WO2016017818A1 - Reflector and resin composition - Google Patents
Reflector and resin composition Download PDFInfo
- Publication number
- WO2016017818A1 WO2016017818A1 PCT/JP2015/071880 JP2015071880W WO2016017818A1 WO 2016017818 A1 WO2016017818 A1 WO 2016017818A1 JP 2015071880 W JP2015071880 W JP 2015071880W WO 2016017818 A1 WO2016017818 A1 WO 2016017818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reflector
- mass
- resin composition
- resin
- white pigment
- Prior art date
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 165
- 239000012463 white pigment Substances 0.000 claims abstract description 64
- 239000012765 fibrous filler Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000011256 inorganic filler Substances 0.000 claims abstract description 45
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 45
- 229920005989 resin Polymers 0.000 claims abstract description 43
- 239000011347 resin Substances 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 239000012298 atmosphere Substances 0.000 claims abstract description 9
- 239000004065 semiconductor Substances 0.000 claims description 63
- 239000003431 cross linking reagent Substances 0.000 claims description 51
- 229920005672 polyolefin resin Polymers 0.000 claims description 51
- -1 polyethylene Polymers 0.000 claims description 47
- 238000000465 moulding Methods 0.000 claims description 42
- 238000010894 electron beam technology Methods 0.000 claims description 41
- 238000010438 heat treatment Methods 0.000 claims description 34
- 239000003365 glass fiber Substances 0.000 claims description 32
- 230000003287 optical effect Effects 0.000 claims description 23
- 229920000306 polymethylpentene Polymers 0.000 claims description 23
- 239000011116 polymethylpentene Substances 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000004698 Polyethylene Substances 0.000 claims description 10
- 239000004743 Polypropylene Substances 0.000 claims description 10
- 125000004122 cyclic group Chemical group 0.000 claims description 10
- 229920000573 polyethylene Polymers 0.000 claims description 10
- 229920001155 polypropylene Polymers 0.000 claims description 10
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 238000002310 reflectometry Methods 0.000 abstract description 2
- 239000000835 fiber Substances 0.000 description 41
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 28
- 229920001971 elastomer Polymers 0.000 description 20
- 239000000203 mixture Substances 0.000 description 18
- 229920001577 copolymer Polymers 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- 125000004429 atom Chemical group 0.000 description 16
- 238000001746 injection moulding Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 14
- 239000005060 rubber Substances 0.000 description 14
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 125000005394 methallyl group Chemical group 0.000 description 12
- 239000000178 monomer Substances 0.000 description 12
- 238000007789 sealing Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 230000001133 acceleration Effects 0.000 description 10
- 239000000945 filler Substances 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 238000005227 gel permeation chromatography Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 229920002725 thermoplastic elastomer Polymers 0.000 description 9
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 238000004898 kneading Methods 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Natural products CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 7
- 239000010954 inorganic particle Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 239000004711 α-olefin Substances 0.000 description 7
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000006087 Silane Coupling Agent Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 6
- 229920001400 block copolymer Polymers 0.000 description 6
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 6
- 125000005647 linker group Chemical group 0.000 description 6
- 229920002050 silicone resin Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 150000001993 dienes Chemical class 0.000 description 5
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 5
- MPJPKEMZYOAIRN-UHFFFAOYSA-N 1,3,5-tris(2-methylprop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound CC(=C)CN1C(=O)N(CC(C)=C)C(=O)N(CC(C)=C)C1=O MPJPKEMZYOAIRN-UHFFFAOYSA-N 0.000 description 4
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000010440 gypsum Substances 0.000 description 4
- 229910052602 gypsum Inorganic materials 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 4
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 4
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 4
- 238000001579 optical reflectometry Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 231100000987 absorbed dose Toxicity 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000004380 ashing Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000006082 mold release agent Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229920005604 random copolymer Polymers 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 238000001721 transfer moulding Methods 0.000 description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- PQJZHMCWDKOPQG-UHFFFAOYSA-N 2-anilino-2-oxoacetic acid Chemical compound OC(=O)C(=O)NC1=CC=CC=C1 PQJZHMCWDKOPQG-UHFFFAOYSA-N 0.000 description 2
- SSADPHQCUURWSW-UHFFFAOYSA-N 3,9-bis(2,6-ditert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C)=CC(C(C)(C)C)=C1OP1OCC2(COP(OC=3C(=CC(C)=CC=3C(C)(C)C)C(C)(C)C)OC2)CO1 SSADPHQCUURWSW-UHFFFAOYSA-N 0.000 description 2
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 2
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 2
- YATIYDNBFHEOFA-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-ol Chemical compound CO[Si](OC)(OC)CCCO YATIYDNBFHEOFA-UHFFFAOYSA-N 0.000 description 2
- KHLRJDNGHBXOSV-UHFFFAOYSA-N 5-trimethoxysilylpentane-1,3-diamine Chemical compound CO[Si](OC)(OC)CCC(N)CCN KHLRJDNGHBXOSV-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- PGVKOLQZZKEKJI-UHFFFAOYSA-N C1(=CC=CC=C1)NCCC[Si](OC)(OC)OC.NCCC(CC[Si](OC)(OC)C)N Chemical compound C1(=CC=CC=C1)NCCC[Si](OC)(OC)OC.NCCC(CC[Si](OC)(OC)C)N PGVKOLQZZKEKJI-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229920001651 Cyanoacrylate Polymers 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004113 Sepiolite Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 2
- RJDOZRNNYVAULJ-UHFFFAOYSA-L [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] RJDOZRNNYVAULJ-UHFFFAOYSA-L 0.000 description 2
- NOZAQBYNLKNDRT-UHFFFAOYSA-N [diacetyloxy(ethenyl)silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)C=C NOZAQBYNLKNDRT-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- CJDPJFRMHVXWPT-UHFFFAOYSA-N barium sulfide Chemical compound [S-2].[Ba+2] CJDPJFRMHVXWPT-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- ABHNFDUSOVXXOA-UHFFFAOYSA-N benzyl-chloro-dimethylsilane Chemical compound C[Si](C)(Cl)CC1=CC=CC=C1 ABHNFDUSOVXXOA-UHFFFAOYSA-N 0.000 description 2
- OOORLLSLMPBSPT-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,3-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC(C(=O)OCC=C)=C1 OOORLLSLMPBSPT-UHFFFAOYSA-N 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- SXPLZNMUBFBFIA-UHFFFAOYSA-N butyl(trimethoxy)silane Chemical compound CCCC[Si](OC)(OC)OC SXPLZNMUBFBFIA-UHFFFAOYSA-N 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 235000013539 calcium stearate Nutrition 0.000 description 2
- 239000008116 calcium stearate Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- KMVZWUQHMJAWSY-UHFFFAOYSA-N chloro-dimethyl-prop-2-enylsilane Chemical compound C[Si](C)(Cl)CC=C KMVZWUQHMJAWSY-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 2
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 2
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 229940069096 dodecene Drugs 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000010433 feldspar Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- RSKGMYDENCAJEN-UHFFFAOYSA-N hexadecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCCCCCC[Si](OC)(OC)OC RSKGMYDENCAJEN-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 description 2
- 239000005055 methyl trichlorosilane Substances 0.000 description 2
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 2
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 150000002848 norbornenes Chemical class 0.000 description 2
- 239000010449 novaculite Substances 0.000 description 2
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 description 2
- 150000004010 onium ions Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001083 polybutene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 238000007152 ring opening metathesis polymerisation reaction Methods 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910052624 sepiolite Inorganic materials 0.000 description 2
- 235000019355 sepiolite Nutrition 0.000 description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 2
- XYJRNCYWTVGEEG-UHFFFAOYSA-N trimethoxy(2-methylpropyl)silane Chemical compound CO[Si](OC)(OC)CC(C)C XYJRNCYWTVGEEG-UHFFFAOYSA-N 0.000 description 2
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 2
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 2
- 239000005051 trimethylchlorosilane Substances 0.000 description 2
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- OFHQVNFSKOBBGG-UHFFFAOYSA-N 1,2-difluoropropane Chemical compound CC(F)CF OFHQVNFSKOBBGG-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WHVLVEATLPIRED-UHFFFAOYSA-N C=C.F.F.F Chemical group C=C.F.F.F WHVLVEATLPIRED-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004954 Polyphthalamide Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011852 carbon nanoparticle Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 229920006229 ethylene acrylic elastomer Polymers 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002589 poly(vinylethylene) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006375 polyphtalamide Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229920005609 vinylidenefluoride/hexafluoropropylene copolymer Polymers 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08L23/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
- H01L33/60—Reflective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/4847—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
- H01L2224/48472—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
- H01L2924/183—Connection portion, e.g. seal
- H01L2924/18301—Connection portion, e.g. seal being an anchoring portion, i.e. mechanical interlocking between the encapsulation resin and another package part
Definitions
- the present invention relates to a reflector and a resin composition.
- the substrate is heated by means of infrared rays, hot air, etc.
- a method (reflow method) for melting and fixing electronic components is employed. By this method, the mounting density of electronic components on the substrate surface can be improved.
- an LED element which is one of semiconductor light emitting devices, is widely used as a light source such as an indicator lamp because of its small size, long life, and excellent power saving.
- LED elements with higher brightness have been manufactured at a relatively low cost, and therefore, use as a light source to replace fluorescent lamps and incandescent bulbs has been studied.
- a plurality of LED elements are arranged on a surface-mounted LED package, that is, a metal substrate (LED mounting substrate) such as aluminum, and each LED element.
- a system is often used in which a reflector (reflector) that reflects light in a predetermined direction is disposed around the.
- the LED element since the LED element generates heat during light emission, in such a type of LED lighting device, the reflector deteriorates due to the temperature rise during light emission of the LED element, and the reflectance decreases, thereby reducing the brightness. The life of the element will be shortened. Therefore, heat resistance is required for the reflector.
- Patent Document 1 proposes a polymer composition used for a reflector of a light emitting diode, specifically, polyphthalamide, carbon black, titanium dioxide, glass fiber, and an antioxidant.
- a polymer composition is disclosed.
- the reflectance after heat aging is measured about the said composition, Compared with the polymer composition which does not contain carbon black, the favorable reflectance is obtained with the said composition, and it has shown that there is also little yellowing.
- the heat aging test of the polymer composition described in Patent Document 1 is an evaluation in a short time of 3 hours at 170 ° C., and good results can be obtained with heat resistance and durability under a longer practical condition. Whether it is unknown.
- Patent Document 2 discloses a thermosetting light reflecting resin composition used for an optical semiconductor device in which an optical semiconductor element and a wavelength conversion means such as a phosphor are combined.
- the heat aging test of the thermosetting light reflecting resin composition described in Patent Document 2 has been verified under a more practical condition of 150 hours at 150 ° C., but the molding time is 90 seconds compared to the thermoplastic resin. Since it is long and requires 2 hours as post-cure at 150 ° C., there is a problem in productivity.
- Patent Document 3 discloses an olefin resin, a crosslinking agent having an allylic substituent having a molecular weight of 1000 or less, inorganic particles such as spherical fused silica and glass fiber, and a white pigment.
- the resin composition containing these is described.
- a resin composition has the outstanding heat resistance, it is described that it is useful when producing molded objects, such as a reflector, through a reflow process.
- Patent Document 3 proposes an electron beam curable resin composition containing polymethylpentene and a crosslinking agent having an allylic substituent having a molecular weight of 1000 or less.
- the electron beam curable composition containing a white pigment and further containing inorganic particles other than the white pigment has excellent heat resistance in the reflow process, and formed into a molded body such as a reflector. It is described that excellent heat resistance can be obtained.
- a white pigment and inorganic particles sinherical fused silica, glass fiber
- 105 parts by mass is the maximum with respect to 100 parts by mass of pentene, and there is no description about including more white pigments and inorganic particles.
- an object of the first invention is to provide a reflector having excellent adhesion to a substrate while maintaining at least basic performances such as required heat resistance and reflectance.
- the gist of the first invention is as follows.
- the present inventors solved the said subject by using the fibrous filler which has a specific cross-sectional area in radial direction. That is, a reflector having a light reflection surface formed from a resin composition containing a resin and an inorganic filler containing a white pigment and a fibrous filler, and the radial cross-sectional area of the fibrous filler is 1 ⁇ m 2. 100 ⁇ m 2 or less, and using a thermogravimetric / differential thermal simultaneous analyzer based on the TG-DTA method, after measuring the mass of the reflector before heating, up to 600 ° C. at 10 ° C./min in an air atmosphere A reflector in which the amount of ash remaining after heating at 600 ° C. for 30 minutes after heating is 70% or more and 90% or less based on the total mass of the reflector before heating.
- the gist of the second invention is as follows.
- a resin composition comprising more than 500 parts by mass and less than 500 parts by mass.
- the first invention it is possible to provide a reflector having excellent adhesion to a substrate while maintaining at least basic performances such as required heat resistance and reflectance.
- the second invention it is possible to provide a resin composition capable of obtaining a molded body having no white color tone and excellent in heat resistance without cracks when formed into a molded body.
- first embodiment an embodiment according to the first invention
- second embodiment an embodiment according to a second invention
- the first invention and the second invention are not limited to the embodiments described below.
- the reflector according to the first embodiment of the present invention is molded from a resin composition containing a resin and an inorganic filler including a white pigment and a fibrous filler (hereinafter, sometimes referred to as a resin composition for reflector).
- the radial filler has a radial cross-sectional area of 1 ⁇ m 2 or more and 100 ⁇ m 2 or less using a thermogravimetric / differential thermal analyzer based on the TG-DTA method. After measuring the mass of the reflector before heating, the amount of ash remaining after heating at 600 ° C. for 30 minutes after heating up to 600 ° C. in an air atmosphere is based on the total mass of the reflector before heating.
- the ash content of the reflector according to this embodiment is less than 70% by mass, the heat resistance required in the reflow process cannot be satisfied. Moreover, when the amount of ash exceeds 90 mass%, the moldability of a reflector will fall. From the above viewpoint, the lower limit of the ash content is preferably 72% by mass, and more preferably 75% by mass. Moreover, it is preferable that the upper limit of the said ash content is 88 mass%, and it is more preferable that it is 85 mass%.
- the reflector according to the embodiment of the present invention mainly has an action of reflecting light from the LED element of the semiconductor light emitting device toward the lens (light emitting portion).
- the reflector according to the present embodiment may be used in combination with a semiconductor light emitting device described later, or may be used in combination with a semiconductor light emitting device made of another material, an LED mounting substrate, or the like. Details of the reflector are the same as those of the reflector (reflector 12 in FIGS. 1 and 2) applied to the semiconductor light emitting device described later with reference to FIGS.
- the reflector according to the present embodiment can be applied to various uses. For example, the present invention can be applied to a heat-resistant insulating film, a heat-resistant release sheet, a light reflecting sheet of a solar cell, lighting such as an LED, a reflector for a light source for a television, and the like.
- the sealing property of the optical semiconductor element affects the life of the semiconductor element.
- the reflector according to the present embodiment has good adhesion and high sealing performance. It can be preferably applied to.
- the present invention can be more suitably applied to a metal substrate type LED that is formed by processing a lead frame by etching and half etching and uses the back surface of the element installation portion as an electrode.
- the resin composition for reflectors that can be used for molding the light reflecting surface of the reflector according to the first embodiment of the present invention contains at least a resin and an inorganic filler containing a white pigment and a fibrous filler.
- the resin that can be used in the first embodiment may be any resin that can be used for molding the light reflecting surface, and examples thereof include polyamide, polycarbonate, acrylic resin, polyacetal, polyethylene terephthalate, and polystyrene. Among these, it is preferable to use a polyolefin resin.
- the resins may be used alone, or different resins can be blended and used. Furthermore, block polymers, copolymers and terpolymers obtained from different monomers may be used.
- the polyolefin resin include resins obtained by ring-opening metathesis polymerization of polyethylene, polypropylene, polybutene, polymethylpentene, and norbornene derivatives, or hydrogenated resins thereof.
- the polyolefin resin at least one selected from polyethylene, polypropylene, polyethylene containing a cyclic structure, polypropylene containing a cyclic structure, and polymethylpentene is preferable.
- Polymethylpentene has a high melting point of 230 to 240 ° C., does not decompose even at a molding temperature of about 280 ° C., and has excellent chemical resistance and electrical insulation properties.
- a polyolefin resin such as polymethylpentene can be suitably used for a reflector of a semiconductor light emitting device, for example.
- the polymethylpentene resin is preferably a homopolymer of 4-methylpentene-1, but 4-methylpentene-1 and other ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-pentene, ⁇ having 2 to 20 carbon atoms such as hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene, 1-eicocene, 3-methyl-1-butene, 3-methyl-1-pentene, etc.
- -Copolymers with olefins mainly 4-methyl-1-pentene.
- the polyolefin resin that can be used in the reflector resin composition preferably has a weight average molecular weight of 220,000 to 800,000.
- the weight average molecular weight of the polyolefin resin is in the above range, the occurrence of cracks in a molded article such as a reflector obtained by molding a resin composition for a reflector containing the polyolefin resin can be suppressed. For example, the destruction of the reflector in the reflow process Etc. can be prevented.
- the lower limit of the weight average molecular weight is preferably 230,000 or more, more preferably 240,000 or more.
- the upper limit of the weight average molecular weight is preferably 700,000 or less, more preferably 650,000 or less.
- the weight average molecular weight is preferably a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
- GPC gel permeation chromatography
- the method is not limited to this as long as the method can measure the weight average molecular weight with good reproducibility.
- the weight average molecular weight can be measured by a method exemplified for a material extracted with an appropriate solvent.
- An example of conditions for measuring the weight average molecular weight by GPC is as follows. Eluent: o-dichlorobenzene Temperature: 140-160 ° C Flow rate: 1.0 mL / min Sample concentration: 1.0 g / L Injection volume: 300 ⁇ L
- the inorganic filler which can be used for the resin composition for reflectors contains a white pigment and a fibrous filler.
- the inorganic filler will be described.
- white pigment titanium oxide, zinc sulfide, zinc oxide, barium sulfide, potassium titanate and the like can be used alone or in combination as white pigments that can be used in the resin composition for reflectors.
- the white pigment is used for imparting a white color tone to the molded product obtained from the resin composition, and particularly improves the light reflectance of the molded product by setting the color tone to a high white color. be able to.
- the average particle diameter of the white pigment is preferably 0.10 ⁇ m or more and 0.50 ⁇ m or less, and 0.10 ⁇ m or more and 0.40 ⁇ m or less in the primary particle size distribution from the viewpoint of obtaining moldability and obtaining high reflectance. It is more preferable that it is 0.21 ⁇ m or more and 0.25 ⁇ m or less.
- An average particle diameter can be calculated
- the inorganic filler usable in the reflector for the resin composition required to include fibrous fillers requires that the cross-sectional area in the radial direction of the fibrous filler is 1 [mu] m 2 or more 100 [mu] m 2 or less .
- the cross-sectional area in the radial direction of the fibrous filler is less than 1 ⁇ m 2 , the filler strength is reduced and the fiber is easily broken or broken in the fiber length direction during processing. As a result, the length is shortened. Sexuality decreases.
- the cross-sectional area of the fibrous filler in the present embodiment is an actual measurement obtained by breaking the reflector of the semiconductor light-emitting device and observing the broken cross-section with an SEM. It shall be calculated from the value. That is, in the SEM image, the diameter length of the fibrous filler appearing in the cross section of the reflector is measured.
- the cross section of the filler has an elliptical shape
- the major axis and minor axis of the ellipse are measured, and the ratio of the major axis to the minor axis is 0.8 to 1.2, and at least 10
- the average value about a cross section be a cross-sectional area of a fibrous filler.
- the diameter is measured up to three significant digits.
- the cross-sectional area is calculated as the average value of the cross-sectional area of the fibrous filler from the smallest cross-sectional area to the 50% of the total number of measurements, and the calculated value is rounded off to the third digit. To do.
- the lower limit value of the cross-sectional area in the radial direction of the fibrous filler is preferably 30 ⁇ m 2 , and more preferably 35 ⁇ m 2 .
- the upper limit of the cross-sectional area in the radial direction of the fibrous filler is preferably a 85 .mu.m 2, more preferably 50 [mu] m 2.
- fibrous fillers include asbestos fibers, carbon fibers, graphite fibers, metal fibers, slag fibers, gypsum fibers, silica fibers, silica-alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, glass fibers, etc. Can be mentioned.
- the fibrous filler is a glass fiber containing 60% by mass or more of silicon dioxide from the viewpoint of forming the light reflecting surface of the reflector and improving the light reflectance.
- the ratio of silicon dioxide in the fibrous filler is more preferably 65% by mass or more, and further preferably 70% by mass or more.
- the cross-sectional shape of the fibrous filler may be a general, substantially circular shape, or an irregular cross-section such as a flat shape.
- the fiber does not have to have a constant cross-sectional shape and cross-sectional area.
- the cross-sectional performance in this case is defined as a cross-sectional area obtained by averaging different cross-sectional areas in the length direction.
- the size of the cross section satisfies the above-mentioned definition of the cross sectional area
- the short axis D1 of the cross section is 0.5 ⁇ m or more and 25 ⁇ m or less
- the long diameter D2 is 0.5 ⁇ m.
- the ratio D2 / D1 of D2 to D1 is 1.0 to 30 and 300 ⁇ m or less.
- the average fiber length of glass fiber is 0.75 micrometer or more and 300 micrometers or less.
- Such glass fibers are also called milled fibers, and can be obtained by pulverizing long fibers.
- the reflector resin composition in addition to the white pigment and the fibrous filler, is usually a thermoplastic resin composition; a thermosetting resin composition such as an epoxy resin, an acrylic resin, or a silicone resin, and an inorganic filler. As long as it does not interfere with the reflection characteristics as a reflector, can be used alone or in combination.
- Examples include aluminum borate whiskers, magnesium whiskers, silicon whiskers, wollastonite, imogolite, sepiolite, zonolite, silica particles, layered silicates, layered silicates exchanged with organic onium ions, glass flakes, non-swelling Carbon nanoparticles such as synthetic mica, graphite, metal foil, ceramic beads, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, powdered silicic acid, feldspar powder, shirasu balloon, gypsum, novaculite, dosonite, and white clay fullerene Examples thereof include plate-like and particulate inorganic fillers.
- the resin composition for reflectors may contain the crosslinking agent further.
- the resin composition contains a crosslinking agent, it is shaped into a reflector shape, and then irradiated with an electron beam to obtain a reflector. Thereby, the more outstanding heat resistance can be provided to the reflector which concerns on this embodiment.
- the crosslinking agent has at least one ring structure that is saturated or unsaturated, and at least one atom forming the ring structure includes an allyl group, a methallyl group, an allyl group via a linking group, and a linking group. It has a structure in which any allylic substituent of the methallyl group via is bonded.
- the resin composition in the first embodiment exhibits good electron beam curability and has excellent heat resistance by containing a crosslinking agent having such a structure.
- the saturated or unsaturated ring structure include a cyclo ring, a hetero ring, and an aromatic ring.
- the number of atoms forming the ring structure is preferably 3 to 12, more preferably 5 to 8, and still more preferably a 6-membered ring.
- the number of ring structures is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
- the molecular weight of the crosslinking agent is preferably 1000 or less, more preferably 500 or less, and even more preferably 300 or less. When the molecular weight is 1000 or less, good dispersibility is obtained in the resin composition, and it is possible to cause an effective crosslinking reaction by electron beam irradiation.
- the melting point of the crosslinking agent is preferably not higher than the melting point of the polyolefin resin to be used, and is preferably 200 ° C. or lower, for example.
- the molding temperature of the resin composition is reduced to reduce the thermal load, friction during molding, and the inorganic filler containing a white pigment.
- the content rate can be increased.
- linking group in the crosslinking agent examples include an ester bond, an ether bond, an alkylene group, and a (hetero) arylene group.
- atoms forming the ring atoms that are not bonded to the allylic substituent are in a state in which hydrogen, oxygen, nitrogen, or the like is bonded, or in a state in which various substituents are bonded.
- an allylic substituent is independently bonded to at least two atoms forming one ring of the crosslinking agent. It is preferable that When the ring structure is a 6-membered ring, it is preferable that an allylic substituent is preferably bonded to at least two of the atoms forming the ring independently of each other. It is preferable that another allylic substituent is bonded to the meta position of the bonded atom.
- the crosslinking agent is preferably represented by the following formula (1) or (2).
- R 1 to R 3 are each independently an allylic substituent of any one of an allyl group, a methallyl group, an allyl group via an ester bond, and a methallyl group via an ester bond.
- R 1 to R 3 are each independently an allylic substituent of any one of an allyl group, a methallyl group, an allyl group via an ester bond, and a methallyl group via an ester bond.
- crosslinking agent represented by the above formula (1) examples include triallyl isocyanurate, methyl diallyl isocyanurate, diallyl monoglycidyl isocyanuric acid, monoallyl diglycidyl isocyanurate, and trimethallyl isocyanurate.
- crosslinking agent represented by the above formula (2) examples include orthophthalic acid diallyl ester, isophthalic acid diallyl ester, and the like.
- an elastomer may be blended with the polyolefin resin as necessary for the purpose of improving moldability and physical properties as a reflector.
- the elastomer is a polymer having a glass transition temperature of 40 ° C. or less, and includes a normal rubbery polymer and a thermoplastic elastomer.
- the glass transition temperature is two or more in the case of a block copolymerized rubber polymer or the like
- the rubbery polymer having a glass transition temperature of 40 ° C. or less according to the present invention if the lowest glass transition temperature is 40 ° C. or less. Can be used as
- elastomers include isoprene rubber, hydrogenated product thereof; chloroprene rubber, hydrogenated product thereof; saturated polyolefin such as ethylene / propylene copolymer, ethylene / ⁇ -olefin copolymer, propylene / ⁇ -olefin copolymer Rubber: Ethylene / propylene / diene copolymer, ⁇ -olefin / diene copolymer, isobutylene / isoprene copolymer, diene copolymer such as isobutylene / diene copolymer, their halides, diene polymer Or hydrogenated products thereof; acrylonitrile / butadiene copolymer, hydrogenated products thereof; vinylidene fluoride / trifluoride ethylene copolymer, vinylidene fluoride / hexafluoropropylene copolymer, vinylidene fluoride / six Prop
- Thermoplastic elastomers such as thermoplastic elastomers, 1,2-polybutadiene-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, fluorine-based thermoplastic elastomers; A melted one is mentioned.
- a copolymer of an aromatic vinyl monomer and a conjugated diene monomer, and a hydrogenated product thereof are preferable because of good dispersibility with the alicyclic structure-containing thermoplastic resin.
- the copolymer of the aromatic vinyl monomer and the conjugated diene monomer may be a block copolymer or a random copolymer. From the viewpoint of weather resistance, hydrogenated portions other than aromatic rings are more preferable.
- styrene / butadiene block copolymer styrene / butadiene / styrene / block copolymer, styrene / isoprene / block copolymer, styrene / isoprene / styrene / block copolymer, and hydrogenated products thereof.
- the reflector resin composition may contain various additives as long as the function of the reflector formed from the reflector resin composition is not impaired.
- Additives can be blended.
- a dispersant such as a silane coupling agent can be blended in the reflector resin composition.
- the silane coupling agent include disilazane such as hexamethyldisilazane; cyclic silazane; trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, trimethoxysilane, benzyldimethylchlorosilane, Methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-butyltrimethoxysilane, n-hexadecyl Trime
- the reflector resin composition may be formed into a granulated product such as a pellet by melt-kneading the polyolefin resin described above and an inorganic filler containing a white pigment and a fibrous filler.
- a melt-kneading method such as a melt-kneading extruder, a two-roll or three-roll, a stirrer such as a homogenizer or a planetary mixer, or a melt-kneader such as a polylab system or a lab plast mill is used. be able to.
- the resin content is preferably 7% by mass or more and 30% by mass or less based on the total mass of the reflector resin composition.
- the lower limit value of the resin content is more preferably 10% by mass, and even more preferably 11% by mass.
- the upper limit value of the resin content is more preferably 28% by mass, and further preferably 25% by mass or less. If the content rate of resin is the said range, it can be set as the molded object excellent in heat resistance, maintaining the moldability at the time of shape
- 70 mass% or more is preferable on the basis of the total mass of the resin composition for reflectors, and, as for the inorganic filler content rate in the resin composition for reflectors, More preferably, it is 72 mass% or more, More preferably Is 75% by mass or more.
- the upper limit of the inorganic filler content is about 90% by mass from the viewpoint of moldability.
- content of a white pigment shall be more than 200 mass parts and 500 mass parts or less with respect to 100 mass parts of resin from viewpoints of product performance, such as the light reflectance of a reflector, intensity
- the content of the white pigment is more than 200 parts by mass with respect to 100 parts by mass of the resin, sufficient product performance can be obtained in terms of the light reflectivity, strength, molding warp, etc. of the reflector.
- the content of the white pigment in the inorganic filler is preferably 10 parts by mass or more and 300 parts by mass or less, more preferably 30 parts by mass or more and 200 parts by mass or less, and 50 parts by mass with respect to 100 parts by mass of the resin. More preferably, it is 180 parts by mass or less.
- content of the fiber filler in an inorganic filler By making content of the fiber filler in an inorganic filler into the said range, the heat resistance requested
- content of a crosslinking agent when a crosslinking agent is contained in the resin composition for reflectors, content of a crosslinking agent is 15 mass parts or more and 40 mass parts or less with respect to 100 mass parts of resin, Preferably it is 15 The amount can be not less than 30 parts by mass and more preferably not less than 16 parts by mass and not more than 20 parts by mass. If the crosslinking agent is within the above range, crosslinking can be carried out effectively without bleeding out the crosslinking agent from the molded product before crosslinking.
- the amount of ash based on the TG-DTA method of the resin composition for reflectors needs to be 70% by mass or more and 90% by mass or less based on the total mass of the resin composition for reflectors before heating.
- the amount of ash based on the TG-DTA method is the same as the above-mentioned conditions, and after measuring the mass before heating of the resin composition for reflector using a thermogravimetric / differential thermal analyzer, This is the amount of ash remaining after heating to 600 ° C. at 10 ° C./min and heating at 600 ° C. for 30 minutes.
- the ash content of the resin composition for a reflector is less than 70% by mass, the heat resistance required in the reflow process and the required reflectance cannot be satisfied. Moreover, when the amount of ash exceeds 90 mass%, the moldability of a reflector will fall. From the above viewpoint, the lower limit of the ash content is preferably 72% by mass, and more preferably 75% by mass. Moreover, it is preferable that the upper limit of the said ash content is 88 mass%, and it is more preferable that it is 85 mass%.
- molding methods such as transfer molding, compression molding, and injection molding
- molding methods can be used.
- a molded article having a reflector shape can be obtained by injection molding at a cylinder temperature of 200 to 400 ° C. and a mold temperature of 20 to 150 ° C.
- a crosslinking agent is used, a more cured reflector can be obtained by subjecting the obtained molded body to electron beam irradiation treatment.
- the heat resistance of the reflector can be further enhanced by performing the electron beam irradiation treatment.
- the electron beam irradiation treatment may be performed on the resin composition for reflectors before molding, or the resin composition for reflectors after the electron beam irradiation treatment may be molded into a desired shape as a reflector.
- the acceleration voltage of an electron beam it can select suitably according to the magnitude
- the used crosslinking agent can be crosslinked and cured usually at an acceleration voltage of about 250 to 3000 kV.
- the transmission capability increases as the acceleration voltage increases. Therefore, when using a base material that deteriorates due to the electron beam as the base material, the transmission depth of the electron beam and the thickness of the molded body are substantially equal.
- the accelerating voltage so as to be equal to each other, it is possible to suppress irradiation of an excessive electron beam to the molded body, and to minimize degradation of the molded body due to excess electron beams.
- the absorbed dose when irradiating with an electron beam is appropriately set depending on the composition of the resin composition, but the amount at which the crosslink density in the molded body is saturated is preferable, and the irradiated dose is preferably 50 to 600 kGy.
- the electron beam source is not particularly limited.
- various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, a high frequency type, etc. Can be used.
- the lead frame with a reflector according to the first embodiment of the present invention is a lead frame with a reflector including the reflector having the above-described light reflecting surface, and the light reflecting surface includes the above-described resin, white pigment, and fibrous filler. And a thermal filler / differential thermal analysis based on the TG-DTA method, wherein the fibrous filler has a radial cross-sectional area of 1 ⁇ m 2 or more and 100 ⁇ m 2 or less. After measuring the mass of the reflector before heating using an apparatus, the amount of ash remaining after heating at 600 ° C. for 30 minutes after heating up to 600 ° C.
- the lead frame with a reflector according to the first embodiment can be manufactured by molding the above-described reflector resin composition into a desired reflector shape by injection molding on the lead frame.
- the lead frame refers to a substrate on which the reflector is placed. Any lead frame can be used as long as it is used as a substrate in the field of semiconductor light emitting devices.
- the material for the lead frame include ceramics composed of a sintered body such as alumina, aluminum nitride, mullite, and glass.
- a resin material having flexibility such as polyimide resin can be used.
- a reflector substrate made of metal is referred to as a lead frame.
- the shapes of the terminal portions and the like formed on the lead frame may be formed by half etching.
- Aluminum, copper, and an alloy of copper are used as the metal material for forming the reflector substrate.
- it may be plated with a noble metal having a high reflectance such as silver.
- the thickness of the lead frame with a reflector which concerns on 1st Embodiment is 0.1 mm or more and 3.0 mm or less.
- the semiconductor light emitting device includes an optical semiconductor element 10 and a reflector 12 provided around the optical semiconductor element 10 and having a light reflecting surface that reflects light from the optical semiconductor element 10 in a predetermined direction. 14 on.
- the optical semiconductor element 10 is preferably an LED element or an LED package.
- the reflector 12 corresponds to the above-described reflector, and at least a part (all in the case of FIG. 1) of the light reflecting surface is formed of a molded body made of the above-described reflector resin composition.
- the optical semiconductor element 10 emits radiated light (generally UV or blue light in a white light LED), for example, an active layer made of AlGaAs, AlGaInP, GaP or GaN sandwiched between n-type and p-type cladding layers. It is a semiconductor chip (light emitter) having a double heterostructure, and has a hexahedral shape with a side length of about 0.5 mm, for example. In the case of wire bonding mounting, it is connected to an electrode (connection terminal) (not shown) via a lead wire 16.
- radiated light generally UV or blue light in a white light LED
- an active layer made of AlGaAs, AlGaInP, GaP or GaN sandwiched between n-type and p-type cladding layers.
- It is a semiconductor chip (light emitter) having a double heterostructure, and has a hexahedral shape with a side length of about 0.5 mm, for example.
- wire bonding mounting
- the shape of the reflector 12 conforms to the shape of the end portion (joint portion) of the lens 18 and is usually a cylindrical shape such as a square shape, a circular shape, or an oval shape, or an annular shape.
- the reflector 12 is a cylindrical body (annular body), and all the end faces of the reflector 12 are in contact with and fixed to the surface of the substrate 14.
- the inner surface of the reflector 12 may be expanded upward in a tapered shape (see FIG. 1).
- the reflector 12 can also function as a lens holder when the end portion on the lens 18 side is processed into a shape corresponding to the shape of the lens 18.
- the reflector 12 may have only the light reflecting surface side as a light reflecting layer 12b made of the resin composition of the present invention.
- the thickness of the light reflection layer 12b is preferably 500 ⁇ m or less, and more preferably 300 ⁇ m or less, from the viewpoint of reducing the thermal resistance.
- the member 12a on which the light reflecting layer 12b is formed can be made of a known heat resistant resin.
- the lens 18 is provided on the reflector 12, but this is usually made of resin, and various structures may be adopted and colored depending on the purpose and application.
- the space formed by the substrate 14, the reflector 12, and the lens 18 may be a transparent sealing portion, or may be a gap if necessary.
- This space portion is usually a transparent sealing portion filled with a light-transmitting and insulating material, and the force applied by directly contacting the lead wire 16 in wire bonding mounting and indirectly. Prevents electrical defects caused by the lead wire 16 being disconnected, cut, or short-circuited from the connection portion with the optical semiconductor element 10 and / or the connection portion with the electrode due to applied vibration, impact, etc. can do.
- the optical semiconductor element 10 can be protected from moisture, dust, etc., and the reliability can be maintained over a long period of time.
- Examples of the material (transparent sealant composition) that imparts translucency and insulation usually include silicone resins, epoxy silicone resins, epoxy resins, acrylic resins, polyimide resins, polycarbonate resins, and the like. Of these, silicone resins are preferred from the viewpoints of heat resistance, weather resistance, low shrinkage, and discoloration resistance.
- the resin composition according to the first embodiment is molded into a reflector 12 having a predetermined shape on the substrate 14 by transfer molding, compression molding, injection molding, or the like using a mold having a cavity space having a predetermined shape. To do. It is also called outsert molding because a substrate is placed in a mold and a resin is molded thereon. Thereafter, the separately prepared optical semiconductor element 10 and the electrode are fixed to the substrate 14 with an adhesive or a bonding member, and the LED element and the electrode are connected with the lead wire 16.
- a transparent sealant composition containing a silicone resin or the like is poured into the recess formed by the substrate 14 and the reflector 12, and cured by heating, drying, or the like to obtain a transparent sealing portion.
- the lens 18 is disposed on the transparent sealing portion to obtain the semiconductor light emitting device shown in FIG.
- the composition may be cured.
- the resin composition for a reflector according to the first embodiment has an effect of improving the sealing property and thus improving the life of the semiconductor element due to excellent adhesion in a molded body obtained by molding the resin composition for a reflector.
- a reflector with a reflector having a thickness of 3.0 mm or less, preferably 1.0 mm or less, and more preferably 0.8 mm or less, or a reflector for a thin semiconductor light emitting device package.
- the resin composition according to the second embodiment of the present invention is a resin composition containing an inorganic filler containing a polyolefin resin and a white pigment, wherein the polyolefin resin has a weight average molecular weight of 220,000 to 800,000,
- the white pigment is a resin composition containing more than 200 parts by mass and not more than 500 parts by mass with respect to 100 parts by mass of the polyolefin resin.
- polymethylpentene it is preferable to use polymethylpentene.
- the polymethylpentene has a high melting point of 230 to 240 ° C., does not decompose even at a molding temperature of about 280 ° C., and has excellent chemical resistance and electrical insulation properties. Considering such characteristics, for example, it is a polyolefin resin suitable for use as a reflector of a semiconductor light emitting device.
- the polymethylpentene resin is preferably a homopolymer of 4-methylpentene-1, but 4-methylpentene-1 and other ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene and 1-hexene.
- It may be a copolymer with olefin and a copolymer mainly composed of 4-methyl-1-pentene.
- an alkene having 10 to 18 carbon atoms is preferably copolymerized, and an alkene having 16 or more carbon atoms is more preferable.
- the polyolefin resin used in the resin composition according to the second embodiment needs to have a weight average molecular weight of 220,000 to 800,000.
- the weight average molecular weight is less than 220,000, cracks are generated in the molded product obtained by molding the resin composition, which is not preferable.
- a reflector of a semiconductor light emitting device is molded, if a crack occurs, the strength of the reflector is reduced, and the reflector may be destroyed in the reflow process.
- a weight average molecular weight exceeds 800,000, it becomes difficult to shape
- the lower limit of the weight average molecular weight is preferably 230,000 or more, more preferably 240,000 or more.
- the upper limit of the weight average molecular weight is preferably 700,000 or less, more preferably 650,000 or less.
- the weight average molecular weight is preferably a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC), but is not limited to this as long as the method can measure the weight average molecular weight with good reproducibility.
- the weight average molecular weight can be measured by a method exemplified for a material extracted with an appropriate solvent.
- An inorganic filler containing a white pigment is used for the resin composition according to the second embodiment.
- the white pigment used in the resin composition of the present invention titanium oxide, zinc sulfide, zinc oxide, barium sulfide, potassium titanate and the like can be used alone or in combination, and titanium oxide is particularly preferable.
- This white pigment is used for imparting a white color tone to the molded product obtained from the resin composition of the present invention, and in particular by making the color tone highly white, the light reflectance of the molded product. Can be improved.
- a molded product obtained by molding the resin composition of the present invention and having improved light reflectance of the molded product can be used as a reflector. In particular, when a molded body is used as a reflector, good light reflectance is required, and therefore, it is preferable to use titanium oxide that is easily available and excellent in light reflectance as a white pigment.
- the average particle size of the white pigment is preferably 0.10 to 0.50 ⁇ m, preferably 0.10 to 0.40 ⁇ m in the primary particle size distribution from the viewpoint of obtaining moldability and obtaining high reflectance. Is more preferably 0.21 to 0.25 ⁇ m.
- An average particle diameter can be calculated
- a white pigment can be used as the inorganic filler, or a white pigment and an inorganic filler other than the white pigment can be used in combination.
- inorganic fillers other than white pigments those usually blended in thermoplastic resin compositions and thermosetting resin compositions such as epoxy resins, acrylic resins and silicone resins can be used alone or in combination. .
- the cross-sectional shape may be a general round glass fiber or a glass fiber having an irregular cross section such as a flat shape.
- the glass fiber has a cross-sectional shape in which the minor axis D1 of the cross section is 0.5 to 25 ⁇ m, the major axis D2 is 0.5 to 300 ⁇ m, and the ratio D2 / D1 of D2 to D1 is 1.0 to 30.
- Glass fibers having an average fiber length of 0.75 to 300 ⁇ m are preferable.
- This glass fiber is usually called milled fiber, and can be obtained by pulverizing long glass fibers.
- the average cross-sectional area of the glass fiber 1 ⁇ 100 [mu] m 2, preferably when molding the reflector using a glass fiber is 30 ⁇ 85 .mu.m 2, it is possible to improve the adhesiveness between the substrate.
- the resin composition according to the second embodiment preferably includes a crosslinking agent. After molding a resin composition containing a crosslinking agent, by irradiating the molded body with an electron beam, better heat resistance can be obtained, and deformation of the resulting molded body due to heat can be prevented. .
- a crosslinking agent has a saturated or unsaturated ring structure, and at least one of atoms forming at least one ring is an allyl group, a methallyl group, an allyl group via a linking group, and It has a structure formed by bonding to any allylic substituent of a methallyl group via a linking group.
- the crosslinking agent having such a structure By containing the crosslinking agent having such a structure, it is possible to obtain a resin composition that exhibits good electron beam curability and has excellent heat resistance.
- the saturated or unsaturated ring structure include a cyclo ring, a hetero ring, and an aromatic ring.
- the number of atoms forming the ring structure is preferably 3 to 12, more preferably 5 to 8, and still more preferably a 6-membered ring.
- the molecular weight of the crosslinking agent is preferably 1000 or less, more preferably 500 or less, and further preferably 300 or less. When the molecular weight is 1000 or less, it is possible to prevent the dispersibility in the resin composition from being lowered and to cause an effective crosslinking reaction by electron beam irradiation.
- the number of ring structures is preferably 1 to 3, more preferably 1 or 2, and further preferably 1.
- the melting point of the crosslinking agent is preferably not more than the melting point of the polyolefin resin to be used, for example, not more than 200 ° C.
- the crosslinking agent as described above is excellent in fluidity at the time of molding. Therefore, the molding temperature of the resin composition is lowered to reduce the thermal load, the friction at the time of molding is reduced, or an inorganic containing a white pigment is contained. The filler content can be increased.
- examples of the linking group in the crosslinking agent include an ester bond, an ether bond, an alkylene group, and a (hetero) arylene group.
- atoms forming the ring atoms that are not bonded to the allylic substituent are in a state in which hydrogen, oxygen, nitrogen, or the like is bonded, or in a state in which various substituents are bonded.
- the crosslinking agent used in the second embodiment it is preferable that at least two atoms among atoms forming one ring of the crosslinking agent are independently bonded to an allylic substituent.
- the ring structure is a 6-membered ring, at least two of the atoms forming the ring are independently bonded to an allylic substituent, and one allylic substituent is bonded to the atom.
- another allylic substituent is bonded to the atom at the meta position.
- the crosslinking agent is preferably represented by the following formula (1) or (2).
- R 1 to R 3 are each independently an allylic substituent of any one of an allyl group, a methallyl group, an allyl group via an ester bond, and a methallyl group via an ester bond.
- R 1 to R 3 are each independently an allylic substituent of any one of an allyl group, a methallyl group, an allyl group via an ester bond, and a methallyl group via an ester bond.
- crosslinking agent represented by the above formula (1) examples include triallyl isocyanurate, methyl diallyl isocyanurate, diallyl monoglycidyl isocyanuric acid, monoallyl diglycidyl isocyanurate, and trimethallyl isocyanurate.
- crosslinking agent represented by the above formula (2) examples include orthophthalic acid diallyl ester, isophthalic acid diallyl ester, and the like.
- a white pigment content rate needs to contain more than 200 mass parts and 500 mass parts or less with respect to 100 mass parts of polyolefin resin.
- the white pigment content is 200 parts by mass or less, it becomes difficult to make the color tone of the molded product obtained from the resin composition of the second embodiment white, and the light reflectance decreases or the light rays The long-term heat resistance of the reflectivity may decrease, which is not preferable.
- the white pigment content exceeds 500 parts by mass, it is difficult to make the resin composition into a molded body, which is not preferable.
- the white pigment content is preferably 300 to 480 parts by mass, more preferably 350 to 450 parts by mass with respect to 100 parts by mass of the polyolefin resin.
- the inorganic filler other than the white pigment is 10 to 300 parts by mass, preferably 30 to 200 parts by mass, more preferably 50 to 180 parts by mass. If the content of the inorganic filler and the white pigment is within the above range, the color tone of the resulting molded product can be highly white, and when the molded product is a reflector, the light reflectance can be improved, And the dimensional stability of a molded object can be made excellent.
- the content of the inorganic filler including the white pigment in the resin composition according to the second embodiment is 70 to 90% by mass, preferably 72 to 88% by mass, and more preferably 75 to 85% by mass. Is desirable.
- the content of the inorganic filler containing the white pigment in the resin composition according to the second embodiment can be measured as the ash content.
- the method for measuring the ash content contained in the resin composition according to the second embodiment includes a method (JIS K 7250-1 (ISO 3451-1)) defined as a general method for obtaining the ash content of a resin composition, and It can be measured according to a compliant method or a TG-DTA method.
- JIS K 7250-1 ISO 3451-1
- a method based thereon it is preferable to measure by JIS K 7250-1 (ISO 3451-1) and a method based thereon.
- JIS K 7250-1 (ISO 3451-1) and the method based thereon require a very large amount of sample, if a sufficient amount of sample cannot be obtained, the TG-DTA method can be used. Good.
- the measurement conditions for ash are described below.
- the ash content in the resin composition according to the second embodiment can be accurately measured by the measurement method described above, but the inorganic filler containing a white pigment with respect to the total amount of the resin composition It can also be calculated roughly from the proportion of the amount.
- the polyolefin resin content in the resin composition of the second embodiment is 7 to 30% by mass, preferably 11 to 28% by mass.
- the cross-linking agent can be used, and the content of the cross-linking agent is 15 to 40 parts by mass, preferably 15 to 100 parts by mass of the polyolefin resin. It is desirable to contain an amount of ⁇ 30 parts by mass, more preferably 16 to 20 parts by mass. If the crosslinking agent is within the above range, crosslinking can be carried out effectively without bleeding out the crosslinking agent from the molded product before crosslinking.
- the resin composition according to the second embodiment can contain various additives as long as the effects of the present invention are not impaired.
- Additives can be blended.
- a dispersant such as a silane coupling agent can be blended with the resin composition according to the second embodiment.
- the silane coupling agent include disilazane such as hexamethyldisilazane; cyclic silazane; trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, trimethoxysilane, benzyldimethylchlorosilane, Methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-butyltrimethoxysilane, n-hexadecyl Trimethoxysilane,
- the resin composition according to the second embodiment is prepared by melting and kneading the above-described inorganic filler containing the polyolefin resin and the white pigment and the crosslinking agent preferably used in the above-described content ratio, and the like. Can be produced as a granulated product.
- a known melt-kneading method such as a melt-kneading extruder, a two-roll or three-roll, a stirrer such as a homogenizer or a planetary mixer, or a melt-kneader such as a polylab system or a lab plast mill is used. be able to.
- the molded body obtained from the resin composition according to the second embodiment is free from cracks, has excellent heat resistance, and has a white color tone. Therefore, it can be applied to various applications. For example, it can be applied as a heat-resistant insulating film, a heat-resistant release sheet, a light-reflecting sheet for solar cells, a reflector for a light source for televisions, or a light source for television.
- the sealing performance of the optical semiconductor element affects the element life. For this reason, the resin composition for reflectors and the reflector obtained from the resin composition according to the second embodiment are less likely to generate cracks and have high sealing properties, and thus can be preferably applied to LEDs.
- a metal substrate type LED which is manufactured by processing a lead frame by etching and half-etching and uses the back surface of the element installation portion as an electrode.
- molding methods such as transfer molding, compression molding, and injection molding can be used.
- an injection molding method it can be obtained by injection molding at a cylinder temperature of 200 to 400 ° C. and a mold temperature of 20 to 150 ° C.
- the resin composition using a crosslinking agent it can obtain by performing an electron beam irradiation process to the obtained molded object.
- the electron beam irradiation treatment can be performed on a resin composition using a crosslinking agent, and the resin composition subjected to the electron beam irradiation treatment can be molded to obtain a molded body.
- the acceleration voltage of an electron beam it can select suitably according to the magnitude
- the crosslinking agent used can be crosslinked and cured at an acceleration voltage of about 250 to 3000 kV.
- the transmission capability increases as the acceleration voltage increases. Therefore, when using a base material that deteriorates due to the electron beam as the base material, the transmission depth of the electron beam and the thickness of the molded body are substantially equal.
- the accelerating voltage so as to be equal to each other, it is possible to suppress irradiation of an excessive electron beam to the molded body, and to minimize degradation of the molded body due to excess electron beams.
- the absorbed dose when irradiating with an electron beam is appropriately set depending on the composition of the resin composition, but the amount at which the crosslink density in the molded body is saturated is preferable, and the irradiated dose is preferably 50 to 600 kGy.
- the electron beam source is not particularly limited.
- various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. Can be used.
- the reflector according to the second embodiment of the present invention is formed by molding the above-described resin composition of the present invention.
- the reflector may be used in combination with a semiconductor light-emitting device to be described later, or may be used in combination with a semiconductor light-emitting device (LED mounting substrate) made of another material.
- the reflector according to the second embodiment mainly has an action of reflecting light from the LED element of the semiconductor light emitting device toward the lens (light emitting portion).
- the details of the reflector are the same as those of the reflector (reflector 12 described later) applied to the semiconductor light emitting device of the present invention, and are omitted here.
- the molded object obtained from the resin composition which concerns on 2nd Embodiment does not generate
- the lead frame with a reflector according to the second embodiment is formed by molding the resin composition according to the second embodiment described above.
- the lead frame indicates a substrate on which the reflector is placed.
- Any lead frame can be used as long as it is used in the field of semiconductor light emitting devices.
- the material of the lead frame include ceramics made of a sintered body such as alumina, aluminum nitride, mullite, and glass.
- a resin material having flexibility such as polyimide resin can be used.
- a lead frame made of metal is often made of aluminum, copper, or an alloy of copper, and is often plated with a noble metal having a high reflectance such as silver in order to improve the reflectance.
- a reflector substrate made of metal is often called a lead frame. Terminal portions and the like formed on the lead frame may be formed by half etching.
- the lead frame with a reflector according to the second embodiment is manufactured by molding the resin composition according to the second embodiment on the above-described lead frame into a desired reflector shape.
- the thickness of the lead frame with reflector according to the second embodiment is preferably 0.1 to 3.0 mm, more preferably 0.1 to 1.0 mm, More preferably, it is ⁇ 0.8 mm.
- the lead frame with a reflector according to the second embodiment is to be a semiconductor light emitting device by mounting an LED chip on the reflector, further sealing with a known sealing agent, and die bonding to obtain a desired shape. Can do.
- the lead frame with a reflector of this invention acts as a reflector, it is functioning also as a frame which supports a semiconductor light-emitting device.
- semiconductor light emitting device An example of the semiconductor light emitting device and the manufacturing method thereof according to the second embodiment can be configured in the same manner as the semiconductor light emitting device described with reference to FIGS. 1 and 2 described above.
- Example according to First Embodiment A reflector according to the first embodiment will be described in detail using an example.
- the first invention is not limited to these examples.
- [Resin composition for reflector] The resin compositions for reflectors of Examples and Comparative Examples were prepared by the following methods, and the moldability and ash content were evaluated. The results are shown in Table 1. ⁇ Preparation of resin composition for reflector> The following various materials are mixed by using an extruder (Nippon Placon Co., Ltd. MAX30: die diameter: 3.0 mm) and a pelletizer (Toyo Seiki Co., Ltd., MPPEC1) according to the formulation shown in Table 1, and a resin composition for reflectors. I got a thing.
- White pigment Titanium oxide particles: average particle size 0.21 ⁇ m
- Fibrous filler 1 Glass fiber: PF70E-001 (manufactured by Nittobo Co., Ltd., average fiber length 62 ⁇ m, average cross-sectional area 104.2 ⁇ m 2 , and cross-sectional shape is round glass fiber) Fiber filler 2 ...
- glass fiber SS05DE-413SP (manufactured by Nittobo Co., Ltd., average fiber length 65 ⁇ m, average cross-sectional area 41.6 ⁇ m 2 , cross-sectional shape is round glass fiber)
- Fibrous filler 3 Glass fiber: EFDE50-01 (manufactured by Central Glass Fiber Co., Ltd., average fiber length 55 ⁇ m, average cross-sectional area 33.2 ⁇ m 2 ) -Fibrous filler 4 ...
- glass fiber MF03JB1-20 (Asahi Fiber Glass Co., Ltd., average fiber length 71 ⁇ m, average cross-sectional area 81.7 ⁇ m 2 ) ⁇
- Crosslinking agent ... triallyl isocyanurate ⁇ Silane coupling agent ... Hexyltrimethoxysilane ⁇ Antioxidant 1 ...
- IRGANOX1010 manufactured by BASF Japan Ltd.
- Antioxidant 2 ⁇ Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite
- Mold release agent ⁇ Zinc stearate
- the average fiber The length and average cross-sectional area were measured by fixing the sample before mixing with the reflector resin composition on a sample stage for SEM observation using carbon tape, and observing it with SEM (Hitachi High-Technologies S-4800). Value. It calculated as an average value of at least 10 fibrous fillers.
- ⁇ Pellet creation> The step of obtaining the resin composition is kneaded using an extruder screw. If a resin composition stably pelletized is obtained in this step, the load applied to the screw of the extruder is acceptable. The case where a resin composition that is large and cannot be continuously operated and cannot be stably pelletized cannot be obtained.
- a lead frame with a reflector was produced using the resin composition for a reflector under the following conditions.
- a resin composition (thickness: 700 ⁇ m, external dimensions: 35 mm ⁇ 35 mm, opening: 2.9 mm ⁇ 2.9 mm) is applied to a silver plating frame (thickness: 250 ⁇ m).
- the lead frame with the reflector was obtained by molding.
- the injection molding machine conditions were as follows: cylinder temperature: 270 ° C., mold temperature: 80 ° C., injection speed: 100 mm / sec, holding pressure: 80 MPa, holding pressure time: 1 sec, cooling time: 8 sec.
- This molded product was cured by irradiation with an electron beam at an acceleration voltage of 800 kV and an irradiation dose of 400 kGy to obtain a cured resin composition for a reflector.
- ⁇ Heat deformation temperature> The specimen was compliant with ASTM D648, and the temperature at which the specified deflection amount was reached was defined as the deflection temperature under load (thermal deformation temperature).
- the lead frame with a reflector of an Example and a comparative example was produced with the following method, and adhesiveness, a reflectance, and durability A were evaluated. The results are shown in Table 1.
- ⁇ Production of lead frame with reflector> The following evaluation is performed by molding a resin composition for a reflector produced under the same conditions as those used for the above-described evaluation of moldability, and curing by applying an electron beam at an acceleration voltage of 800 kV and an irradiation dose of 400 kGy. A lead frame was obtained.
- ⁇ Adhesion> The degree of adhesion between each specimen of the lead frame with a reflector and the substrate was measured by a red check test to determine whether or not it was possible.
- ⁇ Durability A> The reflectance was measured after the specimen of the lead frame with a reflector was left at 200 ° C. for 45 hours. The reflectance was measured using the reflectance measuring apparatus under the same conditions. Comparison was made at a reflectance of a wavelength of 450 nm.
- a light emitting device was manufactured using the lead frames with reflectors of Examples and Comparative Examples, and the initial luminous flux was evaluated. The results are shown in Table 1.
- the reflector resin composition produced by the formulation shown in Table 1 was molded into a reflector shape, and the molded body was cured by irradiation with an electron beam at an acceleration voltage of 800 kV and an irradiation dose of 400 kGy.
- a lead frame with a reflector was obtained after curing.
- the obtained lead frame with reflector and the separately prepared LED element and electrode are fixed on the substrate with an adhesive, and the LED element and the electrode are connected with a lead wire, then diced into individual pieces, and a semiconductor light emitting device ( LED package) was obtained.
- Solder was provided on the wiring board, the semiconductor light emitting device was placed on the solder, heated to 240 ° C. in a reflow furnace, the solder was melted, and the semiconductor light emitting device was mounted on the wiring board.
- the cross-sectional area of the fibrous filler was measured as follows.
- the reflector of the semiconductor light emitting device was broken, and the fractured surface was observed with SEM (Hitachi High-Technologies S-4800). After fixing the fracture surface to a metal sample stage in parallel, the fracture surface was observed at a magnification of 2500 from the direction perpendicular to the fracture surface.
- the diameter length of the fibrous filler appearing in the cross section of the reflector was measured.
- the cross section of the filler was elliptical, the major axis and minor axis of the ellipse were measured and the ratio of major axis to minor axis was 0.8 to 1.2.
- the diameter was measured up to 3 significant figures.
- the cross-sectional area was computed as an average value about the thing of 50% of the total number of measurements from a thing with a small cross-sectional area among the cross sections of a fibrous filler. Sampling was performed to obtain an average value of at least 10 cross sections. That is, if the total number of measurements was 20, the average value for 10 was calculated from the one with the smallest cross-sectional area. The third digit of the numerical value after calculation was rounded off to obtain the cross-sectional area value.
- Example 1 As shown in Table 1, it was found that the one using the reflector resin composition prepared by the formulation of Example 1-4 can improve the adhesion without impairing the characteristics required for the production of the light emitting device. It was. In particular, the larger the cross-sectional size of the fibrous filler, the better the reflectance. When the fibrous filler having a cross-sectional area of 81.7 ⁇ m 2 was used, both the reflectance and the durability A could be remarkably improved as compared with the comparative example. In Comparative Example 3, Comparative Example 4, and Comparative Example 5 in which the ash content is 70% or less, the durability A is remarkably deteriorated, and use in a light emitting device is not preferable. On the other hand, Comparative Example 6 could not be used as a reflector resin composition because a resin composition used for molding could not be obtained.
- Example according to Second Embodiment A reflector according to the second embodiment will be described in detail using an example.
- the second invention is not limited to these examples.
- the materials used in Examples 11 to 25 and Comparative Examples 11 to 13 are as follows.
- White pigment / titanium oxide particles PF-691 (Ishihara Sangyo Co., Ltd. Rutile structure average particle size 0.21 ⁇ m)
- Inorganic filler / glass fiber other than white pigment PF70E-001 (manufactured by Nittobo Co., Ltd., fiber length 70 ⁇ m, average cross-sectional area 95.0 ⁇ m 2 , cross-sectional shape is glass fiber)
- Crosslinking agent 1 (triallyl isocyanurate) manufactured by Nippon Kasei Co., Ltd.
- Crosslinking agent 2 MeDAIC (methyldiallyl isocyanurate) Shikoku Kasei Kogyo Co., Ltd.
- Crosslinking agent 3 DA-MGIC diallyl monoglycidyl isocyanuric acid
- Cross-linking treatment agent 4 manufactured by Shikoku Kasei Kogyo Co., Ltd.
- MA-DGIC monoallyl diglycidyl isocyanurate
- TMAIC trimethallyl isocyanurate
- Crosslinking agent 6 DUP monomer diallyl ester of orthophthalic acid
- Silane coupling agent Hexyltrimethoxysilane [KBM-3063 (Shin-Etsu Chemical Co., Ltd.)] Release agent: Zinc stearate [SZ-2000 (manufactured by Sakai Chemical Co., Ltd.)]
- the resin composition (pellet) obtained above is used on an injection molding machine Sodick TR40ER Sodick (prep plastic type) on a silver plating frame (lead frame) (thickness: 250 ⁇ m), thickness: 700 ⁇ m, external dimensions: 35 mm.
- a lead frame (2) with a reflector was obtained by molding so as to have a size of ⁇ 35 mm and an opening: 2.9 mm ⁇ 2.9 mm.
- the lead frame with reflector (2) has 36 openings.
- the injection molding machine conditions were as follows: cylinder temperature: 260 ° C., mold temperature: 70 ° C., injection speed: 200 mm / sec, holding pressure: 100 MPa, holding pressure time: 1 sec, cooling time: 15 sec.
- These compacts (1) and (2) were irradiated with an electron beam at an acceleration voltage of 800 kV and an absorbed dose of 400 kGy. The following characteristics were evaluated. The results are shown in Tables 2 to 5 below.
- MFR of the resin composition was measured by a method based on the method described in MFR of JIS K 7210: 1999 thermoplastics. Specifically, the test is performed at a test temperature of 280 ° C., a test load of 2.16 kg, and 60 seconds. As a measuring device, a melt flow tester manufactured by Thiast Co. was used. The MFR is shown in Tables 2-5.
- a resin composition containing an inorganic filler containing a polyolefin resin and a white pigment wherein the polyolefin resin has a weight average molecular weight of 220,000 to 800,000, and contains a white pigment
- the resin composition having a rate of more than 200 parts by mass and less than 500 parts by mass with respect to 100 parts by mass of the polyolefin resin yields a molded body having less heat cracking on the surface and excellent heat resistance in reflectance. be able to.
- Table 5 it can be seen that when a polyolefin resin having a weight average molecular weight of less than 220,000 is used, generation of cracks increases on the surface of the molded body.
- the content of the white pigment is less than 200 parts by mass, and after 35 hours at 200 ° C. It has been shown that the reflectance of the film is greatly reduced and the heat resistance is poor. From the above, it can be said that the resin composition of the present invention is useful for reflectors and reflectors for semiconductor light emitting devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention relates to a reflector having a light reflecting surface which is formed from a resin composition containing a resin and an inorganic filler including a white pigment and a fibrous filler. The cross sectional area in the radial direction of said fibrous filler is 1-100 µm2, inclusive. By using a simultaneous thermogravimetric/differential thermal analyzer based on a TG-DTA method, the mass of said reflector before heated is measured, and thereafter the content of remaining ash is measured after said reflector is heated, in the ambient atmosphere, to 600°C at 10°C/min and then for 30 minutes at 600°C. Since the measured content of the remaining ash is 70-90 mass%, inclusive, on the basis of the total mass of said reflector before heated, the present invention is capable of ensuring excellent adhesiveness of the reflector to a substrate while at least maintaining basic performance such as heat resistance and reflectivity requirements.
Description
本発明は、リフレクター及び樹脂組成物に関する。
The present invention relates to a reflector and a resin composition.
従来、電子部品を基板等に実装させる方法として、所定の場所に予め半田が点着された基板上に電子部品を仮固定した後、この基板を赤外線、熱風等の手段により加熱して半田を溶融させて電子部品を固定する方法(リフロー法)が採用されている。この方法により基板表面における電子部品の実装密度を向上させることができる。
Conventionally, as a method of mounting an electronic component on a substrate or the like, after temporarily fixing the electronic component on a substrate on which solder has been previously deposited at a predetermined place, the substrate is heated by means of infrared rays, hot air, etc. A method (reflow method) for melting and fixing electronic components is employed. By this method, the mounting density of electronic components on the substrate surface can be improved.
また、半導体発光装置の一つであるLED素子は、小型で長寿命であり、省電力性に優れることから、表示灯等の光源として広く利用されている。そして近年では、より輝度の高いLED素子が比較的安価に製造されるようになったことから、蛍光ランプ及び白熱電球に替わる光源としての利用が検討されている。このような光源に適用する場合、大きな照度を得るために、表面実装型LEDパッケージ、即ち、アルミニウム等の金属製の基板(LED実装用基板)上に複数のLED素子を配置し、各LED素子の周りに光を所定方向に反射させるリフレクター(反射体)を配設する方式が多用されている。
Also, an LED element, which is one of semiconductor light emitting devices, is widely used as a light source such as an indicator lamp because of its small size, long life, and excellent power saving. In recent years, LED elements with higher brightness have been manufactured at a relatively low cost, and therefore, use as a light source to replace fluorescent lamps and incandescent bulbs has been studied. When applying to such a light source, in order to obtain a large illuminance, a plurality of LED elements are arranged on a surface-mounted LED package, that is, a metal substrate (LED mounting substrate) such as aluminum, and each LED element. A system is often used in which a reflector (reflector) that reflects light in a predetermined direction is disposed around the.
しかし、LED素子は発光時に発熱を伴うため、このような方式のLED照明装置では、LED素子の発光時の温度上昇によりリフレクターが劣化してその反射率が低下することで輝度が低下し、LED素子の短寿命化等を招くこととなる。従って、リフレクターには耐熱性が要求されることとなる。
However, since the LED element generates heat during light emission, in such a type of LED lighting device, the reflector deteriorates due to the temperature rise during light emission of the LED element, and the reflectance decreases, thereby reducing the brightness. The life of the element will be shortened. Therefore, heat resistance is required for the reflector.
上記耐熱性の要求に応えるべく、特許文献1では、発光ダイオードのリフレクターに用いるポリマー組成物を提案し、具体的には、ポリフタルアミド、カーボンブラック、二酸化チタン、ガラス繊維、及び酸化防止剤を含むポリマー組成物を開示している。そして、当該組成物について熱老化後の反射率を測定し、カーボンブラックを含有しないポリマー組成物に比べて、当該組成物では良好な反射率が得られ、黄変も少ないことを示している。しかし、特許文献1に記載のポリマー組成物の熱老化試験は170℃で3時間という短時間での評価であり、より長時間の実用的な条件での耐熱耐久性で良好な結果が得られるかどうかは不明である。
また、特許文献2では、光半導体素子と蛍光体等の波長変換手段とを組み合わせた光半導体装置に用いる熱硬化性光反射用樹脂組成物が開示されている。この特許文献2に記載の熱硬化性光反射用樹脂組成物の熱老化試験は150℃で500時間というより実用的な条件で検証しているが、成形時間が90秒と熱可塑性樹脂に比べ長く、またポストキュアとして150℃で2時間が必要なため、生産性に問題があった。 In order to meet the above heat resistance requirement, Patent Document 1 proposes a polymer composition used for a reflector of a light emitting diode, specifically, polyphthalamide, carbon black, titanium dioxide, glass fiber, and an antioxidant. A polymer composition is disclosed. And the reflectance after heat aging is measured about the said composition, Compared with the polymer composition which does not contain carbon black, the favorable reflectance is obtained with the said composition, and it has shown that there is also little yellowing. However, the heat aging test of the polymer composition described in Patent Document 1 is an evaluation in a short time of 3 hours at 170 ° C., and good results can be obtained with heat resistance and durability under a longer practical condition. Whether it is unknown.
Patent Document 2 discloses a thermosetting light reflecting resin composition used for an optical semiconductor device in which an optical semiconductor element and a wavelength conversion means such as a phosphor are combined. The heat aging test of the thermosetting light reflecting resin composition described in Patent Document 2 has been verified under a more practical condition of 150 hours at 150 ° C., but the molding time is 90 seconds compared to the thermoplastic resin. Since it is long and requires 2 hours as post-cure at 150 ° C., there is a problem in productivity.
また、特許文献2では、光半導体素子と蛍光体等の波長変換手段とを組み合わせた光半導体装置に用いる熱硬化性光反射用樹脂組成物が開示されている。この特許文献2に記載の熱硬化性光反射用樹脂組成物の熱老化試験は150℃で500時間というより実用的な条件で検証しているが、成形時間が90秒と熱可塑性樹脂に比べ長く、またポストキュアとして150℃で2時間が必要なため、生産性に問題があった。 In order to meet the above heat resistance requirement, Patent Document 1 proposes a polymer composition used for a reflector of a light emitting diode, specifically, polyphthalamide, carbon black, titanium dioxide, glass fiber, and an antioxidant. A polymer composition is disclosed. And the reflectance after heat aging is measured about the said composition, Compared with the polymer composition which does not contain carbon black, the favorable reflectance is obtained with the said composition, and it has shown that there is also little yellowing. However, the heat aging test of the polymer composition described in Patent Document 1 is an evaluation in a short time of 3 hours at 170 ° C., and good results can be obtained with heat resistance and durability under a longer practical condition. Whether it is unknown.
Patent Document 2 discloses a thermosetting light reflecting resin composition used for an optical semiconductor device in which an optical semiconductor element and a wavelength conversion means such as a phosphor are combined. The heat aging test of the thermosetting light reflecting resin composition described in Patent Document 2 has been verified under a more practical condition of 150 hours at 150 ° C., but the molding time is 90 seconds compared to the thermoplastic resin. Since it is long and requires 2 hours as post-cure at 150 ° C., there is a problem in productivity.
これらの問題点を解決するために、特許文献3では、オレフィン樹脂と、分子量が1000以下であるアリル系置換基を有する架橋処理剤と、球状溶融シリカ、ガラス繊維等の無機粒子と、白色顔料とを含む樹脂組成物が記載されている。また、このような樹脂組成物は、優れた耐熱性を有するために、リフロー工程を経てリフレクター等の成形体を作製する場合に有用であることが記載されている。
In order to solve these problems, Patent Document 3 discloses an olefin resin, a crosslinking agent having an allylic substituent having a molecular weight of 1000 or less, inorganic particles such as spherical fused silica and glass fiber, and a white pigment. The resin composition containing these is described. Moreover, since such a resin composition has the outstanding heat resistance, it is described that it is useful when producing molded objects, such as a reflector, through a reflow process.
しかし、上述した樹脂組成物に、無機粒子としてガラス繊維を用いて、例えば、リフレクターを作製した場合、リフレクターの要求厚みが薄くなるにつれて、リフレクターの変形が顕著になり、リフレクターと基板との密着性が悪化することが明らかになってきた。この場合、パッケージされたLED素子の封止が不完全になり、発光装置としての寿命が短くなると推定される。
そこで、無機粒子としてガラス繊維を用いた場合に、要求される耐熱性等の基本性能を少なくとも維持したままで、基板との優れた密着性を有するリフレクターが求められている。 However, for example, when a reflector is manufactured using glass fibers as the inorganic particles in the resin composition described above, as the required thickness of the reflector becomes thinner, the deformation of the reflector becomes more significant, and the adhesion between the reflector and the substrate is increased. It has become clear that it gets worse. In this case, it is presumed that sealing of the packaged LED element is incomplete, and the lifetime of the light emitting device is shortened.
Therefore, when glass fibers are used as the inorganic particles, there is a demand for a reflector having excellent adhesion to the substrate while maintaining at least the required basic performance such as heat resistance.
そこで、無機粒子としてガラス繊維を用いた場合に、要求される耐熱性等の基本性能を少なくとも維持したままで、基板との優れた密着性を有するリフレクターが求められている。 However, for example, when a reflector is manufactured using glass fibers as the inorganic particles in the resin composition described above, as the required thickness of the reflector becomes thinner, the deformation of the reflector becomes more significant, and the adhesion between the reflector and the substrate is increased. It has become clear that it gets worse. In this case, it is presumed that sealing of the packaged LED element is incomplete, and the lifetime of the light emitting device is shortened.
Therefore, when glass fibers are used as the inorganic particles, there is a demand for a reflector having excellent adhesion to the substrate while maintaining at least the required basic performance such as heat resistance.
また、特許文献3では、ポリメチルペンテンと分子量が1000以下であるアリル系置換基を有する架橋処理剤とを含む電子線硬化性樹脂組成物が提案されている。この引用文献3には、白色顔料を含むこと、更に白色顔料以外の無機粒子を含む電子線硬化性組成物がリフロー工程において、優れた耐熱性を有し、リフレクター等の成形体とした場合において、優れた耐熱性が得られることが記載されている。この特許文献3には、ポリメチルペンテンに対して、白色顔料及び無機粒子(球状溶融シリカ、ガラス繊維)を少量から多量の範囲で用いることが記載されているが、その実施例では、ポリメチルペンテン100質量部に対して、105質量部が最大であり、これ以上の白色顔料及び無機粒子を含むことについて記載されていない。
Patent Document 3 proposes an electron beam curable resin composition containing polymethylpentene and a crosslinking agent having an allylic substituent having a molecular weight of 1000 or less. In this cited document 3, in the case where the electron beam curable composition containing a white pigment and further containing inorganic particles other than the white pigment has excellent heat resistance in the reflow process, and formed into a molded body such as a reflector. It is described that excellent heat resistance can be obtained. In Patent Document 3, it is described that a white pigment and inorganic particles (spherical fused silica, glass fiber) are used in a small amount to a large amount with respect to polymethylpentene. 105 parts by mass is the maximum with respect to 100 parts by mass of pentene, and there is no description about including more white pigments and inorganic particles.
ポリメチルペンテンに対して、白色顔料及び無機粒子を多量に含有させるためには、成形性の観点から、分子量の低いポリメチルペンテンを用いることが考えられるが、分子量の低いポリメチルペンテンを用いた場合、リフレクターの要求厚みが薄くなるにつれて、成形体の強度が低下したり、歪みが大きくなることにより、リフレクター成形体表面にクラックの発生する可能性が高くなるという問題点が生じた。
In order to contain a large amount of white pigment and inorganic particles with respect to polymethylpentene, it is conceivable to use polymethylpentene having a low molecular weight from the viewpoint of moldability, but polymethylpentene having a low molecular weight was used. In this case, as the required thickness of the reflector is reduced, there is a problem that the strength of the molded body is reduced or the distortion is increased, thereby increasing the possibility of occurrence of cracks on the surface of the reflector molded body.
そこで、第1の発明は、要求される耐熱性、反射率等の基本性能を少なくとも維持したままで、基板との優れた密着性を有するリフレクターを提供することを課題とする。
Therefore, an object of the first invention is to provide a reflector having excellent adhesion to a substrate while maintaining at least basic performances such as required heat resistance and reflectance.
また、第2の発明は、ポリオレフィン樹脂に対して、白色顔料を含む無機フィラーを多量に含む樹脂組成物を用いて成形した成形体であっても、成形体にクラックの発生がなく、耐熱性に優れた白色系の色調を有する樹脂組成物を提供することを課題とする。
Further, according to the second aspect of the present invention, there is no generation of cracks in the molded body even when the molded body is molded using a resin composition containing a large amount of an inorganic filler containing a white pigment with respect to the polyolefin resin. It is an object of the present invention to provide a resin composition having an excellent white color tone.
第1の発明の要旨は、下記のとおりである。
本発明者等は、径方向において特定の断面積を有する繊維状フィラーを用いることにより、前記課題を解決した。すなわち、樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを含有する樹脂組成物から成形されてなる光反射面を有するリフレクターであって、該繊維状フィラーの径方向の断面積が1μm2以上100μm2以下であり、TG-DTA法に基づく熱重量/示差熱同時分析装置を用いて、該リフレクターの加熱前の質量を測定した後、大気雰囲気下において、10℃/分で600℃まで昇温した後に600℃で30分間加熱して残る灰分量が加熱前の該リフレクターの全質量基準で70%以上90%以下であるリフレクター。 The gist of the first invention is as follows.
The present inventors solved the said subject by using the fibrous filler which has a specific cross-sectional area in radial direction. That is, a reflector having a light reflection surface formed from a resin composition containing a resin and an inorganic filler containing a white pigment and a fibrous filler, and the radial cross-sectional area of the fibrous filler is 1 μm 2. 100 μm 2 or less, and using a thermogravimetric / differential thermal simultaneous analyzer based on the TG-DTA method, after measuring the mass of the reflector before heating, up to 600 ° C. at 10 ° C./min in an air atmosphere A reflector in which the amount of ash remaining after heating at 600 ° C. for 30 minutes after heating is 70% or more and 90% or less based on the total mass of the reflector before heating.
本発明者等は、径方向において特定の断面積を有する繊維状フィラーを用いることにより、前記課題を解決した。すなわち、樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを含有する樹脂組成物から成形されてなる光反射面を有するリフレクターであって、該繊維状フィラーの径方向の断面積が1μm2以上100μm2以下であり、TG-DTA法に基づく熱重量/示差熱同時分析装置を用いて、該リフレクターの加熱前の質量を測定した後、大気雰囲気下において、10℃/分で600℃まで昇温した後に600℃で30分間加熱して残る灰分量が加熱前の該リフレクターの全質量基準で70%以上90%以下であるリフレクター。 The gist of the first invention is as follows.
The present inventors solved the said subject by using the fibrous filler which has a specific cross-sectional area in radial direction. That is, a reflector having a light reflection surface formed from a resin composition containing a resin and an inorganic filler containing a white pigment and a fibrous filler, and the radial cross-sectional area of the fibrous filler is 1 μm 2. 100 μm 2 or less, and using a thermogravimetric / differential thermal simultaneous analyzer based on the TG-DTA method, after measuring the mass of the reflector before heating, up to 600 ° C. at 10 ° C./min in an air atmosphere A reflector in which the amount of ash remaining after heating at 600 ° C. for 30 minutes after heating is 70% or more and 90% or less based on the total mass of the reflector before heating.
また、第2の発明の要旨は、下記のとおりである。
ポリオレフィン樹脂及び白色顔料を含む無機フィラーを含有する樹脂組成物であって、ポリオレフィン樹脂の重量平均分子量が220,000~800,000であり、白色顔料が、ポリオレフィン樹脂100質量部に対して、200質量部を超え、500質量部以下含有されてなる、樹脂組成物。 The gist of the second invention is as follows.
A resin composition containing an inorganic filler containing a polyolefin resin and a white pigment, wherein the polyolefin resin has a weight average molecular weight of 220,000 to 800,000, and the white pigment is 200 parts per 100 parts by mass of the polyolefin resin. A resin composition comprising more than 500 parts by mass and less than 500 parts by mass.
ポリオレフィン樹脂及び白色顔料を含む無機フィラーを含有する樹脂組成物であって、ポリオレフィン樹脂の重量平均分子量が220,000~800,000であり、白色顔料が、ポリオレフィン樹脂100質量部に対して、200質量部を超え、500質量部以下含有されてなる、樹脂組成物。 The gist of the second invention is as follows.
A resin composition containing an inorganic filler containing a polyolefin resin and a white pigment, wherein the polyolefin resin has a weight average molecular weight of 220,000 to 800,000, and the white pigment is 200 parts per 100 parts by mass of the polyolefin resin. A resin composition comprising more than 500 parts by mass and less than 500 parts by mass.
第1の発明によれば、要求される耐熱性、反射率等の基本性能を少なくとも維持したままで、基板との優れた密着性を有するリフレクターを提供することができる。
According to the first invention, it is possible to provide a reflector having excellent adhesion to a substrate while maintaining at least basic performances such as required heat resistance and reflectance.
また、第2の発明によれば、成形体とした際にクラックの発生がなく、耐熱性に優れた白色系の色調を有する成形体を得ることができる樹脂組成物を提供できる。
Further, according to the second invention, it is possible to provide a resin composition capable of obtaining a molded body having no white color tone and excellent in heat resistance without cracks when formed into a molded body.
以下に、第1の発明に係る実施形態(第1実施形態という)及び第2の発明に係る実施形態(第2実施形態という)について、添付した図面を参照して説明する。第1の発明及び第2の発明は、以下に示す実施形態により限定されるものではない。なお、本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいと言える。
Hereinafter, an embodiment according to the first invention (referred to as a first embodiment) and an embodiment according to a second invention (referred to as a second embodiment) will be described with reference to the accompanying drawings. The first invention and the second invention are not limited to the embodiments described below. In the present specification, it is possible to arbitrarily adopt provisions that are preferable, and it can be said that a combination of preferable ones is more preferable.
第1実施形態
[リフレクター]
本発明の第1実施形態に係るリフレクターは、樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを含有する樹脂組成物(以下では、リフレクター用樹脂組成物ということがある)から成形されてなる光反射面を有するリフレクターであって、該繊維状フィラーの径方向の断面積が1μm2以上100μm2以下であり、TG-DTA法に基づく熱重量/示差熱同時分析装置を用いて、該リフレクターの加熱前の質量を測定した後、大気雰囲気下において、10℃/分で600℃まで昇温した後に600℃で30分間加熱して残る灰分量が加熱前の該リフレクターの全質量基準で70質量%以上90質量%以下である。
本実施形態に係るリフレクターの灰分量が70質量%未満であると、リフロー工程において要求される耐熱性を満足することができない。また、灰分量が90質量%を超えると、リフレクターの成形性が低下する。
上述の観点から、上記灰分量の下限値は、72質量%であることが好ましく、75質量%であることがより好ましい。また、上記灰分量の上限値は、88質量%であることが好ましく、85質量%であることがより好ましい。
本発明の実施形態に係るリフレクターは、主として、半導体発光装置のLED素子からの光をレンズ(出光部)の方へ反射させる作用を有するものである。
本実施形態に係るリフレクターは、後述する半導体発光装置と組み合わせて用いてよいし、他の材料からなる半導体発光装置、LED実装用基板等と組み合わせて用いてもよい。リフレクターの詳細については、図1及び図2を用いて後述する半導体発光装置に適用されるリフレクター(図1及び図2におけるリフレクター12)と同じであるため、ここでは省略する。
本実施形態に係るリフレクターは、種々の用途に適用することができる。例えば、耐熱性絶縁膜、耐熱性離型シート、太陽電池の光反射シートやLEDを始めとした照明、テレビ用の光源のリフレクター等に適用することができる。特に、LEDの場合には、光半導体素子の密封性が、該半導体素子の寿命に影響を与えるが、本実施形態に係るリフレクターは、密着性が良好で、高い密封性が得られるため、LEDに好ましく適用できる。さらには、リードフレームをエッチング及びハーフエッチングで加工して作成され、素子の設置部の裏面を電極として利用するメタルサブストレート型LEDに、より好適に適用できる。 First Embodiment [Reflector]
The reflector according to the first embodiment of the present invention is molded from a resin composition containing a resin and an inorganic filler including a white pigment and a fibrous filler (hereinafter, sometimes referred to as a resin composition for reflector). The radial filler has a radial cross-sectional area of 1 μm 2 or more and 100 μm 2 or less using a thermogravimetric / differential thermal analyzer based on the TG-DTA method. After measuring the mass of the reflector before heating, the amount of ash remaining after heating at 600 ° C. for 30 minutes after heating up to 600 ° C. in an air atmosphere is based on the total mass of the reflector before heating. It is 70 mass% or more and 90 mass% or less.
When the ash content of the reflector according to this embodiment is less than 70% by mass, the heat resistance required in the reflow process cannot be satisfied. Moreover, when the amount of ash exceeds 90 mass%, the moldability of a reflector will fall.
From the above viewpoint, the lower limit of the ash content is preferably 72% by mass, and more preferably 75% by mass. Moreover, it is preferable that the upper limit of the said ash content is 88 mass%, and it is more preferable that it is 85 mass%.
The reflector according to the embodiment of the present invention mainly has an action of reflecting light from the LED element of the semiconductor light emitting device toward the lens (light emitting portion).
The reflector according to the present embodiment may be used in combination with a semiconductor light emitting device described later, or may be used in combination with a semiconductor light emitting device made of another material, an LED mounting substrate, or the like. Details of the reflector are the same as those of the reflector (reflector 12 in FIGS. 1 and 2) applied to the semiconductor light emitting device described later with reference to FIGS.
The reflector according to the present embodiment can be applied to various uses. For example, the present invention can be applied to a heat-resistant insulating film, a heat-resistant release sheet, a light reflecting sheet of a solar cell, lighting such as an LED, a reflector for a light source for a television, and the like. In particular, in the case of an LED, the sealing property of the optical semiconductor element affects the life of the semiconductor element. However, the reflector according to the present embodiment has good adhesion and high sealing performance. It can be preferably applied to. Furthermore, the present invention can be more suitably applied to a metal substrate type LED that is formed by processing a lead frame by etching and half etching and uses the back surface of the element installation portion as an electrode.
[リフレクター]
本発明の第1実施形態に係るリフレクターは、樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを含有する樹脂組成物(以下では、リフレクター用樹脂組成物ということがある)から成形されてなる光反射面を有するリフレクターであって、該繊維状フィラーの径方向の断面積が1μm2以上100μm2以下であり、TG-DTA法に基づく熱重量/示差熱同時分析装置を用いて、該リフレクターの加熱前の質量を測定した後、大気雰囲気下において、10℃/分で600℃まで昇温した後に600℃で30分間加熱して残る灰分量が加熱前の該リフレクターの全質量基準で70質量%以上90質量%以下である。
本実施形態に係るリフレクターの灰分量が70質量%未満であると、リフロー工程において要求される耐熱性を満足することができない。また、灰分量が90質量%を超えると、リフレクターの成形性が低下する。
上述の観点から、上記灰分量の下限値は、72質量%であることが好ましく、75質量%であることがより好ましい。また、上記灰分量の上限値は、88質量%であることが好ましく、85質量%であることがより好ましい。
本発明の実施形態に係るリフレクターは、主として、半導体発光装置のLED素子からの光をレンズ(出光部)の方へ反射させる作用を有するものである。
本実施形態に係るリフレクターは、後述する半導体発光装置と組み合わせて用いてよいし、他の材料からなる半導体発光装置、LED実装用基板等と組み合わせて用いてもよい。リフレクターの詳細については、図1及び図2を用いて後述する半導体発光装置に適用されるリフレクター(図1及び図2におけるリフレクター12)と同じであるため、ここでは省略する。
本実施形態に係るリフレクターは、種々の用途に適用することができる。例えば、耐熱性絶縁膜、耐熱性離型シート、太陽電池の光反射シートやLEDを始めとした照明、テレビ用の光源のリフレクター等に適用することができる。特に、LEDの場合には、光半導体素子の密封性が、該半導体素子の寿命に影響を与えるが、本実施形態に係るリフレクターは、密着性が良好で、高い密封性が得られるため、LEDに好ましく適用できる。さらには、リードフレームをエッチング及びハーフエッチングで加工して作成され、素子の設置部の裏面を電極として利用するメタルサブストレート型LEDに、より好適に適用できる。 First Embodiment [Reflector]
The reflector according to the first embodiment of the present invention is molded from a resin composition containing a resin and an inorganic filler including a white pigment and a fibrous filler (hereinafter, sometimes referred to as a resin composition for reflector). The radial filler has a radial cross-sectional area of 1 μm 2 or more and 100 μm 2 or less using a thermogravimetric / differential thermal analyzer based on the TG-DTA method. After measuring the mass of the reflector before heating, the amount of ash remaining after heating at 600 ° C. for 30 minutes after heating up to 600 ° C. in an air atmosphere is based on the total mass of the reflector before heating. It is 70 mass% or more and 90 mass% or less.
When the ash content of the reflector according to this embodiment is less than 70% by mass, the heat resistance required in the reflow process cannot be satisfied. Moreover, when the amount of ash exceeds 90 mass%, the moldability of a reflector will fall.
From the above viewpoint, the lower limit of the ash content is preferably 72% by mass, and more preferably 75% by mass. Moreover, it is preferable that the upper limit of the said ash content is 88 mass%, and it is more preferable that it is 85 mass%.
The reflector according to the embodiment of the present invention mainly has an action of reflecting light from the LED element of the semiconductor light emitting device toward the lens (light emitting portion).
The reflector according to the present embodiment may be used in combination with a semiconductor light emitting device described later, or may be used in combination with a semiconductor light emitting device made of another material, an LED mounting substrate, or the like. Details of the reflector are the same as those of the reflector (
The reflector according to the present embodiment can be applied to various uses. For example, the present invention can be applied to a heat-resistant insulating film, a heat-resistant release sheet, a light reflecting sheet of a solar cell, lighting such as an LED, a reflector for a light source for a television, and the like. In particular, in the case of an LED, the sealing property of the optical semiconductor element affects the life of the semiconductor element. However, the reflector according to the present embodiment has good adhesion and high sealing performance. It can be preferably applied to. Furthermore, the present invention can be more suitably applied to a metal substrate type LED that is formed by processing a lead frame by etching and half etching and uses the back surface of the element installation portion as an electrode.
[リフレクター用樹脂組成物]
次に、第1実施形態に係るリフレクターの構成要素について、詳細に説明する。
本発明の第1実施形態に係るリフレクターの光反射面の成形に用いることのできるリフレクター用樹脂組成物は、少なくとも、樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを含有する。 [Resin composition for reflector]
Next, components of the reflector according to the first embodiment will be described in detail.
The resin composition for reflectors that can be used for molding the light reflecting surface of the reflector according to the first embodiment of the present invention contains at least a resin and an inorganic filler containing a white pigment and a fibrous filler.
次に、第1実施形態に係るリフレクターの構成要素について、詳細に説明する。
本発明の第1実施形態に係るリフレクターの光反射面の成形に用いることのできるリフレクター用樹脂組成物は、少なくとも、樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを含有する。 [Resin composition for reflector]
Next, components of the reflector according to the first embodiment will be described in detail.
The resin composition for reflectors that can be used for molding the light reflecting surface of the reflector according to the first embodiment of the present invention contains at least a resin and an inorganic filler containing a white pigment and a fibrous filler.
<樹脂>
第1実施形態で使用可能な樹脂としては、光反射面の成形に用いることのできる樹脂であればよく、ポリアミド、ポリカーボネート、アクリル樹脂、ポリアセタール、ポリエチレンテレフタレート、ポリスチレン等が挙げられる。なかでも、ポリオレフィン樹脂を用いることが好ましい。樹脂は単独で用いてもよいし、異なる樹脂をブレンドして使用することも可能である。さらには、異なるモノマーから得られたブロックポリマー、コポリマー、ターポリマーを利用してもよい。
ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、ノルボルネン誘導体を開環メタセシス重合させた樹脂あるいはその水素添加樹脂等が挙げられる。中でも、ポリオレフィン樹脂として、ポリエチレン、ポリプロピレン、環状構造を含むポリエチレン、環状構造を含むポリプロピレン、及びポリメチルペンテンから選択される少なくとも1つが好ましい。
ポリメチルペンテンは、融点が230~240℃と高く、成形温度が280℃程度でも分解せず、耐薬品性及び電気絶縁性に優れているという特性を有する。このような特性を考慮すると、ポリメチルペンテン等のポリオレフィン樹脂は、例えば、半導体発光装置のリフレクターに好適に使用できる。 <Resin>
The resin that can be used in the first embodiment may be any resin that can be used for molding the light reflecting surface, and examples thereof include polyamide, polycarbonate, acrylic resin, polyacetal, polyethylene terephthalate, and polystyrene. Among these, it is preferable to use a polyolefin resin. The resins may be used alone, or different resins can be blended and used. Furthermore, block polymers, copolymers and terpolymers obtained from different monomers may be used.
Examples of the polyolefin resin include resins obtained by ring-opening metathesis polymerization of polyethylene, polypropylene, polybutene, polymethylpentene, and norbornene derivatives, or hydrogenated resins thereof. Among these, as the polyolefin resin, at least one selected from polyethylene, polypropylene, polyethylene containing a cyclic structure, polypropylene containing a cyclic structure, and polymethylpentene is preferable.
Polymethylpentene has a high melting point of 230 to 240 ° C., does not decompose even at a molding temperature of about 280 ° C., and has excellent chemical resistance and electrical insulation properties. Considering such characteristics, a polyolefin resin such as polymethylpentene can be suitably used for a reflector of a semiconductor light emitting device, for example.
第1実施形態で使用可能な樹脂としては、光反射面の成形に用いることのできる樹脂であればよく、ポリアミド、ポリカーボネート、アクリル樹脂、ポリアセタール、ポリエチレンテレフタレート、ポリスチレン等が挙げられる。なかでも、ポリオレフィン樹脂を用いることが好ましい。樹脂は単独で用いてもよいし、異なる樹脂をブレンドして使用することも可能である。さらには、異なるモノマーから得られたブロックポリマー、コポリマー、ターポリマーを利用してもよい。
ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、ノルボルネン誘導体を開環メタセシス重合させた樹脂あるいはその水素添加樹脂等が挙げられる。中でも、ポリオレフィン樹脂として、ポリエチレン、ポリプロピレン、環状構造を含むポリエチレン、環状構造を含むポリプロピレン、及びポリメチルペンテンから選択される少なくとも1つが好ましい。
ポリメチルペンテンは、融点が230~240℃と高く、成形温度が280℃程度でも分解せず、耐薬品性及び電気絶縁性に優れているという特性を有する。このような特性を考慮すると、ポリメチルペンテン等のポリオレフィン樹脂は、例えば、半導体発光装置のリフレクターに好適に使用できる。 <Resin>
The resin that can be used in the first embodiment may be any resin that can be used for molding the light reflecting surface, and examples thereof include polyamide, polycarbonate, acrylic resin, polyacetal, polyethylene terephthalate, and polystyrene. Among these, it is preferable to use a polyolefin resin. The resins may be used alone, or different resins can be blended and used. Furthermore, block polymers, copolymers and terpolymers obtained from different monomers may be used.
Examples of the polyolefin resin include resins obtained by ring-opening metathesis polymerization of polyethylene, polypropylene, polybutene, polymethylpentene, and norbornene derivatives, or hydrogenated resins thereof. Among these, as the polyolefin resin, at least one selected from polyethylene, polypropylene, polyethylene containing a cyclic structure, polypropylene containing a cyclic structure, and polymethylpentene is preferable.
Polymethylpentene has a high melting point of 230 to 240 ° C., does not decompose even at a molding temperature of about 280 ° C., and has excellent chemical resistance and electrical insulation properties. Considering such characteristics, a polyolefin resin such as polymethylpentene can be suitably used for a reflector of a semiconductor light emitting device, for example.
ポリメチルペンテン樹脂としては、4-メチルペンテン-1の単独重合体が好ましいが、4-メチルペンテン-1と他のα-オレフィン、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン等の炭素数2~20のα-オレフィンとの共重合体であって、4-メチル-1-ペンテンを主体とした共重合体でもよい。
The polymethylpentene resin is preferably a homopolymer of 4-methylpentene-1, but 4-methylpentene-1 and other α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-pentene, Α having 2 to 20 carbon atoms such as hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene, 1-eicocene, 3-methyl-1-butene, 3-methyl-1-pentene, etc. -Copolymers with olefins, mainly 4-methyl-1-pentene.
第1実施形態において、リフレクター用樹脂組成物に使用可能なポリオレフィン樹脂は、重量平均分子量が220,000~800,000であることが好ましい。
ポリオレフィン樹脂の重量平均分子量が上記範囲にあると、ポリオレフィン樹脂を含むリフレクター用樹脂組成物を成形して得られるリフレクター等の成形体のクラック発生を抑えることができ、例えば、リフロー工程におけるリフレクターの破壊等を防止できる。
また、ポリオレフィン樹脂を含むリフレクター用樹脂組成物の成形性の観点から、重量平均分子量の下限値は、好ましくは230,000以上、より好ましくは240,000以上である。また、重量平均分子量の上限値は、好ましくは700,000以下、より好ましくは650,000以下である。
なお、重量平均分子量は、ゲルパーミエイションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量が好ましい。ただし、再現性よく重量平均分子量を測定することができる手法であれば、これに限定されない。例えば、適切な溶媒で抽出した材料を例示した方法で重量平均分子量を測定することができる。
GPCによる重量平均分子量の測定条件の一例は、下記のとおりである。
溶離液:o-ジクロロベンゼン
温度:140~160℃
流速:1.0mL/min
試料濃度:1.0g/L
注入量:300μL In the first embodiment, the polyolefin resin that can be used in the reflector resin composition preferably has a weight average molecular weight of 220,000 to 800,000.
When the weight average molecular weight of the polyolefin resin is in the above range, the occurrence of cracks in a molded article such as a reflector obtained by molding a resin composition for a reflector containing the polyolefin resin can be suppressed. For example, the destruction of the reflector in the reflow process Etc. can be prevented.
Moreover, from the viewpoint of moldability of the resin composition for reflectors containing a polyolefin resin, the lower limit of the weight average molecular weight is preferably 230,000 or more, more preferably 240,000 or more. Moreover, the upper limit of the weight average molecular weight is preferably 700,000 or less, more preferably 650,000 or less.
The weight average molecular weight is preferably a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC). However, the method is not limited to this as long as the method can measure the weight average molecular weight with good reproducibility. For example, the weight average molecular weight can be measured by a method exemplified for a material extracted with an appropriate solvent.
An example of conditions for measuring the weight average molecular weight by GPC is as follows.
Eluent: o-dichlorobenzene Temperature: 140-160 ° C
Flow rate: 1.0 mL / min
Sample concentration: 1.0 g / L
Injection volume: 300 μL
ポリオレフィン樹脂の重量平均分子量が上記範囲にあると、ポリオレフィン樹脂を含むリフレクター用樹脂組成物を成形して得られるリフレクター等の成形体のクラック発生を抑えることができ、例えば、リフロー工程におけるリフレクターの破壊等を防止できる。
また、ポリオレフィン樹脂を含むリフレクター用樹脂組成物の成形性の観点から、重量平均分子量の下限値は、好ましくは230,000以上、より好ましくは240,000以上である。また、重量平均分子量の上限値は、好ましくは700,000以下、より好ましくは650,000以下である。
なお、重量平均分子量は、ゲルパーミエイションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量が好ましい。ただし、再現性よく重量平均分子量を測定することができる手法であれば、これに限定されない。例えば、適切な溶媒で抽出した材料を例示した方法で重量平均分子量を測定することができる。
GPCによる重量平均分子量の測定条件の一例は、下記のとおりである。
溶離液:o-ジクロロベンゼン
温度:140~160℃
流速:1.0mL/min
試料濃度:1.0g/L
注入量:300μL In the first embodiment, the polyolefin resin that can be used in the reflector resin composition preferably has a weight average molecular weight of 220,000 to 800,000.
When the weight average molecular weight of the polyolefin resin is in the above range, the occurrence of cracks in a molded article such as a reflector obtained by molding a resin composition for a reflector containing the polyolefin resin can be suppressed. For example, the destruction of the reflector in the reflow process Etc. can be prevented.
Moreover, from the viewpoint of moldability of the resin composition for reflectors containing a polyolefin resin, the lower limit of the weight average molecular weight is preferably 230,000 or more, more preferably 240,000 or more. Moreover, the upper limit of the weight average molecular weight is preferably 700,000 or less, more preferably 650,000 or less.
The weight average molecular weight is preferably a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC). However, the method is not limited to this as long as the method can measure the weight average molecular weight with good reproducibility. For example, the weight average molecular weight can be measured by a method exemplified for a material extracted with an appropriate solvent.
An example of conditions for measuring the weight average molecular weight by GPC is as follows.
Eluent: o-dichlorobenzene Temperature: 140-160 ° C
Flow rate: 1.0 mL / min
Sample concentration: 1.0 g / L
Injection volume: 300 μL
<無機フィラー>
第1実施形態において、リフレクター用樹脂組成物に使用可能な無機フィラーは、白色顔料と、繊維状フィラーとを含む。以下、無機フィラーについて説明する。
(白色顔料)
第1実施形態において、リフレクター用樹脂組成物に使用可能な白色顔料としては、酸化チタン、硫化亜鉛、酸化亜鉛、硫化バリウム、チタン酸カリウム等を単独もしくは混合して用いることが可能である。
白色顔料は、当該樹脂組成物から得られる成形体に白色系の色調を付与するために用いられるものであり、特にその色調を高度の白色とすることにより、成形体の光線反射率を向上させることができる。成形体がリフレクターである場合には、良好な光線反射率が要求されるため、白色顔料としては、入手が容易で、光線反射率にも優れる酸化チタンを用いることが好ましい。
白色顔料の平均粒径は、成形性を考慮し、かつ高い反射率を得る観点からは、一次粒度分布において0.10μm以上0.50μm以下であることが好ましく、0.10μm以上0.40μm以下であることがより好ましく、0.21μm以上0.25μm以下であることがさらに好ましい。平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50として求めることができる。 <Inorganic filler>
In 1st Embodiment, the inorganic filler which can be used for the resin composition for reflectors contains a white pigment and a fibrous filler. Hereinafter, the inorganic filler will be described.
(White pigment)
In the first embodiment, titanium oxide, zinc sulfide, zinc oxide, barium sulfide, potassium titanate and the like can be used alone or in combination as white pigments that can be used in the resin composition for reflectors.
The white pigment is used for imparting a white color tone to the molded product obtained from the resin composition, and particularly improves the light reflectance of the molded product by setting the color tone to a high white color. be able to. When the molded body is a reflector, good light reflectivity is required. Therefore, it is preferable to use titanium oxide that is easily available and excellent in light reflectivity as the white pigment.
The average particle diameter of the white pigment is preferably 0.10 μm or more and 0.50 μm or less, and 0.10 μm or more and 0.40 μm or less in the primary particle size distribution from the viewpoint of obtaining moldability and obtaining high reflectance. It is more preferable that it is 0.21 μm or more and 0.25 μm or less. An average particle diameter can be calculated | required as mass average value D50 in the particle size distribution measurement by a laser beam diffraction method.
第1実施形態において、リフレクター用樹脂組成物に使用可能な無機フィラーは、白色顔料と、繊維状フィラーとを含む。以下、無機フィラーについて説明する。
(白色顔料)
第1実施形態において、リフレクター用樹脂組成物に使用可能な白色顔料としては、酸化チタン、硫化亜鉛、酸化亜鉛、硫化バリウム、チタン酸カリウム等を単独もしくは混合して用いることが可能である。
白色顔料は、当該樹脂組成物から得られる成形体に白色系の色調を付与するために用いられるものであり、特にその色調を高度の白色とすることにより、成形体の光線反射率を向上させることができる。成形体がリフレクターである場合には、良好な光線反射率が要求されるため、白色顔料としては、入手が容易で、光線反射率にも優れる酸化チタンを用いることが好ましい。
白色顔料の平均粒径は、成形性を考慮し、かつ高い反射率を得る観点からは、一次粒度分布において0.10μm以上0.50μm以下であることが好ましく、0.10μm以上0.40μm以下であることがより好ましく、0.21μm以上0.25μm以下であることがさらに好ましい。平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50として求めることができる。 <Inorganic filler>
In 1st Embodiment, the inorganic filler which can be used for the resin composition for reflectors contains a white pigment and a fibrous filler. Hereinafter, the inorganic filler will be described.
(White pigment)
In the first embodiment, titanium oxide, zinc sulfide, zinc oxide, barium sulfide, potassium titanate and the like can be used alone or in combination as white pigments that can be used in the resin composition for reflectors.
The white pigment is used for imparting a white color tone to the molded product obtained from the resin composition, and particularly improves the light reflectance of the molded product by setting the color tone to a high white color. be able to. When the molded body is a reflector, good light reflectivity is required. Therefore, it is preferable to use titanium oxide that is easily available and excellent in light reflectivity as the white pigment.
The average particle diameter of the white pigment is preferably 0.10 μm or more and 0.50 μm or less, and 0.10 μm or more and 0.40 μm or less in the primary particle size distribution from the viewpoint of obtaining moldability and obtaining high reflectance. It is more preferable that it is 0.21 μm or more and 0.25 μm or less. An average particle diameter can be calculated | required as mass average value D50 in the particle size distribution measurement by a laser beam diffraction method.
(繊維状フィラー)
第1実施形態において、リフレクター用樹脂組成物に使用可能な無機フィラーは、繊維状フィラーを含むことを要し、繊維状フィラーの径方向の断面積が1μm2以上100μm2以下であることを要する。
繊維状フィラーの径方向の断面積が1μm2未満であると、フィラー強度低下により加工時に繊維長方向で破損、折れやすくなり、長さが短くなる結果、十分な補強効果が得られず、耐熱性が低下する。
繊維状フィラーの断面積を測定する方法は、いくつかあるが、本実施形態における繊維状フィラーの断面積は、半導体発光装置のリフレクターを破断し、その破断面をSEM観察して得られた実測値から算出するものとする。
すなわち、SEM像において、リフレクターの断面に現れている繊維状フィラーの径長を測定する。フィラーの断面が楕円形状であった場合には、この楕円の長径と短径とを測定し、長径と短径の比が0.8以上1.2以下のものを対象とし、少なくとも10個の断面についての平均値を繊維状フィラーの断面積とする。
測定により得られた径長から繊維状フィラーの断面積を算出する際には、径長は、有効数字3桁まで測定するものとする。また、断面積は、繊維状フィラーの断面のうち、断面積の小さいものから測定総数の50%のものについての平均値として算出し、算出後の数値の3桁目を四捨五入して測定値とする。 (Fibrous filler)
In the first embodiment, the inorganic filler usable in the reflector for the resin composition, required to include fibrous fillers requires that the cross-sectional area in the radial direction of the fibrous filler is 1 [mu] m 2 or more 100 [mu] m 2 or less .
When the cross-sectional area in the radial direction of the fibrous filler is less than 1 μm 2 , the filler strength is reduced and the fiber is easily broken or broken in the fiber length direction during processing. As a result, the length is shortened. Sexuality decreases.
There are several methods for measuring the cross-sectional area of the fibrous filler, but the cross-sectional area of the fibrous filler in the present embodiment is an actual measurement obtained by breaking the reflector of the semiconductor light-emitting device and observing the broken cross-section with an SEM. It shall be calculated from the value.
That is, in the SEM image, the diameter length of the fibrous filler appearing in the cross section of the reflector is measured. When the cross section of the filler has an elliptical shape, the major axis and minor axis of the ellipse are measured, and the ratio of the major axis to the minor axis is 0.8 to 1.2, and at least 10 Let the average value about a cross section be a cross-sectional area of a fibrous filler.
When calculating the cross-sectional area of the fibrous filler from the diameter obtained by the measurement, the diameter is measured up to three significant digits. In addition, the cross-sectional area is calculated as the average value of the cross-sectional area of the fibrous filler from the smallest cross-sectional area to the 50% of the total number of measurements, and the calculated value is rounded off to the third digit. To do.
第1実施形態において、リフレクター用樹脂組成物に使用可能な無機フィラーは、繊維状フィラーを含むことを要し、繊維状フィラーの径方向の断面積が1μm2以上100μm2以下であることを要する。
繊維状フィラーの径方向の断面積が1μm2未満であると、フィラー強度低下により加工時に繊維長方向で破損、折れやすくなり、長さが短くなる結果、十分な補強効果が得られず、耐熱性が低下する。
繊維状フィラーの断面積を測定する方法は、いくつかあるが、本実施形態における繊維状フィラーの断面積は、半導体発光装置のリフレクターを破断し、その破断面をSEM観察して得られた実測値から算出するものとする。
すなわち、SEM像において、リフレクターの断面に現れている繊維状フィラーの径長を測定する。フィラーの断面が楕円形状であった場合には、この楕円の長径と短径とを測定し、長径と短径の比が0.8以上1.2以下のものを対象とし、少なくとも10個の断面についての平均値を繊維状フィラーの断面積とする。
測定により得られた径長から繊維状フィラーの断面積を算出する際には、径長は、有効数字3桁まで測定するものとする。また、断面積は、繊維状フィラーの断面のうち、断面積の小さいものから測定総数の50%のものについての平均値として算出し、算出後の数値の3桁目を四捨五入して測定値とする。 (Fibrous filler)
In the first embodiment, the inorganic filler usable in the reflector for the resin composition, required to include fibrous fillers requires that the cross-sectional area in the radial direction of the fibrous filler is 1 [mu] m 2 or more 100 [mu] m 2 or less .
When the cross-sectional area in the radial direction of the fibrous filler is less than 1 μm 2 , the filler strength is reduced and the fiber is easily broken or broken in the fiber length direction during processing. As a result, the length is shortened. Sexuality decreases.
There are several methods for measuring the cross-sectional area of the fibrous filler, but the cross-sectional area of the fibrous filler in the present embodiment is an actual measurement obtained by breaking the reflector of the semiconductor light-emitting device and observing the broken cross-section with an SEM. It shall be calculated from the value.
That is, in the SEM image, the diameter length of the fibrous filler appearing in the cross section of the reflector is measured. When the cross section of the filler has an elliptical shape, the major axis and minor axis of the ellipse are measured, and the ratio of the major axis to the minor axis is 0.8 to 1.2, and at least 10 Let the average value about a cross section be a cross-sectional area of a fibrous filler.
When calculating the cross-sectional area of the fibrous filler from the diameter obtained by the measurement, the diameter is measured up to three significant digits. In addition, the cross-sectional area is calculated as the average value of the cross-sectional area of the fibrous filler from the smallest cross-sectional area to the 50% of the total number of measurements, and the calculated value is rounded off to the third digit. To do.
繊維状フィラーの径方向の断面積が100μm2を超えると、樹脂中での流動性が低下することにより、リフレクターと基板の界面付近まで均一に充填されにくくなり、繊維状フィラーが界面近傍に存在しなくなることにより界面付近の強度が低下、半導体発光装置等に用いた場合にリフレクターと基板との密着性が低下する。
上記観点から、繊維状フィラーの径方向の断面積の下限値は、好ましくは、30μm2であり、より好ましくは、35μm2である。また、繊維状フィラーの径方向の断面積の上限値は、好ましくは、85μm2であり、より好ましくは、50μm2である。
繊維状フィラーとしては、アスベスト繊維、炭素繊維、グラファイト繊維、金属繊維、スラグ繊維、石膏繊維、シリカ繊維、シリカ-アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化珪素繊維、ホウ素繊維、ガラス繊維等が挙げられる。
これらのなかでも、リフレクターの光反射面を形成し、光線反射率を向上させる観点から、繊維状フィラーが二酸化ケイ素を60質量%以上含むガラス繊維であることが好ましい。繊維状フィラーにおける二酸化ケイ素の割合は、65質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。
繊維状フィラーの断面形状は、一般的な、略円形状であってもよいし、扁平形状等の異形断面であってもよい。さらに断面形状、断面積が一定の繊維でなくともよい。この場合の断面績は長さ方向に異なる断面積を平均して得られた断面積として規定される。
一例として、繊維状フィラーがガラス繊維の場合には、断面のサイズとしては、上述の断面積の規定を満足し、かつ断面の短径D1が0.5μm以上25μm以下、長径D2が0.5μm以上300μm以下、D1に対するD2の比D2/D1が1.0以上30以下であることが好ましい。また、ガラス繊維の平均繊維長は、0.75μm以上300μm以下であることが好ましい。このようなガラス繊維は、ミルドファイバーとも呼ばれ、長繊維を粉砕して得ることができる。 If the cross-sectional area in the radial direction of the fibrous filler exceeds 100 μm 2 , the fluidity in the resin is reduced, making it difficult to uniformly fill the vicinity of the interface between the reflector and the substrate, and the fibrous filler is present in the vicinity of the interface. As a result, the strength in the vicinity of the interface is lowered, and when used in a semiconductor light emitting device or the like, the adhesion between the reflector and the substrate is lowered.
From the above viewpoint, the lower limit value of the cross-sectional area in the radial direction of the fibrous filler is preferably 30 μm 2 , and more preferably 35 μm 2 . The upper limit of the cross-sectional area in the radial direction of the fibrous filler is preferably a 85 .mu.m 2, more preferably 50 [mu] m 2.
Examples of fibrous fillers include asbestos fibers, carbon fibers, graphite fibers, metal fibers, slag fibers, gypsum fibers, silica fibers, silica-alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, glass fibers, etc. Can be mentioned.
Among these, it is preferable that the fibrous filler is a glass fiber containing 60% by mass or more of silicon dioxide from the viewpoint of forming the light reflecting surface of the reflector and improving the light reflectance. The ratio of silicon dioxide in the fibrous filler is more preferably 65% by mass or more, and further preferably 70% by mass or more.
The cross-sectional shape of the fibrous filler may be a general, substantially circular shape, or an irregular cross-section such as a flat shape. Furthermore, the fiber does not have to have a constant cross-sectional shape and cross-sectional area. The cross-sectional performance in this case is defined as a cross-sectional area obtained by averaging different cross-sectional areas in the length direction.
As an example, when the fibrous filler is glass fiber, the size of the cross section satisfies the above-mentioned definition of the cross sectional area, the short axis D1 of the cross section is 0.5 μm or more and 25 μm or less, and the long diameter D2 is 0.5 μm. It is preferable that the ratio D2 / D1 of D2 to D1 is 1.0 to 30 and 300 μm or less. Moreover, it is preferable that the average fiber length of glass fiber is 0.75 micrometer or more and 300 micrometers or less. Such glass fibers are also called milled fibers, and can be obtained by pulverizing long fibers.
上記観点から、繊維状フィラーの径方向の断面積の下限値は、好ましくは、30μm2であり、より好ましくは、35μm2である。また、繊維状フィラーの径方向の断面積の上限値は、好ましくは、85μm2であり、より好ましくは、50μm2である。
繊維状フィラーとしては、アスベスト繊維、炭素繊維、グラファイト繊維、金属繊維、スラグ繊維、石膏繊維、シリカ繊維、シリカ-アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化珪素繊維、ホウ素繊維、ガラス繊維等が挙げられる。
これらのなかでも、リフレクターの光反射面を形成し、光線反射率を向上させる観点から、繊維状フィラーが二酸化ケイ素を60質量%以上含むガラス繊維であることが好ましい。繊維状フィラーにおける二酸化ケイ素の割合は、65質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。
繊維状フィラーの断面形状は、一般的な、略円形状であってもよいし、扁平形状等の異形断面であってもよい。さらに断面形状、断面積が一定の繊維でなくともよい。この場合の断面績は長さ方向に異なる断面積を平均して得られた断面積として規定される。
一例として、繊維状フィラーがガラス繊維の場合には、断面のサイズとしては、上述の断面積の規定を満足し、かつ断面の短径D1が0.5μm以上25μm以下、長径D2が0.5μm以上300μm以下、D1に対するD2の比D2/D1が1.0以上30以下であることが好ましい。また、ガラス繊維の平均繊維長は、0.75μm以上300μm以下であることが好ましい。このようなガラス繊維は、ミルドファイバーとも呼ばれ、長繊維を粉砕して得ることができる。 If the cross-sectional area in the radial direction of the fibrous filler exceeds 100 μm 2 , the fluidity in the resin is reduced, making it difficult to uniformly fill the vicinity of the interface between the reflector and the substrate, and the fibrous filler is present in the vicinity of the interface. As a result, the strength in the vicinity of the interface is lowered, and when used in a semiconductor light emitting device or the like, the adhesion between the reflector and the substrate is lowered.
From the above viewpoint, the lower limit value of the cross-sectional area in the radial direction of the fibrous filler is preferably 30 μm 2 , and more preferably 35 μm 2 . The upper limit of the cross-sectional area in the radial direction of the fibrous filler is preferably a 85 .mu.m 2, more preferably 50 [mu] m 2.
Examples of fibrous fillers include asbestos fibers, carbon fibers, graphite fibers, metal fibers, slag fibers, gypsum fibers, silica fibers, silica-alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, glass fibers, etc. Can be mentioned.
Among these, it is preferable that the fibrous filler is a glass fiber containing 60% by mass or more of silicon dioxide from the viewpoint of forming the light reflecting surface of the reflector and improving the light reflectance. The ratio of silicon dioxide in the fibrous filler is more preferably 65% by mass or more, and further preferably 70% by mass or more.
The cross-sectional shape of the fibrous filler may be a general, substantially circular shape, or an irregular cross-section such as a flat shape. Furthermore, the fiber does not have to have a constant cross-sectional shape and cross-sectional area. The cross-sectional performance in this case is defined as a cross-sectional area obtained by averaging different cross-sectional areas in the length direction.
As an example, when the fibrous filler is glass fiber, the size of the cross section satisfies the above-mentioned definition of the cross sectional area, the short axis D1 of the cross section is 0.5 μm or more and 25 μm or less, and the long diameter D2 is 0.5 μm. It is preferable that the ratio D2 / D1 of D2 to D1 is 1.0 to 30 and 300 μm or less. Moreover, it is preferable that the average fiber length of glass fiber is 0.75 micrometer or more and 300 micrometers or less. Such glass fibers are also called milled fibers, and can be obtained by pulverizing long fibers.
(その他の無機フィラー)
第1実施形態においては、リフレクター用樹脂組成物に、白色顔料及び繊維状フィラーのほか、通常、熱可塑樹脂組成物;エポキシ樹脂、アクリル樹脂、シリコーン樹脂のような熱硬化樹脂組成物に無機フィラーとして配合可能なものであって、リフレクターとしての反射特性を阻害しないものであれば、単独若しくは混合して使用することができる。
一例としては、ホウ酸アルミニウムウィスカー、マグネシウム系ウィスカー、珪素系ウィスカー、ワラストナイト、イモゴライト、セピオライト、ゾノライト、シリカ粒子、層状珪酸塩、有機オニウムイオンで交換された層状珪酸塩、ガラスフレーク、非膨潤性雲母、グラファイト、金属箔、セラミックビーズ、クレイ、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、粉末珪酸、長石粉、シラスバルーン、石膏、ノバキュライト、ドーソナイト及び白土フラーレン等のカーボンナノ粒子等の板状や粒子状の無機フィラーが挙げられる。 (Other inorganic fillers)
In the first embodiment, in addition to the white pigment and the fibrous filler, the reflector resin composition is usually a thermoplastic resin composition; a thermosetting resin composition such as an epoxy resin, an acrylic resin, or a silicone resin, and an inorganic filler. As long as it does not interfere with the reflection characteristics as a reflector, can be used alone or in combination.
Examples include aluminum borate whiskers, magnesium whiskers, silicon whiskers, wollastonite, imogolite, sepiolite, zonolite, silica particles, layered silicates, layered silicates exchanged with organic onium ions, glass flakes, non-swelling Carbon nanoparticles such as synthetic mica, graphite, metal foil, ceramic beads, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, powdered silicic acid, feldspar powder, shirasu balloon, gypsum, novaculite, dosonite, and white clay fullerene Examples thereof include plate-like and particulate inorganic fillers.
第1実施形態においては、リフレクター用樹脂組成物に、白色顔料及び繊維状フィラーのほか、通常、熱可塑樹脂組成物;エポキシ樹脂、アクリル樹脂、シリコーン樹脂のような熱硬化樹脂組成物に無機フィラーとして配合可能なものであって、リフレクターとしての反射特性を阻害しないものであれば、単独若しくは混合して使用することができる。
一例としては、ホウ酸アルミニウムウィスカー、マグネシウム系ウィスカー、珪素系ウィスカー、ワラストナイト、イモゴライト、セピオライト、ゾノライト、シリカ粒子、層状珪酸塩、有機オニウムイオンで交換された層状珪酸塩、ガラスフレーク、非膨潤性雲母、グラファイト、金属箔、セラミックビーズ、クレイ、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、粉末珪酸、長石粉、シラスバルーン、石膏、ノバキュライト、ドーソナイト及び白土フラーレン等のカーボンナノ粒子等の板状や粒子状の無機フィラーが挙げられる。 (Other inorganic fillers)
In the first embodiment, in addition to the white pigment and the fibrous filler, the reflector resin composition is usually a thermoplastic resin composition; a thermosetting resin composition such as an epoxy resin, an acrylic resin, or a silicone resin, and an inorganic filler. As long as it does not interfere with the reflection characteristics as a reflector, can be used alone or in combination.
Examples include aluminum borate whiskers, magnesium whiskers, silicon whiskers, wollastonite, imogolite, sepiolite, zonolite, silica particles, layered silicates, layered silicates exchanged with organic onium ions, glass flakes, non-swelling Carbon nanoparticles such as synthetic mica, graphite, metal foil, ceramic beads, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, powdered silicic acid, feldspar powder, shirasu balloon, gypsum, novaculite, dosonite, and white clay fullerene Examples thereof include plate-like and particulate inorganic fillers.
<架橋処理剤>
第1実施形態において、リフレクター用樹脂組成物は、さらに架橋処理剤を含有していてもよい。樹脂組成物が架橋処理剤を含む場合には、リフレクターの形状に成形した後、電子線を照射させてリフレクターを得る。これにより、本実施形態に係るリフレクターに、より優れた耐熱性を付与できる。
架橋処理剤は、飽和もしくは不飽和の少なくとも1つの環構造を有し、環構造を形成する原子のうち少なくとも1つの原子に、アリル基、メタリル基、連結基を介したアリル基、及び連結基を介したメタリル基のいずれかのアリル系置換基が結合した構造を有する。
第1実施形態における樹脂組成物は、かかる構造を有する架橋処理剤を含有することにより、良好な電子線硬化性を発揮し、優れた耐熱性を有する。
飽和もしくは不飽和の環構造としては、シクロ環、ヘテロ環、芳香環等が挙げられる。環構造を形成する原子の数は、3~12であることが好ましく、5~8であることがより好ましく、6員環であることがさらに好ましい。環構造の数は1~3であることが好ましく、1又は2であることがより好ましく、1であることがさらに好ましい。 <Crosslinking agent>
In 1st Embodiment, the resin composition for reflectors may contain the crosslinking agent further. When the resin composition contains a crosslinking agent, it is shaped into a reflector shape, and then irradiated with an electron beam to obtain a reflector. Thereby, the more outstanding heat resistance can be provided to the reflector which concerns on this embodiment.
The crosslinking agent has at least one ring structure that is saturated or unsaturated, and at least one atom forming the ring structure includes an allyl group, a methallyl group, an allyl group via a linking group, and a linking group. It has a structure in which any allylic substituent of the methallyl group via is bonded.
The resin composition in the first embodiment exhibits good electron beam curability and has excellent heat resistance by containing a crosslinking agent having such a structure.
Examples of the saturated or unsaturated ring structure include a cyclo ring, a hetero ring, and an aromatic ring. The number of atoms forming the ring structure is preferably 3 to 12, more preferably 5 to 8, and still more preferably a 6-membered ring. The number of ring structures is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
第1実施形態において、リフレクター用樹脂組成物は、さらに架橋処理剤を含有していてもよい。樹脂組成物が架橋処理剤を含む場合には、リフレクターの形状に成形した後、電子線を照射させてリフレクターを得る。これにより、本実施形態に係るリフレクターに、より優れた耐熱性を付与できる。
架橋処理剤は、飽和もしくは不飽和の少なくとも1つの環構造を有し、環構造を形成する原子のうち少なくとも1つの原子に、アリル基、メタリル基、連結基を介したアリル基、及び連結基を介したメタリル基のいずれかのアリル系置換基が結合した構造を有する。
第1実施形態における樹脂組成物は、かかる構造を有する架橋処理剤を含有することにより、良好な電子線硬化性を発揮し、優れた耐熱性を有する。
飽和もしくは不飽和の環構造としては、シクロ環、ヘテロ環、芳香環等が挙げられる。環構造を形成する原子の数は、3~12であることが好ましく、5~8であることがより好ましく、6員環であることがさらに好ましい。環構造の数は1~3であることが好ましく、1又は2であることがより好ましく、1であることがさらに好ましい。 <Crosslinking agent>
In 1st Embodiment, the resin composition for reflectors may contain the crosslinking agent further. When the resin composition contains a crosslinking agent, it is shaped into a reflector shape, and then irradiated with an electron beam to obtain a reflector. Thereby, the more outstanding heat resistance can be provided to the reflector which concerns on this embodiment.
The crosslinking agent has at least one ring structure that is saturated or unsaturated, and at least one atom forming the ring structure includes an allyl group, a methallyl group, an allyl group via a linking group, and a linking group. It has a structure in which any allylic substituent of the methallyl group via is bonded.
The resin composition in the first embodiment exhibits good electron beam curability and has excellent heat resistance by containing a crosslinking agent having such a structure.
Examples of the saturated or unsaturated ring structure include a cyclo ring, a hetero ring, and an aromatic ring. The number of atoms forming the ring structure is preferably 3 to 12, more preferably 5 to 8, and still more preferably a 6-membered ring. The number of ring structures is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
架橋処理剤の分子量は、1000以下であることが好ましく、500以下であることがより好ましく、300以下であることがさらに好ましい。分子量が1000以下であることで、樹脂組成物中において良好な分散性が得られ、電子線照射による有効な架橋反応を起こすことが可能となる。
架橋処理剤の融点は、使用するポリオレフィン樹脂の融点以下であることが好ましく、例えば、200℃以下であることが好ましい。 The molecular weight of the crosslinking agent is preferably 1000 or less, more preferably 500 or less, and even more preferably 300 or less. When the molecular weight is 1000 or less, good dispersibility is obtained in the resin composition, and it is possible to cause an effective crosslinking reaction by electron beam irradiation.
The melting point of the crosslinking agent is preferably not higher than the melting point of the polyolefin resin to be used, and is preferably 200 ° C. or lower, for example.
架橋処理剤の融点は、使用するポリオレフィン樹脂の融点以下であることが好ましく、例えば、200℃以下であることが好ましい。 The molecular weight of the crosslinking agent is preferably 1000 or less, more preferably 500 or less, and even more preferably 300 or less. When the molecular weight is 1000 or less, good dispersibility is obtained in the resin composition, and it is possible to cause an effective crosslinking reaction by electron beam irradiation.
The melting point of the crosslinking agent is preferably not higher than the melting point of the polyolefin resin to be used, and is preferably 200 ° C. or lower, for example.
上述した架橋処理剤であれば、成形時の流動性に優れるため、樹脂組成物の成形温度を低下させ熱負荷を軽減したり、成形時の摩擦を軽減したり、白色顔料を含む無機フィラーの含有率を増やすことができる。
Since the crosslinking treatment agent described above is excellent in fluidity during molding, the molding temperature of the resin composition is reduced to reduce the thermal load, friction during molding, and the inorganic filler containing a white pigment. The content rate can be increased.
架橋処理剤における連結基としては、エステル結合、エーテル結合、アルキレン基、(ヘテロ)アリーレン基等が挙げられる。環を形成する原子のうちアリル系置換基と結合しない原子は、水素、酸素、窒素等が結合した状態、又は種々の置換基が結合した状態となっている。
Examples of the linking group in the crosslinking agent include an ester bond, an ether bond, an alkylene group, and a (hetero) arylene group. Among the atoms forming the ring, atoms that are not bonded to the allylic substituent are in a state in which hydrogen, oxygen, nitrogen, or the like is bonded, or in a state in which various substituents are bonded.
本実施形態において、リフレクター用樹脂組成物に使用可能な架橋処理剤としては、当該架橋処理剤の1つの環を形成する原子のうち少なくとも2つの原子に、それぞれ独立に、アリル系置換基が結合されていることが好ましい。また環構造が6員環である場合、当該環を形成する原子のうちの少なくとも2つの原子に、それぞれ独立に、アリル系置換基が結合されていることが好ましく、1つのアリル系置換基が結合された原子のメタ位に他のアリル系置換基が結合されていることが好ましい。
さらに、架橋処理剤は、下記式(1)又は(2)で表されることが好ましい。 In this embodiment, as the crosslinking agent usable in the resin composition for reflectors, an allylic substituent is independently bonded to at least two atoms forming one ring of the crosslinking agent. It is preferable that When the ring structure is a 6-membered ring, it is preferable that an allylic substituent is preferably bonded to at least two of the atoms forming the ring independently of each other. It is preferable that another allylic substituent is bonded to the meta position of the bonded atom.
Furthermore, the crosslinking agent is preferably represented by the following formula (1) or (2).
さらに、架橋処理剤は、下記式(1)又は(2)で表されることが好ましい。 In this embodiment, as the crosslinking agent usable in the resin composition for reflectors, an allylic substituent is independently bonded to at least two atoms forming one ring of the crosslinking agent. It is preferable that When the ring structure is a 6-membered ring, it is preferable that an allylic substituent is preferably bonded to at least two of the atoms forming the ring independently of each other. It is preferable that another allylic substituent is bonded to the meta position of the bonded atom.
Furthermore, the crosslinking agent is preferably represented by the following formula (1) or (2).
(式(1)中、R1~R3はそれぞれ独立に、アリル基、メタリル基、エステル結合を介したアリル基、及びエステル結合を介したメタリル基のいずれかのアリル系置換基である。)
(In Formula (1), R 1 to R 3 are each independently an allylic substituent of any one of an allyl group, a methallyl group, an allyl group via an ester bond, and a methallyl group via an ester bond. )
(式(2)中、R1~R3はそれぞれ独立に、アリル基、メタリル基、エステル結合を介したアリル基、及びエステル結合を介したメタリル基のいずれかのアリル系置換基である。)
(In Formula (2), R 1 to R 3 are each independently an allylic substituent of any one of an allyl group, a methallyl group, an allyl group via an ester bond, and a methallyl group via an ester bond. )
上記式(1)で表される架橋処理剤としてはトリアリルイソシアヌレート、メチルジアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌル酸、モノアリルジグリシジルイソシアヌレート、トリメタリルイソシアヌレート等が挙げられる。
上記式(2)で表される架橋処理剤としてはオルトフタル酸のジアリルエステル、イソフタル酸のジアリルエステル等が挙げられる。 Examples of the crosslinking agent represented by the above formula (1) include triallyl isocyanurate, methyl diallyl isocyanurate, diallyl monoglycidyl isocyanuric acid, monoallyl diglycidyl isocyanurate, and trimethallyl isocyanurate.
Examples of the crosslinking agent represented by the above formula (2) include orthophthalic acid diallyl ester, isophthalic acid diallyl ester, and the like.
上記式(2)で表される架橋処理剤としてはオルトフタル酸のジアリルエステル、イソフタル酸のジアリルエステル等が挙げられる。 Examples of the crosslinking agent represented by the above formula (1) include triallyl isocyanurate, methyl diallyl isocyanurate, diallyl monoglycidyl isocyanuric acid, monoallyl diglycidyl isocyanurate, and trimethallyl isocyanurate.
Examples of the crosslinking agent represented by the above formula (2) include orthophthalic acid diallyl ester, isophthalic acid diallyl ester, and the like.
また、第1実施形態においては、ポリオレフィン樹脂に対して、成形性、リフレクターとしての物性値を改善する目的で、必要に応じてエラストマーをブレンドしてもよい。
エラストマーは、ガラス転移温度が40℃以下の重合体であって、通常のゴム質重合体及び熱可塑性エラストマーが含まれる。なお、ブロック共重合したゴム質重合体等でガラス転移温度が2点以上ある場合は、最も低いガラス転移温度が40℃以下であれば本発明のガラス転移温度が40℃以下のゴム質重合体として用いることができる。 In the first embodiment, an elastomer may be blended with the polyolefin resin as necessary for the purpose of improving moldability and physical properties as a reflector.
The elastomer is a polymer having a glass transition temperature of 40 ° C. or less, and includes a normal rubbery polymer and a thermoplastic elastomer. In addition, when the glass transition temperature is two or more in the case of a block copolymerized rubber polymer or the like, the rubbery polymer having a glass transition temperature of 40 ° C. or less according to the present invention if the lowest glass transition temperature is 40 ° C. or less. Can be used as
エラストマーは、ガラス転移温度が40℃以下の重合体であって、通常のゴム質重合体及び熱可塑性エラストマーが含まれる。なお、ブロック共重合したゴム質重合体等でガラス転移温度が2点以上ある場合は、最も低いガラス転移温度が40℃以下であれば本発明のガラス転移温度が40℃以下のゴム質重合体として用いることができる。 In the first embodiment, an elastomer may be blended with the polyolefin resin as necessary for the purpose of improving moldability and physical properties as a reflector.
The elastomer is a polymer having a glass transition temperature of 40 ° C. or less, and includes a normal rubbery polymer and a thermoplastic elastomer. In addition, when the glass transition temperature is two or more in the case of a block copolymerized rubber polymer or the like, the rubbery polymer having a glass transition temperature of 40 ° C. or less according to the present invention if the lowest glass transition temperature is 40 ° C. or less. Can be used as
エラストマーの例としては、イソプレンゴム、その水素添加物;クロロプレンゴム、その水素添加物;エチレン・プロピレン共重合体、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体等の飽和ポリオレフィンゴム;エチレン・プロピレン・ジエン共重合体、α-オレフィン・ジエン共重合体、イソブチレン・イソプレン共重合体、イソブチレン・ジエン共重合体等のジエン系共重合体、これらのハロゲン化物、ジエン系重合体又はそのハロゲン化物の水素添加物;アクリロニトリル・ブタジエン共重合体、その水素添加物;フッ化ビニリデン・三フッ化エチレン共重合体、フッ化ビニリデン・六フッ化プロピレン共重合体、フッ化ビニリデン・六フッ化プロピレン・四フッ化エチレン共重合体、プロピレン・四フッ化エチレン共重合体等のフッ素ゴム;ウレタンゴム、シリコーンゴム、ポリエーテル系ゴム、アクリルゴム、クロルスルホン化ポリエチレンゴム、エピクロルヒドリンゴム、プロピレンオキサイドゴム、エチレンアクリルゴム等の特殊ゴム;ノルボルネン系単量体とエチレン又はα-オレフィンの共重合体、ノルボルネン系単量体とエチレンとα-オレフィンの三元共重合体、ノルボルネン系単量体の開環重合体、ノルボルネン系単量体の開環重合体水素添加物等のノルボルネン系ゴム質重合体;乳化重合又は溶液重合したスチレン・ブタジエン・ゴム、ハイスチレンゴム等のランダム又はブロック・スチレン・ブタジエン系共重合体、これらの水素添加物;スチレン・ブタジエン・スチレン・ゴム、スチレン・イソプレン・スチレン・ゴム、スチレン・エチレン・ブタジエン・スチレン・ゴム等の芳香族ビニル系モノマー・共役ジエンのランダム共重合体、これらの水素添加物;スチレン・ブタジエン・スチレン・ゴム、スチレン・イソプレン・スチレン・ゴム、スチレン・エチレン・ブタジエン・スチレン・ゴム等の芳香族ビニル系モノマー・共役ジエンの直鎖状又は放射状ブロック共重合体、それらの水素添加物等のスチレン系熱可塑性エラストマーをはじめ、ウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、1,2-ポリブタジエン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、フッ素系熱可塑性エラストマー等の熱可塑性エラストマー;等のうち、主成分となる脂環構造含有熱可塑性樹脂と非相溶のものが挙げられる。
Examples of elastomers include isoprene rubber, hydrogenated product thereof; chloroprene rubber, hydrogenated product thereof; saturated polyolefin such as ethylene / propylene copolymer, ethylene / α-olefin copolymer, propylene / α-olefin copolymer Rubber: Ethylene / propylene / diene copolymer, α-olefin / diene copolymer, isobutylene / isoprene copolymer, diene copolymer such as isobutylene / diene copolymer, their halides, diene polymer Or hydrogenated products thereof; acrylonitrile / butadiene copolymer, hydrogenated products thereof; vinylidene fluoride / trifluoride ethylene copolymer, vinylidene fluoride / hexafluoropropylene copolymer, vinylidene fluoride / six Propylene fluoride / tetrafluoroethylene copolymer, propylene / tetrafluoroethylene copolymer Fluoro rubber such as fluorinated ethylene copolymer; Special rubber such as urethane rubber, silicone rubber, polyether rubber, acrylic rubber, chlorosulfonated polyethylene rubber, epichlorohydrin rubber, propylene oxide rubber, ethylene acrylic rubber; norbornene monomer Copolymer of ethylene and α-olefin, norbornene monomer and terpolymer of ethylene and α-olefin, ring-opening polymer of norbornene monomer, ring-opening polymer of norbornene monomer Norbornene-based rubbery polymers such as hydrogenated products; Random or block styrene-butadiene-based copolymers such as emulsion-polymerized or solution-polymerized styrene / butadiene / rubber and high-styrene rubber; hydrogenated products thereof; styrene / butadiene・ Styrene, rubber, styrene, isoprene, styrene, rubber Random copolymers of aromatic vinyl monomers and conjugated dienes such as styrene, ethylene, butadiene, styrene, and rubber, and hydrogenated products thereof; styrene, butadiene, styrene, rubber, styrene, isoprene, styrene, rubber, styrene, ethylene・ Aromatic vinyl monomers such as butadiene, styrene, rubber, etc. ・ Linear or radial block copolymers of conjugated dienes, styrene thermoplastic elastomers such as hydrogenated products, urethane thermoplastic elastomers, polyamides Thermoplastic elastomers such as thermoplastic elastomers, 1,2-polybutadiene-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, fluorine-based thermoplastic elastomers; A melted one is mentioned.
これらの中でも、芳香族ビニル系モノマーと共役ジエン系モノマーの共重合体、及びその水素添加物が、脂環構造含有熱可塑性樹脂との分散性がよいため、好ましい。芳香族ビニル系モノマーと共役ジエン系モノマーの共重合体はブロック共重合体でもランダム共重合体でも良い。耐候性の点から芳香環以外の部分を水素添加しているものがより好ましい。具体的には、スチレン・ブタジエンブロック共重合体、スチレン・ブタジエン・スチレン・ブロック共重合体、スチレン・イソプレン・ブロック共重合体、スチレン・イソプレン・スチレン・ブロック共重合体、及びこれらの水素添加物、スチレン・ブタジエン・ランダム共重合体及びこれらの水素添加物等が挙げられる。
Among these, a copolymer of an aromatic vinyl monomer and a conjugated diene monomer, and a hydrogenated product thereof are preferable because of good dispersibility with the alicyclic structure-containing thermoplastic resin. The copolymer of the aromatic vinyl monomer and the conjugated diene monomer may be a block copolymer or a random copolymer. From the viewpoint of weather resistance, hydrogenated portions other than aromatic rings are more preferable. Specifically, styrene / butadiene block copolymer, styrene / butadiene / styrene / block copolymer, styrene / isoprene / block copolymer, styrene / isoprene / styrene / block copolymer, and hydrogenated products thereof. Styrene / butadiene / random copolymers and hydrogenated products thereof.
第1実施形態において、リフレクター用樹脂組成物には、該リフレクター用樹脂組成物から成形されてなるリフレクターの機能を損なわない限りにおいて、種々の添加剤を含有させることができる。例えば、樹脂組成物の性質を改善する目的で、種々のウィスカー、シリコーンパウダー、熱可塑性エラストマー、有機合成ゴム、脂肪酸エステル、グリセリン酸エステル、ステアリン酸亜鉛、ステアリン酸カルシウム等の内部離型剤や、ベンゾフェノン系、サリチル酸系、シアノアクリレート系、イソシアヌレート系、シュウ酸アニリド系、ベンゾエート系、ヒンダートアミン系、ベンゾトリアゾール系、フェノール系等の酸化防止剤や、ヒンダードアミン系、ベンゾエート系等の光安定剤といった添加剤を配合することができる。
In the first embodiment, the reflector resin composition may contain various additives as long as the function of the reflector formed from the reflector resin composition is not impaired. For example, for the purpose of improving the properties of the resin composition, various kinds of whisker, silicone powder, thermoplastic elastomer, organic synthetic rubber, fatty acid ester, glycerate ester, zinc stearate, calcium stearate and other internal mold release agents, benzophenone , Salicylic acid-based, cyanoacrylate-based, isocyanurate-based, oxalic acid anilide-based, benzoate-based, hindered amine-based, benzotriazole-based, phenol-based antioxidants, hindered amine-based, benzoate-based light stabilizers, etc. Additives can be blended.
また、リフレクター用樹脂組成物には、上述した添加剤のほかにも、シランカップリング剤のような分散剤を配合することができる。シランカップリング剤としては、例えば、ヘキサメチルジシラザン等のジシラザン;環状シラザン;トリメチルシラン、トリメチルクロルシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、トリメトキシシラン、ベンジルジメチルクロルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n-ブチルトリメトキシシラン、n-ヘキサデシルトリメトキシシラン、n-オクタデシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、及びビニルトリアセトキシシラン等のアルキルシラン化合物;γ-アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、及びN-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、ヘキシルトリメトキシシラン等のアミノシラン化合物;等が挙げられる。
Further, in addition to the additives described above, a dispersant such as a silane coupling agent can be blended in the reflector resin composition. Examples of the silane coupling agent include disilazane such as hexamethyldisilazane; cyclic silazane; trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, trimethoxysilane, benzyldimethylchlorosilane, Methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-butyltrimethoxysilane, n-hexadecyl Trimethoxysilane, n-octadecyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyl Alkylsilane compounds such as limethoxysilane and vinyltriacetoxysilane; γ-aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane N-phenyl-3-aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropyltrimethoxysilane, and N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane And aminosilane compounds such as hexyltrimethoxysilane; and the like.
第1実施形態において、リフレクター用樹脂組成物は、上述したポリオレフィン樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを溶融混練し、ペレット等の造粒物に成形されていてもよい。溶融混練方法としては、溶融混練押出機、2本ロールあるいは3本ロール、ホモジナイザー、プラネタリーミキサー等の撹拌機、ポリラボシステムやラボプラストミル等の溶融混練機等の公知の溶融混練方法を用いることができる。
In the first embodiment, the reflector resin composition may be formed into a granulated product such as a pellet by melt-kneading the polyolefin resin described above and an inorganic filler containing a white pigment and a fibrous filler. As the melt-kneading method, a known melt-kneading method such as a melt-kneading extruder, a two-roll or three-roll, a stirrer such as a homogenizer or a planetary mixer, or a melt-kneader such as a polylab system or a lab plast mill is used. be able to.
<リフレクター用樹脂組成物中の各成分の含有率>
第1実施形態において用いられるリフレクター用樹脂組成物において、樹脂の含有率は、リフレクター用樹脂組成物の全質量基準で7質量%以上30質量%以下であることが好ましい。樹脂の含有率の下限値は、より好ましくは10質量%であり、さらに好ましくは11質量%である。また、樹脂の含有率の上限値は、より好ましくは28質量%であり、さらに好ましくは25質量%以下である。樹脂の含有率が上記範囲であれば、樹脂組成物を成形する際の成形性を保ちながら、耐熱性の優れた成形体とすることができる。
第1実施形態において、リフレクター用樹脂組成物中における無機フィラー含有率は、リフレクター用樹脂組成物の全質量基準で、70質量%以上が好ましく、より好ましくは、72質量%以上であり、さらに好ましくは75質量%以上である。無機フィラー含有率の上限値は、成形性の観点から90質量%程度である。無機フィラー含有率が70質量%以上であれば、リフロー工程において要求される耐熱性を満足することができる。
また、白色顔料の含有量は、リフレクターの光反射率、強度、成形反り等の製品性能の観点から、樹脂100質量部に対し、200質量部超、500質量部以下とすることが好ましい。また、300質量部以上480質量部以下であることがより好ましく、350質量部以上450質量部以下であることがさらに好ましい。
白色顔料の含有量が樹脂100質量部に対して200質量部超であれば、リフレクターの光反射率、強度、成形反り等において十分な製品性能が得られる。また、500質量部以下であれば、無機成分が多く含まれることによる加工性の悪化、或いは、成形状態の悪化を防止することができる。
また、無機フィラー中の白色顔料の含有量を上記範囲にすることで、該リフレクター用樹脂組成物から成形されてなるリフレクターの色調を白色系とすることができ、リフレクターとして好適な光線反射率が得られる。
無機フィラー中の繊維フィラーの含有量は、樹脂100質量部に対し、10質量部以上300質量部以下であることが好ましく、30質量部以上200質量部以下であることがより好ましく、50質量部以上180質量部以下であることがさらに好ましい。
無機フィラー中の繊維フィラーの含有量を上記範囲にすることで、リフレクターとして好適な光線反射率を阻害することなく、リフロー工程において要求される耐熱性を満足することができる。
第1実施形態において、リフレクター用樹脂組成物に架橋処理剤を含有する場合には、架橋処理剤の含有量は、樹脂100質量部に対して、15質量部以上40質量部以下、好ましくは15質量部以上30質量部以下、より好ましくは16質量部以上20質量部以下とすることができる。架橋処理剤が上記範囲内であれば、架橋前の成形体から架橋処理剤をブリードアウトさせることなく、架橋を効果的に行うことができる。 <Content of each component in the resin composition for reflector>
In the reflector resin composition used in the first embodiment, the resin content is preferably 7% by mass or more and 30% by mass or less based on the total mass of the reflector resin composition. The lower limit value of the resin content is more preferably 10% by mass, and even more preferably 11% by mass. Further, the upper limit value of the resin content is more preferably 28% by mass, and further preferably 25% by mass or less. If the content rate of resin is the said range, it can be set as the molded object excellent in heat resistance, maintaining the moldability at the time of shape | molding a resin composition.
In 1st Embodiment, 70 mass% or more is preferable on the basis of the total mass of the resin composition for reflectors, and, as for the inorganic filler content rate in the resin composition for reflectors, More preferably, it is 72 mass% or more, More preferably Is 75% by mass or more. The upper limit of the inorganic filler content is about 90% by mass from the viewpoint of moldability. When the inorganic filler content is 70% by mass or more, the heat resistance required in the reflow process can be satisfied.
Moreover, it is preferable that content of a white pigment shall be more than 200 mass parts and 500 mass parts or less with respect to 100 mass parts of resin from viewpoints of product performance, such as the light reflectance of a reflector, intensity | strength, and shaping | molding curvature. Moreover, it is more preferable that they are 300 mass parts or more and 480 mass parts or less, and it is further more preferable that they are 350 mass parts or more and 450 mass parts or less.
When the content of the white pigment is more than 200 parts by mass with respect to 100 parts by mass of the resin, sufficient product performance can be obtained in terms of the light reflectivity, strength, molding warp, etc. of the reflector. Moreover, if it is 500 mass parts or less, the deterioration of workability by containing many inorganic components or the deterioration of a shaping | molding state can be prevented.
In addition, by setting the content of the white pigment in the inorganic filler in the above range, the color tone of the reflector formed from the resin composition for a reflector can be white, and the light reflectance suitable as a reflector is obtained. can get.
The content of the fiber filler in the inorganic filler is preferably 10 parts by mass or more and 300 parts by mass or less, more preferably 30 parts by mass or more and 200 parts by mass or less, and 50 parts by mass with respect to 100 parts by mass of the resin. More preferably, it is 180 parts by mass or less.
By making content of the fiber filler in an inorganic filler into the said range, the heat resistance requested | required in a reflow process can be satisfied, without inhibiting the light reflectivity suitable as a reflector.
In 1st Embodiment, when a crosslinking agent is contained in the resin composition for reflectors, content of a crosslinking agent is 15 mass parts or more and 40 mass parts or less with respect to 100 mass parts of resin, Preferably it is 15 The amount can be not less than 30 parts by mass and more preferably not less than 16 parts by mass and not more than 20 parts by mass. If the crosslinking agent is within the above range, crosslinking can be carried out effectively without bleeding out the crosslinking agent from the molded product before crosslinking.
第1実施形態において用いられるリフレクター用樹脂組成物において、樹脂の含有率は、リフレクター用樹脂組成物の全質量基準で7質量%以上30質量%以下であることが好ましい。樹脂の含有率の下限値は、より好ましくは10質量%であり、さらに好ましくは11質量%である。また、樹脂の含有率の上限値は、より好ましくは28質量%であり、さらに好ましくは25質量%以下である。樹脂の含有率が上記範囲であれば、樹脂組成物を成形する際の成形性を保ちながら、耐熱性の優れた成形体とすることができる。
第1実施形態において、リフレクター用樹脂組成物中における無機フィラー含有率は、リフレクター用樹脂組成物の全質量基準で、70質量%以上が好ましく、より好ましくは、72質量%以上であり、さらに好ましくは75質量%以上である。無機フィラー含有率の上限値は、成形性の観点から90質量%程度である。無機フィラー含有率が70質量%以上であれば、リフロー工程において要求される耐熱性を満足することができる。
また、白色顔料の含有量は、リフレクターの光反射率、強度、成形反り等の製品性能の観点から、樹脂100質量部に対し、200質量部超、500質量部以下とすることが好ましい。また、300質量部以上480質量部以下であることがより好ましく、350質量部以上450質量部以下であることがさらに好ましい。
白色顔料の含有量が樹脂100質量部に対して200質量部超であれば、リフレクターの光反射率、強度、成形反り等において十分な製品性能が得られる。また、500質量部以下であれば、無機成分が多く含まれることによる加工性の悪化、或いは、成形状態の悪化を防止することができる。
また、無機フィラー中の白色顔料の含有量を上記範囲にすることで、該リフレクター用樹脂組成物から成形されてなるリフレクターの色調を白色系とすることができ、リフレクターとして好適な光線反射率が得られる。
無機フィラー中の繊維フィラーの含有量は、樹脂100質量部に対し、10質量部以上300質量部以下であることが好ましく、30質量部以上200質量部以下であることがより好ましく、50質量部以上180質量部以下であることがさらに好ましい。
無機フィラー中の繊維フィラーの含有量を上記範囲にすることで、リフレクターとして好適な光線反射率を阻害することなく、リフロー工程において要求される耐熱性を満足することができる。
第1実施形態において、リフレクター用樹脂組成物に架橋処理剤を含有する場合には、架橋処理剤の含有量は、樹脂100質量部に対して、15質量部以上40質量部以下、好ましくは15質量部以上30質量部以下、より好ましくは16質量部以上20質量部以下とすることができる。架橋処理剤が上記範囲内であれば、架橋前の成形体から架橋処理剤をブリードアウトさせることなく、架橋を効果的に行うことができる。 <Content of each component in the resin composition for reflector>
In the reflector resin composition used in the first embodiment, the resin content is preferably 7% by mass or more and 30% by mass or less based on the total mass of the reflector resin composition. The lower limit value of the resin content is more preferably 10% by mass, and even more preferably 11% by mass. Further, the upper limit value of the resin content is more preferably 28% by mass, and further preferably 25% by mass or less. If the content rate of resin is the said range, it can be set as the molded object excellent in heat resistance, maintaining the moldability at the time of shape | molding a resin composition.
In 1st Embodiment, 70 mass% or more is preferable on the basis of the total mass of the resin composition for reflectors, and, as for the inorganic filler content rate in the resin composition for reflectors, More preferably, it is 72 mass% or more, More preferably Is 75% by mass or more. The upper limit of the inorganic filler content is about 90% by mass from the viewpoint of moldability. When the inorganic filler content is 70% by mass or more, the heat resistance required in the reflow process can be satisfied.
Moreover, it is preferable that content of a white pigment shall be more than 200 mass parts and 500 mass parts or less with respect to 100 mass parts of resin from viewpoints of product performance, such as the light reflectance of a reflector, intensity | strength, and shaping | molding curvature. Moreover, it is more preferable that they are 300 mass parts or more and 480 mass parts or less, and it is further more preferable that they are 350 mass parts or more and 450 mass parts or less.
When the content of the white pigment is more than 200 parts by mass with respect to 100 parts by mass of the resin, sufficient product performance can be obtained in terms of the light reflectivity, strength, molding warp, etc. of the reflector. Moreover, if it is 500 mass parts or less, the deterioration of workability by containing many inorganic components or the deterioration of a shaping | molding state can be prevented.
In addition, by setting the content of the white pigment in the inorganic filler in the above range, the color tone of the reflector formed from the resin composition for a reflector can be white, and the light reflectance suitable as a reflector is obtained. can get.
The content of the fiber filler in the inorganic filler is preferably 10 parts by mass or more and 300 parts by mass or less, more preferably 30 parts by mass or more and 200 parts by mass or less, and 50 parts by mass with respect to 100 parts by mass of the resin. More preferably, it is 180 parts by mass or less.
By making content of the fiber filler in an inorganic filler into the said range, the heat resistance requested | required in a reflow process can be satisfied, without inhibiting the light reflectivity suitable as a reflector.
In 1st Embodiment, when a crosslinking agent is contained in the resin composition for reflectors, content of a crosslinking agent is 15 mass parts or more and 40 mass parts or less with respect to 100 mass parts of resin, Preferably it is 15 The amount can be not less than 30 parts by mass and more preferably not less than 16 parts by mass and not more than 20 parts by mass. If the crosslinking agent is within the above range, crosslinking can be carried out effectively without bleeding out the crosslinking agent from the molded product before crosslinking.
<リフレクター用樹脂組成物の燃焼後の灰分量>
第1実施形態において、リフレクター用樹脂組成物の、TG-DTA法に基づく灰分量が加熱前のリフレクター用樹脂組成物の全質量基準で70質量%以上90質量%以下であることを要する。
ここで、TG-DTA法に基づく灰分量とは、上述した条件と同様に、熱重量/示差熱同時分析装置を用いて、該リフレクター用樹脂組成物の加熱前の質量を測定した後、大気雰囲気下において、10℃/分で600℃まで昇温した後に600℃で30分間加熱して残る灰分量である。
リフレクター用樹脂組成物の灰分が70質量%未満であると、リフロー工程において要求される耐熱性、及び必要な反射率を満足することができない。また、灰分量が90質量%を超えると、リフレクターの成形性が低下する。
上述の観点から、上記灰分量の下限値は、72質量%であることが好ましく、75質量%であることがより好ましい。また、上記灰分量の上限値は、88質量%であることが好ましく、85質量%であることがより好ましい。 <Amount of ash after combustion of resin composition for reflector>
In the first embodiment, the amount of ash based on the TG-DTA method of the resin composition for reflectors needs to be 70% by mass or more and 90% by mass or less based on the total mass of the resin composition for reflectors before heating.
Here, the amount of ash based on the TG-DTA method is the same as the above-mentioned conditions, and after measuring the mass before heating of the resin composition for reflector using a thermogravimetric / differential thermal analyzer, This is the amount of ash remaining after heating to 600 ° C. at 10 ° C./min and heating at 600 ° C. for 30 minutes.
When the ash content of the resin composition for a reflector is less than 70% by mass, the heat resistance required in the reflow process and the required reflectance cannot be satisfied. Moreover, when the amount of ash exceeds 90 mass%, the moldability of a reflector will fall.
From the above viewpoint, the lower limit of the ash content is preferably 72% by mass, and more preferably 75% by mass. Moreover, it is preferable that the upper limit of the said ash content is 88 mass%, and it is more preferable that it is 85 mass%.
第1実施形態において、リフレクター用樹脂組成物の、TG-DTA法に基づく灰分量が加熱前のリフレクター用樹脂組成物の全質量基準で70質量%以上90質量%以下であることを要する。
ここで、TG-DTA法に基づく灰分量とは、上述した条件と同様に、熱重量/示差熱同時分析装置を用いて、該リフレクター用樹脂組成物の加熱前の質量を測定した後、大気雰囲気下において、10℃/分で600℃まで昇温した後に600℃で30分間加熱して残る灰分量である。
リフレクター用樹脂組成物の灰分が70質量%未満であると、リフロー工程において要求される耐熱性、及び必要な反射率を満足することができない。また、灰分量が90質量%を超えると、リフレクターの成形性が低下する。
上述の観点から、上記灰分量の下限値は、72質量%であることが好ましく、75質量%であることがより好ましい。また、上記灰分量の上限値は、88質量%であることが好ましく、85質量%であることがより好ましい。 <Amount of ash after combustion of resin composition for reflector>
In the first embodiment, the amount of ash based on the TG-DTA method of the resin composition for reflectors needs to be 70% by mass or more and 90% by mass or less based on the total mass of the resin composition for reflectors before heating.
Here, the amount of ash based on the TG-DTA method is the same as the above-mentioned conditions, and after measuring the mass before heating of the resin composition for reflector using a thermogravimetric / differential thermal analyzer, This is the amount of ash remaining after heating to 600 ° C. at 10 ° C./min and heating at 600 ° C. for 30 minutes.
When the ash content of the resin composition for a reflector is less than 70% by mass, the heat resistance required in the reflow process and the required reflectance cannot be satisfied. Moreover, when the amount of ash exceeds 90 mass%, the moldability of a reflector will fall.
From the above viewpoint, the lower limit of the ash content is preferably 72% by mass, and more preferably 75% by mass. Moreover, it is preferable that the upper limit of the said ash content is 88 mass%, and it is more preferable that it is 85 mass%.
第1実施形態において、リフレクター用樹脂組成物からリフレクターを成形するには、トランスファー成形、圧縮成形、射出成形等の成形方法を用いることができる。例えば、射出成形方法を用いる場合、シリンダー温度200~400℃、金型温度20~150℃で射出成形してリフレクターの形状の成形体を得ることができる。架橋処理剤を使用した場合には、得られた成形体に電子線照射処理を施すことにより、より硬化されたリフレクターを得ることができる。このように、電子線照射処理を行うことによりリフレクターの耐熱性を一層高めることができる。
なお、電子線照射処理は、成形前のリフレクター用樹脂組成物に施してもよく、その電子線照射処理後のリフレクター用樹脂組成物をリフレクターとして所望の形状に成形してもよい。 In 1st Embodiment, in order to shape | mold a reflector from the resin composition for reflectors, shaping | molding methods, such as transfer molding, compression molding, and injection molding, can be used. For example, when an injection molding method is used, a molded article having a reflector shape can be obtained by injection molding at a cylinder temperature of 200 to 400 ° C. and a mold temperature of 20 to 150 ° C. When a crosslinking agent is used, a more cured reflector can be obtained by subjecting the obtained molded body to electron beam irradiation treatment. Thus, the heat resistance of the reflector can be further enhanced by performing the electron beam irradiation treatment.
The electron beam irradiation treatment may be performed on the resin composition for reflectors before molding, or the resin composition for reflectors after the electron beam irradiation treatment may be molded into a desired shape as a reflector.
なお、電子線照射処理は、成形前のリフレクター用樹脂組成物に施してもよく、その電子線照射処理後のリフレクター用樹脂組成物をリフレクターとして所望の形状に成形してもよい。 In 1st Embodiment, in order to shape | mold a reflector from the resin composition for reflectors, shaping | molding methods, such as transfer molding, compression molding, and injection molding, can be used. For example, when an injection molding method is used, a molded article having a reflector shape can be obtained by injection molding at a cylinder temperature of 200 to 400 ° C. and a mold temperature of 20 to 150 ° C. When a crosslinking agent is used, a more cured reflector can be obtained by subjecting the obtained molded body to electron beam irradiation treatment. Thus, the heat resistance of the reflector can be further enhanced by performing the electron beam irradiation treatment.
The electron beam irradiation treatment may be performed on the resin composition for reflectors before molding, or the resin composition for reflectors after the electron beam irradiation treatment may be molded into a desired shape as a reflector.
電子線の加速電圧については、リフレクター用樹脂組成物の大きさや、成形後のリフレクターの厚みに応じて適宜選定し得る。例えば、厚みが1mm程度のリフレクターの場合、通常、250~3000kV程度の加速電圧で、使用した架橋処理剤を架橋し、硬化させることができる。なお、電子線の照射においては、加速電圧が高いほど透過能力が増加するため、基材として電子線により劣化する基材を使用する場合には、電子線の透過深さと成形体の厚みが実質的に等しくなるように、加速電圧を選定することにより、成形体への余分の電子線の照射を抑制することができ、過剰電子線による成形体の劣化を最小限にとどめることができる。また、電子線を照射する際の吸収線量は樹脂組成物の組成により適宜設定されるが、成形体中の架橋密度が飽和する量が好ましく、照射線量は50~600kGyであることが好ましい。
さらに、電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型等の各種電子線加速器を用いることができる。 About the acceleration voltage of an electron beam, it can select suitably according to the magnitude | size of the resin composition for reflectors, and the thickness of the reflector after shaping | molding. For example, in the case of a reflector having a thickness of about 1 mm, the used crosslinking agent can be crosslinked and cured usually at an acceleration voltage of about 250 to 3000 kV. In addition, in electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when using a base material that deteriorates due to the electron beam as the base material, the transmission depth of the electron beam and the thickness of the molded body are substantially equal. By selecting the accelerating voltage so as to be equal to each other, it is possible to suppress irradiation of an excessive electron beam to the molded body, and to minimize degradation of the molded body due to excess electron beams. The absorbed dose when irradiating with an electron beam is appropriately set depending on the composition of the resin composition, but the amount at which the crosslink density in the molded body is saturated is preferable, and the irradiated dose is preferably 50 to 600 kGy.
Further, the electron beam source is not particularly limited. For example, various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, a high frequency type, etc. Can be used.
さらに、電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型等の各種電子線加速器を用いることができる。 About the acceleration voltage of an electron beam, it can select suitably according to the magnitude | size of the resin composition for reflectors, and the thickness of the reflector after shaping | molding. For example, in the case of a reflector having a thickness of about 1 mm, the used crosslinking agent can be crosslinked and cured usually at an acceleration voltage of about 250 to 3000 kV. In addition, in electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when using a base material that deteriorates due to the electron beam as the base material, the transmission depth of the electron beam and the thickness of the molded body are substantially equal. By selecting the accelerating voltage so as to be equal to each other, it is possible to suppress irradiation of an excessive electron beam to the molded body, and to minimize degradation of the molded body due to excess electron beams. The absorbed dose when irradiating with an electron beam is appropriately set depending on the composition of the resin composition, but the amount at which the crosslink density in the molded body is saturated is preferable, and the irradiated dose is preferably 50 to 600 kGy.
Further, the electron beam source is not particularly limited. For example, various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, a high frequency type, etc. Can be used.
[リフレクター付きリードフレーム]
本発明の第1実施形態に係るリフレクター付きリードフレームは、上述した光反射面を有するリフレクターを備えるリフレクター付きリードフレームであって、該光反射面が、上述した樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを含有する樹脂組成物から成形されてなり、該繊維状フィラーの径方向の断面積が1μm2以上100μm2以下であり、TG-DTA法に基づく熱重量/示差熱同時分析装置を用いて、該リフレクターの加熱前の質量を測定した後、大気雰囲気下において、10℃/分で600℃まで昇温した後に600℃で30分間加熱して残る灰分量が加熱前の該リフレクターの全質量基準で70質量%以上90質量%以下である。
第1実施形態に係るリフレクター付きリードフレームは、リードフレームに、上述したリフレクター用樹脂組成物を射出成形によって所望のリフレクター形状に成形することで製造することができる。
ここで、リードフレームとは、リフレクターを載置するための基板を示す。リードフレームは、半導体発光装置の分野で基板として用いられるものあればいかなるものであっても使用可能である。リードフレームの材料としては、例えば、アルミナ、窒化アルミニウム、ムライト、ガラス等の焼結体から構成されるセラミック等を挙げることができる。これ以外にも、ポリイミド樹脂等のフレキシブル性を有する樹脂材料等を挙げることができる。特に金属で形成されたリフレクター用基板をリードフレームと称する。なお、リードフレームに形成された端子部等の形状は、ハーフエッチングにより形成されていてもよい。
リフレクター用基板を形成する金属材料としては、アルミニウム、銅及び銅の合金が用いられる。また、反射率の向上のため、銀等の反射率が高い貴金属によりめっきされていてもよい。
また、第1実施形態に係るリフレクター付リードフレームの厚さは、0.1mm以上3.0mm以下であることが好ましい。 [Lead frame with reflector]
The lead frame with a reflector according to the first embodiment of the present invention is a lead frame with a reflector including the reflector having the above-described light reflecting surface, and the light reflecting surface includes the above-described resin, white pigment, and fibrous filler. And a thermal filler / differential thermal analysis based on the TG-DTA method, wherein the fibrous filler has a radial cross-sectional area of 1 μm 2 or more and 100 μm 2 or less. After measuring the mass of the reflector before heating using an apparatus, the amount of ash remaining after heating at 600 ° C. for 30 minutes after heating up to 600 ° C. at 10 ° C./min in the atmosphere is 70% by mass or more and 90% by mass or less based on the total mass of the reflector.
The lead frame with a reflector according to the first embodiment can be manufactured by molding the above-described reflector resin composition into a desired reflector shape by injection molding on the lead frame.
Here, the lead frame refers to a substrate on which the reflector is placed. Any lead frame can be used as long as it is used as a substrate in the field of semiconductor light emitting devices. Examples of the material for the lead frame include ceramics composed of a sintered body such as alumina, aluminum nitride, mullite, and glass. In addition, a resin material having flexibility such as polyimide resin can be used. In particular, a reflector substrate made of metal is referred to as a lead frame. Note that the shapes of the terminal portions and the like formed on the lead frame may be formed by half etching.
Aluminum, copper, and an alloy of copper are used as the metal material for forming the reflector substrate. Moreover, in order to improve the reflectance, it may be plated with a noble metal having a high reflectance such as silver.
Moreover, it is preferable that the thickness of the lead frame with a reflector which concerns on 1st Embodiment is 0.1 mm or more and 3.0 mm or less.
本発明の第1実施形態に係るリフレクター付きリードフレームは、上述した光反射面を有するリフレクターを備えるリフレクター付きリードフレームであって、該光反射面が、上述した樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを含有する樹脂組成物から成形されてなり、該繊維状フィラーの径方向の断面積が1μm2以上100μm2以下であり、TG-DTA法に基づく熱重量/示差熱同時分析装置を用いて、該リフレクターの加熱前の質量を測定した後、大気雰囲気下において、10℃/分で600℃まで昇温した後に600℃で30分間加熱して残る灰分量が加熱前の該リフレクターの全質量基準で70質量%以上90質量%以下である。
第1実施形態に係るリフレクター付きリードフレームは、リードフレームに、上述したリフレクター用樹脂組成物を射出成形によって所望のリフレクター形状に成形することで製造することができる。
ここで、リードフレームとは、リフレクターを載置するための基板を示す。リードフレームは、半導体発光装置の分野で基板として用いられるものあればいかなるものであっても使用可能である。リードフレームの材料としては、例えば、アルミナ、窒化アルミニウム、ムライト、ガラス等の焼結体から構成されるセラミック等を挙げることができる。これ以外にも、ポリイミド樹脂等のフレキシブル性を有する樹脂材料等を挙げることができる。特に金属で形成されたリフレクター用基板をリードフレームと称する。なお、リードフレームに形成された端子部等の形状は、ハーフエッチングにより形成されていてもよい。
リフレクター用基板を形成する金属材料としては、アルミニウム、銅及び銅の合金が用いられる。また、反射率の向上のため、銀等の反射率が高い貴金属によりめっきされていてもよい。
また、第1実施形態に係るリフレクター付リードフレームの厚さは、0.1mm以上3.0mm以下であることが好ましい。 [Lead frame with reflector]
The lead frame with a reflector according to the first embodiment of the present invention is a lead frame with a reflector including the reflector having the above-described light reflecting surface, and the light reflecting surface includes the above-described resin, white pigment, and fibrous filler. And a thermal filler / differential thermal analysis based on the TG-DTA method, wherein the fibrous filler has a radial cross-sectional area of 1 μm 2 or more and 100 μm 2 or less. After measuring the mass of the reflector before heating using an apparatus, the amount of ash remaining after heating at 600 ° C. for 30 minutes after heating up to 600 ° C. at 10 ° C./min in the atmosphere is 70% by mass or more and 90% by mass or less based on the total mass of the reflector.
The lead frame with a reflector according to the first embodiment can be manufactured by molding the above-described reflector resin composition into a desired reflector shape by injection molding on the lead frame.
Here, the lead frame refers to a substrate on which the reflector is placed. Any lead frame can be used as long as it is used as a substrate in the field of semiconductor light emitting devices. Examples of the material for the lead frame include ceramics composed of a sintered body such as alumina, aluminum nitride, mullite, and glass. In addition, a resin material having flexibility such as polyimide resin can be used. In particular, a reflector substrate made of metal is referred to as a lead frame. Note that the shapes of the terminal portions and the like formed on the lead frame may be formed by half etching.
Aluminum, copper, and an alloy of copper are used as the metal material for forming the reflector substrate. Moreover, in order to improve the reflectance, it may be plated with a noble metal having a high reflectance such as silver.
Moreover, it is preferable that the thickness of the lead frame with a reflector which concerns on 1st Embodiment is 0.1 mm or more and 3.0 mm or less.
[半導体発光装置]
本発明の第1実施形態に係る半導体発光装置を、図1に例示する。本実施形態に係る半導体発光装置は、光半導体素子10と、この光半導体素子10の周りに設けられ、光半導体素子10からの光を所定方向に反射させる光反射面を有するリフレクター12とを基板14上に有する。光半導体素子10は、LED素子又はLEDパッケージであることが好ましい。半導体発光装置において、リフレクター12は、上述のリフレクターに相当し、光反射面の少なくとも一部(図1の場合は全部)は、上述したリフレクター用樹脂組成物からなる成形体で構成されている。 [Semiconductor light emitting device]
The semiconductor light emitting device according to the first embodiment of the invention is illustrated in FIG. The semiconductor light emitting device according to this embodiment includes anoptical semiconductor element 10 and a reflector 12 provided around the optical semiconductor element 10 and having a light reflecting surface that reflects light from the optical semiconductor element 10 in a predetermined direction. 14 on. The optical semiconductor element 10 is preferably an LED element or an LED package. In the semiconductor light emitting device, the reflector 12 corresponds to the above-described reflector, and at least a part (all in the case of FIG. 1) of the light reflecting surface is formed of a molded body made of the above-described reflector resin composition.
本発明の第1実施形態に係る半導体発光装置を、図1に例示する。本実施形態に係る半導体発光装置は、光半導体素子10と、この光半導体素子10の周りに設けられ、光半導体素子10からの光を所定方向に反射させる光反射面を有するリフレクター12とを基板14上に有する。光半導体素子10は、LED素子又はLEDパッケージであることが好ましい。半導体発光装置において、リフレクター12は、上述のリフレクターに相当し、光反射面の少なくとも一部(図1の場合は全部)は、上述したリフレクター用樹脂組成物からなる成形体で構成されている。 [Semiconductor light emitting device]
The semiconductor light emitting device according to the first embodiment of the invention is illustrated in FIG. The semiconductor light emitting device according to this embodiment includes an
光半導体素子10は、放射光(一般に、白色光LEDにおいてはUV又は青色光)を放出する、例えば、AlGaAs、AlGaInP、GaP又はGaNからなる活性層を、n型及びp型のクラッド層により挟んだダブルヘテロ構造を有する半導体チップ(発光体)であり、例えば、一辺の長さが0.5mm程度の六面体の形状をしている。そして、ワイヤーボンディング実装の形態の場合には、リード線16を介して不図示の電極(接続端子)に接続されている。
The optical semiconductor element 10 emits radiated light (generally UV or blue light in a white light LED), for example, an active layer made of AlGaAs, AlGaInP, GaP or GaN sandwiched between n-type and p-type cladding layers. It is a semiconductor chip (light emitter) having a double heterostructure, and has a hexahedral shape with a side length of about 0.5 mm, for example. In the case of wire bonding mounting, it is connected to an electrode (connection terminal) (not shown) via a lead wire 16.
リフレクター12の形状は、レンズ18の端部(接合部)の形状に準じており、通常、角形、円形、楕円形等の筒状又は輪状である。図1の概略断面図においては、リフレクター12は、筒状体(輪状体)であり、リフレクター12のすべての端面が基板14の表面に接触、固定されている。
なお、リフレクター12の内面は、光半導体素子10からの光の指向性を高めるために、テーパー状に上方に広げられていてもよい(図1参照)。
また、リフレクター12は、レンズ18側の端部を、当該レンズ18の形状に応じた形に加工された場合には、レンズホルダーとしても機能させることができる。 The shape of thereflector 12 conforms to the shape of the end portion (joint portion) of the lens 18 and is usually a cylindrical shape such as a square shape, a circular shape, or an oval shape, or an annular shape. In the schematic cross-sectional view of FIG. 1, the reflector 12 is a cylindrical body (annular body), and all the end faces of the reflector 12 are in contact with and fixed to the surface of the substrate 14.
In addition, in order to improve the directivity of the light from theoptical semiconductor element 10, the inner surface of the reflector 12 may be expanded upward in a tapered shape (see FIG. 1).
Thereflector 12 can also function as a lens holder when the end portion on the lens 18 side is processed into a shape corresponding to the shape of the lens 18.
なお、リフレクター12の内面は、光半導体素子10からの光の指向性を高めるために、テーパー状に上方に広げられていてもよい(図1参照)。
また、リフレクター12は、レンズ18側の端部を、当該レンズ18の形状に応じた形に加工された場合には、レンズホルダーとしても機能させることができる。 The shape of the
In addition, in order to improve the directivity of the light from the
The
リフレクター12は、図2に示すように、光反射面側だけを本発明の樹脂組成物からなる光反射層12bとしてもよい。この場合、光反射層12bの厚さは、熱抵抗を低くする等の観点から、500μm以下とすることが好ましく、300μm以下とすることがより好ましい。光反射層12bが形成される部材12aは、公知の耐熱性樹脂で構成することができる。
As shown in FIG. 2, the reflector 12 may have only the light reflecting surface side as a light reflecting layer 12b made of the resin composition of the present invention. In this case, the thickness of the light reflection layer 12b is preferably 500 μm or less, and more preferably 300 μm or less, from the viewpoint of reducing the thermal resistance. The member 12a on which the light reflecting layer 12b is formed can be made of a known heat resistant resin.
既述のようにリフレクター12上にはレンズ18が設けられているが、これは通常樹脂製であり、目的、用途等により様々な構造が採用され、着色されることもある。
As described above, the lens 18 is provided on the reflector 12, but this is usually made of resin, and various structures may be adopted and colored depending on the purpose and application.
基板14とリフレクター12とレンズ18とで形成される空間部は、透明封止部であってよいし、必要により空隙部であってもよい。この空間部は、通常、透光性及び絶縁性を与える材料等が充填された透明封止部であり、ワイヤーボンディング実装において、リード線16に直接接触することにより加わる力、及び、間接的に加わる振動、衝撃等により、光半導体素子10との接続部、及び/又は、電極との接続部からリード線16が外れたり、切断したり、短絡したりすることによって生じる電気的な不具合を防止することができる。また、同時に、湿気、塵埃等から光半導体素子10を保護し、長期間に渡って信頼性を維持することができる。
The space formed by the substrate 14, the reflector 12, and the lens 18 may be a transparent sealing portion, or may be a gap if necessary. This space portion is usually a transparent sealing portion filled with a light-transmitting and insulating material, and the force applied by directly contacting the lead wire 16 in wire bonding mounting and indirectly. Prevents electrical defects caused by the lead wire 16 being disconnected, cut, or short-circuited from the connection portion with the optical semiconductor element 10 and / or the connection portion with the electrode due to applied vibration, impact, etc. can do. At the same time, the optical semiconductor element 10 can be protected from moisture, dust, etc., and the reliability can be maintained over a long period of time.
この透光性及び絶縁性を与える材料(透明封止剤組成物)としては、通常、シリコーン樹脂、エポキシシリコーン樹脂、エポキシ系樹脂、アクリル系樹脂、ポリイミド系樹脂、ポリカーボネート樹脂等が挙げられる。これらのうち、耐熱性、耐候性、低収縮性及び耐変色性の観点から、シリコーン樹脂が好ましい。
Examples of the material (transparent sealant composition) that imparts translucency and insulation usually include silicone resins, epoxy silicone resins, epoxy resins, acrylic resins, polyimide resins, polycarbonate resins, and the like. Of these, silicone resins are preferred from the viewpoints of heat resistance, weather resistance, low shrinkage, and discoloration resistance.
以下に、図1に示す半導体発光装置の製造方法の一例について説明する。
まず、第1実施形態に係る樹脂組成物を用いて、所定形状のキャビティ空間を備える金型を用いたトランスファー成形、圧縮成形、射出成形等により、基板14上において、所定形状のリフレクター12に成形する。金型に基板を入れて樹脂をその上に成形するためにアウトサート成形とも呼ばれる。その後、別途準備した光半導体素子10及び電極を、接着剤又は接合部材により基板14に固定し、リード線16によりLED素子と電極を接続する。
次いで、基板14及びリフレクター12により形成された凹部に、シリコーン樹脂等を含む透明封止剤組成物を注入し、加熱、乾燥等により硬化させて透明封止部とする。その後、透明封止部上にレンズ18を配設して、図1に示す半導体発光装置が得られる。
なお、透明封止剤組成物が未硬化の状態でレンズ18を載置してから、組成物を硬化させてもよい。
第1実施形態に係るリフレクター用樹脂組成物は、該リフレクター用樹脂組成物を成形してなる成形体において優れた密着性により、封止性の改善、ひいては半導体素子の寿命を改善する効果が得られるため、厚みが3.0mm以下、好ましくは1.0mm以下、より好ましくは0.8mm以下であるリフレクター付きリードフレームや、薄型半導体発光装置パッケージ用のリフレクターの製造に好適に用いることができる。 Below, an example of the manufacturing method of the semiconductor light-emitting device shown in FIG. 1 is demonstrated.
First, the resin composition according to the first embodiment is molded into areflector 12 having a predetermined shape on the substrate 14 by transfer molding, compression molding, injection molding, or the like using a mold having a cavity space having a predetermined shape. To do. It is also called outsert molding because a substrate is placed in a mold and a resin is molded thereon. Thereafter, the separately prepared optical semiconductor element 10 and the electrode are fixed to the substrate 14 with an adhesive or a bonding member, and the LED element and the electrode are connected with the lead wire 16.
Next, a transparent sealant composition containing a silicone resin or the like is poured into the recess formed by thesubstrate 14 and the reflector 12, and cured by heating, drying, or the like to obtain a transparent sealing portion. Thereafter, the lens 18 is disposed on the transparent sealing portion to obtain the semiconductor light emitting device shown in FIG.
In addition, after mounting thelens 18 in a state where the transparent sealant composition is uncured, the composition may be cured.
The resin composition for a reflector according to the first embodiment has an effect of improving the sealing property and thus improving the life of the semiconductor element due to excellent adhesion in a molded body obtained by molding the resin composition for a reflector. Therefore, it can be suitably used for the production of a reflector with a reflector having a thickness of 3.0 mm or less, preferably 1.0 mm or less, and more preferably 0.8 mm or less, or a reflector for a thin semiconductor light emitting device package.
まず、第1実施形態に係る樹脂組成物を用いて、所定形状のキャビティ空間を備える金型を用いたトランスファー成形、圧縮成形、射出成形等により、基板14上において、所定形状のリフレクター12に成形する。金型に基板を入れて樹脂をその上に成形するためにアウトサート成形とも呼ばれる。その後、別途準備した光半導体素子10及び電極を、接着剤又は接合部材により基板14に固定し、リード線16によりLED素子と電極を接続する。
次いで、基板14及びリフレクター12により形成された凹部に、シリコーン樹脂等を含む透明封止剤組成物を注入し、加熱、乾燥等により硬化させて透明封止部とする。その後、透明封止部上にレンズ18を配設して、図1に示す半導体発光装置が得られる。
なお、透明封止剤組成物が未硬化の状態でレンズ18を載置してから、組成物を硬化させてもよい。
第1実施形態に係るリフレクター用樹脂組成物は、該リフレクター用樹脂組成物を成形してなる成形体において優れた密着性により、封止性の改善、ひいては半導体素子の寿命を改善する効果が得られるため、厚みが3.0mm以下、好ましくは1.0mm以下、より好ましくは0.8mm以下であるリフレクター付きリードフレームや、薄型半導体発光装置パッケージ用のリフレクターの製造に好適に用いることができる。 Below, an example of the manufacturing method of the semiconductor light-emitting device shown in FIG. 1 is demonstrated.
First, the resin composition according to the first embodiment is molded into a
Next, a transparent sealant composition containing a silicone resin or the like is poured into the recess formed by the
In addition, after mounting the
The resin composition for a reflector according to the first embodiment has an effect of improving the sealing property and thus improving the life of the semiconductor element due to excellent adhesion in a molded body obtained by molding the resin composition for a reflector. Therefore, it can be suitably used for the production of a reflector with a reflector having a thickness of 3.0 mm or less, preferably 1.0 mm or less, and more preferably 0.8 mm or less, or a reflector for a thin semiconductor light emitting device package.
第2実施形態
[樹脂組成物]
本発明の第2実施形態に係る樹脂組成物は、ポリオレフィン樹脂及び白色顔料を含む無機フィラーを含有する樹脂組成物であって、ポリオレフィン樹脂の重量平均分子量が220,000~800,000であり、白色顔料が、ポリオレフィン樹脂100質量部に対して、200質量部を超え、500質量部以下含有されてなる樹脂組成物である。
以下、第2実施形態に係る樹脂組成物について詳細に説明する。なお、本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいと言える。 Second Embodiment [Resin Composition]
The resin composition according to the second embodiment of the present invention is a resin composition containing an inorganic filler containing a polyolefin resin and a white pigment, wherein the polyolefin resin has a weight average molecular weight of 220,000 to 800,000, The white pigment is a resin composition containing more than 200 parts by mass and not more than 500 parts by mass with respect to 100 parts by mass of the polyolefin resin.
Hereinafter, the resin composition according to the second embodiment will be described in detail. In the present specification, it is possible to arbitrarily adopt provisions that are preferable, and it can be said that a combination of preferable ones is more preferable.
[樹脂組成物]
本発明の第2実施形態に係る樹脂組成物は、ポリオレフィン樹脂及び白色顔料を含む無機フィラーを含有する樹脂組成物であって、ポリオレフィン樹脂の重量平均分子量が220,000~800,000であり、白色顔料が、ポリオレフィン樹脂100質量部に対して、200質量部を超え、500質量部以下含有されてなる樹脂組成物である。
以下、第2実施形態に係る樹脂組成物について詳細に説明する。なお、本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいと言える。 Second Embodiment [Resin Composition]
The resin composition according to the second embodiment of the present invention is a resin composition containing an inorganic filler containing a polyolefin resin and a white pigment, wherein the polyolefin resin has a weight average molecular weight of 220,000 to 800,000, The white pigment is a resin composition containing more than 200 parts by mass and not more than 500 parts by mass with respect to 100 parts by mass of the polyolefin resin.
Hereinafter, the resin composition according to the second embodiment will be described in detail. In the present specification, it is possible to arbitrarily adopt provisions that are preferable, and it can be said that a combination of preferable ones is more preferable.
<ポリオレフィン樹脂>
本発明の第2実施形態に係る樹脂組成物に用いられるポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、ノルボルネン誘導体を開環メタセシス重合させた樹脂あるいはその水素添加樹脂等が挙げられる。中でも、ポリメチルペンテンを用いることが好ましい。
前記ポリメチルペンテンは、融点が230~240℃と高く、成形温度が280℃程度でも分解せず、耐薬品性及び電気絶縁性に優れているという特性を有する。このような特性を考慮すると、例えば、半導体発光装置のリフレクターとして使用するには好適なポリオレフィン樹脂である。 <Polyolefin resin>
Examples of the polyolefin resin used in the resin composition according to the second embodiment of the present invention include resins obtained by ring-opening metathesis polymerization of polyethylene, polypropylene, polybutene, polymethylpentene, and norbornene derivatives, or hydrogenated resins thereof. Among these, it is preferable to use polymethylpentene.
The polymethylpentene has a high melting point of 230 to 240 ° C., does not decompose even at a molding temperature of about 280 ° C., and has excellent chemical resistance and electrical insulation properties. Considering such characteristics, for example, it is a polyolefin resin suitable for use as a reflector of a semiconductor light emitting device.
本発明の第2実施形態に係る樹脂組成物に用いられるポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、ノルボルネン誘導体を開環メタセシス重合させた樹脂あるいはその水素添加樹脂等が挙げられる。中でも、ポリメチルペンテンを用いることが好ましい。
前記ポリメチルペンテンは、融点が230~240℃と高く、成形温度が280℃程度でも分解せず、耐薬品性及び電気絶縁性に優れているという特性を有する。このような特性を考慮すると、例えば、半導体発光装置のリフレクターとして使用するには好適なポリオレフィン樹脂である。 <Polyolefin resin>
Examples of the polyolefin resin used in the resin composition according to the second embodiment of the present invention include resins obtained by ring-opening metathesis polymerization of polyethylene, polypropylene, polybutene, polymethylpentene, and norbornene derivatives, or hydrogenated resins thereof. Among these, it is preferable to use polymethylpentene.
The polymethylpentene has a high melting point of 230 to 240 ° C., does not decompose even at a molding temperature of about 280 ° C., and has excellent chemical resistance and electrical insulation properties. Considering such characteristics, for example, it is a polyolefin resin suitable for use as a reflector of a semiconductor light emitting device.
前記ポリメチルペンテン樹脂としては4-メチルペンテン-1の単独重合体が好ましいが、4-メチルペンテン-1と他のα-オレフィン、例えばエチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン等の炭素数2ないし20のα-オレフィンとの共重合体で、4-メチル-1-ペンテンを主体とした共重合体でもよい。前記共重合体である場合は、耐熱性の観点から、炭素数10~18のアルケンが共重合されたものが好ましく、炭素数16以上のアルケンが共重合されたものがより好ましい。
The polymethylpentene resin is preferably a homopolymer of 4-methylpentene-1, but 4-methylpentene-1 and other α-olefins such as ethylene, propylene, 1-butene, 1-pentene and 1-hexene. 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene, 1-eicocene, 3-methyl-1-butene, 3-methyl-1-pentene, etc. It may be a copolymer with olefin and a copolymer mainly composed of 4-methyl-1-pentene. In the case of the copolymer, from the viewpoint of heat resistance, an alkene having 10 to 18 carbon atoms is preferably copolymerized, and an alkene having 16 or more carbon atoms is more preferable.
第2実施形態に係る樹脂組成物に用いられるポリオレフィン樹脂は、重量平均分子量が220,000~800,000であることを要す。重量平均分子量が220,000未満であると、樹脂組成物を成形して得られた成形体にクラックが発生し、好ましくない。例えば、半導体発光装置のリフレクターを成形した場合に、クラックが発生すると、リフレクターの強度が低下し、リフロー工程でリフレクターが破壊する恐れがある。また、重量平均分子量が800,000を超えると、樹脂組成物を成形することが困難となり好ましくない。重量平均分子量の下限値は、好ましくは230,000以上、より好ましくは240,000以上である。また、重量平均分子量の上限値は、好ましくは700,000以下、より好ましくは650,000以下である。なお、重量平均分子量は、ゲルパーミッションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量が好ましいが、再現性良く重量平均分子量が測定できる手法であれば、これに限定されない。たとえば、適切な溶媒で抽出した材料を例示した方法で重量平均分子量を測定することができる。
The polyolefin resin used in the resin composition according to the second embodiment needs to have a weight average molecular weight of 220,000 to 800,000. When the weight average molecular weight is less than 220,000, cracks are generated in the molded product obtained by molding the resin composition, which is not preferable. For example, when a reflector of a semiconductor light emitting device is molded, if a crack occurs, the strength of the reflector is reduced, and the reflector may be destroyed in the reflow process. Moreover, when a weight average molecular weight exceeds 800,000, it becomes difficult to shape | mold a resin composition, and it is not preferable. The lower limit of the weight average molecular weight is preferably 230,000 or more, more preferably 240,000 or more. Moreover, the upper limit of the weight average molecular weight is preferably 700,000 or less, more preferably 650,000 or less. The weight average molecular weight is preferably a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC), but is not limited to this as long as the method can measure the weight average molecular weight with good reproducibility. For example, the weight average molecular weight can be measured by a method exemplified for a material extracted with an appropriate solvent.
GPCによる重量平均分子量測定条件の例としては、以下の条件を例示することができる。
溶離液:o-ジクロロベンゼン
温度:140~160℃
流速:1.0mL/min
試料濃度:1.0g/L
注入量:300μL The following conditions can be illustrated as an example of the weight average molecular weight measurement conditions by GPC.
Eluent: o-dichlorobenzene Temperature: 140-160 ° C
Flow rate: 1.0 mL / min
Sample concentration: 1.0 g / L
Injection volume: 300 μL
溶離液:o-ジクロロベンゼン
温度:140~160℃
流速:1.0mL/min
試料濃度:1.0g/L
注入量:300μL The following conditions can be illustrated as an example of the weight average molecular weight measurement conditions by GPC.
Eluent: o-dichlorobenzene Temperature: 140-160 ° C
Flow rate: 1.0 mL / min
Sample concentration: 1.0 g / L
Injection volume: 300 μL
<白色顔料を含む無機フィラー>
第2実施形態に係る樹脂組成物には、白色顔料を含む無機フィラーが用いられる。本発明の樹脂組成物に用いられる白色顔料としては、酸化チタン、硫化亜鉛、酸化亜鉛、硫化バリウム、チタン酸カリウム等を単独もしくは混合して用いることが可能で、なかでも酸化チタンが好ましい。この白色顔料は、本発明の樹脂組成物から得られる成形体に白色系の色調を付与するために用いられるものであり、特にその色調を高度の白色とすることにより、成形体の光線反射率を向上させることができる。本発明の樹脂組成物を成形して得られる成形体で、成形体の光線反射率を向上させた成形体は、リフレクターとして用いることができる。特に成形体をリフレクターとして用いる場合、良好な光線反射率が要求されるため、白色顔料としては、入手が容易で、光線反射率にも優れる酸化チタンを用いることが好ましい。 <Inorganic filler containing white pigment>
An inorganic filler containing a white pigment is used for the resin composition according to the second embodiment. As the white pigment used in the resin composition of the present invention, titanium oxide, zinc sulfide, zinc oxide, barium sulfide, potassium titanate and the like can be used alone or in combination, and titanium oxide is particularly preferable. This white pigment is used for imparting a white color tone to the molded product obtained from the resin composition of the present invention, and in particular by making the color tone highly white, the light reflectance of the molded product. Can be improved. A molded product obtained by molding the resin composition of the present invention and having improved light reflectance of the molded product can be used as a reflector. In particular, when a molded body is used as a reflector, good light reflectance is required, and therefore, it is preferable to use titanium oxide that is easily available and excellent in light reflectance as a white pigment.
第2実施形態に係る樹脂組成物には、白色顔料を含む無機フィラーが用いられる。本発明の樹脂組成物に用いられる白色顔料としては、酸化チタン、硫化亜鉛、酸化亜鉛、硫化バリウム、チタン酸カリウム等を単独もしくは混合して用いることが可能で、なかでも酸化チタンが好ましい。この白色顔料は、本発明の樹脂組成物から得られる成形体に白色系の色調を付与するために用いられるものであり、特にその色調を高度の白色とすることにより、成形体の光線反射率を向上させることができる。本発明の樹脂組成物を成形して得られる成形体で、成形体の光線反射率を向上させた成形体は、リフレクターとして用いることができる。特に成形体をリフレクターとして用いる場合、良好な光線反射率が要求されるため、白色顔料としては、入手が容易で、光線反射率にも優れる酸化チタンを用いることが好ましい。 <Inorganic filler containing white pigment>
An inorganic filler containing a white pigment is used for the resin composition according to the second embodiment. As the white pigment used in the resin composition of the present invention, titanium oxide, zinc sulfide, zinc oxide, barium sulfide, potassium titanate and the like can be used alone or in combination, and titanium oxide is particularly preferable. This white pigment is used for imparting a white color tone to the molded product obtained from the resin composition of the present invention, and in particular by making the color tone highly white, the light reflectance of the molded product. Can be improved. A molded product obtained by molding the resin composition of the present invention and having improved light reflectance of the molded product can be used as a reflector. In particular, when a molded body is used as a reflector, good light reflectance is required, and therefore, it is preferable to use titanium oxide that is easily available and excellent in light reflectance as a white pigment.
白色顔料の平均粒径は成形性を考慮し、かつ高い反射率を得る観点からは、一次粒度分布において0.10~0.50μmであることが好ましく、0.10~0.40μmであることがより好ましく、0.21~0.25μmであることがさらに好ましい。平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50として求めることができる。
The average particle size of the white pigment is preferably 0.10 to 0.50 μm, preferably 0.10 to 0.40 μm in the primary particle size distribution from the viewpoint of obtaining moldability and obtaining high reflectance. Is more preferably 0.21 to 0.25 μm. An average particle diameter can be calculated | required as mass average value D50 in the particle size distribution measurement by a laser beam diffraction method.
第2実施形態に係る樹脂組成物には、無機フィラーとして白色顔料のみを用いることもできるし、白色顔料と白色顔料以外の無機フィラーとを併用して用いることもできる。白色顔料以外の無機フィラーとしては、通常、熱可塑樹脂組成物及びエポキシ樹脂、アクリル樹脂、シリコーン樹脂のような熱硬化樹脂組成物に配合されるものを単独もしくは混合して、使用することができる。具体的には、ガラス繊維、アスベスト繊維、炭素繊維、グラファイト繊維、金属繊維、ホウ酸アルミニウムウィスカー、マグネシウム系ウィスカー、珪素系ウィスカー、ワラストナイト、イモゴライト、セピオライト、スラグ繊維、ゾノライト、石膏繊維、シリカ繊維、シリカ-アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化珪素繊維およびホウ素繊維等の繊維状無機フィラー、シリカ粒子、層状珪酸塩、有機オニウムイオンで交換された層状珪酸塩、ガラスフレーク、非膨潤性雲母、グラファイト、金属箔、セラミックビーズ、クレイ、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、粉末珪酸、長石粉、シラスバルーン、石膏、ノバキュライト、ドーソナイトおよび白土フラーレンなどのカーボンナノ粒子等の板状や粒子状の無機フィラーが挙げられる。
In the resin composition according to the second embodiment, only a white pigment can be used as the inorganic filler, or a white pigment and an inorganic filler other than the white pigment can be used in combination. As inorganic fillers other than white pigments, those usually blended in thermoplastic resin compositions and thermosetting resin compositions such as epoxy resins, acrylic resins and silicone resins can be used alone or in combination. . Specifically, glass fiber, asbestos fiber, carbon fiber, graphite fiber, metal fiber, aluminum borate whisker, magnesium-based whisker, silicon-based whisker, wollastonite, imogolite, sepiolite, slag fiber, zonolite, gypsum fiber, silica Fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and fibrous inorganic filler such as boron nitride fiber, silica particle, layered silicate, layered silicate exchanged with organic onium ions, glass flake, non-swelling Carbon nano, such as synthetic mica, graphite, metal foil, ceramic beads, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, powdered silicic acid, feldspar powder, shirasu balloon, gypsum, novaculite, dosonite, and white clay fullerene A plate-like or particulate inorganic filler child, and the like.
前記白色顔料以外の無機フィラーの中でも、繊維状無機フィラーを用いることが、成形して得られる成形体の寸法安定性の観点から好ましく、また、得られる成形体をリフレクターとして用いる場合、光線反射率を向上させる観点からガラス繊維を用いることが好ましい。前記ガラス繊維を用いる場合、断面形状は、一般的な丸型形状のガラス繊維を用いてもよいし、扁平形状等の異形断面を有するガラス繊維を用いてもよい。また、ガラス繊維のサイズとしては、断面の短径D1が0.5~25μm、長径D2が0.5~300μm、D1に対するD2の比D2/D1が1.0~30である断面形状を有する平均繊維長0.75~300μmのガラス繊維であることが好ましい。このガラス繊維は、通常、ミルドファイバーとも呼ばれ、ガラス長繊維を粉砕して得ることができる。特に、ガラス繊維の平均断面積が1~100μm2、好ましくは30~85μm2であるガラス繊維を用いてリフレクターを成形した場合、基板との密着度を向上させることができる。
Among inorganic fillers other than the white pigment, it is preferable to use a fibrous inorganic filler from the viewpoint of dimensional stability of a molded body obtained by molding, and when the obtained molded body is used as a reflector, a light reflectance is obtained. It is preferable to use glass fiber from the viewpoint of improving the resistance. When the glass fiber is used, the cross-sectional shape may be a general round glass fiber or a glass fiber having an irregular cross section such as a flat shape. The glass fiber has a cross-sectional shape in which the minor axis D1 of the cross section is 0.5 to 25 μm, the major axis D2 is 0.5 to 300 μm, and the ratio D2 / D1 of D2 to D1 is 1.0 to 30. Glass fibers having an average fiber length of 0.75 to 300 μm are preferable. This glass fiber is usually called milled fiber, and can be obtained by pulverizing long glass fibers. In particular, the average cross-sectional area of the glass fiber 1 ~ 100 [mu] m 2, preferably when molding the reflector using a glass fiber is 30 ~ 85 .mu.m 2, it is possible to improve the adhesiveness between the substrate.
<架橋処理剤>
第2実施形態に係る樹脂組成物は、架橋処理剤を含むことが好ましい。架橋処理剤を含む樹脂組成物を成形した後、該成形体に電子線を照射させることで、より優れた耐熱性を得ることができ、得られる成形体の熱による変形を防止することができる。
このような架橋処理剤は、飽和もしくは不飽和の環構造を有し、少なくとも1つの環を形成する原子のうち少なくとも1つの原子が、アリル基、メタリル基、連結基を介したアリル基、及び連結基を介したメタリル基のいずれかのアリル系置換基と結合してなる構造を有する。かかる構造を有する架橋処理剤を含有することで、良好な電子線硬化性を発揮し、優れた耐熱性を有する樹脂組成物とすることができる。
飽和もしくは不飽和の環構造としては、シクロ環、ヘテロ環、芳香環等が挙げられる。環構造を形成する原子の数は、3~12であることが好ましく、5~8であることがより好ましく、6員環であることがさらに好ましい。 <Crosslinking agent>
The resin composition according to the second embodiment preferably includes a crosslinking agent. After molding a resin composition containing a crosslinking agent, by irradiating the molded body with an electron beam, better heat resistance can be obtained, and deformation of the resulting molded body due to heat can be prevented. .
Such a crosslinking agent has a saturated or unsaturated ring structure, and at least one of atoms forming at least one ring is an allyl group, a methallyl group, an allyl group via a linking group, and It has a structure formed by bonding to any allylic substituent of a methallyl group via a linking group. By containing the crosslinking agent having such a structure, it is possible to obtain a resin composition that exhibits good electron beam curability and has excellent heat resistance.
Examples of the saturated or unsaturated ring structure include a cyclo ring, a hetero ring, and an aromatic ring. The number of atoms forming the ring structure is preferably 3 to 12, more preferably 5 to 8, and still more preferably a 6-membered ring.
第2実施形態に係る樹脂組成物は、架橋処理剤を含むことが好ましい。架橋処理剤を含む樹脂組成物を成形した後、該成形体に電子線を照射させることで、より優れた耐熱性を得ることができ、得られる成形体の熱による変形を防止することができる。
このような架橋処理剤は、飽和もしくは不飽和の環構造を有し、少なくとも1つの環を形成する原子のうち少なくとも1つの原子が、アリル基、メタリル基、連結基を介したアリル基、及び連結基を介したメタリル基のいずれかのアリル系置換基と結合してなる構造を有する。かかる構造を有する架橋処理剤を含有することで、良好な電子線硬化性を発揮し、優れた耐熱性を有する樹脂組成物とすることができる。
飽和もしくは不飽和の環構造としては、シクロ環、ヘテロ環、芳香環等が挙げられる。環構造を形成する原子の数は、3~12であることが好ましく、5~8であることがより好ましく、6員環であることがさらに好ましい。 <Crosslinking agent>
The resin composition according to the second embodiment preferably includes a crosslinking agent. After molding a resin composition containing a crosslinking agent, by irradiating the molded body with an electron beam, better heat resistance can be obtained, and deformation of the resulting molded body due to heat can be prevented. .
Such a crosslinking agent has a saturated or unsaturated ring structure, and at least one of atoms forming at least one ring is an allyl group, a methallyl group, an allyl group via a linking group, and It has a structure formed by bonding to any allylic substituent of a methallyl group via a linking group. By containing the crosslinking agent having such a structure, it is possible to obtain a resin composition that exhibits good electron beam curability and has excellent heat resistance.
Examples of the saturated or unsaturated ring structure include a cyclo ring, a hetero ring, and an aromatic ring. The number of atoms forming the ring structure is preferably 3 to 12, more preferably 5 to 8, and still more preferably a 6-membered ring.
また、前記架橋処理剤の分子量は、1000以下であることが好ましく、500以下であることがより好ましく、300以下であることがさらに好ましい。分子量が1000以下であることで、樹脂組成中の分散性が低くなることを防ぎ、電子線照射による有効な架橋反応を起こすことが可能となる。
また、環構造の数は1~3であることが好ましく、1又は2であることがより好ましく、1であることがさらに好ましい。 The molecular weight of the crosslinking agent is preferably 1000 or less, more preferably 500 or less, and further preferably 300 or less. When the molecular weight is 1000 or less, it is possible to prevent the dispersibility in the resin composition from being lowered and to cause an effective crosslinking reaction by electron beam irradiation.
The number of ring structures is preferably 1 to 3, more preferably 1 or 2, and further preferably 1.
また、環構造の数は1~3であることが好ましく、1又は2であることがより好ましく、1であることがさらに好ましい。 The molecular weight of the crosslinking agent is preferably 1000 or less, more preferably 500 or less, and further preferably 300 or less. When the molecular weight is 1000 or less, it is possible to prevent the dispersibility in the resin composition from being lowered and to cause an effective crosslinking reaction by electron beam irradiation.
The number of ring structures is preferably 1 to 3, more preferably 1 or 2, and further preferably 1.
架橋処理剤の融点は、使用するポリオレフィン樹脂の融点以下であることが好ましく、例えば200℃以下であることが好ましい。
上記のような架橋処理剤であれば、成形時の流動性に優れるため、樹脂組成物の成形温度を低下させ熱負荷を軽減したり、成形時の摩擦を軽減したり、白色顔料を含む無機フィラーの含有率を増やすことができる。 The melting point of the crosslinking agent is preferably not more than the melting point of the polyolefin resin to be used, for example, not more than 200 ° C.
The crosslinking agent as described above is excellent in fluidity at the time of molding. Therefore, the molding temperature of the resin composition is lowered to reduce the thermal load, the friction at the time of molding is reduced, or an inorganic containing a white pigment is contained. The filler content can be increased.
上記のような架橋処理剤であれば、成形時の流動性に優れるため、樹脂組成物の成形温度を低下させ熱負荷を軽減したり、成形時の摩擦を軽減したり、白色顔料を含む無機フィラーの含有率を増やすことができる。 The melting point of the crosslinking agent is preferably not more than the melting point of the polyolefin resin to be used, for example, not more than 200 ° C.
The crosslinking agent as described above is excellent in fluidity at the time of molding. Therefore, the molding temperature of the resin composition is lowered to reduce the thermal load, the friction at the time of molding is reduced, or an inorganic containing a white pigment is contained. The filler content can be increased.
ここで、前記架橋処理剤における連結基としては、エステル結合、エーテル結合、アルキレン基、(ヘテロ)アリーレン基等が挙げられる。環を形成する原子のうちアリル系置換基と結合しない原子は、水素、酸素、窒素等が結合した状態、又は種々の置換基が結合した状態となっている。
Here, examples of the linking group in the crosslinking agent include an ester bond, an ether bond, an alkylene group, and a (hetero) arylene group. Among the atoms forming the ring, atoms that are not bonded to the allylic substituent are in a state in which hydrogen, oxygen, nitrogen, or the like is bonded, or in a state in which various substituents are bonded.
第2実施形態において用いられる架橋処理剤は、当該架橋処理剤の1つの環を形成する原子のうち少なくとも2つの原子が、それぞれ独立に、アリル系置換基と結合してなることが好ましい。また環構造が6員環である場合、当該環を形成する原子のうちの少なくとも2つの原子が、それぞれ独立に、アリル系置換基と結合してなり、1つのアリル系置換基が結合した原子に対して、他のアリル系置換基がメタ位の原子に結合していることが好ましい。
さらに前記架橋処理剤は、下記式(1)又は(2)で表されることが好ましい。 In the crosslinking agent used in the second embodiment, it is preferable that at least two atoms among atoms forming one ring of the crosslinking agent are independently bonded to an allylic substituent. When the ring structure is a 6-membered ring, at least two of the atoms forming the ring are independently bonded to an allylic substituent, and one allylic substituent is bonded to the atom. On the other hand, it is preferable that another allylic substituent is bonded to the atom at the meta position.
Furthermore, the crosslinking agent is preferably represented by the following formula (1) or (2).
さらに前記架橋処理剤は、下記式(1)又は(2)で表されることが好ましい。 In the crosslinking agent used in the second embodiment, it is preferable that at least two atoms among atoms forming one ring of the crosslinking agent are independently bonded to an allylic substituent. When the ring structure is a 6-membered ring, at least two of the atoms forming the ring are independently bonded to an allylic substituent, and one allylic substituent is bonded to the atom. On the other hand, it is preferable that another allylic substituent is bonded to the atom at the meta position.
Furthermore, the crosslinking agent is preferably represented by the following formula (1) or (2).
(式(1)中、R1~R3はそれぞれ独立に、アリル基、メタリル基、エステル結合を介したアリル基、及びエステル結合を介したメタリル基のいずれかのアリル系置換基である。)
(In Formula (1), R 1 to R 3 are each independently an allylic substituent of any one of an allyl group, a methallyl group, an allyl group via an ester bond, and a methallyl group via an ester bond. )
(式(2)中、R1~R3はそれぞれ独立に、アリル基、メタリル基、エステル結合を介したアリル基、及びエステル結合を介したメタリル基のいずれかのアリル系置換基である。)
(In Formula (2), R 1 to R 3 are each independently an allylic substituent of any one of an allyl group, a methallyl group, an allyl group via an ester bond, and a methallyl group via an ester bond. )
上記式(1)で表される架橋処理剤としてはトリアリルイソシアヌレート、メチルジアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌル酸、モノアリルジグリシジルイソシアヌレート、トリメタリルイソシアヌレート等が挙げられる。
上記式(2)で表される架橋処理剤としてはオルトフタル酸のジアリルエステル、イソフタル酸のジアリルエステル等が挙げられる。 Examples of the crosslinking agent represented by the above formula (1) include triallyl isocyanurate, methyl diallyl isocyanurate, diallyl monoglycidyl isocyanuric acid, monoallyl diglycidyl isocyanurate, and trimethallyl isocyanurate.
Examples of the crosslinking agent represented by the above formula (2) include orthophthalic acid diallyl ester, isophthalic acid diallyl ester, and the like.
上記式(2)で表される架橋処理剤としてはオルトフタル酸のジアリルエステル、イソフタル酸のジアリルエステル等が挙げられる。 Examples of the crosslinking agent represented by the above formula (1) include triallyl isocyanurate, methyl diallyl isocyanurate, diallyl monoglycidyl isocyanuric acid, monoallyl diglycidyl isocyanurate, and trimethallyl isocyanurate.
Examples of the crosslinking agent represented by the above formula (2) include orthophthalic acid diallyl ester, isophthalic acid diallyl ester, and the like.
<樹脂組成物中の各成分の含有率>
第2実施形態に係る樹脂組成物中には、白色顔料含有率は、ポリオレフィン樹脂100質量部に対して、200質量部を超え、500質量部以下含有されることを要す。白色顔料含有率が200質量部以下であると、第2実施形態の樹脂組成物から得られる成形体の色調を白色系とすることが困難となって、光線反射率が低下したり、また光線反射率の長期耐熱性が低下したりする恐れがあり好ましくない。白色顔料含有率が500質量部を超えると、樹脂組成物を成形体とすることが困難となり好ましくない。白色顔料含有率は、ポリオレフィン樹脂100質量部に対して、好ましくは300~480質量部であり、より好ましくは350~450質量部である。白色顔料以外の無機フィラーとしては、10~300質量部、好ましくは30~200質量部、より好ましくは50~180質量部である。無機フィラーと白色顔料の含有率が上記範囲内であれば、得られる成形体の色調を高度の白色とすることができ、成形体をリフレクターとする場合、光線反射率を向上させることができ、かつ成形体の寸法安定性を優れたものとすることができる。 <Content of each component in the resin composition>
In the resin composition which concerns on 2nd Embodiment, a white pigment content rate needs to contain more than 200 mass parts and 500 mass parts or less with respect to 100 mass parts of polyolefin resin. When the white pigment content is 200 parts by mass or less, it becomes difficult to make the color tone of the molded product obtained from the resin composition of the second embodiment white, and the light reflectance decreases or the light rays The long-term heat resistance of the reflectivity may decrease, which is not preferable. When the white pigment content exceeds 500 parts by mass, it is difficult to make the resin composition into a molded body, which is not preferable. The white pigment content is preferably 300 to 480 parts by mass, more preferably 350 to 450 parts by mass with respect to 100 parts by mass of the polyolefin resin. The inorganic filler other than the white pigment is 10 to 300 parts by mass, preferably 30 to 200 parts by mass, more preferably 50 to 180 parts by mass. If the content of the inorganic filler and the white pigment is within the above range, the color tone of the resulting molded product can be highly white, and when the molded product is a reflector, the light reflectance can be improved, And the dimensional stability of a molded object can be made excellent.
第2実施形態に係る樹脂組成物中には、白色顔料含有率は、ポリオレフィン樹脂100質量部に対して、200質量部を超え、500質量部以下含有されることを要す。白色顔料含有率が200質量部以下であると、第2実施形態の樹脂組成物から得られる成形体の色調を白色系とすることが困難となって、光線反射率が低下したり、また光線反射率の長期耐熱性が低下したりする恐れがあり好ましくない。白色顔料含有率が500質量部を超えると、樹脂組成物を成形体とすることが困難となり好ましくない。白色顔料含有率は、ポリオレフィン樹脂100質量部に対して、好ましくは300~480質量部であり、より好ましくは350~450質量部である。白色顔料以外の無機フィラーとしては、10~300質量部、好ましくは30~200質量部、より好ましくは50~180質量部である。無機フィラーと白色顔料の含有率が上記範囲内であれば、得られる成形体の色調を高度の白色とすることができ、成形体をリフレクターとする場合、光線反射率を向上させることができ、かつ成形体の寸法安定性を優れたものとすることができる。 <Content of each component in the resin composition>
In the resin composition which concerns on 2nd Embodiment, a white pigment content rate needs to contain more than 200 mass parts and 500 mass parts or less with respect to 100 mass parts of polyolefin resin. When the white pigment content is 200 parts by mass or less, it becomes difficult to make the color tone of the molded product obtained from the resin composition of the second embodiment white, and the light reflectance decreases or the light rays The long-term heat resistance of the reflectivity may decrease, which is not preferable. When the white pigment content exceeds 500 parts by mass, it is difficult to make the resin composition into a molded body, which is not preferable. The white pigment content is preferably 300 to 480 parts by mass, more preferably 350 to 450 parts by mass with respect to 100 parts by mass of the polyolefin resin. The inorganic filler other than the white pigment is 10 to 300 parts by mass, preferably 30 to 200 parts by mass, more preferably 50 to 180 parts by mass. If the content of the inorganic filler and the white pigment is within the above range, the color tone of the resulting molded product can be highly white, and when the molded product is a reflector, the light reflectance can be improved, And the dimensional stability of a molded object can be made excellent.
また、第2実施形態に係る樹脂組成物中の白色顔料を含む無機フィラー含有率は、70~90質量%、好ましくは、72~88質量%、より好ましくは、75~85質量%とすることが望ましい。第2実施形態に係る樹脂組成物中の白色顔料を含む無機フィラー含有率は、灰分量として測定することができる。
第2実施形態に係る樹脂組成物中に含まれる灰分の測定方法は、一般的な樹脂組成物の灰分の求め方として規定された方法(JIS K 7250-1(ISO 3451-1))及びそれに準拠した方法、あるいはTG-DTA法に従って測定することができる。これらの測定方法の内、JIS K 7250-1(ISO 3451-1)及びそれに準拠した方法で測定することが好ましい。ただし、JIS K 7250-1(ISO 3451-1)及びそれに準拠した方法は非常に多くの試料量が必要であるため、十分な試料量が得られない場合はTG-DTA法で測定してもよい。
以下に灰分の測定条件を記す。
(1)JIS K 7250-1(ISO 3451-1)
A法(直接灰化法)
灰化温度;800℃
灰化時間;2時間
(2)TG-DTA法
熱重量/示差熱同時分析装置(TG-DTA)を用いて、測定試料の質量を測定した後、アルミパン中、大気雰囲気下、10℃/分で600℃まで昇温後、そのまま600℃で30分間加熱し試料を灰化する。加熱前の質量に対する加熱後の質量を百分率で表し、その値を灰分とする。 In addition, the content of the inorganic filler including the white pigment in the resin composition according to the second embodiment is 70 to 90% by mass, preferably 72 to 88% by mass, and more preferably 75 to 85% by mass. Is desirable. The content of the inorganic filler containing the white pigment in the resin composition according to the second embodiment can be measured as the ash content.
The method for measuring the ash content contained in the resin composition according to the second embodiment includes a method (JIS K 7250-1 (ISO 3451-1)) defined as a general method for obtaining the ash content of a resin composition, and It can be measured according to a compliant method or a TG-DTA method. Among these measuring methods, it is preferable to measure by JIS K 7250-1 (ISO 3451-1) and a method based thereon. However, since JIS K 7250-1 (ISO 3451-1) and the method based thereon require a very large amount of sample, if a sufficient amount of sample cannot be obtained, the TG-DTA method can be used. Good.
The measurement conditions for ash are described below.
(1) JIS K 7250-1 (ISO 3451-1)
Method A (direct ashing method)
Ashing temperature: 800 ° C
Ashing time: 2 hours (2) TG-DTA method After measuring the mass of the measurement sample using a thermogravimetric / differential thermal analyzer (TG-DTA), in an aluminum pan in an air atmosphere at 10 ° C / After heating up to 600 ° C. in minutes, the sample is incinerated by heating at 600 ° C. for 30 minutes. The mass after heating with respect to the mass before heating is expressed as a percentage, and the value is defined as ash.
第2実施形態に係る樹脂組成物中に含まれる灰分の測定方法は、一般的な樹脂組成物の灰分の求め方として規定された方法(JIS K 7250-1(ISO 3451-1))及びそれに準拠した方法、あるいはTG-DTA法に従って測定することができる。これらの測定方法の内、JIS K 7250-1(ISO 3451-1)及びそれに準拠した方法で測定することが好ましい。ただし、JIS K 7250-1(ISO 3451-1)及びそれに準拠した方法は非常に多くの試料量が必要であるため、十分な試料量が得られない場合はTG-DTA法で測定してもよい。
以下に灰分の測定条件を記す。
(1)JIS K 7250-1(ISO 3451-1)
A法(直接灰化法)
灰化温度;800℃
灰化時間;2時間
(2)TG-DTA法
熱重量/示差熱同時分析装置(TG-DTA)を用いて、測定試料の質量を測定した後、アルミパン中、大気雰囲気下、10℃/分で600℃まで昇温後、そのまま600℃で30分間加熱し試料を灰化する。加熱前の質量に対する加熱後の質量を百分率で表し、その値を灰分とする。 In addition, the content of the inorganic filler including the white pigment in the resin composition according to the second embodiment is 70 to 90% by mass, preferably 72 to 88% by mass, and more preferably 75 to 85% by mass. Is desirable. The content of the inorganic filler containing the white pigment in the resin composition according to the second embodiment can be measured as the ash content.
The method for measuring the ash content contained in the resin composition according to the second embodiment includes a method (JIS K 7250-1 (ISO 3451-1)) defined as a general method for obtaining the ash content of a resin composition, and It can be measured according to a compliant method or a TG-DTA method. Among these measuring methods, it is preferable to measure by JIS K 7250-1 (ISO 3451-1) and a method based thereon. However, since JIS K 7250-1 (ISO 3451-1) and the method based thereon require a very large amount of sample, if a sufficient amount of sample cannot be obtained, the TG-DTA method can be used. Good.
The measurement conditions for ash are described below.
(1) JIS K 7250-1 (ISO 3451-1)
Method A (direct ashing method)
Ashing temperature: 800 ° C
Ashing time: 2 hours (2) TG-DTA method After measuring the mass of the measurement sample using a thermogravimetric / differential thermal analyzer (TG-DTA), in an aluminum pan in an air atmosphere at 10 ° C / After heating up to 600 ° C. in minutes, the sample is incinerated by heating at 600 ° C. for 30 minutes. The mass after heating with respect to the mass before heating is expressed as a percentage, and the value is defined as ash.
また、第2実施形態に係る樹脂組成物中の灰分の含有率は、上記記載の測定方法によって、正確に測定することができるが、樹脂組成物全体の配合量に対する白色顔料を含む無機フィラーの配合量の割合から、概算して算出することもできる。
Further, the ash content in the resin composition according to the second embodiment can be accurately measured by the measurement method described above, but the inorganic filler containing a white pigment with respect to the total amount of the resin composition It can also be calculated roughly from the proportion of the amount.
第2実施形態の樹脂組成物中のポリオレフィン樹脂含有率は、7~30質量%、好ましくは11~28質量%とすることが望ましい。ポリオレフィン樹脂含有率が上記範囲であれば、樹脂組成物を成形する際の成形性を保ちながら、耐熱性の優れた成形体とすることができる。
第2実施形態に係る樹脂組成物には、前記架橋処理剤を用いることができるが、該架橋処理剤の含有率は、ポリオレフィン樹脂100質量部に対して、15~40質量部、好ましくは15~30質量部、より好ましくは16~20質量部の量を含有させることが望ましい。架橋処理剤が上記範囲内であれば、架橋前の成形体から架橋処理剤をブリードアウトさせることなく、架橋を効果的に行うことができる。 The polyolefin resin content in the resin composition of the second embodiment is 7 to 30% by mass, preferably 11 to 28% by mass. When the polyolefin resin content is in the above range, a molded article having excellent heat resistance can be obtained while maintaining moldability when molding the resin composition.
In the resin composition according to the second embodiment, the cross-linking agent can be used, and the content of the cross-linking agent is 15 to 40 parts by mass, preferably 15 to 100 parts by mass of the polyolefin resin. It is desirable to contain an amount of ˜30 parts by mass, more preferably 16 to 20 parts by mass. If the crosslinking agent is within the above range, crosslinking can be carried out effectively without bleeding out the crosslinking agent from the molded product before crosslinking.
第2実施形態に係る樹脂組成物には、前記架橋処理剤を用いることができるが、該架橋処理剤の含有率は、ポリオレフィン樹脂100質量部に対して、15~40質量部、好ましくは15~30質量部、より好ましくは16~20質量部の量を含有させることが望ましい。架橋処理剤が上記範囲内であれば、架橋前の成形体から架橋処理剤をブリードアウトさせることなく、架橋を効果的に行うことができる。 The polyolefin resin content in the resin composition of the second embodiment is 7 to 30% by mass, preferably 11 to 28% by mass. When the polyolefin resin content is in the above range, a molded article having excellent heat resistance can be obtained while maintaining moldability when molding the resin composition.
In the resin composition according to the second embodiment, the cross-linking agent can be used, and the content of the cross-linking agent is 15 to 40 parts by mass, preferably 15 to 100 parts by mass of the polyolefin resin. It is desirable to contain an amount of ˜30 parts by mass, more preferably 16 to 20 parts by mass. If the crosslinking agent is within the above range, crosslinking can be carried out effectively without bleeding out the crosslinking agent from the molded product before crosslinking.
なお、第2実施形態に係る樹脂組成物には、本発明の効果を損なわない限り、種々の添加剤を含有させることができる。例えば、樹脂組成物の性質を改善する目的で、種々のウィスカー、シリコーンパウダー、熱可塑性エラストマー、有機合成ゴム、脂肪酸エステル、グリセリン酸エステル、ステアリン酸亜鉛、ステアリン酸カルシウム等の内部離型剤や、ベンゾフェノン系、サリチル酸系、シアノアクリレート系、イソシアヌレート系、シュウ酸アニリド系、ベンゾエート系、ヒンダートアミン系、ベンゾトリアゾール系、フェノール系等の酸化防止剤や、ヒンダードアミン系、ベンゾエート系等の光安定剤といった添加剤を配合することができる。
The resin composition according to the second embodiment can contain various additives as long as the effects of the present invention are not impaired. For example, for the purpose of improving the properties of the resin composition, various kinds of whisker, silicone powder, thermoplastic elastomer, organic synthetic rubber, fatty acid ester, glycerate ester, zinc stearate, calcium stearate and other internal mold release agents, benzophenone , Salicylic acid-based, cyanoacrylate-based, isocyanurate-based, oxalic acid anilide-based, benzoate-based, hindered amine-based, benzotriazole-based, phenol-based antioxidants, hindered amine-based, benzoate-based light stabilizers, etc. Additives can be blended.
また、第2実施形態に係る樹脂組成物には、シランカップリング剤のような分散剤を配合することができる。シランカップリング剤としては、例えば、ヘキサメチルジシラザン等のジシラザン;環状シラザン;トリメチルシラン、トリメチルクロルシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、トリメトキシシラン、ベンジルジメチルクロルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n-ブチルトリメトキシシラン、n-ヘキサデシルトリメトキシシラン、n-オクタデシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、及びビニルトリアセトキシシラン等のアルキルシラン化合物;γ-アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、及びN-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、ヘキシルトリメトキシシラン等のアミノシラン化合物;等が挙げられる。
Further, a dispersant such as a silane coupling agent can be blended with the resin composition according to the second embodiment. Examples of the silane coupling agent include disilazane such as hexamethyldisilazane; cyclic silazane; trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, trimethoxysilane, benzyldimethylchlorosilane, Methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-butyltrimethoxysilane, n-hexadecyl Trimethoxysilane, n-octadecyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyl Alkylsilane compounds such as limethoxysilane and vinyltriacetoxysilane; γ-aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane N-phenyl-3-aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropyltrimethoxysilane, and N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane And aminosilane compounds such as hexyltrimethoxysilane; and the like.
第2実施形態に係る樹脂組成物は、既述のポリオレフィン樹脂及び白色顔料を含む無機フィラーと、使用することが好ましい架橋処理剤とを前述した含有率となる配合量で溶融混練してペレット等の造粒物として製造することができる。溶融混練方法としては、溶融混練押出機、2本ロールあるいは3本ロール、ホモジナイザー、プラネタリーミキサー等の撹拌機、ポリラボシステムやラボプラストミル等の溶融混練機等の公知の溶融混練方法を用いることができる。
The resin composition according to the second embodiment is prepared by melting and kneading the above-described inorganic filler containing the polyolefin resin and the white pigment and the crosslinking agent preferably used in the above-described content ratio, and the like. Can be produced as a granulated product. As the melt-kneading method, a known melt-kneading method such as a melt-kneading extruder, a two-roll or three-roll, a stirrer such as a homogenizer or a planetary mixer, or a melt-kneader such as a polylab system or a lab plast mill is used. be able to.
第2実施形態に係る樹脂組成物から得られる成形体は、クラックの発生がなく、耐熱性に優れ、白色系の色調を有する成形体が得られるので、種々の用途に適用することができる。例えば、耐熱性絶縁膜、耐熱性離型シート、太陽電池の光反射シートやLEDを始めとした照明やテレビ用の光源のリフレクターとして適用することができる。特にLEDは光半導体素子の密封性が素子寿命に影響を与える。このため、第2実施形態に係る樹脂組成物から得られるリフレクター用樹脂組成物及びリフレクターは、クラックの発生が少なく、密封性が高いため、LEDに好ましく適用できる。
さらにリードフレームをエッチング及びハーフエッチングで加工して作製され、素子の設置部の裏面を電極として利用するメタルサブストレート型LEDにより好適に適用することが可能である。本実施形態に係る樹脂組成物を成形し、種々の用途の成形体とするためには、トランスファー成形、圧縮成形、射出成形等の成形方法を用いることができる。例えば、射出成形方法を用いる場合、シリンダー温度200~400℃、金型温度20~150℃で射出成形して得ることができる。また、架橋処理剤を使用した樹脂組成物においては、得られた成形体に電子線照射処理を施して得ることができる。電子線照射処理を行うことにより成形体をより耐熱性の優れたものとすることができる。なお、電子線照射処理は架橋処理剤を使用した樹脂組成物に対して行うこともでき、その電子線照射処理された樹脂組成物を成形して成形体を得ることもできる。 The molded body obtained from the resin composition according to the second embodiment is free from cracks, has excellent heat resistance, and has a white color tone. Therefore, it can be applied to various applications. For example, it can be applied as a heat-resistant insulating film, a heat-resistant release sheet, a light-reflecting sheet for solar cells, a reflector for a light source for televisions, or a light source for television. In particular, in LED, the sealing performance of the optical semiconductor element affects the element life. For this reason, the resin composition for reflectors and the reflector obtained from the resin composition according to the second embodiment are less likely to generate cracks and have high sealing properties, and thus can be preferably applied to LEDs.
Further, it can be suitably applied to a metal substrate type LED which is manufactured by processing a lead frame by etching and half-etching and uses the back surface of the element installation portion as an electrode. In order to mold the resin composition according to the present embodiment into molded articles for various uses, molding methods such as transfer molding, compression molding, and injection molding can be used. For example, when an injection molding method is used, it can be obtained by injection molding at a cylinder temperature of 200 to 400 ° C. and a mold temperature of 20 to 150 ° C. Moreover, in the resin composition using a crosslinking agent, it can obtain by performing an electron beam irradiation process to the obtained molded object. By performing the electron beam irradiation treatment, the molded body can be made more excellent in heat resistance. The electron beam irradiation treatment can be performed on a resin composition using a crosslinking agent, and the resin composition subjected to the electron beam irradiation treatment can be molded to obtain a molded body.
さらにリードフレームをエッチング及びハーフエッチングで加工して作製され、素子の設置部の裏面を電極として利用するメタルサブストレート型LEDにより好適に適用することが可能である。本実施形態に係る樹脂組成物を成形し、種々の用途の成形体とするためには、トランスファー成形、圧縮成形、射出成形等の成形方法を用いることができる。例えば、射出成形方法を用いる場合、シリンダー温度200~400℃、金型温度20~150℃で射出成形して得ることができる。また、架橋処理剤を使用した樹脂組成物においては、得られた成形体に電子線照射処理を施して得ることができる。電子線照射処理を行うことにより成形体をより耐熱性の優れたものとすることができる。なお、電子線照射処理は架橋処理剤を使用した樹脂組成物に対して行うこともでき、その電子線照射処理された樹脂組成物を成形して成形体を得ることもできる。 The molded body obtained from the resin composition according to the second embodiment is free from cracks, has excellent heat resistance, and has a white color tone. Therefore, it can be applied to various applications. For example, it can be applied as a heat-resistant insulating film, a heat-resistant release sheet, a light-reflecting sheet for solar cells, a reflector for a light source for televisions, or a light source for television. In particular, in LED, the sealing performance of the optical semiconductor element affects the element life. For this reason, the resin composition for reflectors and the reflector obtained from the resin composition according to the second embodiment are less likely to generate cracks and have high sealing properties, and thus can be preferably applied to LEDs.
Further, it can be suitably applied to a metal substrate type LED which is manufactured by processing a lead frame by etching and half-etching and uses the back surface of the element installation portion as an electrode. In order to mold the resin composition according to the present embodiment into molded articles for various uses, molding methods such as transfer molding, compression molding, and injection molding can be used. For example, when an injection molding method is used, it can be obtained by injection molding at a cylinder temperature of 200 to 400 ° C. and a mold temperature of 20 to 150 ° C. Moreover, in the resin composition using a crosslinking agent, it can obtain by performing an electron beam irradiation process to the obtained molded object. By performing the electron beam irradiation treatment, the molded body can be made more excellent in heat resistance. The electron beam irradiation treatment can be performed on a resin composition using a crosslinking agent, and the resin composition subjected to the electron beam irradiation treatment can be molded to obtain a molded body.
電子線の加速電圧については、用いる樹脂組成物の大きさや成形体の厚みに応じて適宜選定し得る。例えば、厚みが1mm程度の成形体の場合は通常加速電圧250~3000kV程度で、使用した架橋処理剤を架橋し、硬化させることができる。なお、電子線の照射においては、加速電圧が高いほど透過能力が増加するため、基材として電子線により劣化する基材を使用する場合には、電子線の透過深さと成形体の厚みが実質的に等しくなるように、加速電圧を選定することにより、成形体への余分の電子線の照射を抑制することができ、過剰電子線による成形体の劣化を最小限にとどめることができる。また、電子線を照射する際の吸収線量は樹脂組成物の組成により適宜設定されるが、成形体中の架橋密度が飽和する量が好ましく、照射線量は50~600kGyであることが好ましい。
さらに、電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型などの各種電子線加速器を用いることができる。 About the acceleration voltage of an electron beam, it can select suitably according to the magnitude | size of the resin composition to be used, or the thickness of a molded object. For example, in the case of a molded body having a thickness of about 1 mm, the crosslinking agent used can be crosslinked and cured at an acceleration voltage of about 250 to 3000 kV. In addition, in electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when using a base material that deteriorates due to the electron beam as the base material, the transmission depth of the electron beam and the thickness of the molded body are substantially equal. By selecting the accelerating voltage so as to be equal to each other, it is possible to suppress irradiation of an excessive electron beam to the molded body, and to minimize degradation of the molded body due to excess electron beams. The absorbed dose when irradiating with an electron beam is appropriately set depending on the composition of the resin composition, but the amount at which the crosslink density in the molded body is saturated is preferable, and the irradiated dose is preferably 50 to 600 kGy.
Further, the electron beam source is not particularly limited. For example, various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. Can be used.
さらに、電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型などの各種電子線加速器を用いることができる。 About the acceleration voltage of an electron beam, it can select suitably according to the magnitude | size of the resin composition to be used, or the thickness of a molded object. For example, in the case of a molded body having a thickness of about 1 mm, the crosslinking agent used can be crosslinked and cured at an acceleration voltage of about 250 to 3000 kV. In addition, in electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when using a base material that deteriorates due to the electron beam as the base material, the transmission depth of the electron beam and the thickness of the molded body are substantially equal. By selecting the accelerating voltage so as to be equal to each other, it is possible to suppress irradiation of an excessive electron beam to the molded body, and to minimize degradation of the molded body due to excess electron beams. The absorbed dose when irradiating with an electron beam is appropriately set depending on the composition of the resin composition, but the amount at which the crosslink density in the molded body is saturated is preferable, and the irradiated dose is preferably 50 to 600 kGy.
Further, the electron beam source is not particularly limited. For example, various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. Can be used.
[リフレクター]
本発明の第2実施形態に係るリフレクターは、既述の本発明の樹脂組成物を成形してなる。当該リフレクターは、後述する半導体発光装置と組み合わせて用いてよいし、他の材料からなる半導体発光装置(LED実装用基板)と組み合わせて用いてもよい。
第2実施形態に係るリフレクターは、主として、半導体発光装置のLED素子からの光をレンズ(出光部)の方へ反射させる作用を有する。リフレクターの詳細については、本発明の半導体発光装置に適用されるリフレクター(後述するリフレクター12)と同じであるためここでは省略する。
なお、第2実施形態に係る樹脂組成物から得られる成形体は、クラックの発生がなく、耐熱性に優れた白色系の色調を有するため、光半導体パッケージ用のリフレクターとして好適である。 [Reflector]
The reflector according to the second embodiment of the present invention is formed by molding the above-described resin composition of the present invention. The reflector may be used in combination with a semiconductor light-emitting device to be described later, or may be used in combination with a semiconductor light-emitting device (LED mounting substrate) made of another material.
The reflector according to the second embodiment mainly has an action of reflecting light from the LED element of the semiconductor light emitting device toward the lens (light emitting portion). The details of the reflector are the same as those of the reflector (reflector 12 described later) applied to the semiconductor light emitting device of the present invention, and are omitted here.
In addition, since the molded object obtained from the resin composition which concerns on 2nd Embodiment does not generate | occur | produce a crack and has the white color tone excellent in heat resistance, it is suitable as a reflector for optical semiconductor packages.
本発明の第2実施形態に係るリフレクターは、既述の本発明の樹脂組成物を成形してなる。当該リフレクターは、後述する半導体発光装置と組み合わせて用いてよいし、他の材料からなる半導体発光装置(LED実装用基板)と組み合わせて用いてもよい。
第2実施形態に係るリフレクターは、主として、半導体発光装置のLED素子からの光をレンズ(出光部)の方へ反射させる作用を有する。リフレクターの詳細については、本発明の半導体発光装置に適用されるリフレクター(後述するリフレクター12)と同じであるためここでは省略する。
なお、第2実施形態に係る樹脂組成物から得られる成形体は、クラックの発生がなく、耐熱性に優れた白色系の色調を有するため、光半導体パッケージ用のリフレクターとして好適である。 [Reflector]
The reflector according to the second embodiment of the present invention is formed by molding the above-described resin composition of the present invention. The reflector may be used in combination with a semiconductor light-emitting device to be described later, or may be used in combination with a semiconductor light-emitting device (LED mounting substrate) made of another material.
The reflector according to the second embodiment mainly has an action of reflecting light from the LED element of the semiconductor light emitting device toward the lens (light emitting portion). The details of the reflector are the same as those of the reflector (
In addition, since the molded object obtained from the resin composition which concerns on 2nd Embodiment does not generate | occur | produce a crack and has the white color tone excellent in heat resistance, it is suitable as a reflector for optical semiconductor packages.
[リフレクター付きリードフレーム]
第2実施形態に係るリフレクター付きリードフレームは、前述した第2実施形態に係る樹脂組成物を成形してなる。リードフレームは、リフレクターを載置するための基板を示す。リードフレームは、半導体発光装置の分野で用いられるものあればいかなるものであっても使用可能である。リードフレームの材料としては、例えば、アルミナや、窒化アルミニウム、ムライト、ガラスなどの焼結体から構成されるセラミック等を挙げることができる。これ以外にも、ポリイミド樹脂等のフレキシブル性を有する樹脂材料等を挙げることができる。特に金属よりなるリードフレームとしては、アルミニウム、銅及び銅の合金が用いられることが多く、反射率の向上のため銀などの反射率が高い貴金属によりメッキされることも多い。特に金属で形成されたリフレクター用基板は、リードフレームと呼称されることも多い。リードフレームに形成された端子部等は、ハーフエッチングにより形成されていてもよい。具体的には、上記のリードフレームに、第2実施形態に係る樹脂組成物を射出成形することにより、所望のリフレクター形状に成形することで、第2実施形態に係るリフレクター付きリードフレームが製造される。 [Lead frame with reflector]
The lead frame with a reflector according to the second embodiment is formed by molding the resin composition according to the second embodiment described above. The lead frame indicates a substrate on which the reflector is placed. Any lead frame can be used as long as it is used in the field of semiconductor light emitting devices. Examples of the material of the lead frame include ceramics made of a sintered body such as alumina, aluminum nitride, mullite, and glass. In addition, a resin material having flexibility such as polyimide resin can be used. In particular, a lead frame made of metal is often made of aluminum, copper, or an alloy of copper, and is often plated with a noble metal having a high reflectance such as silver in order to improve the reflectance. In particular, a reflector substrate made of metal is often called a lead frame. Terminal portions and the like formed on the lead frame may be formed by half etching. Specifically, the lead frame with a reflector according to the second embodiment is manufactured by molding the resin composition according to the second embodiment on the above-described lead frame into a desired reflector shape. The
第2実施形態に係るリフレクター付きリードフレームは、前述した第2実施形態に係る樹脂組成物を成形してなる。リードフレームは、リフレクターを載置するための基板を示す。リードフレームは、半導体発光装置の分野で用いられるものあればいかなるものであっても使用可能である。リードフレームの材料としては、例えば、アルミナや、窒化アルミニウム、ムライト、ガラスなどの焼結体から構成されるセラミック等を挙げることができる。これ以外にも、ポリイミド樹脂等のフレキシブル性を有する樹脂材料等を挙げることができる。特に金属よりなるリードフレームとしては、アルミニウム、銅及び銅の合金が用いられることが多く、反射率の向上のため銀などの反射率が高い貴金属によりメッキされることも多い。特に金属で形成されたリフレクター用基板は、リードフレームと呼称されることも多い。リードフレームに形成された端子部等は、ハーフエッチングにより形成されていてもよい。具体的には、上記のリードフレームに、第2実施形態に係る樹脂組成物を射出成形することにより、所望のリフレクター形状に成形することで、第2実施形態に係るリフレクター付きリードフレームが製造される。 [Lead frame with reflector]
The lead frame with a reflector according to the second embodiment is formed by molding the resin composition according to the second embodiment described above. The lead frame indicates a substrate on which the reflector is placed. Any lead frame can be used as long as it is used in the field of semiconductor light emitting devices. Examples of the material of the lead frame include ceramics made of a sintered body such as alumina, aluminum nitride, mullite, and glass. In addition, a resin material having flexibility such as polyimide resin can be used. In particular, a lead frame made of metal is often made of aluminum, copper, or an alloy of copper, and is often plated with a noble metal having a high reflectance such as silver in order to improve the reflectance. In particular, a reflector substrate made of metal is often called a lead frame. Terminal portions and the like formed on the lead frame may be formed by half etching. Specifically, the lead frame with a reflector according to the second embodiment is manufactured by molding the resin composition according to the second embodiment on the above-described lead frame into a desired reflector shape. The
第2実施形態に係るリフレクター付きリードフレームの厚さ(リフレクターの厚み)は、0.1~3.0mmであることが好ましく、0.1~1.0mmであることがより好ましく、0.1~0.8mmであることがさらに好ましい。
The thickness of the lead frame with reflector according to the second embodiment (reflector thickness) is preferably 0.1 to 3.0 mm, more preferably 0.1 to 1.0 mm, More preferably, it is ˜0.8 mm.
第2実施形態に係るリフレクター付きリードフレームは、これにLEDチップを載せてさらに公知の封止剤により封止を行い、ダイボンディングを行なって所望の形状にすることで、半導体発光装置とすることができる。なお、本発明のリフレクター付きリードフレームは、リフレクターとして作用するが、半導体発光装置を支える枠としても機能している。
The lead frame with a reflector according to the second embodiment is to be a semiconductor light emitting device by mounting an LED chip on the reflector, further sealing with a known sealing agent, and die bonding to obtain a desired shape. Can do. In addition, although the lead frame with a reflector of this invention acts as a reflector, it is functioning also as a frame which supports a semiconductor light-emitting device.
[半導体発光装置]
第2実施形態に係る半導体発光装置及びその製造方法の一例は、上述した図1及び図2を用いて説明した半導体発光装置と同様に構成することができる。 [Semiconductor light emitting device]
An example of the semiconductor light emitting device and the manufacturing method thereof according to the second embodiment can be configured in the same manner as the semiconductor light emitting device described with reference to FIGS. 1 and 2 described above.
第2実施形態に係る半導体発光装置及びその製造方法の一例は、上述した図1及び図2を用いて説明した半導体発光装置と同様に構成することができる。 [Semiconductor light emitting device]
An example of the semiconductor light emitting device and the manufacturing method thereof according to the second embodiment can be configured in the same manner as the semiconductor light emitting device described with reference to FIGS. 1 and 2 described above.
第1実施形態に係る実施例
第1実施形態に係るリフレクターを、実施例を用いて詳細に説明する。第1の発明は、これら実施例に限定されない。
[リフレクター用樹脂組成物]
実施例及び比較例のリフレクター用樹脂組成物を下記の方法により作製し、成形性と灰分量を評価した。結果を第1表に示す。
<リフレクター用樹脂組成物の作製>
下記の各種材料を、第1表に示す配合処方により、押出機(日本プラコン株式会社 MAX30:ダイス径3.0mm)とペレタイザー(株式会社東洋精機製作所 MPETC1)を用いて混合し、リフレクター用樹脂組成物を得た。
・ポリオレフィン樹脂…ポリメチルペンテン樹脂、重量平均分子量=497,000)
・白色顔料…酸化チタン粒子:平均粒径0.21μm
・繊維状フィラー1…ガラス繊維:PF70E-001(日東紡株式会社製、平均繊維長62μm、平均断面積104.2μm2、断面形状は丸形のガラス繊維)
・繊維状フィラー2…ガラス繊維:SS05DE-413SP(日東紡株式会社製、平均繊維長65μm、平均断面積41.6μm2、断面形状は丸形のガラス繊維)
・繊維状フィラー3・・・ガラス繊維:EFDE50-01(セントラルグラスファイバー株式会社製、平均繊維長55μm、平均断面積33.2μm2)
・繊維状フィラー4・・・ガラス繊維:MF03JB1-20(旭ファイバーグラス株式会社製、平均繊維長34μm、平均断面積81.7μm2)
・繊維状フィラー5・・・ガラス繊維:MF03JB1-20(旭ファイバーグラス株式会社製、平均繊維長71μm、平均断面積81.7μm2)
・架橋処理剤…トリアリルイソシアヌレート
・シランカップリング剤…ヘキシルトリメトキシシラン
・酸化防止剤1…IRGANOX1010(BASFジャパン株式会社製)
・酸化防止剤2…ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト
・離型剤…ステアリン酸亜鉛
なお、上述した繊維状フィラー1~5において、平均繊維長及び平均断面積は、リフレクター樹脂組成物に混合する前のものを、カーボンテープを用いSEM観察用の試料台に固定し、SEM(株式会社日立ハイテクノロジーズ S-4800)により、観察して測定された値である。少なくとも10個の繊維状フィラーの平均値として算出した。
<ペレット作成>
上記の樹脂組成物を得る工程は押出し機のスクリューを用いて混練されるが、この工程において安定してペレット化された樹脂組成物が得られた場合は可、押出し機のスクリューにかかる負荷が大きく、連続運転が不可能な状態で安定してペレット化された樹脂組成物が得られない場合を不可とした。 Example According to First Embodiment A reflector according to the first embodiment will be described in detail using an example. The first invention is not limited to these examples.
[Resin composition for reflector]
The resin compositions for reflectors of Examples and Comparative Examples were prepared by the following methods, and the moldability and ash content were evaluated. The results are shown in Table 1.
<Preparation of resin composition for reflector>
The following various materials are mixed by using an extruder (Nippon Placon Co., Ltd. MAX30: die diameter: 3.0 mm) and a pelletizer (Toyo Seiki Co., Ltd., MPPEC1) according to the formulation shown in Table 1, and a resin composition for reflectors. I got a thing.
・ Polyolefin resin: polymethylpentene resin, weight average molecular weight = 497,000)
White pigment: Titanium oxide particles: average particle size 0.21 μm
Fibrous filler 1: Glass fiber: PF70E-001 (manufactured by Nittobo Co., Ltd., average fiber length 62 μm, average cross-sectional area 104.2 μm 2 , and cross-sectional shape is round glass fiber)
Fiber filler 2 ... glass fiber: SS05DE-413SP (manufactured by Nittobo Co., Ltd., average fiber length 65 μm, average cross-sectional area 41.6 μm 2 , cross-sectional shape is round glass fiber)
Fibrous filler 3 Glass fiber: EFDE50-01 (manufactured by Central Glass Fiber Co., Ltd., average fiber length 55 μm, average cross-sectional area 33.2 μm 2 )
-Fibrous filler 4 ... Glass fiber: MF03JB1-20 (Asahi Fiber Glass Co., Ltd., average fiber length 34 μm, average cross-sectional area 81.7 μm 2 )
Fiber filler 5 ... glass fiber: MF03JB1-20 (Asahi Fiber Glass Co., Ltd., average fiber length 71 μm, average cross-sectional area 81.7 μm 2 )
・ Crosslinking agent ... triallyl isocyanurate ・ Silane coupling agent ... Hexyltrimethoxysilane ・ Antioxidant 1 ... IRGANOX1010 (manufactured by BASF Japan Ltd.)
· Antioxidant 2 ··· Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite · Mold release agent · Zinc stearate In addition, in the above fibrous fillers 1 to 5, the average fiber The length and average cross-sectional area were measured by fixing the sample before mixing with the reflector resin composition on a sample stage for SEM observation using carbon tape, and observing it with SEM (Hitachi High-Technologies S-4800). Value. It calculated as an average value of at least 10 fibrous fillers.
<Pellet creation>
The step of obtaining the resin composition is kneaded using an extruder screw. If a resin composition stably pelletized is obtained in this step, the load applied to the screw of the extruder is acceptable. The case where a resin composition that is large and cannot be continuously operated and cannot be stably pelletized cannot be obtained.
第1実施形態に係るリフレクターを、実施例を用いて詳細に説明する。第1の発明は、これら実施例に限定されない。
[リフレクター用樹脂組成物]
実施例及び比較例のリフレクター用樹脂組成物を下記の方法により作製し、成形性と灰分量を評価した。結果を第1表に示す。
<リフレクター用樹脂組成物の作製>
下記の各種材料を、第1表に示す配合処方により、押出機(日本プラコン株式会社 MAX30:ダイス径3.0mm)とペレタイザー(株式会社東洋精機製作所 MPETC1)を用いて混合し、リフレクター用樹脂組成物を得た。
・ポリオレフィン樹脂…ポリメチルペンテン樹脂、重量平均分子量=497,000)
・白色顔料…酸化チタン粒子:平均粒径0.21μm
・繊維状フィラー1…ガラス繊維:PF70E-001(日東紡株式会社製、平均繊維長62μm、平均断面積104.2μm2、断面形状は丸形のガラス繊維)
・繊維状フィラー2…ガラス繊維:SS05DE-413SP(日東紡株式会社製、平均繊維長65μm、平均断面積41.6μm2、断面形状は丸形のガラス繊維)
・繊維状フィラー3・・・ガラス繊維:EFDE50-01(セントラルグラスファイバー株式会社製、平均繊維長55μm、平均断面積33.2μm2)
・繊維状フィラー4・・・ガラス繊維:MF03JB1-20(旭ファイバーグラス株式会社製、平均繊維長34μm、平均断面積81.7μm2)
・繊維状フィラー5・・・ガラス繊維:MF03JB1-20(旭ファイバーグラス株式会社製、平均繊維長71μm、平均断面積81.7μm2)
・架橋処理剤…トリアリルイソシアヌレート
・シランカップリング剤…ヘキシルトリメトキシシラン
・酸化防止剤1…IRGANOX1010(BASFジャパン株式会社製)
・酸化防止剤2…ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト
・離型剤…ステアリン酸亜鉛
なお、上述した繊維状フィラー1~5において、平均繊維長及び平均断面積は、リフレクター樹脂組成物に混合する前のものを、カーボンテープを用いSEM観察用の試料台に固定し、SEM(株式会社日立ハイテクノロジーズ S-4800)により、観察して測定された値である。少なくとも10個の繊維状フィラーの平均値として算出した。
<ペレット作成>
上記の樹脂組成物を得る工程は押出し機のスクリューを用いて混練されるが、この工程において安定してペレット化された樹脂組成物が得られた場合は可、押出し機のスクリューにかかる負荷が大きく、連続運転が不可能な状態で安定してペレット化された樹脂組成物が得られない場合を不可とした。 Example According to First Embodiment A reflector according to the first embodiment will be described in detail using an example. The first invention is not limited to these examples.
[Resin composition for reflector]
The resin compositions for reflectors of Examples and Comparative Examples were prepared by the following methods, and the moldability and ash content were evaluated. The results are shown in Table 1.
<Preparation of resin composition for reflector>
The following various materials are mixed by using an extruder (Nippon Placon Co., Ltd. MAX30: die diameter: 3.0 mm) and a pelletizer (Toyo Seiki Co., Ltd., MPPEC1) according to the formulation shown in Table 1, and a resin composition for reflectors. I got a thing.
・ Polyolefin resin: polymethylpentene resin, weight average molecular weight = 497,000)
White pigment: Titanium oxide particles: average particle size 0.21 μm
Fibrous filler 1: Glass fiber: PF70E-001 (manufactured by Nittobo Co., Ltd., average fiber length 62 μm, average cross-sectional area 104.2 μm 2 , and cross-sectional shape is round glass fiber)
Fiber filler 2 ... glass fiber: SS05DE-413SP (manufactured by Nittobo Co., Ltd., average fiber length 65 μm, average cross-sectional area 41.6 μm 2 , cross-sectional shape is round glass fiber)
Fibrous filler 3 Glass fiber: EFDE50-01 (manufactured by Central Glass Fiber Co., Ltd., average fiber length 55 μm, average cross-sectional area 33.2 μm 2 )
-Fibrous filler 4 ... Glass fiber: MF03JB1-20 (Asahi Fiber Glass Co., Ltd., average fiber length 34 μm, average cross-sectional area 81.7 μm 2 )
Fiber filler 5 ... glass fiber: MF03JB1-20 (Asahi Fiber Glass Co., Ltd., average fiber length 71 μm, average cross-sectional area 81.7 μm 2 )
・ Crosslinking agent ... triallyl isocyanurate ・ Silane coupling agent ... Hexyltrimethoxysilane ・ Antioxidant 1 ... IRGANOX1010 (manufactured by BASF Japan Ltd.)
· Antioxidant 2 ··· Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite · Mold release agent · Zinc stearate In addition, in the above fibrous fillers 1 to 5, the average fiber The length and average cross-sectional area were measured by fixing the sample before mixing with the reflector resin composition on a sample stage for SEM observation using carbon tape, and observing it with SEM (Hitachi High-Technologies S-4800). Value. It calculated as an average value of at least 10 fibrous fillers.
<Pellet creation>
The step of obtaining the resin composition is kneaded using an extruder screw. If a resin composition stably pelletized is obtained in this step, the load applied to the screw of the extruder is acceptable. The case where a resin composition that is large and cannot be continuously operated and cannot be stably pelletized cannot be obtained.
<成形性>
リフレクター用樹脂組成物を用いて、以下の条件でリフレクター付きリードフレームを作製した。
射出成形機ソディックTR40ERソディック(プリプラ式)を用いて、銀めっきフレーム(厚み:250μm)に樹脂組成物(厚み:700μm、外形寸法:35mm×35mm、開口部:2.9mm×2.9mm)を成形し、リフレクター付きリードフレームを得た。射出成形機条件は、シリンダー温度:270℃、金型温度:80℃、射出速度:100mm/sec、保圧力:80MPa、保圧時間:1sec、冷却時間:8secとした。
成形後に、金型内にリフレクター用樹脂組成物が完全に充填されていない場合はショートとした。また、リフレクター付きリードフレームの開口部のバリを顕微鏡を用いて計測し、最大幅が100μm以上をバリ発生有りとした。いずれにも該当しない場合を成形性良とした。
<灰分量>
TG-DTA法に基づく熱重量/示差熱同時分析装置を用いて、リフレクター用樹脂組成物の加熱前の質量を測定した後、アルミパン中で大気雰囲気下において、10℃/分で600℃まで昇温した後、600℃で30分間加熱して残る灰分の重量を測定して、加熱後の質量の加熱前の質量に対する割合を求めた。 <Moldability>
A lead frame with a reflector was produced using the resin composition for a reflector under the following conditions.
Using an injection molding machine Sodick TR40ER Sodick (prep plastic type), a resin composition (thickness: 700 μm, external dimensions: 35 mm × 35 mm, opening: 2.9 mm × 2.9 mm) is applied to a silver plating frame (thickness: 250 μm). The lead frame with the reflector was obtained by molding. The injection molding machine conditions were as follows: cylinder temperature: 270 ° C., mold temperature: 80 ° C., injection speed: 100 mm / sec, holding pressure: 80 MPa, holding pressure time: 1 sec, cooling time: 8 sec.
After molding, if the resin composition for the reflector was not completely filled in the mold, it was determined as a short circuit. Moreover, the burr | flash of the opening part of the lead frame with a reflector was measured using the microscope, and the maximum width | variety was 100 micrometers or more with burr | flash generation | occurrence | production. A case that does not correspond to any of the cases was regarded as good moldability.
<Amount of ash>
Using a thermogravimetric / differential thermal simultaneous analyzer based on the TG-DTA method, the mass before heating of the resin composition for the reflector is measured, and then in an air atmosphere in an aluminum pan up to 600 ° C. at 10 ° C./min. After the temperature was raised, the weight of the remaining ash was measured by heating at 600 ° C. for 30 minutes, and the ratio of the mass after heating to the mass before heating was determined.
リフレクター用樹脂組成物を用いて、以下の条件でリフレクター付きリードフレームを作製した。
射出成形機ソディックTR40ERソディック(プリプラ式)を用いて、銀めっきフレーム(厚み:250μm)に樹脂組成物(厚み:700μm、外形寸法:35mm×35mm、開口部:2.9mm×2.9mm)を成形し、リフレクター付きリードフレームを得た。射出成形機条件は、シリンダー温度:270℃、金型温度:80℃、射出速度:100mm/sec、保圧力:80MPa、保圧時間:1sec、冷却時間:8secとした。
成形後に、金型内にリフレクター用樹脂組成物が完全に充填されていない場合はショートとした。また、リフレクター付きリードフレームの開口部のバリを顕微鏡を用いて計測し、最大幅が100μm以上をバリ発生有りとした。いずれにも該当しない場合を成形性良とした。
<灰分量>
TG-DTA法に基づく熱重量/示差熱同時分析装置を用いて、リフレクター用樹脂組成物の加熱前の質量を測定した後、アルミパン中で大気雰囲気下において、10℃/分で600℃まで昇温した後、600℃で30分間加熱して残る灰分の重量を測定して、加熱後の質量の加熱前の質量に対する割合を求めた。 <Moldability>
A lead frame with a reflector was produced using the resin composition for a reflector under the following conditions.
Using an injection molding machine Sodick TR40ER Sodick (prep plastic type), a resin composition (thickness: 700 μm, external dimensions: 35 mm × 35 mm, opening: 2.9 mm × 2.9 mm) is applied to a silver plating frame (thickness: 250 μm). The lead frame with the reflector was obtained by molding. The injection molding machine conditions were as follows: cylinder temperature: 270 ° C., mold temperature: 80 ° C., injection speed: 100 mm / sec, holding pressure: 80 MPa, holding pressure time: 1 sec, cooling time: 8 sec.
After molding, if the resin composition for the reflector was not completely filled in the mold, it was determined as a short circuit. Moreover, the burr | flash of the opening part of the lead frame with a reflector was measured using the microscope, and the maximum width | variety was 100 micrometers or more with burr | flash generation | occurrence | production. A case that does not correspond to any of the cases was regarded as good moldability.
<Amount of ash>
Using a thermogravimetric / differential thermal simultaneous analyzer based on the TG-DTA method, the mass before heating of the resin composition for the reflector is measured, and then in an air atmosphere in an aluminum pan up to 600 ° C. at 10 ° C./min. After the temperature was raised, the weight of the remaining ash was measured by heating at 600 ° C. for 30 minutes, and the ratio of the mass after heating to the mass before heating was determined.
[リフレクター用樹脂組成物の硬化物]
実施例及び比較例のリフレクター用樹脂組成物の硬化物を下記の方法により作製し、荷重たわみ温度を評価した。結果を第1表に示す。
<リフレクター用樹脂組成物硬化物の作製>
射出成形機ソディックTR40ERソディック(プリプラ式)を用いて、ASTM用ダンベル金型を用いて成形し、リフレクター用樹脂成形物を得た。射出成形機条件は、シリンダー温度:260℃、金型温度:45℃、射出速度:15mm/sec、保圧力:55MPa、保圧時間:7sec、冷却時間:15secとした。この成形物を加速電圧800kV、照射線量400kGyにて電子線を照射して硬化させて、リフレクター用樹脂組成物硬化物を得た。
<熱変形温度>
供試体をASTM D648に準拠し、規定たわみ量に達した温度を荷重たわみ温度(熱変形温度)とした。 [Hardened product of resin composition for reflector]
Cured products of the resin compositions for reflectors of Examples and Comparative Examples were produced by the following methods, and the deflection temperature under load was evaluated. The results are shown in Table 1.
<Preparation of cured resin composition for reflector>
Using an injection molding machine Sodick TR40ER Sodick (prep plastic type), molding was performed using an ASTM dumbbell mold to obtain a resin molded product for a reflector. The injection molding machine conditions were as follows: cylinder temperature: 260 ° C., mold temperature: 45 ° C., injection speed: 15 mm / sec, holding pressure: 55 MPa, holding pressure time: 7 sec, cooling time: 15 sec. This molded product was cured by irradiation with an electron beam at an acceleration voltage of 800 kV and an irradiation dose of 400 kGy to obtain a cured resin composition for a reflector.
<Heat deformation temperature>
The specimen was compliant with ASTM D648, and the temperature at which the specified deflection amount was reached was defined as the deflection temperature under load (thermal deformation temperature).
実施例及び比較例のリフレクター用樹脂組成物の硬化物を下記の方法により作製し、荷重たわみ温度を評価した。結果を第1表に示す。
<リフレクター用樹脂組成物硬化物の作製>
射出成形機ソディックTR40ERソディック(プリプラ式)を用いて、ASTM用ダンベル金型を用いて成形し、リフレクター用樹脂成形物を得た。射出成形機条件は、シリンダー温度:260℃、金型温度:45℃、射出速度:15mm/sec、保圧力:55MPa、保圧時間:7sec、冷却時間:15secとした。この成形物を加速電圧800kV、照射線量400kGyにて電子線を照射して硬化させて、リフレクター用樹脂組成物硬化物を得た。
<熱変形温度>
供試体をASTM D648に準拠し、規定たわみ量に達した温度を荷重たわみ温度(熱変形温度)とした。 [Hardened product of resin composition for reflector]
Cured products of the resin compositions for reflectors of Examples and Comparative Examples were produced by the following methods, and the deflection temperature under load was evaluated. The results are shown in Table 1.
<Preparation of cured resin composition for reflector>
Using an injection molding machine Sodick TR40ER Sodick (prep plastic type), molding was performed using an ASTM dumbbell mold to obtain a resin molded product for a reflector. The injection molding machine conditions were as follows: cylinder temperature: 260 ° C., mold temperature: 45 ° C., injection speed: 15 mm / sec, holding pressure: 55 MPa, holding pressure time: 7 sec, cooling time: 15 sec. This molded product was cured by irradiation with an electron beam at an acceleration voltage of 800 kV and an irradiation dose of 400 kGy to obtain a cured resin composition for a reflector.
<Heat deformation temperature>
The specimen was compliant with ASTM D648, and the temperature at which the specified deflection amount was reached was defined as the deflection temperature under load (thermal deformation temperature).
[リフレクター付きリードフレーム]
実施例及び比較例のリフレクター付きリードフレームを下記の方法により作製し、密着度、反射率、及び耐久性Aを評価した。結果を第1表に示す。
<リフレクター付きリードフレームの作製>
以下の評価は、上述した成形性の評価に用いたものと同条件で作製したリフレクター用樹脂組成物を成形し、加速電圧800kV、照射線量400kGyにて電子線を照射して硬化させてリフレクター付きリードフレームを得た。
<密着度>
リフレクター付きリードフレームの各供試体と基板との密着度を、レッドチェック試験により測定し、可否を判定した。すなわち、リフレクターのキャビティにレッドインキ(株式会社パイロットコーポレーション製「INK30R」)を0.8μL滴下し、6時間経過後の裏面へのインキの漏れ具合を50倍の光学顕微鏡で観察した。評価基準は、以下の通りとした。
6時間経過後でも漏れが観察されない場合を合格とした。
6時間経過前に漏れが観察された場合を不合格とした。
<反射率>
得られたリフレクター付きリードフレームの供試体の波長230~780nmにおける光反射率を、反射率測定装置MCPD9800(大塚電子株式会社製)を使用して測定した。波長450nmの反射率にて比較した。
<耐久性A>
リフレクター付きリードフレームの供試体を、200℃で45時間放置した後の、反射率を測定した。反射率の測定には、上記反射率測定装置を用い、同一の条件にて測定した。波長450nmの反射率にて比較した。 [Lead frame with reflector]
The lead frame with a reflector of an Example and a comparative example was produced with the following method, and adhesiveness, a reflectance, and durability A were evaluated. The results are shown in Table 1.
<Production of lead frame with reflector>
The following evaluation is performed by molding a resin composition for a reflector produced under the same conditions as those used for the above-described evaluation of moldability, and curing by applying an electron beam at an acceleration voltage of 800 kV and an irradiation dose of 400 kGy. A lead frame was obtained.
<Adhesion>
The degree of adhesion between each specimen of the lead frame with a reflector and the substrate was measured by a red check test to determine whether or not it was possible. That is, 0.8 μL of red ink (“INK30R” manufactured by Pilot Corporation) was dropped into the reflector cavity, and the degree of ink leakage to the back surface after 6 hours was observed with a 50 × optical microscope. The evaluation criteria were as follows.
The case where no leakage was observed even after 6 hours had passed.
A case where leakage was observed before the lapse of 6 hours was regarded as a failure.
<Reflectance>
The light reflectance at a wavelength of 230 to 780 nm of the specimen of the obtained lead frame with a reflector was measured using a reflectance measuring device MCPD9800 (manufactured by Otsuka Electronics Co., Ltd.). Comparison was made at a reflectance of a wavelength of 450 nm.
<Durability A>
The reflectance was measured after the specimen of the lead frame with a reflector was left at 200 ° C. for 45 hours. The reflectance was measured using the reflectance measuring apparatus under the same conditions. Comparison was made at a reflectance of a wavelength of 450 nm.
実施例及び比較例のリフレクター付きリードフレームを下記の方法により作製し、密着度、反射率、及び耐久性Aを評価した。結果を第1表に示す。
<リフレクター付きリードフレームの作製>
以下の評価は、上述した成形性の評価に用いたものと同条件で作製したリフレクター用樹脂組成物を成形し、加速電圧800kV、照射線量400kGyにて電子線を照射して硬化させてリフレクター付きリードフレームを得た。
<密着度>
リフレクター付きリードフレームの各供試体と基板との密着度を、レッドチェック試験により測定し、可否を判定した。すなわち、リフレクターのキャビティにレッドインキ(株式会社パイロットコーポレーション製「INK30R」)を0.8μL滴下し、6時間経過後の裏面へのインキの漏れ具合を50倍の光学顕微鏡で観察した。評価基準は、以下の通りとした。
6時間経過後でも漏れが観察されない場合を合格とした。
6時間経過前に漏れが観察された場合を不合格とした。
<反射率>
得られたリフレクター付きリードフレームの供試体の波長230~780nmにおける光反射率を、反射率測定装置MCPD9800(大塚電子株式会社製)を使用して測定した。波長450nmの反射率にて比較した。
<耐久性A>
リフレクター付きリードフレームの供試体を、200℃で45時間放置した後の、反射率を測定した。反射率の測定には、上記反射率測定装置を用い、同一の条件にて測定した。波長450nmの反射率にて比較した。 [Lead frame with reflector]
The lead frame with a reflector of an Example and a comparative example was produced with the following method, and adhesiveness, a reflectance, and durability A were evaluated. The results are shown in Table 1.
<Production of lead frame with reflector>
The following evaluation is performed by molding a resin composition for a reflector produced under the same conditions as those used for the above-described evaluation of moldability, and curing by applying an electron beam at an acceleration voltage of 800 kV and an irradiation dose of 400 kGy. A lead frame was obtained.
<Adhesion>
The degree of adhesion between each specimen of the lead frame with a reflector and the substrate was measured by a red check test to determine whether or not it was possible. That is, 0.8 μL of red ink (“INK30R” manufactured by Pilot Corporation) was dropped into the reflector cavity, and the degree of ink leakage to the back surface after 6 hours was observed with a 50 × optical microscope. The evaluation criteria were as follows.
The case where no leakage was observed even after 6 hours had passed.
A case where leakage was observed before the lapse of 6 hours was regarded as a failure.
<Reflectance>
The light reflectance at a wavelength of 230 to 780 nm of the specimen of the obtained lead frame with a reflector was measured using a reflectance measuring device MCPD9800 (manufactured by Otsuka Electronics Co., Ltd.). Comparison was made at a reflectance of a wavelength of 450 nm.
<Durability A>
The reflectance was measured after the specimen of the lead frame with a reflector was left at 200 ° C. for 45 hours. The reflectance was measured using the reflectance measuring apparatus under the same conditions. Comparison was made at a reflectance of a wavelength of 450 nm.
[発光装置]
実施例及び比較例のリフレクター付きリードフレームを用いて発光装置を作製し、初期光束を評価した。結果を第1表に示す。
第1表に示す配合処方により作製したリフレクター用樹脂組成物を、リフレクター形状に成形し、該成形体に、加速電圧800kV、照射線量400kGyにて電子線を照射して硬化させた。硬化後にリフレクター付きリードフレームを得た。得られたリフレクター付きリードフレームと、別途準備したLED素子及び電極を、接着剤により基板上に固定し、リード線によりLED素子と電極を接続した後、ダイシングして個片化し、半導体発光装置(LEDパッケージ)を得た。配線基板上に半田を設けておき、その半田上に該半導体発光装置を載せ、リフロー炉により240℃に加熱し、半田を溶融させて配線基板上に半導体発光装置を実装した。
<初期光束>
定電流200mAで発光させた際の光束を瞬間マルチ測光システム(広ダイナミックレンジタイプ) MCPD-9800(大塚電子株式会社製)にて測定し初期光束とした。 [Light emitting device]
A light emitting device was manufactured using the lead frames with reflectors of Examples and Comparative Examples, and the initial luminous flux was evaluated. The results are shown in Table 1.
The reflector resin composition produced by the formulation shown in Table 1 was molded into a reflector shape, and the molded body was cured by irradiation with an electron beam at an acceleration voltage of 800 kV and an irradiation dose of 400 kGy. A lead frame with a reflector was obtained after curing. The obtained lead frame with reflector and the separately prepared LED element and electrode are fixed on the substrate with an adhesive, and the LED element and the electrode are connected with a lead wire, then diced into individual pieces, and a semiconductor light emitting device ( LED package) was obtained. Solder was provided on the wiring board, the semiconductor light emitting device was placed on the solder, heated to 240 ° C. in a reflow furnace, the solder was melted, and the semiconductor light emitting device was mounted on the wiring board.
<Initial luminous flux>
The luminous flux when light was emitted at a constant current of 200 mA was measured with an instantaneous multi-photometry system (wide dynamic range type) MCPD-9800 (manufactured by Otsuka Electronics Co., Ltd.) to obtain an initial luminous flux.
実施例及び比較例のリフレクター付きリードフレームを用いて発光装置を作製し、初期光束を評価した。結果を第1表に示す。
第1表に示す配合処方により作製したリフレクター用樹脂組成物を、リフレクター形状に成形し、該成形体に、加速電圧800kV、照射線量400kGyにて電子線を照射して硬化させた。硬化後にリフレクター付きリードフレームを得た。得られたリフレクター付きリードフレームと、別途準備したLED素子及び電極を、接着剤により基板上に固定し、リード線によりLED素子と電極を接続した後、ダイシングして個片化し、半導体発光装置(LEDパッケージ)を得た。配線基板上に半田を設けておき、その半田上に該半導体発光装置を載せ、リフロー炉により240℃に加熱し、半田を溶融させて配線基板上に半導体発光装置を実装した。
<初期光束>
定電流200mAで発光させた際の光束を瞬間マルチ測光システム(広ダイナミックレンジタイプ) MCPD-9800(大塚電子株式会社製)にて測定し初期光束とした。 [Light emitting device]
A light emitting device was manufactured using the lead frames with reflectors of Examples and Comparative Examples, and the initial luminous flux was evaluated. The results are shown in Table 1.
The reflector resin composition produced by the formulation shown in Table 1 was molded into a reflector shape, and the molded body was cured by irradiation with an electron beam at an acceleration voltage of 800 kV and an irradiation dose of 400 kGy. A lead frame with a reflector was obtained after curing. The obtained lead frame with reflector and the separately prepared LED element and electrode are fixed on the substrate with an adhesive, and the LED element and the electrode are connected with a lead wire, then diced into individual pieces, and a semiconductor light emitting device ( LED package) was obtained. Solder was provided on the wiring board, the semiconductor light emitting device was placed on the solder, heated to 240 ° C. in a reflow furnace, the solder was melted, and the semiconductor light emitting device was mounted on the wiring board.
<Initial luminous flux>
The luminous flux when light was emitted at a constant current of 200 mA was measured with an instantaneous multi-photometry system (wide dynamic range type) MCPD-9800 (manufactured by Otsuka Electronics Co., Ltd.) to obtain an initial luminous flux.
<繊維状フィラーの断面積>
繊維状フィラーの断面積は、下記の通り測定した。
半導体発光装置のリフレクターを破断し、その破断面を、SEM(株式会社日立ハイテクノロジーズ S-4800)により観察した。破断面を金属製の試料台に略平行に固定した後に、破断面の垂直方向から倍率2500倍で観察を行った。
得られたSEM像において、リフレクターの断面に現れている繊維状フィラーの径長を測定した。フィラーの断面が楕円形状であった場合には、この楕円の長径と短径とを測定し、長径と短径の比が0.8以上1.2以下のものを対象とした。
測定により得られた径長から繊維状フィラーの断面積を算出する際には、径長は、有効数字3桁まで測定した。また、断面積は、繊維状フィラーの断面のうち、断面積の小さいものから測定総数の50%のものについての平均値として算出した。少なくとも10個の断面の平均値が得られるようにサンプリングした。
すなわち、測定総数が20個であれば、断面積の小さいものから10個についての平均値を算出した。算出後の数値の3桁目を四捨五入して、断面積の値とした。 <Cross sectional area of fibrous filler>
The cross-sectional area of the fibrous filler was measured as follows.
The reflector of the semiconductor light emitting device was broken, and the fractured surface was observed with SEM (Hitachi High-Technologies S-4800). After fixing the fracture surface to a metal sample stage in parallel, the fracture surface was observed at a magnification of 2500 from the direction perpendicular to the fracture surface.
In the obtained SEM image, the diameter length of the fibrous filler appearing in the cross section of the reflector was measured. When the cross section of the filler was elliptical, the major axis and minor axis of the ellipse were measured and the ratio of major axis to minor axis was 0.8 to 1.2.
When calculating the cross-sectional area of the fibrous filler from the diameter obtained by the measurement, the diameter was measured up to 3 significant figures. Moreover, the cross-sectional area was computed as an average value about the thing of 50% of the total number of measurements from a thing with a small cross-sectional area among the cross sections of a fibrous filler. Sampling was performed to obtain an average value of at least 10 cross sections.
That is, if the total number of measurements was 20, the average value for 10 was calculated from the one with the smallest cross-sectional area. The third digit of the numerical value after calculation was rounded off to obtain the cross-sectional area value.
繊維状フィラーの断面積は、下記の通り測定した。
半導体発光装置のリフレクターを破断し、その破断面を、SEM(株式会社日立ハイテクノロジーズ S-4800)により観察した。破断面を金属製の試料台に略平行に固定した後に、破断面の垂直方向から倍率2500倍で観察を行った。
得られたSEM像において、リフレクターの断面に現れている繊維状フィラーの径長を測定した。フィラーの断面が楕円形状であった場合には、この楕円の長径と短径とを測定し、長径と短径の比が0.8以上1.2以下のものを対象とした。
測定により得られた径長から繊維状フィラーの断面積を算出する際には、径長は、有効数字3桁まで測定した。また、断面積は、繊維状フィラーの断面のうち、断面積の小さいものから測定総数の50%のものについての平均値として算出した。少なくとも10個の断面の平均値が得られるようにサンプリングした。
すなわち、測定総数が20個であれば、断面積の小さいものから10個についての平均値を算出した。算出後の数値の3桁目を四捨五入して、断面積の値とした。 <Cross sectional area of fibrous filler>
The cross-sectional area of the fibrous filler was measured as follows.
The reflector of the semiconductor light emitting device was broken, and the fractured surface was observed with SEM (Hitachi High-Technologies S-4800). After fixing the fracture surface to a metal sample stage in parallel, the fracture surface was observed at a magnification of 2500 from the direction perpendicular to the fracture surface.
In the obtained SEM image, the diameter length of the fibrous filler appearing in the cross section of the reflector was measured. When the cross section of the filler was elliptical, the major axis and minor axis of the ellipse were measured and the ratio of major axis to minor axis was 0.8 to 1.2.
When calculating the cross-sectional area of the fibrous filler from the diameter obtained by the measurement, the diameter was measured up to 3 significant figures. Moreover, the cross-sectional area was computed as an average value about the thing of 50% of the total number of measurements from a thing with a small cross-sectional area among the cross sections of a fibrous filler. Sampling was performed to obtain an average value of at least 10 cross sections.
That is, if the total number of measurements was 20, the average value for 10 was calculated from the one with the smallest cross-sectional area. The third digit of the numerical value after calculation was rounded off to obtain the cross-sectional area value.
第1表に示すように、実施例1-4の配合処方により作製したリフレクター用樹脂組成物を用いたものは、発光装置の作成に必要な特性を損なわずに、密着度を改善できることがわかった。特に、繊維状フィラーの断面積のサイズが大きいものほど、良好な反射率を示した。繊維状フィラーの断面積が81.7μm2のものを用いた場合には、比較例のものに比べて、反射率と耐久性Aのいずれの特性も顕著に高めることができた。
灰分量が70%以下である比較例3、比較例4、比較例5は耐久性Aの悪化が著しく、発光装置への使用は好ましくない。一方、比較例6は成形に使用する樹脂組成物を得ることができなかったことから、リフレクター樹脂組成物としての使用は不可能である。 As shown in Table 1, it was found that the one using the reflector resin composition prepared by the formulation of Example 1-4 can improve the adhesion without impairing the characteristics required for the production of the light emitting device. It was. In particular, the larger the cross-sectional size of the fibrous filler, the better the reflectance. When the fibrous filler having a cross-sectional area of 81.7 μm 2 was used, both the reflectance and the durability A could be remarkably improved as compared with the comparative example.
In Comparative Example 3, Comparative Example 4, and Comparative Example 5 in which the ash content is 70% or less, the durability A is remarkably deteriorated, and use in a light emitting device is not preferable. On the other hand, Comparative Example 6 could not be used as a reflector resin composition because a resin composition used for molding could not be obtained.
灰分量が70%以下である比較例3、比較例4、比較例5は耐久性Aの悪化が著しく、発光装置への使用は好ましくない。一方、比較例6は成形に使用する樹脂組成物を得ることができなかったことから、リフレクター樹脂組成物としての使用は不可能である。 As shown in Table 1, it was found that the one using the reflector resin composition prepared by the formulation of Example 1-4 can improve the adhesion without impairing the characteristics required for the production of the light emitting device. It was. In particular, the larger the cross-sectional size of the fibrous filler, the better the reflectance. When the fibrous filler having a cross-sectional area of 81.7 μm 2 was used, both the reflectance and the durability A could be remarkably improved as compared with the comparative example.
In Comparative Example 3, Comparative Example 4, and Comparative Example 5 in which the ash content is 70% or less, the durability A is remarkably deteriorated, and use in a light emitting device is not preferable. On the other hand, Comparative Example 6 could not be used as a reflector resin composition because a resin composition used for molding could not be obtained.
第2実施形態に係る実施例
第2実施形態に係るリフレクターを、実施例を用いて詳細に説明する。第2の発明は、これら実施例に限定されない。
本実施例11~25及び比較例11~13において使用した材料は下記の通りである。 Example According to Second Embodiment A reflector according to the second embodiment will be described in detail using an example. The second invention is not limited to these examples.
The materials used in Examples 11 to 25 and Comparative Examples 11 to 13 are as follows.
第2実施形態に係るリフレクターを、実施例を用いて詳細に説明する。第2の発明は、これら実施例に限定されない。
本実施例11~25及び比較例11~13において使用した材料は下記の通りである。 Example According to Second Embodiment A reflector according to the second embodiment will be described in detail using an example. The second invention is not limited to these examples.
The materials used in Examples 11 to 25 and Comparative Examples 11 to 13 are as follows.
ポリオレフィン樹脂
・ポリオレフィン樹脂(1)
ポリメチルペンテン樹脂:重量平均分子量=497,000
・ポリオレフィン樹脂(2)
ポリメチルペンテン樹脂:重量平均分子量=243,000
・ポリオレフィン樹脂(3)
ポリメチルペンテン樹脂:重量平均分子量=589,000
・ポリオレフィン樹脂(4)
ポリメチルペンテン樹脂:重量平均分子量=208,000
なお、上記の重量平均分子量は、GPCにより以下の条件で測定した。
GPC測定条件
装置:Waters製 GPC/V2000
溶離液:o-ジクロロベンゼン
温度:145℃
流速:1.0mL/min
試料濃度:1.0g/L
注入量:300μL Polyolefin resin / Polyolefin resin (1)
Polymethylpentene resin: weight average molecular weight = 497,000
・ Polyolefin resin (2)
Polymethylpentene resin: weight average molecular weight = 243,000
・ Polyolefin resin (3)
Polymethylpentene resin: weight average molecular weight = 589,000
・ Polyolefin resin (4)
Polymethylpentene resin: weight average molecular weight = 208,000
In addition, said weight average molecular weight was measured on condition of the following by GPC.
GPC measurement conditions Equipment: GPC / V2000 manufactured by Waters
Eluent: o-dichlorobenzene Temperature: 145 ° C
Flow rate: 1.0 mL / min
Sample concentration: 1.0 g / L
Injection volume: 300 μL
・ポリオレフィン樹脂(1)
ポリメチルペンテン樹脂:重量平均分子量=497,000
・ポリオレフィン樹脂(2)
ポリメチルペンテン樹脂:重量平均分子量=243,000
・ポリオレフィン樹脂(3)
ポリメチルペンテン樹脂:重量平均分子量=589,000
・ポリオレフィン樹脂(4)
ポリメチルペンテン樹脂:重量平均分子量=208,000
なお、上記の重量平均分子量は、GPCにより以下の条件で測定した。
GPC測定条件
装置:Waters製 GPC/V2000
溶離液:o-ジクロロベンゼン
温度:145℃
流速:1.0mL/min
試料濃度:1.0g/L
注入量:300μL Polyolefin resin / Polyolefin resin (1)
Polymethylpentene resin: weight average molecular weight = 497,000
・ Polyolefin resin (2)
Polymethylpentene resin: weight average molecular weight = 243,000
・ Polyolefin resin (3)
Polymethylpentene resin: weight average molecular weight = 589,000
・ Polyolefin resin (4)
Polymethylpentene resin: weight average molecular weight = 208,000
In addition, said weight average molecular weight was measured on condition of the following by GPC.
GPC measurement conditions Equipment: GPC / V2000 manufactured by Waters
Eluent: o-dichlorobenzene Temperature: 145 ° C
Flow rate: 1.0 mL / min
Sample concentration: 1.0 g / L
Injection volume: 300 μL
白色顔料
・酸化チタン粒子:PF-691(石原産業株式会社製 ルチル型構造 平均粒径0.21μm) White pigment / titanium oxide particles: PF-691 (Ishihara Sangyo Co., Ltd. Rutile structure average particle size 0.21 μm)
・酸化チタン粒子:PF-691(石原産業株式会社製 ルチル型構造 平均粒径0.21μm) White pigment / titanium oxide particles: PF-691 (Ishihara Sangyo Co., Ltd. Rutile structure average particle size 0.21 μm)
白色顔料以外の無機フィラー
・ガラス繊維:PF70E-001(日東紡株式会社製、繊維長70μm、平均断面積95.0μm2、断面形状は丸形のガラス繊維) Inorganic filler / glass fiber other than white pigment: PF70E-001 (manufactured by Nittobo Co., Ltd., fiber length 70 μm, average cross-sectional area 95.0 μm 2 , cross-sectional shape is glass fiber)
・ガラス繊維:PF70E-001(日東紡株式会社製、繊維長70μm、平均断面積95.0μm2、断面形状は丸形のガラス繊維) Inorganic filler / glass fiber other than white pigment: PF70E-001 (manufactured by Nittobo Co., Ltd., fiber length 70 μm, average cross-sectional area 95.0 μm 2 , cross-sectional shape is glass fiber)
・架橋処理剤1
TAIC(トリアリルイソシアヌレート)日本化成株式会社製
・架橋処理剤2
MeDAIC(メチルジアリルイソシアヌレート)四国化成工業株式会社製
・架橋処理剤3
DA-MGIC(ジアリルモノグリシジルイソシアヌル酸)四国化成工業株式会社製
・架橋処理剤4
MA-DGIC(モノアリルジグリシジルイソシアヌレート)四国化成工業株式会社製
・架橋処理剤5
TMAIC(トリメタリルイソシアヌレート)日本化成株式会社製
・架橋処理剤6
ダップモノマー(オルトフタル酸のジアリルエステル)ダイソー株式会社製 ・ Crosslinking agent 1
TAIC (triallyl isocyanurate) manufactured by Nippon Kasei Co., Ltd. ・ Crosslinking agent 2
MeDAIC (methyldiallyl isocyanurate) Shikoku Kasei Kogyo Co., Ltd. Crosslinking agent 3
DA-MGIC (diallyl monoglycidyl isocyanuric acid) Cross-linking treatment agent 4 manufactured by Shikoku Kasei Kogyo Co., Ltd.
MA-DGIC (monoallyl diglycidyl isocyanurate) manufactured by Shikoku Kasei Kogyo Co., Ltd., crosslinking agent 5
TMAIC (trimethallyl isocyanurate) Nippon Kasei Co., Ltd./Crosslinking agent 6
DUP monomer (diallyl ester of orthophthalic acid) manufactured by Daiso Corporation
TAIC(トリアリルイソシアヌレート)日本化成株式会社製
・架橋処理剤2
MeDAIC(メチルジアリルイソシアヌレート)四国化成工業株式会社製
・架橋処理剤3
DA-MGIC(ジアリルモノグリシジルイソシアヌル酸)四国化成工業株式会社製
・架橋処理剤4
MA-DGIC(モノアリルジグリシジルイソシアヌレート)四国化成工業株式会社製
・架橋処理剤5
TMAIC(トリメタリルイソシアヌレート)日本化成株式会社製
・架橋処理剤6
ダップモノマー(オルトフタル酸のジアリルエステル)ダイソー株式会社製 ・ Crosslinking agent 1
TAIC (triallyl isocyanurate) manufactured by Nippon Kasei Co., Ltd. ・ Crosslinking agent 2
MeDAIC (methyldiallyl isocyanurate) Shikoku Kasei Kogyo Co., Ltd. Crosslinking agent 3
DA-MGIC (diallyl monoglycidyl isocyanuric acid) Cross-linking treatment agent 4 manufactured by Shikoku Kasei Kogyo Co., Ltd.
MA-DGIC (monoallyl diglycidyl isocyanurate) manufactured by Shikoku Kasei Kogyo Co., Ltd., crosslinking agent 5
TMAIC (trimethallyl isocyanurate) Nippon Kasei Co., Ltd./Crosslinking agent 6
DUP monomer (diallyl ester of orthophthalic acid) manufactured by Daiso Corporation
その他の添加剤
・シランカップリング剤:ヘキシルトリメトキシシラン[KBM-3063(信越化学株式会社製)]
・離型剤 :ステアリン酸亜鉛[SZ-2000(堺化学株式会社製)]
・酸化防止剤(1) :IRGANOX1010(BASF・ジャパン株式会社製)
・酸化防止剤(2) :ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト[株式会社ADEKA製、商品名:アデカスタブPEP36] Other additives / Silane coupling agent: Hexyltrimethoxysilane [KBM-3063 (Shin-Etsu Chemical Co., Ltd.)]
Release agent: Zinc stearate [SZ-2000 (manufactured by Sakai Chemical Co., Ltd.)]
Antioxidant (1): IRGANOX 1010 (BASF Japan Ltd.)
Antioxidant (2): Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite [manufactured by ADEKA, trade name: ADK STAB PEP36]
・シランカップリング剤:ヘキシルトリメトキシシラン[KBM-3063(信越化学株式会社製)]
・離型剤 :ステアリン酸亜鉛[SZ-2000(堺化学株式会社製)]
・酸化防止剤(1) :IRGANOX1010(BASF・ジャパン株式会社製)
・酸化防止剤(2) :ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト[株式会社ADEKA製、商品名:アデカスタブPEP36] Other additives / Silane coupling agent: Hexyltrimethoxysilane [KBM-3063 (Shin-Etsu Chemical Co., Ltd.)]
Release agent: Zinc stearate [SZ-2000 (manufactured by Sakai Chemical Co., Ltd.)]
Antioxidant (1): IRGANOX 1010 (BASF Japan Ltd.)
Antioxidant (2): Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite [manufactured by ADEKA, trade name: ADK STAB PEP36]
[実施例11~25、比較例11~13]
下記第2表~第5表に示すように各種材料を配合、混練し、樹脂組成物を得た。
なお、樹脂組成物は、各種材料を配合し、押出機(日本プラコン株式会社 MAX30:ダイス径3.0mm)とペレタイザー(株式会社東洋精機製作所 MPETC1)を用いて行い、樹脂組成物を得た。
これらの組成物につき、250℃、30秒、20MPaの条件で、750mm×750mm×厚さ0.2mmにプレス成形し、成形体(1)を作製した。
また、上記で得た樹脂組成物(ペレット)を射出成形機ソディックTR40ERソディック(プリプラ式)を用いて、銀メッキフレーム(リードフレーム)(厚さ:250μm)上に厚み:700μm、外形寸法:35mm×35mm、開口部:2.9mm×2.9mmとなるよう成形しリフレクター付きリードフレーム(2)を得た。なお、リフレクター付きリードフレーム(2)には、36個の開口部を有する。射出成形機条件は、シリンダー温度:260℃、金型温度:70℃、射出速度:200mm/sec、保圧力:100MPa、保圧時間:1sec、冷却時間:15secとした。これらの成形体(1)及び(2)に、加速電圧を800kVで400kGyの吸収線量にて電子線を照射した。これらの下記諸特性を評価した。結果を下記第2表から第5表に示す。 [Examples 11 to 25, Comparative Examples 11 to 13]
Various materials were blended and kneaded as shown in Tables 2 to 5 below to obtain resin compositions.
In addition, the resin composition mix | blended various materials and performed it using the extruder (Nippon Placon Co., Ltd. MAX30: die diameter 3.0mm) and the pelletizer (Toyo Seiki Seisakusho MPETC1), and obtained the resin composition.
These compositions were press-molded into a size of 750 mm × 750 mm × thickness 0.2 mm under the conditions of 250 ° C., 30 seconds, and 20 MPa to produce a molded body (1).
Further, the resin composition (pellet) obtained above is used on an injection molding machine Sodick TR40ER Sodick (prep plastic type) on a silver plating frame (lead frame) (thickness: 250 μm), thickness: 700 μm, external dimensions: 35 mm. A lead frame (2) with a reflector was obtained by molding so as to have a size of × 35 mm and an opening: 2.9 mm × 2.9 mm. The lead frame with reflector (2) has 36 openings. The injection molding machine conditions were as follows: cylinder temperature: 260 ° C., mold temperature: 70 ° C., injection speed: 200 mm / sec, holding pressure: 100 MPa, holding pressure time: 1 sec, cooling time: 15 sec. These compacts (1) and (2) were irradiated with an electron beam at an acceleration voltage of 800 kV and an absorbed dose of 400 kGy. The following characteristics were evaluated. The results are shown in Tables 2 to 5 below.
下記第2表~第5表に示すように各種材料を配合、混練し、樹脂組成物を得た。
なお、樹脂組成物は、各種材料を配合し、押出機(日本プラコン株式会社 MAX30:ダイス径3.0mm)とペレタイザー(株式会社東洋精機製作所 MPETC1)を用いて行い、樹脂組成物を得た。
これらの組成物につき、250℃、30秒、20MPaの条件で、750mm×750mm×厚さ0.2mmにプレス成形し、成形体(1)を作製した。
また、上記で得た樹脂組成物(ペレット)を射出成形機ソディックTR40ERソディック(プリプラ式)を用いて、銀メッキフレーム(リードフレーム)(厚さ:250μm)上に厚み:700μm、外形寸法:35mm×35mm、開口部:2.9mm×2.9mmとなるよう成形しリフレクター付きリードフレーム(2)を得た。なお、リフレクター付きリードフレーム(2)には、36個の開口部を有する。射出成形機条件は、シリンダー温度:260℃、金型温度:70℃、射出速度:200mm/sec、保圧力:100MPa、保圧時間:1sec、冷却時間:15secとした。これらの成形体(1)及び(2)に、加速電圧を800kVで400kGyの吸収線量にて電子線を照射した。これらの下記諸特性を評価した。結果を下記第2表から第5表に示す。 [Examples 11 to 25, Comparative Examples 11 to 13]
Various materials were blended and kneaded as shown in Tables 2 to 5 below to obtain resin compositions.
In addition, the resin composition mix | blended various materials and performed it using the extruder (Nippon Placon Co., Ltd. MAX30: die diameter 3.0mm) and the pelletizer (Toyo Seiki Seisakusho MPETC1), and obtained the resin composition.
These compositions were press-molded into a size of 750 mm × 750 mm × thickness 0.2 mm under the conditions of 250 ° C., 30 seconds, and 20 MPa to produce a molded body (1).
Further, the resin composition (pellet) obtained above is used on an injection molding machine Sodick TR40ER Sodick (prep plastic type) on a silver plating frame (lead frame) (thickness: 250 μm), thickness: 700 μm, external dimensions: 35 mm. A lead frame (2) with a reflector was obtained by molding so as to have a size of × 35 mm and an opening: 2.9 mm × 2.9 mm. The lead frame with reflector (2) has 36 openings. The injection molding machine conditions were as follows: cylinder temperature: 260 ° C., mold temperature: 70 ° C., injection speed: 200 mm / sec, holding pressure: 100 MPa, holding pressure time: 1 sec, cooling time: 15 sec. These compacts (1) and (2) were irradiated with an electron beam at an acceleration voltage of 800 kV and an absorbed dose of 400 kGy. The following characteristics were evaluated. The results are shown in Tables 2 to 5 below.
(評価1)
・灰分
樹脂組成物の灰分は、TG-DTA法により、600℃、30分の条件で燃焼させて残る灰分の重量を測定して、質量%として求めた。測定装置としては、リガク社製 Thermo Plus2 TG8120を用いた。灰分を下記第2表から第5表に示す。 (Evaluation 1)
-Ash content The ash content of the resin composition was determined as mass% by measuring the weight of the ash content remaining after burning at 600 ° C for 30 minutes by the TG-DTA method. As a measuring device, Thermo Plus2 TG8120 manufactured by Rigaku Corporation was used. The ash content is shown in Tables 2 to 5 below.
・灰分
樹脂組成物の灰分は、TG-DTA法により、600℃、30分の条件で燃焼させて残る灰分の重量を測定して、質量%として求めた。測定装置としては、リガク社製 Thermo Plus2 TG8120を用いた。灰分を下記第2表から第5表に示す。 (Evaluation 1)
-Ash content The ash content of the resin composition was determined as mass% by measuring the weight of the ash content remaining after burning at 600 ° C for 30 minutes by the TG-DTA method. As a measuring device, Thermo Plus2 TG8120 manufactured by Rigaku Corporation was used. The ash content is shown in Tables 2 to 5 below.
(評価2)
・クラック発生数
36個の開口部を有するリフレクター付きリードフレーム(2)を150℃で500時間放置した後の表面部及び裏面部を顕微鏡(倍率:20倍)にて観察し、長さが500μm以上のクラックについて、その有無を確認した。そして、36個中のクラックの発生がある開口部の数を求めた。リフレクター付きリードフレーム(2)1枚についてクラックの発生がある開口部の数の平均値を算出し、クラック発生数とした。数値が小さいほどクラック発生が少ないことを示す。クラック発生数を第2表~第5表に示す。 (Evaluation 2)
-Number of cracks: After the lead frame (2) with reflector having 36 openings was left at 150 ° C. for 500 hours, the front and back surfaces were observed with a microscope (magnification: 20 times), and the length was 500 μm. About the above crack, the presence or absence was confirmed. And the number of the opening parts with the generation | occurrence | production of the crack in 36 pieces was calculated | required. An average value of the number of openings where cracks were generated was calculated for one lead frame (2) with a reflector, and was used as the number of cracks generated. Smaller numbers indicate fewer cracks. The number of cracks generated is shown in Tables 2-5.
・クラック発生数
36個の開口部を有するリフレクター付きリードフレーム(2)を150℃で500時間放置した後の表面部及び裏面部を顕微鏡(倍率:20倍)にて観察し、長さが500μm以上のクラックについて、その有無を確認した。そして、36個中のクラックの発生がある開口部の数を求めた。リフレクター付きリードフレーム(2)1枚についてクラックの発生がある開口部の数の平均値を算出し、クラック発生数とした。数値が小さいほどクラック発生が少ないことを示す。クラック発生数を第2表~第5表に示す。 (Evaluation 2)
-Number of cracks: After the lead frame (2) with reflector having 36 openings was left at 150 ° C. for 500 hours, the front and back surfaces were observed with a microscope (magnification: 20 times), and the length was 500 μm. About the above crack, the presence or absence was confirmed. And the number of the opening parts with the generation | occurrence | production of the crack in 36 pieces was calculated | required. An average value of the number of openings where cracks were generated was calculated for one lead frame (2) with a reflector, and was used as the number of cracks generated. Smaller numbers indicate fewer cracks. The number of cracks generated is shown in Tables 2-5.
(評価3)
・メルトフローレート(MFR)の測定
樹脂組成物のMFRはJIS K 7210:1999 熱可塑性プラスチックのMFRに記載の方法に準拠した方法により測定した。具体的には、試験温度280℃、試験荷重2.16kg、60秒で行う。測定装置としては、チアスト社製 メルトフローテスターを用いた。MFRを第2表~第5表に示す。 (Evaluation 3)
-Measurement of melt flow rate (MFR) MFR of the resin composition was measured by a method based on the method described in MFR of JIS K 7210: 1999 thermoplastics. Specifically, the test is performed at a test temperature of 280 ° C., a test load of 2.16 kg, and 60 seconds. As a measuring device, a melt flow tester manufactured by Thiast Co. was used. The MFR is shown in Tables 2-5.
・メルトフローレート(MFR)の測定
樹脂組成物のMFRはJIS K 7210:1999 熱可塑性プラスチックのMFRに記載の方法に準拠した方法により測定した。具体的には、試験温度280℃、試験荷重2.16kg、60秒で行う。測定装置としては、チアスト社製 メルトフローテスターを用いた。MFRを第2表~第5表に示す。 (Evaluation 3)
-Measurement of melt flow rate (MFR) MFR of the resin composition was measured by a method based on the method described in MFR of JIS K 7210: 1999 thermoplastics. Specifically, the test is performed at a test temperature of 280 ° C., a test load of 2.16 kg, and 60 seconds. As a measuring device, a melt flow tester manufactured by Thiast Co. was used. The MFR is shown in Tables 2-5.
(評価4)
・反射率(長期耐熱)
成形体(1)の試料を、200℃で35時間放置した後の、波長230~780nmにおける光反射率を分光光度計UV-2550(株式会社島津製作所製)を使用して測定した。測定結果として、波長450nmの反射率を第2表~第5表に示す。 (Evaluation 4)
・ Reflectance (long-term heat resistance)
After the sample of the molded body (1) was left at 200 ° C. for 35 hours, the light reflectance at a wavelength of 230 to 780 nm was measured using a spectrophotometer UV-2550 (manufactured by Shimadzu Corporation). As a measurement result, the reflectance at a wavelength of 450 nm is shown in Tables 2 to 5.
・反射率(長期耐熱)
成形体(1)の試料を、200℃で35時間放置した後の、波長230~780nmにおける光反射率を分光光度計UV-2550(株式会社島津製作所製)を使用して測定した。測定結果として、波長450nmの反射率を第2表~第5表に示す。 (Evaluation 4)
・ Reflectance (long-term heat resistance)
After the sample of the molded body (1) was left at 200 ° C. for 35 hours, the light reflectance at a wavelength of 230 to 780 nm was measured using a spectrophotometer UV-2550 (manufactured by Shimadzu Corporation). As a measurement result, the reflectance at a wavelength of 450 nm is shown in Tables 2 to 5.
上記実施例の結果から明らかなとおり、ポリオレフィン樹脂及び白色顔料を含む無機フィラーを含有する樹脂組成物であって、ポリオレフィン樹脂の重量平均分子量が220,000~800,000であり、白色顔料の含有率がポリオレフィン樹脂100質量部に対して、200質量部を超え、500質量部以下含有されてなる樹脂組成物は、表面にクラックの発生の少なく、反射率において耐熱性に優れた成形体を得ることができる。これに対して、第5表で示されるように、重量平均分子量が220,000未満のポリオレフィン樹脂を用いると成形体表面にクラックの発生が多くなることがわかる。また、比較例3で示されるように、ポリオレフィン樹脂の重量平均分子量が220,000~800,000であっても、白色顔料の含有率が200質量部未満であると、200℃で35時間後の反射率が大きく低下し、耐熱性に劣ることが示されている。
以上から、本発明の樹脂組成物は、リフレクターや半導体発光装置用の反射材に有用であるといえる。 As is apparent from the results of the above examples, a resin composition containing an inorganic filler containing a polyolefin resin and a white pigment, wherein the polyolefin resin has a weight average molecular weight of 220,000 to 800,000, and contains a white pigment The resin composition having a rate of more than 200 parts by mass and less than 500 parts by mass with respect to 100 parts by mass of the polyolefin resin yields a molded body having less heat cracking on the surface and excellent heat resistance in reflectance. be able to. On the other hand, as shown in Table 5, it can be seen that when a polyolefin resin having a weight average molecular weight of less than 220,000 is used, generation of cracks increases on the surface of the molded body. Further, as shown in Comparative Example 3, even when the weight average molecular weight of the polyolefin resin is 220,000 to 800,000, the content of the white pigment is less than 200 parts by mass, and after 35 hours at 200 ° C. It has been shown that the reflectance of the film is greatly reduced and the heat resistance is poor.
From the above, it can be said that the resin composition of the present invention is useful for reflectors and reflectors for semiconductor light emitting devices.
以上から、本発明の樹脂組成物は、リフレクターや半導体発光装置用の反射材に有用であるといえる。 As is apparent from the results of the above examples, a resin composition containing an inorganic filler containing a polyolefin resin and a white pigment, wherein the polyolefin resin has a weight average molecular weight of 220,000 to 800,000, and contains a white pigment The resin composition having a rate of more than 200 parts by mass and less than 500 parts by mass with respect to 100 parts by mass of the polyolefin resin yields a molded body having less heat cracking on the surface and excellent heat resistance in reflectance. be able to. On the other hand, as shown in Table 5, it can be seen that when a polyolefin resin having a weight average molecular weight of less than 220,000 is used, generation of cracks increases on the surface of the molded body. Further, as shown in Comparative Example 3, even when the weight average molecular weight of the polyolefin resin is 220,000 to 800,000, the content of the white pigment is less than 200 parts by mass, and after 35 hours at 200 ° C. It has been shown that the reflectance of the film is greatly reduced and the heat resistance is poor.
From the above, it can be said that the resin composition of the present invention is useful for reflectors and reflectors for semiconductor light emitting devices.
10…光半導体素子、 12…リフレクター、 14…基板、 16…リード線、 18…レンズ
10 ... Optical semiconductor element 12 ... Reflector 14 ... Substrate 16 ... Lead wire 18 ... Lens
Claims (31)
- 樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを含有する樹脂組成物から成形されてなる光反射面を有するリフレクターであって、
該繊維状フィラーの径方向の断面積が1μm2以上100μm2以下であり、
TG-DTA法に基づく熱重量/示差熱同時分析装置を用いて、該リフレクターの加熱前の質量を測定した後、大気雰囲気下において、10℃/分で600℃まで昇温した後に600℃で30分間加熱して残る灰分量が加熱前の該リフレクターの全質量基準で70質量%以上90質量%以下であるリフレクター。 A reflector having a light reflecting surface formed from a resin composition containing a resin and an inorganic filler containing a white pigment and a fibrous filler,
The radial cross-sectional area of the fibrous filler is 1 μm 2 or more and 100 μm 2 or less,
After measuring the mass of the reflector before heating using a thermogravimetric / differential thermal analyzer based on the TG-DTA method, the temperature was raised to 600 ° C. at 10 ° C./min in an air atmosphere and then at 600 ° C. A reflector in which the amount of ash remaining after heating for 30 minutes is 70% by mass or more and 90% by mass or less based on the total mass of the reflector before heating. - ポリオレフィン樹脂及び白色顔料を含む無機フィラーを含有する樹脂組成物であって、ポリオレフィン樹脂の重量平均分子量が220,000~800,000であり、白色顔料が、ポリオレフィン樹脂100質量部に対して、200質量部を超え、500質量部以下含有されてなる、樹脂組成物。 A resin composition containing an inorganic filler containing a polyolefin resin and a white pigment, wherein the polyolefin resin has a weight average molecular weight of 220,000 to 800,000, and the white pigment is 200 parts per 100 parts by mass of the polyolefin resin. A resin composition comprising more than 500 parts by mass and less than 500 parts by mass.
- 前記繊維状フィラーの径方向の断面積が30μm2以上85μm2以下である請求項1に記載のリフレクター。 Reflector according to claim 1 the cross-sectional area in the radial direction of the fibrous filler is 30 [mu] m 2 or more 85 .mu.m 2 or less.
- 前記繊維状フィラーが二酸化ケイ素を60質量%以上含むガラス繊維である請求項1又は3に記載のリフレクター。 The reflector according to claim 1 or 3, wherein the fibrous filler is a glass fiber containing 60 mass% or more of silicon dioxide.
- 前記灰分量が加熱前のリフレクターの全質量基準で72質量%以上88質量%以下である請求項1,3~4のいずれか1項に記載のリフレクター。 5. The reflector according to claim 1, wherein the ash content is 72% by mass or more and 88% by mass or less based on the total mass of the reflector before heating.
- 前記白色顔料の含有量が、前記樹脂100質量部に対し、200質量部超500質量部以下である請求項1,3~5のいずれか1項に記載のリフレクター。 The reflector according to any one of claims 1 to 3, wherein the content of the white pigment is more than 200 parts by mass and less than 500 parts by mass with respect to 100 parts by mass of the resin.
- 前記白色顔料の含有量が、前記樹脂100質量部に対し、300質量部以上480質量部以下である請求項1,3~5のいずれか1項に記載のリフレクター。 The reflector according to any one of claims 1 to 3, wherein a content of the white pigment is 300 parts by mass or more and 480 parts by mass or less with respect to 100 parts by mass of the resin.
- 前記樹脂がポリオレフィン樹脂である請求項1,3~7のいずれか1項に記載のリフレクター。 The reflector according to any one of claims 1, 3 to 7, wherein the resin is a polyolefin resin.
- 前記ポリオレフィン樹脂がポリエチレン、ポリプロピレン、環状構造を含むポリエチレン、環状構造を含むポリプロピレン、及びポリメチルペンテンから選択される少なくとも1つである請求項8に記載のリフレクター。 The reflector according to claim 8, wherein the polyolefin resin is at least one selected from polyethylene, polypropylene, polyethylene containing a cyclic structure, polypropylene containing a cyclic structure, and polymethylpentene.
- 前記白色顔料が酸化チタンである請求項1,3~9のいずれか1項に記載のリフレクター。 The reflector according to any one of claims 1, 3 to 9, wherein the white pigment is titanium oxide.
- 前記樹脂組成物が、さらに架橋処理剤を含有する請求項1,3~10のいずれか1項に記載のリフレクター。 The reflector according to any one of claims 1, 3 to 10, wherein the resin composition further contains a crosslinking agent.
- 前記樹脂組成物を該リフレクターの形状に成形した後に、電子線を照射してなる請求項11に記載のリフレクター。 The reflector according to claim 11, wherein the resin composition is formed into the shape of the reflector and then irradiated with an electron beam.
- 光反射面を有するリフレクターを備えるリフレクター付きリードフレームであって、
該光反射面が、樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを含有する樹脂組成物から成形されてなり、
該繊維状フィラーの径方向の断面積が1μm2以上100μm2以下であり、
TG-DTA法に基づく熱重量/示差熱同時分析装置を用いて、該リフレクターの加熱前の質量を測定した後、大気雰囲気下において、10℃/分で600℃まで昇温した後に600℃で30分間加熱して残る灰分量が加熱前の該リフレクターの全質量基準で70質量%以上90質量%以下であるリフレクター付きリードフレーム。 A lead frame with a reflector comprising a reflector having a light reflecting surface,
The light reflecting surface is molded from a resin composition containing a resin and an inorganic filler containing a white pigment and a fibrous filler,
The radial cross-sectional area of the fibrous filler is 1 μm 2 or more and 100 μm 2 or less,
After measuring the mass of the reflector before heating using a thermogravimetric / differential thermal analyzer based on the TG-DTA method, the temperature was raised to 600 ° C. at 10 ° C./min in an air atmosphere and then at 600 ° C. A lead frame with a reflector, wherein the amount of ash remaining after heating for 30 minutes is 70% by mass or more and 90% by mass or less based on the total mass of the reflector before heating. - 厚さが0.1mm以上3.0mm以下である請求項13に記載のリフレクター付きリードフレーム。 The lead frame with a reflector according to claim 13, wherein the thickness is 0.1 mm or more and 3.0 mm or less.
- 前記樹脂がポリオレフィン樹脂である請求項13又は14に記載のリフレクター付きリードフレーム。 The lead frame with a reflector according to claim 13 or 14, wherein the resin is a polyolefin resin.
- 前記ポリオレフィン樹脂がポリエチレン、ポリプロピレン、環状構造を含むポリエチレン、環状構造を含むポリプロピレン、及びポリメチルペンテンから選択される少なくとも1つである請求項15に記載のリフレクター付きリードフレーム。 The leadframe with a reflector according to claim 15, wherein the polyolefin resin is at least one selected from polyethylene, polypropylene, polyethylene having a cyclic structure, polypropylene having a cyclic structure, and polymethylpentene.
- 光半導体素子と、該光半導体素子の周りに設けられており該光半導体素子からの光を所定方向に反射させるリフレクターと、基板とを備え、該光半導体素子と該リフレクターとが該基板上に配置された半導体発光装置であって、
該リフレクターが請求項1,3~12のいずれか1項に記載のリフレクターである半導体発光装置。 An optical semiconductor element, a reflector provided around the optical semiconductor element and reflecting light from the optical semiconductor element in a predetermined direction, and a substrate, the optical semiconductor element and the reflector on the substrate A semiconductor light emitting device arranged,
A semiconductor light-emitting device, wherein the reflector is the reflector according to any one of claims 1, 3 to 12. - 樹脂と、白色顔料及び繊維状フィラーを含む無機フィラーとを含有する樹脂組成物であって、
該繊維状フィラーの径方向の断面積が1μm2以上100μm2以下であり、
TG-DTA法に基づく熱重量/示差熱同時分析装置を用いて、該樹脂組成物の加熱前の質量を測定した後、大気雰囲気下において、10℃/分で600℃まで昇温した後に600℃で30分間加熱して残る灰分量が加熱前の該リフレクターの全質量基準で70質量%以上90質量%以下である樹脂組成物。 A resin composition containing a resin and an inorganic filler containing a white pigment and a fibrous filler,
The radial cross-sectional area of the fibrous filler is 1 μm 2 or more and 100 μm 2 or less,
After measuring the mass of the resin composition before heating using a thermogravimetric / differential thermal analyzer based on the TG-DTA method, the temperature was raised to 600 ° C. at 10 ° C./min in an air atmosphere and then 600 A resin composition in which the amount of ash remaining after heating at 0 ° C. for 30 minutes is 70% by mass or more and 90% by mass or less based on the total mass of the reflector before heating. - 前記樹脂がポリオレフィン樹脂である請求項18に記載の樹脂組成物。 The resin composition according to claim 18, wherein the resin is a polyolefin resin.
- 前記ポリオレフィン樹脂がポリエチレン、ポリプロピレン、環状構造を含むポリエチレン、環状構造を含むポリプロピレン、及びポリメチルペンテンから選択される少なくとも1つである請求項19に記載の樹脂組成物。 The resin composition according to claim 19, wherein the polyolefin resin is at least one selected from polyethylene, polypropylene, polyethylene having a cyclic structure, polypropylene having a cyclic structure, and polymethylpentene.
- 前記白色顔料を含む無機フィラーの含有率が70~90質量%である、請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the content of the inorganic filler containing the white pigment is 70 to 90% by mass.
- 前記ポリオレフィン樹脂がポリメチルペンテンである、請求項2又は21に記載の樹脂組成物。 The resin composition according to claim 2 or 21, wherein the polyolefin resin is polymethylpentene.
- 前記白色顔料が酸化チタンである、請求項2,21~22のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 2, 21 to 22, wherein the white pigment is titanium oxide.
- 前記白色顔料以外の無機フィラーがガラス繊維である、請求項2,21~23のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 2, 21 to 23, wherein the inorganic filler other than the white pigment is a glass fiber.
- 更に、架橋処理剤を含む、請求項2,21~24のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 2, 21 to 24, further comprising a crosslinking agent.
- 請求項2,21~25のいずれか1項に記載の樹脂組成物を成形してなる、リフレクター。 A reflector formed by molding the resin composition according to any one of claims 2, 21 to 25.
- 請求項25に記載の樹脂組成物を成形した後に、電子線を照射してなる、リフレクター。 A reflector formed by irradiating an electron beam after molding the resin composition according to claim 25.
- 厚さが0.1~3.0mmである、請求項26又は27に記載のリフレクター。 The reflector according to claim 26 or 27, wherein the thickness is 0.1 to 3.0 mm.
- 請求項2,21~25のいずれか1項に記載の樹脂組成物を成形してなる、リフレクター付きリードフレーム。 A lead frame with a reflector formed by molding the resin composition according to any one of claims 2, 21 to 25.
- 請求項25に記載の樹脂組成物を成形した後に、電子線を照射してなる、リフレクター付きリードフレーム。 A lead frame with a reflector, which is formed by irradiating an electron beam after molding the resin composition according to claim 25.
- 光半導体素子と、該光半導体素子の周りに設けられ、該光半導体素子からの光を所定方向に反射させるリフレクターとを基板上に有し、前記リフレクターが請求項1,3~12,26~28のいずれか1項に記載のリフレクターである、半導体発光装置。 An optical semiconductor element and a reflector provided around the optical semiconductor element and reflecting light from the optical semiconductor element in a predetermined direction are provided on a substrate, and the reflector is defined in claims 1, 3 to 12, 26 to 28. A semiconductor light-emitting device, which is the reflector according to any one of 28.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014157983 | 2014-08-01 | ||
JP2014-157983 | 2014-08-01 | ||
JP2014-157978 | 2014-08-01 | ||
JP2014157978A JP2016035010A (en) | 2014-08-01 | 2014-08-01 | Resin composition, reflector, lead frame with reflector and semiconductor light-emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016017818A1 true WO2016017818A1 (en) | 2016-02-04 |
Family
ID=55217712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/071880 WO2016017818A1 (en) | 2014-08-01 | 2015-07-31 | Reflector and resin composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016017818A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018160654A (en) * | 2016-07-19 | 2018-10-11 | パナソニックIpマネジメント株式会社 | Light reflector, base body, light-emitting device, and method for manufacturing base body |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007037355A1 (en) * | 2005-09-30 | 2007-04-05 | Nichia Corporation | Light emitting device and backlight unit using the same |
JP2007112974A (en) * | 2005-09-22 | 2007-05-10 | Mitsubishi Chemicals Corp | Member for semiconductor light-emitting device, method for producing the same, and semiconductor light-emitting device using the same |
JP2008078638A (en) * | 2006-08-22 | 2008-04-03 | Mitsubishi Chemicals Corp | Member for semiconductor device, method of manufacturing member forming liquid for semiconductor device and member for the semiconductor device, and semiconductor light-emitting device, member forming liquid for semiconductor device and phosphor composition using the same |
JP2010080793A (en) * | 2008-09-26 | 2010-04-08 | Toyoda Gosei Co Ltd | Light reflecting member and light emitting device |
JP2012229390A (en) * | 2010-10-22 | 2012-11-22 | Panasonic Electric Works Co Ltd | Unsaturated polyester resin composition for use in led reflector, and led reflector and led luminaire using the composition |
JP2013166926A (en) * | 2012-01-17 | 2013-08-29 | Dainippon Printing Co Ltd | Electron beam-curable resin composition, resin frame for reflector, reflector, semiconductor light-emitting device, and production method of molded body |
-
2015
- 2015-07-31 WO PCT/JP2015/071880 patent/WO2016017818A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007112974A (en) * | 2005-09-22 | 2007-05-10 | Mitsubishi Chemicals Corp | Member for semiconductor light-emitting device, method for producing the same, and semiconductor light-emitting device using the same |
WO2007037355A1 (en) * | 2005-09-30 | 2007-04-05 | Nichia Corporation | Light emitting device and backlight unit using the same |
JP2008078638A (en) * | 2006-08-22 | 2008-04-03 | Mitsubishi Chemicals Corp | Member for semiconductor device, method of manufacturing member forming liquid for semiconductor device and member for the semiconductor device, and semiconductor light-emitting device, member forming liquid for semiconductor device and phosphor composition using the same |
JP2010080793A (en) * | 2008-09-26 | 2010-04-08 | Toyoda Gosei Co Ltd | Light reflecting member and light emitting device |
JP2012229390A (en) * | 2010-10-22 | 2012-11-22 | Panasonic Electric Works Co Ltd | Unsaturated polyester resin composition for use in led reflector, and led reflector and led luminaire using the composition |
JP2013166926A (en) * | 2012-01-17 | 2013-08-29 | Dainippon Printing Co Ltd | Electron beam-curable resin composition, resin frame for reflector, reflector, semiconductor light-emitting device, and production method of molded body |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018160654A (en) * | 2016-07-19 | 2018-10-11 | パナソニックIpマネジメント株式会社 | Light reflector, base body, light-emitting device, and method for manufacturing base body |
JP7065381B2 (en) | 2016-07-19 | 2022-05-12 | パナソニックIpマネジメント株式会社 | Manufacturing method of light reflector, base body, light emitting device and base body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6277963B2 (en) | Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article | |
JP6311319B2 (en) | Resin composition, reflector, lead frame with reflector, and semiconductor light emitting device | |
JP5920497B2 (en) | Semiconductor light emitting device and substrate for mounting optical semiconductor | |
JP2016222761A (en) | Resin composition, reflector, lead frame with reflector, semiconductor light emitting device, isocyanurate compound for crosslinking agent, and glycoluril compound for crosslinking agent | |
JP2016166285A (en) | Resin composition for insert molding, molded article, reflector, substrate with reflector for mounting optical semiconductor element, and semiconductor light-emitting device | |
WO2016117471A1 (en) | Resin composition, reflector, lead frame provided with reflector, and semiconductor light-emitting apparatus | |
JP6277592B2 (en) | Electron beam curable resin composition for reflector, resin frame for reflector, reflector, semiconductor light emitting device, method for producing molded article, and method for producing semiconductor light emitting device | |
WO2016117624A1 (en) | Semiconductor light emitting device, resin composition for forming reflection body, and lead frame provided with reflector | |
WO2016017818A1 (en) | Reflector and resin composition | |
JP6102413B2 (en) | Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article | |
JP6155930B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE COMPONENT AND METHOD FOR PRODUCING THE SAME, AND REFLECTOR, MANUFACTURING METHOD THEREFOR, AND REFLECTOR FORMING COMPOSITION | |
JP2017002296A (en) | Resin composition, reflector, manufacturing method of reflector, substrate for mounting optical semiconductor element with reflector and semiconductor light-emitting device | |
JP6292130B2 (en) | Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article | |
JP6155929B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE COMPONENT AND ITS MANUFACTURING METHOD, AND REFLECTOR AND MANUFACTURING METHOD THEREOF | |
JP2016036028A (en) | Reflector, lead frame with reflector, semiconductor light-emitting device, and resin composition | |
JP2017079293A (en) | Optical semiconductor element mounting substrate with reflector, semiconductor light-emitting device, reflector, and resin composition for forming reflector | |
JP6149457B2 (en) | Optical semiconductor mounting substrate, semiconductor light emitting device, and manufacturing method of optical semiconductor mounting substrate | |
JP6094412B2 (en) | Semiconductor light emitting device manufacturing method, molded body manufacturing method, electron beam curable resin composition, reflector resin frame, and reflector | |
JP6167603B2 (en) | Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, method for producing molded article, and method for producing semiconductor light emitting device | |
JP2016035010A (en) | Resin composition, reflector, lead frame with reflector and semiconductor light-emitting device | |
JP2015023099A (en) | Method of manufacturing semiconductor light-emitting device, method of manufacturing molded body, electron beam curable resin composition, resin frame for reflector, and reflector | |
WO2015152098A1 (en) | Semiconductor light-emitting device and optical-semiconductor-mounting substrate | |
JP2017069348A (en) | Semiconductor light-emitting device, substrate for mounting optical semiconductor, and reflector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15826417 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15826417 Country of ref document: EP Kind code of ref document: A1 |