WO2012039205A1 - 照明装置用集積回路および照明装置 - Google Patents

照明装置用集積回路および照明装置 Download PDF

Info

Publication number
WO2012039205A1
WO2012039205A1 PCT/JP2011/068074 JP2011068074W WO2012039205A1 WO 2012039205 A1 WO2012039205 A1 WO 2012039205A1 JP 2011068074 W JP2011068074 W JP 2011068074W WO 2012039205 A1 WO2012039205 A1 WO 2012039205A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting diode
circuit
constant current
transistor
Prior art date
Application number
PCT/JP2011/068074
Other languages
English (en)
French (fr)
Inventor
亮一 増田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201180045424.4A priority Critical patent/CN103098236B/zh
Priority to US13/821,073 priority patent/US8773043B2/en
Priority to KR1020137006918A priority patent/KR101428430B1/ko
Publication of WO2012039205A1 publication Critical patent/WO2012039205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention is a lighting device in which a plurality of light emitting elements such as LEDs (Light Emitting ⁇ ⁇ Diodes) are assembled to form a single light source, and the light source can be controlled to light up to an arbitrary brightness.
  • the present invention relates to an integrated circuit and a lighting device.
  • each LED constituting an illuminating lamp composed of an assembly of LEDs has variations in forward voltage, so that the drive current varies, and consequently, the brightness also varies. Further, when the brightness of the LED varies, there is a problem that partial luminance unevenness occurs on the light emitting surface of the illuminating lamp, and the quality as the illuminating lamp is deteriorated.
  • a configuration in which a constant current circuit is provided for each LED or for each series circuit in which a plurality of LEDs (about six) are connected in series is known. Yes.
  • Each constant current circuit controls the current of each corresponding LED to be constant, thereby reducing variations in LED brightness.
  • FIG. 4 shows a circuit configuration example of a conventional light emitting diode lighting system.
  • a power source Vdd1 and a constant current circuit 1003 for lighting an LED array 1011 in which six LEDs 1 are connected in series are connected.
  • Each LED 1 has a forward voltage drop (Vf) of 3.6 V (typ .: standard value) and emits white light.
  • the constant current circuit 1003 controls the transistor 1006 so that a current determined by the voltage value of the reference voltage Vref and the resistance value of the resistor 1004 flows stably to the connected LED array.
  • the voltage drop in the LED array 1011 is 21.6 V, which is the sum of Vf of each LED 1.
  • the voltage value of Vdd1 is set to 30 V in consideration of variations in Vf of LED1, fluctuations in the power source, and the like.
  • a power source Vdd2 and a constant current circuit 1003 for lighting an LED array 1012 in which six LEDs 2 are connected in series are connected.
  • Each LED 2 has a forward voltage drop (Vf) of 2.1 V (typ.) And emits orange light.
  • Vf forward voltage drop
  • the voltage drop in the LED array 1012 is 12.6 V, which is the sum of Vf of each LED 2.
  • the voltage value of Vdd2 is set to 20 V in consideration of variations in Vf of LED2, fluctuations in the power source, and the like.
  • the conventional circuit system shown in FIG. 4 has a problem that a large number of power supplies are required and the cost is increased.
  • the power supply voltage needs to be the same 30 V for Vdd1 and Vdd2.
  • the voltage applied to the constant current circuit 1003 on the lighting circuit 1002 side simply rises by 10V. Therefore, the constant current circuit 1003 changes the output voltage of the operational amplifier as the comparator 1005 and changes the gate voltage of the transistor 1006 so that the current flowing through the resistor 1004 does not change, thereby changing the on-resistance of the transistor 1006.
  • the current consumed by the transistor 1006 increases and heat generation increases.
  • the cathode is shared.
  • Patent Document 2 in a color sequential LED driving circuit in which R, G, and B LEDs are sequentially turned on, the anode voltage is common, so it is wasted that it is consumed as heat.
  • a technique for preventing power is disclosed.
  • the color sequential LED driving circuit disclosed in Patent Document 2 is provided with a circuit that can output an optimum anode voltage for the lighting LED between the power supply circuit and the anode of the LED, and this circuit is switched by the lighting LED.
  • the present invention has been made in view of the above-mentioned problems, and its object is to make it possible to suppress heat generation at low cost when LEDs having different Vf are lit with a common anode voltage.
  • An object is to provide an integrated circuit for a device and a lighting device.
  • an integrated circuit for a lighting device includes a first light emitting diode system including one light emitting diode or a plurality of light emitting diodes connected in series, and one light emitting diode. Or at least a second light emitting diode system in which a plurality of light emitting diodes are connected in series, and an end on the anode side of the first light emitting diode system is an anode of the second light emitting diode system The light emitting wavelength of each light emitting diode constituting the first light emitting diode system is different from the light emitting wavelength of each light emitting diode constituting the second light emitting diode system.
  • An integrated circuit for driving a diode group the first constant current driving circuit for controlling a current for driving the first light emitting diode system
  • a second constant current driving circuit for controlling a current for driving the second light emitting diode system
  • the first constant current driving circuit drives the first light emitting diode system with a steady current.
  • the second constant current drive circuit drives the second light emitting diode system with an intermittent current and a regenerative current
  • the first constant current drive circuit drives the first light emitting diode system to be driven.
  • each light emitting diode It is possible to adjust the luminance of each light emitting diode by adjusting the lighting time of each light emitting diode constituting the second light emitting diode, and the second constant current driving circuit is configured to drive the second light emitting diode to be driven.
  • the lighting time of each light emitting diode constituting the system By adjusting the lighting time of each light emitting diode constituting the system, the brightness of each light emitting diode can be adjusted.
  • the lighting device of the present invention includes a first power supply line, a second power supply line, and one light emitting diode, or a plurality of light emitting diodes connected in series.
  • a first constant current drive circuit that controls a current that drives the first light emitting diode system
  • a second constant current drive circuit that controls a current that drives the second light emitting diode system
  • the first constant current driving circuit includes a first transistor having a source, a drain, and a gate, and a first transistor connected to the source of the first transistor.
  • a first resistor having a second terminal connected to the second power supply line, a voltage value detected at the source of the first transistor, and a first reference voltage.
  • a first amplifier having an input and an output terminal connected to the gate of the first transistor; and the second constant current driving circuit includes a second transistor having a source, a drain, and a gate; A second resistor comprising a first terminal connected to the source of the second transistor and a second terminal connected to the second power supply line; and a source of the second transistor.
  • the first power supply line includes an anode side end of the first light emitting diode system and an anode side end of the second light emitting diode system.
  • a cathode side end of the first light emitting diode system is connected to a drain of the first transistor, and the second light emitting diode system has a cathode side end connected to the drain of the first transistor.
  • An end on the cathode side is connected to a first terminal of the inductance, and a second terminal of the inductance is connected to a drain of the second transistor and an anode of the freewheeling diode.
  • the light emission wavelength of each light emitting diode constituting the first light emitting diode system is the light emission wavelength of each light emitting diode constituting the second light emitting diode system.
  • the first amplifier, the second amplifier, and the pulse wave generation circuit are provided in an integrated circuit, and the integrated circuit constitutes the first light emitting diode system.
  • the lighting device of the present invention has a common end on the anode side of a plurality of light emitting diode systems, and is provided with a circuit capable of driving the plurality of light emitting diode systems. .
  • the above circuit is configured to include two light emitting diode drive circuits.
  • One of the two driving circuits performs driving by constant current driving of the light emitting diode system, and the other performs constant current driving and pulse driving of the light emitting diode system.
  • Vf when a plurality of light emitting diode systems having different forward drop voltages Vf are driven with the anode end shared (that is, the same power supply voltage is applied), Vf is high.
  • One light emitting diode system is driven by direct current, while the light emitting diode system having the lower Vf can be driven by constant current and pulse driving.
  • heat generation does not occur while the second transistor is open, so that the lighting device of the present invention can suppress heat generation.
  • the integrated circuit for lighting device of the present invention has a configuration including two light emitting diode drive circuits.
  • One of the two driving circuits performs driving by constant current driving of the light emitting diode system, and the other performs constant current driving and pulse driving of the light emitting diode system.
  • the lighting device in a lighting device having a plurality of light emitting diode systems, the lighting device can suppress heat generation at low cost by applying the integrated circuit for lighting device of the present invention. Can be realized.
  • the integrated circuit for a lighting device of the present invention includes one light-emitting diode, or includes a first light-emitting diode system in which a plurality of light-emitting diodes are connected in series and one light-emitting diode, or A second light emitting diode system in which a plurality of light emitting diodes are connected in series, and an anode side end of the first light emitting diode system is connected to an anode side end of the second light emitting diode system.
  • the light emitting wavelength of each light emitting diode composing the first light emitting diode system is driven in common and the light emitting diode group is different from the light emitting wavelength of each light emitting diode composing the second light emitting diode system.
  • a first constant current driving circuit for controlling a current for driving the first light emitting diode system;
  • a second constant current drive circuit for controlling a current for driving the photodiode system, wherein the first constant current drive circuit drives the first light emitting diode system with a steady current, and
  • the constant current drive circuit drives the second light emitting diode system with an intermittent current and a regenerative current, and the first constant current drive circuit emits light that constitutes the first light emitting diode system to be driven.
  • the lighting time of the diodes By adjusting the lighting time of the diodes, it is possible to adjust the luminance of each of these light emitting diodes, and the second constant current driving circuit is configured so that each of the second light emitting diode systems to be driven is configured. By adjusting the lighting time of the light emitting diodes, the luminance of each of these light emitting diodes can be adjusted.
  • the lighting device of the present invention includes a first light-emitting diode system including a first power supply line, a second power supply line, and a single light-emitting diode, or a plurality of light-emitting diodes connected in series.
  • a second light-emitting diode system comprising one light-emitting diode or a plurality of light-emitting diodes connected in series, an inductance having a first terminal and a second terminal, a free-wheeling diode, and the first light-emitting diode
  • a first constant current driving circuit for controlling a current for driving the diode system; and a second constant current driving circuit for controlling a current for driving the second light emitting diode system.
  • the circuit includes a first transistor having a source, a drain, and a gate; a first terminal connected to a source of the first transistor; and the second transistor
  • a first resistor having a second terminal connected to a source line, a voltage value detected at the source of the first transistor, and a first reference voltage are input, and an output terminal is the first terminal.
  • a first amplifier connected to the gate of one transistor, and the second constant current driving circuit includes a second transistor having a source, a drain, and a gate, and a source of the second transistor.
  • a second resistor comprising a first terminal connected to the second power supply line and a second terminal connected to the second power supply line; a voltage value detected at the source of the second transistor; A second amplifier whose input terminal is connected to the gate of the second transistor and a pulse for controlling whether or not to operate the second amplifier is generated, and Supply to second amplifier
  • the first power supply line includes an anode-side end of the first light-emitting diode system, an anode-side end of the second light-emitting diode system, and the free-wheeling diode.
  • the cathode side end of the first light emitting diode system is connected to the drain of the first transistor, and the cathode side end of the second light emitting diode system is A first terminal of the inductance is connected, and a second terminal of the inductance is connected to a drain of the second transistor and an anode of the freewheeling diode, and the first light emitting diode system is connected to the first terminal of the inductance.
  • the light emission wavelength of each light emitting diode constituting is different from the light emission wavelength of each light emitting diode constituting the second light emitting diode system
  • the first amplifier, the second amplifier, and the pulse wave generation circuit are provided in an integrated circuit, and the integrated circuit determines the lighting time of each light-emitting diode that constitutes the first light-emitting diode system.
  • the present invention has an effect that it is possible to suppress heat generation at low cost when LEDs having different Vf are lit with a common anode voltage.
  • FIG. 1 is a circuit diagram showing a configuration of a light emitting diode lighting system (illumination device) 100 according to the present embodiment.
  • the light emitting diode lighting system 100 includes a lighting circuit 101 and a lighting circuit 102.
  • the lighting circuit 101 includes an LED array (first light emitting diode system) 1011 in which six LEDs 1 are connected in series, and a constant current circuit (first constant current drive circuit) 1003.
  • the lighting circuit 102 includes an LED array (second light emitting diode system) 1012 in which six LEDs 2 are connected in series, and a constant current control circuit (second constant current drive circuit) 3.
  • the anode of one LED and the cathode of the other LED are connected. Accordingly, one end of the LED array corresponds to the anode of the LED in which only the cathode is connected to the other LED, and this end is hereinafter referred to as an “anode-side end”. Similarly, the other end of the LED array corresponds to the cathode of an LED in which only the anode is connected to the other LED, and this end is hereinafter referred to as the “cathode side end”.
  • each LED 1 has, for example, a forward voltage drop (Vf) of 3.6 V (typ.) And emits white light.
  • each LED 2 has, for example, a forward voltage drop (Vf) of 2.1 V (typ.) And emits orange light.
  • the end of the LED array 1011 on the anode side is connected to a power supply (first power supply line) Vdd. Further, the end of the LED array 1012 on the anode side is also connected to the power supply Vdd. That is, the LED array 1011 and the LED array 1012 have an anode side end common to each other, and a power supply voltage (for example, 30 V) from a common power supply Vdd is applied.
  • a power supply voltage for example, 30 V
  • the cathode side end of the LED array 1011 is connected to a constant current circuit 1003.
  • the constant current circuit 1003 includes a resistor (first resistor) 1004, a comparator (first amplifier) 1005, and a transistor (first transistor) 1006.
  • each transistor 1006 is an n-channel power MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor: metal oxide semiconductor field effect transistor), and has a source (first terminal), a drain (second terminal), and A gate (third terminal) is provided.
  • the end of the LED array 1011 on the cathode side is specifically connected to the drain of the transistor 1006.
  • the source of the transistor 1006 is connected to one end (first terminal) of the resistor 1004 (a series circuit of the first transistor and the first resistor).
  • the other end (second terminal) of the resistor 1004 is connected to a second power supply line having a lower potential than the power supply voltage from the power supply Vdd.
  • the other end of the resistor 1004 is grounded, and the connection to the second power supply line is achieved by this grounding.
  • the source of the transistor 1006 is further connected to one input terminal of the comparator 1005.
  • the other input terminal of the comparator 1005 is connected to a power supply line that generates the reference voltage Vref.
  • the output terminal of the comparator 1005 is connected to the gate of the transistor 1006.
  • the constant current circuit 1003 controls the transistor 1006 so that the current determined by the voltage value of the reference voltage Vref and the resistance value of the resistor 1004 flows to the LED array 1011 stably, similarly to that of FIG.
  • the end of the LED array 1012 on the cathode side is connected to the constant current control circuit 3.
  • the constant current control circuit 3 includes a resistor (second resistor) 1004, a transistor (second transistor) 1006, an operational amplifier (second amplifier) 5, a coil (inductance) 6, a diode (freewheeling diode) 7, and a pulse wave A generation circuit 8 is provided. Specifically, the cathode side end of the LED array 1012 is connected to one end (first terminal) of the coil 6.
  • the other end (second terminal) of the coil 6 is connected to the drain of the transistor 1006 which is an n-channel power MOSFET and the anode of the diode 7.
  • the cathode of the diode 7 is connected to the power supply Vdd.
  • the source of the transistor 1006 is connected to one end (first terminal) of the resistor 1004 (in the series of the second transistor and the second resistor), similarly to the configuration of the constant current circuit 1003. Circuit), the other end (second terminal) of the resistor 1004 is connected to the second power supply line (here, grounded).
  • the source of the transistor 1006 is further connected to one input terminal of the operational amplifier 5.
  • the other input terminal of the operational amplifier 5 is connected to a power supply line that generates a reference voltage Vref.
  • the output terminal of the operational amplifier 5 is connected to the gate of the transistor 1006.
  • a pulse wave generation circuit 8 is connected to the operational amplifier 5.
  • the pulse wave generation circuit 8 generates a pulse for switching the operation state and the stop state of the operational amplifier 5 and supplies the pulse to the operational amplifier 5.
  • the operational amplifier 5 operates when a high-level pulse is input from the pulse wave generation circuit 8, and turns off the transistor 1006 during this pulse input when a low-level pulse is input from the pulse wave generation circuit 8. Thus, the operation is stopped.
  • the operation of the operational amplifier 5 in the operating state is the same as the operation of the comparator 1005 described above.
  • the constant current control circuit 3 performs time-division driving based on the frequency of the pulse generated by the pulse wave generation circuit 8 in the operation of the constant current circuit 1003 (that is, the operation state and the stop state of the operational amplifier 5 according to the logic of this pulse). This is a circuit provided with an operation for switching between (1) and (2). That is, the constant current control circuit 3 uses the output of the operational amplifier 5 as a pulse signal according to the pulse generated by the pulse wave generation circuit 8, and controls the opening / closing (on / off) of the transistor 1006 based on this pulse signal. is there.
  • the lighting circuit 101 When the voltage value of the power supply Vdd is 30 V, the lighting circuit 101 is in the same state as when the power supply voltage from the power supply Vdd1 is applied to the lighting circuit 1001 shown in FIG. On the other hand, in this case, in the lighting circuit 102, a voltage higher than necessary (20V) is applied to the constant current generating circuit. Therefore, when the constant current circuit 1003 is used as the constant current generating circuit, a problem of heat generation occurs.
  • a pulse is supplied from the pulse wave generation circuit 8 to the operational amplifier 5. Then, the operational amplifier 5 controls the opening and closing of the transistor 1006 based on the pulse by a pulse signal, thereby generating a period of time for the transistor 1006 to open.
  • the lighting circuit 102 is provided with a coil 6 and a diode 7.
  • the coil 6 stores energy when the transistor 1006 of the constant current control circuit 3 operates, and generates a regenerative current by releasing the energy when the transistor 1006 is opened. This regenerative current flows to the LED array 1012 and drives the LED array 1012.
  • each LED 2 can be turned on by the energy stored in the coil 6 even when the transistor 1006 is opened, so that each LED 2 can be turned on without blinking.
  • the energy stored in the coil 6 is the power that was wasted in the conventional light emitting diode lighting system shown in FIG. 4 due to current limitation.
  • the light emitting diode lighting system 100 uses such previously wasted power for driving the LED array 1012, it is possible to realize a lighting circuit 102 with low power consumption and low heat generation. It is.
  • the period between the period in which the constant current control circuit 3 is operated and the period in which the constant current control circuit 3 is not operated that is, one period of the pulse from the pulse wave generation circuit 8 is longer than the period in which each LED 2 is lit by the regenerative current of the coil 6. It is necessary to set it short.
  • the frequency of the pulse from the pulse wave generation circuit 8 is between 150 kHz and 300 kHz.
  • the constant current circuit 1003 and the constant current control circuit 3 can be realized on one integrated circuit.
  • the integrated circuit includes first to fourth terminals arranged as follows.
  • Second terminal Between the source of the transistor 1006 and one input terminal of the comparator 1005 in the constant current circuit 1003.
  • an LED array 1011 in which six LEDs 1 are connected in series is used as the first light emitting diode system.
  • the number of LEDs 1 in the first light emitting diode system is not limited to six, and may be any number as long as it is one or more (the same applies to the embodiments described later).
  • an LED array 1012 in which six LEDs 2 are connected in series is used as the second light emitting diode system.
  • the number of LEDs 2 in the second light emitting diode system is not limited to six, and may be any number as long as it is one or more (the same applies to the embodiments described later).
  • the anode end is the anode of the LED itself and the cathode end is the LED cathode itself.
  • the transistor 1006 may be a p-channel power MOSFET, a bipolar transistor, or the like instead of the n-channel power MOSFET.
  • the transistor 1006 may be provided between a corresponding resistor 1004 (existing in the same block) and the second power supply line.
  • the coil 6 only needs to form a loop among the power supply Vdd, the diode 7, and the LED array 1012.
  • the power supply Vdd And the LED array 1012 may be connected.
  • FIG. 2 is a circuit diagram showing a configuration of a light emitting diode lighting system (illumination device) 120 according to the present embodiment.
  • the light emitting diode lighting system 120 is different from the light emitting diode lighting system 100 (see FIG. 1) in the following points.
  • the light emitting diode lighting system 120 includes lighting circuits 121 and 122 instead of the lighting circuits 101 and 102 of the light emitting diode lighting system 100.
  • the lighting circuit 121 includes a constant current circuit 24 instead of the constant current circuit 1003 of the lighting circuit 101.
  • the lighting circuit 122 includes a constant current control circuit 23 instead of the constant current control circuit 3 of the lighting circuit 102.
  • the constant current circuit 24 is different from the constant current circuit 1003 in that it includes an operational amplifier 26 and a PWM wave generation circuit 29 instead of the comparator 1005.
  • the operational amplifier 26 has one input terminal connected to the source of the transistor 1006, the other input terminal connected to the power supply line that generates the reference voltage Vref, and the output terminal connected to the gate of the transistor 1006. . Further, the PWM wave generation circuit 29 is connected to the operational amplifier 26.
  • the constant current control circuit 23 is different from the constant current control circuit 3 in that it includes an operational amplifier 25 and a PWM wave generation circuit (pulse wave generation circuit) 28 instead of the operational amplifier 5 and the pulse wave generation circuit 8.
  • the operational amplifier 25 has one input terminal connected to the source of the transistor 1006, the other input terminal connected to the power supply line that generates the reference voltage Vref, and the output terminal connected to the gate of the transistor 1006. . Further, the PWM wave generation circuit 28 is connected to the operational amplifier 25.
  • PWM wave generation circuits 28 and 29 generate pulses subjected to pulse width modulation (hereinafter referred to as PWM signals) and supply them to operational amplifiers 25 and 26, respectively.
  • the operational amplifiers 25 and 26 are switched between an operating state (for example, when the PWM signal is at a high level) and a stopped state (for example, when the PWM signal is at a low level) according to the logic of the supplied PWM signal.
  • the LED lighting system 120 has a common anode side end of the LED arrays 1011 and 1012 and is a circuit for lighting two LEDs. It is possible to perform toning.
  • the lighting circuit 121 lights the LED array 1011 composed of the LEDs 1 that emit white light in accordance with the control by the constant current circuit 24, as in the lighting circuit 101 of FIG.
  • the constant current circuit 24 is provided with a PWM wave generating circuit 29.
  • the PWM wave generation circuit 29 generates a PWM signal that can set the pulse width of the high level signal and the pulse width of the low level signal, and supplies the PWM signal to the operational amplifier 26.
  • the operational amplifier 26 performs normal constant current driving when the PWM signal is at a high level. However, when the PWM signal is at a low level, the operational amplifier 26 opens the transistor 1006 so that no current flows through the constant current circuit 24.
  • the LED array 1011 is turned on when the PWM signal is at a high level, and is turned off when the PWM signal is at a low level. Based on the logic of the PWM signal, when the cycle of turning on and off the LED 1 is short (in the light emitting diode lighting system 120 of FIG. 2, it is set between 200 Hz and 1 kHz), the blinking of the LED 1 can be recognized by human eyes. First, it feels as if the light emission luminance of LED 1 has changed.
  • the lighting circuit 122 lights the LED array 1012 composed of the LEDs 2 that emit orange light in accordance with the control by the constant current control circuit 23, similarly to the lighting circuit 102 of FIG.
  • the constant current control circuit 23 is provided with a PWM wave generation circuit 28 instead of the pulse wave generation circuit 8.
  • the PWM wave generation circuit 28 generates a pulse signal (hereinafter referred to as “PWMH period”) and a period during which no pulse signal is generated (hereinafter referred to as “PWML”). (Referred to as “period”) at a constant cycle.
  • the LED array 1012 is turned on as in the case of FIG. 1, but in the PWML period, the transistor 1006 is kept open, so the LED array 1012 is turned off.
  • the lighting periods of the LED arrays 1011 and 1012 can be adjusted by the PWM wave generation circuit 29 and the PWM wave generation circuit 28, respectively, and color adjustment can be performed by adjusting the lighting period. .
  • the orange color of the LED array 1012 is gradually added while the LED array 1011 is dimmed.
  • the light emitting diode lighting system 120 it is possible to perform a color setting such that the light gradually changes from white daylight white to a light bulb color.
  • FIG. 3 is a circuit block diagram showing a configuration of a light-emitting diode lighting system (illumination device) including the LED driver (illumination device integrated circuit) 31 according to the present embodiment.
  • FIG. 3 shows that each of the three light emitting diode systems can be obtained by using an LED driver IC (Integrated Circuit) having three constant current circuits (constant current control circuits) for lighting the light emitting diode systems. It is an example of a structure of the LED lighting apparatus which enabled the toning.
  • LED driver IC Integrated Circuit
  • constant current circuits constant current control circuits
  • the LED driver 31 includes a constant current control amplifier (first constant current drive circuit) 32 for lighting the LED, one circuit (CH1: first system), and a chopping type PWM generation circuit for lighting the LED + constant current control.
  • first constant current drive circuit for lighting the LED
  • CH1 first system
  • chopping type PWM generation circuit for lighting the LED + constant current control.
  • This is an integrated circuit including two amplifiers (second constant current drive circuit) 33 (CH2: second system, and CH3: third system).
  • the chopping PWM generation circuit + constant current control amplifier 33 is simply referred to as a circuit 33.
  • the terminal VOUT1 (first terminal) is an output terminal of the constant current control amplifier 32 for CH1
  • the terminal VOP_SENSE1 (second terminal) is an input terminal for an open state detection signal for CH1.
  • the terminal VOUT2 (third terminal) is an output terminal of the CH2 circuit 33
  • the terminal VOP_SENSE2 (fourth terminal) is an input terminal for an open state detection signal of CH2.
  • the terminal VOUT3 is an output terminal of the CH3 circuit 33
  • the terminal VOP_SENSE3 is an input terminal for an open state detection signal of CH3.
  • the gate of the transistor (first transistor) 1006 is connected to the terminal VOUT ⁇ b> 1 according to the same connection procedure as in FIG. 2, and between the source of the transistor 1006 and GND (second power supply line), A resistor (first resistor) 1004 that is a sense resistor is inserted. Then, by connecting the connection point between the source of the transistor 1006 and the resistor 1004 to the terminal VOP_SENSE1, a constant current can be supplied to the LED array 1011 (CH1). The same applies to CH2 and CH3.
  • the CH2 circuit 33 includes a chopping type PWM as a common anode voltage of each light emitting diode system.
  • the generation circuit is built-in. For this reason, the LED driver 31 can be used for toning with a single chip.
  • the operation of the chopping type PWM generation circuit is the same as the operation of the PWM wave generation circuit 28 described in the light emitting diode lighting system 120 of FIG.
  • the LED driver 31 includes a chopping-type PWM generation circuit and a constant current control amplifier for LED lighting, one system (CH3) more than the light-emitting diode lighting system 120 (see FIG. 2). While CH1 and CH2 perform normal illumination control, applications such as using CH3 for lighting control of the nightlight LED are conceivable.
  • the current values for driving the LED arrays 1011 and 1012 and one LED 3 are the sense resistors connected to the terminals VOP_SENSE1 to VOP_SENSE3, that is, the resistances Set at 1004.
  • the constant current control amplifier 32 and the circuit 33 adjust their outputs so that the voltages at the terminals VOP_SENSE1 to VOP_SENSE3, which are generated when the LED drive current flows through the resistors 1004, become a specified voltage level of 200 mV. Yes.
  • the voltage level specified above is specified by the resistance values of the resistor RSET (x1) and the resistor RSET (x3) connected to the terminals RSET0 to RSET3, respectively.
  • the resistance RSET (x1) of the terminal RSET0 is 625 ⁇
  • the resistance RSET (x3) of the terminals RSET1 to 3 is 10 ⁇
  • the above specified voltage level is Is represented by the following formula.
  • the following resistance values are examples, and any values that satisfy the following relationship may be used.
  • the chopping frequencies of CH2 and CH3 are generated by a triangular wave generation circuit 34 that is an oscillation circuit built in the circuit 33.
  • the frequency range of the triangular wave generating circuit 34 corresponds to 150 kHz to 300 kHz, and the frequency can be changed by a resistor Rfreq connected between the terminal FOSC1 and the terminal FOSC2.
  • the constant current control amplifier 32 and the circuit 33 have a PWM_IN input terminal (not shown), and can individually input a PWM dimming signal obtained by pulse width modulation from the outside.
  • the constant current control amplifier 32 and the circuit 33 pulse drive the transistors 1006 connected to the cathode side ends of the LED arrays 1011 and 1012 connected in series and the cathode of the LED 1013, respectively.
  • the constant current control amplifier 32 and the circuit 33 can perform dimming of the corresponding LED arrays 1011 and 1012 and the LED 1013 without changing the current value.
  • the specifications of the PWM dimming signal that can be supported by the LED driver 31 are as follows.
  • the LED driver 31 has a thermal error detection function, an open state detection function for each light emitting diode system, and a short detection function for each light emitting diode system as error detection and protection functions.
  • the control logic 36 determines that a thermal error state has occurred, and all current drivers Includes a function to turn off.
  • the thermal error detection function includes a function of setting the output voltage V_FBOUT of the error amplifier 37 to 0 V when the control logic 36 determines that the thermal error state has occurred.
  • the function of detecting the open state of the light emitting diode system is that a voltage input to at least one of the terminals VOP_SENSE 1 to 3 is a constant voltage during a period in which the constant current control amplifier 32 and the circuit 33 are operating (LED lighting state). Works when below. In the present embodiment, for example, this constant voltage is set to 100 mV (typ.). In this case, the voltage drop is detected by the LED string open detection circuit (open detection circuit) 38. The LED string open detection circuit 38 determines that the light emitting diode system is in an open state based on the detection of the voltage drop, and notifies the control logic 36 of the error detection.
  • the control logic 36 turns off the constant current drivers of all CHs and turns off the error amplifier 37. Further, when detecting the open state of CH2 (LED array 1012) or CH3 (LED3), the control logic 36 turns off only the constant current driver of the CH in the open state, and the error amplifier 37 remains in the ON state (continues output). ).
  • the short-circuit detecting function of the light emitting diode system is such that the voltage input to the terminal VSH_SENSE (1, 2, 3) is a constant voltage during the period in which the constant current control amplifier 32 and the circuit 33 are operating (LED lighting state). It works when exceeding.
  • this constant voltage is set to 3.25 V (typ.).
  • an increase in voltage is detected by the LED string short detection circuit (short detection circuit) 39.
  • the LED string short-circuit detection circuit 39 determines that the light-emitting diode system is short-circuited by detecting this voltage rise, and notifies the control logic 36 of the detection of the error. Then, the control logic 36 turns off the constant current drivers for all channels and turns off the error amplifier 37 when a short circuit is detected.
  • the LED driver 31 may include only one of the LED string open detection circuit 38 and the LED string short detection circuit 39.
  • the output voltage V_FBOUT is an output voltage of the error amplifier 37 for feedback control to an external DC / DC converter (not shown) having the terminal VSH_SENSE (1, 2, 3) as an input.
  • a voltage generated by dividing the anode voltage supplied from the external DC / DC converter (in this embodiment, set to 2 V) is input to the terminal VSH_SENSE (1, 2, 3). Since the error amplifier outputs the input voltage of the terminal VSH_SENSE (1, 2, 3) as it is as the value of the output voltage V_FBOUT, the external DC / DC converter can perform control using this value as a feedback value. .
  • the LED driver 31 drives a light emitting diode group including at least the LED arrays 1011 and 1012 having a common end on the anode side and different light emission wavelengths of the LEDs.
  • the LED driver 31 includes a constant current control amplifier 32 that drives the LED array 1011 with a steady current, and a circuit 33 that drives the LED array 1012 with an intermittent current and a regenerative current. Furthermore, the constant current control amplifier 32 and the circuit 33 can easily adjust the luminance of each light emitting diode by adjusting the lighting time of each light emitting diode constituting the corresponding LED array 1011 or 1012. It is.
  • a light emitting diode lighting system 120 including a plurality of light emitting diode systems (which may be the light emitting diode lighting system 100), by applying the LED driver 31, it is possible to suppress heat generation at low cost.
  • a diode lighting system can be realized.
  • the constant current control amplifier 32 may correspond to the comparator 1005, and the circuit 33 may correspond to the operational amplifier 5 and the pulse wave generation circuit 8.
  • the constant current control amplifier 32 may correspond to the operational amplifier 26 and the circuit 33 may correspond to the operational amplifier 25 and the PWM wave generation circuits 28 and 29.
  • a power MOSFET and a resistor can be connected to the first constant current drive circuit from the outside of the integrated circuit, and the second constant current drive circuit includes A power MOSFET, a resistor, an inductance, and a diode are preferably connectable from the outside of the integrated circuit.
  • the integrated circuit for lighting device of the present invention is characterized by including a short detection circuit for detecting a short circuit of each light emitting diode system.
  • the integrated circuit can detect a short circuit of each light emitting diode system.
  • the integrated circuit for lighting device of the present invention is characterized by comprising an open detection circuit for detecting an open state of each of the light emitting diode systems.
  • the integrated circuit can detect the open state of each light emitting diode system.
  • the present invention relates to a lighting device and an integrated circuit for a lighting device in which a plurality of light emitting elements such as LEDs are assembled to constitute a single light source, and the light source can be controlled to be controlled to an arbitrary brightness using the illumination light. Is available.
  • Constant current control circuit (second constant current drive circuit) 5 Operational amplifier (second amplifier) 6 Coil (inductance) 7 Diode (reflux diode) 8 Pulse wave generation circuit 25 Operational amplifier (second amplifier) 26 Operational amplifier (first amplifier) 28 PWM wave generation circuit (pulse wave generation circuit) 31 LED driver (integrated circuit for lighting device) 32 constant current control amplifier (first constant current drive circuit) 33 Chopping PWM generation circuit + constant current control amplifier (second constant current drive circuit) 38 LED string open detection circuit (open detection circuit) 39 LED string short detection circuit (short detection circuit) 100 Light-emitting diode lighting system (lighting device) 120 Light-emitting diode lighting system (lighting device) 1003 Constant current circuit (first constant current drive circuit) 1004 Resistance (first resistance, second resistance) 1005 Comparator (first amplifier) 1006 Transistors (first transistor, second transistor, power MOSFET) 1011 LED array (first light emitting diode system) 1012 LED array (second light emitting diode system)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

 LEDアレイ(1011)および(1012)のアノード側の端部を共通にする。定電流回路(1003)は、定電流によるLEDアレイ(1011)の駆動を行う一方、定電流制御回路(3)は、定電流による駆動にパルスによる駆動を付与した、LEDアレイ(1012)の駆動を行う。

Description

照明装置用集積回路および照明装置
 本発明は、LED(Light Emitting Diode:発光ダイオード)のような発光素子を複数集合させて1つの光源を構成し、この光源を照明灯として、任意の明るさに点灯制御できるようにした照明装置用集積回路および照明装置に関する。
 近年のLEDは、その性能アップが急速に進むとともに、照明に不可欠な白色のLEDが開発され、また明るさにおいても照明として十分に使用できる輝度で発光できるようになってきた。
 しかしながら、LEDの集合体からなる照明灯を構成する個々のLEDは、順方向電圧にばらつきがあるため、その駆動電流がばらつき、ひいては明るさにもばらつきが生じてしまう。また、LEDの明るさがばらつくと、照明灯の発光面に部分的な輝度むらが生じ、照明灯としての品質を低下させるという問題がある。
 そこで、従来、発光ダイオード点灯システム(照明装置)においては、LED毎に、またはLEDを複数個(6個程度)直列に接続してなる直列回路毎に、定電流回路を設ける構成が知られている。この各定電流回路は、対応するそれぞれのLEDの電流を一定に制御することにより、LEDの明るさのばらつきを低減する。
 図4に、従来の発光ダイオード点灯システムの回路構成例を示す。
 点灯回路1001では、LED1を6個直列に接続したLEDアレイ1011を点灯させるための、電源Vdd1および定電流回路1003が接続されている。各LED1は、順方向降下電圧(Vf)が3.6V(typ.:標準値)であり、白色の発光を行うものである。定電流回路1003は、基準電圧Vrefの電圧値と抵抗1004の抵抗値とで決まる電流が、安定して、接続されているLEDアレイに流れるように、トランジスタ1006を制御する。なお、このようなLEDの点灯回路の動作については、特許文献1に記載されている。ここにおいて、LEDアレイ1011での降下電圧は、各LED1のVfの総和である21.6Vである。このため、Vdd1の電圧値は、LED1のVfのバラツキおよび電源の変動等を考慮して、30Vとしている。
 点灯回路1002では、LED2を6個直列に接続したLEDアレイ1012を点灯させるための、電源Vdd2および定電流回路1003が接続されている。各LED2は、順方向降下電圧(Vf)が2.1V(typ.)であり、橙色の発光を行うものである。ここにおいて、LEDアレイ1012での降下電圧は、各LED2のVfの総和である12.6Vである。このため、Vdd2の電圧値は、LED2のVfのバラツキおよび電源の変動等を考慮して、20Vとしている。
 しかしながら、発光色の異なる複数のLEDの点灯を行い、調色を行う場合、図4に示す従来の回路方式では、多数の電源が必要になり、コスト高になるという問題がある。
 ここで、LEDアレイ1011のアノードと、LEDアレイ1012のアノードとを共通にして、同一の電源に接続すれば、コスト高の問題は解決できる。
 しかしながら、アノードを共通にした場合、電源電圧は、Vdd1とVdd2とで、同じ30Vにする必要がある。この場合、点灯回路1002側の定電流回路1003に印加される電圧は、単純に10V上昇する。このため、定電流回路1003は、抵抗1004に流れる電流が変化しないように、比較器1005としてのオペアンプの出力電圧を変更して、トランジスタ1006のゲート電圧を変更することにより、トランジスタ1006のオン抵抗を大きくする。結果、トランジスタ1006で消費される電流が多くなり、発熱が増加する。このようにVfの異なるLEDのアノードを共通にした、上記システムでは、無駄な電力消費が発生するという問題が発生する。また、LEDは、熱に弱いため、上記システムでは、高温による劣化を防ぐためのさらなる放熱対策が必要になるという問題もさらに発生する。カソードを共通にした場合についても同様の問題が発生する。
 なお、図4の構成の一例については、特許文献1の図15を参照されたい。
 上記発熱の問題を解決するために、例えば特許文献2では、R・G・BのLEDを順次点灯させる、色順次式LED駆動回路において、アノード電圧が共通なため、熱として消費される無駄な電力を防止する技術が開示されている。特許文献2に開示された色順次式LED駆動回路は、電源回路とLEDのアノードとの間に、点灯LEDに最適なアノード電圧を出力できる回路を設け、点灯するLEDによりこの回路を切り替えることより、上記発熱の問題を解決している。
日本国公開特許公報「特開2002-319707号公報(2002年10月31日公開)」 日本国公開特許公報「特開2006-301027号公報(2006年11月2日公開)」
 しかしながら、特許文献2のような切り替え回路を設ける場合は、電源を高度に安定化している回路が必要であるため、高コスト化が問題になる。また、LED照明等で調色を行う場合は、切り替え回路を用いた切替自体を行うことができない場合もあり、切り替え回路を使用できないという問題も発生する。
 本発明は、上記の問題に鑑みて為された発明であり、その目的は、Vfの異なるLEDをアノード電圧共通で点灯させたときの発熱を、低コストで抑制することを可能とする、照明装置用集積回路および照明装置を提供することにある。
 本発明の照明装置用集積回路は、上記の問題を解決するために、1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第1の発光ダイオード系統と、1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第2の発光ダイオード系統とを少なくとも備え、上記第1の発光ダイオード系統のアノード側の端部は、上記第2の発光ダイオード系統のアノード側の端部と共通化されており、上記第1の発光ダイオード系統を構成する各発光ダイオードの発光波長は、上記第2の発光ダイオード系統を構成する各発光ダイオードの発光波長と異なっている発光ダイオード群を駆動する集積回路であって、上記第1の発光ダイオード系統を駆動する電流を制御する第1の定電流駆動回路と、上記第2の発光ダイオード系統を駆動する電流を制御する第2の定電流駆動回路とを備え、上記第1の定電流駆動回路は、上記第1の発光ダイオード系統を、定常電流により駆動し、上記第2の定電流駆動回路は、上記第2の発光ダイオード系統を、間欠電流と回生電流とにより駆動し、上記第1の定電流駆動回路は、駆動すべき上記第1の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能であり、上記第2の定電流駆動回路は、駆動すべき上記第2の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能であることを特徴としている。
 本発明の照明装置は、上記の問題を解決するために、第1の電源ラインと、第2の電源ラインと、1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第1の発光ダイオード系統と、1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第2の発光ダイオード系統と、第1の端子および第2の端子を備えるインダクタンスと、還流ダイオードと、上記第1の発光ダイオード系統を駆動する電流を制御する第1の定電流駆動回路と、上記第2の発光ダイオード系統を駆動する電流を制御する第2の定電流駆動回路とを備え、上記第1の定電流駆動回路は、ソース、ドレイン、およびゲートを備える第1のトランジスタと、上記第1のトランジスタのソースに接続されている第1の端子と、上記第2の電源ラインに接続されている第2の端子とを備える第1の抵抗と、上記第1のトランジスタのソースで検知される電圧値と、第1の基準電圧とを入力とし、出力端が上記第1のトランジスタのゲートに接続されている第1のアンプとを備え、上記第2の定電流駆動回路は、ソース、ドレイン、およびゲートを備える第2のトランジスタと、上記第2のトランジスタのソースに接続されている第1の端子と、上記第2の電源ラインに接続されている第2の端子とを備える第2の抵抗と、上記第2のトランジスタのソースで検知される電圧値と、第2の基準電圧とを入力とし、出力端が上記第2のトランジスタのゲートに接続されている第2のアンプと、上記第2のアンプを動作させるか否かを制御するパルスを生成し、上記第2のアンプに供給するパルス波発生回路とを備え、上記第1の電源ラインは、上記第1の発光ダイオード系統のアノード側の端部、上記第2の発光ダイオード系統のアノード側の端部、および上記還流ダイオードのカソードに接続されており、上記第1の発光ダイオード系統のカソード側の端部は、上記第1のトランジスタのドレインに接続されており、上記第2の発光ダイオード系統のカソード側の端部は、上記インダクタンスの第1の端子に接続されており、上記インダクタンスの第2の端子は、上記第2のトランジスタのドレイン、および上記還流ダイオードのアノードに接続されており、上記第1の発光ダイオード系統を構成する各発光ダイオードの発光波長は、上記第2の発光ダイオード系統を構成する各発光ダイオードの発光波長と異なっており、上記第1のアンプ、上記第2のアンプ、および上記パルス波発生回路は、集積回路に設けられており、上記集積回路は、上記第1の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能であり、上記第2の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能であることを特徴としている。
 上記の構成によれば、本発明の照明装置は、複数の発光ダイオード系統のアノード側の端部が共通化されており、複数の発光ダイオード系統を駆動することが可能な回路が設けられている。
 上記回路は、発光ダイオード系統の駆動回路を2つ備える構成となっている。そして、2つの駆動回路のうち、一方は、発光ダイオード系統の定電流駆動による駆動を行い、他方は、発光ダイオード系統の定電流駆動かつパルス駆動を行う。
 上記の構成によれば、互いに順方向降下電圧Vfの異なる複数の発光ダイオード系統を、アノード側の端部を共通化して(すなわち、同じ電源電圧を印加して)駆動するときに、Vfが高い方の発光ダイオード系統を直流により駆動する一方、Vfが低い方の発光ダイオード系統は定電流駆動かつパルス駆動を行うことができる。このパルス駆動に応じて、第2のトランジスタが開放している間は、発熱が生じないため、本発明の照明装置は、発熱を抑制することができる。
 また、上記の構成によれば、電源を高度に安定化する必要がないため、低コスト化を図ることが可能となる。
 中でも、本発明の照明装置用集積回路は、発光ダイオード系統の駆動回路を2つ備える構成となっている。そして、2つの駆動回路のうち、一方は、発光ダイオード系統の定電流駆動による駆動を行い、他方は、発光ダイオード系統の定電流駆動かつパルス駆動を行う。
 従って、上記の構成によれば、複数の発光ダイオード系統を備える照明装置において、本発明の照明装置用集積回路を適用することにより、低コストで、発熱を抑制することを可能とする、照明装置を実現することが可能となる。
 以上のとおり、本発明の照明装置用集積回路は、1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第1の発光ダイオード系統と、1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第2の発光ダイオード系統とを少なくとも備え、上記第1の発光ダイオード系統のアノード側の端部は、上記第2の発光ダイオード系統のアノード側の端部と共通化されており、上記第1の発光ダイオード系統を構成する各発光ダイオードの発光波長は、上記第2の発光ダイオード系統を構成する各発光ダイオードの発光波長と異なっている発光ダイオード群を駆動する集積回路であって、上記第1の発光ダイオード系統を駆動する電流を制御する第1の定電流駆動回路と、上記第2の発光ダイオード系統を駆動する電流を制御する第2の定電流駆動回路とを備え、上記第1の定電流駆動回路は、上記第1の発光ダイオード系統を、定常電流により駆動し、上記第2の定電流駆動回路は、上記第2の発光ダイオード系統を、間欠電流と回生電流とにより駆動し、上記第1の定電流駆動回路は、駆動すべき上記第1の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能であり、上記第2の定電流駆動回路は、駆動すべき上記第2の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能である。
 また、本発明の照明装置は、第1の電源ラインと、第2の電源ラインと、1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第1の発光ダイオード系統と、1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第2の発光ダイオード系統と、第1の端子および第2の端子を備えるインダクタンスと、還流ダイオードと、上記第1の発光ダイオード系統を駆動する電流を制御する第1の定電流駆動回路と、上記第2の発光ダイオード系統を駆動する電流を制御する第2の定電流駆動回路とを備え、上記第1の定電流駆動回路は、ソース、ドレイン、およびゲートを備える第1のトランジスタと、上記第1のトランジスタのソースに接続されている第1の端子と、上記第2の電源ラインに接続されている第2の端子とを備える第1の抵抗と、上記第1のトランジスタのソースで検知される電圧値と、第1の基準電圧とを入力とし、出力端が上記第1のトランジスタのゲートに接続されている第1のアンプとを備え、上記第2の定電流駆動回路は、ソース、ドレイン、およびゲートを備える第2のトランジスタと、上記第2のトランジスタのソースに接続されている第1の端子と、上記第2の電源ラインに接続されている第2の端子とを備える第2の抵抗と、上記第2のトランジスタのソースで検知される電圧値と、第2の基準電圧とを入力とし、出力端が上記第2のトランジスタのゲートに接続されている第2のアンプと、上記第2のアンプを動作させるか否かを制御するパルスを生成し、上記第2のアンプに供給するパルス波発生回路とを備え、上記第1の電源ラインは、上記第1の発光ダイオード系統のアノード側の端部、上記第2の発光ダイオード系統のアノード側の端部、および上記還流ダイオードのカソードに接続されており、上記第1の発光ダイオード系統のカソード側の端部は、上記第1のトランジスタのドレインに接続されており、上記第2の発光ダイオード系統のカソード側の端部は、上記インダクタンスの第1の端子に接続されており、上記インダクタンスの第2の端子は、上記第2のトランジスタのドレイン、および上記還流ダイオードのアノードに接続されており、上記第1の発光ダイオード系統を構成する各発光ダイオードの発光波長は、上記第2の発光ダイオード系統を構成する各発光ダイオードの発光波長と異なっており、上記第1のアンプ、上記第2のアンプ、および上記パルス波発生回路は、集積回路に設けられており、上記集積回路は、上記第1の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能であり、上記第2の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能である。
 従って、本発明は、Vfの異なるLEDをアノード電圧共通で点灯させたときの発熱を、低コストで抑制することが可能であるという効果を奏する。
本発明の一実施の形態に係る、照明装置の構成を示す回路図である。 本発明の別の実施の形態に係る、照明装置の構成を示す回路図である。 本発明の実施の形態に係る照明装置用集積回路を備える、照明装置の詳細な構成を示す回路ブロック図である。 従来技術に係る、照明装置の構成を示す回路図である。
 以下、説明の便宜上、図4に示す発光ダイオード点灯システム(照明装置)を構成する部材と同じ機能を有する部材については、同じ符号を付記し、場合によってはその説明を省略する。
 〔実施の形態1〕
 図1は、本実施の形態に係る発光ダイオード点灯システム(照明装置)100の構成を示す回路図である。
 発光ダイオード点灯システム100は、点灯回路101、および点灯回路102を備える構成である。
 点灯回路101は、6個のLED1が直列接続されて成るLEDアレイ(第1の発光ダイオード系統)1011、および定電流回路(第1の定電流駆動回路)1003を備えている。点灯回路102は、6個のLED2が直列接続されて成るLEDアレイ(第2の発光ダイオード系統)1012、および定電流制御回路(第2の定電流駆動回路)3を備えている。
 ここで、上記LEDアレイは、隣り合う2個のLEDに関して、一方のLEDのアノードと、他方のLEDのカソードとが接続されたものである。従って、LEDアレイの一方の端部は、カソードのみが他のLEDに接続されたLEDのアノードに対応しており、以下では、この端部を「アノード側の端部」と称する。同様に、LEDアレイの他方の端部は、アノードのみが他のLEDに接続されたLEDのカソードに対応しており、以下では、この端部を「カソード側の端部」と称する。
 図4に示す発光ダイオード点灯システムと同様に、各LED1は例えば、順方向降下電圧(Vf)が3.6V(typ.)であり、白色の発光を行うものである。各LED2は例えば、順方向降下電圧(Vf)が2.1V(typ.)であり、橙色の発光を行うものである。
 LEDアレイ1011のアノード側の端部は、電源(第1の電源ライン)Vddに接続されている。また、LEDアレイ1012のアノード側の端部も、電源Vddに接続されている。つまり、LEDアレイ1011およびLEDアレイ1012は、アノード側の端部が互いに共通化されており、共通の電源Vddからの電源電圧(例えば30V)が印加される。
 LEDアレイ1011のカソード側の端部は、定電流回路1003に接続されている。
 定電流回路1003は、抵抗(第1の抵抗)1004、比較器(第1のアンプ)1005、およびトランジスタ(第1のトランジスタ)1006を備えている。ここで、各トランジスタ1006は、nチャネル型のパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属酸化膜半導体電界効果トランジスタ)であり、ソース(第1の端子)、ドレイン(第2の端子)、およびゲート(第3の端子)を備えている。LEDアレイ1011のカソード側の端部は、具体的に、トランジスタ1006のドレインに接続されている。
 トランジスタ1006のソースは、抵抗1004の一端(第1の端子)に接続されている(第1のトランジスタおよび第1の抵抗の直列回路)。抵抗1004の他端(第2の端子)は、電源Vddからの電源電圧よりも低電位である第2の電源ラインに接続されている。なお、本実施の形態において、抵抗1004の他端は、接地されており、この接地を以って第2の電源ラインへの接続が達成されている。
 トランジスタ1006のソースはさらに、比較器1005の一方の入力端に接続されている。比較器1005の他方の入力端は、基準電圧Vrefを発生する電源ラインに接続されている。比較器1005の出力端は、トランジスタ1006のゲートに接続されている。
 定電流回路1003は、図4のそれと同様に、基準電圧Vrefの電圧値と抵抗1004の抵抗値とで決まる電流が、安定してLEDアレイ1011に流れるように、トランジスタ1006を制御する。
 LEDアレイ1012のカソード側の端部は、定電流制御回路3に接続されている。
 定電流制御回路3は、抵抗(第2の抵抗)1004、トランジスタ(第2のトランジスタ)1006、オペアンプ(第2のアンプ)5、コイル(インダクタンス)6、ダイオード(還流ダイオード)7、およびパルス波発生回路8を備えている。LEDアレイ1012のカソード側の端部は、具体的に、コイル6の一端(第1の端子)に接続されている。
 コイル6の他端(第2の端子)は、nチャネル型のパワーMOSFETであるトランジスタ1006のドレイン、およびダイオード7のアノードに接続されている。ダイオード7のカソードは、電源Vddに接続されている。
 定電流制御回路3は、定電流回路1003の構成と同様に、トランジスタ1006のソースが、抵抗1004の一端(第1の端子)に接続されており(第2のトランジスタおよび第2の抵抗の直列回路)、抵抗1004の他端(第2の端子)が、第2の電源ラインに接続されている(ここでは接地されている)。
 トランジスタ1006のソースはさらに、オペアンプ5の一方の入力端に接続されている。オペアンプ5の他方の入力端は、基準電圧Vrefを発生する電源ラインに接続されている。オペアンプ5の出力端は、トランジスタ1006のゲートに接続されている。
 さらに、オペアンプ5には、パルス波発生回路8が接続されている。パルス波発生回路8は、オペアンプ5の動作状態と停止状態とを切り替えるパルスを生成し、オペアンプ5に供給する。オペアンプ5は例えば、ハイレベルのパルスがパルス波発生回路8から入力されると動作する一方、ローレベルのパルスがパルス波発生回路8から入力されると、このパルス入力の間トランジスタ1006をオフすることにより、動作を停止する構成である。動作状態にあるオペアンプ5の動作は、上述した比較器1005の動作と同様である。オペアンプ5およびパルス波発生回路8の組み合わせの一例としては、周知のチョッピング型PWM(Pulse Width Modulation:パルス幅変調)発生回路が挙げられる。
 定電流制御回路3は、定電流回路1003の動作に、パルス波発生回路8が生成するパルスの周波数に基づく時分割駆動(すなわち、このパルスの論理に応じて、オペアンプ5の動作状態と停止状態とを切り替える動作)を付与した回路である。つまり、定電流制御回路3は、パルス波発生回路8が生成するパルスに応じて、オペアンプ5の出力をパルス信号とし、このパルス信号に基づいて、トランジスタ1006の開閉(オンオフ)を制御するものである。
 電源Vddの電圧値を30Vにした場合、点灯回路101は、図4に示した点灯回路1001に電源Vdd1からの電源電圧が印加された場合と同じ状態であるので、発熱の問題は発生しない。一方、この場合、点灯回路102においては、定電流発生回路に必要(20V)以上の電圧が印加されるため、該定電流発生回路として定電流回路1003を用いると、発熱の問題が発生する。
 そこで、発光ダイオード点灯システム100では、パルス波発生回路8からオペアンプ5に、パルスを供給する。そして、オペアンプ5は、該パルスに基づいて、トランジスタ1006の開閉をパルス信号により制御することで、トランジスタ1006が開放する時間を一定期間発生させる。
 定電流制御回路3のトランジスタ1006が開放している間、定電流制御回路3には定電流が流れず、この定電流が流れない期間においては発熱が起こらないため、発光ダイオード点灯システム100では、全体として発熱の温度を低下させることができる。
 また、点灯回路102には、コイル6およびダイオード7が設けられている。コイル6は、定電流制御回路3のトランジスタ1006の動作時に、エネルギーを蓄積し、該トランジスタ1006の開放時に、該エネルギーを放出することで回生電流を発生する。この回生電流は、LEDアレイ1012に流れ、LEDアレイ1012を駆動する。
 点灯回路102では、トランジスタ1006が開放される状態でも、コイル6に蓄えられたエネルギーによって各LED2を点灯させることができるため、各LED2は、点滅すること無く点灯できる。
 ここで、コイル6に蓄積されるエネルギーは、図4に示す従来の発光ダイオード点灯システムにおいて、電流制限に起因して無駄に消費されていた電力である。一方、発光ダイオード点灯システム100は、このような従来無駄に消費されていた電力を、LEDアレイ1012の駆動に使用しているため、低消費電力で低発熱な点灯回路102を実現することが可能である。
 なお、定電流制御回路3を動作させる期間と動作させない期間との周期、すなわち、パルス波発生回路8からのパルスの1周期は、コイル6の回生電流による各LED2の点灯が行われる期間よりも短く設定にする必要がある。発光ダイオード点灯システム100では、パルス波発生回路8からのパルスの周波数を、150kHzから300kHzまでの間としている。
 また、定電流回路1003および定電流制御回路3は、1つの集積回路上にて実現することができる。この場合、集積回路は、以下のように配置された、第1~第4の端子を備える。
  第1の端子:定電流回路1003における、トランジスタ1006のゲートと、比較器1005の出力端との間。
  第2の端子:定電流回路1003における、トランジスタ1006のソースと、比較器1005の一方の入力端との間。
  第3の端子:定電流制御回路3における、トランジスタ1006のゲートと、オペアンプ5の出力端との間。
  第4の端子:定電流制御回路3における、トランジスタ1006のソースと、オペアンプ5の一方の入力端との間。
 上記集積回路の詳細な説明については、〔実施の形態3〕にて後述する。
 なお、本実施の形態では、第1の発光ダイオード系統として、6個のLED1が直列接続されたLEDアレイ1011を用いた。しかしながら、第1の発光ダイオード系統におけるLED1の個数は、6個に限定されず、1個以上であれば何個であってもよい(後述する実施の形態においても同様)。
 同様に、本実施の形態では、第2の発光ダイオード系統として、6個のLED2が直列接続されたLEDアレイ1012を用いた。しかしながら、第2の発光ダイオード系統におけるLED2の個数は、6個に限定されず、1個以上であれば何個であってもよい(後述する実施の形態においても同様)。
 但し、発光ダイオード系統が1個のLEDから成る場合、アノード側の端部は、該LEDのアノードそのものであり、カソード側の端部は、該LEDのカソードそのものであることは言うまでも無い。
 なお、本実施の形態および後述する実施の形態において、トランジスタ1006は、nチャネル型のパワーMOSFETのかわりに、pチャネル型のパワーMOSFET、またはバイポーラトランジスタ等であってもよい。
 また、本実施の形態および後述する実施の形態において、トランジスタ1006は、対応する(互いに同一のブロック内に存在する)抵抗1004と、第2の電源ラインとの間に設けられてもよい。
 また、本実施の形態および後述する実施の形態において、コイル6は、電源Vdd、ダイオード7、およびLEDアレイ1012の間でループを形成していればよく、図示の接続以外にも、例えば電源VddとLEDアレイ1012との間に接続されてもよい。
 〔実施の形態2〕
 図2は、本実施の形態に係る発光ダイオード点灯システム(照明装置)120の構成を示す回路図である。
 発光ダイオード点灯システム120は、以下の点で、発光ダイオード点灯システム100(図1参照)と異なる構成である。
 発光ダイオード点灯システム120は、発光ダイオード点灯システム100の点灯回路101および102のかわりに、点灯回路121および122を備える。
 点灯回路121は、点灯回路101の定電流回路1003のかわりに、定電流回路24を備える。点灯回路122は、点灯回路102の定電流制御回路3のかわりに、定電流制御回路23を備える。
 定電流回路24は、比較器1005のかわりに、オペアンプ26およびPWM波発生回路29を備える点で、定電流回路1003と異なる構成である。オペアンプ26は、一方の入力端がトランジスタ1006のソースに接続されており、他方の入力端が基準電圧Vrefを発生する電源ラインに接続されており、出力端がトランジスタ1006のゲートに接続されている。さらに、PWM波発生回路29は、オペアンプ26に接続されている。
 定電流制御回路23は、オペアンプ5およびパルス波発生回路8のかわりに、オペアンプ25およびPWM波発生回路(パルス波発生回路)28を備える点で、定電流制御回路3と異なる構成である。オペアンプ25は、一方の入力端がトランジスタ1006のソースに接続されており、他方の入力端が基準電圧Vrefを発生する電源ラインに接続されており、出力端がトランジスタ1006のゲートに接続されている。さらに、PWM波発生回路28は、オペアンプ25に接続されている。
 PWM波発生回路28および29は、パルス幅変調が施されたパルス(以下、PWM信号と称する)を生成し、それぞれオペアンプ25および26に供給する。オペアンプ25および26は、供給されたPWM信号の論理に応じて、動作状態(例えば、PWM信号がハイレベルの場合)と停止状態(例えば、PWM信号がローレベルの場合)とが切り替えられる。
 発光ダイオード点灯システム120は、発光ダイオード点灯システム100と同様に、LEDアレイ1011および1012のアノード側の端部が共通であり、2系統のLEDを点灯させる回路であるが、発光輝度を調節して調色を行うことが可能なものである。
 点灯回路121は、図1の点灯回路101と同様に、白色の発光を行うLED1で構成されたLEDアレイ1011を、定電流回路24による制御に従って点灯させる。
 定電流回路24は、図1の定電流回路1003と異なり、PWM波発生回路29が設けられている。PWM波発生回路29は、ハイレベルの信号のパルス幅とローレベルの信号のパルス幅とを設定できるPWM信号を発生し、オペアンプ26に供給する。
 オペアンプ26は、PWM信号がハイレベルのとき、通常の定電流駆動を行うが、PWM信号がローレベルのとき、トランジスタ1006を開放させて、定電流回路24に電流が流れないようにする。
 このため、LEDアレイ1011は、PWM信号がハイレベルのときに点灯し、PWM信号がローレベルのときに消灯する。PWM信号の論理に基づく、LED1の点灯と消灯との周期が短い場合(図2の発光ダイオード点灯システム120では、200Hzから1kHzの間に設定される)、LED1の点滅は人の目では認識できず、LED1の発光輝度が変化したように感じる。
 点灯回路122は、図1の点灯回路102と同様に、橙色の発光を行うLED2で構成されたLEDアレイ1012を、定電流制御回路23による制御に従って点灯させる。
 定電流制御回路23は、図1の定電流制御回路3と異なり、パルス波発生回路8に換えて、PWM波発生回路28が設けられている。PWM波発生回路28は、図1のパルス波発生回路8によるパルス発生に加え、パルス信号を発生する期間(以下、「PWMH期間」と称する)と、パルス信号を発生しない期間(以下、「PWML期間」と称する)とを、一定の周期で繰り返す。
 PWMH期間では、図1の場合と同様に、LEDアレイ1012は点灯されるが、PWML期間では、トランジスタ1006は開放された状態であり続けるため、LEDアレイ1012は消灯する。
 そして、PWMH期間とPWML期間とを繰り返す周期が短い場合(図2の発光ダイオード点灯システム120では、200Hzから1kHzの間に設定される)、LED2の点滅は人の目では認識できず、LED2の発光輝度が変化したように感じる。
 上記のように、LEDアレイ1011および1012はそれぞれ、PWM波発生回路29とPWM波発生回路28とにより点灯期間を調整することができ、この点灯期間を調節することにより調色を行うことができる。
 例えば、LEDアレイ1011のみを点灯した場合の白色に加え、LEDアレイ1011を減光しつつ、LEDアレイ1012の橙色を徐々に加えていく。これにより、発光ダイオード点灯システム120では、白色の昼白色から電球色に徐々に変化する、といった色設定を行うことができる。
 〔実施の形態3〕
 図3は、本実施の形態に係るLEDドライバ(照明装置用集積回路)31を備える、発光ダイオード点灯システム(照明装置)の構成を示す回路ブロック図である。
 つまり、図3は、発光ダイオード系統の点灯を行う定電流回路(定電流制御回路)を3系統備えたLEDドライバIC(Integrated Circuit:集積回路)を使用することにより、3系統の各発光ダイオード系統の調色を可能とした、LED照明装置の構成例である。
 LEDドライバ31は、LED点灯用の、定電流制御アンプ(第1の定電流駆動回路)32を1回路(CH1:第1系統)と、LED点灯用の、チョッピング型PWM発生回路+定電流制御アンプ(第2の定電流駆動回路)33を2回路(CH2:第2系統、およびCH3:第3系統)とを備えた集積回路である。なお、以下では便宜上、チョッピング型PWM発生回路+定電流制御アンプ33を単に、回路33と称する。
 端子VOUT1(第1の端子)は、CH1の定電流制御アンプ32の出力端子であり、端子VOP_SENSE1(第2の端子)は、CH1のオープン状態検出用信号の入力端子である。端子VOUT2(第3の端子)は、CH2の回路33の出力端子であり、端子VOP_SENSE2(第4の端子)は、CH2のオープン状態検出用信号の入力端子である。端子VOUT3は、CH3の回路33の出力端子であり、端子VOP_SENSE3は、CH3のオープン状態検出用信号の入力端子である。
 図3のように、図2と同様の接続要領により、トランジスタ(第1のトランジスタ)1006のゲートを端子VOUT1に接続し、トランジスタ1006のソースとGND(第2の電源ライン)との間に、センス抵抗である抵抗(第1の抵抗)1004を挿入する。そして、これらトランジスタ1006のソースと抵抗1004との接続点を、端子VOP_SENSE1に接続することにより、LEDアレイ1011に対して、定電流を流すことが可能となる(CH1)。CH2およびCH3についても同様である。
 各発光ダイオード系統のアノード電圧を共通化し、CH1とCH2とに、互いに順方向降下電圧Vfが異なる、複数系統のLEDをそれぞれ接続する場合の発熱対策として、CH2の回路33には、チョッピング型PWM発生回路を内蔵している。このため、LEDドライバ31は、ワンチップで調色用途への対応が可能となっている。チョッピング型PWM発生回路の動作については、図2の発光ダイオード点灯システム120で説明した、PWM波発生回路28の動作と同様である。
 LEDドライバ31は、LED点灯用の、チョッピング型PWM発生回路+定電流制御アンプを、発光ダイオード点灯システム120(図2参照)と比較して1系統分(CH3)多く備えている。CH1およびCH2が通常の照明の制御を行う一方、CH3を常夜灯用LEDの点灯制御に使用する等の用途が考えられる。
 LEDアレイ1011および1012、ならびに1個のLED3(説明の便宜上、符号1013を付している)を駆動するための各電流値は、各端子VOP_SENSE1~VOP_SENSE3に接続されたセンス抵抗、すなわち、各抵抗1004で設定する。LED駆動電流が各抵抗1004に流れることで発生する、各端子VOP_SENSE1~VOP_SENSE3の各電圧が、規定の電圧レベル200mVになるように、定電流制御アンプ32ならびに回路33は、その出力を調整している。
 上記規定の電圧レベルは、端子RSET0~3にそれぞれ接続される、抵抗RSET(x1)および抵抗RSET(x3)の抵抗値で規定される。端子RSET0の抵抗RSET(x1)を625Ωとし、端子RSET1~3(図3では、RSET(1,2,3)と表記)の抵抗RSET(x3)を10Ωとしたとき、上記規定の電圧レベルは、下記の式で表される。但し、下記抵抗値は一例であり、下記の関係が成立する値であればよい。
  各端子VOP_SENSE1~VOP_SENSE3の規定の電圧レベル
  =基準電流×RSET1~3(10Ω)
  =(1.25V/RSET0(625Ω))×RSET1~3(10Ω)
  =200mV
 また、CH2およびCH3のチョッピング周波数は、回路33に内蔵している発振回路である、三角波発生回路34で生成している。三角波発生回路34の周波数レンジは、150kHzから300kHzまでに対応しており、端子FOSC1と端子FOSC2との間に接続された抵抗Rfreqにより、周波数が変更可能である。
 定電流制御アンプ32および回路33は、PWM_IN入力端子(図示しない)を備え、パルス幅変調により得られたPWM調光信号を、外部より個別に入力することができる。この機能により、定電流制御アンプ32および回路33は、直列接続されたLEDアレイ1011および1012のカソード側の端部、ならびにLED1013のカソードにそれぞれ接続されたトランジスタ1006をパルス駆動する。結果、定電流制御アンプ32および回路33は、電流値を変えることなく、対応するLEDアレイ1011および1012、ならびにLED1013の調光を行うことができる。LEDドライバ31が対応可能な、PWM調光信号の仕様は以下の通りである。
  PWM調光周波数範囲:200Hz~1kHz
  PWM On duty:1.0%~100%
 また、LEDドライバ31は、エラー検出および保護機能として、サーマルエラー検出機能、各発光ダイオード系統のオープン状態の検出機能、および各発光ダイオード系統のショートの検出機能を備えている。
 上記サーマルエラー検出機能は、LEDドライバ31内部の加熱検知回路35が、温度が125℃(typ.)以上になったことを検知すると、制御ロジック36がサーマルエラー状態と判断し、全ての電流ドライバをOFFする機能を含む。また、上記サーマルエラー検出機能は、制御ロジック36がサーマルエラー状態と判断したときに、エラーアンプ37の出力電圧V_FBOUTを0Vにする機能を含む。なお、LEDドライバ31内部の温度が80℃にまで低下すると、全ての電流ドライバおよびエラーアンプ37は、自動的に通常動作に復帰する。
 上記発光ダイオード系統のオープン状態の検出機能は、定電流制御アンプ32および回路33が動作している期間(LED点灯状態)に、端子VOP_SENSE1~3の少なくとも1つに入力される電圧が、一定電圧を下回る場合に機能する。なお、本実施の形態では例えば、この一定電圧を、100mV(typ.)に設定する。この場合、電圧の低下は、LED列オープン検出回路(オープン検出回路)38にて検知される。LED列オープン検出回路38は、この電圧の低下の検知によって、発光ダイオード系統がオープン状態になったと判断し、制御ロジック36にエラーの検出を知らせる。そして、制御ロジック36は、CH1(LEDアレイ1011)のオープン状態検出時に、全CHの定電流ドライバをOFFとし、エラーアンプ37もOFFとする。また、制御ロジック36は、CH2(LEDアレイ1012)またはCH3(LED3)のオープン状態検出時に、オープン状態にあるCHの定電流ドライバのみをOFFとし、エラーアンプ37についてはON状態のまま(出力継続)とする。
 上記発光ダイオード系統のショートの検出機能は、定電流制御アンプ32および回路33が動作している期間(LED点灯状態)に、端子VSH_SENSE(1,2,3)に入力される電圧が、一定電圧を上回る場合に機能する。なお、本実施の形態では例えば、この一定電圧を、3.25V(typ.)に設定する。この場合、電圧の上昇は、LED列ショート検出回路(ショート検出回路)39にて検知される。LED列ショート検出回路39は、この電圧の上昇の検知によって、発光ダイオード系統がショートしたと判断し、制御ロジック36にエラーの検出を知らせる。そして、制御ロジック36は、ショート検出時に、全CHの定電流ドライバをOFFとし、エラーアンプ37もOFFとする。
 なお、LEDドライバ31は、LED列オープン検出回路38およびLED列ショート検出回路39のいずれか一方のみを備える構成であってもよい。
 出力電圧V_FBOUTは、端子VSH_SENSE(1,2,3)を入力とする、外部のDC/DCコンバータ(図示しない)へのフィードバック制御用の、エラーアンプ37の出力電圧である。端子VSH_SENSE(1,2,3)には、外部のDC/DCコンバータから供給されるアノード電圧を分圧して生成した電圧(本実施の形態では2Vに設定する)が入力される。エラーアンプは、端子VSH_SENSE(1,2,3)の入力電圧をそのまま、出力電圧V_FBOUTの値として出力するので、外部のDC/DCコンバータは、この値をフィードバック値とした制御を行うことができる。また、上記のように、エラー検出および保護機能が働いて、LEDドライバ31の異状が検出された場合にはエラーアンプ37の出力である出力電圧V_FBOUTが0になるのを検出して、外部のDC/DCコンバータは各発光ダイオード系統に与えるアノード電圧の発生を停止するように制御する。
 このように、LEDドライバ31は、アノード側の端部が共通化され、かつ、LEDの発光波長が互いに異なる、LEDアレイ1011および1012を少なくとも備える発光ダイオード群を駆動するものである。
 そして、LEDドライバ31は、LEDアレイ1011を定常電流により駆動する定電流制御アンプ32と、LEDアレイ1012を間欠電流と回生電流とにより駆動する回路33とを備える。さらに、定電流制御アンプ32および回路33は、各々対応するLEDアレイ1011または1012を構成する各発光ダイオードの点灯時間を調節することにより、容易にこれらの各発光ダイオードの輝度を調節することが可能である。
 複数の発光ダイオード系統を備える発光ダイオード点灯システム120(発光ダイオード点灯システム100であってもよい)において、LEDドライバ31を適用することにより、低コストで、発熱を抑制することを可能とする、発光ダイオード点灯システムを実現することが可能となる。
 発光ダイオード点灯システム100において、LEDドライバ31を適用する場合、定電流制御アンプ32は比較器1005に対応し、回路33はオペアンプ5およびパルス波発生回路8に対応する構成とすればよい。発光ダイオード点灯システム120において、LEDドライバ31を適用する場合、定電流制御アンプ32はオペアンプ26に対応し、回路33はオペアンプ25ならびにPWM波発生回路28および29に対応する構成とすればよい。
 また、本発明の照明装置用集積回路は、上記第1の定電流駆動回路には、集積回路の外部から、パワーMOSFETおよび抵抗が接続可能であり、上記第2の定電流駆動回路には、集積回路の外部から、パワーMOSFET、抵抗、インダクタンス、およびダイオードが接続可能であるのが好ましい。
 また、本発明の照明装置用集積回路は、各上記発光ダイオード系統のショートを検出するショート検出回路を備えることを特徴としている。
 上記の構成によれば、集積回路は、各発光ダイオード系統のショートを検出することができる。
 また、本発明の照明装置用集積回路は、各上記発光ダイオード系統のオープン状態を検出するオープン検出回路を備えることを特徴としている。
 上記の構成によれば、集積回路は、各発光ダイオード系統のオープン状態を検出することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、LEDのような発光素子を複数集合させて1つの光源を構成し、この光源を照明灯として、任意の明るさに点灯制御できるようにした照明装置、および照明装置用集積回路に利用可能である。
3 定電流制御回路(第2の定電流駆動回路)
5 オペアンプ(第2のアンプ)
6 コイル(インダクタンス)
7 ダイオード(還流ダイオード)
8 パルス波発生回路
25 オペアンプ(第2のアンプ)
26 オペアンプ(第1のアンプ)
28 PWM波発生回路(パルス波発生回路)
31 LEDドライバ(照明装置用集積回路)
32 定電流制御アンプ(第1の定電流駆動回路)
33 チョッピング型PWM発生回路+定電流制御アンプ(第2の定電流駆動回路)
38 LED列オープン検出回路(オープン検出回路)
39 LED列ショート検出回路(ショート検出回路)
100 発光ダイオード点灯システム(照明装置)
120 発光ダイオード点灯システム(照明装置)
1003 定電流回路(第1の定電流駆動回路)
1004 抵抗(第1の抵抗、第2の抵抗)
1005 比較器(第1のアンプ)
1006 トランジスタ(第1のトランジスタ、第2のトランジスタ、パワーMOSFET)
1011 LEDアレイ(第1の発光ダイオード系統)
1012 LEDアレイ(第2の発光ダイオード系統)

Claims (5)

  1.  1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第1の発光ダイオード系統と、
     1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第2の発光ダイオード系統とを少なくとも備え、
     上記第1の発光ダイオード系統のアノード側の端部は、上記第2の発光ダイオード系統のアノード側の端部と共通化されており、
     上記第1の発光ダイオード系統を構成する各発光ダイオードの発光波長は、上記第2の発光ダイオード系統を構成する各発光ダイオードの発光波長と異なっている発光ダイオード群を駆動する集積回路であって、
     上記第1の発光ダイオード系統を駆動する電流を制御する第1の定電流駆動回路と、
     上記第2の発光ダイオード系統を駆動する電流を制御する第2の定電流駆動回路とを備え、
     上記第1の定電流駆動回路は、上記第1の発光ダイオード系統を、定常電流により駆動し、
     上記第2の定電流駆動回路は、上記第2の発光ダイオード系統を、間欠電流と回生電流とにより駆動し、
     上記第1の定電流駆動回路は、駆動すべき上記第1の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能であり、
     上記第2の定電流駆動回路は、駆動すべき上記第2の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能であることを特徴とする集積回路。
  2.  上記第1の定電流駆動回路には、集積回路の外部から、パワーMOSFETおよび抵抗が接続可能であり、
     上記第2の定電流駆動回路には、集積回路の外部から、パワーMOSFET、抵抗、インダクタンス、およびダイオードが接続可能であることを特徴とする請求項1に記載の集積回路。
  3.  各上記発光ダイオード系統のショートを検出するショート検出回路を備えることを特徴とする請求項1または2に記載の集積回路。
  4.  各上記発光ダイオード系統のオープン状態を検出するオープン検出回路を備えることを特徴とする請求項1または2に記載の集積回路。
  5.  第1の電源ラインと、第2の電源ラインと、
     1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第1の発光ダイオード系統と、1つの発光ダイオードから成るか、または複数の発光ダイオードが直列接続されて成る第2の発光ダイオード系統と、
     第1の端子および第2の端子を備えるインダクタンスと、
     還流ダイオードと、
     上記第1の発光ダイオード系統を駆動する電流を制御する第1の定電流駆動回路と、
     上記第2の発光ダイオード系統を駆動する電流を制御する第2の定電流駆動回路とを備え、
     上記第1の定電流駆動回路は、
      ソース、ドレイン、およびゲートを備える第1のトランジスタと、
      上記第1のトランジスタのソースに接続されている第1の端子と、上記第2の電源ラインに接続されている第2の端子とを備える第1の抵抗と、
      上記第1のトランジスタのソースで検知される電圧値と、第1の基準電圧とを入力とし、出力端が上記第1のトランジスタのゲートに接続されている第1のアンプとを備え、
     上記第2の定電流駆動回路は、
      ソース、ドレイン、およびゲートを備える第2のトランジスタと、
      上記第2のトランジスタのソースに接続されている第1の端子と、上記第2の電源ラインに接続されている第2の端子とを備える第2の抵抗と、
      上記第2のトランジスタのソースで検知される電圧値と、第2の基準電圧とを入力とし、出力端が上記第2のトランジスタのゲートに接続されている第2のアンプと、
      上記第2のアンプを動作させるか否かを制御するパルスを生成し、上記第2のアンプに供給するパルス波発生回路とを備え、
     上記第1の電源ラインは、上記第1の発光ダイオード系統のアノード側の端部、上記第2の発光ダイオード系統のアノード側の端部、および上記還流ダイオードのカソードに接続されており、
     上記第1の発光ダイオード系統のカソード側の端部は、上記第1のトランジスタのドレインに接続されており、
     上記第2の発光ダイオード系統のカソード側の端部は、上記インダクタンスの第1の端子に接続されており、
     上記インダクタンスの第2の端子は、上記第2のトランジスタのドレイン、および上記還流ダイオードのアノードに接続されており、
     上記第1の発光ダイオード系統を構成する各発光ダイオードの発光波長は、上記第2の発光ダイオード系統を構成する各発光ダイオードの発光波長と異なっており、
     上記第1のアンプ、上記第2のアンプ、および上記パルス波発生回路は、集積回路に設けられており、
     上記集積回路は、
      上記第1の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能であり、
      上記第2の発光ダイオード系統を構成する各発光ダイオードの点灯時間を調節することにより、これらの各発光ダイオードの輝度を調節することが可能であることを特徴とする照明装置。
PCT/JP2011/068074 2010-09-24 2011-08-08 照明装置用集積回路および照明装置 WO2012039205A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180045424.4A CN103098236B (zh) 2010-09-24 2011-08-08 照明装置用集成电路以及照明装置
US13/821,073 US8773043B2 (en) 2010-09-24 2011-08-08 Integrated circuit for illumination device, and illumination device
KR1020137006918A KR101428430B1 (ko) 2010-09-24 2011-08-08 조명 장치용 집적 회로 및 조명 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-214506 2010-09-24
JP2010214506A JP4975856B2 (ja) 2010-09-24 2010-09-24 照明装置用集積回路および照明装置

Publications (1)

Publication Number Publication Date
WO2012039205A1 true WO2012039205A1 (ja) 2012-03-29

Family

ID=45873699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068074 WO2012039205A1 (ja) 2010-09-24 2011-08-08 照明装置用集積回路および照明装置

Country Status (6)

Country Link
US (1) US8773043B2 (ja)
JP (1) JP4975856B2 (ja)
KR (1) KR101428430B1 (ja)
CN (1) CN103098236B (ja)
TW (1) TWI455648B (ja)
WO (1) WO2012039205A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988584A (zh) * 2012-08-06 2014-08-13 梅洛实验室株式会社 利用发光元件的照明装置的调光系统
CN107018592A (zh) * 2017-03-20 2017-08-04 吴广毅 一种可调光调色温的led灯

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8810216B2 (en) 2011-06-30 2014-08-19 Advanced Analogic Technologies Incorporated Current sink with low side voltage regulation
JP6145788B2 (ja) * 2013-09-13 2017-06-14 パナソニックIpマネジメント株式会社 照明用光源及び照明装置
KR102204117B1 (ko) 2014-03-19 2021-01-18 매그나칩 반도체 유한회사 Bjt 베이스 전류 보상 회로 및 이를 이용하는 led 구동 장치
US9307592B2 (en) * 2014-06-20 2016-04-05 Optromax Electronics Co., Ltd Constant current driving device
CN106211490A (zh) * 2015-04-29 2016-12-07 常州星宇车灯股份有限公司 汽车led灯具短路断路关断系统
JP6972521B2 (ja) * 2016-02-05 2021-11-24 富士フイルムビジネスイノベーション株式会社 半導体発光素子駆動制御装置、液滴乾燥装置、及び画像形成装置
JP6576306B2 (ja) 2016-06-28 2019-09-18 三菱電機株式会社 電圧電流変換回路および負荷駆動回路
CN106920521B (zh) * 2017-03-24 2019-07-09 广州视源电子科技股份有限公司 Led调光方法和装置
CN108488642A (zh) * 2018-05-25 2018-09-04 深圳市明微电子股份有限公司 一种发光二极管照明装置和发光二极管单元
KR102581389B1 (ko) * 2018-07-02 2023-09-21 현대모비스 주식회사 Led 구동 장치
CN108966459B (zh) * 2018-07-27 2023-09-12 深圳市明微电子股份有限公司 一种智能调光控制电路及系统
CN109521371B (zh) * 2018-11-28 2021-12-24 赛尔富电子有限公司 检测驱动电源负载状态的装置与方法
CN109287042B (zh) * 2018-12-12 2021-05-28 昂宝电子(上海)有限公司 用于led照明的分段恒流控制系统和方法
CN211606885U (zh) * 2020-02-28 2020-09-29 广州市浩洋电子股份有限公司 一种用于加快恒流源电感能量泄放的led调光装置
CN111163549B (zh) * 2020-02-28 2023-09-22 深圳市晟碟半导体有限公司 一种分时复用的led调光装置、电路及其调光方法
TWI778810B (zh) * 2021-09-24 2022-09-21 友達光電股份有限公司 發光二極體驅動電路
WO2023188973A1 (ja) * 2022-03-31 2023-10-05 ローム株式会社 発光素子駆動装置、発光装置、及び車両
CN116189581A (zh) * 2023-04-27 2023-05-30 杭州视芯科技股份有限公司 一种led开路检测方法、电路及led驱动方法、电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136157A (ja) * 2003-10-30 2005-05-26 Rohm Co Ltd 発光素子駆動装置、発光素子駆動装置を有する表示モジュール及び、表示モジュールを備えた電子機器
JP2009009817A (ja) * 2007-06-28 2009-01-15 Toshiba Lighting & Technology Corp 照明装置
JP2009124125A (ja) * 2007-11-15 2009-06-04 Samsung Electro Mech Co Ltd 発光素子の駆動装置
JP2010170844A (ja) * 2009-01-22 2010-08-05 Panasonic Electric Works Co Ltd 電源装置及びそれを用いた照明器具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957150B2 (ja) * 2001-02-08 2007-08-15 セイコーインスツル株式会社 Led駆動回路
US6856436B2 (en) 2002-06-26 2005-02-15 Innovations In Optics, Inc. Scanning light source system
US7683326B2 (en) 2002-07-09 2010-03-23 Gentex Corporation Vehicle vision system with high dynamic range
JP4772366B2 (ja) 2005-04-15 2011-09-14 アビックス株式会社 色順次式led駆動回路
JP4961837B2 (ja) * 2006-06-01 2012-06-27 ソニー株式会社 発光ダイオード素子の駆動装置、光源装置、表示装置
BRPI0718524B1 (pt) 2006-11-10 2018-09-25 Koninl Philips Electronics Nv método de determinar valores de ativação para ativar um dispositivo de iluminação, ativador para determinar valores de ativação para ativar um dispositivo de iluminação, dispositivo de iluminação e unidade de exibição.
US8288955B2 (en) 2006-12-28 2012-10-16 Nokia Corporation Method and device for driving a circuit element
US7919936B2 (en) * 2008-08-05 2011-04-05 O2 Micro, Inc Driving circuit for powering light sources
JP2010080524A (ja) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd 発光素子駆動制御回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136157A (ja) * 2003-10-30 2005-05-26 Rohm Co Ltd 発光素子駆動装置、発光素子駆動装置を有する表示モジュール及び、表示モジュールを備えた電子機器
JP2009009817A (ja) * 2007-06-28 2009-01-15 Toshiba Lighting & Technology Corp 照明装置
JP2009124125A (ja) * 2007-11-15 2009-06-04 Samsung Electro Mech Co Ltd 発光素子の駆動装置
JP2010170844A (ja) * 2009-01-22 2010-08-05 Panasonic Electric Works Co Ltd 電源装置及びそれを用いた照明器具

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988584A (zh) * 2012-08-06 2014-08-13 梅洛实验室株式会社 利用发光元件的照明装置的调光系统
CN103988584B (zh) * 2012-08-06 2015-09-16 梅洛实验室株式会社 利用发光元件的照明装置的调光系统
CN107018592A (zh) * 2017-03-20 2017-08-04 吴广毅 一种可调光调色温的led灯
CN107018592B (zh) * 2017-03-20 2019-01-11 吴广毅 一种可调光调色温的led灯

Also Published As

Publication number Publication date
US8773043B2 (en) 2014-07-08
KR101428430B1 (ko) 2014-08-07
CN103098236A (zh) 2013-05-08
TW201215237A (en) 2012-04-01
JP2012069826A (ja) 2012-04-05
JP4975856B2 (ja) 2012-07-11
TWI455648B (zh) 2014-10-01
KR20130071473A (ko) 2013-06-28
CN103098236B (zh) 2016-02-17
US20130162150A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP4975856B2 (ja) 照明装置用集積回路および照明装置
US8120277B2 (en) Hybrid-control current driver for dimming and color mixing in display and illumination systems
US7847783B2 (en) Controller circuitry for light emitting diodes
KR101315078B1 (ko) Led 조명 장치
KR101886872B1 (ko) 반도체 집적 회로 및 그 동작 방법
JP5141874B2 (ja) 照明装置
KR100952499B1 (ko) 병렬 발광다이오드 정전류 구동 회로
US8098028B2 (en) Control circuit and method for controlling LEDs
US20110025230A1 (en) Driver device for leds
KR20090058026A (ko) 발광 소자 제어 시스템 및 이를 포함한 조명 시스템
WO2011105086A1 (ja) 発光素子の駆動回路およびそれを用いた発光装置、ディスプレイ装置
KR101952635B1 (ko) 엘이디 구동회로
US9210748B2 (en) Systems and methods of driving multiple outputs
US20090174343A1 (en) Multiple LED Driver
WO2018198594A1 (ja) Ledドライバ、並びに、これを用いるled駆動回路装置および電子機器
US8633654B2 (en) Light source driving apparatus
WO2020071067A1 (ja) Led駆動回路装置および電子機器
KR100725499B1 (ko) Led 구동회로
JP5482617B2 (ja) Led駆動電圧供給回路及びled装置
JP6296051B2 (ja) 照明装置
KR101067976B1 (ko) 발광소자 구동장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045424.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826651

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13821073

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137006918

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826651

Country of ref document: EP

Kind code of ref document: A1