TW201224029A - Reflective material composition, reflective body and semiconductor light-emitting device - Google Patents

Reflective material composition, reflective body and semiconductor light-emitting device Download PDF

Info

Publication number
TW201224029A
TW201224029A TW100134253A TW100134253A TW201224029A TW 201224029 A TW201224029 A TW 201224029A TW 100134253 A TW100134253 A TW 100134253A TW 100134253 A TW100134253 A TW 100134253A TW 201224029 A TW201224029 A TW 201224029A
Authority
TW
Taiwan
Prior art keywords
reflective material
material composition
particles
light
resin
Prior art date
Application number
TW100134253A
Other languages
Chinese (zh)
Inventor
Toshiyuki Sakai
Original Assignee
Dainippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010214113A external-priority patent/JP2012069794A/en
Priority claimed from JP2010242657A external-priority patent/JP5168337B2/en
Application filed by Dainippon Printing Co Ltd filed Critical Dainippon Printing Co Ltd
Publication of TW201224029A publication Critical patent/TW201224029A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a reflective material composition, a reflective body and a semiconductor light-emitting device. The reflective material composition contains boron nitride particles or melamine cyanurate particles and heat-resistant binder. The reflective body is formed by molding the reflective material composition. There are optical semiconductor element and reflective on substrate of the semiconductor light-emitting device. The reflective body is set around the optical semiconductor element and reflects light from the optical semiconductor element to predetermined direction. At least one part of light reflecting surface of the reflective body is molded product of said reflective body composition.

Description

201224029 六、發明說明: 【發明所屬之技術領域】 本發明係關於反射材料組成物、使用該反射材料組 成物之反射體及半導體發光裝置。 【先前技術】 屬半導體發光裝置之一的led元件,由於小型且使 用期限長,省電性優異,故廣泛利用作為顯示燈等之光 源。而且在近年來,由於已能夠以較廉價製造亮度更高 的LED元件,故研討利用作為替代螢光燈及白熾電球之 光源。在適用於此種光源之情形,為了獲得較大照度, 故多是使用在表面組裝型LED封裝體,亦即在鋁等的金 屬製基板(LED組裝用基板)上配置複數個led元件,並 在各LED元件周圍配設使光朝向預定方向反射之反射體 (反射器(reflector))之方式。 但是’由於LED元件在發本吐v士 Α 十仕I先時伴隨發熱,故在此種 方式之LED照明裝置,就會和玆T . 衣ιs 致LED 件之發光時溫度 上升而亮度降低、LED元件之估田, 、 U 1干(使用期限減短等。因此要 求至少在反射體之耐熱性,進一牛曰^ a 退步具有良好的散熱性為 佳β 因此,在專利文獻1,有提荦—錄 甘此、,人種先半導體外殼, 其係以含有熱硬化性有機聚矽氧 A 乳坑、白色顏料、益機填 充劑(但除了白色顏料以外)、难 ·'' ; 細合觸媒、預定之傜厶劑 之白色熱硬化性聚矽氧樹脂組成 ° ^ ^ ^ 战物構成反射體。 又,在專利文獻2,有提牵— 將含有特定的熱硬化樹脂及&機封裝成形體’其係 預定部,以提高光之反射者4構件之被覆構件塗覆於201224029 VI. Description of the Invention: TECHNICAL FIELD The present invention relates to a reflective material composition, a reflector using the reflective material composition, and a semiconductor light-emitting device. [Prior Art] A led device which is one of the semiconductor light-emitting devices has a small size and a long service life, and is excellent in power-saving property, and is widely used as a light source such as a display lamp. Further, in recent years, since it has been possible to manufacture LED elements having higher brightness at a lower cost, it has been studied to use a light source as an alternative to fluorescent lamps and incandescent electric balls. In the case of being suitable for such a light source, in order to obtain a large illuminance, a plurality of LED elements are disposed on a surface mount type LED package, that is, a metal substrate (a substrate for LED assembly) such as aluminum, and A reflector (reflector) that reflects light in a predetermined direction is disposed around each of the LED elements. However, since the LED element is in the hair of the hairdresser, the light of the LED lighting device in this way will rise and the brightness will decrease when the LED device emits light. The estimation of the LED component, U 1 dry (the use period is shortened, etc. Therefore, it is required to at least the heat resistance of the reflector, and it is better to have a good heat dissipation.) Therefore, in Patent Document 1, it is mentioned that荦 录 录 录 录 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The white thermosetting polyoxyl resin of the catalyst and the predetermined bismuth agent is composed of a warrior composition. In addition, in Patent Document 2, there is a pull-up containing a specific thermosetting resin and a & The packaged molded body' is a predetermined portion for coating the coated member of the light reflector 4 member

S -4- 201224029 [先前技術文獻] 專利文獻 專利文獻1日本特開2 0 0 9 - 2 2 1 3 9 3號公報 專利文獻2日本特開2005- 1 363 78號公報 【發明内容】 [發明欲解決課題] 在該等專利文獻中,作為白色顏料或無機構件 際上進行效果之確認者’係僅使用氧化鈦之情形, 使用其他顏料或無機構件情形之效果,則並無揭示 的效果。 又,期待在短波長之紫外光,藉由殺菌或消臭 果、或與各式各樣顏色之螢光體的組合,而可提高 或電視等之色調校性(e〇l〇r rendering pr〇perty- es) 亦有必要提高紫外光之反射率。在使用氧化鈦作為 顏料或無機構件之情形’在金紅石結晶係4丨丨nrn附 而在銳欽礦(anatase)結晶中亦因在波長3 87nm附近 光之吸收,故阻礙光之反射。又,會有促進了伴隨 媒作用之樹脂劣化’而並非實用。 由上述’本發明之目的在提供一種反射材料 物’使用遠反射材料組成物的反射體及半導體發 置’該反射材料組成物對波長400nm以下之紫外光 有向反射特性,可製作耐熱性高的反射體。 [用以解決課題之手段] 本Ίχ明人等,為了達成上述目的,經一再重覆 研究’結果首先發現以下述發明而可達成該目的。功 本發明係如下述。 ,實 而就 具體 的欵 照明 ,且 白色 近, 產生 光觸 組成 光裝 亦具 戮力 gp , 201224029 []種反射材料組成物,其包含氮化蝴粒子或氛尿 酸三聚氣胺酿粒子、及耐熱性黏合劑。 [2]如[1]項之反射材料組成物,其實質上不含氧化 鈦0 [3] 如[1]或[2]項之反射材料組成物,其中料熱性 黏合劑為聚矽氧樹脂或降莰烯聚合物。 [4] 如[1]至[3]項中任—項之反射材料组成物,其含 有之該氮化硼之體積平均粒徑為〇」至3〇〇^m。 m如⑴至[4]項中任一項之反射材料組成物,其中 相對於100質量份耐熱性黏合劑而言,該氮化侧之含量 為10至300質量份。 [6]如上述[1]至[3]項中任—項之反射材料組成物, 其含有之該氰尿酸三聚氰胺酯粒子之平均粒徑為〇 5至 4.0μιη。 之反射材料組成物 [7]如[1]至[3]及[6]項中任一項 劑而言’該氰尿酸 量份。 其中相對於1 0 〇質量份該耐熱性黏合 二t氰胺S旨粒子之含量為5至180質 [8] 一種反射體,其係將如上述π]至[7]項中任一項 之反射材料組成物成形而成。 、 [9] -種半導體發光裝置’其在基板上具有:光半導 體元件及反射If,該反身子體係言史置於言亥光半導體元件之 周',ϋ將來自該光半導體元件之光向預定方向反射, 該反射體之光反射面之至少_部分係如⑴至[7]項 中任一項之反射體組成物之成形物。S -4- 201224029 [PRIOR ART DOCUMENT] Patent Document 1 Japanese Patent Laid-Open Publication No. H0 9 - 2 2 1 3 9 No. 3 Patent Publication No. 2005- 1 363 No. In order to solve the problem, in the case of the use of other pigments or inorganic members, the effect of using other pigments or inorganic members is not disclosed. effect. Moreover, it is expected that the ultraviolet light of a short wavelength can be improved by the combination of sterilizing or deodorizing fruit or a phosphor of various colors, and the color tone of a television or the like can be improved (e〇l〇r rendering pr) 〇perty- es) It is also necessary to increase the reflectance of ultraviolet light. In the case where titanium oxide is used as a pigment or an inorganic member, the rutile crystal system is also affected by the absorption of light at a wavelength of 3 87 nm in the anatase crystal, thereby hindering the reflection of light. Further, it is not practical to promote deterioration of the resin accompanying the action of the medium. The above-mentioned object of the present invention is to provide a reflecting material using a reflector of a far-reflecting material composition and a semiconductor emitting device. The reflecting material composition has a directional reflection characteristic to ultraviolet light having a wavelength of 400 nm or less, thereby producing high heat resistance. Reflector. [Means for Solving the Problem] In order to achieve the above object, Benjamin et al. have repeatedly studied the results of the research. First, it was found that the object can be achieved by the following invention. The present invention is as follows. Actually, the specific 欵 illumination, and the white is near, the light touches the light. It also has the power gp, 201224029 [] a kind of reflective material composition, which contains nitriding butterfly particles or uric acid trimeric urethane brewing particles, And heat resistant adhesive. [2] The reflective material composition of [1], which is substantially free of titanium oxide 0 [3] such as the reflective material composition of [1] or [2], wherein the heat-sensitive adhesive is polyoxynoxy resin Or a norbornene polymer. [4] The reflective material composition according to any one of [1] to [3], wherein the volume average particle diameter of the boron nitride is 〇" to 3 〇〇^m. The reflective material composition according to any one of (1) to [4] wherein the content of the nitriding side is from 10 to 300 parts by mass with respect to 100 parts by mass of the heat resistant adhesive. [6] The reflective material composition according to any one of the above [1] to [3], wherein the melamine cyanurate particles have an average particle diameter of from 5 to 4.0 μm. The composition of the reflective material [7] is as defined in any one of [1] to [3] and [6]. Wherein the heat-resistant adhesive di-cyanamide S-particles are in a range of 5 to 180 masses [8] with respect to 10 parts by mass of a reflector, which is as described in any one of the above π] to [7] The composition of the reflective material is formed. [9] A semiconductor light-emitting device having: an optical semiconductor element and a reflection If on the substrate, the reverse body system is placed on the periphery of the semiconductor element, and the light from the optical semiconductor element is directed Reflected in a predetermined direction, at least a portion of the light reflecting surface of the reflector is a molded article of the reflector composition according to any one of items (1) to [7].

-6 - Q ..201224029 [發明效果] 根據本發明,係提供一種反射材料組成物,使用該 反射材料組成物之反射體及半導體發光裝置,該反射材 料組成物相對於波長400nm以下之紫外光亦具有高反射 特性’並可製作耐熱性高的反射體。又,本發明係提供 種反射材料組成物,其在使用氮化蝴粒子之情形,可 製作具有高散熱性的反射體。 【實施方式】 [1 ·反射材料組成物] (1)本發明之第一反射材料組成物: 本發明之第一反射材料組成物含有氮化硼粒子及耐 熱性黏合劑而成。 ’ 因氮化哪粒子之存在而可設定波長4〇〇ηιη以下之紫 外光、更佳為波長250至40Onm範圍之紫外光反射率於 較尚狀態。接著藉由使該氮化硼粒子含於耐熱性黏合劑 中,則即使在比較高溫之使用區域,因而亦可良好的維 持上述特性。結果,藉由適用於照明器具或電視等之反 f體,而可提高色調校性。又,氮化硼粒子本身即使在 问'皿下,因無法促進耐熱性黏合劑之劣化等,故可抑制 反射材料組成物耐用性之降低。 氮化硼粒子均可適用於六方晶結構(h-BN)、閃鋅礦 (Sphalerite)結構(c-BN)、纖維辞礦(wurtzite)結 ^ (W BN)、及菱面體(rh〇mbohedral)結構(r-BN),不過由耐 熱性或成本之觀點,以鱗片狀之所謂六方晶結構之氮化 石朋粒子較適當。 201224029 由散熱性、㈣性之觀點,氮化㈣子之體積Μ 粒徑較佳為o.moo_,更佳為〇1至12叫,再佳為 1至2μ1η。該體積平均粒徑’可在利用雷射光繞射法的 粒度分布測定中作為質量平均值d50來求得。 相對於100 f量份耐熱性黏纟劑,氮化棚粒子之含 量較佳為10 i 300質量份’更佳為15至200質量份, 再佳為至⑽質量份。此外,只要不損及成形性,則 亦可填充300份以上。 (2)本發明之第二反射材料組成物:-6 - Q ..201224029 [Effect of the Invention] According to the present invention, there is provided a reflective material composition using a reflector of the reflective material composition and a semiconductor light-emitting device having ultraviolet light having a wavelength of 400 nm or less It also has high reflection characteristics' and can produce reflectors with high heat resistance. Further, the present invention provides a reflective material composition which can produce a reflector having high heat dissipation properties in the case of using a nitrided butterfly particle. [Embodiment] [1. Reflective material composition] (1) First reflective material composition of the present invention: The first reflective material composition of the present invention comprises boron nitride particles and a heat resistant adhesive. The ultraviolet light having a wavelength of 4 〇〇ηη or less or more preferably having a wavelength of 250 to 40 nm is more preferable because of the presence of nitriding particles. Then, by including the boron nitride particles in the heat-resistant adhesive, the above characteristics can be favorably maintained even in a relatively high-temperature use region. As a result, tone correction can be improved by being applied to an anti-f body such as a lighting fixture or a television. Further, even if the boron nitride particles themselves fail to promote deterioration of the heat-resistant adhesive, the durability of the reflective material composition can be suppressed. Boron nitride particles can be applied to hexagonal crystal structure (h-BN), sphalerite structure (c-BN), wurtzite structure (W BN), and rhombohedron (rh〇). Mbohedral structure (r-BN), but from the viewpoint of heat resistance or cost, a scaly-like hexagonal crystal structure of nitride particles is suitable. 201224029 From the viewpoint of heat dissipation and (iv), the volume of nitriding (tetra) is preferably o.moo_, more preferably 〇1 to 12, and even more preferably 1 to 2μ1η. The volume average particle diameter ' can be obtained as a mass average value d50 in the particle size distribution measurement by the laser light diffraction method. The content of the nitrided shed particles is preferably 10 i by 300 parts by mass or more preferably 15 to 200 parts by mass, more preferably to 10 parts by mass, based on 100 parts by weight of the heat-resistant adhesive. Further, as long as the formability is not impaired, it may be filled in 300 parts or more. (2) The second reflective material composition of the present invention:

本發明之第二反射材料纟B β A T何枓組成物係含有氰尿酸三聚氰 胺酯粒子及耐熱性黏合劑而成。 藉由氰尿酸三聚氰胺賴粒子之存在,而可使波長 400請以下之紫外光,更佳為波長25〇至彻疆範圍之 紫外光之反射率設在高的狀態。而且藉由使該氰尿酸 ^聚氛胺§旨粒子含於耐熱性黏合财,則即使在比較高 狐之使用區域’亦可良好 J难符上述特性。結果,在適 用於照明器具或電視等反射 在 又,由於氰尿酸三聚氰詩W , ^色調校性。 —聚鼠胺粒子本身即使在 w 不會促進耐熱性黏合劑之劣化等,故 ”皿’ ’、 成物耐用性之降低。 刺反射材料組 在此,氰尿酸三聚氰胺酯」係指三 聚氛酸分子藉由氮鍵而配列成為平面—狀氧胺分子及三 C6H9N903表示之 ,並以化學式 丁之化合物之意’例如,係 (2)之結構式所示。 卜迷式(1)或式 5 -8 - 201224029The second reflective material 纟B β A T composition of the present invention comprises melamine cyanurate particles and a heat-resistant adhesive. By the presence of melamine cyanurate particles, it is possible to set the ultraviolet light having a wavelength of 400 or less, more preferably the ultraviolet light having a wavelength of 25 Å to the range of the ultraviolet light. Further, by making the cyanuric acid urethane particles contain heat-resistant adhesives, it is possible to satisfy the above characteristics even in the area where the fox is used. As a result, it is suitable for use in lighting fixtures or televisions, etc. In addition, due to cyanuric acid cyanide poem W, ^ tone schooling. - The polymyramine particles themselves do not promote the deterioration of the heat-resistant adhesive, etc., so the "dish" ', the durability of the finished product is reduced. The thorn-reflecting material group here, the melamine cyanurate refers to the trimeric atmosphere. The acid molecule is represented by a nitrogen bond to form a planar oxyamine molecule and three C6H9N903, and is represented by a chemical formula of a compound such as the structural formula of the formula (2). Bu Fan (1) or Formula 5 -8 - 201224029

οο

νη2 本發明中,氰尿酸三聚氰胺酯粒子之 可製1^以具有特定之粒徑,則並無特別限 習知方法來製造,例如可參照曰本特開平 報、日本特開平7_Μ9739號公報、及日本特 號公報之記載來製造。 試舉氰尿酸三聚氰胺酯粒子之製造方 例舉一種以預定之調配比率,將三聚氰胺 酸投入可混合攪拌的裝置,一面混合、一 升溫至預定溫度後,藉由在該槽内,一面 地添加水進行中和反應,產生白色沈澱物 物,進行乾燥及顆粒化處理,而可獲得所 二聚氰胺酯粒子之方法。此外,氰尿酸三 可以市售品取得。 由製造上及反射特性之觀點,氣 子之平均粒徑較佳為。.丨至〜,::: 再佳為0.5至4μιη。該平均粒徑可在雷射 粒度分布測定中作為質量平均值D5〇求得 製造方法,若 定,可以先前 5-310716 號公 開平 7-224049 法之一例,可 粉末及三聚氰 面使槽内溫度 授拌一面緩緩 ,濾出該沈澱 期望之氰尿酸 聚氣胺酷粒子 三聚氱胺酯粒 0 · 5 至 2 0 μιη, 光繞射法所致 -9 - 201224029 相對於100質量份耐熱性黏合劑而言,氰尿酸三聚 氛胺醋粒子之含量較佳為5至180質量份,更佳為1〇至 】50質量份,再佳為5至11〇質量份,特佳為1〇至ι〇〇 質量伤。此外’只要不損及成形性’則亦可填充2〇〇份 以上。 本發明之第一及第二反射材料組成物(以下歸納稱 為「本發明之反射材料組成物」)中’在氰尿酸三聚氰胺 酯粒子及氮化硼粒子,由提高分散性之觀點,亦可實施 疏水化處理。在疏水化處理劑方面,可代表性的例舉例 如矽烷偶合劑、聚矽氧油、脂肪酸、及脂肪酸金屬鹽等。 該等中因提高分散性之效果高’故較佳是使用矽烷偶合 劑、及聚矽氧油。 石夕烧偶合劑方面例舉例如六甲基二矽氮烷等之 二矽氮烷;環狀矽氮烷;三甲基矽烷、三甲基氣矽烷、 二甲基二氯矽烷、曱基三氯矽烷、烯丙基二曱基氣矽烷、 苄基二甲基氯矽烷、甲基三甲氧矽烷、甲基三乙氧基矽 烷、異丁基三甲氧矽烷 '二甲基二甲氧基矽烷、二甲基 二乙氧基矽烷、三甲基甲氧基矽烷、羥丙基三甲氧矽烷、 笨基三甲氧石夕烷、正丁基三曱氧矽烷、正十六基三甲氧 矽烷、正十八基三曱氧矽烷、乙烯三甲氧矽烷、乙烯三 乙氧基矽烷、γ-甲基丙烯氧基丙基三甲氧矽烷、及乙烯 三乙醯氧基矽烷等之烷基矽烷化合物;γ_胺基丙基三乙 氡基石夕炫、γ-(2-胺基乙基)胺基丙基三曱氧石夕炫、γ_(2_ 胺基乙基)胺基丙基甲基二曱氧基石夕院、苯基_3_胺基 丙基三曱氧矽烷 Ν-(2-胺基乙基)3-胺基 丙基三甲氧石夕Νη2 In the present invention, the melamine cyanurate particles can be produced by a conventional method without any particular method. For example, refer to Japanese Patent Laid-Open Publication No. Hei 7-7Μ9739, and It is produced by the description of the Japanese special issue. The production method of the melamine cyanurate particles is exemplified by adding a melamine acid to a device capable of mixing and stirring at a predetermined mixing ratio, mixing and heating to a predetermined temperature, and then adding water in the tank. A neutralization reaction is carried out to produce a white precipitate, which is dried and granulated to obtain a melamine ester particle. Further, cyanuric acid three can be obtained from a commercial product. The average particle diameter of the gas is preferably from the viewpoint of production and reflection characteristics. .丨 to ~,::: Good again 0.5 to 4μιη. The average particle diameter can be obtained as a mass average value D5 雷 in the laser particle size distribution measurement. If it is determined, it can be a method of the prior art No. 5-310, 716, which can be used for the powder and the cyanide surface. The inner temperature is gradually mixed, and the desired cyanuric acid polyaminamide particles of the cyanuric acid are filtered out from the precipitate of 0 · 5 to 2 0 μιη, caused by light diffraction -9 - 201224029 relative to 100 parts by mass In the heat-resistant adhesive, the content of the cyanuric acid triammine vinegar particles is preferably from 5 to 180 parts by mass, more preferably from 1 to 50 parts by mass, even more preferably from 5 to 11 parts by mass, particularly preferably 1〇 to ι〇〇 quality injury. Further, it is also possible to fill in more than 2 parts as long as it does not impair the formability. In the first and second reflective material compositions of the present invention (hereinafter referred to as "reflective material composition of the present invention"), the melamine cyanurate particles and the boron nitride particles may be improved from the viewpoint of improving dispersibility. Hydrophobization treatment is carried out. Representative examples of the hydrophobizing agent include a decane coupling agent, a polyoxyphthalic acid, a fatty acid, and a fatty acid metal salt. In these cases, the effect of improving the dispersibility is high. Therefore, it is preferred to use a decane coupling agent and a polyoxygenated oil. The scouring coupler is exemplified by dioxazane such as hexamethyldiazepine; cyclic decazane; trimethyl decane, trimethyl gas decane, dimethyl dichloro decane, sulfhydryl Chlorodecane, allyl dimercapto gas decane, benzyl dimethyl chloro decane, methyl trimethoxy decane, methyl triethoxy decane, isobutyl trimethoxy decane 'dimethyl dimethoxy decane, Dimethyldiethoxydecane, trimethylmethoxydecane, hydroxypropyltrimethoxydecane, stupidyltrimethoxysulfanyl, n-butyltrioxoxadecane, n-hexadecatrimethoxydecane, positive ten An alkyl decane compound such as octadecyloxane, ethylene trimethoxy decane, ethylene triethoxy decane, γ-methyl propylene oxy propyl trimethoxane, and ethylene triethoxy decane; γ-amine Propyl propyl triethyl fluorene, γ-(2-aminoethyl)aminopropyltrioxoxazepine, γ-(2-aminoethyl)aminopropylmethyldimethoxylate Home, phenyl_3_aminopropyltrioxoxadecane-(2-aminoethyl)3-aminopropyltrimethoxine

S -10- ^甲基聚矽 、及胺基改性 201224029 烷、及Ν-β-(Ν-乙烯苄基胺基乙臬 ^ ^ ^ 愚)-γ_胺基丙 烷等之胺基矽烷化合物等。 聚矽氧油方面,可例舉例如 氫聚矽氧烷、甲基苯基聚矽氧貌 等。該等疏水化處理劑可各自單猸 平躅使用,或者 以上使用。 在將氰尿酸三$氰胺酷粒子或氮化删粒子 化處理之方法方面,只要是先前習知之方法則 限定’可例舉例如乾式法及濕式法等。具體上 一面以高速攪拌氰尿酸三聚氰胺酯粒子或氮化 一面使疏水化處理劑滴下或喷霧之乾式法;將 理劑溶解於有機溶劑,一面攪拌該有機溶劑, 氰尿酸三聚氰胺酿粒子或氮化硼粒子之濕式 法。 又,本發明之反射材料組成物實質上不含 藉由實質上不含氧化鈦,而可使4〇〇nm以下紫 射率成為良好的狀態。又’因氧化鈦之觸媒作 的耐熱性黏合劑之劣化可防範於未然。 在此’「實質上不含氧化鈦粒子」係指在反 成物之製作時不調配氧化鈦材料之意,具體上 射材料組成物中氧化鈦之含量為〇質量%之意 在本發月之反射材料組成物中对熱性黏合 是成形後玻璃轉移:R ^ 丹杉/皿度及熔點之至少任一者為 上之樹脂則佳,可*俨鸟〜 t J馬%乳樹脂、丙烯酸酯樹脂 酯樹脂 '聚石夕氣接I·賠、;^ _ 礼树知聚矽氧烷-有機嵌段共聚 ^三曱氧矽 ,烷、甲基 聚矽氧油 組合2種 予以疏水 並無特別 可例舉: 删粒子, 疏水化處 一面添加 法等之方 氧化鈦。 外光之反 用而產生 射材料組 ,係指反 〇 劑,只要 100〇c 以 、胺曱酸 物、聚矽 201224029 氧烧-有機接枝共聚物、具有與S i Η基反應性的碳-碳雙 鍵之有機無機混成樹脂、氰酸酯樹脂、苯酚樹脂、聚醯 亞胺樹脂、雙順丁稀二醯亞胺樹脂等之熱硬化性樹脂, 亦可為丙烯酸系樹脂、聚碳酸酯系樹脂、降莰烯衍生物、 使降ί欠烯衍生物進行開環復分解聚合的樹脂或者其氫化 物等之環烯烴系樹脂、烯烴-順丁烯二醯亞胺系樹脂、聚 酉曰系树脂、聚;ε風(p〇lySulfone)樹脂、聚喊樹脂、聚氧亞 节基樹脂、聚苯醚(p〇lyphenylene〇xide)樹脂、聚醚砜樹 月曰、聚苯硫醚(polyphenylene sulfide)樹脂 '聚崎醚酮樹 脂、聚醚醯亞胺樹脂、聚醚酮酮樹脂、聚苯醚樹脂、聚 酿亞胺樹脂、聚醯亞胺醯胺樹脂、聚芳基化物樹脂 '聚 乙烯縮醛樹脂、聚乙烯樹脂、聚丙烯樹脂、聚曱基戊烯 ^脂、聚苯乙烯樹脂、聚醯胺樹脂、全芳香族聚酯樹脂(液 晶樹脂)、乙烯單體等為單獨或者經共聚的樹脂、氟樹 脂、橡膠狀樹脂等熱塑性樹脂。 熱硬化性樹脂方面,較佳為聚矽氧樹脂(含聚矽氧改 性樹知),熱塑性樹脂方面,較佳為降莰烯聚合物。 •在此j上述聚矽氧樹脂方面,在硬化之種類,有加 1型聚胡氧、缩合型聚碎氧,結構方面,可例舉二甲基 聚夕氧甲基笨基聚矽氧等。例如縮合型聚矽氧係指以 曱基三氣錢、甲基三甲氧Μ、甲基三乙氧基石夕燒、 氣夕烷四曱氧基矽烷、四乙氧基矽烷等之水解反應 所仔熱硬化性有機聚矽氧烷。 又,降贫祕 人碲聚合物方面,可例舉例如具有降莰烯結 胃的開環聚合物’或者具有降获晞結構之單體及 -1 2 - 201224029 其:單體之開環聚合物或該等氫化物 之單體的加成聚合物或 牛坎烯結構 單體之加成聚合物嗖,位 攝之早體與其他 驭水。物次遠等之氫化物等。在 形性、耐熱性、低°及濕性、尺寸穩定性、;;t =由成 點,特佳為具有降茨歸結構之單體的開環?=之觀 化物。 (’、)t合物氫 本發明之反射材料組成物,可將氮 性黏合劑,或者氛尿酸三聚氛胺…:粒子及耐熱 劑,如前文所述以預定比混合並製#。思入耐熱性點合 可適用二親或者三輥 '行星式授拌脫泡 方法方. 溶解器、行星式混合器等之攪拌機;p〇 句化裔、S -10- ^ methyl polyfluorene, and amine modified 201224029 alkane, and Ν-β-(Ν-vinylbenzylaminoethyl hydrazine ^ ^ ^ yu) - γ-aminopropane and other amine decane compounds Wait. The polyoxygenated oil may, for example, be a hydrogen polyoxyalkylene or a methylphenyl polyfluorene. These hydrophobizing agents may be used singly or in combination. In the method of treating the cyanuric acid cyanuric acid particles or the nitriding particles, as long as it is a conventional method, for example, a dry method or a wet method can be exemplified. Specifically, a method of rapidly stirring a melamine cyanurate particle or a side of a nitriding agent to drip or spray a hydrophobizing agent; dissolving the agent in an organic solvent while stirring the organic solvent, melamine cyanurate or nitriding Wet method of boron particles. Further, the composition of the reflective material of the present invention does not substantially contain a titanium oxide, and the violet ratio of 4 〇〇 nm or less can be made into a good state. Further, deterioration of the heat-resistant adhesive by the catalyst of titanium oxide can be prevented. Here, 'there is substantially no titanium oxide particles' means that the titanium oxide material is not formulated during the production of the reversed material, and the specific content of the titanium oxide in the composition of the upper material is 〇% by mass. The heat-bonding of the reflective material composition is the glass transfer after forming: R ^ danshan / dish and melting point are at least one of the above resins, preferably * ostrich ~ t J horse % milk resin, acrylate Resin ester resin 'Ju Shi Xia Qi I· compensation,; ^ _ Lishu knows polyoxyalkylene-organic block copolymer ^ three oxime oxime, alkane, methyl polyoxyl oil combination 2 kinds of hydrophobicity is not special For example, the particles are removed, and the titanium oxide is added to the surface of the hydrophobic portion. The use of external light to produce a blasting agent is a ruthenium agent, as long as 100 〇c, an amine phthalate, a polyfluorene 201224029 oxy-organic graft copolymer, and a carbon having reactivity with the S i thiol group. - a thermosetting resin such as an organic-inorganic hybrid resin having a carbon double bond, a cyanate resin, a phenol resin, a polyimide resin, or a bis-butylene diimide resin, or an acrylic resin or a polycarbonate a resin, a norbornene derivative, a ring-opening metathesis polymerization resin, a cycloolefin resin such as a hydrogenated product, an olefin-maleimide resin, or a polyfluorene Resin, poly; ε wind (p〇lySulfone) resin, polyphonic resin, polyoxypropylene sub-base resin, polyphenylene ether (p〇lyphenylene〇xide) resin, polyether sulfone tree ruthenium, polyphenylene sulfide (polyphenylene) Sulfide resin's polyether oxime ketone resin, polyether oxime imide resin, polyether ketone ketone resin, polyphenylene ether resin, poly retinal resin, polyamidamine amide resin, polyarylate resin 'polyethylene Acetal resin, polyethylene resin, polypropylene resin, polydecylpentene^ , A polystyrene resin, a polyamide resin, a wholly aromatic polyester resin (liquid crystal resin), as the vinyl monomer alone or by copolymerizing the resin, fluororesin, thermoplastic resin such as rubber-like resin. The thermosetting resin is preferably a polyoxyxylene resin (containing a polyoxymethylene resin), and a thermoplastic resin is preferably a norbornene polymer. - In the case of the above-mentioned polyoxyl resin, in the type of hardening, there is a type 1 poly-hu oxygen, a condensation type poly-crushed oxygen, and the structure may, for example, be dimethyl polyoxymethyl methyl stupid polyoxyl. . For example, the condensation type polyoxane refers to a hydrolysis reaction of mercapto trigas, methyltrimethoxazole, methyltriethoxylate, cyclohexanetetradecyloxydecane, tetraethoxydecane, and the like. Thermosetting organopolyoxane. Further, in terms of the polymer of the sputum-reducing sputum, for example, a ring-opening polymer having a norbornne-stomach-suppressing compound or a monomer having a reduced cerium structure and - 2 2 - 201224029 An addition polymer of a monomer or a monomer of the hydride or an addition polymer of a bovine urethane structural monomer, which is an early body and other hydrophobic. A hydride such as a distant material. In shape, heat resistance, low ° and wetness, dimensional stability, ;; t = from the point of formation, especially for the open loop of the monomer with the structure of the descending line? = observation. (',) t-hydrogen The reflective material composition of the present invention may be a nitrogen binder, or a urinary uric acid trimeric amine: particles and a heat-resistant agent, which are mixed at a predetermined ratio as described above. Thinking about heat resistance, it can be applied to two- or three-roller 'planet-type mixing and defoaming method. Mixer for dissolver, planetary mixer, etc.;

Labo plast mill等之熔融捏合機等 system或 白夭Q手與·。号女榮-Τ' 在常溫、冷卻狀態、加熱狀態' 常壓、 π ° 狀態之任一狀態進行。 /壓狀態、加壓Labo plast mill and other melt kneaders such as system or white 夭 Q hand and ·. No. female rong-Τ' is carried out in any state of normal temperature, cooling state, heating state 'normal pressure, π ° state. /pressure state, pressurization

此外’只要不損及本發明之效果,曰I 加劑。例如,基於改善樹脂組成物性質之 榎& 各種晶鬚(whisker)、聚矽氧粉末 '熱的可調配 合成橡膠、脂肪酸酯、甘油酸酯、涵 有機 β ^ 更月曰酸鋅 '硬脂酸鈣 等内部脫模劑等之添加劑。 ) 如上述般之本發明反射材料組成物,可作為塗布於 基材上予以成形的複合材料或反射材料組成物之成形 物,而適用於各種用途。例如可適用作為以太陽電池之 光反射薄片或LED為首之照明或電視用光源之反射材 料。 s -13- 201224029 [2.反射體] <所述本發明之反射材料組 本發明之反射體係將前 成物成形而成。 導體發光裝置組合使用, 發光裝置(LED組裝用基 該反射體亦可與後述之+ 亦可與包含其他材料之半導^ 板)組合使用。 本發明之反射體,主 土要具有將來自半導體發光裝置 之LED元件之光向透鏡(屮本 兄1出先部)者反射之作用。針對反 射體之詳細内容,由於 、〃適用於本發明之半導體發光裝 置的反射體(後述之反射體19彳 歷12)相同,故在此省略。 [3.半導體發光裝置] 本發明之半導體發光裝置,係如第丨圖之例示,在 基板14上具有.光半導體元件(例如led元件η 〇及反 射體1 2,邊反射體1 2係設置於該光半導體元件丨〇之周 圍’並將來自光半導體元件1〇之光向預定方向反射而 成。接著’在反射體12之光反射面之至少一部分(第1 圖之情形為全部)係包含以前文所述本發明反射體組成 物之成形物而成。 光半導體元件10係釋出放射光(一般在白色光LED 中為UV或藍色光),例如係一種半導體晶片(發光體), 其具有將包含AlGaAs、AlGalnP、GaP或GaN之活性層 以η型及p型之包覆層夾持的重異(d〇uble-hetereo)結 構’例如製成一邊長度為〇.5mm左右之六面體形狀。接 著’在電線接合(w i r e b ο n d i n g)組裝形態之情形,係經由 導線(lead wire)16連接於未圖示出之電極(連接端子)。Further, 曰I is added as long as the effect of the present invention is not impaired. For example, based on improving the properties of the resin composition, various whiskers, polyfluorene powders, 'thermally formulated synthetic rubbers, fatty acid esters, glycerides, culverts, organic β ^zinc citrate' An additive such as an internal mold release agent such as calcium humate. The reflective material composition of the present invention as described above can be used as a composite material for forming a composite material or a reflective material composition coated on a substrate, and is suitable for various uses. For example, it can be applied as a reflective material for a light source for illumination or television, such as a light-reflecting sheet or LED of a solar cell. s -13- 201224029 [2. Reflector] <The reflective material group of the present invention The reflection system of the present invention is formed by molding a precursor. The conductor light-emitting device is used in combination, and the light-emitting device (the LED assembly base can also be used in combination with a +-conducting plate including other materials, which will be described later). In the reflector of the present invention, the main soil has a function of reflecting light from the LED element of the semiconductor light-emitting device toward the lens (the first part of the body). The details of the reflector are the same as those of the reflector of the semiconductor light-emitting device of the present invention (the reflector 19 described later) are the same, and therefore will not be described here. [3. Semiconductor light-emitting device] The semiconductor light-emitting device of the present invention has an optical semiconductor element (for example, a LED element η 〇 and a reflector 1 2), and a side reflector 1 2 is provided on the substrate 14 as exemplified in the drawings. The light semiconductor element 丨〇 is formed around the optical semiconductor element 反射, and the light from the optical semiconductor element 1 反射 is reflected in a predetermined direction. Then, at least a part of the light reflecting surface of the reflector 12 (all in the case of the first figure) is A molded article comprising the reflector composition of the present invention as described above. The optical semiconductor device 10 emits emitted light (generally UV or blue light in a white light LED), for example, a semiconductor wafer (illuminant). It has a d〇uble-hetereo structure in which an active layer containing AlGaAs, AlGalnP, GaP or GaN is sandwiched between n-type and p-type cladding layers, for example, a length of about 55 mm. The shape of the facet. Next, in the case of a wire bonding type, it is connected to an electrode (connection terminal) not shown via a lead wire 16.

S -14- 201224029 反射體12之形狀係依照透鏡18端部(接合部)之形 狀,通常為四方形、圓形、橢圓形等之筒狀或輪狀。= 第1圖之概略剖面圖中,反射體12為筒狀體(輪狀體 反射體12之所有端面係接觸、固定於基板14表面。 此外,在反射體12之内面,為了提高來自光半 九之方向性(directionality),亦可在上方攄 成為錐狀(參照第1圖)。 ’、砰 ,又,反射體1 2在將透鏡1 8側之端部視該透鏡丨8 形狀而被力口 Iu 散加工之障形,亦可發揮透鏡支架的作用。 勺人,射冑12係如第2圖所示,亦可製成僅光反射面侧 發明反射材料組成物的光反射層1 2a。在此情形, 由使熱電阻減低等之翻 ^ * 硯點先反射層12a之厚度較佳為 δ又在5〇〇 μη以下,争祛焱7 , 更佳為30(^m以下。光反射層12a所 升/成之構件12b可以習知耐熱性樹脂構成。 :前文所述,係在反射體12上設置透鏡18,而此 係通吊樹脂製,可依昭目 構,亦可進行著色。‘”、 ㈣各式各樣結 可為:i板14、反射體12及透鏡18所形成之空間部, 常係填充有供予透光性及7二:隙部。該空間部’通 部,在雪& & ^ 緣性的材料等之透明封閉 1在電線接合組裝中,蕤山、丨士 之力、及以p卩祕 L直接接觸導線1 ό而施加 元件1。之連接部、及/或與電二擊二而1與光半導體 落 '或切斷、或短路,藉此可防16脫 響。又,同時可保護光半導體:止產生之電性的不良影 經長期間維持可靠度。凡件ι〇免於濕氣、塵埃等,S - 14 - 201224029 The shape of the reflector 12 is in accordance with the shape of the end portion (joining portion) of the lens 18, and is generally a cylindrical shape or a wheel shape such as a square, a circle, or an ellipse. In the schematic cross-sectional view of Fig. 1, the reflector 12 is a cylindrical body (all the end faces of the wheel-shaped reflector 12 are in contact with and fixed to the surface of the substrate 14. Further, in order to increase the light half from the inner surface of the reflector 12 The directionality of the nine may be tapered at the top (see Fig. 1). ', 砰, and the reflector 1 2 is viewed from the end of the lens 18 side as the shape of the lens 丨8. The barrier shape of the Iu powder processing can also play the role of the lens holder. The scoop person and the cymbal 12 series can also be made into the light reflection layer 1 of the reflective material composition only on the light reflection surface side as shown in Fig. 2 . 2a. In this case, the thickness of the first reflecting layer 12a is preferably δ and 5 〇〇μη or less, and more preferably 30 (^m or less). The member 12b which is raised/formed by the light-reflecting layer 12a can be formed of a heat-resistant resin. As described above, the lens 18 is provided on the reflector 12, and the system is made of a resin, which can be formed by a microscope. Coloring is performed. '", (4) The various types of knots can be: the space formed by the i-plate 14, the reflector 12, and the lens 18. Often filled with light transmissive and 7: gaps. The space part 'passing part, transparent in the snow && edge material, etc. 1 in the wire joint assembly, Lushan, gentleman The force, and the direct contact with the wire 1 ό, the component 1 is applied. The connection portion, and/or the electric double-shot 1 and the optical semiconductor are 'cut or shorted, thereby preventing 16 In addition, it protects the optical semiconductor at the same time: it maintains reliability for a long period of time, and the ι is protected from moisture and dust.

S •15- 201224029 在提供該透光性;5 物} 浥緣性之材料(透明封閉劑組成 明J万甶,通常可例舉 童备斟夕氣樹脂、環氧聚矽氧樹脂、環 乳糸樹脂、兩烯酸系樹 谢 埘月曰 '聚醯亞胺系樹脂、聚碳酸酯 樹月曰4。由耐埶性 产 讥軋候性、低收縮性及抗變色性之 視點二該專令較佳為聚石夕氧樹脂。 纽針對第1圖所示光半導體裝置之製造方法之 加以說明如下。 f先’將上述本發明之反射材料樹脂組成物,藉由 使用具備預定形狀之孔洞空間之鑄模的轉注成形、壓縮 成形射出成型(PulP injection Molding)等,而成形為預 升y狀之反射體1 2。其後,另外以接著劑或接合構件, 將已準備的光半導體元件1〇、電極及導線16固定於基 板14’進一步使反射體12固定於基板14上。接著,在 以基板1 4及反射體1 2所形成之凹部,注入含有聚石夕氧 樹脂等之透明封閉劑組成物,以加熱、乾燥等予以硬化, 製成透明封閉部。其後,在透明封閉部上配設透鏡1 8, 獲得第1圖所示半導體發光裝置。 此外’亦可將透明封閉劑組成物於未硬化之狀態下 載置透鏡1 8之後,使組成物硬化。 [實施例] 接著,以實施例A、B,進一步詳細說明本發明,但 本發明並非被該等之例而做任何限定。此外,在本實施 例中使用的材料係如下述。S •15- 201224029 In the provision of the light transmissive property; 5 materials} the material of the enamel edge (the transparent sealant composition is J Wan, usually can be exemplified by children's enamel resin, epoxy polyoxyl resin, ring milk Anthraquinone resin, a dienoic acid tree, a bismuth eucalyptus, a poly phthalimide resin, and a polycarbonate tree sap. 4. From the point of view of resistance to rolling, low shrinkage, and discoloration resistance. The method for producing the optical semiconductor device shown in Fig. 1 is as follows. f First, the resin composition of the reflective material of the present invention described above is used by using a pore space having a predetermined shape. The mold is transferred into a y-shaped reflector 1 2 by transfer molding, compression molding, or the like. Thereafter, the prepared optical semiconductor element is further formed by an adhesive or a bonding member. The electrode and the lead wire 16 are fixed to the substrate 14' to further fix the reflector 12 to the substrate 14. Then, a transparent sealing agent containing a polysulfide resin or the like is injected into the concave portion formed by the substrate 14 and the reflector 1 2 . Object, to heat, Drying or the like is cured to form a transparent closed portion. Thereafter, a lens 18 is disposed on the transparent closed portion to obtain the semiconductor light-emitting device shown in Fig. 1. Further, the transparent blocking agent composition may be in an unhardened state. After the lens 18 is downloaded, the composition is cured. [Examples] Next, the present invention will be described in further detail with reference to Examples A and B, but the present invention is not limited by the examples. The materials used in the examples are as follows.

-16- S 201224029 [實施例A] (1)财熱性黏合劑 •熱硬化性樹脂:將聚矽氧樹脂(OE-6336A及 OE-63 3 6B以質量比1 : 1混合之物:均為TORAY · Dow Corning股份有限公司製) •熱塑性樹脂:降莰烯聚合物(ZEONOR 1 600 :日本 Zeon股份有限公司製) (2) 氮化删粒子A: UHP-2(昭和電工股份有限公司製 鱗片狀六方.晶結構、體積平均粒徑11 · (3) 氧化鈦粒子:P F C · 1 0 7 (石原產業股份有限公司製 金紅石型結構體積平均粒徑0.25 μπι) (4) 氧化鎂粒子:和光純藥工業股份有限公司製體 積平均粒徑0 · 2 μ m ) (5) 氮化硼粒子B: UHP-EX(昭和電工股份有限公司 製顆粒狀六方晶結構、體積平均粒徑5〇μιη) (6) 氮化棚粒子C: UHP-S1(昭和電工股份有限公司 製鱗片狀六方晶結構、體積平均粒徑1 5 μ m) [實施例1至1 1、比較例1至5 ] α 爿久分種粒子調 配、捏合’獲得反射材料組成物。此外,在調配上係調 整各種粒子之體積分率成為一定,並以輥進行捏合。° 就該等組成物’在調配熱硬化性樹脂之情來,係 BOX:、00秒、lOMPa之條件,而在含 系在 周配熱塑性樹脂之 情形’係在230°C、10秒、20MPa之佟杜 / 、 1来件’進行壓製成 形成為 750mmx750mmx厚度 lmm ’ 並、生 I造成形體β 5 -17- 201224029 針對該成形體,測定下述諸特性。結果如下述表 至4所示。 (A )財熱性(耐熱變黃性) 將成形體在150。(: ’放置24小時前與放置後,以目 視觀察表面顏色變化。若保持放置前之白色時,則具有 良好的耐熱性。 (B)光反射率 將成形體在1 5 0 °C,放置2 4 A B洋洁· λ 直24小時則與放置後,使用 分光光度計UV-25S0(島津製作所製)在波長23〇至78〇nm t測定光反射率。在表卜表示波長45〇nm及波長38〇nm 時之結果。又,實施例1及比較例丨、3之成形體之光反 射率與波長之關係係示於第3圖,而實施例2及比較例 2、4之成形體之光反射率與波長之關係係如第4圖所示 (均「在150°C下,放置24小時」之前)。 (C)熱傳導率 熱傳導率,係連接屬自動演算軟體之薄膜測定用敕 體(SOFT-QTM5W)於京都電子工業公司製QTM_5〇〇(迅迷 熱傳導率計),並就各成形體予以測定。 201224029 表1 組成(質量份) 實施例A 比較例A 1 2 3 1 2 3 4 5 耐 熱 性 黏 合 劑 熱硬化性樹脂 100 100 100 100 熱塑性樹脂 100 100 100 100 粒 子 氮化硼粒子A 26 26 60 氧化鈦粒子 46 46 10 氧化鎮粒子 40 40 30 評 價 結 果 而寸熱性 初期a 外觀 白色 白色 白色 白色 白色 白色 灰色 白色 150°C24小時後 外觀 白色 白色 白色 白色 白色 白色 灰色 白色 光反射率 (450nm) 初期535 % 87 87 86 99 99 83 45 97 150°C24小時後 % 86 86 87 99 95 86 45 96 光反射率 (380nm) 初期$ % 86 85 78 11 15 84 38 12 150°C24小時後 % 81 79 75 11 15 81 36 12 ※「初期」係指在150°C放置24小時前之意(在表2,3中亦相同)。 表2 組成(質量份) 實施例A 4 5 6 1 7 8 9 耐 熱 性 黏 合 劑 熱硬化性樹脂 100 100 100 100 100 100 100 粒 子 氣化棚粒子A 10 15 20 26 50 100 200 評 價 結 果 对熱性 初期m 外觀 白色 白色 白色 白色 白色 白色 白色 150°C24小時後 外觀 白色 白色 白色 白色 白色 白色 白色 光反射率 (450nm) 初期κ % 67 81 84 87 93 94 96 150°C24小時後 % 70 82 86 86 93 95 96 光反射率 (380nm) 初期κ % 67 80 84 86 93 92 92 150°C24小時後 % 70 83 85 81 90 92 93 表3 組成(質量份) 實施例A 1 10 11 耐熱性 黏合劑 熱硬化性樹脂 100 100 100 粒子 氮化硼粒子A (體積平均粒徑11.8μιη) 26 氮化硼粒子B (體積平均粒徑50//m) 26 氮化硼粒子C (體積平均粒徑1.5//m) 26 評價結果 耐熱性 初期85 外觀 白色 白色 白色 150°C24小時後 外觀 白色 白色 白色 光反射率 (450nm) 初期s % 87 86 95 150°C24小時後 % 86 85 9Ί 光反射率 (380nm) 初期κ % 86 85 91 150°C24小時後 % 81 85 91-16- S 201224029 [Example A] (1) Financial adhesives: Thermosetting resin: Polyoxyxylene resin (OE-6336A and OE-63 3 6B mixed at a mass ratio of 1:1: both TORAY · Dow Corning Co., Ltd.) • Thermoplastic resin: decene-based polymer (ZEONOR 1 600: manufactured by Zeon Co., Ltd.) (2) Nitrided particles A: UHP-2 (Scales made by Showa Denko Co., Ltd.) Hexagonal shape. Crystal structure, volume average particle size 11 · (3) Titanium oxide particles: PFC · 1 0 7 (The volume average particle size of rutile structure made by Ishihara Sangyo Co., Ltd. is 0.25 μπι) (4) Magnesium oxide particles: and Wako Pure Chemical Industries Co., Ltd. Volume average particle size 0 · 2 μ m ) (5) Boron nitride particles B: UHP-EX (Graphic hexagonal crystal structure, volume average particle size 5〇μιη) (6) Nitride shed particle C: UHP-S1 (scale-like hexagonal crystal structure of Showa Denko Co., Ltd., volume average particle diameter of 15 μm) [Examples 1 to 1 1 and Comparative Examples 1 to 5] α 爿For a long time, the particles are blended and kneaded to obtain a reflective material composition. Further, in the blending, the volume fraction of each of the various particles is adjusted to be constant, and kneading is performed by a roll. ° These compositions are in the case of blending a thermosetting resin, in the case of BOX:, 00 seconds, 10 MPa, and in the case where the thermoplastic resin is contained in the system, at 230 ° C, 10 seconds, 20 MPa. Then, the first piece was subjected to press forming to a thickness of 750 mm x 750 mm x 1 mm, and the shape of the film was caused by the formation of the shape β 5 -17 - 201224029 The following characteristics were measured for the molded body. The results are shown in Tables 4 to 4 below. (A) Financial property (heat-resistant yellowing property) The molded body is at 150. (: 'Before placing it for 24 hours and after placing it, visually observe the change in surface color. If it is kept white before standing, it has good heat resistance. (B) Light reflectance The molded body is placed at 150 °C. 2 4 AB Yang Jie· λ After 24 hours, the light reflectance was measured at a wavelength of 23 〇 to 78 〇 nm t using a spectrophotometer UV-25S0 (manufactured by Shimadzu Corporation). The results of the wavelength at 38 〇 nm. The relationship between the light reflectance and the wavelength of the molded articles of Example 1 and Comparative Examples 丨 and 3 is shown in Fig. 3, and the molded bodies of Example 2 and Comparative Examples 2 and 4 are shown. The relationship between the light reflectance and the wavelength is as shown in Fig. 4 (before "24 hours at 150 ° C"). (C) Thermal conductivity Thermal conductivity, which is used for film measurement of automatic calculation software. The body (SOFT-QTM5W) was manufactured by Kyoto Electronics Industry Co., Ltd., QTM_5〇〇 (Xun Fan Thermal Conductivity Meter), and each molded body was measured. 201224029 Table 1 Composition (parts by mass) Example A Comparative Example A 1 2 3 1 2 3 4 5 Heat-resistant adhesive Thermosetting resin 100 100 100 100 Thermoplastic tree Grease 100 100 100 100 Particles Boron Nitride Particles A 26 26 60 Titanium Oxide Particles 46 46 10 Oxidized Town Particles 40 40 30 Evaluation Results and Inch Initiality a Appearance White White White White White White Gray White 150°C Appearance White White After 24 Hours White White White White Gray White Light Reflectance (450nm) Initial 535 % 87 87 86 99 99 83 45 97 150°C After 24 hours% 86 86 87 99 95 86 45 96 Light reflectance (380nm) Initial $ % 86 85 78 11 15 84 38 12 After 24 hours at 150°C% 81 79 75 11 15 81 36 12 ※ “Initial” means the meaning of being placed at 150 ° C for 24 hours (the same is true in Tables 2 and 3). Table 2 Composition (Quality) Part A 4 5 6 1 7 8 9 Heat-resistant adhesive Thermosetting resin 100 100 100 100 100 100 100 Particle gasification shed particles A 10 15 20 26 50 100 200 Evaluation results for thermal initial m Appearance white white white White White White White 150°C After 24 hours Appearance White White White White White White White Light Reflectance (450nm) Initial κ % 67 81 84 87 93 94 96 150°C24 After the hour % 70 82 86 86 93 95 96 Light reflectance (380 nm) Initial κ % 67 80 84 86 93 92 92 150 ° C after 24 hours % 70 83 85 81 90 92 93 Table 3 Composition (parts by mass) Example A 1 10 11 Heat-resistant adhesive Thermosetting resin 100 100 100 Particle boron nitride particles A (volume average particle diameter 11.8 μm) 26 Boron nitride particles B (volume average particle diameter 50//m) 26 Boron nitride particles C ( Volume average particle size 1.5//m) 26 Evaluation results Initial heat resistance 85 Appearance White White White 150°C After 24 hours Appearance White White White Light reflectance (450 nm) Initial s % 87 86 95 150 ° C After 24 hours % 86 85 9Ί Light reflectance (380nm) Initial κ % 86 85 91 150°C after 24 hours % 81 85 91

S -19- 201224029 表4S -19- 201224029 Table 4

-------- υ.^0 由表1可確認,實施例i至u之反射材料組成物, 即使在熱硬化樹脂及熱可塑樹脂之情形的任—種,亦在 250至780nm之區域具有高反射率,尤其是在紫外線區 域具有良好的反射特性。又,亦可確認為保持良好耐熱 性的反射材料組成物。由表2可確認,氮化硼粒子之含 量以15至2〇〇質量份為有用。由表3可確認,本效果1 仰賴於氮化硼粒子,在體積平均粒徑為丨至2μιη之時, 反射率良好。又由表4可確認,藉由含有氮化硼粒子, 則可獲得熱傳導率高的反射材料組成物。 由以上可知,本發明之反射材料組成物對亦可反射 备、外線之反射體或半導體發光裝置用之反射材料極為有 用。 [實施例Β] (1) 耐熱性黏合劑 •熱硬化性樹脂:將聚矽氧樹脂(〇Ε·6336Α及 ΟΕ-63 3 6Β以質量比1 : i混合之物:均為t〇ray · Dow-------- υ.^0 It can be confirmed from Table 1 that the reflective material compositions of Examples i to u, even in the case of thermosetting resins and thermoplastic resins, are in the range of 250 to 780 nm. The region has a high reflectance, especially in the ultraviolet region. Further, it was confirmed that the composition of the reflective material was excellent in heat resistance. From Table 2, it was confirmed that the content of the boron nitride particles is useful in 15 to 2 parts by mass. It can be confirmed from Table 3 that the effect 1 depends on the boron nitride particles, and when the volume average particle diameter is 丨 to 2 μm, the reflectance is good. Further, from Table 4, it was confirmed that by containing boron nitride particles, a reflective material composition having high thermal conductivity can be obtained. From the above, it can be seen that the composition of the reflective material of the present invention is extremely useful for reflecting materials, reflectors for external lines, or reflective materials for semiconductor light-emitting devices. [Example Β] (1) Heat-resistant adhesive • Thermosetting resin: Polyfluorene resin (〇Ε·6336Α and ΟΕ-63 3 6Β mixed with a mass ratio of 1: i: all t〇ray· Dow

Corning股份有限公司製) •熱塑性樹脂:降莰烯聚合物(ZE〇n〇R 1600 :曰本 Zeon股份有限公司製) (2) 氰尿酸三聚氰胺酯粒子A : MC-6000(日產化學股 份有限公司製、平均粒徑2.0μιη) 201224029 有尿酸三聚氰胺酯粒子B: MC-4〇〇〇(日產化學股 TO肩限公司制 、τ, 衣·、平均粒徑14μιη) 金紅鈦粒子:PFCMG7(石原產#股份有限公司製 ^構平均粒徑〇·25μηι) (5丄氧化鋅粒子:Lp_ZINC2(得化學工業股份有限公 司製平均粒徑2μιη) (6) 氧化鎂粒子:氧化鎂(和光純藥工業股份有限公司 製、平均粒徑0·2μιη) (7) 氫氧化鎂粒子:Magsseds Ν-6(神島化學股份有限 公司製、平均粒徑1.1 μιη) ,(8)碳酸鈣粒子:WS_22〇〇(竹原化學工業股份有限公 司製、平均粒徑1 .3 μιη) (9)滑石粒子:High micronHE5(竹原化學工業股份有 限公司製、平均粒徑1.6μιη) (1 〇)硫酸鋇粒子:硫酸鋇W-1 (竹原化學工業股份有 限公司製、平均粒徑1.5μιη) [實施例1至9、比較例1至14 ] 在表5至7所示調配中,將耐熱性黏合劑及各種粒 子調配、捏合,獲得反射材料組成物。此外,在調配上 係調整各種粒子之體積分率變成一定,捏合係以輥進行。 就該等組成物,調配熱硬化性樹脂之情形係在i 5〇 °C、60秒、1 OMPa之條件,而調配熱塑性樹脂之情形係 在230 °C、1〇秒、20MPa之條件下,壓製成形成為 750mmx750mmx厚度1mm,並製作成形體。 針對該成形體,測定下述諸特性。結果如不述表5 至7所示。 -2 1 - 201224029 (A) 耐熱性(耐熱變黃性) 將成形體在1 50°C,放置24小時前與放置後,以目 視觀察表面顏色變化。若能保持放置前之白色,則具有 良好的对熱性。 (B) 光反射率 成形體(在15 0°C,放置24小時前與放置後)之波長 230至780nm中,使用分光光度計UV-2550(島津製作所 製)測定光反射率。在表5至7表示波長450nm及波長 3 8 Onm之情形之結果。又,實施例1及2之成形體之.光 反射率與波長之關係示於第5圖,比較例1至4之成形 體之光反射率與波長之關係示於第6圖,比較例5至7 之成形體之光反射率與波長之關係示於第7圖(均「在 15 0°C,放置24小時」之前)。 表5 組成(質量份) 實施例B 比較例B 1 1 2 3 4 5 6 7 财熱性 黏合劑 熱塑性樹脂 100 100 100 100 100 100 100 100 粒子 氰尿酸三聚氰胺酯粒子A 19 氧化鈦粒子 47 氧化鋅粒子 63 氧化鎂粒子 41 氫氧化鎂粒子 27 碳酸妈粒子 31 滑石粒子 31 硫酸鎖粒子 51 評價結果 财熱性 初期$ 外觀 白色 白色 黄白色 灰色 乳白色 乳白色 乳白色 白色 150。。 24小時後 外觀 白色 白色 黄白色 灰色 乳白色 乳白色 乳白色 白色 光反射率 (450nm) 初期38 % 90 99 56 45 27 51 28 71 150°C 24小時後 % 86 95 55 45 25 50 22 68 光反射率 (380nm) 初期38 % 87 15 5 38 24 41 24 60 150°C 24小時後 % 80 15 5 36 20 39 17 56 ※「初期」係指在150°C放置24小時之前之意(在表6、7中亦相同)。Corning Co., Ltd.) • Thermoplastic resin: decene-based polymer (ZE〇n〇R 1600: manufactured by Sakamoto Zeon Co., Ltd.) (2) Melamine cyanurate particles A : MC-6000 (Nissan Chemical Co., Ltd.) System, average particle size 2.0μιη) 201224029 There are uric acid melamine ester particles B: MC-4〇〇〇 (produced by Nissan Chemical Co., Ltd., shoulder, company, τ, clothing, average particle size 14μιη) Gold red titanium particles: PFCMG7 (Ishihara) Manufactured by the company's average particle size 〇·25μηι) (5丄Zinc oxide particles: Lp_ZINC2 (average particle size 2μιη made by Chemical Industry Co., Ltd.) (6) Magnesium oxide particles: Magnesium oxide (Wako Pure Chemical Industries, Ltd.) Co., Ltd., average particle size 0·2μιη) (7) Magnesium hydroxide particles: Magsseds Ν-6 (manufactured by Shendao Chemical Co., Ltd., average particle size 1.1 μιη), (8) calcium carbonate particles: WS_22〇〇 ( Manufactured by Takehara Chemical Industry Co., Ltd., average particle size 1.3 μιη) (9) Talc particles: High micronHE5 (manufactured by Takehara Chemical Industry Co., Ltd., average particle size 1.6 μιη) (1 〇) barium sulfate particles: barium sulfate W -1 (Takehara Chemical Industry Manufactured by Co., Ltd., average particle size: 1.5 μm) [Examples 1 to 9 and Comparative Examples 1 to 14] In the formulation shown in Tables 5 to 7, the heat-resistant adhesive and various particles were blended and kneaded to obtain a reflective material composition. In addition, the volume fraction of various particles is adjusted to be constant in the blending, and the kneading is carried out by a roll. For these compositions, the thermosetting resin is blended at i 5 ° C, 60 seconds, 1 OMPa. In the case of blending a thermoplastic resin, the molded product was formed into a molded body at a temperature of 230 ° C, 1 sec, and 20 MPa, and formed into a molded body of 750 mm × 750 mm × 1 mm. The following characteristics were measured for the molded body. Tables 5 to 7. -2 1 - 201224029 (A) Heat resistance (heat-resistant yellowing property) After the molded body was placed at 150 ° C for 24 hours and placed, the surface color change was visually observed. The white color before placement has good thermal compatibility. (B) The light reflectance molded body (at 150 ° C, placed 24 hours before and after placement) in the wavelength range of 230 to 780 nm, using a spectrophotometer UV-2550 ( Measured by the Shimadzu Corporation) Tables 5 to 7 show the results of the case of the wavelength of 450 nm and the wavelength of 3 8 Onm. Further, the relationship between the light reflectance and the wavelength of the molded bodies of Examples 1 and 2 is shown in Fig. 5, and the formation of Comparative Examples 1 to 4 The relationship between the light reflectance of the body and the wavelength is shown in Fig. 6. The relationship between the light reflectance and the wavelength of the molded articles of Comparative Examples 5 to 7 is shown in Fig. 7 (both before "24 hours at 15 °C, 24 hours" ). Table 5 Composition (parts by mass) Example B Comparative Example B 1 1 2 3 4 5 6 7 Thermoplastic binder Thermoplastic resin 100 100 100 100 100 100 100 100 Particle melamine cyanurate particles A 19 Titanium oxide particles 47 Zinc oxide particles 63 Magnesium Oxide Particles 41 Magnesium Hydroxide Particles 27 Carbonic Acid Mother Particles 31 Talc Particles 31 Sulfuric Acid Locking Particles 51 Evaluation Results Fiscal Heat Initiality $ Appearance White White Yellow White Gray Milky White Milky White White 150. . Appearance after 24 hours White White Yellow White Gray Milky White Milky White White Light Reflectance (450nm) Initial 38% 90 99 56 45 27 51 28 71 150°C After 24 hours% 86 95 55 45 25 50 22 68 Light reflectance (380nm ) Initial 38 % 87 15 5 38 24 41 24 60 150°C After 24 hours % 80 15 5 36 20 39 17 56 * "Initial" means the meaning of being placed at 150 ° C for 24 hours (in Tables 6 and 7) The same).

-22- S 201224029 表6 組成(質量份) 實施例B 比較例B 2 3 8 9 10 11 12 13 14 財熱性 黏合劑 熱硬化性樹脂 100 100 100 100 100 100 100 100 100 粒子 氰尿酸三聚氰胺酯粒子A 19 氰尿酸三聚氰胺酯粒子B 19 氧化鈦粒子 47 氧化辞粒子 63 氧化鎂粒子 41 氫氧化鎂粒子 27 碳酸約粒子 31 滑石粒子 31 硫酸鋇粒子 51 評價結果 财熱性 初期s 外觀 白色 白色 白色 白色 白色 白色 白色 白色 白色 150°C 24小時後 外覲 白色 白色 白色 白色 白色 白色 白色 白色 白色 光反射率 (450nm) 初斯s % 90 89 99 81 83 -74 78 69 75 150°C 24小時後 % 93 91 99 81 86 71 76 67 76 光反射率 初期& % 92 90 11 5 84 74 78 68 77 150°C 24小時後 % 92 86 11 5 81 71 74 65 78 表7 組成(質量份) 實施例B 4 5 6 2 8 9 而十熱性 黏合劑 熱硬化性樹脂 100 100 100 100 100 100 粒子 氰尿酸三聚氰胺酯粒子A (平均粒徑2.0" m) 7 9 11 19 50 100 評價結果 耐熱性 初期m 外觀 白色 白色 白色 白色 白色 白色 150°C24小時後 外觀 白色 白色 白色 白色 白色 白色 光反射率 (450nm) 初期s % 73 80 84 90 95 99 150°C24小時後 % 76 79 87 93 97 99 光反射率 (380nm) 初期κ % ΊΊ 87 87 92 95 99 150°C24小時後 % 79 82 89 92 97 98 由表5、6可確認,在250至780nm之區域,尤其 是在紫外線區域使用氰尿酸三聚氰胺酯粒子之情形,顯 示良好的反射率,這即使在熱硬化樹脂及熱可塑樹脂之 組成物之任一情形亦會發生,又亦可確認本反射材料組 成物保持良好的耐熱性。由表6可確認,氰尿酸三聚氰 胺酯之平均粒徑為2 μιη時,反射率良好。由表7可碟認 λ -23- .201224029 ,氰尿酸三聚氰胺酯粒子之含量在n至1〇〇質量份 圍為有用。由以上可知,本發明之反射材料組成物 亦可反射紫外光之反射體或半導體發光裝置用之反 料極為有用。 【圖式簡單說明】 第1圖表示本發明半導體發光裝置之一例的概 面圖。 第2圖表示本發明半導體發光裝置之一例的概 _面圖。 第3圖表示包含實施例A -1及比較例A -1、A - 3 射材料組成物的成形體初期(剛製作之後)之光反射 波長之關係圖。 第4圖表示包含實施例A-2及比較例A-2、A-4 射材料組成物的成形體初期(剛製作之後)之光反射 波長之關係圖。 第5圖表示包含實施例B -1及實施例B _ 2之反 料組成物的成形體初期(剛製作之後)之光反射率與 之關係圖。 弟6圖表示包含比較例B -1至B - 4之反射材料 物之成形體之初期(剛製作之後)之光反射率與波長 係圖〇 第7圖表示包含比較例B-5至B-7之反射材料 物之成形體初期(剛製作之後)之光反射率與波長之 圖〇 之範 ,在 射材 略剖 略剖 之反 率與 之反 率與 射材 波長 組成 之關 組成 關係-22- S 201224029 Table 6 Composition (parts by mass) Example B Comparative Example B 2 3 8 9 10 11 12 13 14 Thermal adhesive thermosetting resin 100 100 100 100 100 100 100 100 100 Particle melamine cyanurate particles A 19 melamine cyanurate particles B 19 titanium oxide particles 47 oxidized particles 63 magnesium oxide particles 41 magnesium hydroxide particles 27 carbonic acid particles 31 talc particles 31 barium sulfate particles 51 evaluation results early heat s appearance white white white white white white White white white 150 ° C 24 hours after the outer white white white white white white white white white light reflectance (450nm) first s % 90 89 99 81 83 -74 78 69 75 150 ° C after 24 hours % 93 91 99 81 86 71 76 67 76 Light reflectance initial & % 92 90 11 5 84 74 78 68 77 150 °C After 24 hours % 92 86 11 5 81 71 74 65 78 Table 7 Composition (parts by mass) Example B 4 5 6 2 8 9 and ten thermal adhesive thermosetting resin 100 100 100 100 100 100 particle cyanuric acid trimer Amine ester particles A (average particle diameter 2.0 " m) 7 9 11 19 50 100 Evaluation results Heat resistance initial m Appearance white white white white white white 150 ° C after 24 hours appearance white white white white white white light reflectance (450 nm) Initial s % 73 80 84 90 95 99 After 24 hours at 150 ° C% 76 79 87 93 97 99 Light reflectance (380 nm) Initial κ % ΊΊ 87 87 92 95 99 150 ° C after 24 hours % 79 82 89 92 97 98 5, 6 It can be confirmed that the use of melamine cyanurate particles in the region of 250 to 780 nm, especially in the ultraviolet region, shows good reflectance, even in the case of the composition of the thermosetting resin and the thermoplastic resin. It also occurs, and it is also confirmed that the composition of the reflective material maintains good heat resistance. From Table 6, it was confirmed that when the average particle diameter of melamine cyanurate was 2 μηη, the reflectance was good. It can be seen from Table 7 that λ -23-.201224029, the content of melamine cyanurate particles is useful in n to 1 part by mass. From the above, it is known that the reflective material composition of the present invention can also be used to reflect a reflector of ultraviolet light or a reflector for a semiconductor light-emitting device. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing an example of a semiconductor light-emitting device of the present invention. Fig. 2 is a schematic view showing an example of a semiconductor light-emitting device of the present invention. Fig. 3 is a graph showing the relationship between the light reflection wavelengths at the initial stage (just after production) of the molded article comprising the examples A-1 and Comparative Examples A-1 and A - 3 . Fig. 4 is a graph showing the relationship between the light reflection wavelengths at the initial stage (just after production) of the molded article comprising the composition of Example A-2, Comparative Example A-2, and A-4. Fig. 5 is a graph showing the relationship between the light reflectance at the initial stage (just after production) of the molded article comprising the reactant compositions of Example B-1 and Example B-2. Figure 6 shows the light reflectance and wavelength pattern of the initial stage (just after fabrication) of the molded article including the comparative material materials of Comparative Examples B-1 to B-4, and Fig. 7 shows the inclusion of Comparative Examples B-5 to B- 7 The reflection of the light reflectance and the wavelength of the initial shape of the formed material of the reflective material (after the production), the inverse ratio of the cross section of the shot material and the composition of the inverse rate and the composition of the wavelength of the shot.

S -24- 201224029 【主要元件符號說明】 10 光半導體元件 12 反射體 12a 光反射層 12b 光反射層12a所形成之構件 14 基板 16 導線 18 透鏡 -25-S -24- 201224029 [Description of main components] 10 Optical semiconductor components 12 Reflector 12a Light reflecting layer 12b Member formed by light reflecting layer 12a 14 Substrate 16 Wire 18 Lens -25-

Claims (1)

201224029 七、申請專利範圍: 1 · 一種反射材料組成物,其包含氮化硼粒子或氰尿酸三 聚氰胺醋(melamine cyanurate)粒子、及对熱性黏合劑。 2·如申請專利範圍第1項之反射材料組成物,其實質上 不含氧化鈦。 3 ·如申請專利範圍第1或2項之反射材料組成物,其中 該财熱性黏合劑為聚矽氧樹脂或降莰烯(norb〇rnene) 聚合物。 4. 如申請專利範圍第1至3項中任一項之反射材料組成 物’其含有之該氮化硼之體積平均粒徑為〇丨至 3 Ο 0 μιη ° 5. 如申請專利範圍第丨至4項中任一項之反射材料組成 物’其中相對於1 〇〇質量份耐熱性黏合劑而言,該氮 化硼之含量為10至300質量份。 6. 如申請專利範圍第丨至3項中任一項之反射材料組成 物,其含有之該氰尿酸三聚氰胺酯粒子之平均粒徑為 0.5 至 4 · 0 μιη。 7. 如申請專利範圍第丨至3及6項中任一項之反射材料 組成物’其中相對於1 00質量份該耐熱性黏合劑而言, 該泉尿酸二聚氧胺酿粒子之含量為5至180質量份。 8 · —種反射體,其係將如申請專利範圍第1至7項中任 一項之反射材料組成物成形而成。 9. 一種半導體發光裝置,其在基板上具有:光半導體元 件及反射體,該反射體係設置於該光半導體元件之周 圍’並將來自該光半導體元件之光向預定方向反射1 S -26- 201224029 該反射體之光反射面之至少一部分係如申請專利範圍 第1至7項中任一項之反射體組成物之成形物。 S -27-201224029 VII. Patent application scope: 1 · A reflective material composition comprising boron nitride particles or melamine cyanurate particles, and a thermal adhesive. 2. A reflective material composition as claimed in claim 1 which is substantially free of titanium oxide. 3. The reflective material composition of claim 1 or 2, wherein the heat-curing adhesive is a polyoxynene resin or a norb〇rnene polymer. 4. The reflective material composition of any one of claims 1 to 3, wherein the volume average particle diameter of the boron nitride is 〇丨 to 3 Ο 0 μιη ° 5. The reflective material composition of any one of the items 4, wherein the boron nitride is contained in an amount of 10 to 300 parts by mass based on 1 part by mass of the heat resistant adhesive. 6. The reflective material composition according to any one of claims 3 to 3, wherein the melamine cyanurate particles have an average particle diameter of 0.5 to 4 · 0 μιη. 7. The reflective material composition of any one of claims 3 to 6 wherein the amount of the diurethane dihydrated granules is from 100 parts by mass of the heat resistant adhesive. 5 to 180 parts by mass. A reflective body formed by forming a reflective material composition according to any one of claims 1 to 7. A semiconductor light-emitting device having: an optical semiconductor element and a reflector on a substrate, the reflective system being disposed around the optical semiconductor element and reflecting light from the optical semiconductor element in a predetermined direction by 1 S -26- 201224029 At least a part of the light reflecting surface of the reflector is a molded article of the reflector composition according to any one of claims 1 to 7. S -27-
TW100134253A 2010-09-24 2011-09-23 Reflective material composition, reflective body and semiconductor light-emitting device TW201224029A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010214113A JP2012069794A (en) 2010-09-24 2010-09-24 Reflective material composition, reflector and semiconductor light-emitting device
JP2010242657A JP5168337B2 (en) 2010-10-28 2010-10-28 Reflective material composition, reflector and semiconductor light emitting device

Publications (1)

Publication Number Publication Date
TW201224029A true TW201224029A (en) 2012-06-16

Family

ID=45873918

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100134253A TW201224029A (en) 2010-09-24 2011-09-23 Reflective material composition, reflective body and semiconductor light-emitting device

Country Status (2)

Country Link
TW (1) TW201224029A (en)
WO (1) WO2012039434A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065505A1 (en) * 2014-10-27 2016-05-06 Ablestik (Shanghai) Ltd. A method for manufacturing an optical semiconductor device and a silicone resin composition therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970941B2 (en) * 2012-04-27 2016-08-17 大日本印刷株式会社 Light reflecting laminate and semiconductor light emitting device
JP5931767B2 (en) * 2013-02-01 2016-06-08 信越化学工業株式会社 Curable resin composition for light reflecting material, cured product of the composition, reflector comprising the cured product of the composition, and optical semiconductor device using the same
US9695321B2 (en) 2013-06-06 2017-07-04 Philips Lighting Holding B.V. Reflective composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219421A (en) * 1988-07-05 1990-01-23 Agency Of Ind Science & Technol Partial heat-treatment method using carbon dioxide gas laser
JP4304382B2 (en) * 1997-12-24 2009-07-29 住友金属工業株式会社 Highly reflective surface-treated plate with excellent contamination resistance
JP5417888B2 (en) * 2009-02-24 2014-02-19 豊田合成株式会社 Method for manufacturing light emitting device
JP5606104B2 (en) * 2009-03-23 2014-10-15 株式会社アドマテックス UV reflective composition and UV reflective molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065505A1 (en) * 2014-10-27 2016-05-06 Ablestik (Shanghai) Ltd. A method for manufacturing an optical semiconductor device and a silicone resin composition therefor

Also Published As

Publication number Publication date
WO2012039434A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
US9884441B2 (en) Electron beam curable resin composition, resin frame for reflectors, reflector, semiconductor light emitting device, and method for producing molded body
TWI477555B (en) White reflective material and its manufacturing method
US8318847B2 (en) Plastic compositions and products produced therefrom
JP6277963B2 (en) Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article
TW201139564A (en) Silicone cured product containing phosphor, manufacturing method thereof, silicone cured composition containing phosphor, precursor thereof, sheet-shape mold goods, LED package, luminescence device and manufacturing method of LED mounting substrates
TW201011068A (en) White heat-curable silicone resin composition and optoelectronic part case
TW201130891A (en) Material for a molded resin body for use in a semiconductor light-emitting device
TW201203619A (en) Package for semiconductor light-emitting device and semiconductor light-emitting device
TW201202321A (en) Resin composition, reflector for light-emitting semiconductor device, and light-emitting semiconductor unit
US20070077410A1 (en) Plastic films
TW201431963A (en) Curable polyorganosiloxane composition
JP5821316B2 (en) Manufacturing method of resin package for semiconductor light emitting device and manufacturing method of semiconductor light emitting device having the resin package for semiconductor light emitting device
TW201224029A (en) Reflective material composition, reflective body and semiconductor light-emitting device
JP5841237B2 (en) Resin composition, cured product thereof, and reflecting material for optical semiconductor using the same
JP5970941B2 (en) Light reflecting laminate and semiconductor light emitting device
JP5168337B2 (en) Reflective material composition, reflector and semiconductor light emitting device
EP3423520B1 (en) Fluoropolymer composition for components of light emitting apparatuses
JP6277592B2 (en) Electron beam curable resin composition for reflector, resin frame for reflector, reflector, semiconductor light emitting device, method for producing molded article, and method for producing semiconductor light emitting device
KR20160140660A (en) Semiconductor light-emitting device and optical-semiconductor-mounting substrate
CN112119510A (en) Fluoropolymer composition for components of light emitting devices
US10400085B2 (en) Electron beam curable resin composition, reflector resin frame, reflector, semiconductor light-emitting device, and molded article production method
TW201900762A (en) Epoxy resin composition, semiconductor device, and method for producing semiconductor device
WO2017110755A1 (en) Light-reflecting material composition including ammeline
JP2015023099A (en) Method of manufacturing semiconductor light-emitting device, method of manufacturing molded body, electron beam curable resin composition, resin frame for reflector, and reflector
WO2022138344A1 (en) Curable silicone composition, cured product of same, and laminate