性を高めることが期待されており、紫外光の反射率をも向上させる必要がある。酸化チタンを白色顔料又は無機部材として用いた場合はルチル結晶では411nm付近、アナターゼ結晶においても波長387nm付近にて光の吸収が起こるため光の反射を阻害する。また光触媒作用に伴い樹脂の劣化を促進してしまうことがあり実用的ではない。
In these patent documents, the effect of the white pigment or the inorganic member is actually confirmed only when titanium oxide is used, and the effect when the other pigment or inorganic member is used is concrete. The effect is not disclosed.
Short wavelength ultraviolet light is also expected to improve the color rendering properties of lighting and televisions by combining the effects of sterilization and deodorization and phosphors of various colors. There is a need to improve. When titanium oxide is used as a white pigment or an inorganic member, light absorption occurs in the vicinity of 411 nm in the rutile crystal and in the vicinity of a wavelength of 387 nm in the anatase crystal, thereby inhibiting light reflection. Further, the photocatalytic action may accelerate the deterioration of the resin, which is not practical.
 以上から、本発明は、波長400nm以下の紫外光に対しても高い反射特性を有し、耐熱性が高い反射体を作製することが可能な反射材組成物、当該反射材組成物を用いた反射体及び半導体発光装置を提供することを目的とする。 As described above, the present invention uses a reflector composition that has a high reflection characteristic even with respect to ultraviolet light having a wavelength of 400 nm or less and can produce a reflector having high heat resistance, and the reflector composition. It is an object to provide a reflector and a semiconductor light emitting device.
 本発明者は、上記目的を達成するために鋭意研究を重ねた結果、下記の発明により当該目的を達成できることを見出した。すなわち、本発明は下記の通りである。 As a result of intensive research to achieve the above object, the present inventor has found that the object can be achieved by the following invention. That is, the present invention is as follows.
[1] 窒化ホウ素粒子又はメラミンシアヌレート粒子と、耐熱性バインダーとを含む反射材組成物。
[2] 酸化チタンを実質的に含有しない[1]に記載の反射材組成物。
[3] 前記耐熱性バインダーがシリコーン樹脂又はノルボルネン重合体である[1]又は[2]に記載の反射材組成物。
[4] 含有する前記窒化ホウ素の体積平均粒径が0.1~300μmである[1]~[3]のいずれかに記載の反射材組成物。
[5] 前記窒化ホウ素の含有量が、耐熱性バインダー100質量部に対し、10~300質量部である[1]~[4]のいずれかに記載の反射材組成物。
[6] 含有する前記メラミンシアヌレート粒子の平均粒径が0.5~4.0μmである上記[1]~[3]のいずれかに記載の反射材組成物。
[7] 前記メラミンシアヌレート粒子の含有量が、前記耐熱性バインダー100質量部に対し、5~180質量部である[1]~[3]及び[6]のいずれかに記載の反射材組成物。
[8] 上記[1]~[7]のいずれかに記載の反射材組成物を成形してなる反射体。
[9] 光半導体素子と、前記光半導体素子の周りに設けられ、該光半導体素子からの光を所定方向に反射させる反射体とを基板上に有し、前記反射体の光反射面の少なくとも一部が[1]~[7]のいずれかに記載の反射体組成物の成形物である半導体発光装置。
[1] A reflector composition comprising boron nitride particles or melamine cyanurate particles and a heat-resistant binder.
[2] The reflective material composition according to [1], which contains substantially no titanium oxide.
[3] The reflector composition according to [1] or [2], wherein the heat-resistant binder is a silicone resin or a norbornene polymer.
[4] The reflector composition according to any one of [1] to [3], wherein the boron nitride contained has a volume average particle size of 0.1 to 300 μm.
[5] The reflector composition according to any one of [1] to [4], wherein the boron nitride content is 10 to 300 parts by mass with respect to 100 parts by mass of the heat-resistant binder.
[6] The reflector composition according to any one of the above [1] to [3], wherein the melamine cyanurate particles contained have an average particle size of 0.5 to 4.0 μm.
[7] The reflector composition according to any one of [1] to [3] and [6], wherein the content of the melamine cyanurate particles is 5 to 180 parts by mass with respect to 100 parts by mass of the heat-resistant binder. object.
[8] A reflector formed by molding the reflector composition according to any one of [1] to [7].
[9] An optical semiconductor element and a reflector provided around the optical semiconductor element and reflecting light from the optical semiconductor element in a predetermined direction are provided on a substrate, and at least a light reflecting surface of the reflector A semiconductor light-emitting device, part of which is a molded product of the reflector composition according to any one of [1] to [7].
 本発明によれば、波長400nm以下の紫外光に対しても高い反射特性を有し、耐熱性が高い反射体を作製することが可能な反射材組成物、当該反射材組成物を用いた反射体及び半導体発光装置を提供することができる。また、窒化ホウ素粒子を用いた場合は、高い放熱性をも有する反射体を作製することが可能な反射材組成物を提供することができる。 According to the present invention, it is possible to produce a reflector having a high reflection characteristic even for ultraviolet light having a wavelength of 400 nm or less and having high heat resistance, and a reflection using the reflector composition. And a semiconductor light emitting device can be provided. Moreover, when boron nitride particles are used, it is possible to provide a reflector composition that can produce a reflector having high heat dissipation.
本発明の半導体発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the semiconductor light-emitting device of this invention. 本発明の半導体発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the semiconductor light-emitting device of this invention. 実施例A-1及び比較例A-1,A-3の反射材組成物からなる成形体の初期(作製直後)の光反射率と波長との関係を示す図である。It is a figure which shows the relationship between the light reflectivity and wavelength of the initial stage (immediately after preparation) of the molded object which consists of a reflector composition of Example A-1 and Comparative Example A-1, A-3. 実施例A-2及び比較例A-2,A-4の反射材組成物からなる成形体の初期(作製直後)の光反射率と波長との関係を示す図である。It is a figure which shows the relationship between the light reflectivity and wavelength of the initial stage (immediately after preparation) of the molded object which consists of a reflector composition of Example A-2 and Comparative example A-2, A-4. 実施例B-1及び実施例B-2の反射材組成物からなる成形体の初期(作製直後)の光反射率と波長との関係を示す図である。It is a figure which shows the relationship between the light reflectivity and wavelength of the initial stage (immediately after preparation) of the molded object which consists of a reflecting material composition of Example B-1 and Example B-2. 比較例B-1~B-4の反射材組成物からなる成形体の初期(作製直後)の光反射率と波長との関係を示す図である。FIG. 3 is a diagram showing the relationship between the light reflectance and the wavelength at the initial stage (immediately after production) of the molded articles made of the reflective material compositions of Comparative Examples B-1 to B-4. 比較例B-5~B-7の反射材組成物からなる成形体の初期(作製直後)の光反射率と波長との関係を示す図である。FIG. 6 is a graph showing the relationship between the light reflectance and wavelength at the initial stage (immediately after production) of a molded article made of the reflective material composition of Comparative Examples B-5 to B-7.
[1.反射材組成物]
(1)本発明の第1の反射材組成物:
 本発明の第1の反射材組成物は、窒化ホウ素粒子と耐熱性バインダーとを含んでなる。
 窒化ホウ素粒子の存在により波長400nm以下の紫外光、より好ましくは波長250~400nmの範囲の紫外光の反射率を高い状態とすることができる。そして、この窒化ホウ素粒子を耐熱性バインダー中に含有させることで、比較的高温の使用領域でも上記特性を良好に維持できるため。その結果、照明器具やテレビ等の反射体に適用することで演色性を高めることができる。また、窒化ホウ素粒子自体は高温下でも耐熱性バインダーの劣化等を促進することがないため、反射材組成物の耐用性の低下を抑えることができる。
[1. Reflective material composition]
(1) First reflector composition of the present invention:
The first reflecting material composition of the present invention comprises boron nitride particles and a heat-resistant binder.
Due to the presence of boron nitride particles, the reflectance of ultraviolet light having a wavelength of 400 nm or less, more preferably, ultraviolet light having a wavelength in the range of 250 to 400 nm can be made high. And since the boron nitride particles are contained in the heat-resistant binder, the above characteristics can be maintained well even in a relatively high temperature use region. As a result, color rendering can be enhanced by applying to reflectors such as lighting fixtures and televisions. Further, since boron nitride particles themselves do not promote deterioration of the heat-resistant binder even at high temperatures, it is possible to suppress a decrease in the durability of the reflective material composition.
 窒化ホウ素粒子は、六方晶構造(h-BN)、閃亜鉛鉱構造(c-BN)、ウルツ鉱構造(w-BN)、及び菱面体構造(r-BN)のいずれも適用可能であるが、鱗片状のいわゆる六方晶構造の窒化ホウ素粒子であることが耐熱性やコストの点から好ましい。 The boron nitride particles can be applied to any of hexagonal structure (h-BN), zinc blende structure (c-BN), wurtzite structure (w-BN), and rhombohedral structure (r-BN). From the viewpoints of heat resistance and cost, it is preferable to use scale-like boron nitride particles having a hexagonal structure.
 窒化ホウ素粒子の体積平均粒径は、放熱性、耐熱性の観点から0.1~300μmであることが好ましく、0.1~12μmであることがより好ましく、1~2μmであることがさらに好ましい。当該体積平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50として求めることができる。 The volume average particle size of the boron nitride particles is preferably from 0.1 to 300 μm, more preferably from 0.1 to 12 μm, and even more preferably from 1 to 2 μm from the viewpoint of heat dissipation and heat resistance. . The said volume average particle diameter can be calculated | required as the mass average value D50 in the particle size distribution measurement by a laser beam diffraction method.
 窒化ホウ素粒子の含有量は、耐熱性バインダー100質量部に対し、10~300質量部であることが好ましく、15~200質量部であることがより好ましく、20~200質量部であることがさらに好ましい。なお、成形性を損なわない限りは、300部以上充填してもよい。 The content of the boron nitride particles is preferably 10 to 300 parts by mass, more preferably 15 to 200 parts by mass, and further preferably 20 to 200 parts by mass with respect to 100 parts by mass of the heat-resistant binder. preferable. In addition, as long as a moldability is not impaired, you may fill 300 parts or more.
(2)本発明の第2の反射材組成物:
 本発明の第2の反射材組成物は、メラミンシアヌレート粒子と耐熱性バインダーとを含んでなる。
 メラミンシアヌレート粒子の存在により波長400nm以下の紫外光、より好ましくは波長250~400nmの範囲の紫外光の反射率を高い状態とすることができる。そして、このメラミンシアヌレート粒子を耐熱性バインダー中に含有させることで、比較的高温の使用領域でも上記特性を良好に維持できるため。その結果、照明器具やテレビ等の反射体に適用することで演色性を高めることができる。また、メラミンシアヌレート粒子自体は高温下でも耐熱性バインダーの劣化等を促進することがないため、反射材組成物の耐用性の低下を抑えることができる。
(2) Second reflector composition of the present invention:
The second reflective material composition of the present invention comprises melamine cyanurate particles and a heat-resistant binder.
Due to the presence of melamine cyanurate particles, the reflectance of ultraviolet light having a wavelength of 400 nm or less, more preferably, ultraviolet light having a wavelength in the range of 250 to 400 nm can be made high. And, by including the melamine cyanurate particles in the heat-resistant binder, the above characteristics can be maintained well even in a relatively high temperature use region. As a result, color rendering can be enhanced by applying to reflectors such as lighting fixtures and televisions. Further, since the melamine cyanurate particles themselves do not promote deterioration of the heat-resistant binder even at high temperatures, it is possible to suppress a decrease in the durability of the reflector composition.
 ここで、「メラミンシアヌレート」とは、メラミン分子とシアヌル酸分子が水素結合により平面状に配列し、化学式C6993で表わされる化合物のことをいい、例えば、下記式(1)又は式(2)のような構造式で表される。 Here, “melamine cyanurate” refers to a compound in which melamine molecules and cyanuric acid molecules are arranged in a plane by hydrogen bonds and represented by the chemical formula C 6 H 9 N 9 O 3. It is represented by a structural formula such as 1) or formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明において、メラミンシアヌレート粒子の製造方法は、特定の粒径を有するように製造することができれば、特に限定されず、従来公知の方法により製造することができ、例えば、特開平5-310716号公報、特開平7-149739号公報、及び特開平7-224049号公報の記載を参照して製造することができる。 In the present invention, the production method of the melamine cyanurate particles is not particularly limited as long as it can be produced so as to have a specific particle diameter, and can be produced by a conventionally known method, for example, JP-A-5-310716. And JP-A-7-149739 and JP-A-7-224049.
 メラミンシアヌレート粒子の製造方法の一例を挙げると、所定の配合割合でメラミン粉末及びシアヌル酸を、混合攪拌が可能な装置に投入し、混合しながら槽内温度を所定の温度に昇温させた後、当該槽内に、攪拌しながら水を徐々に添加して中和反応させると、白色の沈殿物が生成し、当該沈殿物を濾別し、乾燥及び顆粒化処理を行なうことにより、所望のメラミンシアヌレート粒子が得られる方法が挙げられる。なお、メラミンシアヌレート粒子は、市販品としての入手も可能である。 As an example of a method for producing melamine cyanurate particles, melamine powder and cyanuric acid were charged at a predetermined mixing ratio into a device capable of mixing and stirring, and the temperature inside the tank was raised to a predetermined temperature while mixing. Then, when water is gradually added to the tank while stirring and neutralization reaction is performed, a white precipitate is generated, and the precipitate is filtered and dried and granulated. The method of obtaining the melamine cyanurate particle | grains of this is mentioned. In addition, the melamine cyanurate particle | grains can also be obtained as a commercial item.
 メラミンシアヌレート粒子の平均粒径は、製造上及び反射特性の観点から0.1~100μmであることが好ましく、0.5~20μmであることがより好ましく、0.5~4μmであることがさらに好ましい。当該平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50として求めることができる。 The average particle size of the melamine cyanurate particles is preferably 0.1 to 100 μm, more preferably 0.5 to 20 μm, and more preferably 0.5 to 4 μm from the viewpoint of production and reflection characteristics. Further preferred. The said average particle diameter can be calculated | required as the mass average value D50 in the particle size distribution measurement by a laser beam diffraction method.
 メラミンシアヌレート粒子の含有量は、耐熱性バインダー100質量部に対し、5~180質量部であることが好ましく、10~150質量部であることがより好ましく、5~110質量部であることがさらに好ましく、10~100質量部であることが特に好ましい。なお、成形性を損なわない限りは、200部以上充填してもよい。 The content of melamine cyanurate particles is preferably 5 to 180 parts by mass, more preferably 10 to 150 parts by mass, and more preferably 5 to 110 parts by mass with respect to 100 parts by mass of the heat-resistant binder. More preferred is 10 to 100 parts by mass. In addition, as long as a moldability is not impaired, 200 parts or more may be filled.
 本発明の第1及び第2の反射材組成物(以下、まとめて「本発明の反射材組成物」ということがある)において、メラミンシアヌレート粒子及び窒化ホウ素粒子には、分散性を向上させる観点から、疎水化処理が施されていてもよい。疎水化処理剤としては、例えば、シランカップリング剤、シリコーンオイル、脂肪酸、及び脂肪酸金属塩等が代表的に挙げられる。これらの中でも、分散性を向上させる効果が高いことから、シランカップリング剤、及びシリコーンオイルが好ましく用いられる。 In the first and second reflector compositions of the present invention (hereinafter sometimes collectively referred to as “the reflector composition of the present invention”), the dispersibility is improved in the melamine cyanurate particles and boron nitride particles. From the viewpoint, a hydrophobization treatment may be performed. Representative examples of the hydrophobizing agent include silane coupling agents, silicone oils, fatty acids, and fatty acid metal salts. Among these, a silane coupling agent and silicone oil are preferably used because they have a high effect of improving dispersibility.
 シランカップリング剤としては、例えば、ヘキサメチルジシラザン等のジシラザン;環状シラザン;トリメチルシラン、トリメチルクロルシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、ベンジルジメチルクロルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n-ブチルトリメトキシシラン、n-ヘキサデシルトリメトキシシラン、n-オクタデシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、及びビニルトリアセトキシシラン等のアルキルシラン化合物;γ-アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、及びN-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノシラン化合物;等が挙げられる。
シリコーンオイルとしては、例えば、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン、及びアミノ変性シリコーンオイル等が挙げられる。これらの疎水化処理剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
Examples of the silane coupling agent include disilazane such as hexamethyldisilazane; cyclic silazane; trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, benzyldimethylchlorosilane, methyltrimethoxysilane. , Methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-butyltrimethoxysilane, n-hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, Alkylsilane compounds such as vinyltriacetoxysilane; γ-aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, N-phenyl Aminosilane compounds such as -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropyltrimethoxysilane, and N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane And the like.
Examples of the silicone oil include dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, and amino-modified silicone oil. These hydrophobizing agents can be used alone or in combination of two or more.
 メラミンシアヌレート粒子や窒化ホウ素粒子を疎水化処理する方法としては、従来公知の方法であれば特に限定されず、例えば、乾式法、及び湿式法等が挙げられる。具体的には、メラミンシアヌレート粒子や窒化ホウ素粒子を高速で撹拌しながら、疎水化処理剤を滴下または噴霧する乾式法;疎水化処理剤を有機溶媒に溶解し、当該有機溶媒を撹拌しながらメラミンシアヌレート粒子や窒化ホウ素粒子を添加する湿式法;等の方法が挙げられる。 The method for hydrophobizing melamine cyanurate particles and boron nitride particles is not particularly limited as long as it is a conventionally known method, and examples thereof include a dry method and a wet method. Specifically, a dry method in which a hydrophobizing agent is dropped or sprayed while stirring melamine cyanurate particles and boron nitride particles at high speed; the hydrophobizing agent is dissolved in an organic solvent, and the organic solvent is stirred Examples thereof include a wet method in which melamine cyanurate particles and boron nitride particles are added.
 また、本発明の反射材組成物は、酸化チタンを実質的に含有しない。酸化チタンを実質的に含有しないことで、400nm以下の紫外光の反射率を良好な状態とすることができる。また、酸化チタンの触媒作用により生じ得る耐熱性バインダーの劣化を未然に防ぐことができる。
 ここで、「酸化チタン粒子を実質的に含有しない」とは、反射材組成物の作製時に酸化チタン材料を配合しないことを意味し、具体的には反射材組成物中の酸化チタンの含有量が0質量%であることを意味する。
Moreover, the reflective material composition of the present invention does not substantially contain titanium oxide. By substantially not containing titanium oxide, the reflectance of ultraviolet light of 400 nm or less can be made good. In addition, it is possible to prevent deterioration of the heat-resistant binder that can be caused by the catalytic action of titanium oxide.
Here, “substantially free of titanium oxide particles” means that no titanium oxide material is blended during the production of the reflector composition, specifically, the content of titanium oxide in the reflector composition. Means 0 mass%.
 本発明の反射材組成物における耐熱性バインダーは、成形後のガラス転移温度及び融点の少なくともどちらか一方が100℃以上の樹脂であればよく、エポキシ樹脂、アクリレート樹脂、ウレタン樹脂、シリコーン樹脂、ポリシロキサン-有機ブロックコポリマー、ポリシロキサン-有機グラフトコポリマー、SiH基と反応性を有する炭素-炭素二重結合を含有する有機無機ハイブリッド樹脂、シアネートエステル樹脂、フェノール樹脂、ポリイミド樹脂、ビスマレイミド樹脂等の熱硬化性樹脂でも、アクリル系樹脂、ポリカーボネート系樹脂、ノルボルネン誘導体、ノルボルネン誘導体を開環メタセシス重合させた樹脂あるいはその水素添加物等のシクロオレフィン系樹脂、オレフィン-マレイミド系樹脂、ポリエステル系樹脂、ポリサルホン樹脂、ポリエーテル樹脂、ポリオキシベンジレン樹脂、ポリフェニレンオキシド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンスルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトンケトン樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリイミドアミド樹脂、ポリアリレート樹脂、ポリビニルアセタール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメチルペンテン樹脂、ポリスチレン樹脂、ポリアミド樹脂、全芳香族ポリエステル樹脂(液晶樹脂)、ビニルモノマー等を単独あるいは共重合した樹脂、フッ素樹脂、ゴム状樹脂等の熱可塑性樹脂でもよい。
 熱硬化性樹脂としてはシリコーン樹脂(シリコーン変性樹脂を含む)が好ましく、熱可塑性樹脂としてはノルボルネン重合体であることが好ましい。
The heat-resistant binder in the reflector composition of the present invention may be a resin having at least one of a glass transition temperature and a melting point after molding of 100 ° C. or higher, such as epoxy resin, acrylate resin, urethane resin, silicone resin, poly Heat of siloxane-organic block copolymer, polysiloxane-organic graft copolymer, organic-inorganic hybrid resin containing carbon-carbon double bond reactive with SiH group, cyanate ester resin, phenol resin, polyimide resin, bismaleimide resin, etc. Among the curable resins, acrylic resins, polycarbonate resins, norbornene derivatives, cycloolefin resins such as resins obtained by ring-opening metathesis polymerization of norbornene derivatives or hydrogenated products thereof, olefin-maleimide resins, polyester resins, polyesters, etc. Hong resin, polyether resin, polyoxybenzylene resin, polyphenylene oxide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, polyether imide resin, polyether ketone ketone resin, polyphenylene ether resin, polyimide resin , Polyimide amide resin, polyarylate resin, polyvinyl acetal resin, polyethylene resin, polypropylene resin, polymethylpentene resin, polystyrene resin, polyamide resin, wholly aromatic polyester resin (liquid crystal resin), resin that is a single or copolymerized vinyl monomer, etc. Further, a thermoplastic resin such as a fluororesin or a rubber-like resin may be used.
A silicone resin (including a silicone-modified resin) is preferable as the thermosetting resin, and a norbornene polymer is preferable as the thermoplastic resin.
 ここで、上記シリコーン樹脂としては、硬化の種類としては付加型シリコーン、縮合型シリコーンがあり、構造としてはジメルシリコーン、メチルフェニルシリコーンなどが挙げられる。例えば、縮合型シリコーンとはメチルトリクロロシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、テトラクロロシラン、テトラメトキシシラン、テトラエトキシシラン等の加水分解反応により得られる熱硬化性オルガノポリシロキサンである。 Here, examples of the silicone resin include addition type silicone and condensation type silicone as curing types, and examples of the structure include dimethyl silicone and methylphenyl silicone. For example, the condensation type silicone is a thermosetting organopolysiloxane obtained by hydrolysis reaction of methyltrichlorosilane, methyltrimethoxysilane, methyltriethoxysilane, tetrachlorosilane, tetramethoxysilane, tetraethoxysilane or the like.
 また、ノルボルネン重合体としては、例えば、ノルボルネン構造を有する単量体の開環重合体もしくはノルボルネン構造を有する単量体と他の単量体との開環重合体又はそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体もしくはノルボルネン構造を有する単量体と他の単量体との付加重合体又はそれらの水素化物等を挙げることができる。これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、成形性、耐熱性、低吸湿性、寸法安定性、軽量性等の観点から、特に好適に用いることができる。 Examples of the norbornene polymer include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening polymer of a monomer having a norbornene structure and another monomer, or a hydride thereof, a norbornene structure. An addition polymer of a monomer having a hydrogen atom, an addition polymer of a monomer having a norbornene structure and another monomer, or a hydride thereof. Among these, a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly preferably used from the viewpoints of moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can do.
 本発明の反射材組成物は、窒化ホウ素粒子と耐熱性バインダーとを、あるいは、メラミンシアヌレート粒子と耐熱性バインダーとを、既述のような所定比で混合し作製することができる。混合方法としては、2本ロールあるいは3本ロール、遊星式撹拌脱泡装置、ホモジナイザー、ディゾルバー、プラネタリーミキサー等の撹拌機、ポリラボシステムやラボプラストミル等の溶融混練機等の公知の手段を適用することができる。これらは常温、冷却状態、加熱状態、常圧、減圧状態、加圧状態のいずれで行ってもよい。
 なお、本発明の効果を損なわない限り、種々の添加剤を含有させることができる。例えば、樹脂組成物の性質を改善する目的で種々のウィスカー、シリコーンパウダー、熱可塑性エラストマー、有機合成ゴム、脂肪酸エステル、グリセリン酸エステル、ステアリン酸亜鉛、ステアリン酸カルシウム等の内部離型剤等の添加剤を配合することができる。
The reflective material composition of the present invention can be prepared by mixing boron nitride particles and a heat-resistant binder, or mixing melamine cyanurate particles and a heat-resistant binder in a predetermined ratio as described above. As a mixing method, known means such as a two-roll or three-roll, a planetary stirring and deaerator, a stirrer such as a homogenizer, a dissolver and a planetary mixer, a melt kneader such as a polylab system and a lab plast mill, etc. Can be applied. These may be performed at normal temperature, cooling state, heating state, normal pressure, reduced pressure state, or pressurized state.
Various additives can be added as long as the effects of the present invention are not impaired. For example, various whisker, silicone powder, thermoplastic elastomer, organic synthetic rubber, fatty acid ester, glycerate ester, zinc stearate, calcium stearate and other additives such as internal mold release agents for the purpose of improving the properties of the resin composition Can be blended.
 以上のような本発明の反射材組成物は、基材上に塗布し成形させた複合材料や反射材組成物の成形物として種々の用途に適用することができる。例えば、太陽電池の光反射シートやLEDを始めとした照明やテレビ用の光源の反射材として適用することができる。 The reflective material composition of the present invention as described above can be applied to various uses as a composite material or a molded product of a reflective material composition applied and molded on a substrate. For example, it can be applied as a light reflecting sheet for solar cells, a reflector for LEDs and other light sources for televisions, and light sources for televisions.
[2.反射体]
 本発明の反射体は、既述の本発明の反射材組成物を成形してなる。
 当該反射体は、後述する半導体発光装置と組み合わせて用いてよいし、他の材料からなる半導体発光装置(LED実装用基板)と組み合わせて用いてもよい。
 本発明の反射体は、主として、半導体発光装置のLED素子からの光をレンズ(出光部)の方へ反射させる作用を有する。反射体の詳細については、本発明の半導体発光装置に適用される反射体(後述する反射体12)と同じであるためここでは省略する。
[2. Reflector]
The reflector of the present invention is formed by molding the above-described reflector composition of the present invention.
The reflector may be used in combination with a semiconductor light-emitting device described later, or may be used in combination with a semiconductor light-emitting device (LED mounting substrate) made of another material.
The reflector of the present invention mainly has an action of reflecting light from the LED element of the semiconductor light emitting device toward the lens (light emitting portion). The details of the reflector are the same as those of the reflector (reflector 12 described later) applied to the semiconductor light emitting device of the present invention, and are omitted here.
[3.半導体発光装置]
 本発明の半導体発光装置は、図1に例示するように、光半導体素子(例えばLED素子)10と、この光半導体素子10の周りに設けられ、光半導体素子10からの光を所定方向に反射させる反射体12とを基板14上に有してなる。そして、反射体12の光反射面の少なくとも一部(図1の場合は全部)が既述の本発明の反射体組成物の成形物で構成されてなる。
[3. Semiconductor light emitting device]
As illustrated in FIG. 1, the semiconductor light emitting device of the present invention is provided around an optical semiconductor element (for example, an LED element) 10 and the optical semiconductor element 10, and reflects light from the optical semiconductor element 10 in a predetermined direction. The reflecting body 12 is provided on the substrate 14. And at least one part (all in the case of FIG. 1) of the light reflection surface of the reflector 12 is comprised with the molded object of the reflector composition of this invention as stated above.
 光半導体素子10は、放射光(一般に、白色光LEDにおいてはUV又は青色光)を放出する、例えば、AlGaAs、AlGaInP、GaP又はGaNからなる活性層を、n型及びp型のクラッド層により挟んだダブルヘテロ構造を有する半導体チップ(発光体)であり、例えば、一辺の長さが0.5mm程度の六面体の形状をしている。そして、ワイヤーボンディング実装の形態の場合には、リード線16を介して不図示の電極(接続端子)に接続されている。 The optical semiconductor element 10 emits radiated light (generally UV or blue light in a white light LED), for example, an active layer made of AlGaAs, AlGaInP, GaP or GaN sandwiched between n-type and p-type cladding layers. It is a semiconductor chip (light emitter) having a double heterostructure, and has a hexahedral shape with a side length of about 0.5 mm, for example. In the case of wire bonding mounting, it is connected to an electrode (connection terminal) (not shown) via a lead wire 16.
 反射体12の形状は、レンズ18の端部(接合部)の形状に準じており、通常、角形、円形、楕円形等の筒状又は輪状である。図1の概略断面図においては、反射体12は、筒状体(輪状体)であり、反射体12のすべての端面が基板14の表面に接触、固定されている。
 なお、反射体12の内面は、光半導体素子10からの光の指向性を高めるために、テーパー状に上方に広げられていてもよい(図1参照)。
 また、反射体12は、レンズ18側の端部を、当該レンズ18の形状に応じた形に加工された場合には、レンズホルダーとしても機能させることができる。
The shape of the reflector 12 conforms to the shape of the end portion (joint portion) of the lens 18 and is usually a cylindrical shape such as a square shape, a circular shape, an elliptic shape, or a ring shape. In the schematic cross-sectional view of FIG. 1, the reflector 12 is a cylindrical body (annular body), and all end surfaces of the reflector 12 are in contact with and fixed to the surface of the substrate 14.
In addition, in order to improve the directivity of the light from the optical semiconductor element 10, the inner surface of the reflector 12 may be expanded upward in a tapered shape (see FIG. 1).
The reflector 12 can also function as a lens holder when the end portion on the lens 18 side is processed into a shape corresponding to the shape of the lens 18.
 反射体12は、図2に示すように、光反射面側だけを本発明の反射材組成物からなる光反射層12aとしてもよい。この場合、光反射層12aの厚さは、熱抵抗を低くする等の観点から、500μm以下とすることが好ましく、300μm以下とすることがより好ましい。光反射層12aが形成される部材12bは、公知の耐熱性樹脂で構成することができる。 As shown in FIG. 2, the reflector 12 may have only the light reflecting surface side as a light reflecting layer 12a made of the reflecting material composition of the present invention. In this case, the thickness of the light reflection layer 12a is preferably 500 μm or less, and more preferably 300 μm or less, from the viewpoint of reducing the thermal resistance. The member 12b on which the light reflecting layer 12a is formed can be made of a known heat resistant resin.
 既述のように反射体12上にはレンズ18が設けられているが、これは通常樹脂製であり、目的、用途等により様々な構造が採用され、着色されることもある。 As described above, the lens 18 is provided on the reflector 12, but this is usually made of resin, and various structures may be adopted and colored depending on the purpose and application.
 基板14と反射体12とレンズ18とで形成される空間部は、透明封止部であってよいし、必要により空隙部であってもよい。この空間部は、通常、透光性及び絶縁性を与える材料等が充填された透明封止部であり、ワイヤーボンディング実装において、リード線16に直接接触することにより加わる力、及び、間接的に加わる振動、衝撃等により、光半導体素子10との接続部、及び/又は、電極との接続部からリード線16が外れたり、切断したり、短絡したりすることによって生じる電気的な不具合を防止することができる。また、同時に、湿気、塵埃等から光半導体素子10を保護し、長期間に渡って信頼性を維持することができる。 The space formed by the substrate 14, the reflector 12, and the lens 18 may be a transparent sealing portion, or may be a gap if necessary. This space portion is usually a transparent sealing portion filled with a light-transmitting and insulating material, and the force applied by directly contacting the lead wire 16 in wire bonding mounting and indirectly. Prevents electrical defects caused by the lead wire 16 being disconnected, cut, or short-circuited from the connection portion with the optical semiconductor element 10 and / or the connection portion with the electrode due to applied vibration, impact, etc. can do. At the same time, the optical semiconductor element 10 can be protected from moisture, dust, etc., and the reliability can be maintained over a long period of time.
 この透光性及び絶縁性を与える材料(透明封止剤組成物)としては、通常、シリコーン樹脂、エポキシシリコーン樹脂、エポキシ系樹脂、アクリル系樹脂、ポリイミド系樹脂、ポリカーボネート樹脂等が挙げられる。これらのうち、耐熱性、耐候性、低収縮性及び耐変色性の観点から、シリコーン樹脂が好ましい。 Examples of the material (transparent sealant composition) that imparts translucency and insulation usually include silicone resins, epoxy silicone resins, epoxy resins, acrylic resins, polyimide resins, polycarbonate resins, and the like. Of these, silicone resins are preferred from the viewpoints of heat resistance, weather resistance, low shrinkage, and discoloration resistance.
 以下に、図1に示す光半導体装置の製造方法の一例について説明する。
 まず、上記本発明の反射材樹脂組成物を、所定形状のキャビティ空間を備える金型を用いたトランスファー成形、圧縮成形、射出成形等により、所定形状の反射体12を成形する。その後、別途、準備した光半導体素子10、電極及びリード線16を、接着剤又は接合部材により基板14に固定し、さらに反射体12に基板14上に固定する。次いで、基板14及び反射体12により形成された凹部に、シリコーン樹脂等を含む透明封止剤組成物を注入し、加熱、乾燥等により硬化させて透明封止部とする。その後、透明封止部上にレンズ18を配設して、図1に示す半導体発光装置が得られる。
 なお、透明封止剤組成物が未硬化の状態でレンズ18を載置してから、組成物を硬化させてもよい。
Below, an example of the manufacturing method of the optical semiconductor device shown in FIG. 1 is demonstrated.
First, the reflector 12 having a predetermined shape is molded from the reflector resin composition of the present invention by transfer molding, compression molding, injection molding or the like using a mold having a cavity space having a predetermined shape. Thereafter, the separately prepared optical semiconductor element 10, electrodes and lead wires 16 are fixed to the substrate 14 with an adhesive or a bonding member, and further fixed to the reflector 12 on the substrate 14. Next, a transparent sealant composition containing a silicone resin or the like is poured into the recess formed by the substrate 14 and the reflector 12, and cured by heating, drying, or the like to form a transparent sealing portion. Thereafter, the lens 18 is disposed on the transparent sealing portion to obtain the semiconductor light emitting device shown in FIG.
In addition, after mounting the lens 18 in a state where the transparent sealant composition is uncured, the composition may be cured.
 次に、本発明を実施例A,Bによりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、本実施例において使用した材料は下記の通りである。 Next, the present invention will be described in more detail with reference to Examples A and B, but the present invention is not limited to these examples. The materials used in this example are as follows.
[実施例A]
(1)耐熱性バインダー
・熱硬化性樹脂:シリコーン樹脂(OE-6336A及びOE-6336Bを質量比1:1で混合したもの:いずれも東レ・ダウコーニング(株)製)
・熱可塑性樹脂:ノルボルネン重合体(ZEONOR 1600:日本ゼオン(株)製)
[Example A]
(1) Heat-resistant binder / thermosetting resin: silicone resin (OE-6336A and OE-6336B mixed at a mass ratio of 1: 1: both manufactured by Toray Dow Corning Co., Ltd.)
-Thermoplastic resin: norbornene polymer (ZEONOR 1600: manufactured by Nippon Zeon Co., Ltd.)
(2)窒化ホウ素粒子A:UHP-2(昭和電工(株)製 鱗片状の六方晶構造、体積平均粒径11.8μm)
(3)酸化チタン粒子:PFC-107(石原産業(株)製 ルチル型構造 体積平均粒径0.25μm)
(4)酸化マグネシウム粒子:和光純薬工業(株)製 体積平均粒径0.2μm)
(5)窒化ホウ素粒子B:UHP-EX(昭和電工(株)製 顆粒状の六方晶構造、体積平均粒径50μm)
(6)窒化ホウ素粒子C:UHP-S1(昭和電工(株)製 鱗片状の六方晶構造、体積平均粒径1.5μm)
(2) Boron nitride particles A: UHP-2 (scale-shaped hexagonal crystal structure, volume average particle diameter 11.8 μm, Showa Denko KK)
(3) Titanium oxide particles: PFC-107 (Ishihara Sangyo Co., Ltd. Rutile structure Volume average particle size 0.25 μm)
(4) Magnesium oxide particles: manufactured by Wako Pure Chemical Industries, Ltd. Volume average particle diameter 0.2 μm)
(5) Boron nitride particles B: UHP-EX (manufactured by Showa Denko KK, granular hexagonal crystal structure, volume average particle size 50 μm)
(6) Boron nitride particles C: UHP-S1 (manufactured by Showa Denko KK, scaly hexagonal crystal structure, volume average particle size 1.5 μm)
[実施例1~11、比較例1~5]
 表1に示す配合において、耐熱性バインダーおよび各種粒子を配合、混練し、反射材組成物を得た。なお、配合には各種粒子の体積分率が一定になるように調整し、混練はロールで行った。
[Examples 1 to 11, Comparative Examples 1 to 5]
In the formulation shown in Table 1, a heat-resistant binder and various particles were blended and kneaded to obtain a reflector composition. In the blending, the volume fraction of various particles was adjusted to be constant, and kneading was performed with a roll.
 これらの組成物につき、熱硬化性樹脂を配合している場合は150℃、60秒、10MPa、熱可塑樹脂を配合している場合は230℃、10秒、20MPaの条件で、750mm×750mm×厚さ1mmにプレス成形し、成形体を作製した。
 この成形体について下記諸特性を測定した。結果を下記表1~4に示す。
About these compositions, when thermosetting resin is blended, 150 ° C., 60 seconds, 10 MPa, and when blending thermoplastic resin, conditions of 230 ° C., 10 seconds, 20 MPa are 750 mm × 750 mm × The molded body was produced by press molding to a thickness of 1 mm.
The following characteristics were measured for this molded body. The results are shown in Tables 1 to 4 below.
(A)耐熱性(耐熱黄変性)
 成形体を150℃で24時間放置する前と放置した後で、表面の色の変化を目視で観察した。放置前の白色を保っていれば良好な耐熱性を有することになる。
(A) Heat resistance (heat yellowing resistance)
Before and after leaving the molded body at 150 ° C. for 24 hours, the surface color change was visually observed. If the white color before being left is maintained, it has good heat resistance.
(B)光反射率
 成形体を150℃で24時間放置する前と放置した後で、波長230~780nmにおける光反射率を分光光度計UV-2550(島津製作所製)を使用して測定した。表1には、波長450nm及び波長380nmの場合の結果を示す。また、実施例1及び比較例1,3の成形体の光反射率と波長との関係を図3に示し、実施例2及び比較例2,4の成形体の光反射率と波長との関係を図4に示す(いずれも「150℃で24時間放置」する前)。
(B) Light Reflectance Before and after leaving the molded body for 24 hours at 150 ° C., the light reflectance at a wavelength of 230 to 780 nm was measured using a spectrophotometer UV-2550 (manufactured by Shimadzu Corporation). Table 1 shows the results when the wavelength is 450 nm and the wavelength is 380 nm. Moreover, the relationship between the light reflectance and wavelength of the molded body of Example 1 and Comparative Examples 1 and 3 is shown in FIG. 3, and the relationship between the light reflectance and wavelength of the molded body of Example 2 and Comparative Examples 2 and 4 is shown. Is shown in FIG. 4 (both before “standing at 150 ° C. for 24 hours”).
(C)熱伝導率
 熱伝導率は、京都電子工業社製QTM-500(迅速熱伝導率計)に自動演算ソフトである薄膜測定用ソフト(SOFT-QTM5W)を接続して各成形体について測定した。
(C) Thermal conductivity Thermal conductivity was measured for each molded body by connecting thin film measurement software (SOFT-QTM5W), which is automatic calculation software, to QTM-500 (rapid thermal conductivity meter) manufactured by Kyoto Electronics Industry Co., Ltd. did.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1より、実施例1~11の反射材組成物は、熱硬化樹脂及び熱可塑樹脂の場合のいずれの場合でも、250~780nmの領域で高反射率を有し、特に紫外線領域で良好な反射特性有していることが確認できた。また、良好な耐熱性を保持する反射材組成物であることも確認できた。表2より、窒化ホウ素粒子の含有量は15~200質量部で有用であることが確認できた。表3より、本効果は窒化ホウ素粒子によるものであり、体積平均粒径が1~2μmの時、反射率が良好であることが確認できた。また表4より、窒化ホウ素粒子を含有することで、熱伝導率の高い反射材組成物が得られることも確認できた。
 以上から、本発明の反射材組成物は、紫外線をも反射する反射体や半導体発光装置用の反射材に有用であるといえる。
From Table 1, the reflective material compositions of Examples 1 to 11 have a high reflectance in the region of 250 to 780 nm in both cases of the thermosetting resin and the thermoplastic resin, and particularly good in the ultraviolet region. It was confirmed that it had reflection characteristics. Moreover, it has also confirmed that it was a reflecting material composition holding favorable heat resistance. From Table 2, it was confirmed that the content of boron nitride particles was useful at 15 to 200 parts by mass. From Table 3, it was confirmed that this effect was due to boron nitride particles, and that the reflectance was good when the volume average particle diameter was 1 to 2 μm. Moreover, it has also confirmed from Table 4 that a reflector composition with high thermal conductivity was obtained by containing boron nitride particles.
From the above, it can be said that the reflective material composition of the present invention is useful as a reflector that also reflects ultraviolet rays and a reflective material for semiconductor light emitting devices.
[実施例B]
(1)耐熱性バインダー
・熱硬化性樹脂:シリコーン樹脂(OE-6336A及びOE-6336Bを質量比1:1で混合したもの:いずれも東レ・ダウコーニング(株)製)
・熱可塑性樹脂:ノルボルネン重合体(ZEONOR 1600:日本ゼオン(株)製)
[Example B]
(1) Heat-resistant binder / thermosetting resin: silicone resin (OE-6336A and OE-6336B mixed at a mass ratio of 1: 1: both manufactured by Toray Dow Corning Co., Ltd.)
-Thermoplastic resin: norbornene polymer (ZEONOR 1600: manufactured by Nippon Zeon Co., Ltd.)
(2)メラミンシアヌレート粒子A:MC-6000(日産化学(株)製、平均粒径2.0μm)
(3)メラミンシアヌレート粒子B:MC-4000(日産化学(株)製、平均粒径14μm)
(4)酸化チタン粒子:PFC-107(石原産業(株)製 ルチル型構造 平均粒径0.25μm)
(5)酸化亜鉛粒子:LP-ZINC2(堺化学工業(株)製 平均粒径2μm)
(6)酸化マグネシウム粒子:酸化マグネシウム(和光純薬工業(株)製、平均粒径0.2μm)
(7)水酸化マグネシウム粒子:マグシーズN-6(神島化学(株)製、平均粒径1.1μm)
(8)炭酸カルシウム粒子:WS-2200(竹原化学工業(株)製、平均粒径1.3μm)
(9)タルク粒子:ハイミクロンHE5(竹原化学工業(株)製、平均粒径1.6μm)
(10)硫酸バリウム粒子:硫酸バリウムW-1(竹原化学工業(株)製、平均粒径1.5μm)
(2) Melamine cyanurate particles A: MC-6000 (manufactured by Nissan Chemical Co., Ltd., average particle size 2.0 μm)
(3) Melamine cyanurate particles B: MC-4000 (manufactured by Nissan Chemical Co., Ltd., average particle size 14 μm)
(4) Titanium oxide particles: PFC-107 (Ishihara Sangyo Co., Ltd. Rutile structure average particle size 0.25 μm)
(5) Zinc oxide particles: LP-ZINC2 (manufactured by Sakai Chemical Industry Co., Ltd., average particle size 2 μm)
(6) Magnesium oxide particles: Magnesium oxide (Wako Pure Chemical Industries, Ltd., average particle size 0.2 μm)
(7) Magnesium hydroxide particles: Magseeds N-6 (manufactured by Kamishima Chemical Co., Ltd., average particle size 1.1 μm)
(8) Calcium carbonate particles: WS-2200 (manufactured by Takehara Chemical Co., Ltd., average particle size 1.3 μm)
(9) Talc particles: Hi-micron HE5 (manufactured by Takehara Chemical Co., Ltd., average particle size 1.6 μm)
(10) Barium sulfate particles: Barium sulfate W-1 (manufactured by Takehara Chemical Co., Ltd., average particle size 1.5 μm)
[実施例1~9、比較例1~14]
 表5~7に示す配合において、耐熱性バインダーおよび各種粒子を配合、混練し、反射材組成物を得た。なお、配合には各種粒子の体積分率が一定になるように調整し、混練はロールで行った。
[Examples 1 to 9, Comparative Examples 1 to 14]
In the formulations shown in Tables 5 to 7, a heat-resistant binder and various particles were blended and kneaded to obtain a reflector composition. In the blending, the volume fraction of various particles was adjusted to be constant, and kneading was performed with a roll.
 これらの組成物につき、熱硬化性樹脂を配合している場合は150℃、60秒、10MPa、熱可塑樹脂を配合している場合は230℃、10秒、20MPaの条件で、750mm×750mm×厚さ1mmにプレス成形し、成形体を作製した。
 この成形体について下記諸特性を測定した。結果を下記表5~7に示す。
About these compositions, when thermosetting resin is blended, 150 ° C., 60 seconds, 10 MPa, and when blending thermoplastic resin, conditions of 230 ° C., 10 seconds, 20 MPa are 750 mm × 750 mm × The molded body was produced by press molding to a thickness of 1 mm.
The following characteristics were measured for this molded body. The results are shown in Tables 5 to 7 below.
(A)耐熱性(耐熱黄変性)
 成形体を150℃で24時間放置する前と放置した後で、表面の色の変化を目視で観察した。放置前の白色を保っていれば良好な耐熱性を有することになる。
(A) Heat resistance (heat yellowing resistance)
Before and after leaving the molded body at 150 ° C. for 24 hours, the surface color change was visually observed. If the white color before being left is maintained, it has good heat resistance.
(B)光反射率
 成形体(150℃で24時間放置する前と放置した後)の波長230~780nmにおける光反射率を分光光度計UV-2550(島津製作所製)を使用して測定した。表5~7には、波長450nm及び波長380nmの場合の結果を示す。また、実施例1及び2の成形体の光反射率と波長との関係を図5に示し、比較例1~4の成形体の光反射率と波長との関係を図6に示し、比較例5~7の成形体の光反射率と波長との関係を図7に示す(いずれも「150℃で24時間放置」する前)。
(B) Light reflectance The light reflectance at a wavelength of 230 to 780 nm of the molded body (before and after standing at 150 ° C. for 24 hours) was measured using a spectrophotometer UV-2550 (manufactured by Shimadzu Corporation). Tables 5 to 7 show the results when the wavelength is 450 nm and the wavelength is 380 nm. FIG. 5 shows the relationship between the light reflectance and wavelength of the molded bodies of Examples 1 and 2, and FIG. 6 shows the relationship between the light reflectance and wavelength of the molded bodies of Comparative Examples 1 to 4. FIG. 7 shows the relationship between the light reflectance and the wavelength of the molded products of 5 to 7 (all before being allowed to stand at 150 ° C. for 24 hours).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5,6より、250~780nmの領域、特に紫外線領域でメラミンシアヌレート粒子を用いた場合が良好な反射率を示すことは、熱硬化樹脂及び熱可塑樹脂の組成物のいずれの場合でも起こり、また本反射材組成物は良好な耐熱性を保持することも確認できた。表6より、メラミンシアヌレートの平均粒径は2μmのとき、反射率が良好であることが確認できた。表7より、メラミンシアヌレート粒子の含有量が11~100質量部の範囲で有用であることが確認できた。以上から、本発明の反射材組成物は、紫外光をも反射する反射体や半導体発光装置用の反射材に有用であるといえる。 From Tables 5 and 6, it can be seen that the use of melamine cyanurate particles in the region of 250 to 780 nm, particularly in the ultraviolet region, shows good reflectivity in both the thermosetting resin and thermoplastic resin compositions. It was also confirmed that the present reflective material composition maintained good heat resistance. From Table 6, when the average particle diameter of melamine cyanurate is 2 micrometers, it has confirmed that a reflectance was favorable. From Table 7, it was confirmed that the content of melamine cyanurate particles was useful in the range of 11 to 100 parts by mass. From the above, it can be said that the reflective material composition of the present invention is useful as a reflector that also reflects ultraviolet light and a reflective material for semiconductor light emitting devices.
10・・・光半導体素子
12・・・反射体
14・・・基板
16・・・リード線
18・・・レンズ
DESCRIPTION OF SYMBOLS 10 ... Optical semiconductor element 12 ... Reflector 14 ... Board | substrate 16 ... Lead wire 18 ... Lens

Claims (9)

  1.  窒化ホウ素粒子又はメラミンシアヌレート粒子と、耐熱性バインダーとを含む反射材組成物。 A reflector composition comprising boron nitride particles or melamine cyanurate particles and a heat-resistant binder.
  2.  酸化チタンを実質的に含有しない請求項1に記載の反射材組成物。 The reflective material composition according to claim 1, which contains substantially no titanium oxide.
  3.  前記耐熱性バインダーがシリコーン樹脂又はノルボルネン重合体である請求項1又は2に記載の反射材組成物。 The reflector composition according to claim 1 or 2, wherein the heat-resistant binder is a silicone resin or a norbornene polymer.
  4.  含有する前記窒化ホウ素の体積平均粒径が0.1~300μmである請求項1~3のいずれか1項に記載の反射材組成物。 The reflector composition according to any one of claims 1 to 3, wherein the boron nitride contained therein has a volume average particle diameter of 0.1 to 300 µm.
  5.  前記窒化ホウ素の含有量が、耐熱性バインダー100質量部に対し、10~300質量部である請求項1~4のいずれか1項に記載の反射材組成物。 The reflector composition according to any one of claims 1 to 4, wherein the boron nitride content is 10 to 300 parts by mass with respect to 100 parts by mass of the heat-resistant binder.
  6.  含有する前記メラミンシアヌレート粒子の平均粒径が0.5~4.0μmである請求項1~3のいずれか1項に記載の反射材組成物。 The reflector composition according to any one of claims 1 to 3, wherein the melamine cyanurate particles contained have an average particle size of 0.5 to 4.0 µm.
  7.  前記メラミンシアヌレート粒子の含有量が、前記耐熱性バインダー100質量部に対し、5~180質量部である請求項1~3及び請求項6のいずれか1項に記載の反射材組成物。 The reflector composition according to any one of claims 1 to 3 and claim 6, wherein a content of the melamine cyanurate particles is 5 to 180 parts by mass with respect to 100 parts by mass of the heat-resistant binder.
  8.  請求項1~7のいずれか1項に記載の反射材組成物を成形してなる反射体。 A reflector formed by molding the reflector composition according to any one of claims 1 to 7.
  9.  光半導体素子と、前記光半導体素子の周りに設けられ、該光半導体素子からの光を所定方向に反射させる反射体とを基板上に有し、
     前記反射体の光反射面の少なくとも一部が請求項1~7のいずれか1項に記載の反射体組成物の成形物である半導体発光装置。
    An optical semiconductor element and a reflector provided around the optical semiconductor element and reflecting light from the optical semiconductor element in a predetermined direction on a substrate;
    A semiconductor light emitting device in which at least a part of the light reflecting surface of the reflector is a molded product of the reflector composition according to any one of claims 1 to 7.
PCT/JP2011/071512 2010-09-24 2011-09-21 Reflective material composition, reflector, and semiconductor emission device WO2012039434A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010214113A JP2012069794A (en) 2010-09-24 2010-09-24 Reflective material composition, reflector and semiconductor light-emitting device
JP2010-214113 2010-09-24
JP2010-242657 2010-10-28
JP2010242657A JP5168337B2 (en) 2010-10-28 2010-10-28 Reflective material composition, reflector and semiconductor light emitting device

Publications (1)

Publication Number Publication Date
WO2012039434A1 true WO2012039434A1 (en) 2012-03-29

Family

ID=45873918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071512 WO2012039434A1 (en) 2010-09-24 2011-09-21 Reflective material composition, reflector, and semiconductor emission device

Country Status (2)

Country Link
TW (1) TW201224029A (en)
WO (1) WO2012039434A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232532A (en) * 2012-04-27 2013-11-14 Dainippon Printing Co Ltd Light reflection laminate and semiconductor light-emitting device
JP2014148609A (en) * 2013-02-01 2014-08-21 Shin Etsu Chem Co Ltd Curable resin composition for light reflecting material, cured product of composition, reflector formed of cured product of composition, and optical semiconductor device using the same
WO2014195148A1 (en) * 2013-06-06 2014-12-11 Koninklijke Philips N.V. Reflective composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170077165A (en) * 2014-10-27 2017-07-05 헨켈 아게 운트 코. 카게아아 A method for manufacturing an optical semiconductor device and a silicone resin composition therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219421A (en) * 1988-07-05 1990-01-23 Agency Of Ind Science & Technol Partial heat-treatment method using carbon dioxide gas laser
JPH11181969A (en) * 1997-12-24 1999-07-06 Sumitomo Metal Ind Ltd High reflectivity surface treated plate excellent in pollution resistance
JP2010199229A (en) * 2009-02-24 2010-09-09 Toyoda Gosei Co Ltd Light emitting device
JP2010248484A (en) * 2009-03-23 2010-11-04 Admatechs Co Ltd Ultraviolet reflective composition and ultraviolet reflective molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219421A (en) * 1988-07-05 1990-01-23 Agency Of Ind Science & Technol Partial heat-treatment method using carbon dioxide gas laser
JPH11181969A (en) * 1997-12-24 1999-07-06 Sumitomo Metal Ind Ltd High reflectivity surface treated plate excellent in pollution resistance
JP2010199229A (en) * 2009-02-24 2010-09-09 Toyoda Gosei Co Ltd Light emitting device
JP2010248484A (en) * 2009-03-23 2010-11-04 Admatechs Co Ltd Ultraviolet reflective composition and ultraviolet reflective molding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232532A (en) * 2012-04-27 2013-11-14 Dainippon Printing Co Ltd Light reflection laminate and semiconductor light-emitting device
JP2014148609A (en) * 2013-02-01 2014-08-21 Shin Etsu Chem Co Ltd Curable resin composition for light reflecting material, cured product of composition, reflector formed of cured product of composition, and optical semiconductor device using the same
WO2014195148A1 (en) * 2013-06-06 2014-12-11 Koninklijke Philips N.V. Reflective composition
CN105102521A (en) * 2013-06-06 2015-11-25 皇家飞利浦有限公司 Reflective composition
US9695321B2 (en) 2013-06-06 2017-07-04 Philips Lighting Holding B.V. Reflective composition
CN105102521B (en) * 2013-06-06 2019-05-03 飞利浦照明控股有限公司 Reflect synthetic

Also Published As

Publication number Publication date
TW201224029A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
JP6277963B2 (en) Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article
JP6036898B2 (en) Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article
US8975657B2 (en) Package for semiconductor light-emitting device and light-emitting device
JP5699329B2 (en) Reflector resin composition, reflector resin frame, reflector, and semiconductor light emitting device
TWI644957B (en) Resin composition, reflector, lead frame with reflector, and semiconductor light emitting device
JP5970941B2 (en) Light reflecting laminate and semiconductor light emitting device
WO2012039434A1 (en) Reflective material composition, reflector, and semiconductor emission device
JP5168337B2 (en) Reflective material composition, reflector and semiconductor light emitting device
JP6194155B2 (en) RESIN COMPOSITION FOR REFLECTOR, RESIN FRAME FOR REFLECTOR, REFLECTOR, SEMICONDUCTOR LIGHT EMITTING DEVICE, AND MOLDING METHOD
JP2016222761A (en) Resin composition, reflector, lead frame with reflector, semiconductor light emitting device, isocyanurate compound for crosslinking agent, and glycoluril compound for crosslinking agent
WO2016117471A1 (en) Resin composition, reflector, lead frame provided with reflector, and semiconductor light-emitting apparatus
JP2012069794A (en) Reflective material composition, reflector and semiconductor light-emitting device
JP5920497B2 (en) Semiconductor light emitting device and substrate for mounting optical semiconductor
WO2016117624A1 (en) Semiconductor light emitting device, resin composition for forming reflection body, and lead frame provided with reflector
JP6277592B2 (en) Electron beam curable resin composition for reflector, resin frame for reflector, reflector, semiconductor light emitting device, method for producing molded article, and method for producing semiconductor light emitting device
JP6102413B2 (en) Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article
JP6292130B2 (en) Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article
WO2016017818A1 (en) Reflector and resin composition
JP2015023099A (en) Method of manufacturing semiconductor light-emitting device, method of manufacturing molded body, electron beam curable resin composition, resin frame for reflector, and reflector
JP6167603B2 (en) Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, method for producing molded article, and method for producing semiconductor light emitting device
JP6094412B2 (en) Semiconductor light emitting device manufacturing method, molded body manufacturing method, electron beam curable resin composition, reflector resin frame, and reflector
JP6149457B2 (en) Optical semiconductor mounting substrate, semiconductor light emitting device, and manufacturing method of optical semiconductor mounting substrate
JP2016035010A (en) Resin composition, reflector, lead frame with reflector and semiconductor light-emitting device
JP2017069348A (en) Semiconductor light-emitting device, substrate for mounting optical semiconductor, and reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826879

Country of ref document: EP

Kind code of ref document: A1