JP6155929B2 - SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE COMPONENT AND ITS MANUFACTURING METHOD, AND REFLECTOR AND MANUFACTURING METHOD THEREOF - Google Patents
SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE COMPONENT AND ITS MANUFACTURING METHOD, AND REFLECTOR AND MANUFACTURING METHOD THEREOF Download PDFInfo
- Publication number
- JP6155929B2 JP6155929B2 JP2013148978A JP2013148978A JP6155929B2 JP 6155929 B2 JP6155929 B2 JP 6155929B2 JP 2013148978 A JP2013148978 A JP 2013148978A JP 2013148978 A JP2013148978 A JP 2013148978A JP 6155929 B2 JP6155929 B2 JP 6155929B2
- Authority
- JP
- Japan
- Prior art keywords
- reflector
- parts
- mass
- electron beam
- fibrous material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 109
- 238000004519 manufacturing process Methods 0.000 title claims description 36
- 238000010894 electron beam technology Methods 0.000 claims description 112
- 229920005989 resin Polymers 0.000 claims description 103
- 239000011347 resin Substances 0.000 claims description 103
- 239000002657 fibrous material Substances 0.000 claims description 85
- 239000000463 material Substances 0.000 claims description 75
- 239000000203 mixture Substances 0.000 claims description 66
- 230000003287 optical effect Effects 0.000 claims description 57
- 239000000758 substrate Substances 0.000 claims description 50
- 238000001746 injection moulding Methods 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 32
- 230000001678 irradiating effect Effects 0.000 claims description 16
- 238000001723 curing Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 10
- 238000001227 electron beam curing Methods 0.000 claims description 5
- 239000003365 glass fiber Substances 0.000 description 26
- 229920000306 polymethylpentene Polymers 0.000 description 26
- 239000011116 polymethylpentene Substances 0.000 description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000003431 cross linking reagent Substances 0.000 description 14
- 239000000835 fiber Substances 0.000 description 12
- 239000011342 resin composition Substances 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 11
- 238000004132 cross linking Methods 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- 238000002310 reflectometry Methods 0.000 description 11
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 10
- -1 alkyl compound Chemical class 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 6
- 229920005672 polyolefin resin Polymers 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 229920002050 silicone resin Polymers 0.000 description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 6
- 231100000987 absorbed dose Toxicity 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000011256 inorganic filler Substances 0.000 description 5
- 229910003475 inorganic filler Inorganic materials 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- 239000006087 Silane Coupling Agent Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000001579 optical reflectometry Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000565 sealant Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000001721 transfer moulding Methods 0.000 description 4
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 125000005647 linker group Chemical group 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000012463 white pigment Substances 0.000 description 3
- 238000004383 yellowing Methods 0.000 description 3
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 125000005394 methallyl group Chemical group 0.000 description 2
- VAMFXQBUQXONLZ-UHFFFAOYSA-N n-alpha-eicosene Natural products CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- MPJPKEMZYOAIRN-UHFFFAOYSA-N 1,3,5-tris(2-methylprop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound CC(=C)CN1C(=O)N(CC(C)=C)C(=O)N(CC(C)=C)C1=O MPJPKEMZYOAIRN-UHFFFAOYSA-N 0.000 description 1
- 229940106006 1-eicosene Drugs 0.000 description 1
- FIKTURVKRGQNQD-UHFFFAOYSA-N 1-eicosene Natural products CCCCCCCCCCCCCCCCCC=CC(O)=O FIKTURVKRGQNQD-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- PQJZHMCWDKOPQG-UHFFFAOYSA-N 2-anilino-2-oxoacetic acid Chemical compound OC(=O)C(=O)NC1=CC=CC=C1 PQJZHMCWDKOPQG-UHFFFAOYSA-N 0.000 description 1
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 1
- SSADPHQCUURWSW-UHFFFAOYSA-N 3,9-bis(2,6-ditert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C)=CC(C(C)(C)C)=C1OP1OCC2(COP(OC=3C(=CC(C)=CC=3C(C)(C)C)C(C)(C)C)OC2)CO1 SSADPHQCUURWSW-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- ODPYDILFQYARBK-UHFFFAOYSA-N 7-thiabicyclo[4.1.0]hepta-1,3,5-triene Chemical compound C1=CC=C2SC2=C1 ODPYDILFQYARBK-UHFFFAOYSA-N 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical class OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004954 Polyphthalamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 239000011354 acetal resin Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- CJDPJFRMHVXWPT-UHFFFAOYSA-N barium sulfide Chemical compound [S-2].[Ba+2] CJDPJFRMHVXWPT-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000003518 norbornenyl group Chemical class C12(C=CC(CC1)C2)* 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920006375 polyphtalamide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007152 ring opening metathesis polymerisation reaction Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 229940089401 xylon Drugs 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Led Device Packages (AREA)
Description
本発明は、半導体発光装置、半導体発光装置用部品及びそれらの製造方法、並びに反射体、その製造方法及び反射体形成用組成物に関する。 The present invention relates to a semiconductor light emitting device, a component for a semiconductor light emitting device, a manufacturing method thereof, a reflector, a manufacturing method thereof, and a composition for forming a reflector.
発光ダイオード(以下「LED」ともいう。)等の光半導体素子は、表示灯等の光源として広く利用されている。こうした光半導体素子は、小型で長寿命であるとともに省電力性に優れているので、地球温暖化防止の対策としてCO2の削減に大いに寄与することができるものとされている。 Optical semiconductor elements such as light emitting diodes (hereinafter also referred to as “LEDs”) are widely used as light sources such as indicator lamps. Such an optical semiconductor element is small, has a long life, and is excellent in power saving. Therefore, it is considered that it can greatly contribute to CO 2 reduction as a measure for preventing global warming.
光半導体素子を光源として用いる半導体発光装置は、高い照度を得るために、通常、基板上に配置された単数又は複数の光半導体素子の周りに反射体を設け、光半導体素子が発光した光を所定方向に反射させている。そうした反射体は、光半導体素子の発熱によっても良好な反射性と耐熱性が求められている。また、反射体に生ずる反りや寸法変化は反射体の反射性の低下を引き起こすため、反射体には、反りや寸法変化が生じないことが求められている。 In order to obtain high illuminance, a semiconductor light-emitting device using an optical semiconductor element as a light source is usually provided with a reflector around one or a plurality of optical semiconductor elements arranged on a substrate to emit light emitted by the optical semiconductor element. Reflected in a predetermined direction. Such a reflector is required to have good reflectivity and heat resistance due to heat generation of the optical semiconductor element. Further, since the warpage and dimensional change that occur in the reflector cause a decrease in the reflectivity of the reflector, it is required that the reflector does not undergo warpage or dimensional change.
こうした要求に対し、特許文献1には、エポキシ樹脂、硬化剤、硬化触媒、無機充填剤、白色顔料、添加剤及び離型剤を含む熱硬化性光反射用樹脂組成物であって、 樹脂組成物をトランスファー成形して成形金型から離型することで得られる成形品の離型面における表面自由エネルギーを特定し、樹脂組成物の硬化後の光波長400nmにおける光拡散反射率を特定した光反射用樹脂組成物、及びその組成物を用いて製造した光半導体素子搭載用基板等が提案されている。この技術によれば、光半導体素子搭載用基板に必要とされる光学特性及び耐熱着色性等の各種特性に優れるとともに、トランスファー成形法等による成形加工性に優れる熱硬化性光反射用樹脂組成物を提供できるとされている。同文献では、無機充填剤として、中心粒径6μmの溶融球状シリカを用いている。 In response to such a requirement, Patent Document 1 discloses a thermosetting light reflecting resin composition containing an epoxy resin, a curing agent, a curing catalyst, an inorganic filler, a white pigment, an additive, and a release agent. The light which specified the surface free energy in the mold release surface of the molded product obtained by transfer molding the product and releasing it from the molding die, and the light diffuse reflectance at the light wavelength of 400 nm after curing of the resin composition A reflective resin composition, and an optical semiconductor element mounting substrate manufactured using the composition have been proposed. According to this technology, the thermosetting light reflecting resin composition is excellent in various properties such as optical properties and heat-resistant coloring properties required for a substrate for mounting an optical semiconductor element, and excellent in molding processability by a transfer molding method or the like. It is said that can be provided. In this document, fused spherical silica having a center particle size of 6 μm is used as the inorganic filler.
また、特許文献2には、熱硬化性オルガノポリシロキサン、白色顔料、無機充填剤(但し、白色顔料を除く)及び縮合触媒、特定構造のカップリング剤を含有する白色熱硬化性シリコーン樹脂組成物、及びその組成物を用いて製造した光半導体ケース等が提案されている。この技術によれば、白色性、耐熱性、耐光性を保持し、均一でかつ黄変が少なく、硬化時の反り量が少ない硬化物を与えることができるとされている。同文献では、無機充填剤として、平均粒径30μmの球状溶融シリカを用いている。 Patent Document 2 discloses a white thermosetting silicone resin composition containing a thermosetting organopolysiloxane, a white pigment, an inorganic filler (excluding a white pigment), a condensation catalyst, and a coupling agent having a specific structure. , And an optical semiconductor case manufactured using the composition have been proposed. According to this technology, it is said that a cured product that retains whiteness, heat resistance, and light resistance, is uniform, has little yellowing, and has a small amount of warping upon curing can be provided. In this document, spherical fused silica having an average particle size of 30 μm is used as the inorganic filler.
また、特許文献3には、特定の熱硬化樹脂及び無機部材を含有するコーティング部材を所定部にコーティングして光の反射を高めるパッケージ成形体が提案されている。この技術によれば、発光ダイオードの光出力の低下を招くことなく、パッケージ成形体の耐光性、耐熱黄変性を向上させることができるパッケージ成形体等を提供できるとされている。同文献では、強化材としてガラスファイバーを用いている。 Further, Patent Document 3 proposes a package molded body that enhances light reflection by coating a predetermined portion with a coating member containing a specific thermosetting resin and an inorganic member. According to this technique, it is said that it is possible to provide a package molded body that can improve the light resistance and heat yellowing of the package molded body without causing a decrease in the light output of the light emitting diode. In this document, glass fiber is used as a reinforcing material.
また、特許文献4には、発光ダイオードの反射体に用いるポリマー組成物として、具体的には、ポリフタルアミド、カーボンブラック、二酸化チタン、ガラス繊維、及び酸化防止剤を含むポリマー組成物が提案されている。この技術によれば、そのポリマー組成物の熱老化後の反射率が、カーボンブラックを含有しないポリマー組成物の反射率に比べて良好であり、黄変も少ないとされている。同文献では、長さ0.3cmと0.5cmのガラス繊維が用いられている。 Further, Patent Document 4 proposes a polymer composition specifically containing polyphthalamide, carbon black, titanium dioxide, glass fiber, and an antioxidant as a polymer composition used for a reflector of a light emitting diode. ing. According to this technique, the reflectance after heat aging of the polymer composition is better than that of a polymer composition not containing carbon black, and yellowing is also less likely. In this document, glass fibers having a length of 0.3 cm and 0.5 cm are used.
また、特許文献5には、炭素−水素結合を有するフッ素樹脂と、所定量の酸化チタンとを含有する樹脂組成物からなる成形体に、電離放射線を特定量照射してなる白色樹脂成形体及びLED用リフレクタが提案されている。この技術によれば、150℃以上の高温の環境や光に長時間曝露されても変色しにくい高い耐熱劣化性と耐光劣化性を有し、さらに加工しやすく生産性に優れる等、LEDのリフレクタ部を構成する材料として好適な特性を有する白色樹脂成形体及びLED用リフレクタを提供することができるとされている。同文献では、強化材として、長さ3mmのガラス繊維が用いられている。 Patent Document 5 discloses a white resin molded product obtained by irradiating a specific amount of ionizing radiation onto a molded product comprising a resin composition containing a fluororesin having a carbon-hydrogen bond and a predetermined amount of titanium oxide. LED reflectors have been proposed. According to this technology, the LED reflector has high heat deterioration resistance and light deterioration resistance that are not easily discolored even when exposed to a high temperature environment of 150 ° C. or higher for a long time, and is easy to process and excellent in productivity. It is said that a white resin molded article and an LED reflector having characteristics suitable as a material constituting the part can be provided. In this document, a glass fiber having a length of 3 mm is used as a reinforcing material.
また、特許文献6には、熱可塑性樹脂と充填材と溶融粘度低下剤とを含み、その溶融粘度低下剤は、所定量含有する多官能アルキル化合物または所定量含有するダイマー酸ベース熱可塑性樹脂である樹脂組成物およびそれからなる成形体が提案されている。この技術によれば、加工時の溶融流動性に優れた樹脂組成物およびそれからなる成形体を提供することができるとされている。 Patent Document 6 includes a thermoplastic resin, a filler, and a melt viscosity reducing agent, which is a polyfunctional alkyl compound containing a predetermined amount or a dimer acid-based thermoplastic resin containing a predetermined amount. A certain resin composition and a molded body comprising the same have been proposed. According to this technique, it is said that a resin composition excellent in melt fluidity at the time of processing and a molded body comprising the same can be provided.
特許文献1〜6では、球状シリカやガラス繊維を、無機充填剤又は強化材として樹脂組成物に含有させている。しかしながら、特許文献1,2等で用いられている球状シリカは、補強効果が低く、樹脂組成物で形成された成形物の強度が十分でないことがある。また、特許文献3〜5等で用いられている比較的長いガラス繊維は、成形体の表面に飛び出して光の反射性を阻害したり、樹脂組成物の調製時に用いる機械的混合手段によって折れ、折れる際のメカノラジカルの発生により樹脂が劣化したりして耐久性が低下することがある。 In patent documents 1-6, spherical silica and glass fiber are contained in the resin composition as an inorganic filler or a reinforcing material. However, the spherical silica used in Patent Documents 1 and 2 has a low reinforcing effect, and the strength of the molded product formed from the resin composition may not be sufficient. In addition, the relatively long glass fiber used in Patent Documents 3 to 5, etc., jumps out to the surface of the molded body and inhibits light reflectivity, or breaks by mechanical mixing means used at the time of preparing the resin composition, The resin may deteriorate due to the generation of mechano radicals at the time of bending, and the durability may be lowered.
本発明は、上記課題を解決するためになされたものであって、その目的は、耐久性と強度に優れた反射体を備えた半導体発光装置、半導体発光装置用部品及びそれらの製造方法を提供することにある。さらに本発明の目的は、反射体、その製造方法及び反射体形成用組成物を提供することにある。 The present invention has been made to solve the above-mentioned problems, and its object is to provide a semiconductor light emitting device having a reflector excellent in durability and strength, a component for a semiconductor light emitting device, and a method for manufacturing the same. There is to do. Furthermore, the objective of this invention is providing the reflector, its manufacturing method, and the composition for reflector formation.
(1)上記課題を解決するための本発明に係る半導体発光装置は、基板と、光半導体素子と、前記光半導体素子が発光する光を反射させる反射体とを有し、前記反射体が電子線硬化性樹脂の硬化物と白色材料と繊維状材料とを少なくとも含み、前記繊維状材料の平均長さが40μm以上100μm以下の範囲内であり、前記繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれていることを特徴とする。 (1) A semiconductor light emitting device according to the present invention for solving the above-described problems includes a substrate, an optical semiconductor element, and a reflector that reflects light emitted from the optical semiconductor element, and the reflector is an electron. It contains at least a cured product of a linear curable resin, a white material, and a fibrous material, the average length of the fibrous material is in the range of 40 μm to 100 μm, and the fibrous material is the electron beam curable resin 100. It is contained within the range of 60 parts by mass or more and 200 parts by mass or less with respect to parts by mass.
本発明に係る半導体発光装置の製造方法は、基板と、光半導体素子と、前記光半導体素子が発光する光を反射させる反射体とを有する半導体発光装置の製造方法であって、電子線硬化性樹脂と白色材料と繊維状材料とを少なくとも含み、前記繊維状材料の平均長さが40μm以上100μm以下の範囲内であり、前記繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれている反射体形成用組成物を射出成形する工程と、前記射出成形する工程前及び工程後の一方又は両方で電子線を照射する工程とを有することを特徴とする。 A method for manufacturing a semiconductor light-emitting device according to the present invention is a method for manufacturing a semiconductor light-emitting device having a substrate, an optical semiconductor element, and a reflector that reflects light emitted from the optical semiconductor element. Resin, white material, and fibrous material are included, the average length of the fibrous material is in the range of 40 μm or more and 100 μm or less, and the fibrous material is 60 with respect to 100 parts by mass of the electron beam curable resin. A step of injection-molding a composition for forming a reflector contained in a range of not less than 200 parts by mass and not more than 200 parts by mass, and a step of irradiating an electron beam before or after the injection-molding step and after the step. It is characterized by having.
(2)上記課題を解決するための本発明に係る半導体発光装置用部品は、基板と、光半導体素子が発光する光を反射させる反射体とを有し、前記反射体が電子線硬化性樹脂の硬化物と白色材料と繊維状材料とを少なくとも含み、前記繊維状材料の平均長さが40μm以上100μm以下の範囲内であり、前記繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれていることを特徴とする。 (2) A component for a semiconductor light-emitting device according to the present invention for solving the above-described problem has a substrate and a reflector that reflects light emitted from the optical semiconductor element, and the reflector is an electron beam curable resin. A cured material, a white material, and a fibrous material, the average length of the fibrous material is in the range of 40 μm or more and 100 μm or less, and the fibrous material is based on 100 parts by mass of the electron beam curable resin. It is contained within the range of 60 parts by mass or more and 200 parts by mass or less.
本発明に係る半導体発光装置用部品の製造方法は、基板と、光半導体素子が発光する光を反射させる反射体とを有する半導体発光装置用部品の製造方法であって、電子線硬化性樹脂と白色材料と繊維状材料とを少なくとも含み、前記繊維状材料の平均長さが40μm以上100μm以下の範囲内であり、前記繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれている反射体形成用組成物を射出成形する工程と、前記射出成形する工程前及び工程後の一方又は両方で電子線を照射する工程とを有することを特徴とする。 A method for manufacturing a semiconductor light-emitting device component according to the present invention is a method for manufacturing a semiconductor light-emitting device component having a substrate and a reflector that reflects light emitted from an optical semiconductor element, the method comprising: It contains at least a white material and a fibrous material, the average length of the fibrous material is in the range of 40 μm to 100 μm, and the fibrous material is 60 parts by mass with respect to 100 parts by mass of the electron beam curable resin. It has the process of carrying out injection molding of the constituent for reflector formation contained within the above-mentioned range of 200 mass parts or less, and the process of irradiating with an electron beam before or after the above-mentioned injection molding process It is characterized by.
(3)上記課題を解決するための本発明に係る反射体は、電子線硬化性樹脂の硬化物と白色材料と繊維状材料とを少なくとも含み、前記繊維状材料の平均長さが40μm以上100μm以下の範囲内であり、前記繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれていることを特徴とする。 (3) A reflector according to the present invention for solving the above problems includes at least a cured product of an electron beam curable resin, a white material, and a fibrous material, and the average length of the fibrous material is 40 μm or more and 100 μm. It is within the following ranges, and the fibrous material is contained within a range of 60 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin.
本発明に係る反射体の製造方法は、電子線硬化性樹脂と白色材料と繊維状材料とを少なくとも含み、前記繊維状材料の平均長さが40μm以上100μm以下の範囲内であり、前記繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれている反射体形成用組成物を射出成形する工程と、前記射出成形する工程前及び工程後の一方又は両方で電子線を照射する工程とを有することを特徴とする。 The reflector manufacturing method according to the present invention includes at least an electron beam curable resin, a white material, and a fibrous material, wherein the fibrous material has an average length in the range of 40 μm to 100 μm, and the fibrous material A step of injection-molding a composition for forming a reflector, the material of which is contained within a range of 60 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin; And a step of irradiating an electron beam in one or both of the steps.
(4)上記課題を解決するための本発明に係る反射体形成用組成物は、電子線硬化性樹脂と白色材料と繊維状材料とを少なくとも含み、前記繊維状材料の平均長さが40μm以上100μm以下の範囲内であり、前記繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれていることを特徴とする。 (4) A composition for forming a reflector according to the present invention for solving the above problems includes at least an electron beam curable resin, a white material, and a fibrous material, and the average length of the fibrous material is 40 μm or more. It is within a range of 100 μm or less, and the fibrous material is contained within a range of 60 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin.
本発明に係る半導体発光装置及びその製造方法によれば、耐久性と強度と反射性に優れた反射体を備えた半導体発光装置を提供できる。さらに、本発明に係る反射体、その製造方法及び反射体形成用組成物によれば、耐久性と強度と反射性に優れた反射体を提供できる。 According to the semiconductor light emitting device and the manufacturing method thereof according to the present invention, a semiconductor light emitting device including a reflector excellent in durability, strength, and reflectivity can be provided. Furthermore, according to the reflector, the manufacturing method thereof, and the composition for forming a reflector according to the present invention, a reflector excellent in durability, strength, and reflectivity can be provided.
本発明に係る半導体発光装置、半導体発光装置用部品及びそれらの製造方法、並びに反射体、その製造方法及び反射体形成用組成物について、図面を参照して詳しく説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で各種の形態をとることができる。 A semiconductor light-emitting device, a semiconductor light-emitting device component and a method for producing the same, a reflector, a method for producing the same, and a composition for forming a reflector will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, A various form can be taken within the range of the summary.
[半導体発光装置]
本発明に係る半導体発光装置1は、図1及び図2に示すように、基板14と、光半導体素子10と、光半導体素子10が発光する光を反射させる反射体12とを有している。そして、その反射体12が、電子線硬化性樹脂の硬化物と白色材料と繊維状材料とを少なくとも含んでいる。繊維状材料は、平均長さが40μm以上100μm以下の範囲内であり、電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれている。
[Semiconductor light emitting device]
As shown in FIGS. 1 and 2, the semiconductor light emitting device 1 according to the present invention includes a substrate 14, an optical semiconductor element 10, and a reflector 12 that reflects light emitted from the optical semiconductor element 10. . The reflector 12 includes at least a cured product of an electron beam curable resin, a white material, and a fibrous material. The fibrous material has an average length in the range of 40 μm to 100 μm, and is contained in the range of 60 parts by mass to 200 parts by mass with respect to 100 parts by mass of the electron beam curable resin.
こうした半導体発光装置1は、反射体12が電子線硬化性樹脂の硬化物(以下、単に「硬化物」というときは「電子線硬化性樹脂の硬化物」を意味する。)と白色材料と上記繊維状材料とを少なくとも含むので、白色材料を含む硬化物が繊維状材料で強化されている。また、上記した大きさの繊維状材料は、硬化物中に多く充填され、得られた反射体12の強度を高めることができるとともに、従来のような長いガラス繊維が反射体表面から飛び出して光の反射性を阻害することが少ない。さらに、従来のような長いガラス繊維は反射体形成用組成物の調製時の機械的混合手段で折れてメカノラジカルを発生させ、そのメカノラジカルが電子線硬化性樹脂を劣化させ易いが、上記繊維状材料は、そのようなメカノラジカルの発生が起こりにくく、電子線硬化性樹脂の劣化を抑制できる。こうした半導体発光装置1は、耐久性と強度に優れた反射率のよい反射体12を備えるので、クラック等の不具合が生じず、製造歩留まりや製品の長期耐久性に優れている。 In such a semiconductor light emitting device 1, the reflector 12 is a cured product of an electron beam curable resin (hereinafter simply referred to as “cured product of an electron beam curable resin”), a white material, and the above. Since at least the fibrous material is included, the cured product including the white material is reinforced with the fibrous material. In addition, the fibrous material having the above-described size can be filled in a hardened material, and the strength of the obtained reflector 12 can be increased. It is less likely to inhibit the reflectivity of. Furthermore, conventional long glass fibers are broken by mechanical mixing means during preparation of the composition for forming a reflector to generate mechano radicals, which tend to deteriorate the electron beam curable resin. Such a material is unlikely to generate such mechano radicals and can suppress the deterioration of the electron beam curable resin. Since the semiconductor light emitting device 1 includes the reflector 12 having excellent durability and strength and good reflectivity, defects such as cracks do not occur, and the manufacturing yield and long-term durability of the product are excellent.
また、後述する実施例に記載のように、多量の白色材料を含む反射体12は脆くなりやすいが、上記した大きさの繊維状材料が反射体12に含まれていることにより、反射体12の骨組みが堅固なものになり、強度が増して脆さを低減することができるという特徴がある。また、多くの白色材料を含む反射体12を電子線で硬化させるので、後述の実施例に記載の例えば加速電圧800kVで400kGyのような大きな吸収線量で電子線を照射することが望ましい。しかし、大きな吸収線量で照射した場合であっても、白色材料を多く含むことから表面近傍と内部とでは硬化の程度が不均一になり易く、各部での内部応力に差が生じ易い。本発明では、表面近傍と内部とでは内部応力が不均一な場合であっても、繊維状材料を含ませることにより、反射体12の骨組みを堅固にし、各部の強度をならして比較的均一にすることができるという特徴もある。 In addition, as described in the examples described later, the reflector 12 including a large amount of white material tends to be brittle. However, the reflector 12 includes the fibrous material having the above-described size. It has the feature that the skeleton of this can be made solid, the strength can be increased, and the brittleness can be reduced. Moreover, since the reflector 12 containing many white materials is hardened with an electron beam, it is desirable to irradiate the electron beam with a large absorbed dose such as 400 kGy at an accelerating voltage of 800 kV described in the examples described later. However, even when irradiated with a large absorbed dose, since it contains a large amount of white material, the degree of curing tends to be non-uniform between the vicinity of the surface and the inside, and differences in internal stress at each part are likely to occur. In the present invention, even if the internal stress is not uniform between the vicinity of the surface and the inside, by including the fibrous material, the framework of the reflector 12 is made firm and the strength of each part is increased to be relatively uniform. There is also a feature that can be made.
以下、各構成について詳しく説明する。なお、半導体発光装置1は、基板14と光半導体素子10と反射体12とを含むものであれば特に限定されず、例えば砲弾型の半導体発光装置であってもよいし、表面実装型COB:Chip On Board)の半導体発光装置であってもよい。以下では、表面実装型の半導体発光装置を例にして説明する。 Hereinafter, each configuration will be described in detail. The semiconductor light emitting device 1 is not particularly limited as long as it includes the substrate 14, the optical semiconductor element 10, and the reflector 12. For example, the semiconductor light emitting device 1 may be a shell-type semiconductor light emitting device, or a surface-mounted COB: (Chip On Board) semiconductor light emitting device. In the following, a surface-mount type semiconductor light emitting device will be described as an example.
<基板>
基板14は特に限定されず、半導体発光装置1の分野で用いられるものあれば各種の基板を使用できる。基板14は、リードフレームやリード電極等とも言われており、基板14上に搭載される光半導体素子10に電力を供給する導電体(リード電極)として機能したり、ヒートシンクとして機能したりする。基板14と光半導体素子10との配置は特に限定されず、図1等に示すように、両者が直接接触していてもよいし、直接接触していなくても電気的に接続されていてもよい。
<Board>
The substrate 14 is not particularly limited, and various substrates can be used as long as they are used in the field of the semiconductor light emitting device 1. The substrate 14 is also referred to as a lead frame or a lead electrode, and functions as a conductor (lead electrode) for supplying power to the optical semiconductor element 10 mounted on the substrate 14 or as a heat sink. The arrangement of the substrate 14 and the optical semiconductor element 10 is not particularly limited. As shown in FIG. 1 and the like, both may be in direct contact with each other or may be electrically connected without being in direct contact with each other. Good.
基板14の材料としては、金属基板、セラミックス基板、プラスチック基板等のいずれであってもよいが、通常、金属基板が好ましく用いられる。金属基板としては、例えば、銅、鉄、アルミニウム等の金属又は合金を挙げることができる。こうした金属又は合金は、高い熱伝導性を示すので好ましく用いることができる。また、その表面は、電気伝導性と熱伝導性のよい銀、金、アルミニウム等のメッキが施こされていてもよい。セラミックス基板としては、例えば、酸化アルミニウム、窒化アルミニウム、ムライト(酸化アルミニウムと二酸化ケイ素の化合物)、ガラス等のセラミックス等を挙げることができる。また、プラスチック基板としては、例えば、ポリイミド樹脂等のフレキシブル性を有する樹脂材料等を挙げることができる。セラミックス基板やプラスチック基板は、その表面に、光半導体素子10と電気的に接続してその光半導体素子10に電力を供給できる金属層が設けられていることが望ましい。そうした金属層としては、電気伝導性と熱伝導性を兼ね備えた銅、銀、金、アルミニウム等が好ましい。こうした材料で構成された基板14は、光半導体素子10に大電流を長時間印加することができるので、出力向上を図ることができるとともに信頼性の高い半導体発光装置1にすることができる。 The material of the substrate 14 may be any of a metal substrate, a ceramic substrate, a plastic substrate, and the like, but usually a metal substrate is preferably used. As a metal substrate, metals or alloys, such as copper, iron, and aluminum, can be mentioned, for example. Such a metal or alloy can be preferably used since it exhibits high thermal conductivity. Further, the surface may be plated with silver, gold, aluminum or the like having good electrical conductivity and thermal conductivity. Examples of the ceramic substrate include aluminum oxide, aluminum nitride, mullite (a compound of aluminum oxide and silicon dioxide), and ceramics such as glass. Moreover, as a plastic substrate, the resin material etc. which have flexibility, such as a polyimide resin, can be mentioned, for example. It is desirable that a ceramic substrate or a plastic substrate is provided with a metal layer on the surface thereof that can be electrically connected to the optical semiconductor element 10 and supply electric power to the optical semiconductor element 10. As such a metal layer, copper, silver, gold, aluminum or the like having both electrical conductivity and thermal conductivity is preferable. Since the substrate 14 made of such a material can apply a large current to the optical semiconductor element 10 for a long time, the output can be improved and the semiconductor light emitting device 1 with high reliability can be obtained.
なお、基板14には、光半導体素子10が載置されやすいように中央に凹部が設けられたり周縁に壁部が設けられたりしてもよいし、ヒートシンク機能を高めるための凸部が設けられていてもよい。また、基板14の厚さは特に限定されず、その構成材料や構造形態等に応じて適宜設定することができる。 The substrate 14 may be provided with a concave portion at the center or a wall portion at the periphery so that the optical semiconductor element 10 can be easily placed, or provided with a convex portion for enhancing the heat sink function. It may be. Further, the thickness of the substrate 14 is not particularly limited, and can be set as appropriate according to the constituent material, the structural form, and the like.
<光半導体素子>
光半導体素子10は、図1及び図2に示すように、基板14上に設けられている。この光半導体素子10は、任意の波長の光を発光する半導体素子であればよく、その種類は特に限定されない。発光波長は特に限定されないが、例えば、230nm〜400nmの紫外光であってもよいし、紫外光から可視光の範囲の光であってもよいし、可視光の光であってもよい。
<Optical semiconductor element>
The optical semiconductor element 10 is provided on the substrate 14 as shown in FIGS. The optical semiconductor element 10 may be any semiconductor element that emits light of an arbitrary wavelength, and the type thereof is not particularly limited. The emission wavelength is not particularly limited, but may be, for example, ultraviolet light of 230 nm to 400 nm, light in the range from ultraviolet light to visible light, or visible light.
光半導体素子10としては、一例としては、AlGaAs、AlGaInP、GaP又はGaNからなる活性層を、n型及びp型のクラッド層により挟んだダブルヘテロ構造を有するものを挙げることができる。このような光半導体素子10としては、一辺の長さが0.5mm程度の六面体の形状の紫外光発光LED等を挙げることができる。 As an example of the optical semiconductor element 10, there may be mentioned one having a double heterostructure in which an active layer made of AlGaAs, AlGaInP, GaP or GaN is sandwiched between n-type and p-type cladding layers. Examples of such an optical semiconductor element 10 include an ultraviolet light-emitting LED having a hexahedral shape with a side length of about 0.5 mm.
光半導体素子10の発色光についても特に限定はなく、白色であってもよいし、それ以外の色であってもよい。例えば、光半導体素子10の表面にそれぞれ赤、緑、青に変換する発光色変換部材を設けてそれぞれの色に変換した光を混合で白色の発光色にすることができる。 There is also no particular limitation on the colored light of the optical semiconductor element 10, and it may be white or a color other than that. For example, a light emission color conversion member that converts red, green, and blue into the surface of the optical semiconductor element 10 can be provided, and the light converted into each color can be mixed into a white light emission color.
特に紫外光を発光する光半導体素子10を用いた場合、その紫外光を利用して、半導体発光装置1に殺菌効果や消臭効果を付与することができる。また、様々な蛍光体、例えば、上述した発光色変換部材と組合せることで、得られる半導体発光装置1を照明やテレビ等に利用することができ、その演色性を高めることができる。 In particular, when the optical semiconductor element 10 that emits ultraviolet light is used, the sterilizing effect and the deodorizing effect can be imparted to the semiconductor light emitting device 1 using the ultraviolet light. In addition, by combining with various phosphors, for example, the above-described emission color conversion member, the obtained semiconductor light emitting device 1 can be used for illumination, a television, and the like, and the color rendering can be enhanced.
<反射体>
反射体12は、図1及び図2に示すように、基板14上に設けられている。この反射体12は、本発明に係る半導体発光装置1が備える必須の構成であり、光半導体素子10から発光される光を所定方向、すなわち出光部側へ反射させる役割を果たしている。そのための構造形態は特に限定されないが、通常、図1及び図2に示すように、光を所定方向に反射させる面を備え、その面をテーパー状に傾けた形態に設けられている。
<Reflector>
The reflector 12 is provided on the substrate 14 as shown in FIGS. 1 and 2. The reflector 12 is an indispensable configuration included in the semiconductor light emitting device 1 according to the present invention, and plays a role of reflecting light emitted from the optical semiconductor element 10 in a predetermined direction, that is, on the light output side. Although the structure form for that is not specifically limited, Usually, as shown in FIG.1 and FIG.2, it has the surface which reflects light in a predetermined direction, and the surface is provided in the form inclined in the taper shape.
反射体12は、電子線硬化性樹脂の硬化物と白色材料と繊維状材料とを少なくとも含んでいる。 The reflector 12 includes at least a cured product of an electron beam curable resin, a white material, and a fibrous material.
(電子線硬化性樹脂の硬化物)
電子線硬化性樹脂の硬化物は、電子線硬化性樹脂に電子線を照射して得られた硬化物であればよい。その硬化態様としては、後述するように、反射体12を射出成形で形成した後に電子線を照射して硬化させたものであってもよいし、反射体12を射出成形で形成する前の電子線硬化性樹脂に電子線を照射して硬化させたものであってもよいし、反射体12を射出成形で形成する前の電子線硬化性樹脂に電子線を照射して半硬化させるとともに、半硬化した電子線硬化性樹脂を射出成形したものに電子線を照射して硬化させたものであってもよい。
(Hardened product of electron beam curable resin)
The cured product of the electron beam curable resin may be a cured product obtained by irradiating an electron beam curable resin with an electron beam. As a curing mode, as described later, the reflector 12 may be formed by injection molding and then cured by irradiation with an electron beam, or the electron before the reflector 12 is formed by injection molding. The electron beam curable resin may be cured by irradiating an electron beam, or the electron beam curable resin before the reflector 12 is formed by injection molding may be irradiated with an electron beam to be semi-cured. It may be one obtained by irradiating an electron beam on a semi-cured electron beam curable resin and then curing it.
電子線硬化性樹脂は特に限定されない。例えば、オレフィン樹脂、塩化ビニル樹脂、スチレン樹脂、酢酸ビニル樹脂、テトラフルオロエチレン樹脂、アクリロニトリルスチレン樹脂、アクリロニトリルブタジエンスチレン樹脂、アクリル樹脂、アミド樹脂、アセタール樹脂、カーボネート樹脂、変性ポリフェニレンエーテル樹脂、ブチレンテレフタレート樹脂、エチレンテレフタレート樹脂、フェニレンスルファイド樹脂、テトラフロロエチレン樹脂、サルフォン樹脂、エーテルサルフォン樹脂、非晶アリレート樹脂、液晶ポリマー、ポリエーテルエーテルケトン、熱可塑性ポリイミド、ポリアミドイミド等の熱可塑性樹脂をいずれも使用可能である。 The electron beam curable resin is not particularly limited. For example, olefin resin, vinyl chloride resin, styrene resin, vinyl acetate resin, tetrafluoroethylene resin, acrylonitrile styrene resin, acrylonitrile butadiene styrene resin, acrylic resin, amide resin, acetal resin, carbonate resin, modified polyphenylene ether resin, butylene terephthalate resin , Ethylene terephthalate resin, phenylene sulfide resin, tetrafluoroethylene resin, sulfone resin, ether sulfone resin, amorphous arylate resin, liquid crystal polymer, polyether ether ketone, thermoplastic polyimide, polyamideimide, etc. It can be used.
なかでもオレフィン樹脂が好ましく用いられる。オレフィン樹脂としては、例えば、ノルボルネン誘導体を開環メタセシス重合させた樹脂、又はその水素添加、ポリエチレン、ポリプロピレン、ポリメチルペンテン等を挙げることができる。特に、ポリメチルペンテンが好ましい。 Of these, olefin resins are preferably used. Examples of the olefin resin include a resin obtained by ring-opening metathesis polymerization of a norbornene derivative, or hydrogenation thereof, polyethylene, polypropylene, polymethylpentene, and the like. In particular, polymethylpentene is preferable.
ポリメチルペンテンは、耐熱性に優れることから、光半導体素子10からの発熱による反射体12の変色を防止でき、長期にわたって反射体12の性能を維持することができるという利点があるので、好ましく用いることができる。また、ポリメチルペンテンは成形性にも優れることから、バリの発生なく反射体12を成形することができるという利点もある。これにより、バリによって生じ得る半導体発光装置1の電気的な不良の発生を防止することができる。さらに、ポリメチルペンテンは、紫外域の波長の光線透過率にも優れている。こうしたポリメチルペンテンと、紫外光反射性能を有する後述の白色材料との相乗効果によって、光半導体素子10から発光される紫外光を効果的に出光部側に反射させることができ、殺菌効果及び消臭効果、また演色性等をさらに高めることができる。また、ポリメチルペンテンは、屈折率が1.46と例えば酸化ケイ素材料の屈折率に近いため、それらを混合した際でも透過率や反射率等の光学特性の阻害を抑えることができる。 Polymethylpentene is preferably used because it has excellent heat resistance and can prevent discoloration of the reflector 12 due to heat generation from the optical semiconductor element 10 and can maintain the performance of the reflector 12 over a long period of time. be able to. Further, since polymethylpentene is excellent in moldability, there is also an advantage that the reflector 12 can be molded without generation of burrs. Thereby, it is possible to prevent the occurrence of an electrical failure of the semiconductor light emitting device 1 that may be caused by burrs. Furthermore, polymethylpentene is excellent also in the light transmittance of the wavelength of an ultraviolet region. Due to the synergistic effect of such polymethylpentene and a white material described later having ultraviolet light reflecting performance, the ultraviolet light emitted from the optical semiconductor element 10 can be effectively reflected to the light emitting part side, and the bactericidal effect and the extinction can be achieved. The odor effect and color rendering properties can be further enhanced. In addition, since polymethylpentene has a refractive index of 1.46, which is close to the refractive index of, for example, a silicon oxide material, even when they are mixed, inhibition of optical properties such as transmittance and reflectance can be suppressed.
ポリメチルペンテンについてさらに詳しく説明する。ポリメチルペンテンとしては、例えば、4−メチルペンテン−1の単独重合体や、4−メチルペンテン−1と他のオレフィンとの共重合体等を挙げることができる。4−メチルペンテン−1と他のオレフィンとの共重合体としては、4−メチルペンテン−1と、α−オレフィン、例えば、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−オクタデセン、1−エイコセン、3−メチル−1−ブテン、3−メチル−1−ペンテン等の炭素数2〜20のα−オレフィンとの共重合体を挙げることができる。4−メチルペンテン−1と他のオレフィンとの共重合体を用いる場合には、その共重合体は、4−メチル−1−ペンテンを90モル%以上含んでいることが好ましい。 Polymethylpentene will be described in more detail. Examples of polymethylpentene include a homopolymer of 4-methylpentene-1 and a copolymer of 4-methylpentene-1 and other olefins. Examples of copolymers of 4-methylpentene-1 and other olefins include 4-methylpentene-1 and α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-hexene, With α-olefins having 2 to 20 carbon atoms such as octene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, etc. Mention may be made of copolymers. When using the copolymer of 4-methylpentene-1 and another olefin, it is preferable that the copolymer contains 90 mol% or more of 4-methyl-1-pentene.
ポリメチルペンテンのうち、4−メチルペンテン−1の単独重合体を好ましく使用することができる。なかでも、重合平均分子量(Mw)が1000以上、特に5000以上の4−メチルペンテン−1の単独重合体が好ましい。これらのポリメチルペンテンによれば、反射体12の耐熱性をさらに向上させることができる。なお、4−メチルペンテン−1の単独重合体の分子量は、ゲルパーミッションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量である。 Among polymethylpentenes, a homopolymer of 4-methylpentene-1 can be preferably used. Among them, a homopolymer of 4-methylpentene-1 having a polymerization average molecular weight (Mw) of 1000 or more, particularly 5000 or more is preferable. According to these polymethylpentenes, the heat resistance of the reflector 12 can be further improved. In addition, the molecular weight of the homopolymer of 4-methylpentene-1 is a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography.
ポリメチルペンテンは市販品を用いることもでき、例えば、三井化学株式会社製のTPX(登録商標)等を挙げることができる。 As the polymethylpentene, a commercially available product can be used, and examples thereof include TPX (registered trademark) manufactured by Mitsui Chemicals.
ポリメチルペンテンを用いる場合は、三次元網目構造のポリメチルペンテンを用いてもよい。三次元網目構造のポリメチルペンテンを含む反射体12は、耐熱性や、反射性能のさらなる向上が見込まれる。また、反射体12から後述する紫外光反射性能を有する白色材料が脱落することを防止することもできる。三次元網目構造のポリメチルペンテンは、例えば、紫外線硬化剤や電子線硬化剤とポリメチルペンテンとを反応させて、ポリメチルペンテンの分子間を架橋させることで得ることができる。これ以外にも、ポリメチルペンテンと、紫外線硬化剤や電子線硬化剤のモノマーを共重合させた共重合体を用いて三次元網目構造のポリメチルペンテンを得ることもできる。 When polymethylpentene is used, a polymethylpentene having a three-dimensional network structure may be used. The reflector 12 containing polymethylpentene having a three-dimensional network structure is expected to further improve heat resistance and reflection performance. Moreover, it can also prevent that the white material which has the ultraviolet light reflective performance mentioned later from the reflector 12 falls off. The polymethylpentene having a three-dimensional network structure can be obtained, for example, by reacting an ultraviolet curing agent or an electron beam curing agent with polymethylpentene to crosslink the molecules of polymethylpentene. In addition, polymethylpentene having a three-dimensional network structure can be obtained by using a copolymer obtained by copolymerizing polymethylpentene and a monomer of an ultraviolet curing agent or an electron beam curing agent.
(架橋処理剤)
架橋処理剤は、電子線硬化性樹脂の硬化物の耐熱性が十分でない場合に、必要に応じて上記した電子線硬化性樹脂とともに反射体形成用組成物に含まれる。
(Crosslinking agent)
When the heat resistance of the cured product of the electron beam curable resin is not sufficient, the crosslinking agent is included in the reflector forming composition together with the above-described electron beam curable resin as necessary.
例えば、上記したポリメチルペンテンのように融点が232℃と高く、加工温度の280℃程度でも分解せずに分解温度が300℃近辺という高温特性を有するオレフィン樹脂を用いる場合には、このような高温特性を有する有機過酸化物や光重合開始剤は一般にはあまり存在しないので、有機過酸化物による架橋や紫外光による架橋は困難である。また、ポリメチルペンテン等のオレフィン樹脂である電子線硬化性樹脂に対して電子線を照射(例えば、吸収線量:200kGy)しても架橋と同時に分子鎖の切断が進行することがある。そのため、ポリメチルペンテン単体では有効な架橋は起こり難いが、架橋処理剤を含有させることにより、電子線照射によって有効に架橋反応を起こすことができる。こうしたことから、特定の架橋処理剤を上記したポリメチルペンテン等のオレフィン樹脂である電子線硬化性樹脂に含有させて電子線を照射させることにより、例えばリフロー工程のような加熱工程においても十分な耐熱性を発揮し得る反射体形成用組成物にすることができる。これにより、反射体12を成形した後に加わる熱に対しても、電子線硬化性樹脂の融解による反射体12の変形を防ぐことができる。 For example, when using an olefin resin having a high melting point of 232 ° C. such as the above-described polymethylpentene and having a decomposition temperature of about 300 ° C. without being decomposed even at a processing temperature of about 280 ° C. Since organic peroxides and photopolymerization initiators having high temperature characteristics generally do not exist so much, crosslinking with organic peroxides or crosslinking with ultraviolet light is difficult. In addition, even when an electron beam curable resin such as polymethylpentene is irradiated with an electron beam (for example, absorbed dose: 200 kGy), molecular chain breakage may proceed simultaneously with crosslinking. Therefore, effective crosslinking is unlikely to occur with polymethylpentene alone, but by containing a crosslinking treatment agent, a crosslinking reaction can be effectively caused by electron beam irradiation. For this reason, a specific crosslinking agent is contained in the electron beam curable resin, which is an olefin resin such as polymethylpentene, and irradiated with an electron beam, which is sufficient even in a heating process such as a reflow process. It can be set as the reflector formation composition which can exhibit heat resistance. Thereby, deformation of the reflector 12 due to melting of the electron beam curable resin can be prevented even for heat applied after the reflector 12 is molded.
架橋処理剤は、飽和又は不飽和の環構造を有し、少なくとも1つの環を形成する原子のうち少なくとも1つの原子が、アリル基、メタリル基、連結基を介したアリル基、及び連結基を介したメタリル基から選ばれるいずれかのアリル系置換基と結合してなる構造を有する。特に、架橋処理剤の1つの環を形成する原子のうち少なくとも2つの原子が、それぞれ独立に、アリル系置換基と結合していることが好ましい。また、環構造が6員環である場合、その環を形成する原子のうちの少なくとも2つの原子が、それぞれ独立に、アリル系置換基と結合しており、1つのアリル系置換基が結合した原子に対して、他のアリル系置換基がメタ位の原子に結合していることが好ましい。 The crosslinking agent has a saturated or unsaturated ring structure, and at least one of the atoms forming at least one ring is an allyl group, a methallyl group, an allyl group via a linking group, and a linking group. It has a structure formed by bonding with any allylic substituent selected from the intervening methallyl group. In particular, it is preferable that at least two atoms among atoms forming one ring of the crosslinking agent are independently bonded to an allylic substituent. When the ring structure is a 6-membered ring, at least two of the atoms forming the ring are independently bonded to an allylic substituent, and one allylic substituent is bonded. It is preferable that another allylic substituent is bonded to the atom at the meta position with respect to the atom.
そうした構造を有する架橋処理剤を含有することで、良好な電子線硬化性を発揮し、優れた耐熱性を有する反射体形成用組成物にすることができる。飽和又は不飽和の環構造としては、シクロ環、ヘテロ環、芳香環等を挙げることができる。環構造を形成する原子の数は、3〜12であることが好ましく、5〜8であることがより好ましく、6員環であることがさらに好ましい。架橋処理剤が有する連結基としては、エステル結合、エーテル結合、アルキレン基、(ヘテロ)アリーレン基等を挙げることができる。環を形成する原子のうちアリル系置換基と結合しない原子は、水素、酸素、窒素等が結合した状態、又は種々の置換基が結合した状態となっている。 By containing the crosslinking agent having such a structure, a composition for forming a reflector that exhibits good electron beam curability and has excellent heat resistance can be obtained. Examples of the saturated or unsaturated ring structure include a cyclo ring, a hetero ring, and an aromatic ring. The number of atoms forming the ring structure is preferably 3 to 12, more preferably 5 to 8, and still more preferably a 6-membered ring. Examples of the linking group possessed by the crosslinking agent include an ester bond, an ether bond, an alkylene group, and a (hetero) arylene group. Among the atoms forming the ring, atoms that are not bonded to the allylic substituent are in a state in which hydrogen, oxygen, nitrogen, or the like is bonded, or in a state in which various substituents are bonded.
架橋処理剤の分子量は、1000以下であることが好ましく、500以下であることがより好ましく、300以下であることがさらに好ましい。分子量が1000以下であることで、電子線硬化性樹脂中での分散性が低くなることを防ぎ、電子線照射による有効な架橋反応を起こすことが可能となる。また、環構造の数は1〜3であることが好ましく、1又は2であることがより好ましく、1であることがさらに好ましい。 The molecular weight of the crosslinking agent is preferably 1000 or less, more preferably 500 or less, and even more preferably 300 or less. When the molecular weight is 1000 or less, it is possible to prevent the dispersibility in the electron beam curable resin from being lowered, and to cause an effective crosslinking reaction by electron beam irradiation. The number of ring structures is preferably 1 to 3, more preferably 1 or 2, and further preferably 1.
架橋処理剤の融点は、使用する電子線硬化性樹脂の融点以下であることが好ましく、例えば200℃以下であることが好ましい。上記のような架橋処理剤であれば、加工時の流動性に優れるため、電子線硬化性樹脂の加工温度を低下させて熱負荷を軽減したり、加工時の摩擦を軽減したり、白色材料や繊維状材料等の無機成分の充填量を増やすことができる。 The melting point of the crosslinking agent is preferably not higher than the melting point of the electron beam curable resin to be used, and is preferably 200 ° C. or lower, for example. The cross-linking agent as described above is excellent in fluidity at the time of processing, so the processing temperature of the electron beam curable resin is lowered to reduce the thermal load, friction at the time of processing, and the white material It is possible to increase the filling amount of inorganic components such as a fibrous material.
具体的な架橋処理剤としては、トリアリルイソシアヌレート、メチルジアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌル酸、モノアリルジグリシジルイソシアヌレート、トリメタリルイソシアヌレート等を挙げることができる。また、オルトフタル酸のジアリルエステル、イソフタル酸のジアリルエステル等を挙げることができる。 Specific examples of the crosslinking agent include triallyl isocyanurate, methyl diallyl isocyanurate, diallyl monoglycidyl isocyanuric acid, monoallyl diglycidyl isocyanurate, trimethallyl isocyanurate, and the like. Further, diallyl esters of orthophthalic acid, diallyl esters of isophthalic acid, and the like can be given.
架橋処理剤は、電子線硬化性樹脂100質量部に対して10質量部以上、40質量部以下の範囲内で配合されており、12質量部以上、30質量部以下の範囲内で配合されていることが好ましい。こうした範囲内で配合されていることにより、架橋処理剤がブリードアウトすることなく架橋を効果的に進行させることができる。 The crosslinking agent is blended in the range of 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin, and blended in the range of 12 parts by mass or more and 30 parts by mass or less. Preferably it is. By mix | blending within such a range, bridge | crosslinking can be advanced effectively, without a crosslinking treatment agent bleeding out.
(白色材料)
白色材料は、電子線硬化性樹脂の硬化物及び繊維状材料とともに反射体12に含まれている。すなわち、白色材料は、反射体12を形成するための反射体形成用組成物に含まれ、その反射体形成用組成物で形成した反射体12に、電子線硬化性樹脂の硬化物及び繊維状材料とともに含まれている。白色材料としては、酸化チタン、硫化亜鉛、酸化亜鉛、硫化バリウム、チタン酸カリウム等の白色顔料を挙げることができる。これらの白色材料は、単独又は2種以上混合して使用することができる。なかでも酸化チタンが好ましい。
(White material)
The white material is contained in the reflector 12 together with the cured product of the electron beam curable resin and the fibrous material. That is, the white material is included in the reflector forming composition for forming the reflector 12, and the reflector 12 formed of the reflector forming composition is added to the cured product and fibrous material of the electron beam curable resin. Included with the material. Examples of the white material include white pigments such as titanium oxide, zinc sulfide, zinc oxide, barium sulfide, and potassium titanate. These white materials can be used alone or in admixture of two or more. Of these, titanium oxide is preferable.
白色材料は、電子線硬化性樹脂100質量部に対し、200質量部以上、500質量部以下の範囲内で含まれていることが好ましく、200質量部以上、450質量部以下の範囲内で含まれていることがより好ましい。この範囲内にすることで、製品性能(例えば、反射体の光反射率、強度、成形反り等)を良好に維持することができる。また、白色材料が多くて加工ができない、又は加工できても成形状態が悪く、ボソボソで製品性能(例えば、反射体の光反射率等)が低下してしまったりすることを防ぐことができる。 The white material is preferably contained within a range of 200 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin, and is contained within a range of 200 parts by mass or more and 450 parts by mass or less. More preferably. By making it within this range, product performance (for example, light reflectance, strength, molding warp, etc. of the reflector) can be maintained well. Moreover, it is possible to prevent the white material from being processed due to the large amount of white material, or even if the material can be processed, the molded state is poor and the product performance (for example, the light reflectance of the reflector, etc.) is deteriorated.
白色材料の平均粒径は、反射体形成用組成物の成形性を考慮し、かつ高い反射率を得る観点から、一次粒度分布において0.10μm以上、0.50μm以下の範囲内であることが好ましく、0.10μm以上、0.40μm以下の範囲内であることがより好ましく、0.21μm以上、0.25μm以下の範囲内であることがさらに好ましい。平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50として求めることができる。 The average particle diameter of the white material is within the range of 0.10 μm or more and 0.50 μm or less in the primary particle size distribution from the viewpoint of obtaining high reflectivity in consideration of the moldability of the reflector forming composition. Preferably, it is in the range of 0.10 μm or more and 0.40 μm or less, and more preferably in the range of 0.21 μm or more and 0.25 μm or less. An average particle diameter can be calculated | required as mass average value D50 in the particle size distribution measurement by a laser beam diffraction method.
(繊維状材料)
繊維状材料は、電子線硬化性樹脂の硬化物及び白色材料とともに反射体12に含まれている。すなわち、繊維状材料は、反射体12を形成するための反射体形成用組成物に含まれ、その反射体形成用組成物で形成した反射体12に、電子線硬化性樹脂の硬化物及び白色材料とともに含まれている。繊維状材料としては、ガラス繊維を好ましく挙げることができるが、それ以外の材質からなる繊維であってもよい。例えば、ウォラストナイト、針状酸化チタン、針状チタン酸カリウム、タルク、炭素繊維、ボロン繊維、アラミド繊維、ポリエチレン繊維、繊維状のザイロン等の繊維であってもよい。これらの繊維状材料は、単独又は2種以上混合して使用することができる。
(Fibrous material)
The fibrous material is included in the reflector 12 together with the cured product of the electron beam curable resin and the white material. That is, the fibrous material is included in the reflector forming composition for forming the reflector 12, and the electron beam curable resin cured product and white are added to the reflector 12 formed from the reflector forming composition. Included with the material. As the fibrous material, glass fibers can be preferably mentioned, but fibers made of other materials may be used. For example, fibers such as wollastonite, acicular titanium oxide, acicular potassium titanate, talc, carbon fiber, boron fiber, aramid fiber, polyethylene fiber, and fibrous xylon may be used. These fibrous materials can be used alone or in combination of two or more.
繊維状材料は、その平均長さ(繊維長)が40μm以上、100μm以下の範囲内であルことが好ましい。この範囲内の繊維長さにすることにより、繊維状材料が硬化物中に多く充填され、得られた反射体12の強度を高めることができる。また、従来のような長いガラス繊維が反射体表面から飛び出して光の反射性を阻害することも少ない。さらに、従来のような長いガラス繊維は反射体形成用組成物の調製時の機械的混合手段で折れてメカノラジカルを発生させ、そのメカノラジカルが電子線硬化性樹脂を劣化させ易いが、この大きさの繊維状材料は、そのようなメカノラジカルの発生が起こりにくく、電子線硬化性樹脂の劣化を抑制できる。 The fibrous material preferably has an average length (fiber length) in the range of 40 μm or more and 100 μm or less. By setting the fiber length within this range, the fibrous material is filled in a large amount in the cured product, and the strength of the obtained reflector 12 can be increased. In addition, it is rare that long glass fibers as in the prior art jump out of the reflector surface and impair the light reflectivity. Furthermore, conventional long glass fibers are broken by mechanical mixing means at the time of preparing a composition for forming a reflector to generate mechano radicals, which tend to deteriorate the electron beam curable resin. The fibrous material is less likely to generate such mechano radicals and can suppress the deterioration of the electron beam curable resin.
繊維状材料の平均長さが40μm未満では、得られた反射体12の強度を十分に高めることができないことがある。一方、繊維状材料の平均長さが100μmを超えると、反射体形成用組成物の調製時の機械的混合手段で折れてメカノラジカルを発生させ、そのメカノラジカルが電子線硬化性樹脂を劣化させ易くなることがあるとともに、反射体表面から飛び出して光の反射性を阻害することがある。また、反射体形成用組成物の流動性が悪くなり、反射体12の射出成形性が低下することがある。 If the average length of the fibrous material is less than 40 μm, the strength of the obtained reflector 12 may not be sufficiently increased. On the other hand, if the average length of the fibrous material exceeds 100 μm, the mechanical mixing means at the time of preparation of the reflector forming composition breaks to generate mechano radicals, which degrade the electron beam curable resin. It may become easy, and may jump out of the reflector surface and impair the light reflectivity. Moreover, the fluidity | liquidity of the composition for reflector formation may worsen, and the injection moldability of the reflector 12 may fall.
繊維状材料の断面形態は特に限定されず、円形断面であってもよいし、異形断面であってもよい。断面の平均直径も特に限定されないが、5μm以上、50μm以下の範囲内であることが好ましい。なお、繊維状材料の平均長さや直径は、得られた反射体12の表面又は断面を光学顕微鏡やX線CT等で測定することができる。 The cross-sectional form of the fibrous material is not particularly limited, and may be a circular cross section or an irregular cross section. The average diameter of the cross section is not particularly limited, but is preferably in the range of 5 μm or more and 50 μm or less. In addition, the average length and diameter of a fibrous material can measure the surface or cross section of the obtained reflector 12 with an optical microscope, X-ray CT, etc.
繊維状材料は、電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれていることが好ましい。この範囲の繊維状材料が含まれていることにより、得られた反射体12の強度を高めることができる。その量が60質量部未満では、配合量が少なくて、反射体12に十分な強度を付与できないことがあり、その量が200質量部を超えると、配合量が多すぎて、反射体形成用組成物を射出成形して反射体12を形成できないことがある。 The fibrous material is preferably contained within a range of 60 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin. By including the fibrous material in this range, the strength of the obtained reflector 12 can be increased. If the amount is less than 60 parts by mass, the blending amount is small, and sufficient strength may not be imparted to the reflector 12, and if the amount exceeds 200 parts by mass, the blending amount is too large for reflector formation. The reflector 12 may not be formed by injection molding the composition.
(その他)
電子線硬化性樹脂の硬化物は、本発明の効果を阻害しない範囲内で、その他の添加材料を含んでいてもよい。添加材料としては、例えば、得られた反射体12の性質を改善する目的で、種々のウィスカー、シリコーンパウダー、熱可塑性エラストマー、有機合成ゴム、脂肪酸エステル、グリセリン酸エステル、ステアリン酸亜鉛、ステアリン酸カルシウム等の内部離型剤や、ベンゾフェノン系、サリチル酸系、シアノアクリレート系、イソシアヌレート系、シュウ酸アニリド系、ベンゾエート系、ヒンダートアミン系、ベンゾトリアゾール系、フェノール系等の酸化防止剤や、ヒンダードアミン系、ベンゾエート系等の光安定剤等を挙げることができる。
(Other)
The cured product of the electron beam curable resin may contain other additive materials as long as the effects of the present invention are not impaired. Examples of the additive material include various whiskers, silicone powders, thermoplastic elastomers, organic synthetic rubbers, fatty acid esters, glycerate esters, zinc stearate, calcium stearate and the like for the purpose of improving the properties of the obtained reflector 12. Internal mold release agents, antioxidants such as benzophenone, salicylic acid, cyanoacrylate, isocyanurate, oxalic anilide, benzoate, hindered amine, benzotriazole, and phenol, hindered amine, Examples thereof include light stabilizers such as benzoates.
白色材料や繊維状材料の分散性を高めるための疎水化処理剤が含まれていてもよい。疎水化処理剤としては、例えば、シランカップリング剤、シリコーンオイル、脂肪酸、及び脂肪酸金属塩等を挙げることができる。これらの中でも、分散性を向上させる効果が高いことから、シランカップリング剤、及びシリコーンオイルが好ましく用いられる。 A hydrophobizing agent for enhancing the dispersibility of the white material or the fibrous material may be included. Examples of the hydrophobizing agent include silane coupling agents, silicone oils, fatty acids, and fatty acid metal salts. Among these, a silane coupling agent and silicone oil are preferably used because they have a high effect of improving dispersibility.
また、難燃剤、基板密着助剤としてのシランカップリング剤やチタンカップリング剤等が含まれていてもよい。 Further, a flame retardant, a silane coupling agent or a titanium coupling agent as a substrate adhesion aid may be included.
こうした材料を含む反射体形成用組成物の混合方法としては、2本又は3本ロール、ホモジナイザー、プラネタリーミキサー等の撹拌機、ポリラボシステムやラボプラストミル等の溶融混練機等の公知の手段を適用することができる。これらは、常温、冷却状態、加熱状態、常圧、減圧状態、加圧状態のいずれで行ってもよい。混合された後の反射体形成用組成物は、その後に射出成形及び電子線硬化されて反射体12が形成される。 As a method for mixing the composition for forming a reflector containing such a material, known means such as a stirrer such as two or three rolls, a homogenizer, a planetary mixer, a melt kneader such as a polylab system or a lab plast mill, etc. Can be applied. These may be performed in any of normal temperature, cooling state, heating state, normal pressure, reduced pressure state, and pressurized state. The composition for forming a reflector after being mixed is then injection molded and electron beam cured to form the reflector 12.
(反射体の形態)
反射体12の形状は、図1及び図2に示すように、レンズ18の端部、すなわち接合部の形状に準じており、特に限定はない。通常は、角形、円形、楕円形等の筒状又は輪状である。図1で例示する形態では、反射体12は、筒状体、換言すれば輪状体であり、反射体12のすべての端面が基板14の表面に接触し、固定されている。
(Reflector form)
As shown in FIGS. 1 and 2, the shape of the reflector 12 conforms to the shape of the end portion of the lens 18, that is, the joint portion, and is not particularly limited. Usually, it has a cylindrical shape such as a square shape, a circular shape, an elliptical shape, or a ring shape. In the form illustrated in FIG. 1, the reflector 12 is a cylindrical body, in other words, a ring-shaped body, and all end surfaces of the reflector 12 are in contact with the surface of the substrate 14 and are fixed.
反射体12の内面は、図示するように、光半導体素子10から発光される光の指向性を高めるために、テーパー状に上方に広げられていることが好ましい。また、反射体12は、レンズ18側の端部を、そのレンズ18の形状に応じた形に加工されていてもよく、その場合にはレンズホルダーとしても機能させることができる。 As shown in the drawing, the inner surface of the reflector 12 is preferably widened upward in a tapered shape in order to enhance the directivity of light emitted from the optical semiconductor element 10. In addition, the reflector 12 may have an end portion on the lens 18 side processed into a shape corresponding to the shape of the lens 18, and in that case, the reflector 12 can also function as a lens holder.
反射体12は、これ以外の種々の形態であってもよい。例えば、図2に示すように、上記で説明した反射体12の必須の成分を含む反射層12aが部材12bの光反射面側に設けられた反射体12を用いることもできる。図1に示す反射体と、図2に示す反射体とを比べると、図1に示す形態の反射体12は、反射体12の全体が上記で説明した反射体12の必須の成分を含む材料から構成されているのに対し、図2に示す形態の反射体12は、上記で説明した反射体12の必須の成分を含まない部材12bと、反射体12の必須の成分を含む反射層12aとが組み合わされた構成である点で、両者は相違する。図2に示す形態では、部材12bの光反射面側にのみ反射層12aが形成された反射体12となっているが、部材12bの全面に反射層12aが形成されていてもよい。反射層12aの厚さは、熱抵抗を低くする等の観点から、500μm以下にすることが好ましく、300μm以下にすることがより好ましい。 The reflector 12 may have various other forms. For example, as shown in FIG. 2, it is also possible to use a reflector 12 in which a reflective layer 12a including the essential components of the reflector 12 described above is provided on the light reflecting surface side of the member 12b. When the reflector shown in FIG. 1 is compared with the reflector shown in FIG. 2, the reflector 12 in the form shown in FIG. 1 is a material in which the entire reflector 12 includes the essential components of the reflector 12 described above. 2, the reflector 12 in the form shown in FIG. 2 includes a member 12b that does not include the essential components of the reflector 12 described above, and a reflective layer 12a that includes the essential components of the reflector 12. They are different in that they are combined. In the form shown in FIG. 2, the reflector 12 is formed with the reflective layer 12a only on the light reflecting surface side of the member 12b. However, the reflective layer 12a may be formed on the entire surface of the member 12b. The thickness of the reflective layer 12a is preferably 500 μm or less, more preferably 300 μm or less, from the viewpoint of reducing the thermal resistance.
図1に示す形態では、反射体12上にはレンズ18が設けられている。レンズ18は従来公知のものを適宜選択して用いることができる。なお、レンズ18は、通常、樹脂から構成され、着色されていてもよい。 In the form shown in FIG. 1, a lens 18 is provided on the reflector 12. As the lens 18, a conventionally known lens can be appropriately selected and used. The lens 18 is usually made of resin and may be colored.
基板14と反射体12とレンズ18とで形成される空間部20は、透明なシリコーン樹脂等が充填された透明封止部であってもよく、空隙部であってもよい。なお、この空間部20は、通常、透光性及び絶縁性を与える材料等が充填された透明封止部であり、ワイヤーボンディング実装において、リード線16に直接接触することにより加わる力、及び、間接的に加わる振動、衝撃等により、光半導体素子10との接続部、及び/又は、電極との接続部からリード線16が外れたり、切断したり、短絡したりすることによって生じる電気的な不具合を防止することができる。また、同時に、湿気、塵埃等から光半導体素子10を保護し、長期間に渡って信頼性を維持することができる。 The space portion 20 formed by the substrate 14, the reflector 12 and the lens 18 may be a transparent sealing portion filled with a transparent silicone resin or the like, or may be a gap portion. The space portion 20 is usually a transparent sealing portion filled with a material that provides translucency and insulation, and the force applied by directly contacting the lead wire 16 in wire bonding mounting, and Electrically generated by the lead wire 16 being disconnected, disconnected, or short-circuited from the connection portion with the optical semiconductor element 10 and / or the connection portion with the electrode due to indirectly applied vibration, impact, or the like. Problems can be prevented. At the same time, the optical semiconductor element 10 can be protected from moisture, dust, etc., and the reliability can be maintained over a long period of time.
この透光性及び絶縁性を与える材料(透明封止剤組成物)としては、通常、シリコーン樹脂、エポキシシリコーン樹脂、エポキシ系樹脂、アクリル系樹脂、ポリイミド系樹脂、ポリカーボネート樹脂等を挙げることができる。これらのうち、耐熱性、耐候性、低収縮性及び耐変色性の観点から、シリコーン樹脂が好ましい。 Examples of the material (transparent sealant composition) that imparts translucency and insulation usually include silicone resins, epoxy silicone resins, epoxy resins, acrylic resins, polyimide resins, polycarbonate resins, and the like. . Of these, silicone resins are preferred from the viewpoints of heat resistance, weather resistance, low shrinkage, and discoloration resistance.
こうして構成された半導体発光装置1は、図1及び図2に示すように、光半導体素子(LED素子)10と、この光半導体素子10の周りに設けられ、光半導体素子10からの光を所定方向に反射させる反射体(リフレクター)12とを基板14上に有している。そして、反射体12の光反射面の少なくとも一部(図1の場合は全部)が上記した反射体形成用組成物の硬化物(反射体12)で構成されている。反射体形成用組成物の硬化物である反射体12は、電子線硬化性樹脂の硬化物と、白色材料と、繊維状材料とを少なくとも含む硬化物である。 As shown in FIGS. 1 and 2, the semiconductor light emitting device 1 configured in this way is provided around an optical semiconductor element (LED element) 10 and the optical semiconductor element 10, and transmits light from the optical semiconductor element 10 to a predetermined level. A reflector (reflector) 12 that reflects in the direction is provided on the substrate 14. And at least one part (all in the case of FIG. 1) of the light reflection surface of the reflector 12 is comprised with the hardened | cured material (reflector 12) of an above-described reflector formation composition. The reflector 12, which is a cured product of the composition for forming a reflector, is a cured product including at least a cured product of an electron beam curable resin, a white material, and a fibrous material.
以上説明したように、本発明によれば、耐久性と強度と反射性に優れた反射体を備えた半導体発光装置を提供できる。 As described above, according to the present invention, a semiconductor light emitting device including a reflector excellent in durability, strength, and reflectivity can be provided.
[半導体発光装置の製造方法]
本発明に係る半導体発光装置1の製造方法は、上記した本発明に係る半導体発光装置1を製造する方法である。詳しくは、基板14と、光半導体素子10と、その光半導体素子10が発光する光を反射させる反射体12とを有する半導体発光装置の製造方法であって、電子線硬化性樹脂と白色材料と繊維状材料とを少なくとも含み、その繊維状材料の平均長さが40μm以上100μm以下であり、その繊維状材料が電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれている反射体形成用組成物を射出成形する工程と、その射出成形する工程前及び工程後の一方又は両方で電子線を照射する工程とを有している。
[Method for Manufacturing Semiconductor Light-Emitting Device]
The method for manufacturing the semiconductor light emitting device 1 according to the present invention is a method for manufacturing the semiconductor light emitting device 1 according to the present invention described above. More specifically, a method of manufacturing a semiconductor light emitting device having a substrate 14, an optical semiconductor element 10, and a reflector 12 that reflects light emitted from the optical semiconductor element 10, which includes an electron beam curable resin and a white material. The fibrous material has an average length of 40 μm or more and 100 μm or less, and the fibrous material is in a range of 60 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin. A process for injection-molding the composition for forming a reflector contained therein, and a process for irradiating an electron beam before or after the process for injection molding.
この製造方法は、電子線で硬化する反射体形成用組成物の射出成形工程と、反射体形成用組成物に電子線を照射する工程とを有している。詳しくは、反射体12を射出成形で形成した後に電子線を照射して硬化させてもよいし、成形性を損なわない限りは、電子線照射による架橋反応を成形前に行ってもよい。すなわち、反射体12を射出成形で形成する前の電子線硬化性樹脂に電子線を照射して硬化させたものであってもよいし、反射体12を射出成形で形成する前の電子線硬化性樹脂に電子線を照射して半硬化させるとともに、半硬化した電子線硬化性樹脂を射出成形したものに電子線を照射して硬化させたものであってもよい。 This manufacturing method includes an injection molding step of a composition for forming a reflector that is cured by an electron beam, and a step of irradiating the composition for forming a reflector with an electron beam. Specifically, after the reflector 12 is formed by injection molding, it may be cured by irradiation with an electron beam, or a crosslinking reaction by electron beam irradiation may be performed before molding as long as the moldability is not impaired. That is, the electron beam curable resin before the reflector 12 is formed by injection molding may be cured by irradiation with an electron beam, or the electron beam curing before the reflector 12 is formed by injection molding. The resin may be semi-cured by irradiating it with an electron beam, and may be obtained by irradiating and curing an electron beam on a semi-cured electron beam curable resin.
この製造方法では、反射体形成用組成物に上記特定の繊維状材料が含まれているので、白色材料を含む硬化物を繊維状材料で強化することができる。また、上記した大きさの繊維状材料を電子線硬化性樹脂の硬化物中に多く充填でき、反射体12の強度を高めることができるとともに、光の反射性を阻害することが少なく、電子線硬化性樹脂の劣化も抑制できる。その結果、耐久性と強度に優れた反射率のよい反射体12を成形できるので、クラック等の不具合が生じず、製造歩留まりや製品の長期耐久性に優れている。 In this manufacturing method, since the said specific fibrous material is contained in the reflector formation composition, the hardened | cured material containing a white material can be reinforced with a fibrous material. Moreover, the fibrous material having the above-described size can be filled in the cured product of the electron beam curable resin, the strength of the reflector 12 can be increased, and the light reflectivity is hardly hindered. Deterioration of the curable resin can also be suppressed. As a result, since the reflector 12 having excellent durability and strength and good reflectivity can be formed, defects such as cracks do not occur, and the manufacturing yield and long-term durability of the product are excellent.
図1に例示した半導体発光装置1aにおいては、例えば、所定形状のキャビティ空間を備える金型を用いたトランスファー成形、圧縮成形、射出成形等により、上記本発明の反射体形成用組成物から所定形状の反射体12を成形する。その後、別途、準備した光半導体素子10、電極及びリード線16を、接着剤又は接合部材により基板14に固定し、さらに反射体12に基板14上に固定する。次いで、基板14及び反射体12により形成された凹部に、シリコーン樹脂等を含む透明封止剤組成物を注入し、加熱、乾燥等により硬化させて透明封止部にする。その後、透明封止部上にレンズ18を配設することで、図1に示す半導体発光装置1aが得られる。なお、透明封止剤組成物が未硬化の状態でレンズ18を載置してから、透明封止剤組成物を硬化させてもよい。 In the semiconductor light emitting device 1a illustrated in FIG. 1, for example, a predetermined shape is formed from the reflector forming composition of the present invention by transfer molding, compression molding, injection molding, or the like using a mold having a cavity space of a predetermined shape. The reflector 12 is formed. Thereafter, the separately prepared optical semiconductor element 10, electrodes and lead wires 16 are fixed to the substrate 14 with an adhesive or a bonding member, and further fixed to the reflector 12 on the substrate 14. Next, a transparent sealant composition containing a silicone resin or the like is poured into the recess formed by the substrate 14 and the reflector 12, and cured by heating, drying, or the like to form a transparent sealing portion. Thereafter, by arranging the lens 18 on the transparent sealing portion, the semiconductor light emitting device 1a shown in FIG. 1 is obtained. In addition, after mounting the lens 18 in a state where the transparent sealant composition is uncured, the transparent sealant composition may be cured.
上記本発明の反射体形成用組成物は、通常の成形法により最終的な形状の製品に加工できる。成形方法としては、プレス成形、トランスファー成形、射出成形や、これらの組合せ等を挙げることができる。特に射出成形が好ましい。射出成形法では、反射体形成用組成物をシリンダーに投入し、その反射体形成用組成物に含まれるオレフィン樹脂(ポリメチルペンテン等)を溶融させる。次いで、スクリューを回転させて、所定の射出圧で上記反射体形成用組成物を、金型に嵌められた基板14上に所定の射出圧で射出する。そして、保圧ないし背圧をかけて保持した後に、金型から取出すことで反射体12を得ることができる。このときの各種条件についても特に限定はないが、シリンダー温度;200℃〜400℃、金型温度;20℃〜150℃、射出成形圧;10MPa〜200MPaの条件下で製造を行うことが好ましい。この条件下で製造することにより、成形性の特に高い反射体12を製造することができる。 The reflector forming composition of the present invention can be processed into a final shaped product by an ordinary molding method. Examples of the molding method include press molding, transfer molding, injection molding, and combinations thereof. In particular, injection molding is preferred. In the injection molding method, a reflector forming composition is put into a cylinder, and an olefin resin (polymethylpentene or the like) contained in the reflector forming composition is melted. Next, the screw is rotated to inject the reflector forming composition with a predetermined injection pressure onto the substrate 14 fitted in the mold. And after holding and applying a holding pressure or a back pressure, the reflector 12 can be obtained by taking out from a metal mold | die. Various conditions at this time are also not particularly limited, but it is preferable to carry out the production under the conditions of cylinder temperature; 200 ° C. to 400 ° C., mold temperature; 20 ° C. to 150 ° C., injection molding pressure; By manufacturing under these conditions, the reflector 12 with particularly high moldability can be manufactured.
射出成形装置としては、例えば、株式会社ソディックプラステック製の射出成形装置(LA40、最大型締力392kN)等を用いることができる。加工温度は、反射体形成用組成物が可塑化し、金型内の空間に射出充填できるシリンダー温度であればよく、好ましくは200〜300℃であり、さらに好ましくは230〜270℃である。加工温度が300℃を超えると、反射体形成用組成物の流動性は向上するが樹脂組成物の熱劣化等が起こる場合がある。また、加工温度が200℃未満では、反射体形成用組成物の流動性が不十分で、成形が困難かつ各成分が充分に分散しないことがある。 As the injection molding apparatus, for example, an injection molding apparatus (LA40, maximum mold clamping force 392 kN) manufactured by Sodick Plustech Co., Ltd. can be used. The processing temperature should just be the cylinder temperature which the composition for reflector formation plasticizes, and can be injection-filled in the space in a metal mold | die, Preferably it is 200-300 degreeC, More preferably, it is 230-270 degreeC. When the processing temperature exceeds 300 ° C., the fluidity of the composition for forming a reflector is improved, but the resin composition may be thermally deteriorated. On the other hand, when the processing temperature is less than 200 ° C., the fluidity of the composition for forming a reflector is insufficient, and molding may be difficult and each component may not be sufficiently dispersed.
射出成形法において、繊維状材料であるガラス繊維等は、流動性を阻害することがある。そのため、本発明製品のような薄肉成形が要求される成形品(反射体12)の厚さが0.1mm〜2mmといった薄肉の成形品の製造には、ガラス繊維等の繊維状材料の配合量は、電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内であることが好ましい。 In the injection molding method, glass fibers or the like that are fibrous materials may impair fluidity. Therefore, for the production of a thin molded product having a thickness of 0.1 mm to 2 mm of the molded product (reflector 12) that requires thin molding such as the product of the present invention, the blending amount of a fibrous material such as glass fiber Is preferably in the range of 60 to 200 parts by mass with respect to 100 parts by mass of the electron beam curable resin.
電子線の加速電圧については、用いる電子線硬化性樹脂や層の厚さに応じて適宜選定することができる。例えば、厚さが1mm程度の成形物の場合は、通常、加速電圧250kV〜3000kV程度で未硬化の成形体を硬化させることが好ましい。なお、電子線の照射においては、加速電圧が高いほど透過能力が増加するため、電子線で劣化する基板14を使用する場合には、電子線の透過深さと反射体12の厚さとが実質的に等しくなるように、加速電圧を選定することにより、基板14への余分の電子線の照射を抑制することができ、過剰電子線による基板14の劣化を最小限にとどめることができる。また、電子線を照射する際の吸収線量は、反射体形成用組成物の組成により適宜設定されるが、反射体12の架橋密度が飽和する量が好ましく、照射線量は50kGy〜600kGyであることが好ましい。 The acceleration voltage of the electron beam can be appropriately selected according to the electron beam curable resin used and the thickness of the layer. For example, in the case of a molded product having a thickness of about 1 mm, it is usually preferable to cure the uncured molded product at an acceleration voltage of about 250 kV to 3000 kV. In electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when the substrate 14 deteriorated by the electron beam is used, the transmission depth of the electron beam and the thickness of the reflector 12 are substantially equal. By selecting the accelerating voltage so as to be equal to, it is possible to suppress the irradiation of the extra electron beam onto the substrate 14 and to minimize the degradation of the substrate 14 due to the excess electron beam. Further, the absorbed dose when irradiating the electron beam is appropriately set depending on the composition of the composition for forming the reflector, but the amount at which the crosslinking density of the reflector 12 is saturated is preferable, and the irradiation dose is 50 kGy to 600 kGy. Is preferred.
電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、又は直線型、ダイナミトロン型、高周波型等の各種電子線加速器を用いることができる。 The electron beam source is not particularly limited. For example, various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type are used. be able to.
[半導体発光装置用部品及びその製造方法]
本発明に係る半導体発光装置用部品は、基板14と、光半導体素子10が発光する光を反射させる反射体12とを有し、その反射体12が電子線硬化性樹脂の硬化物と白色材料と繊維状材料とを少なくとも含み、繊維状材料の平均長さが40μm以上100μm以下であり、前記状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれている。また、本発明に係る半導体発光装置用部品の製造方法は、そうした半導体発光装置用部品の製造方法であって、上記同様、電子線硬化性樹脂と白色材料と繊維状材料とを少なくとも含み、繊維状材料の平均長さが40μm以上100μm以下の範囲内であり、繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれている反射体形成用組成物を射出成形する工程と、その射出成形する工程前及び工程後の一方又は両方で電子線を照射する工程とを有している。
[Parts for semiconductor light emitting device and manufacturing method thereof]
The semiconductor light emitting device component according to the present invention includes a substrate 14 and a reflector 12 that reflects light emitted from the optical semiconductor element 10, and the reflector 12 is a cured product of an electron beam curable resin and a white material. And the fibrous material has an average length of 40 μm or more and 100 μm or less, and the material is in a range of 60 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin. Contained within. Further, the method for manufacturing a semiconductor light emitting device component according to the present invention is a method for manufacturing such a semiconductor light emitting device component, which includes at least an electron beam curable resin, a white material, and a fibrous material, as described above. The average length of the fibrous material is in the range of 40 μm to 100 μm, and the fibrous material is contained in the range of 60 parts by mass to 200 parts by mass with respect to 100 parts by mass of the electron beam curable resin. A step of injection-molding the body-forming composition, and a step of irradiating an electron beam before or after the injection-molding step.
基板14、反射体12、反射体形成用組成物は、上記本発明の半導体発光装置1で説明したものをそのまま用いることができ、ここでの詳細な説明は省略する。本発明の半導体発光装置用部品によれば、この部品を用いて、紫外光等の光に対する反射性に優れ、かつ耐久性と強度と反射性に優れた半導体発光装置用部品を提供できる。 As the substrate 14, the reflector 12, and the composition for forming a reflector, those described in the semiconductor light emitting device 1 of the present invention can be used as they are, and detailed description thereof is omitted here. According to the semiconductor light emitting device component of the present invention, it is possible to provide a semiconductor light emitting device component that is excellent in reflectivity for light such as ultraviolet light and excellent in durability, strength, and reflectivity.
[反射体及び反射体形成用組成物]
本発明に係る反射体12、その製造方法及び反射体形成用組成物は、上記した半導体発光装置及びその製造方法の欄で説明した反射体及び反射体形成用組成物と同様であるので、ここではその説明を省略する。
[Reflector and composition for forming reflector]
The reflector 12, the manufacturing method thereof, and the composition for forming a reflector according to the present invention are the same as the reflector and the composition for forming a reflector described above in the section of the semiconductor light emitting device and the manufacturing method thereof. Then, the explanation is omitted.
こうした反射体12及び反射体形成用組成物は、基板上に塗布し硬化させた複合材料や反射体形成用組成物の硬化物として種々の用途に適用することができる。例えば、耐熱性絶縁膜、耐熱性離型シート、耐熱性透明基板、太陽電池の光反射シートやLEDを始めとした照明やテレビ用の光源の反射体(リフレクター)等として適用することができる。 The reflector 12 and the composition for forming a reflector can be applied to various applications as a composite material applied on a substrate and cured, or as a cured product of the composition for forming a reflector. For example, it can be applied as a heat-resistant insulating film, a heat-resistant release sheet, a heat-resistant transparent substrate, a light reflecting sheet for solar cells, a reflector such as an LED, or a light source for TV (reflector).
以下に実施例と比較例を挙げて本発明を説明する。なお、文中の「部」は「質量部」である。実施例1〜7及び比較例1〜6で使用した材料は以下のとおりである。 Hereinafter, the present invention will be described with reference to examples and comparative examples. In addition, “part” in the sentence is “part by mass”. The materials used in Examples 1 to 7 and Comparative Examples 1 to 6 are as follows.
[各種材料]
・電子線硬化性樹脂;ポリメチルペンテン樹脂(TPX RT−18、三井化学株式会社製)
・架橋処理剤;電子線架橋処理剤(TAIC:トリアリルイソシアヌレート、日本化成株式会社製)
・白色材料;酸化チタン粒子(PF−691、ルチル型構造、平均粒径0.21μm、石原産業株式会社製)
[Various materials]
-Electron beam curable resin; polymethylpentene resin (TPX RT-18, manufactured by Mitsui Chemicals, Inc.)
・ Crosslinking agent; electron beam crosslinking agent (TAIC: triallyl isocyanurate, manufactured by Nippon Kasei Co., Ltd.)
White material: titanium oxide particles (PF-691, rutile structure, average particle size 0.21 μm, manufactured by Ishihara Sangyo Co., Ltd.)
・添加剤a;シランカップリング剤(KBM−3063、信越化学工業株式会社製)
・添加剤b;酸化防止剤(IRGANOX1010、BASF・ジャパン株式会社製)
・添加剤c;酸化防止剤(PEP−36、ADEKA株式会社製)
・添加剤d;離型剤(SZ−2000、堺化学工業株式会社製)
Additive a: Silane coupling agent (KBM-3063, manufactured by Shin-Etsu Chemical Co., Ltd.)
Additive b; antioxidant (IRGANOX 1010, manufactured by BASF Japan Ltd.)
Additive c; antioxidant (PEP-36, manufactured by ADEKA Corporation)
Additive d: Release agent (SZ-2000, manufactured by Sakai Chemical Industry Co., Ltd.)
・繊維状材料a;ガラス繊維(PF70E−001、繊維長70μm、日東紡株式会社製)
・繊維状材料b;ガラス繊維(PF40E−001、繊維長40μm、日東紡株式会社製)
・繊維状材料c;ガラス繊維(PF80E−401、繊維長80μm、日東紡株式会社製)
・繊維状材料d;ガラス繊維(PF100E−401、繊維長100μm、日東紡株式会社製)
・繊維状材料e;ガラス繊維(PF20E−001、繊維長20μm、日東紡株式会社製)
・繊維状材料f;ガラス繊維(CSG3PA−820、繊維長3mm、日東紡株式会社製)
・球状材料g;球状シリカ(F−HS20、粒径20μm、キンセイマテック株式会社製)
・球状材料h;球状シリカ(F−HD05、粒径5μm、キンセイマテック株式会社製)
-Fibrous material a: glass fiber (PF70E-001, fiber length 70 μm, manufactured by Nittobo Co., Ltd.)
Fibrous material b: glass fiber (PF40E-001, fiber length 40 μm, manufactured by Nittobo Co., Ltd.)
Fibrous material c: glass fiber (PF80E-401, fiber length 80 μm, manufactured by Nittobo Co., Ltd.)
-Fibrous material d: glass fiber (PF100E-401, fiber length 100 μm, manufactured by Nittobo Co., Ltd.)
-Fibrous material e; glass fiber (PF20E-001, fiber length 20 μm, manufactured by Nittobo Co., Ltd.)
-Fibrous material f: glass fiber (CSG3PA-820, fiber length 3 mm, manufactured by Nittobo Co., Ltd.)
Spherical material g: Spherical silica (F-HS20, particle size 20 μm, manufactured by Kinsei Matec Co., Ltd.)
Spherical material h: spherical silica (F-HD05, particle size 5 μm, manufactured by Kinsei Matec Co., Ltd.)
[実施例1〜7、比較例1〜6]
下記表1に示すように、各種材料を配合し、ロールで混練し、反射体形成用組成物を得た。得られた反射体形成用組成物を押出機(日本プラコン株式会社、MAX30:ダイス径3.0mm)とペレタイザー(株式会社東洋精機製作所、MPETC1)とを用いてペレット化した。
[Examples 1-7, Comparative Examples 1-6]
As shown in Table 1 below, various materials were blended and kneaded with a roll to obtain a composition for forming a reflector. The obtained composition for forming a reflector was pelletized using an extruder (Nippon Placon Co., Ltd., MAX30: die diameter 3.0 mm) and a pelletizer (Toyo Seiki Seisakusho, MPETC1).
ペレット化した反射体形成用組成物を、射出成形機(ソディックTR40ER、プリプラ式、株式会社ソディック)を用いて、銀メッキフレーム(厚さ250μm)上に厚さ700μm、外形寸法35mm×35mm、開口部2.9mm×2.9mmとなるよう成形して反射体を得た。射出成形機条件は、シリンダー温度:260℃、金型温度:70℃、射出速度:200mm/秒、保圧力:100MPa、保圧時間:1秒、冷却時間:15秒とした。これらの成形体1,2に、加速電圧800kVで400kGyの吸収線量にて電子線を照射した。これらの下記諸特性を評価した。結果を表1に示した。 Using a pelletized composition for forming a reflector, an injection molding machine (Sodick TR40ER, Prepla type, Sodick Co., Ltd.) is used to form a 700 μm thickness, an outer dimension of 35 mm × 35 mm, an opening on a silver-plated frame (thickness 250 μm). A reflector was obtained by molding to a part of 2.9 mm × 2.9 mm. The injection molding machine conditions were as follows: cylinder temperature: 260 ° C., mold temperature: 70 ° C., injection speed: 200 mm / second, holding pressure: 100 MPa, holding pressure time: 1 second, cooling time: 15 seconds. These compacts 1 and 2 were irradiated with an electron beam at an acceleration voltage of 800 kV and an absorbed dose of 400 kGy. The following characteristics were evaluated. The results are shown in Table 1.
[評価]
(反射率、耐久性)
成形後の反射体試料を加熱処理しない初期段階で反射率を測定して「反射率」として表1に示した。また、成形後の反射体試料を200℃で20時間加熱した後に測定して「耐久性」として表1に示した。反射率の測定は、波長230〜780nmにおける光反射率を分光光度計(UV−2550、株式会社島津製作所製)を使用して行った。表1には、波長450nmでの反射率(%)の結果を示した。
[Evaluation]
(Reflectance, durability)
The reflectance was measured in the initial stage where the molded reflector sample was not heat-treated, and is shown in Table 1 as “reflectance”. The molded reflector sample was measured after being heated at 200 ° C. for 20 hours, and is shown in Table 1 as “durability”. The reflectance was measured using a spectrophotometer (UV-2550, manufactured by Shimadzu Corporation) for the light reflectance at a wavelength of 230 to 780 nm. Table 1 shows the results of reflectance (%) at a wavelength of 450 nm.
(強度)
成形後の反射体試料の強度(パッケージ強度)を測定した。成形後の反射体試料を、150℃で500時間放置した後のクラックの有無を目視観察して評価した。「○」はクラックが発生していなかったものであり、「×」はクラックが発生していたものである。
(Strength)
The strength (package strength) of the reflector sample after molding was measured. The molded reflector sample was evaluated by visually observing the presence or absence of cracks after standing at 150 ° C. for 500 hours. “◯” indicates that no crack was generated, and “×” indicates that a crack was generated.
(流動性)
反射体形成用組成物の流動性は、メルトボリュームレート(MVR)の測定で評価した。反射体形成用組成物のMVRは、JIS K 7210:1999で規定された熱可塑性プラスチックのメルトフローレート(MFR)に記載の方法に準拠した方法で測定した。具体的には、試験温度260℃、試験荷重2.16kg、標準移動距離2.5cmで行った。測定装置としては、メルトフローテスター(チアスト社製)を用いた。
(Liquidity)
The fluidity of the reflector forming composition was evaluated by measuring the melt volume rate (MVR). The MVR of the composition for forming a reflector was measured by a method based on the method described in the melt flow rate (MFR) of thermoplastics specified in JIS K 7210: 1999. Specifically, the test was performed at a test temperature of 260 ° C., a test load of 2.16 kg, and a standard moving distance of 2.5 cm. As a measuring device, a melt flow tester (manufactured by Chiast Corp.) was used.
(繊維状材料の長さ)
図3は実施例1で得られた反射体の表面を拡大した写真であり、図4は比較例4で得られた反射体の表面を拡大した写真である。成形後の反射体に含まれる繊維状材料の長さは、光学顕微鏡やX線CTで評価することができる。なお、X線CTでの評価は、大きいガラス繊維で、しかも白色材料(酸化チタン)が少ない場合しか測定できない。ガラス繊維の長さは、成形した反射体の一部を切り出してルツボに入れ、電気コンロにて可燃性ガスが発生しなくなるまで蒸し焼きにした後、500℃に設定した電気炉内でさらに1時間焼成して残渣を得る。その残渣を光学顕微鏡にて50〜100倍に拡大した画像を観察することによってもガラス繊維の長さを求めることができる。
(Length of fibrous material)
FIG. 3 is an enlarged photograph of the surface of the reflector obtained in Example 1, and FIG. 4 is an enlarged photo of the surface of the reflector obtained in Comparative Example 4. The length of the fibrous material contained in the molded reflector can be evaluated with an optical microscope or X-ray CT. In addition, the evaluation by X-ray CT can be measured only when the glass fiber is large and the white material (titanium oxide) is small. The length of the glass fiber is cut out of a part of the molded reflector, put into a crucible, steamed until no flammable gas is generated on an electric stove, and then further in an electric furnace set at 500 ° C. for 1 hour. Calcination gives a residue. The length of the glass fiber can also be obtained by observing an image obtained by enlarging the residue 50 to 100 times with an optical microscope.
図3は実施例1の反射体表面の光学顕微鏡写真であり、白い線がガラス繊維である。初期は平均70μmであったガラス繊維は、観察の結果、5.2〜65.2μmの範囲であることが確認できた。一方、図4は比較例4の反射体表面のX線CT写真であり、灰色の線がガラス繊維である。初期は3mmであったガラス繊維は、観察の結果、10〜601μmの範囲内であることが確認でき、実施例1に比べて細かく折れていることが確認できた。 FIG. 3 is an optical micrograph of the reflector surface of Example 1, and the white lines are glass fibers. As a result of observation, it was confirmed that the glass fiber having an average of 70 μm in the initial range was in the range of 5.2 to 65.2 μm. On the other hand, FIG. 4 is an X-ray CT photograph of the reflector surface of Comparative Example 4, and the gray line is glass fiber. As a result of observation, it was confirmed that the glass fiber that was initially 3 mm was in the range of 10 to 601 μm, and it was confirmed that the glass fiber was broken finely as compared with Example 1.
表1の結果からも明らかなとおり、本発明の要件を全て充足する反射体形成用組成物を用いて形成された実施例1〜7の反射体は、反射率、耐久性、強度の全ての評価において良好な結果が得られた。一方、本発明の要件の一部又は全てを満たさない反射体形成用組成物を用いた比較例1〜6は、反射率、耐久性、強度の全てを満足させることができず、本発明の優位性が明らかとなった。 As is clear from the results of Table 1, the reflectors of Examples 1 to 7 formed using the composition for forming a reflector that satisfies all the requirements of the present invention are all reflective, durable, and strong. Good results were obtained in the evaluation. On the other hand, Comparative Examples 1 to 6 using a composition for forming a reflector that does not satisfy some or all of the requirements of the present invention cannot satisfy all of reflectance, durability, and strength. The superiority became clear.
1,1a,1b 半導体発光装置
10 光半導体素子
12 反射体
12a 反射層
12b 部材
14 基板
16 リード線
18 レンズ
20 空間部
1, 1a, 1b Semiconductor light emitting device 10 Optical semiconductor element 12 Reflector 12a Reflective layer 12b Member 14 Substrate 16 Lead wire 18 Lens 20 Space part
Claims (6)
電子線硬化性樹脂と白色材料と繊維状材料とを少なくとも含み、前記白色材料が前記電子線硬化性樹脂100質量部に対して200質量部以上500質量部以下の範囲内で含まれており、前記繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれている反射体形成用組成物を射出成形する工程と、
前記射出成形する工程前及び工程後の一方又は両方で電子線を照射する工程とを有し、
硬化後の前記反射体に含まれている前記繊維状材料の長さが5.2μm以上65.2μm以下である、ことを特徴とする半導体発光装置の製造方法。 A method for manufacturing a semiconductor light emitting device, comprising: a substrate; an optical semiconductor element; and a reflector having a thickness of 0.1 mm to 2 mm that reflects light emitted from the optical semiconductor element,
It includes at least an electron beam curable resin, a white material, and a fibrous material, and the white material is included in a range of 200 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin, A step of injection-molding a composition for forming a reflector, wherein the fibrous material is contained in a range of 60 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin;
Possess a step of irradiating an electron beam on one or both of the following steps before and process for the injection molding,
A length of the fibrous material contained in the reflector after curing is 5.2 μm or more and 65.2 μm or less .
電子線硬化性樹脂と白色材料と繊維状材料とを少なくとも含み、前記白色材料が前記電子線硬化性樹脂100質量部に対して200質量部以上500質量部以下の範囲内で含まれており、前記繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれている反射体形成用組成物を射出成形する工程と、
前記射出成形する工程前及び工程後の一方又は両方で電子線を照射する工程とを有し、
硬化後の前記反射体に含まれている前記繊維状材料の長さが5.2μm以上65.2μm以下である、ことを特徴とする半導体発光装置用部品の製造方法。 A method for manufacturing a component for a semiconductor light-emitting device, comprising a substrate and a reflector having a thickness of 0.1 mm to 2 mm that reflects light emitted from the optical semiconductor element,
It includes at least an electron beam curable resin, a white material, and a fibrous material, and the white material is included in a range of 200 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin, A step of injection-molding a composition for forming a reflector, wherein the fibrous material is contained in a range of 60 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin;
Possess a step of irradiating an electron beam on one or both of the following steps before and process for the injection molding,
A method of manufacturing a component for a semiconductor light emitting device, wherein the fibrous material contained in the reflector after curing has a length of 5.2 μm or more and 65.2 μm or less .
前記白色材料が前記電子線硬化性樹脂100質量部に対して200質量部以上500質量部以下の範囲内で含まれており、前記繊維状材料の長さが5.2μm以上65.2μm以下であり、前記繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれている、ことを特徴とする反射体。 A cured product with a white material and a fibrous material at least including thickness 0.1mm 2mm or more or less reflectors electron beam curable resin,
The white material is included in the range of 200 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin, and the length of the fibrous material is 5.2 μm or more and 65.2 μm or less . The reflector is characterized in that the fibrous material is contained in a range of 60 parts by mass to 200 parts by mass with respect to 100 parts by mass of the electron beam curable resin.
前記白色材料が前記電子線硬化性樹脂100質量部に対して200質量部以上500質量部以下の範囲内で含まれており、前記繊維状材料が前記電子線硬化性樹脂100質量部に対して60質量部以上200質量部以下の範囲内で含まれている反射体形成用組成物を射出成形する工程と、
前記射出成形する工程前及び工程後の一方又は両方で電子線を照射する工程とを有し、
硬化後に含まれている前記繊維状材料の長さが5.2μm以上65.2μm以下である、ことを特徴とする反射体の製造方法。
A method of manufacturing an electron beam curable resin and a white material and a fibrous material at least including thickness 0.1mm 2mm or more or less of the reflector,
The white material is contained within a range of 200 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the electron beam curable resin , and the fibrous material is contained with respect to 100 parts by mass of the electron beam curable resin. A step of injection-molding a composition for forming a reflector contained in a range of 60 parts by mass or more and 200 parts by mass or less;
Possess a step of irradiating an electron beam on one or both of the following steps before and process for the injection molding,
The length of the said fibrous material contained after hardening is 5.2 micrometers or more and 65.2 micrometers or less, The manufacturing method of the reflector characterized by the above-mentioned .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013148978A JP6155929B2 (en) | 2013-07-17 | 2013-07-17 | SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE COMPONENT AND ITS MANUFACTURING METHOD, AND REFLECTOR AND MANUFACTURING METHOD THEREOF |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013148978A JP6155929B2 (en) | 2013-07-17 | 2013-07-17 | SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE COMPONENT AND ITS MANUFACTURING METHOD, AND REFLECTOR AND MANUFACTURING METHOD THEREOF |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015023101A JP2015023101A (en) | 2015-02-02 |
JP6155929B2 true JP6155929B2 (en) | 2017-07-05 |
Family
ID=52487322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013148978A Expired - Fee Related JP6155929B2 (en) | 2013-07-17 | 2013-07-17 | SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE COMPONENT AND ITS MANUFACTURING METHOD, AND REFLECTOR AND MANUFACTURING METHOD THEREOF |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6155929B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017110755A1 (en) * | 2015-12-25 | 2018-10-18 | 日産化学株式会社 | Light reflector composition containing ammelin |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6030339B2 (en) * | 1978-10-18 | 1985-07-16 | 三井化学株式会社 | Method for modifying 4↓-methyl↓-1↓-pentene polymer |
JPH11124480A (en) * | 1997-10-24 | 1999-05-11 | Matsushita Electric Works Ltd | Resin composition for sealing semiconductor and its production, and semiconductor system using the resin composition for sealing semiconductor |
JP2009088335A (en) * | 2007-10-01 | 2009-04-23 | Sumitomo Electric Fine Polymer Inc | Metal-resin complex, element mounting package and electronic device |
JP2010100682A (en) * | 2008-10-21 | 2010-05-06 | Techno Polymer Co Ltd | Heat-dissipating resin composition, substrate for led mounting, and reflector |
JP5416629B2 (en) * | 2010-03-19 | 2014-02-12 | 住友電気工業株式会社 | White resin molded body and LED reflector |
WO2011118617A1 (en) * | 2010-03-26 | 2011-09-29 | 宇部興産株式会社 | Polyamide resin composition for sliding part, sliding part and method for producing sliding part and automobile |
JP5699329B2 (en) * | 2011-02-28 | 2015-04-08 | 大日本印刷株式会社 | Reflector resin composition, reflector resin frame, reflector, and semiconductor light emitting device |
DE102011018921B4 (en) * | 2011-04-28 | 2023-05-11 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Carrier, optoelectronic component with carrier and method for producing the same |
WO2012169193A1 (en) * | 2011-06-08 | 2012-12-13 | 三井化学株式会社 | Thermoplastic resin composition for reflector, reflector plate, and light-emitting diode element |
JP5731312B2 (en) * | 2011-08-01 | 2015-06-10 | 三井化学株式会社 | Thermoplastic resin for reflector and reflector |
-
2013
- 2013-07-17 JP JP2013148978A patent/JP6155929B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015023101A (en) | 2015-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6197933B2 (en) | Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article | |
JP6277963B2 (en) | Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article | |
JP6311319B2 (en) | Resin composition, reflector, lead frame with reflector, and semiconductor light emitting device | |
JP2016166285A (en) | Resin composition for insert molding, molded article, reflector, substrate with reflector for mounting optical semiconductor element, and semiconductor light-emitting device | |
WO2016117471A1 (en) | Resin composition, reflector, lead frame provided with reflector, and semiconductor light-emitting apparatus | |
JP6277592B2 (en) | Electron beam curable resin composition for reflector, resin frame for reflector, reflector, semiconductor light emitting device, method for producing molded article, and method for producing semiconductor light emitting device | |
JP6155929B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE COMPONENT AND ITS MANUFACTURING METHOD, AND REFLECTOR AND MANUFACTURING METHOD THEREOF | |
JP6155930B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE COMPONENT AND METHOD FOR PRODUCING THE SAME, AND REFLECTOR, MANUFACTURING METHOD THEREFOR, AND REFLECTOR FORMING COMPOSITION | |
JP6102413B2 (en) | Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article | |
WO2016117624A1 (en) | Semiconductor light emitting device, resin composition for forming reflection body, and lead frame provided with reflector | |
JP2017002296A (en) | Resin composition, reflector, manufacturing method of reflector, substrate for mounting optical semiconductor element with reflector and semiconductor light-emitting device | |
JP6155928B2 (en) | Semiconductor light emitting device manufacturing method, semiconductor light emitting device component manufacturing method, reflector manufacturing method, and reflector forming composition | |
JP6292130B2 (en) | Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article | |
WO2016017818A1 (en) | Reflector and resin composition | |
JP2017079293A (en) | Optical semiconductor element mounting substrate with reflector, semiconductor light-emitting device, reflector, and resin composition for forming reflector | |
JP6094412B2 (en) | Semiconductor light emitting device manufacturing method, molded body manufacturing method, electron beam curable resin composition, reflector resin frame, and reflector | |
JP6167603B2 (en) | Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, method for producing molded article, and method for producing semiconductor light emitting device | |
JP6149457B2 (en) | Optical semiconductor mounting substrate, semiconductor light emitting device, and manufacturing method of optical semiconductor mounting substrate | |
JP2015023099A (en) | Method of manufacturing semiconductor light-emitting device, method of manufacturing molded body, electron beam curable resin composition, resin frame for reflector, and reflector | |
JP2016035010A (en) | Resin composition, reflector, lead frame with reflector and semiconductor light-emitting device | |
JP2016036028A (en) | Reflector, lead frame with reflector, semiconductor light-emitting device, and resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6155929 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |