WO2012037769A1 - 无线通信系统和用于无线通信系统的波束形成训练方法 - Google Patents

无线通信系统和用于无线通信系统的波束形成训练方法 Download PDF

Info

Publication number
WO2012037769A1
WO2012037769A1 PCT/CN2011/000987 CN2011000987W WO2012037769A1 WO 2012037769 A1 WO2012037769 A1 WO 2012037769A1 CN 2011000987 W CN2011000987 W CN 2011000987W WO 2012037769 A1 WO2012037769 A1 WO 2012037769A1
Authority
WO
WIPO (PCT)
Prior art keywords
stations
receiving
transmitting
training
station
Prior art date
Application number
PCT/CN2011/000987
Other languages
English (en)
French (fr)
Inventor
吴晔
雷鸣
Original Assignee
日电(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日电(中国)有限公司 filed Critical 日电(中国)有限公司
Priority to JP2013522069A priority Critical patent/JP5739532B2/ja
Priority to US13/704,179 priority patent/US9191079B2/en
Publication of WO2012037769A1 publication Critical patent/WO2012037769A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0851Joint weighting using training sequences or error signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Definitions

  • the present invention generally relates to wireless communications, and more particularly to wireless communication systems and beamforming (middle) training methods for wireless communication systems.
  • Beamforming is a diversity technique that takes full advantage of multiple antenna arrays.
  • millimeter-wave systems such as the 60 GHz Wireless Personal Area Network (WPAN) / Wireless Book Area Network (WLAN) system
  • beamforming becomes extremely important due to the high path loss within the system.
  • Different antenna configurations such as sector antennas, 1D/2D phased antenna arrays, are capable of supporting beamforming.
  • CMOS-based, low-cost phased antenna array that is expected to support approximately 30 dBi of antenna gain is considered an effective way to combat high path loss on the 60 GHz spectrum.
  • the recent 60 GHz physical (PHY) layer standards such as Wireless HD (Wireless HD) and Wigig. IEEE 802.11ad, support both single-carrier and Orthogonal Frequency Division Multiplexing (OFDM) transmission modes.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Beamforming training implements an optimal transmit antenna weight vector (abbreviated as TX AWV, also referred to as a transmit beamforming vector) and a receive antenna weight vector for a pair of communication stations that communicate with each other. , abbreviated as RX AWV, also known as receive beamforming vector) is necessary.
  • TX AWV transmit antenna weight vector
  • RX AWV receive antenna weight vector
  • a transmitting station first generates a tandem training sequence consisting of n sub-training sequences.
  • a transmit antenna array comprising a plurality of antenna elements
  • a unique TX AWV is applied to distinguish the phases on the plurality of antenna elements such that the transmitted sub-training sequences have a unique beam pattern.
  • the transmitting station transmits the serial training sequence for training multiple receiving stations simultaneously. Based on certain metrics, such as capacity, signal-to-noise ratio (SNR), each of these receiving stations determines the optimal TX AWV relative to the receiving station, respectively, and feeds it back to the transmitting station.
  • SNR signal-to-noise ratio
  • multiple TX AWVs applied by the transmitting station are predetermined and known to the transmitting station and to the plurality of trained receiving stations. Therefore, multiple receiving stations can easily feed back their respective optimal TX AWVs.
  • PBSS Personal Basic Service Set
  • PCP Control Point
  • the present invention provides a wireless communication system and a beamforming training method for a wireless communication system.
  • a wireless communication system including: a plurality of transmitting stations each including a transmitting antenna array, wherein the plurality of transmitting stations transmit training sequences through respective transmitting antenna arrays in the same time period And a plurality of receiving stations respectively corresponding to the plurality of transmitting stations, each comprising a receiving antenna array, each of the plurality of receiving stations receiving by the respective receiving antenna array a plurality of transmission stations transmitting respective training sequences, and acquiring channel information related to channel conditions of respective links between the receiving station and each of the plurality of transmitting stations, the channel information At least one of an optimized transmit antenna weight vector of the transmit antenna array of the plurality of transmit stations and an optimized receive antenna weight vector of the receive antenna array of the plurality of receive stations.
  • a method of performing beamforming training in a wireless communication system including a plurality of transmitting stations and receiving stations respectively corresponding to the plurality of transmitting stations, comprising: a training sequence In the sending step, the plurality of transmitting stations send the training sequence through the respective transmitting antenna arrays in the same time period; the training sequence receiving step, the multiple receiving stations Each receiving station in the station receives each training sequence transmitted by the plurality of transmitting stations through respective receiving antenna arrays; a channel information obtaining step of acquiring each of the plurality of receiving stations Channel information related to channel conditions of respective links between each of the plurality of transmitting stations; and an optimized antenna weight vector determining step of determining the plurality of transmitting stations based on the channel information At least one of an optimized transmit antenna weight vector of the transmit antenna array and an optimized receive antenna weight vector of the receive antenna array of the plurality of receive stations.
  • Figure 1 shows a schematic diagram of a wireless communication system in the case of active beamforming training.
  • Fig. 2 is a block diagram showing an exemplary functional block diagram of a coordinator, a transmitting station, and a receiving station in the wireless communication system shown in Fig. 1.
  • Fig. 3 is a flow chart showing a method of active simultaneous wave formation training according to the first embodiment of the present invention.
  • FIG. 4 is a flow chart showing a method of active simultaneous wave formation training in accordance with a second embodiment of the present invention.
  • Figure 5 shows a schematic diagram of a wireless communication system in the context of on-demand simultaneous beamforming training.
  • Fig. 6 is a flow chart showing a method of simultaneous beamforming training according to a third embodiment of the present invention.
  • Fig. 7 is a flow chart showing a method of simultaneous beamforming training according to a fourth embodiment of the present invention.
  • Fig. 8 shows an example of a training sequence that can be used in the present invention.
  • Fig. 9 shows another example of a training sequence that can be used in the present invention.
  • the present invention provides a wireless communication system and method of performing active or on-demand simultaneous beamforming training in a wireless communication system.
  • Fig. 1 shows a schematic diagram of a wireless communication system 1 in the case of active beamforming training.
  • the wireless communication system 1 includes N communication stations (hereinafter simply referred to as transmission stations or TX stations) 10 b 10 2 , and le and N communication stations as receivers ( Hereinafter referred to as a receiving station or an RX station) 20 ⁇ 20 2 , ..., and 20 ⁇ , where N is an integer greater than one.
  • TX stations transmission stations or TX stations
  • RX station receiving station or an RX station
  • the transmitting stations 10 h 10 2 , ..., and 1 (corresponding to the receiving stations 20 20 2 , and 20 ⁇ respectively, thereby forming N communication pairs. That is, the transmitting stations 10 b 10 2 , ... , and 1 (with the receiving stations 20 1; 20 2 , ..., and 20jv want to perform one-to-one wireless communication.
  • the transmitting station 10t will send a wireless signal to the receiving station 20, so that the two constitute The first communication pair; the transmitting station 10 2 will transmit a wireless signal to the receiving station 20 2 such that the two constitute a second communication pair; and so on, the transmitting station IOJV will transmit wireless to the receiving station 20 ⁇ Signals such that the two form the Nth communication pair.
  • the receiving station 20 of the first communication pair in addition to the wireless link between it and the transmitting station 10 (which may be referred to as the "link" of the first communication pair, It is indicated by a solid line in Fig. 1)
  • Each of the transmitting stations 10 10 2 , ..., and IOJV includes a transmitting antenna array for transmitting a wireless signal, and the transmitting antenna array may include a plurality of antenna elements.
  • Each of the receiving stations 20 20 2 , ..., and 20W includes a receiving antenna array for receiving wireless signals, and the receiving antenna array may include a plurality of antenna elements.
  • a phase offset is applied to each antenna element in the transmit antenna array and amplitude scaling is also possible; at the receiving station, a phase is applied to each antenna element in the receive antenna array Offset and it is also possible to apply amplitude scaling.
  • the antenna weight vector may also be referred to as a beamforming vector, which describes the phase offset (and possibly amplitude scaling) applied to each antenna element in the antenna array as the beam is formed.
  • the antenna weight vector of the transmitting antenna array of the transmitting station may also be simply referred to as TX AWV
  • the antenna weight vector of the receiving antenna array of the receiving station may also be simply referred to as RX AWV.
  • a plurality of different transmit antenna weight vectors can be used at one transmitting station. These antenna weight vectors that can be used by each transmitting station form a matrix, and each column (or each row) in the matrix is an antenna weight vector.
  • This matrix is called a transmission codebook or simply a TX codebook.
  • the TX codebook of the transmitting station is a square matrix, i.e., the number of TX AWVs of the transmitting station is equal to the number of transmitting antenna elements included in the transmitting antenna array of the transmitting station.
  • multiple different receive antenna weight vectors can be used at one receiving station.
  • These antenna weight vectors that can be used by each receiving station form a matrix, and each column (or each row) in the matrix is an antenna weight vector.
  • This matrix is called a received codebook or simply RX codebook.
  • the RX codebook of the receiving station is a square matrix, that is, the number of RX AWVs of the receiving station is equal to the receiving antenna unit included in the receiving antenna array of the receiving station. Number.
  • the wireless communication system 1 further includes a coordinator 30, which is a control/coordination point in the wireless communication system 1, responsible for controlling and coordinating all of the transmitting stations 10h 10 2 , ..., and 1 (1 ⁇ 2 and the receiving station 20, 20 2 ,..., ⁇ 20 ⁇ .
  • a coordinator 30 which is a control/coordination point in the wireless communication system 1, responsible for controlling and coordinating all of the transmitting stations 10h 10 2 , ..., and 1 (1 ⁇ 2 and the receiving station 20, 20 2 ,..., ⁇ 20 ⁇ .
  • the transmitting stations 10 10 2 , ..., and 1 (and the receiving stations 2 ( 20 2 , ..., and 20 ⁇ constitute a basic service set (BSS) / personal basic service set (PBSS)
  • the coordinator 30 may be an access point (AP) in the BSS or a Control and Coordination Point (PCP) in the PBSS, and the stations communicate with each other via the coordinator 30.
  • AP access point
  • PCP Control and Coordination Point
  • a plurality of pairs of transmitting stations and receiving stations can perform wireless communication at the same time, and as described above, each receiving station can receive not only the transmitting station corresponding thereto (i.e., the receiving station)
  • the wireless signal transmitted by the transmitting station with which the station is expected to communicate may also receive wireless signals transmitted from other transmitting stations.
  • the transmit antenna array of the transmitting station 10, and the receiving antenna array of the receiving station 20 perform beamforming training to determine the optimized TX AWV and the optimized RX AWV.
  • the transmitting stations 10 15 10 2 , ..., and 1 (the training sequence (also referred to as TS) is transmitted substantially simultaneously through the respective transmitting antenna arrays in the same period of time, and the receiving station 2 ( ⁇ , 202, ..., and 2 (each of each through the respective receiving antenna array
  • the column receives each training sequence transmitted by each of the transmitting stations 10i, 10 2 , ..., and IOJV, and obtains each chain between the receiving station and each of the transmitting stations 10b 10 2j ..., and 10w Information about the channel conditions of the path (including the link and the cross-link) (which can be called channel information).
  • This information is then used to determine the transmit antennas of the transmitting stations 10 15 10 2 , ..., and 1 (the optimized TX AWV of the transmit antenna array and the receive antennas of the receiving stations 20 20 2 , ..., and 20 w ) Optimization of RX AWVo is described in detail below.
  • the training sequence herein can be a preamble sequence contained in a frame transmitted and received in the system.
  • FIG. 2 shows an exemplary functional block diagram of a coordinator, a transmitting station, and a receiving station in the wireless communication system 1.
  • Figure 2 shows only a pair of transmitting stations 10, and receiving stations 20, - other transmitting stations and receiving stations may have similar functional configurations.
  • the transmitting station 10 including the coordinator interaction unit 101, ⁇ , the AWV setting unit 102, and the training sequence transmitting unit 103, .
  • the coordinator interaction unit 101 for transmitting a request to the coordinator 30, and receiving the assigned time slot, training sequence index and optimized TX AWV, spatial multiplexing indication, etc., notified from the coordinator 30.
  • the AWV setting unit 102 an antenna weight vector for setting a transmission antenna array (not shown in Fig. 2) of the transmitting station 10, .
  • the training sequence transmitting unit 103, - is configured to transmit the training sequence via the transmitting antenna array of the transmitting station 10, according to the setting of the AWV setting unit 102, .
  • the receiving station 20 includes a coordinator interaction unit 201, a computing unit 202, an AWV setting unit 203, and a training sequence receiving unit 204, .
  • the coordinator interaction unit 201 is configured to feed back channel information and the like to the coordinator 30, and receive the allocated time slot, training sequence index, spatial multiplexing indication, and the like notified from the coordinator 30.
  • the AWV setting unit 203 is configured to set an antenna weight vector of the receiving antenna array (not shown in FIG. 2) of the receiving station 20.
  • the training sequence receiving unit 204 for receiving the training sequence transmitted from the transmitting station in the system via the receiving antenna array of the receiving station 20, according to the setting of the AWV setting unit 202,.
  • the calculating unit 202a is configured to estimate a channel of each link (including the link and the cross link) with the receiving station and each transmitting station according to the training sequence receiving unit 204 (the received training sequence). In response, the receiver signal to interference and noise ratio (SINR) of the wood link, the optimized RX AWV of the receiving station, and the like are calculated.
  • the coordinator 30 includes a station interaction unit 301, an arrangement unit 302, a calculation unit 303, and a spatial multiplexing decision unit 304.
  • the station interaction unit 301 is configured to receive the request and feedback information sent from the station, and send a notification or the like to the station.
  • Arrangement unit 302 arranges spatial multiplexing based simultaneous beamforming training based on SP availability.
  • the calculation unit 303 calculates an optimized TX AWV of each transmitting station, a sender signal and a leakage and noise ratio (SLNR) of each link, and the like based on information fed back from the station.
  • the spatial multiplexing decision unit 304 is configured to determine whether spatial multiplexing can be performed based on the information fed back from the station, the calculation result of the calculation unit 303, and the like.
  • Fig. 3 is a flow chart showing a method of active simultaneous beamforming training according to a first embodiment of the present invention.
  • step S101 the transmitting stations 10b 10 2 , ..., and 10 w of the N communication pairs in the wireless communication system 1 as shown in FIG.
  • a service period (SP) request and a respective TX codebook are sent to the coordinator 30 as a service initiator.
  • the transmitting station 10i can be as shown in the above formula (1). Note that if the coordinator 30 ⁇ knows in advance the TX codebook of each transmitting station in the system, the transmitting station here does not need to transmit the TX codebook to the coordinator 30.
  • step S102 after receiving the active SP request from the transmitting stations 10 l5 10 2 , ..., and 1 of the respective communication pairs, the coordinator 30 arranges spatial multiplexing-based simultaneous beamforming training based on SP availability.
  • the coordinator 30 may receive the SP request and the TX codebook via its station interaction unit 301 and use its scheduling unit 302 to schedule spatial multiplexing based simultaneous wave formation training.
  • the coordinator 30 notifies the scheduled time slot and the training sequence index assigned to each communication pair to the service initiators of the plurality of communication pairs (the transmitting station 10 ⁇ 10 2> ..., and the service responder (receiving stations 20, 20 2 , ..., and 20 ⁇ ). For example, the coordinator 30 can notify the respective time slots and indexes via its station interaction unit 301 Send stations 10 b 10 2 , ..., and 1 (and receiving stations 20, 20 2 , and 2 ( ⁇ .
  • the scheduled time slot is a transmission training time slot, including one transmission Send training subslots.
  • rN is equal to the maximum number of columns of the TX codebook matrix of all N transmitting stations 10 15 10 2 , ..., and 1 CV in the wireless communication system 1, that is, equal to the transmitting antenna of the transmitting station having the most transmitting antenna elements The number of units.
  • the index of the training sequence assigned to the first communication pair is equal to the index assigned to the communication pair for the sake of explanation in FIG.
  • the present invention is not limited thereto.
  • the transmitting station 10, and the receiving station 20 upon learning the training sequence index assigned to the second communication pair, can derive the training sequence assigned to the communication pair.
  • each receiving station can estimate its channel response with each transmitting station when receiving the training sequence.
  • each receiving station since the training sequences used by the respective communication pairs are orthogonal, each receiving station can recognize that the training sequence is a transmitting station corresponding to itself when receiving the training sequence. It is still sent by other sending stations.
  • the TS is used to indicate the training sequence assigned to the first communication pair, and the training sequence may include one symbol.
  • the training sequences of the N communication pairs in the system are all ⁇ .
  • is an integer greater than 1.
  • the transmission training phase generally includes steps S104-S108.
  • step S104 the receiving stations 2 ( , 20 2 , ..., and 20w fix the antenna weight vectors of the respective receiving antenna arrays to a certain RX AWV.
  • the fixed RX AWV can
  • the RX AWV may be the most commonly used or selected according to other selection criteria.
  • the receiving station 20 may use its AWV setting unit 203 to fix its receiving antenna weight vector to Di. a column.
  • step S105 in each of the assigned transmission training sub-slots, the transmitting stations 10, 10 2 , ..., and 1 (take a different one of the TX AWVs from the respective TX codebooks, and the TX AWV to be taken out)
  • the respective transmit antenna arrays are applied to adjust the phase (and amplitude) of the individual antenna elements, and the respective training sequences are transmitted substantially simultaneously via respective transmit antenna arrays.
  • other transmitting stations in the system perform similar operations in the kth transmission training subslot.
  • each of the receiving stations 20 1 , 20 2 , ..., and 2 receives the training sequence transmitted by each transmitting station 10 1 10 2 , and 1 CW while fixing its 11 AWV
  • the receiving station 20 using its training sequence receiving unit 204, receives a training sequence via its receiving antenna array.
  • the receiving station 20 in addition to receiving the transmitting station 10 corresponding to itself, Outside of the transmitted training sequence (ie, the signal of the link), the training sequence (ie, the signal of the cross-link) sent by other transmitting stations in the system will also be received.
  • CIR transmit weighted channel impulse response
  • each of the receiving stations 20, 20 2 , ..., and 20 w further acquires (estimates) channel information related to the channel conditions of the respective links for the respective local links and cross links, And locating the acquired channel information with the size of the respective RX codebook (for example, the number of columns) Know the coordinator 30.
  • the receiving station 20 can use its computing unit 202 to obtain the above-mentioned channel information, and use its coordinator interaction unit 201, to feed back the obtained channel information and RX codebook size to the coordinator 30.
  • the above channel information may include any one of a channel impulse response (CIR), an average frequency domain channel response (CR) on all subcarriers, and a CR covariance matrix on all subcarriers.
  • CIR channel impulse response
  • CR average frequency domain channel response
  • CR covariance matrix on all subcarriers.
  • channel impulse response (CIR) of the link between the receiving station 20 of the first communication pair and the first transmitting station 10g with respect to the sth symbol is as described above.
  • the above CIR can be converted into a frequency domain channel response ⁇ ⁇ of the cth subcarrier, which can be expressed as:
  • the average frequency domain CR A of all subcarriers can be obtained by:
  • CM ⁇ ⁇ , ⁇ ⁇ (Equation 7)
  • the coordinator 30 ⁇ knows in advance the RX codebook of each receiving station in the system in some way, the receiving station here does not need to notify the coordinator 30 of the size of the RX codebook.
  • the channel information can be further quantized to reduce overhead.
  • step S108 after receiving from each of the receiving stations 20 ⁇ 202, ..., and channel information 20 W feedback and RX codebook size to, the coordinator 30 for the communication of the calculated optimized TX AWV and as the link SLNR measure leakage condition, arranged to receive training time slot and inform the calculated optimized TX AWV each transmission station 10 ⁇ 10 2, .. ⁇ , and W N, while the scheduled informed the received training time slot Send stations, 10 2 , ..., and 10 w and each receiving station 20, 20 2 , ..., and 20w.
  • the coordinator 30 can use its station interaction unit 301 to receive feedback from each receiving station, and use its computing unit 303 to calculate optimized TX AWV and SLNR, using the scheduling unit.
  • 302 arranges to receive the training time slot, and uses its station interaction unit 301 to inform the respective transmitting stations of the calculated TX AWV, and informs the transmitting stations and receiving stations of the scheduled receiving training time slots.
  • the optimized TX AWV of the transmitting station 10, ⁇ of the 'communication pair' can be calculated by:
  • eig(.) represents the largest eigenvector, N. It is the unilateral power spectral density (PSD) of additive white Gaussian noise (AWGN).
  • PSD power spectral density
  • AWGN additive white Gaussian noise
  • the coordinator 30 may first calculate the average frequency domain channel response or the CR covariance matrix by using Equation 6 or Equation 7 above, and then calculate the equation 9 or Equation 10 below.
  • R medium. If the average channel response CR ⁇ or CR covariance matrix CM is fed back from the receiving station, the coordinator 30 can directly calculate R in the above equation by using Equation 9 or Equation 10 below.
  • the coordinator 30 can also schedule the next received training slots by referring to the receiving stations 20, 20 2 , ..., and 2 (the size of the notified RX codebook.
  • the scheduled receiving training slots can include RN sub-slots. RN is equal to the maximum number of columns of the RX codebook matrix of all N receiving stations 20 15 20 2 , ..., and 20 ⁇ in the wireless communication system 1, that is, equal to the reception of the most received antenna elements The number of receiving antenna units of the station.
  • the coordinator 30 will then optimize the calculated TX AWV for the first communication pair (i.e., notify the transmitting station 10,., and inform the transmitting and receiving stations of the scheduled received training time slots.
  • the receiving training phase generally includes step S109 - Slllc
  • each of the transmitting stations 10 15 10 2 , ..., and 1 (fixes the respective transmission antenna weight vectors to the optimized TX AWV notified from the coordinator 30. That is, the transmitting station 10, • Fix its transmit antenna weight vector to W.
  • each transmit station 10, 10 2 , ..., and 10w is in each receive training session
  • the corresponding training sequence TS is transmitted substantially simultaneously in the slot. For example, each transmitting station 10, using its AWV setting unit 102 in the scheduled receiving training sub-slots, transmits an antenna array application thereto And, using its training sequence transmitting unit 103, transmits the training sequence TS, - via each antenna unit of its transmitting antenna array.
  • each of the receiving stations 20, 20 2 , ..., and 2 switches its RX AWV in each received training subslot, and receives the training sequence transmitted by each transmitting station.
  • the receiving station 20 in addition to receiving the transmitting station 10 corresponding to itself, the transmitted training sequence (ie, the signal of the link), will also receive the training sent by other transmitting stations in the system. Sequence (ie, the signal of the cross-link).
  • ⁇ , ⁇ 9 is as follows:
  • the impulse response CIR which is a type of channel information, is measured by the receiving station 20, which can be expressed as follows:
  • each receiving station 20 b 20 2 , ..., and 2 (for respective local links and cross links, further acquires (estimates) channel information related to channel conditions of each link, and
  • the optimized RX AWV and the SINR as a measure of the link quality of each link are then calculated, and the calculated SINR is then fed back to the coordinator 30.
  • the receiving station 20 can be derived using its computing unit 202,.
  • the above channel information, optimized RX AWV and SINR, and its coordinator interaction unit 201,. are used to feed back the calculated SINR to the coordinator 30.
  • the above channel information may include any one of a channel impulse response (CIR), an average frequency domain channel response (CR) on all subcarriers, and a CR covariance matrix on all subcarriers.
  • CIR channel impulse response
  • CR average frequency domain channel response
  • CR covariance matrix on all subcarriers.
  • the channel impulse response (CIR) of the link between the receiving station 20 of the i-th communication pair and the g-th transmitting station 10 with respect to the sth symbol is > ⁇ as described above. .
  • the CIR can be converted into a frequency domain channel response of the cth subcarrier, which can be expressed as:
  • the average frequency domain channel response CR ⁇ of all subcarriers can be obtained by the following formula -
  • the CR covariance matrix CM ⁇ can be obtained by the following formula - (Equation 16)
  • N Q is the unilateral power spectral density (PSD) of additive white ⁇ noise (AWGN).
  • S/NR can be a measure of the link quality of the link between the i-th communication pair.
  • step S112 the coordinator 30 passes each of the receiving stations 20, 20 2 , ..., and 2 (the feedback SINR and the corresponding reservation of each communication pair)
  • the link ⁇ is compared to evaluate the link quality of each link.
  • the coordinator 30 receives the slave station 20 via the station interaction unit 301 (the feedback SINR, and uses the spatial multiplexing decision unit 304 to receive the station Station 20 ; the Si of the ith communication pair fed back is compared with the threshold ⁇ of the ith communication pair.
  • step S113 the coordinator 30 determines whether spatial multiplexing can be performed based on the evaluation result of the link quality in step S112, or whether retraining is required. For example, the coordinator 30 uses its spatial multiplexing decision unit 304 to determine whether spatial multiplexing is possible.
  • step S112 if it is found in step S112 that the SINRs of all the communication pairs are greater than or equal to their respective thresholds ⁇ , the coordinator 30 determines that spatial multiplexing is possible, and the method then proceeds to step S114. On the other hand, if the SINR of any of the communication pairs is smaller than its corresponding threshold ⁇ , the coordinator 30 determines that the spatial multiplexing-based beamforming training needs to be performed again, and the method then proceeds to step S115.
  • step S114 the coordinator 30 notifies each of the available spatially multiplexed service periods Sending stations 10 ⁇ 5 10 2 , ..., and 10w and each receiving station 20 15 20 2 , ..., and 2 (.
  • This beamforming training process then ends. Thereafter, the transmitting station 10, and receiving of the first communication pair
  • the station 20 can utilize its w', and d' obtained during beamforming training to communicate with each other as TX AWV and RX AWV, respectively.
  • step S115 the coordinator 30 is based on each of the transmitting stations 10 1 10 2 , ..., and 1 (and each of the receiving stations 20 15 20 2 , ..., and 20 ⁇ )
  • the criteria for the leakage condition of each link excludes one or more pairs of communication.
  • the coordinator 30 may discard the communication pair with the smallest SLNR.
  • the process returns to step S108, excluding the communication pair with the smallest SLNR. Steps S108 and subsequent steps are repeated for the remaining N-1 pair of transmitting stations and receiving stations to perform re-training until a positive result is obtained in step S113.
  • FIG. 4 is a flow chart showing a method of active simultaneous beamforming training in accordance with a second embodiment of the present invention.
  • the method according to the second embodiment is different from the method according to the first embodiment shown in Fig. 3 in that steps S208 and S215 are replaced with steps S208 and S215, respectively.
  • step S208 the coordinator 30 does not need to calculate the SLNR of each communication pair as in step S108.
  • step S113 determines in step S113 that spatial multiplexing is not possible based on the comparison result in step S112, that is, beamforming training is required, the method then proceeds to step S215.
  • step S215 the coordinator 30 notifies each of the receiving stations 20, 20 2 , ..., and 2 ( ⁇ fixes its RX AWV to the optimized RX AWV calculated in step S111.
  • the coordinator 30 utilizes The station interaction unit 301 notifies the receiving station 20 to fix its RX AWV to d'. Then, the process returns to step S105, and the steps are repeated in the case where the RX AWV of each receiving station is reset to the optimized RX AWV. S105, and then repeating the steps after S105 to perform re-training until a positive result is obtained in step S113.
  • the first embodiment and the second embodiment can be combined. That is, if the coordinator 30 determines in step S113 that the wave formation training needs to be continued, the coordinator 30 can discard both the communication pair having the smallest SLNR and the receiving stations of the remaining communication pairs to fix its RX AWV. Optimizing the RX AWV calculated in step S111, and then returning the process Go to step S105, and repeat step S105 and subsequent steps.
  • Figure 5 shows a schematic diagram of a wireless communication system 1 in the context of such on-demand simultaneous beamforming training.
  • the 1, 2, ..., N-1 communication pairs in the system have been trained in beamforming and data communication is in progress.
  • one or more additional communication pairs e.g., the Nth communication pair
  • the coordinator 30 comprehensively considers the situation of the system including the 1st, 2nd, N1, Nth communication stations to arrange spatial multiplexing-based simultaneous beamforming training based on the service period availability. . All N pairs of communication pairs in the system then perform simultaneous beamforming training as described above.
  • Fig. 6 is a flow chart showing a method of simultaneous beamforming training according to a third embodiment of the present invention.
  • the method according to the third embodiment is different from the method according to the first embodiment shown in Fig. 3 in that steps S301-S304 replace steps S101-S103.
  • step S301 one or more pairs of communication stations in the system have undergone wave formation training, and for example, data communication is being performed.
  • step S302 the transmitting station in at least one pair of additional communication stations transmits a service period request and a corresponding TX codebook to the coordinator 30.
  • step S303 after receiving the service period request from the additional at least one pair of communication stations, the coordinator 30 comprehensively considers the case of all the communication pairs in the system, and arranges the spatial beam multiplexing based simultaneous beamforming based on the service period availability. Training, and notifying all communication pairs in the system that beamforming training is to be re-executed, while notifying the scheduled training time and the training sequence index assigned to each communication pair to the transmitting and receiving stations of each communication pair.
  • each communication pair performs simultaneous beamforming training in a manner similar to the first embodiment with the help and coordination of the coordinator 30.
  • FIG. 7 shows a flow of a method of simultaneous beamforming training according to a fourth embodiment of the present invention Figure.
  • the method according to the fourth embodiment is different from the method according to the third embodiment shown in FIG. 6 in that steps S208 and S215 are replaced with steps S208 and S215, respectively.
  • the description about steps S208 and S215 has been given in the above description of the second embodiment, and the third embodiment and the fourth embodiment may be combined similarly herein.
  • SP if the coordinator 30 determines that the beamforming training needs to be continued, then the pair with the smallest SLNR can be discarded, and the receiving stations of the remaining communication pairs are notified to fix their RX AWV to the calculated optimized RX AWV, and then Returning the process to step S105, repeating step S105 and subsequent steps Fig. 8 shows an example of a training sequence usable in the present invention.
  • the training sequence can include complementary Golay sequences.
  • N-MA represents the maximum number of communication pairs in the system that are allowed to train at the same time.
  • TS [Ga ⁇ — ⁇ —i+2 Ga w — — i+ .Gaw A ⁇ —wGbw— — i+2 Gbw—display — w′Gbw— — ,.+ ⁇ ” training sequence for all communication pairs They are orthogonal to each other.
  • a cyclic prefix and/or a cyclic suffix may be respectively added at both ends of two complementary sequences in the training sequence of each communication pair, for example, to adjust any tolerable caused by the channel and hardware. Timing error.
  • training sequence can always be sent using single carrier mode.
  • Figure 9 shows another example of a training sequence that can be used in the present invention.
  • the training sequence can include a Zadoff-Chu sequence.
  • the maximum number of simultaneously trained communication pairs When assigning an index, assume that the coordinator 30 assigns a training sequence index to the communication/communication pair. After each communication pair is known, the training associated with the communication can be derived as follows. sequence:
  • the first communication pair TS ⁇ ⁇ Z,.. ⁇
  • the training sequences resulting from all communication pairs are mutually orthogonal.
  • cyclic prefixes and/or cyclic suffixes may be respectively added at both ends of the Zadoff-Chu sequence included in the training sequence of each communication pair, for example, to adjust any tolerance caused by the channel and hardware. Timing error.
  • the training sequence can also always be transmitted using the single carrier mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

无线通信系统和用于无线通信系统的波束形成训练方法 技术领域
本发明总地涉及无线通信, 更具体而言涉及无线通信系统和用于无线 通信系统的波束形成 (beamfo说miing) 训练方法。 龍
波束形成是充分利用多天线阵列的分集技术。 对于毫米波系统, 例如 60 GHz无线个人区域网络 (WPAN) /无线书局域网 (WLAN) 系统, 由于 系统内部的高路径损耗, 波束形成变得极为重要。 诸如扇区天线、 1D/2D 相控天线阵列之类的不同天线配置能够支持波束形成。 对于 60GHz应用, 预期能够支持大约 30 dBi天线增益的基于 CMOS的低成本相控天线阵列 被认为是对抗 60GHz频谱上的高路径损耗的有效方式。
最近的 60 GHz 的物理 (PHY ) 层标准, 例如无线 HD ( Wireless HD) 、 Wigig. IEEE 802.11ad, 都支持单载波和正交频分复用 (OFDM) 这两种传输模式。 然而, 这两种传输模式中的波束形成在实现上几乎没有 差异。
波束形成训练对于相互通信的一对通信台站实现最优的发送天线权重 向量 (transmit antenna weight vector, 简称为 TX AWV, 也可称为发送波 束形成向量) 和接收天线权重向量 (receive antenna weight vector, 简称为 RX AWV, 也可称为接收波束形成向量) 是必要的。
美国专利申请公布 US 20090318091 A1中公开了一种利用串接训练序 列来进行一对多同时波束形成训练的系统。 在该系统中, 一个发送台站首 先生成由 n个子训练序列构成的串接训练序列。 在通过包括多个天线单元 的发送天线阵列发送每个子训练序列时, 应用一个独特的 TX AWV来区 分这多个天线单元上的相位, 以便使得发送出的子训练序列具有独特的波 束样式。 发送台站发送此串接训练序列, 以用于同时训练多个接收台站。 基于 某些度量, 例如容量、 信号噪声比 (SNR) , 这些接收台站中的每一个分 别确定相对于该接收台站而言的最优 TX AWV, 并将其反馈给发送台站。
基于码本 (codebook) 或其他规则, 发送台站所应用的多个 TX AWV 是预定的, 并且是发送台站和多个受训接收台站已知的。 因此, 多个接收 台站可以很容易地反馈其各自的最优 TX AWV。
在典型的 IEEE 802.11ad密集用户会议室环境中, 多对台站需要同时 收发数据并且个人基本服务集 (PBSS) 的控制点 (PCP) 充当所有台站的 网络协调者。 由于多对台站需要执行主动式 /按需式波束形成训练, 所以基 于时分复用接入 (time division multiplexing access, TDMA) 竞争的逐一训 练方法将会太过耗时。 也就是说, 在现有技术中, 多个通信对必须在不同 时间段中执行波束形成训练, 这是耗时的并且频谱效率不高。 发明内容
为了解决上述问题, 本发明提供了一种无线通信系统和用于无线通信 系统的波束形成训练方法。
根据本发明的一个方面, 提供了一种无线通信系统, 包括: 各自包括 发送天线阵列的多个发送台站, 所述多个发送台站在同一时间段中通过各 自的发送天线阵列发送训练序列; 以及与所述多个发送台站分别对应的、 各自包括接收天线阵列的多个接收台站, 所述多个接收台站中的每个接收 台站通过各自的接收天线阵列接收由所述多个发送台站发送的各个训练序 列, 并获取与该接收台站和所述多个发送台站中的各个发送台站之间的各 个链路的信道状况有关的信道信息, 所述信道信息被用于确定所述多个发 送台站的发送天线阵列的优化发送天线权重向量和所述多个接收台站的接 收天线阵列的优化接收天线权重向量中的至少一者。
根据本发明的另一个方面, 提供了一种在包括多个发送台站和与所述 多个发送台站分别对应的接收台站的无线通信系统中进行波束形成训练的 方法, 包括: 训练序列发送步骤, 所述多个发送台站在同一时间段中通过 各自的发送天线阵列发送训练序列; 训练序列接收步骤, 所述多个接收台 站中的每个接收台站通过各自的接收天线阵列接收由所述多个发送台站发 送的各个训练序列; 信道信息获取步骤, 获取与所述多个接收台站中的每 个接收台站和所述多个发送台站中的各个发送台站之间的各个链路的信道 状况有关的信道信息; 以及优化天线权重向量确定步骤, 基于所述信道信 息来确定所述多个发送台站的发送天线阵列的优化发送天线权重向量和所 述多个接收台站的接收天线阵列的优化接收天线权重向量中的至少一者。 附图说明
在附图中以示例而非限制方式示出了本发明的实施例。 在各幅图中相 同或相似的标号指代相同或相似的特征。
图 1 示出了在主动式波束形成训练的情况下的无线通信系统的示意 图。
图 2示出了图 1所示的无线通信系统中的协调器、 发送台站和接收台 站的示例性功能框图。
图 3示出了根据本发明第一实施例的主动式同时波朿形成训练的方法 的流程图。
图 4示出了根据本发明第二实施例的主动式同时波朿形成训练的方法 的流程图。
图 5示出了在按需式同时波束形成训练的情况下无线通信系统的示意 图。
图 6示出了根据本发明第三实施例的同时波束形成训练的方法的流程 图。
图 7示出了根据本发明第四实施例的同时波束形成训练的方法的流程 图。
图 8示出了本发明中可使用的训练序列的一个示例。
图 9示出了本发明中可使用的训练序列的另一个示例。 ^
下面参考附图来详细描述本发明的实施例。 概括来说, 本发明提供了无线通信系统和在无线通信系统中执行主动 式或按需式同时波束形成训练的方法。
图 1示出了在主动式波束形成训练的情况下的无线通信系统 1的示意 图。
如图 1所示, 无线通信系统 1包括 N个作为发送方的通信台站 〔以下 简称为发送台站或 TX台站) 10b 102, 和 le 以及 N个作为接收方的通 信台站 (以下简称为接收台站或 RX台站) 20^ 202, ...,和 20^, 其中 N是 大于 1的整数。
发送台站 10h 102, ...,和 1( 与接收台站 20 202, 和 20^分别相对 应, 从而形成 N个通信对。 即, 发送台站 10b 102, ...,和 1( 与接收台站 201; 202, ...,和 20jv想要执行一对一无线通信。 例如, 发送台站 lOt将向接 收台站 20,发送无线信号, 从而两者构成第 1通信对; 发送台站 102将向接 收台站 202发送无线信号, 从而两者构成第 2通信对; ……; 依此类推, 发送台站 IOJV将向接收台站 20^发送无线信号, 从而两者构成第 N通信 对。
另外, 在无线通信系统 1中, 第 通信对的接收台站 20,.除了能够经由 其与发送台站 10,之间的无线链路 (可以称为第 通信对的 "本链路", 在 图 1 中用实线表示) 接收到从发送台站 10,发送来的无线信号之外, 也可 能经由其与其他发送台站 1( ( = l, 2, ...,N, g = l,2,..., N且? ί') 之间 的无线链路 (可以称为第 通信对的 "交叉链路" , 在图 1 中用虚线表 示) 接收到从其他发送台站发送来的无线信号。
发送台站 10 102, ...,和 IOJV中的每一个包括用于发送无线信号的发送 天线阵列, 该发送天线阵列可以包括多个天线单元。 这里, 假定发送台站 10,· ( ί· = 1,2,...,Λ 的发送天线阵列包括 个天线单元, 其中 ί,·是大于 1的 整数。
接收台站 20 202, ...,和 20W中的每一个包括用于接收无线信号的接收 天线阵列, 该接收天线阵列可以包括多个天线单元。 这里, 假定接收台站 20,· a = 1, 2, N) 的接收天线阵列包括 个天线单元, 其中 是大于 1 的整数。 为了进行波束形成, 在发送台站处, 对发送天线阵列中的每个天线单 元应用相位偏移并且还可能应用幅度缩放; 在接收台站处, 对接收天线阵 列中的每个天线单元应用相位偏移并且还可能应用幅度缩放。
天线权重向量 (AWV) 也可以称为波束形成向量, 其描述了在波束形 成时向天线阵列中的每个天线单元应用的相位偏移 (也可能有幅度缩 放) 。 以下, 发送台站的发送天线阵列的天线权重向量也可简称为 TX AWV, 接收台站的接收天线阵列的天线权重向量也可简称为 RX AWV。
一个发送台站处可以使用多个不同的发送天线权重向量。 每个发送台 站可使用的这些天线权重向量构成一个矩阵, 矩阵中的每一列 (或每一 行) 是一个天线权重向量。 该矩阵被称为发送码本或简称为 TX码本。 在 一个实施例中, 发送台站的 TX码本是方阵, 即该发送台站的 TX AWV的 数目等于该发送台站的发送天线阵列所包括的发送天线单元的数目。 在一 个实施例中, TX码本可以采取酋矩阵的形式, 矩阵的列数等于相应发送 台站的发送天线阵列所包括的天线单元的数目。 例如, 对于 = 1, 2,…, N, 其发送天线阵列中包括 个天线单元的发送台站 10,.的 ΤΧ码本 W,可 以是如下 1 散傅立叶矩阵:
Figure imgf000007_0001
其中 wi = e-」 '', W,.的第 列 wi;Jt是第 :个发送天线权重向量, k = 1, 2, ...5 /ίο 本领域的技术人员将清楚, ΤΧ码本不限于上述示例, 而是可 以采取其他形式。 注意, 在本文中, [.]τ表示向量或矩阵的转置, [.]Η表示 向量或矩阵的埃米特共轭。
类似地, 一个接收台站处可以使用多个不同的接收天线权重向量。 每 个接收台站可使用的这些天线权重向量构成一个矩阵, 矩阵中的每一列 (或每一行) 是一个天线权重向量。 该矩阵被称为接收码本或简称为 RX 码本。 在一个实施例中, 接收台站的 RX码本是方阵, 即该接收台站的 RX AWV的数目等于该接收台站的接收天线阵列所包括的接收天线单元的 数目。 在一个实施例中, RX码本可以采取酋矩阵的形式, 矩阵的列数等 于相应接收台站的接收天线阵列所包括的天线单元的数目。 例如, 对于 = 1, 2,…, N, 其接收天线阵列中包括 r,个天线单元的接收台站 20,.的 RX码 本 D,可以 叶矩阵:
Figure imgf000008_0001
(式 2) 其中 4 = e-w, j d 。 D,的第 A:列 是第;t个接收天线权重向量, 其 中 = 1, 2, ..., rio 本领域的技术人员将清楚, RX码本不限于上述示例, 而是可以采取其他形式。
无线通信系统 1还包括协调器 30, 它是无线通信系统 1 中的控制 /协 调点, 负责控制和协调所有发送台站 10h 102, ...,和 1(½和接收台站 20, 202,…,禾 Π 20ΛΓ。
在一种实现方式中, 发送台站 10 102, ...,和 1( 和接收台站 2( 202, ...,和 20^构成一个基本服务集 (BSS) /个人基本服务集 (PBSS) 。 在此情况下, 协调器 30可以是该 BSS中的接入点 (AP) 或者 PBSS中的 控制和协调点 (PCP) , 并且台站经由协调器 30相互通信。
在无线通信系统 1 中, 多对发送台站和接收台站可同时进行无线通 信, 并且如上所述, 每个接收台站不仅可接收到从与其相对应的发送台站 (即, 该接收台站预期与之通信的发送台站) 发送来的无线信号, 还可能 接收到从其他发送台站发送来的无线信号。 为了使得接收台站 20(能够以 尽可能高的质量接收到从发送台站 10,.发送来的信号 (本链路的信号) 并 且所受到的来自交叉链路的干扰尽可能小, 可以对发送台站 10,·的发送天 线阵列和接收台站 20,·的接收天线阵列进行波束形成训练来确定优化的 TX AWV和优化的 RX AWV。
在本发明中, 发送台站 1015 102,…,和 1( 在同一时间段中通过各自的 发送天线阵列基本同时地发送训练序列 (training sequence , 也可简称为 TS) , 并且接收台站 2(^, 202,...,和 2( 中的每一个通过各自的接收天线阵 列接收由各发送台站 10i, 102, ...,和 IOJV发送的各个训练序列, 并获得与该 接收台站和各发送台站 10b 102j ...,和 10w之间的各个链路 (包括本链路和 交叉链路) 的信道状况有关的信息 (可称为信道信息) 。 然后, 该信息被 用于确定发送台站 1015 102, ...,和 1( 的发送天线阵列的优化 TX AWV和 接收台站 20 202, ...,和 20w的接收天线阵列的优化 RX AWVo 下文中将 对此进行详细描述。
正如本领域的技术人员可理解的, 这里的训练序列可以是系统中收发 的帧中包含的前导序列 (preamble sequence ) 。
图 2示出了无线通信系统 1中的协调器、 发送台站和接收台站的示例 性功能框图。 作为示例, 图 2只示出了一对发送台站 10,·和接收台站 20,-, 其他发送台站和接收台站可具有类似的功能配置。
发送台站 10,·包括协调器交互单元 101,·、 AWV设定单元 102,·以及训练 序列发送单元 103,·。 协调器交互单元 101,·用于向协调器 30发送请求, 以 及接收从协调器 30通知来的所分配时隙、 训练序列索引和优化 TX AWV、 空间复用指示等等。 AWV设定单元 102,·用于设定发送台站 10,·的 发送天线阵列 (图 2中未示出) 的天线权重向量。 训练序列发送单元 103,- 用于根据 AWV设定单元 102,·的设定, 经由发送台站 10,·的发送天线阵列 来发送训练序列。
接收台站 20,·包括协调器交互单元 201,.、 计算单元 202,·、 AWV设定单 元 203,.以及训练序列接收单元 204,.。 协调器交互单元 201,.用于向协调器 30 反馈信道信息等等, 以及接收从协调器 30通知来的所分配时隙、 训练序 列索引、 空间复用指示等等。 AWV设定单元 203,·用于设定接收台站 20,的 接收天线阵列 (图 2中未示出) 的天线权重向量。 训练序列接收单元 204,· 用于根据 AWV设定单元 202,.的设定, 经由接收台站 20,·的接收天线阵列 来接收从系统中的发送台站发送来的训练序列。 另外, 计算单元 20¾用于 根据训练序列接收单元 204(接收到的训练序列, 来估计与该接收台站和各 发送台站之间的各个链路 (包括本链路和交叉链路) 的信道响应, 计算木 链路的接收方信号与干扰和噪声比 (SINR ) 、 本接收台站的优化 RX AWV等等。 协调器 30包括台站交互单元 301、 安排单元 302、 计算单元 303以及 空间复用判定单元 304。 台站交互单元 301用于接收从台站发送来的请求 和反馈信息, 并向台站发送通知等等。 安排单元 302基于 SP可用性来安 排基于空间复用的同时波束形成训练。 计算单元 303根据从台站反馈来的 信息来计算各发送台站的优化 TX AWV、 各链路的发送方信号与泄漏和噪 声比 (SLNR ) 等等。 空间复用判定单元 304用于基于台站反馈来的信息 和计算单元 303的计算结果等等来判定是否能进行空间复用。
下面结合图 1-4来描述在无线通信系统 1中执行主动式同时波束形成 训练的情况下的过程流程。
图 3示出了根据本发明第一实施例的主动式同时波束形成训练的方法 的流程图。
在初始化阶段 (可包括步骤 S101-S103 ) 期间, 在步骤 S101中, 如图 1所示的无线通信系统 1中的 N个通信对的发送台站 10b 102, ...,和 10w作 为服务发起者向协调器 30发送服务时段 (SP) 请求和各自的 TX码本。 例 如, 第 i通信对的发送台站 10,· ( i = 1, 2, ..., Ν) 可通过其协调器交互单元 101,.向协调器 30发送 SP请求和其 ΤΧ码本。 发送台站 10i的 可如以上 式 (1 ) 所示。 注意, 如果协调器 30 巳预先通过某种方式获知系统中的各 发送台站的 TX码本, 则此处发送台站无需向协调器 30发送 TX码本。
在步骤 S102中, 在接收到来自各通信对的发送台站 10l5 102,…,和 1( 的主动 SP请求后, 协调器 30基于 SP可用性来安排基于空间复用的同 时波束形成训练。 例如, 协调器 30可以经由其台站交互单元 301接收 SP 请求和 TX码本, 并且利用其安排单元 302来安排基于空间复用的同时波 朿形成训练。
一旦决定了空间复用, 在步骤 S103中, 协调器 30就将所安排的时隙 和为每一通信对分配的训练序列索引通知给这多个通信对的服务发起者 (发送台站 10υ 102> ...,和 和服务响应者 (接收台站 20, 202,…,和 20^) 。 例如, 协调器 30可经由其台站交互单元 301将上述时隙和索引通 知给各发送台站 10b 102, ...,和 1( 和接收台站 20, 202, 和 2(^。
在一个实施例中, 所安排的时隙是发送训练时隙, 其中包括 个发 送训练子时隙。 rN等于无线通信系统 1中的所有 N个发送台站 1015 102, ..., 和 1CV的 TX码本矩阵的最大列数, 亦即等于具有最多发送天线单元的发 送台站的发送天线单元数目。
另外, 为了说明简单, 这里假定为第 通信对分配的训练序列的索引 等于在图 1 中为了说明而为该通信对分配的索引 。 然而, 本领域的技术 人员应明白, 本发明并不限于此。
发送台站 10,·和接收台站 20;—旦得知了分配给第 ΐ通信对的训练序列 索引, 就可以推导出分配给该通信对的训练序列。 这样, 由于训练序列是 发送台站和接收台站双方已知的, 因此每个接收台站在接收到训练序列时 可以估计其与各个发送台站之间的信道响应。 另外, 在本发明中, 由于各 个通信对使用的训练序列之间是正交的, 因此每个接收台站在接收到训练 序列时可以分辨出该训练序列是由与自身相对应的发送台站还是其他发送 台站发送的。
用 TS,表示分配给第 通信对的训练序列, 该训练序列可包括 Μ个符 号。 这里, 假定系统中的 N个通信对的训练序列的长度均为 Μ。 通常, Λ 为大于 1的整数。 在下文中将结合图 8和 9更详细描述训练序列的示例。
接下来, 进入发送训练阶段。 发送训练阶段大体上包括步骤 S104 - S108。
在步骤 S104中, 接收台站 2( , 202, ...,和 20w将各自的接收天线阵列 的天线权重向量固定到某个 RX AWV。 在各个接收台站之间, 这个固定 RX AWV可以相同或不同。 另外, 这个 RX AWV可以是最常用的或者是 遵循其他选择标准来选择的。 例如, 接收台站 20,可利用其 AWV设定单元 203,将其接收天线权重向量固定为 Di中的某一列。
在步骤 S105 中, 在所分配的各个发送训练子时隙中, 发送台站 10,, 102,…,和 1( 从各自的 TX码本中取出不同的一列 TX AWV, 将取出的 TX AWV应用到各自的发送天线阵列以调节各个天线单元的相位 (和幅 度) , 并且基本同时地经由各自的发送天线阵列发送各自的训练序列。
例如, 发送台站 10,.在第 (k = 1, 2, ..., 个发送训练子时隙中利用 其 AWV设定单元 10 向其发送天线阵列应用第 A个 TX AWV (例如, 中的第 列) , 并利用其训练序列发送单元 103,经由其发送天线阵列的每 个天线单元发送训练序列 TS,。 与此同时, 系统中的其他发送台站在第 k 个发送训练子时隙中也进行类似的操作。
在步骤 S106中, 相应地, 各接收台站 201,202,...,和2(^在固定其11 AWV的情况下接收各发送台站 101 102, 和 1CW发送的训练序列。 例 如, 接收台站 20,·利用其训练序列接收单元 204,·经由其接收天线阵列来接 收训练序列。 这里, 接收台站 20,·除了接收到与自身相对应的发送台站 10,· 发送的训练序列外 (即, 本链路的信号) , 也将接收到系统中的其他发送 台站发送的训练序列 (即, 交叉链路的信号) 。
假设在整个发送训练时隙中, 接收台站 20,·经由其接收天线阵列接收 到的、 从第 q个发送台站 10 发送的训练序列构成一个矩阵 TR^ (i = 1, 2, ...,N, q= l, 2, ...,N 如下:
Figure imgf000012_0001
(式 3) 其中 s是符号索引, s= l,2,...,M; 是子时隙索引, k= l,2, ...,ti0
g,s表示上述矩阵中的一行, 则 qs可以被称为特定发送加权信道 冲击响应 (CIR) , 其是信道信息的一种, 是由接收台站 20测量到的, 其 可以被表达如下:
Figure imgf000012_0002
(式 4) 其中 df是接收台站 20,·在发送训练时隙期间的固定 RX AWV, h,表示在第 s个符号时刻的多输入多输出 (MIMO) CIR, 并且 是第 g个发送台站 10g的 TX码本。
然后, 在步骤 S107中, 各接收台站 20,, 202,…,和 20w对于各自的本 链路和交叉链路, 进一步获取 (估计) 与各链路的信道状况有关的信道信 息, 并且将所获取的信道信息与各自的 RX码本的大小 (例如, 列数) 告 知协调器 30。 例如, 接收台站 20,.可利用其计算单元 202,·得到上述信道言 息, 并利用其协调器交互单元 201,.来将所得到的信道信息和 RX码本大小 反馈给协调器 30。
上述信道信息可包括信道冲击响应 (CIR) 、 所有子载波上的平均频 域信道响应 (CR) 、 所有子载波上的 CR协方差矩阵中的任一种。
具体而言, 第 个通信对的接收台站 20,·与第 个发送台站 10g之间的 链路的相对于第 s个符号的信道冲击响应 (CIR) 为如上所述的 „。
上述 CIR可被转换成第 c个子载波的频域信道响应 Χ^ε, 其可以被表 达为:
K HCW (式 5) 其中 C是子载波的索引, c = l,2, ...,C, 其中 C表示子载波的总数。
所有子载波的平均频域 CRA可以通过下式获得:
CRl!q (式 6)
Figure imgf000013_0001
CR协方差矩阵 CM^可以通过下式获
CM^ =φ, ∑Χ Ί (式 7) 每个接收台站 20,· G'= 1,2,...,N) 将 ,s. (g= l,2, ...,N, s = 1, 2,…, ) 或者 CR^ (q = 1, 2, ...,N) 或者 CM^ (q = 1, 2,…, N) 作为信道信 息, 连同其 RX码本的大小 (列数) 一起反馈给协调器 30。 注意, 如果 协调器 30巳预先通过某种方式获知系统中的各接收台站的 RX码本, 则此 处接收台站无需向协调器 30通知 RX码本的大小。 另外, 在一种实现方式 中, 信道信息可以被进一步量化, 以便减少开销。
在步骤 S108中, 在接收到来自各接收台站 20^ 202,…,和 20w反馈的 信道信息以及 RX码本大小之后, 协调器 30为各通信对计算优化的 TX AWV和作为链路泄漏状况的度量的 SLNR, 安排接收训练时隙, 并将计算 出的优化 TX AWV告知各发送台站 10υ 102, ..·,和 WN, 同时将所安排的 接收训练时隙告知各发送台站 , 102,…,和 10w和各接收台站 20,, 202,…, 和 20w。 例如, 协调器 30可利用其台站交互单元 301接收来自各接收台站 的反馈, 利用其计算单元 303计算优化 TX AWV和 SLNR, 利用安排单元 302安排接收训练时隙, 并利用其台站交互单元 301将计算出的 TX AWV 告知各发送台站, 以及将所安排的接收训练时隙告知各发送台站和接收台 站。
具体而言, 第 Ϊ'通信对的发送台站 10,·的优化 TX AWV可利用下式来 计算:
R (式 8 )
Figure imgf000014_0001
其中 eig(.)表示最大的特征向量, N。是加性白高斯噪声 (AWGN) 的单边 功率谱密度 (PSD ) 。
如果从接收台站反馈回的是 CIR, 则协调器 30可以先利用以上的式 6 或式 7来计算平均频域信道响应或 CR协方差矩阵, 再利用以下的式 9或 式 10来计算上式中的 R, 中。 如果从接收台站反馈回的是平均信道响应 CR^或者 CR协方差矩阵 CM , 则协调器 30可以直接利用以下的式 9或 式 10来计算上式中的 R 。
R, q = W.CR^CR^W; (式 9) R^ W'.CIV^W (式 10) 然后, 协调器 30可 发送方 sum:
SLNR; (式 11 )
Figure imgf000014_0002
另外, 协调器 30还可以参考各接收台站 20,, 202,…,和 2( 告知的 RX 码本的大小, 来安排接下来的接收训练时隙。 所安排的接收训练时隙可包 括 RN个子时隙。 RN等于无线通信系统 1 中的所有 N个接收台站 2015 202,…,和 20^的 RX码本矩阵的最大列数, 亦即等于具冇最多接收天线单 元的接收台站的接收天线单元数目。
然后, 协调器 30将为第 通信对计算出的优化 TX AWV (即 通 知给发送台站 10,., 并且将所安排的接收训练时隙告知各发送台站和接收 台站。
接下来, 进入接收训练阶段。 接收训练阶段大体上包括步骤 S109 - Slllc
具体而言, 在步骤 S109中, 各发送台站 1015 102,…,和 1( 将各自的 发送天线权重向量固定为从协调器 30通知来的优化 TX AWV。 即, 发送 台站 10,·将其发送天线权重向量固定为 W 。 在将其发送天线向量固定为优 化的 TX AWV的情况下, 各发送台站 10,, 102, ...,和 10w在每个接收训练 子时隙中基本同时地发送相应的训练序列 TS,。 例如, 每个发送台站 10,·在 所安排的 个接收训练子时隙中利用其 AWV设定单元 102,·向其发送天 线阵列应用 w', 并利用其训练序列发送单元 103,.经由其发送天线阵列的 每个天线单元发送训练序列 TS, -。
然后, 在步骤 S110中, 各接收台站 20,, 202, ...,和 2( 在各个接收训 练子时隙中切换其 RX AWV, 并接收各发送台站发送的训练序列。
例如, 接收台站 20i在第 (k = l, 2, ..., 个接收训练子时隙中利用 其 AWV设定单元 203;向其接收天线阵列应用第 :个 RX AWV (例如, 中的第 列) , 并利用其训练序列接收单元 204,·经由其接收天线阵列接收 从各发送台站发送来的训练序列。
这里, 接收台站 20,除了接收到与自身相对应的发送台站 10,·发送的训 练序列外 (即, 本链路的信号) , 也将接收到系统中的其他发送台站发送 的训练序列 (即, 交叉链路的信号) 。
假设在整个接收训练时隙中, 接收台站 20,·经由其接收天线阵列接收 到的、 从第 q个发送台站 109发送的训练序列构成一个矩阵 RR^ " = 1,
■■,Λ 9 如下:
Figure imgf000015_0001
(式 12) 其中 s是符号索引, S = 1,2,...,M; k是子时隙索引, = 1,2, ..., ·, -。
用 y,.,^表示上述矩阵中的一列, 则 可以被称为特定接收加权信道 冲击响应 CIR, 其是信道信息的一种, 是接收台站 20,·测量到的, 其可以 被表达如下:
yi,q,s = Dfh.w (式 13 ) 其中 是接收台站 20,的 RX码本, hs表示第 s个符号吋刻的多输入多输 出 (MIMO ) CIR, 并且 w'q是第 g个发送台站 10在接收训练阶段期间的 固定 TX AWV。
在步骤 S111中, 各接收台站 20b 202, ...,和 2( 对于各自的本链路和 交叉链路, 进一步获取 (估计) 与各链路的信道状况有关的信道信息, 并 进而计算出优化的 RX AWV以及作为各链路的链路质量的度量的 SINR, 然后将计算出的 SINR反馈给协调器 30。 例如, 接收台站 20,可利用其计 算单元 202,.来得出上述信道信息、 优化 RX AWV和 SINR、 并利用其协调 器交互单元 201,.来将所计算出的 SINR反馈给协调器 30。
上述信道信息可包括信道冲击响应 (CIR) 、 所有子载波上的平均频 域信道响应 (CR) 、 所有子载波上的 CR协方差矩阵中的任一种。
具体而言, 第 i个通信对的接收台站 20,与第 g个发送台站 10之间的 链路的相对于第 s个符号的信道冲击响应 (CIR) 为如上所述的>^,。
该 CIR可被转换成第 c个子载波的频域信道响应 , 其可以被表达 为:
Y ,,c = D Hcw'9 (式 14 ) 其中 c是子载波的索引, c = l, 2,. ..,C, 其中 C表示子载波的总数。
所有子载波的平均频域信道响应 CR ^可以通过下式获得 -
CR,, - £(Yi,J = ^∑Yi,.c (式 15 )
CR协方差矩阵 CM^可以通过下式获得- (式 16 )
Figure imgf000016_0001
接收台站 20,.进而利用下式来计算其与发送台站 10,·之间的通信的优化 RX AWV: + N0】 (式 17)
Figure imgf000017_0001
其中 eigO表示最大的特征向量, NQ是加性白髙斯噪声 (AWGN) 的单边 功率谱密度 (PSD ) 。
取决于接收台站 20,·计算的是平均频域信道响应 还是 CR协方差 矩阵 CM^, 上式中的 ^可以如下计算:
Ri q
Figure imgf000017_0002
(式 18 )
Ri q = D'CM ; <?D (式 19 ) 然后, 接收台站 20,.利用下式计算第 i通信对的接收 S/N/?i: 麵' (式 20 )
Figure imgf000017_0003
S/NR,.可作为第 i通信对之间的链路的链路质量的一个度量。 接收台站 20,·随后将计算出的 N ?,反馈给协调器 30。
最后, 在判定阶段 (包括步骤 S112-S115 ) 期间, 在步骤 S112中, 协 调器 30通过将各接收台站 20,, 202,…,和 2( 反馈来的 SINR与各通信对的 相应预定阈值 γ相比较, 来评估各链路的链路质量。 例如, 协调器 30经由 台站交互单元 301接收到从接收台站 20(反馈来的 SINR, 并利用空间复用 判定单元 304将接收台站 20;反馈来的第 i通信对的 Si 与第 i通信对的 阈值 γ,相比较。
在步骤 S113中, 协调器 30基于在步骤 S112中对链路质量的评估结 果来判定是否能够进行空间复用, 或者是否需要进行再训练。 例如, 协调 器 30利用其空间复用判定单元 304来判定是否能够进行空间复用。
具体而言, 如果在步骤 S112中发现所有通信对的 SINR均大于或等于 其相应的阈值 γ, 则协调器 30判定能够进行空间复用, 并且该方法随后进 行到步骤 S114。 反之, 如果有任何一个通信对的 SINR小于其相应的阈值 γ, 则协调器 30判定需要再进行基于空间复用的波束形成训练, 该方法随 后进行到步骤 S115。
在步骤 S114中, 协调器 30将可用的空间复用的服务时段通知给各发 送台站 10ΐ5 102,…,和 10w和各接收台站 2015 202,…,和 2( 。 此波束形成训 练过程然后结束。 此后, 第 通信对的发送台站 10,.和接收台站 20,.可利用 其在波束形成训练过程中得到的 w',和 d',分别作为 TX AWV和 RX AWV 来与彼此进行数据通信。
另一方面, 在步骤 S115 中, 协调器 30按照基于各发送台站 101 102, ...,和 1( 和各接收台站 2015 202, ...,和 20^之间的各链路的泄漏状况的 标准排除一对或多对通信对。 例如, 协调器 30可丢弃具有最小 SLNR的 通信对。 然后, 过程返回到步骤 S108, 在排除具有最小 SLNR的通信对的 情况下, 针对剩余的 N-1对发送台站和接收台站重复步骤 S108及随后的 步骤, 以进行重训练, 直到在步骤 S113中获得肯定结果为止。
图 4示出了根据本发明第二实施例的主动式同时波束形成训练的方法 的流程图。
根据第二实施例的方法与图 3所示的根据第一实施例的方法的不同之 处在于用步骤 S208和 S215分别取代了步骤 S108和 S115。
具体而言, 根据第二实施例, 在步骤 S208中, 协调器 30无需像步骤 S108中那样计算各通信对的 SLNR。
另外, 如果在步骤 S113中, 协调器 30基于步骤 S112中的比较结果 而判定不能够进行空间复用, 即需要再进行波束形成训练, 那么该方法随 后进行到步骤 S215。
在步骤 S215中, 协调器 30通知各接收台站 20,, 202, ...,和 2( ^将其 RX AWV固定为在步骤 S111中计算出的优化 RX AWV。 例如, 协调器 30 利用台站交互单元 301通知接收台站 20,·将其 RX AWV固定为 d',。 然后, 过程返回到步骤 S105, 在各接收台站的 RX AWV被重置为优化 RX AWV 的情况下重复步骤 S105 , 并进而重复进行 S105之后的步骤, 以进行重训 练, 直到在步骤 S113中获得肯定结果为止。
注意, 可以组合第一实施例和第二实施例。 即, 如果在步骤 S113 中, 协调器 30判定需要继续进行波朿形成训练, 那么协调器 30可以既丢 弃具有最小 SLNR的通信对, 又通知剩余的各个通信对的接收台站将其 RX AWV固定为在步骤 S111中计算出的优化 RX AWV, 然后使过程返回 到步骤 S105, 重复步骤 S105及随后的步骤。
以上描述了系统中的多对通信台站几乎同时主动发起服务吋段请求的 情况。 然而, 系统中的多个通信对不一定要同时发起服务时段请求, 而可 以根据需要随时发起服务时段请求。
下面结合图 5-7来描述这种情况。 图 5示出了在这种按需式同时波束 形成训练的情况下无线通信系统 1的示意图。
如图 5所示, 系统中的第 1, 2,…, N-1个通信对已经经过波束形成训 练, 正在进行数据通信。 此时, 一个或多个另外的通信对 (例如第 N通信 对) 发起服务时段 (SP) 请求并且向协调器 30发送其 TX码本。 在接收到 来自第 N通信对的请求后, 协调器 30综合考虑包括第 1, 2, N-l, N对通 信台站的系统的情况, 以基于服务时段可用性安排基于空间复用的同时波 束形成训练。 然后系统中的所有 N对通信对执行如上所述的同时波束形成 训练。
图 6示出了根据本发明第三实施例的同时波束形成训练的方法的流程 图。
根据第三实施例的方法与图 3所示的根据第一实施例的方法的不同之 处在于步骤 S301-S304取代了步骤 S101-S103。
具体而言, 根据第三实施例, 在步骤 S301 中, 系统中已经有一对或 多对通信台站经过了波朿形成训练, 并例如正在进行数据通信。
在步骤 S302中, 至少一对额外的通信台站中的发送台站向协调器 30 发送服务时段请求以及相应的 TX码本。
在步骤 S303 中, 在接收到来自额外的至少一对通信台站的服务时段 请求后, 协调器 30综合考虑系统中的所有通信对的情况, 基于服务时段 可用性安排基于空间复用的同时波束形成训练, 并且通知系统中的所有通 信对将要重新进行波束形成训练, 同时将所安排的训练时皞和分配给各通 信对的训练序列索引告知各通信对的发送台站和接收台站。
然后, 在步骤 S104-S115中, 各通信对在协调器 30的帮助和协调下以 类似于第一实施例的方式进行同时波束形成训练。
图 7示出了根据本发明第四实施例的同时波束形成训练的方法的流程 图。
根据第四实施例的方法与图 6所示的根据第三实施例的方法的不同之 处在于用步骤 S208和 S215分别取代了步骤 S108和 S115。 在以上对第二 实施例的描述中已经给出了关于步骤 S208和 S215的描述, 这里将不再重 类似地, 也可以组合第三实施例和第四实施例。 SP, 如果协调器 30 判定需要继续进行波束形成训练, 那么可以既丢弃具有最小 SLNR的通 对, 又通知剩余的各个通信对的接收台站将其 RX AWV固定为计算出的 优化 RX AWV, 然后使过程返回到步骤 S105, 重复步骤 S105及其后的步 图 8示出了本发明中可使用的训练序列的一个示例。 如图 8所示, 训 练序列可以包括互补 Golay序列。 基本 Golay序列 G = [Ga Gbf包括两个 互补序列 Ga = [Gaj Ga2 ... Ga^—厦] 7和 Gb = [Gbj Gb2… GbN MAX:f, 其中
Gbv (v = 1,...^_ΛΜ^)本身各自是一个符号序列, 其中包括 S个符 号。 N一 MA 表示系统中允许同时训练的通信对的最大数目。 在分配索引 时, 假设协调器 30为第 ΐ通信对分配训练序列索引 " 每个通信对在得知 该索引
Figure imgf000020_0001
第 ι·通信对 (i' = 3, 4....,N) :
TS, = [Ga^—厦― i+2Gaw— — i+ .Gaw A^—wGbw— — i+2Gbw—顯— w'Gbw— — ,.+ιί" 所有通信对得出的训练序列是相互正交的。
另外, 如图 8所示, 在每个通信对的训练序列中的两个互补序列的两 端, 可以分别附加循环前缀和 /或循环后缀, 以例如调整由信道和硬件导致 的任何可容忍的定时误差。
注意, 训练序列可以始终利用单载波模式来发送。
另外, 0^和 Gbv的长度 S取决于最大信道阶数 L (经 chip长度 (即 6^或6 中包括的每个符号的时间长度) 归一化) , 满足 S > = 。 图 9示出了本发明中可使用的训练序列的另一个示例。 如图 9所示, 训练序列可以包括 Zadoff-Chu序列。 基本 Zadoff-Chu序列可以写作 Z= [Z, Z2 ... ZN MAX , 其中 Zv (v = 1,...^— 本身是一个符号序列, 其中包 括 5个符号。 表示系统中允许同时训练的通信对的最大数目。 在分 配索引时, 假设协调器 30为第 /通信对分配训练序列索引 每个通信对 在得知该索引 i后, 可如下得出与本通信相关联的训练序列:
第 1通信对: TS^ ^Z,..^
第 2通 对: S2 =
Figure imgf000021_0001
_MAX' V.!LN ΜΑΧ_ 第 i通信对 (i = 3 4·.·. N) TS( = [Zw i+2Zw_ .Zw—
所有通信对得出的训练序列是相互正交的。
另外, 如图 9所示, 在每个通信对的训练序列中包含的 Zadoff-Chu序 列的两端, 可以分别附加循环前缀和 /或循环后缀, 以例如调整由信道和硬 件导致的任何可容忍的定时误差。
与以上所述类似地, 在使用 Zadoff-Chu序列作为训练序列的情况下, 训练序列也可始终利用单载波模式来发送。
另外, Zv的长度 ^取决于最大信道阶数 (经 chip长度 (即 Zv中包括 的每个符号的时间长度) 归一化) 满足 S > = 。
以上出于说明而非限制目的已经描述了本发明的一些具体实施例。 然 而, 本发明并不限于所描述的实施例。 本领域的技术人员将会明白, 可以 对本发明进行多种修改、 组合和替换, 并且本发明包含落在所附权利要求 书的范围内的这种修改、 组合和替换。

Claims

权 利 要 求 书
1.一种无线通信系统, 包括:
各自包括发送天线阵列的多个发送台站, 所述多个发送台站在同一时 间段中通过各自的发送天线阵列发送训练序列; 以及
与所述多个发送台站分别对应的、 各自包括接收天线阵列的多个接收 台站, 所述多个接收台站中的每个接收台站通过各自的接收天线阵列接收 由所述多个发送台站发送的各个训练序列, 并获取与该接收台站和所述多 个发送台站中的各个发送台站之间的各个链路的信道状况有关的信道信 息, 所述信道信息被用于确定所述多个发送台站的发送天线阵列的优化发 送天线权重向量和所述多个接收台站的接收天线阵列的优化接收天线权重 向量中的至少一者。
2.如权利要求 1所述的无线通信系统, 其中
所述多个发送台站在同一时间段中在切换各自的发送天线权重向量的 同时通过各自的发送天线阵列发送训练序列, 并且
所述多个接收台站中的每个接收台站在固定各自的接收天线权重向量 的同时通过各自的接收天线阵列接收由所述多个发送台站发送的各个训练 序列, 并获取与垓接收台站和所述多个发送台站中的各个发送台站之间的 各个链路的信道状况有关的信道信息, 该信道信息被用于确定所述多个发 送台站的发送天线阵列的优化发送天线权重向量。
3.如权利要求 1所述的无线通信系统, 其中
所述多个发送台站在同一时间段中在固定各自的发送天线权重向量的 同时通过各自的发送天线阵列发送训练序列, 并且
所述多个接收台站中的每个接收台站在切换各自的接收天线权重向量 的同时通过各自的接收天线阵列接收由所述多个发送台站发送的各个训练 序列, 并获取与该接收台站和所述多个发送台站中的各个发送台站之间的 各个链路的信道状况有关的信道信息, 该信道信息被用于确定所述多个接 收台站的接收天线阵列的优化接收天线权重向量。
4.如权利要求 1所述的无线通信系统, 还包括协调器, 其中 所述多个接收台站将所获取的信道信息反馈给所述协调器, 并且 所述协调器基于从所述多个接收台站反馈来的信道信息, 评估所述多 个发送台站和所述多个接收台站之间的各个链路的链路质量, 以判定是否 需要进行再训练。
5.如权利要求 4所述的无线通信系统, 其中, 在所述协调器判定需要 进行再训练的情况下, 再训练基于先前训练中确定的优化发送天线权重向 量和优化接收天线权重向量中的至少一者来进行。
6.如权利要求 4所述的无线通信系统, 其中, 在所述协调器判定需要 进行再训练的情况下, 所述多个发送台站和多个接收台站中的一对发送台 站和接收台站按照基于所述多个发送台站和所述多个接收台站之间的各个 链路的泄漏状况的标准被排除, 并且再训练针对剩余的发送台站和接收台 站进行。
7.如权利要求 1所述的无线通信系统, 还包括协调器, 该协调器根据 所述多个发送台站的请求, 来为所述多个发送台站和所述多个接收台站安 排训练时隙。
8.如权利要求 1所述的无线通信系统, 还包括协调器, 该协调器根据 所述多个发送台站之一的请求, 来为所述多个发送台站和所述多个接收台 站安排训练时隙。
9.如权利要求 1所述的无线通信系统, 其中每个所述训练序列包括互 补 Golay序列或 Zadoff-Chu序列中的任一种。
10.如权利要求 9所述的无线通信系统, 其中每个所述训练序列还包 括循环前缀和循环后缀中的至少一者。
11.一种在包括多个发送台站和与所述多个发送台站分别对应的接收 台站的无线通信系统中进行波束形成训练的方法, 包括:
训练序列发送步骤, 所述多个发送台站在同一时间段中通过各自的发 送天线阵列发送训练序列;
训练序列接收步骤, 所述多个接收台站中的每个接收台站通过各自的 接收天线阵列接收由所述多个发送台站发送的各个训练序列;
信道信息获取步骤, 获取与所述多个接收台站中的每个接收台站和所 述多个发送台站中的各个发送台站之间的各个链路的信道状况有关的信道 信息; 以及
优化天线权重向量确定步骤, 基于所述信道信息来确定所述多个发送 台站的发送天线阵列的优化发送天线权重向量和所述多个接收台站的接收 天线阵列的优化接收天线权重向量中的至少一者。
12.如权利要求 11所述的方法, 其中
所述训练序列发送步骤包括所述多个发送台站在同一时间段中在切换 各自的发送天线权重向量的同时通过各自的发送天线阵列发送训练序列, 所述训练序列接收步骤包括所述多个接收台站中的每个接收台站在固 定各自的接收天线权 S向量的同时通过各自的接收天线阵列接收由所述多 个发送台站发送的各个训练序列, 并且
所述优化天线权重向量确定步骤包括基于所述信道信息来确定所述多 个发送台站的发送天线阵列的优化发送天线权重向量。
13.如权利要求 11所述的方法, 其中
所述训练序列发送步骤包括所述多个发送台站在同一时间段中在固定 各自的发送天线权重向量的同时通过各自的发送天线阵列发送训练序列, 所述训练序列接收步骤包括所述多个接收台站中的每个接收台站在切 换各自的接收天线权重向量的同时通过各自的接收天线阵列接收由所述多 个发送台站发送的各个训练序列, 并且
所述优化天线权重向量确定歩骤包括基于所述信道信息来确定所述多 个接收台站的接收天线阵列的优化接收天线权重向量。
14.如权利要求 11所述的方法, 还包括:
再训练判定步骤, 基于所获取的信道信息, 来评估所述多个发送台站 和所述多个接收台站之间的各个链路的链路质量, 以判定是否需要进行再 训练。
15.如权利要求 14所述的方法, 还包括:
在判定需要进行再训练的情况下, 基于先前训练中确定的优化发送天 线权重向量和优化接收天线权重向量中的至少一者来进行再训练。
16.如权利要求 14所述的方法, 还包括: 在判定需要进行再训练的情况下, 按照基于所述多个发送台站和所述 多个接收台站之间的各个链路的泄漏状况的标准排除所述多个发送台站和 所述多个接收台站中的一对发送台站和接收台站, 并且针对剩余的发送台 站和接收台站来执行所述再训练。
17.如权利要求 11所述的方法, 还包括- 根据所述多个发送台站的请求, 来为所述多个发送台站和所述多个接 收台站安排训练时隙。
18.如权利要求 11所述的方法, 还包括:
根据所述多个发送台站之一的请求, 来为所述多个发送台站和所述多 个接收台站安排训练时隙。
19.如权利要求 11 所述的方法, 其中每个所述训练序列包括互补 Golay序列或 Zadoff-Chu序列中的任一种。
20.如权利要求 19所述的方法, 其中每个所述训练序列还包括循环前 缀和循环后缀中的至少一者。
PCT/CN2011/000987 2010-09-26 2011-06-14 无线通信系统和用于无线通信系统的波束形成训练方法 WO2012037769A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013522069A JP5739532B2 (ja) 2010-09-26 2011-06-14 無線通信システムおよび無線通信システムのためのビーム形成トレーニング方法
US13/704,179 US9191079B2 (en) 2010-09-26 2011-06-14 Wireless communication system and beamforming training method for wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010295272.0A CN102412881B (zh) 2010-09-26 2010-09-26 无线通信系统和用于无线通信系统的波束形成训练方法
CN201010295272.0 2010-09-26

Publications (1)

Publication Number Publication Date
WO2012037769A1 true WO2012037769A1 (zh) 2012-03-29

Family

ID=45873405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000987 WO2012037769A1 (zh) 2010-09-26 2011-06-14 无线通信系统和用于无线通信系统的波束形成训练方法

Country Status (4)

Country Link
US (1) US9191079B2 (zh)
JP (1) JP5739532B2 (zh)
CN (1) CN102412881B (zh)
WO (1) WO2012037769A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220376755A1 (en) * 2021-04-29 2022-11-24 Industry Academy Cooperation Foundation Of Sejong University Multi-antenna channel estimation apparatus and method for beamforming

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8705661B2 (en) * 2012-02-29 2014-04-22 Wilocity, Ltd. Techniques for channel estimation in millimeter wave communication systems
US9252854B2 (en) * 2013-06-07 2016-02-02 Industrial Technology Research Institute User equipment having channel quality indicator feedback mechanism
CN103346826B (zh) * 2013-06-27 2016-06-29 福建星网锐捷网络有限公司 智能天线的选择方法和接入点
CN104333407B (zh) * 2013-07-22 2019-02-01 中兴通讯股份有限公司 一种信道信息的获取方法及装置
CN104427517B (zh) * 2013-08-30 2018-05-11 中国移动通信集团设计院有限公司 一种小区评估方法及装置
CN104734805A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 波束质量信息反馈方法和系统
KR102288978B1 (ko) * 2015-04-17 2021-08-12 삼성전자주식회사 통신 시스템에서 채널 추정 장치 및 방법
WO2016167557A1 (ko) * 2015-04-17 2016-10-20 삼성전자 주식회사 통신 시스템에서 채널 추정 장치 및 방법
KR102102414B1 (ko) * 2015-04-20 2020-04-20 한국전자통신연구원 Wlan 시스템에서의 하향 링크에 대한 간섭 정렬 방법 및 이를 수행하기 위한 액세스 포인트 및 사용자 단말
KR102132808B1 (ko) * 2015-05-19 2020-07-13 후아웨이 테크놀러지 컴퍼니 리미티드 어레이 안테나를 위한 채널 정보 피드백 방법 및 장치
CN107852209B (zh) * 2015-07-31 2021-01-12 华为技术有限公司 训练波束传输方法、装置及系统
CN108352886B (zh) * 2015-12-21 2021-12-03 英特尔公司 用于通信的方法和通信设备
CN106911371B (zh) * 2015-12-22 2021-11-23 中兴通讯股份有限公司 一种波束训练方法和装置
WO2017206642A1 (zh) * 2016-06-03 2017-12-07 华为技术有限公司 信息传输方法、网络设备及用户设备
CN112910529B (zh) * 2016-06-03 2022-09-23 华为技术有限公司 信息传输方法、网络设备及用户设备
CN107682066A (zh) * 2016-08-02 2018-02-09 北京信威通信技术股份有限公司 一种接收数据的方法及装置
CN108023618B (zh) * 2016-11-01 2021-02-26 华为技术有限公司 基于mimo天线的波束训练方法及装置
US10361761B2 (en) 2017-01-11 2019-07-23 Qualcomm Incorporated Fast training on multi-antenna systems
US10045197B1 (en) 2017-06-29 2018-08-07 Sony Corporation Discovery of neighbor nodes in wireless mesh networks with directional transmissions
US11622352B2 (en) 2018-09-28 2023-04-04 At&T Intellectual Property I, L.P. Receiver beamforming and antenna panel switching in advanced networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090318091A1 (en) * 2008-06-18 2009-12-24 Mediatek Inc. Method and system for beamforming training and communications apparatuses utilizing the same
CN101273389B (zh) * 2006-02-21 2010-04-14 中兴通讯股份有限公司 基于阵列天线的信道估计方法及装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118387B2 (en) * 1997-11-03 2015-08-25 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
US6115406A (en) * 1999-09-10 2000-09-05 Interdigital Technology Corporation Transmission using an antenna array in a CDMA communication system
US6850499B2 (en) * 2001-01-05 2005-02-01 Qualcomm Incorporated Method and apparatus for forward power control in a communication system
CA2415170C (en) * 2001-12-28 2008-07-15 Ntt Docomo, Inc. Receiver, transmitter, communication system, and method of communication
US6687492B1 (en) * 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US6947449B2 (en) * 2003-06-20 2005-09-20 Nokia Corporation Apparatus, and associated method, for communication system exhibiting time-varying communication conditions
JP2005020216A (ja) 2003-06-25 2005-01-20 Hitachi Ltd 無線位置測定方法と装置
GB2407008B (en) * 2003-10-10 2006-01-18 Toshiba Res Europ Ltd A mimo communication system
US20050135517A1 (en) * 2003-12-22 2005-06-23 Texas Instruments Incorporated Increasing effective number of data tones in a multi-antenna multi-tone communication system
EP1762012B1 (en) * 2004-06-18 2008-11-12 Telefonaktiebolaget LM Ericsson (publ) Co-sequence interference detection and treatment
US7826475B2 (en) * 2004-11-01 2010-11-02 Electronics And Telecommunications Research Institute Radio communication system, radio communication apparatus and radio communication method for UWB impulse communication
US7542515B2 (en) * 2004-12-29 2009-06-02 Intel Corporation Training symbol format for adaptively power loaded MIMO
JP4612489B2 (ja) * 2005-07-07 2011-01-12 富士通株式会社 無線通信システム及び無線通信方法並びに無線送信機及び無線受信機
US7773961B2 (en) * 2005-12-09 2010-08-10 Samsung Electronics Co., Ltd. Apparatus and method for channel estimation without signaling overhead
KR101399361B1 (ko) * 2006-08-25 2014-05-26 삼성전자주식회사 무선 통신 방법 및 장치
AU2006352302C1 (en) * 2006-12-22 2012-08-16 Fujitsu Limited Wireless communication method, base station, and user terminal
US7738530B2 (en) * 2006-12-26 2010-06-15 Motorola, Inc. Interference suppression for partial usage of subchannels uplink
US8027329B2 (en) 2007-02-07 2011-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Preamble design for synchronization and cell search
JP5341775B2 (ja) * 2007-12-28 2013-11-13 パナソニック株式会社 帯域割り当て方法
KR100991793B1 (ko) 2007-12-31 2010-11-03 엘지전자 주식회사 셀간 간섭 감소 방법
WO2009095744A1 (en) * 2008-01-28 2009-08-06 Nokia Corporation System for distributed beamforming for a communication system employing relay nodes
US8848816B2 (en) * 2008-05-21 2014-09-30 Qualcomm Incorporated Method and apparatus for determining the spatial channels in a spatial division multiple access (SDMA)-based wireless communication system
US20090310526A1 (en) * 2008-06-11 2009-12-17 Qualcomm Incorporated Systems and methods of simultaneous, time-shifted transmission to multiple receivers
US20100290449A1 (en) * 2008-08-20 2010-11-18 Qualcomm Incorporated Preamble extensions
US20100103893A1 (en) * 2008-10-29 2010-04-29 Samsung Electronics Co., Ltd. Spatial division multiple access wireless communication system
JP5097142B2 (ja) * 2009-02-04 2012-12-12 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
US8599804B2 (en) * 2009-08-07 2013-12-03 Broadcom Corporation Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications
US9026044B2 (en) * 2010-04-16 2015-05-05 Samsung Electronics Co., Ltd. Method and system for responder-aware relay station selection in wireless communication networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101273389B (zh) * 2006-02-21 2010-04-14 中兴通讯股份有限公司 基于阵列天线的信道估计方法及装置
US20090318091A1 (en) * 2008-06-18 2009-12-24 Mediatek Inc. Method and system for beamforming training and communications apparatuses utilizing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220376755A1 (en) * 2021-04-29 2022-11-24 Industry Academy Cooperation Foundation Of Sejong University Multi-antenna channel estimation apparatus and method for beamforming
US11863267B2 (en) * 2021-04-29 2024-01-02 Industry Academy Cooperation Foundation Of Sejong University Multi-antenna channel estimation apparatus and method for beamforming

Also Published As

Publication number Publication date
JP2013538492A (ja) 2013-10-10
CN102412881B (zh) 2015-06-17
US20130083865A1 (en) 2013-04-04
CN102412881A (zh) 2012-04-11
US9191079B2 (en) 2015-11-17
JP5739532B2 (ja) 2015-06-24

Similar Documents

Publication Publication Date Title
WO2012037769A1 (zh) 无线通信系统和用于无线通信系统的波束形成训练方法
KR102344710B1 (ko) 밀리미터파 무선 로컬 영역 네트워크에서 빔 형성 피드백을 위한 시스템 및 방법
US8374096B2 (en) Method for selecting antennas and beams in MIMO wireless LANs
CN109905153B (zh) 自适应mu-mimo波束成形
CN102468879B (zh) 用于无线通信系统的波束形成训练方法、设备和系统
JP4832087B2 (ja) 無線基地局装置及び端末装置
JP5487325B2 (ja) 無線通信システム、及び無線通信方法
US8514815B2 (en) Training signals for selecting antennas and beams in MIMO wireless LANs
KR101408938B1 (ko) 다중 입출력 무선통신 시스템에서 일반화된 아이겐 분석을이용한 빔포밍 장치 및 방법
US10277424B2 (en) Uplink sounding in a wireless local area network
WO2011059248A2 (ko) 무선랜 시스템에서의 mu-mimo 전송방법
US9166662B1 (en) Methods and apparatus for antenna spoofing
JP6296165B2 (ja) 無線ネットワークにおいてユーザ機器と基地局との間でデータを送信する方法
WO2010128620A1 (ja) 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
WO2014101170A1 (zh) Fdd系统中信道互易性补偿方法和装置
EP1929654A1 (en) Method for selecting antennas and beams in mimo wireless lans
JP2018537019A (ja) ワイヤレスネットワークにおけるアップリンクパイロット再使用及びユーザ近接検出
TW200913536A (en) A method for communicating in a MIMO context
CN112385155A (zh) 控制mimo无线通信中的极化分割复用
JP2006229766A (ja) 無線通信装置及び無線通信方法
KR20220082870A (ko) 광대역 채널에서 단일 송신기에 의한 공간 다중화
JP2010010966A (ja) 無線通信装置、及びmimo無線通信における信号送信方法
JP6163083B2 (ja) 通信装置及び送信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13704179

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013522069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826296

Country of ref document: EP

Kind code of ref document: A1