WO2017020202A1 - 训练波束传输方法、装置及系统 - Google Patents

训练波束传输方法、装置及系统 Download PDF

Info

Publication number
WO2017020202A1
WO2017020202A1 PCT/CN2015/085801 CN2015085801W WO2017020202A1 WO 2017020202 A1 WO2017020202 A1 WO 2017020202A1 CN 2015085801 W CN2015085801 W CN 2015085801W WO 2017020202 A1 WO2017020202 A1 WO 2017020202A1
Authority
WO
WIPO (PCT)
Prior art keywords
training beam
training
beam set
receiving end
base station
Prior art date
Application number
PCT/CN2015/085801
Other languages
English (en)
French (fr)
Inventor
刘坤鹏
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/085801 priority Critical patent/WO2017020202A1/zh
Priority to CN201580081582.3A priority patent/CN107852209B/zh
Priority to EP15899977.1A priority patent/EP3316493A4/en
Publication of WO2017020202A1 publication Critical patent/WO2017020202A1/zh
Priority to US15/878,406 priority patent/US10270509B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a training beam transmission method, apparatus, and system.
  • the frequency band above 6 GHz has rich spectrum resources and can support gigabit per second (Gbps) level wireless transmission of about 200 meters.
  • Gbps gigabit per second
  • the spatial loss during electromagnetic transmission is inversely proportional to the wavelength. The higher the transmission frequency, the shorter the wavelength and the greater the spatial transmission loss. Therefore, the space loss for wireless transmission using the high frequency band will be shorter than the low frequency.
  • high-frequency wireless communication mainly uses large-scale antenna arrays to form high-gain narrow beams for transmission, to compensate for large channel space, reflection, etc. in high-frequency transmission. loss.
  • a Base Station (BS) and a User Equipment Terminal (MS) establish a wireless communication link by beam pairing.
  • the antenna array of the BS transmits a beam
  • the antenna array of the MS receives the beam.
  • the AP and the MS are respectively connected to each other.
  • the beam direction is scanned to find the best paired beam, and the beam pairing between the BS end and the MS end is realized, thereby establishing an optimal communication link between the BS end and the MS end.
  • both the BS end and the MS end perform beam scanning.
  • the antenna array on the BS side has a size of 16 ⁇ 16
  • the beam width is about 6 degrees (deg)
  • the area covering the horizontal space of 60 degrees (deg) and the vertical space of 50 degrees (deg) needs to scan 60 beams, and the antenna array of the MS end.
  • the size is 4 ⁇ 4, and 16 beams need to be scanned.
  • the invention provides a training beam transmission method, device and system, which can reduce the overhead of transmitting a training beam.
  • a training beam sending method provided by the first aspect of the present invention includes:
  • the transmitting end determines a training beam set sent to the receiving end, where the training beam set includes at least one training beam;
  • the transmitting end sends, to the receiving end, indication information for indicating a weighting vector of the training beam set, where the weighting vector of the training beam set is used to represent a phase and amplitude weighting value of each training beam in the training beam set;
  • the transmitting end sequentially sends the training beam in the training beam set to the receiving end.
  • the method further includes:
  • the transmitting end receives the wave departure angle information of the training beam set fed back by the receiving end;
  • the transmitting end determines a transmit beam to the receiving end according to the wave departure angle information.
  • the indication information includes: a weight vector of the training beam set
  • the indication information includes: a number of columns of the weight vector set of the training beam set.
  • the sending end determines, by the sending end, the training beam set sent to the receiving end, including:
  • the transmitting end determines a target area for transmitting a beam to the receiving end
  • the transmitting end uses a beam located in the target area in the beam set of the transmitting end as the training beam set.
  • the method before the determining, by the sending end, the target area that sends the beam to the receiving end, the method further includes:
  • the sending end receives the notification information sent by the receiving end, where the notification information includes the target area information.
  • the sending end sends a weighting vector of the training beam set to the receiving end, where include:
  • Also before the sending end sequentially sends the training beam in the training beam set to the receiving end ,Also includes:
  • the codebook set is used to represent the codebook used by each training beam in the training beam set.
  • Also before the sending end sequentially sends the training beam in the training beam set to the receiving end ,Also includes:
  • the method before the sending end sends the training beam in the training beam set to the receiving end, the method further includes:
  • the transmitting end generates a training beam in the training beam set according to a weighting vector of the training beam set, a codebook set of the training beam, and the quantization method.
  • the sending end generates, according to a weight vector of the training beam set, a codebook set of a training beam, and a quantization method.
  • the training beam in the training beam set includes:
  • the transmitting end adopts a formula Generating a training beam in the training beam set
  • a weighting vector of the training beam set is a codebook set of the training beam
  • quan( ⁇ ) is a quantization method, where the quantization method comprises a phase quantization bit number, an amplitude quantization bit number, a normalization method, and The quantization functions are determined together.
  • each element of the weight vector of the training beam set is composed of elements and amplitudes in the phase set The synthesis of elements in the elements in the collection;
  • each element a i of the weighting vector of the training beam set adopts a formula synthesis
  • S is the number of phase quantization bits
  • is the length of the coverage of the target area.
  • a training beam receiving method provided by the second aspect of the present invention includes:
  • indication information for indicating a weighting vector of the training beam set, where the weighting vector of the training beam set is used to represent a phase and amplitude weighting value of each training beam in the training beam set;
  • the receiving end obtains a weight of each training beam in the training beam set according to a weighting vector of the training beam set;
  • the receiving end sequentially receives the training beams in the training beam set sent by the sending end according to the weight of each training beam in the training beam set.
  • the receiving end sequentially receives, according to a weight of each training beam in the training beam set, the training beam set sent by the sending end After the training beam, it also includes:
  • the receiving end calculates the wave departure angle information of the training beam set
  • the indication information includes: a weight vector of the training beam set
  • the indication information includes: a number of columns of the weight vector set of the training beam set.
  • the receiving end obtains the training beam concentration according to the weighting vector of the training beam set Before the weight of each training beam, it also includes:
  • the method further includes:
  • the receiving end sends notification information to the sending end, where the notification information includes the target area information.
  • the receiving end receives the weight vector of the training beam set sent by the sending end, including:
  • the receiving end obtains the training beam concentration according to the weight vector of the training beam set Before the weight of each training beam, it also includes:
  • the codebook set is used to represent the codebook used by each training beam in the training beam set.
  • the receiving end obtains the training beam concentration according to the weighting vector of the training beam set Before the weight of each training beam, it also includes:
  • the receiving end obtains the training beam concentration according to the weighting vector of the training beam set The weight of each training beam, including:
  • the receiving end adopts a formula according to a weight vector of the training beam set Calculating a weight w of each training beam in the training beam set;
  • a weighting vector of the training beam set is a codebook set of the training beam
  • quan( ⁇ ) is a quantization method, where the quantization method comprises a phase quantization bit number, an amplitude quantization bit number, a normalization method, and The quantization functions are determined together.
  • the receiving end calculates the wave departure angle information of the training beam set, including:
  • the receiving end calculates the wave angle information of the training beam set according to the compressed sensing frame
  • the wave departure angle information of the training beam set is calculated by using the following formula:
  • h T is the wave-off angle information of the training beam set
  • each h T non-zero element corresponds to a wave off angle
  • y is the training beam of the training beam set sent by the transmitting end received by the receiving end Information
  • W T is a matrix formed by the weight w of the training beam, Transposed for the W T matrix.
  • each element of the weight vector of the training beam set is composed of elements and amplitudes in the phase set The synthesis of elements in the elements in the collection;
  • each element a i of the weighting vector of the training beam set adopts a formula synthesis
  • S is the number of phase quantization bits
  • is the length of the coverage of the target area.
  • a base station provided by the third aspect of the present invention includes:
  • a determining unit configured to determine, by the base station, a training beam set sent to the terminal, where the training beam set includes at least one training beam;
  • a sending unit the base station sending, to the terminal, indication information for indicating a weighting vector of a training beam set, where a weighting vector of the training beam set is used to represent a phase and amplitude weighting value of each training beam in the training beam set ;
  • a training unit configured to: the base station sequentially send, to the terminal, a training beam in the training beam set.
  • the method further includes:
  • a receiving unit configured to receive, by the base station, wave departure angle information of the training beam set fed back by the terminal;
  • a configuration unit configured to determine, by the base station, a transmit beam to the terminal according to the wave departure angle information.
  • the sending unit is specifically configured to:
  • the transmitting end sends the number of columns of the weight vector set of the training beam set to the receiving end.
  • the determining unit is specifically configured to:
  • the base station uses, as the training beam set, a beam located in the target area in a beam set of the base station.
  • the determining unit is specifically configured to:
  • the base station receives the notification information sent by the terminal, where the notification information includes the target area information.
  • the sending unit is specifically configured to:
  • the sending unit is further configured to:
  • the codebook set is used to represent the codebook used by each training beam in the training beam set.
  • the sending unit is further configured to:
  • the training unit is further configured to:
  • the transmitting end generates a training beam in the training beam set according to a weighting vector of the training beam set, a codebook set of the training beam, and the quantization method.
  • the training unit is specifically configured to:
  • the base station adopts a formula Generating a training beam in the training beam set
  • a weighting vector of the training beam set is a codebook set of the training beam
  • quan( ⁇ ) is a quantization method, where the quantization method comprises a phase quantization bit number, an amplitude quantization bit number, a normalization method, and The quantization functions are determined together.
  • the training unit specifically includes:
  • the determining unit is specifically configured to:
  • Each element of the weighting vector of the training beam set is synthesized by an element in the phase set and an element in the element in the amplitude set;
  • each element a i of the weighting vector of the training beam set adopts a formula synthesis
  • S is the number of phase quantization bits
  • is the length of the coverage of the target area.
  • the terminal provided by the fourth aspect of the present invention includes:
  • a receiving unit configured to receive, by the terminal, indication information, used by the base station, to indicate a weighting vector of the training beam set, where the weighting vector of the training beam set is used to represent a phase and amplitude weighting value of each training beam in the training beam set;
  • a first calculating unit configured to obtain, by the terminal, a weight of each training beam in the training beam set according to a weighting vector of the training beam set;
  • a training unit configured to receive, by the terminal, the training beams in the training beam set sent by the base station according to weights of each training beam in the training beam set.
  • the method further includes:
  • a second calculating unit configured to calculate, by the terminal, wave departure angle information of the training beam set
  • a feedback unit configured to: the terminal feed back, to the base station, wave departure angle information of the training beam set, where the wave departure angle information is used to enable the base station to determine transmission to the terminal according to the wave departure angle information Beam.
  • the receiving unit is specifically configured to:
  • the terminal receives a weight vector of the training beam set sent by the base station.
  • the terminal receives the number of columns of the weight vector set of the training beam set sent by the base station.
  • the receiving unit is further configured to:
  • Receiving, by the terminal, the target area of the target area in which the base station transmits the determined beam is used for a table
  • the base station is shown to determine a set of training beams to be transmitted to the terminal.
  • the feedback unit is further configured to:
  • the terminal sends notification information to the base station, where the notification information includes the target area information.
  • the receiving unit is specifically configured to:
  • the terminal obtains a weight vector of the training beam set by cyclic shift processing of the cyclic shift information by the basic weight vector.
  • the receiving unit is further configured to:
  • the codebook set is used to represent the codebook used by each training beam in the training beam set.
  • the receiving unit is further configured to:
  • the terminal receives a quantization method for the base station to transmit the determined training beam, where the quantization method is used to represent phase and amplitude quantization information of the training beam in the training beam.
  • the first calculating unit is specifically configured to:
  • the terminal adopts a formula according to a weight vector of the training beam set Calculating a weight w of each training beam in the training beam set;
  • a weighting vector of the training beam set is a codebook set of the training beam
  • quan( ⁇ ) is a quantization method, where the quantization method comprises a phase quantization bit number, an amplitude quantization bit number, a normalization method, and The quantization functions are determined together.
  • the first calculating unit is specifically configured to:
  • the second calculating unit is specifically configured to:
  • the terminal calculates the wave departure angle information of the training beam set according to the compressed sensing frame
  • the wave departure angle information of the training beam set is calculated by using the following formula:
  • h T is the wave-off angle information of the training beam set
  • each h T non-zero element corresponds to a wave-off angle
  • y is information of the training beam in the training beam set sent by the base station received by the terminal
  • W T is a matrix composed of the weight W of the training beam, Transposed for the W T matrix.
  • the first calculating unit is specifically configured to:
  • Each element of the weighting vector of the training beam set is synthesized by an element in the phase set and an element in the element in the amplitude set;
  • each element a i of the weighting vector of the training beam set adopts a formula synthesis
  • S is the number of phase quantization bits
  • is the length of the coverage of the target area.
  • the beam transmission system provided by the fifth aspect of the present invention, comprising: the base station according to any one of the possible implementation manners of the eleventh aspect of the third aspect to the third aspect, and the fourth to fourth aspects A terminal as claimed in any one of the possible implementations of the eleventh possible implementation.
  • the transmitting end only sends the weighting vector of the training beam set to the receiving end, without the transmitting end transmitting the weighting value of the training beam set to the receiving end, which reduces the overhead of transmitting the training beam.
  • 1 is a schematic diagram of beam alignment of an antenna array in the prior art
  • FIG. 2 is a schematic diagram of a system of a transmitting end and a receiving end according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for sending a training beam according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural diagram of a uniform linear array according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of a target area according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for sending a training beam according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart of a method for receiving a training beam according to Embodiment 1 of the present invention.
  • FIG. 8 is a flowchart of a method for receiving a training beam according to Embodiment 2 of the present invention.
  • FIG. 9 is a flowchart of a training beam transmission method according to Embodiment 1 of the present invention.
  • FIG. 10 is a flowchart of a training beam transmission method according to Embodiment 2 of the present invention.
  • FIG. 11 is a schematic diagram of simulation results of a training beam transmission method according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention.
  • FIG. 13 is a schematic structural diagram of a terminal according to Embodiment 1 of the present invention.
  • FIG. 14 is a schematic structural diagram of a base station according to Embodiment 2 of the present invention.
  • FIG. 15 is a schematic structural diagram of a terminal according to Embodiment 2 of the present invention.
  • the beamforming technology of large-scale antenna array is mainly used to form a high-gain narrow beam for transmission.
  • An optimal communication link is established between the base station (BS) and the mobile station (MS) to compensate for the large path and reflection loss in the high-frequency transmission.
  • the basic principle of the beamforming technology of the large-scale antenna array is that each beam formed by the antenna array corresponds to a center direction of one beam pointing and an area covered by the beam, and a beam formed by each beam width codebook can cover the entire beam. Space, only by scanning the beam generated by the antenna array can get the best beam pair, and then the beam formed by the BS and the MS is directed to the optimal beam pair, so as to establish an optimal communication chain between the BS and the MS. road.
  • FIG. 1 is a schematic diagram of beam scanning pairing of an antenna array in the prior art.
  • the BS includes a transmit antenna array that transmits a wireless signal for transmitting a beam
  • the MS includes a receive antenna array that receives a wireless signal for receiving a beam.
  • the BS fixes one transmit beam
  • the BS transmits a total of M beams of b 0 , b 1 ... b M
  • the antenna array in the MS forms a total of N beams of c 0 , c 1 ... c N
  • the MS scans the M beams sent by the BS
  • the MS obtains the best communication beam pair by calculating the received signal power, the signal-to-noise ratio, and the like, thereby implementing the BS. Establish the best communication link with the MS.
  • each beam in the MS needs to scan each beam sent by the BS, and the communication link between the BS and the MS needs to be scanned M ⁇ N times, so that the BS and the MS The time taken to establish a communication link is long, resulting in a very large training beam overhead.
  • the technical problem to be solved by the present invention is to determine the communication time of the communication link establishment and reduce the overhead of transmitting the training beam when determining the communication link between the BS end and the MS end.
  • the main idea of the present invention is that when establishing a communication link and determining a training beam that the transmitting end needs to send to the receiving end, the transmitting end sends a weighting vector of the training beam set to the receiving end, and the receiving end receives the weighting of the training beam set sent by the transmitting end.
  • the receiving end obtains the weight of each training beam in the training beam set according to the weighting vector of the training beam set, without the transmitting end directly transmitting the weight of each training beam in the training beam set to the receiving end, thereby reducing the establishment of the communication chain.
  • the road consumes a long time and reduces the overhead of transmitting the training beam.
  • FIG. 2 is a schematic diagram of a system of a transmitting end and a receiving end according to an embodiment of the present invention.
  • the present invention is directed to the beamforming transceiver system shown in FIG. 2, and the transmitting end side includes a radio front end (Radio Front), a digital to analog converter (D/A), a baseband processor, and beamforming.
  • the Beamforming Unit includes a radio front end, an analog-to-digital converter (A/D), a baseband processor, and a beamforming unit.
  • the baseband processor at the transmitting end performs processing such as Quadrature Amplitude Modulation (QAM), shaping, and framing on data from Media Access Control (MAC), and then inputs the data to a digital-to-analog converter.
  • QAM Quadrature Amplitude Modulation
  • MAC Media Access Control
  • the data of the digital-to-analog converter is then up-converted by the RF front-end to the carrier frequency and transmitted through the antenna.
  • the transmitter RF front end typically includes a power divider network (Divider), phase shifter, and antenna array to support beamforming functions.
  • the beamforming unit controls the radio frequency unit to perform phase shifting operation according to the information fed back by the baseband processor to implement beamforming.
  • the beamforming principle is to adjust the weighted amplitude and phase of each antenna array element signal to direct the radio signal to a specific direction to generate spatial pointing. Sex beam.
  • the receiving RF front end includes a power synthesis network in addition to the antenna array and phase shifter. The receiving RF front end downconverts the received signal from a carrier frequency signal to the baseband analog signal.
  • the baseband analog signal is converted into a digital signal by analog-to-digital conversion, and the baseband processing extracts the transmitted data by operations such as channel estimation and QAM demodulation.
  • the beamforming unit at the receiving end has the same function as the beamforming unit at the transmitting end, and both form a beam by controlling the phase shifting value of the phase shifter.
  • an array antenna composed of a plurality of antenna elements at the transmitting end adjusts the weighted amplitude and phase of the signals of each array unit, and the beam transmitted by the transmitting end has a pointing direction, and the angle of the pointing direction is called a wave distance.
  • Angle of Departure (AoD) The receiver is composed of an array antenna composed of a plurality of antenna elements. By adjusting the weighted amplitude and phase of the signals of each array unit, the beam transmitted by the receiver has a pointing direction, and the angle of the pointing direction is called an Angle of Arrival. AoA).
  • a communication link can be established between the transmitting end and the receiving end to implement the transmitting end and the receiving end. Beam pairing between the ends.
  • a communication link can be established between the transmitting end and the receiving end to implement beam matching between the transmitting end and the receiving end.
  • Determining the wave-off angle of the transmitter as an example to illustrate the method of transmitting and receiving the training beam of the present invention, determining the angle of arrival of the receiver and transmitting and receiving the training beam determining the wave-angle of the transmitter The method is similar, and the embodiments of the present invention are not described herein.
  • the Angle of Departure (AoD) refers to the angle of departure when the beam leaves the linear antenna array.
  • the Angle of Arrival (AoA) refers to the angle of arrival when the beam reaches the linear antenna array.
  • the base station and the terminal can be either a transmitting end or a receiving end.
  • the terminal serves as the receiving end; when the base station terminal serves as the transmitting end, the base station serves as the receiving end.
  • the embodiment of the present invention is mainly described in the case where the base station is used as the transmitting end and the terminal is used as the receiving end.
  • the case where the terminal is used as the transmitting end and the base station is used as the receiving end is similar to the case where the base station is used as the transmitting end and the terminal is used as the receiving end, and the embodiment of the present invention does not perform here. Narration.
  • FIG. 3 is a flowchart of a method for sending a training beam according to Embodiment 1 of the present invention. As shown in FIG. 3, the method provided by the embodiment of the present invention includes:
  • the transmitting end determines a training beam set sent to the receiving end, where the training beam set includes at least one training beam.
  • the transmitting end determines the training beam set sent to the receiving end, and starts a beam training mechanism.
  • a Compressive Sensing/Compressed Sampling (CS) framework training mechanism is mainly used, but is not limited thereto.
  • the transmitting end sends indication information for indicating a weighting vector of the training beam set to the receiving end, where the weighting vector of the training beam set is used to represent the phase and amplitude weighting value of each training beam in the training beam set.
  • the sending end sends the indication information for indicating the weighting vector of the training beam set to the receiving end, so that the receiving end obtains the weight of each training beam in the training beam set according to the weighting vector.
  • the transmitting end sends indication information for indicating a weighting vector of the training beam set to the receiving end, and notifies the receiving end of the weighting vector of the training beam set to be used by the receiving end.
  • the generation of each transmission training beam corresponds to a unique weight vector, and the value of the weight vector determines the amplitude and phase weighting values of one antenna unit of the transmitting end and the receiving end RF front end.
  • the phase and amplitude of each training beam in the training beam set are determined by the number of phase quantization bits and the number of amplitude quantization bits, respectively, wherein the phase quantization bit number Q and the amplitude quantization bit number S are determined by the hardware capability of the radio frequency front end.
  • the number of quantization bits refers to the number of bits of the binary number required to distinguish all quantization stages.
  • the number of phase quantization bits refers to the number of bits required for phase quantization
  • the number of amplitude quantization bits refers to the bits required for amplitude quantization. number.
  • the cost of transmitting the weight vector of the training beam set directly to the receiving end is smaller than the weighting value of the training beam set sent directly by the transmitting end to the receiving end in the prior art.
  • the transmitting end has a N t root.
  • the transmit antenna that is, N t transmit antenna elements, has a weight vector of
  • the feedback overhead of transmitting the weight of the single training beam set directly by the transmitting end is N t ⁇ Q h , and the overhead of the weighting vector of the transmitting beam directly transmitting the training beam set is
  • Q h is the phase shift of the transmitting end
  • Q w is the number of quantization bits of the weight vector
  • Q w is usually a few bits more than Q h .
  • ⁇ Q w is smaller than the overhead of transmitting the weighting value of the training beam set directly to the receiving end by the transmitting end N t ⁇ Q h .
  • the cost of the training beam weight is smaller than that of the direct feedback training beam generation weight. Therefore, the cost of transmitting the weight vector of the training beam set directly to the receiving end is smaller than that of the transmitting end transmitting the training beam directly to the receiving end.
  • the weighted value of the set reduces the overhead of transmitting the training beam.
  • S303 The transmitting end sequentially sends the training beam in the training beam set to the receiving end.
  • the sending end After the sending end starts the CS training on the receiving end, the sending end sends the P training beams to perform the training, and the sending end sends the training sequence to the receiving end through the P training beams.
  • P training beams when P training beams are required, they are generated independently.
  • the weighting vector of the different training beam sets, and the transmitting end must send the weighting vector of the P training beam sets to the receiving end, and the receiving end can calculate the weights of the P training beams of the transmitting end. Since different device manufacturers may use different weighting vectors at the transmitting end, the transmitting end must send a weighting vector for indicating the training beam set to the receiving end each time. Instructions.
  • the transmitting end only sends the indication information for indicating the weighting vector of the training beam set to the receiving end, without the transmitting end transmitting the weighting value of the training beam set to the receiving end, thereby reducing the sending training.
  • the overhead of the beam is not limited to the transmitting end.
  • the method further includes:
  • S304 The transmitting end receives the wave departure angle information of the training beam set fed back by the receiving end.
  • the transmitting end determines a transmit beam to the receiving end according to the wave departure angle information.
  • the transmitting end adjusts the direction of the transmitting beam of the transmitting end according to the wave-offset information of the training beam set fed back by the receiving end, so that a communication link can be established between the transmitting end and the receiving end to implement the transmitting end and the receiving end. Beam pairing between the ends.
  • the transmitting end only sends the weighting vector of the training beam set to the receiving end, without the transmitting end transmitting the weighting value of the training beam set to the receiving end, which reduces the overhead of transmitting the training beam. Further, the transmitting end receives the wave of the training beam set fed back by the receiving end The off-angle information, the transmitting end determines the transmit beam to the receiving end according to the wave-off angle information, and can establish a communication link between the transmitting end and the receiving end to implement beam matching between the transmitting end and the receiving end.
  • the indication information includes: a weight vector of the training beam set.
  • the receiving end may not know the weighting vector of the training beam set used by the transmitting end.
  • the transmitting end directly sends the weighting vector of the training beam set to the receiving end, and the receiving end receives the training sent by the transmitting end.
  • the weighting vector of the beam set yields a weighted vector of the training beam set.
  • the indication information includes at least one weighting vector of the training beam set, and the number of weighting vectors of the training beam set in the indication information is in one-to-one correspondence with the training beams in the training beam set, that is, how many trainings are in the training beam set. Beam, indicating how many training vector sets of weighting vectors are included in the information.
  • the indication information includes: the number of columns of the weight vector set of the training beam set.
  • all training beams sent by the transmitting end may generate a set of weighting vectors, which may be referred to as a weight vector set of all training beams.
  • the weight vector set of all training beams may be pre-stored in the receiver, that is, the weight vector set of all training beams is already known in the receiving end. At this time, the transmitting end only needs to send the weight of the training beam set to the receiving end.
  • the number of columns of the vector set that is, the transmitting end only needs to send the indication information to prompt the receiver to use the weighting vectors of which training beam sets in the weight vector set, and the receiving end can be based on the weight vector set of the training beams in the receiving end and The number of columns of the weight vector set of the training beam set transmitted by the sender determines the weight vector of the beam set to be used. For example, it is assumed that the number of columns of the weight vector set of the training beam set in the indication information for transmitting the weight vector of the training beam set to the receiving end is 10, and the weight of all the training beams has been pre-stored in the receiving end.
  • the receiving end finds 10 of the weighting vectors ⁇ of all training beams as the weighting vector of the training beam set according to the number of columns of the weight vector set of the training beam set in the indication message.
  • the number of columns of the weighting vector of the training beam set included in the indication information is at least one, indicating the number of columns of the weighting vector of the training beam set in the information and the training beam in the training beam set.
  • One-to-one correspondence that is, how many training beams are in the training beam set, and the number of columns of the weight vector of the training beam set is included in the indication information.
  • the sending end determines the training beam set sent to the receiving end, and includes:
  • the transmitting end determines a target area for transmitting a beam to the receiving end.
  • the transmitting end uses a beam located in the target area in the beam set of the transmitting end as a training beam set.
  • the target area is an area where beam energy is desired to be focused.
  • the target area indicates some columns in the codebook of the training beam, and the training beam formed by the training beam weight vector corresponding to these columns covers a spatial area.
  • the target area can be a sector, an AoD area that needs to be tracked, or multiple AoD areas that need to be tracked.
  • the position of the target area may be determined according to the AoD/AoA direction at the previous moment, and the size of the target area may be determined according to the angular spread of the channel, the beam width provided by the antenna, and the moving speed.
  • FIG. 4 is a schematic diagram of a uniform linear array structure according to Embodiment 1 of the present invention.
  • the uniform linear array includes N t antenna elements, and the distance between each two antenna elements is d.
  • the angle (wave angle) from the antenna array is ⁇ .
  • the angular separation between adjacent grids is Beam width is Centering on the current wavefront angle ⁇ AoD of the transmitting end
  • One area of the area is the target area ⁇ .
  • the center position of the target area ⁇ is the wave-off angle ⁇ AoD of the current transmitting end, assuming that the training beam weight vector corresponds to the i 3 column in the training beam code matrix C. Since the beam width is If the target area ⁇ is to be covered with a beam, the center position needs to occupy two squares.
  • the target area corresponding to the designated grid contained ⁇ i 1, i 2, i 3 , i 4, i 5 beamforming training sequence corresponding to the codebook C i 1, i 2, i 3 , i 4, i 5 Column, the i 1 , i 2 , i 3 , i 4 , i 5 columns of the codebook C of the training beam constitute the codebook set C ⁇ of the training beam.
  • the beam width refers to the angle between two beam directions in which the radiation power drops by 3 decibels (dB) on both sides of the maximum radiation direction of the beam.
  • dB decibels
  • a person skilled in the art can easily combine the horizontal angle and the elevation angle pair or the elevation angle and the azimuth angle to obtain a codebook set of the training beam determined by the target area and the target area corresponding to the plane array, which is not limited and described herein.
  • the target area may be sent by the sending end to the receiving end, or may be stored in the receiving end in advance, and the embodiment of the present invention does not Limited.
  • the method before the transmitting end determines the target area for transmitting the beam to the receiving end, the method further includes:
  • the sending end receives the notification information sent by the receiving end, and the notification information includes the target area information.
  • the method before the transmitting end sequentially sends the training beam in the training beam set to the receiving end, the method further includes:
  • the codebook set is used to represent the codebook used by each training beam in the training beam set.
  • the codebook set C ⁇ of the training beam is determined by the codebook C of the training beam and the target region ⁇ .
  • column of the codebook C of the training beam constitutes the codebook set C ⁇ of the training beam,
  • the antenna array at the transmitting end may be any one of a uniform linear array, a uniform planar array, a circular array, and a circular planar array.
  • Different transmit antenna arrays correspond to different training beam codebook sets.
  • the receiver may pre-store a plurality of training beam codebook sets related to the shape of the transmitter antenna. At this time, the transmitter may notify the receiver of the antenna shape information, and the receiver may confirm and calculate the transmission training beam weight according to the information. The set of training beams used in the vector.
  • each transmission training beam corresponds to a unique weight
  • the codebook C of the training beam is composed of weights generated by each training beam sent by the transmitting end, and each column pair in C corresponds to one training beam. Weights, all columns in C form a set of sector training beam codebooks covering the entire space or a certain base station.
  • the training beam codebook C may be a Discrete Fourier Transform (DFT) matrix or a partial DFT matrix, or may be a training beam pointing matrix composed of a training beam pointing vector as a column.
  • DFT Discrete Fourier Transform
  • the training beam codebook C is an N t ⁇ N t discrete Fourier transform DFT matrix, and each column corresponds to a training beam weight vector of a specified direction.
  • N t is the number of antenna elements included in the base station.
  • the training beam codebook C is a N t ⁇ N b training beam pointing matrix, and each column of the training beam pointing matrix has the same pointing direction, and each column corresponds to a training beam weight vector with a training beam directed to ⁇ i .
  • the embodiment of the present invention mainly uses a codebook of a uniform linear array training beam as an example.
  • the embodiment of the present invention is not limited to the codebook of the uniform linear array training beam, and those skilled in the art can easily define the codebook of other linear array training beams according to the actual required scenario, or obtain a plane based on the codebook extension of the linear array training beam.
  • the codebook of the training beam of the array For example, those skilled in the art can easily extend the DFT matrix of the linear array to the planar matrix, or the skilled person can easily train the planar array by horizontal angle and pitch angle pair or pitch angle and azimuth angle.
  • the codebook of the beam is not limited and illustrated herein.
  • the method before the transmitting end sequentially sends the training beam in the training beam set to the receiving end, the method further includes:
  • the transmitting end sends a determined quantization method of the training beam to the receiving end, and the quantization method is used to represent the phase and amplitude quantization information of the training beam in the training beam set.
  • the quantization method is determined by the number of phase quantization bits supported by the RF front end of the transmitting end, the number of amplitude quantization bits, the normalization method, and the quantization function.
  • the quantization method only needs to be sent once at the same transmitting end, and the same transmitting end Only the quantization method needs to be sent once, so that the transmission overhead can be controlled to about 10 bits.
  • the quantization method may be sent by the sending end to the receiving end, or may be pre-stored on the receiving end, which is not limited herein.
  • the method before the transmitting end sequentially sends the training beam in the training beam set to the receiving end, the method further includes:
  • the transmitting end generates a weight vector based on the training beam set, a codebook set of the training beam, and a quantization method. Train the beam in the training beam set.
  • the sending end generates the training beam in the training beam set according to the weighting vector of the training beam set, the codebook set of the training beam, and the quantization method, including:
  • the sender uses the formula Generating a training beam in the training beam set
  • C ⁇ is the codebook set of the training beam
  • quan( ⁇ ) is the quantization method.
  • the quantization method is determined by the phase quantization bit number, the amplitude quantization bit number, the normalization method and the quantization function.
  • the quantization method includes:
  • each element of the weighting vector of the training beam set is synthesized from elements in the phase set and elements in the elements in the amplitude set.
  • each element a i of the weight vector of the training beam set adopts a formula synthesis.
  • S is the number of phase quantization bits
  • is the length of the coverage of the target area.
  • the weight vector of the training beam set Is a column vector of
  • is the length of the target area ⁇
  • the weight vector of the training beam set The length
  • phase-only quantization is given below, assuming that
  • Weight vector of the corresponding training beam set for:
  • FIG. 6 is a flowchart of a method for sending a training beam according to Embodiment 2 of the present invention. As shown in FIG. 6, the method provided by the embodiment of the present invention includes:
  • the transmitting end determines a training beam set sent to the receiving end, where the training beam set includes at least one training beam.
  • the transmitting end sends a basic weight vector and a cyclic shift information of the training beam set to the receiving end, and the basic weight vector obtains a weight vector of the training beam set by cyclic shift processing of the cyclic shift information.
  • the weighting vector of the training beam set is used to represent the phase and amplitude weighting values of each training beam in the training beam set.
  • the transmitting end may be a basic weighting vector of the training beam set, and the transmitting end sends the basic weighting vector and the cyclic shift information of the training beam set to the receiving end.
  • the weighting vector of the different training beam sets is obtained by cyclically shifting and intercepting the basic weight vector of the training beam set. It should be noted that the length of the basic weight vector of the training beam set is greater than the maximum beam number included in the training beam subset, that is, the length of the basic weight vector of the training beam set is greater than the length of the target area coverage
  • the sender generates a basic weight vector of a training beam set.
  • the length is M
  • the number of bits of the cyclic shift in the cyclic shift information is 1 bit, wherein the basic weight vector of the training beam set M>
  • the length of the basic weight vector is M, indicating that it requires M ⁇ Q w bits, where Q w is the number of quantization bits of the weight vector.
  • a basic weight vector of length M means that all of its cyclic shifts require only log 2 (M) bits. If P training beams are used in total, it means that P ⁇ Q h ⁇ N t bits are needed to fully represent the training beam weight information, and the basic weighting vector of the training beam set directly sent by the transmitting end needs about P ⁇ Q w ⁇
  • the basic weight vector and cyclic shift information transmitted by the transmitting end only need to feed back P ⁇ log 2 (M)+M ⁇ Q w bits, the P ⁇ log 2 (M) part is the main overhead as the number of training times P increases. Therefore, in this embodiment, the basic weight vector and the cyclic shift information of the transmission beam set transmitted by the transmitting end are larger than the transmission beam overhead saved by the weight vector of the transmission training beam set.
  • S603 The transmitting end sequentially sends the training beam in the training beam set to the receiving end.
  • the transmitting end only sends the basic weight vector and the cyclic shift information of the training beam set to the receiving end, without the transmitting end transmitting the weighting value of the training beam set to the receiving end, which is greatly reduced.
  • the overhead of sending training beams is greatly reduced.
  • the method further includes:
  • the transmitting end receives the wave departure angle information of the training beam set fed back by the receiving end.
  • the transmitting end determines the transmit beam to the receiving end according to the wave departure angle information.
  • the transmitting end only sends the basic weight vector and the cyclic shift information of the training beam set to the receiving end, without the transmitting end transmitting the weighting value of the training beam set to the receiving end, which is greatly reduced.
  • the transmitting end receives the wave-off angle information of the training beam set fed back by the receiving end, and the transmitting end determines the transmitting beam to the receiving end according to the wave-off angle information, so that a communication link can be established between the transmitting end and the receiving end to implement transmission. Beam pairing between the end and the receiving end.
  • FIG. 7 is a flowchart of a method for receiving a training beam according to Embodiment 1 of the present invention. As shown in FIG. 7, the method provided by the embodiment of the present invention includes:
  • the receiving end receives indication information for indicating a weighting vector of the training beam set sent by the transmitting end, where the weighting vector of the training beam set is used to represent a phase and amplitude weighting value of each training beam in the training beam set.
  • the receiving end may determine the weight vector of the training beam set according to the indication information of the weighting vector for indicating the training beam set sent by the receiving end.
  • the receiving end obtains the weight of each training beam in the training beam set according to the weighting vector of the training beam set.
  • the receiving end obtains weights of each training beam in the training beam set according to the weighting vector of the training beam set, including:
  • the receiving end adopts a formula according to the weight vector of the training beam set
  • the weight w of each training beam in the training beam set is calculated.
  • C ⁇ is the codebook set of the training beam
  • quan( ⁇ ) is the quantization method.
  • the quantization method is determined by the phase quantization bit number, the amplitude quantization bit number, the normalization method and the quantization function.
  • the weight w of each training beam in the training beam set is calculated.
  • c i is an element in the training beam codebook C, To train the elements in the weight vector of the beam set.
  • the purpose of the quantization method quan( ⁇ ) operation is to make the weight w of the generated training beam satisfy the hardware constraint, and the quantization method is determined by the number of phase quantization bits, the number of amplitude quantization bits, the normalization method, and the quantization function. .
  • the receiving end sequentially receives the training beams in the training beam set sent by the sending end according to the weight of each training beam in the training beam set.
  • the receiving end sends the weighting value of the training beam set to the receiving end according to the weighting vector of the training beam set sent by the transmitting end, without the receiving end directly receiving the transmitting end to send the training beam set.
  • the weighting value reduces the overhead of sending training beams.
  • the method further includes:
  • S704 The receiving end calculates the wave departure angle information of the training beam set.
  • the receiving end obtains the weight of each training beam in the training beam set according to the indication information used by the sending end to indicate the weighting vector of the training beam set, and further calculates the wave departure angle information of the training beam set.
  • the receiving end uses a Compressive Sensing/Compressed Sampling (CS) framework to estimate the off-angle information of the transmitting end beam.
  • CS Compressive Sensing/Compressed Sampling
  • the receiving end can calculate the wave angle information of the training beam set.
  • the receiving end calculates the wave angle information of the training beam set, including:
  • the receiving end calculates the wave angle information of the training beam set according to the compressed sensing frame.
  • h T is the wave angle information of the training beam set
  • each h T non-zero element corresponds to a wave off angle
  • y is the information of the training beam in the training beam set sent by the transmitting end received by the receiving end
  • W T is training a matrix of weights W of the beam
  • st is a constraint.
  • the weight vector W T of the training beam is a matrix composed of columns of P training beam weights, and the size is N t ⁇ P, which is called a training matrix.
  • the receiving end receives the receiving beam by using the receiving beam weight vector W R , and the receiving end receives the weighting vector of the training beam set according to the sending end.
  • Calculating the weight w of each training beam in the training beam set, and the receiving end uses the weight vector W R of the received beam and the calculated weight vector w of the transmitted beam, wherein the formula is adopted
  • the calculation of the AoD information of the transmitting end according to the CS framework may also be performed by other methods, such as an iterative threshold algorithm, a matching tracking algorithm, and a base tracking algorithm, which are not limited and described herein.
  • the channel matrix of the communication link established by the transmitting end and the receiving end is the same as the channel matrix configuration and the calculation principle of the communication link established by the sending end and the receiving end in the prior art, and details are not described herein.
  • the transmitting end directly sends the weight w of each training beam in the training beam set to the receiving end, and the receiving end uses the weight vector W R of the receiving beam and the training beam set directly sent by the transmitting end.
  • the weight W of the training beam is obtained to receive the measurement information y.
  • the sender directly transmits the weight w of each training beam in the training beam set, and needs to send a matrix of N t ⁇ P, so that the feedback overhead of transmitting the training beam is very large.
  • the receiving end feeds back the wave off angle information of the training beam set to the transmitting end, and the wave off angle information is used to enable the transmitting end to determine the transmit beam to the receiving end according to the wave off angle information.
  • the receiving end sends the weighting value of the training beam set to the receiving end according to the weighting vector of the training beam set sent by the transmitting end, without the receiving end directly receiving the transmitting end to send the training beam set.
  • the weighting value reduces the overhead of sending training beams.
  • the receiving end calculates the wave-off angle information of the training beam set, and the receiving end feeds back the wave-offer information of the training beam set to the transmitting end, so that the transmitting end determines the transmitting beam to the receiving end according to the wave-off angle information, that is, the transmitting end Establish a communication link with the receiving end to implement a beam between the transmitting end and the receiving end pair.
  • the indication information includes: a weight vector of the training beam set.
  • the transmitting end directly sends the weighting vector of the training beam set to the receiving end, and the receiving end receives the weighting vector of the training beam set sent by the transmitting end to obtain a weighting vector of the training beam set.
  • the indication information includes: the number of columns of the weight vector set of the training beam set.
  • the weighting vector of all the training beams is pre-stored in the receiving end.
  • the receiving end only needs to receive the number of columns of the weighting vector set of the training beam set sent by the transmitting end, and the receiving end can be based on
  • the weight vector of the training beam pre-stored in the receiving end and the number of columns of the weight vector set of the training beam set transmitted by the transmitting end determine the weight vector of the beam set to be used. For example, if the receiving end receives the number of columns of the weighting vector set of the training beam set in the indication information for indicating the weighting vector of the training beam set, the receiving end has 10, and all the training beams have been pre-stored in the receiving end.
  • the receiving end determines 10 weighting vectors in the weighting vector ⁇ of all training beams as the weighting vector of the training beam set according to the number of columns of the weight vector set of the training beam set in the indication message.
  • the method before the receiving end obtains the weight of each training beam in the training beam set according to the weight vector of the training beam set, the method further includes:
  • the receiving end receives the target area where the transmitting end sends the determined beam, and the target area is used to indicate that the transmitting end determines the training beam set sent to the receiving end.
  • the method further includes:
  • the receiving end sends a notification message to the sending end, where the notification information includes the target area information.
  • the method before the receiving end obtains the weight of each training beam in the training beam set according to the weight vector of the training beam set, the method further includes:
  • the codebook set is used to represent the codebook used by each training beam in the training beam set.
  • the method before the receiving end obtains the weight of each training beam in the training beam set according to the weight vector of the training beam set, the method further includes:
  • the receiving end receives a quantization method in which the transmitting end sends the determined training beam, and the quantization method is used to represent the phase and amplitude quantization information of the training beam in the training beam set.
  • the quantization method includes:
  • the amplitude quantization bit number S and the phase quantization bit number Q are determined by the hardware capability of the radio frequency front end.
  • Each training beam weight w is normalized.
  • each training beam weight that is not quantized is required before being quantized by the quantization function.
  • the normalization process is performed, where u ⁇ 0, and ⁇ i is a phase value corresponding to the phase weight.
  • the normalization factor takes the reciprocal of the maximum value of each training beam weight that is not quantized Normalized unquantized weight of each training beam
  • the present invention normalizes the maximum amplitude value in the weight vector, so that the RF front end can transmit at the maximum transmit power while the transmit power of each antenna channel is not saturated. It should be noted that other normalization methods may also be used by those skilled in the art, and the present embodiment is not limited and described herein.
  • quantization function pair versus phase set And amplitude set Quantify.
  • Commonly used quantization functions are ceil, floor, and round. Their function is to quantize the phase and amplitude to a phase set according to a certain principle. And amplitude set An element in .
  • the ceil function quantizes the phase ⁇ and the amplitude ⁇ into a phase set And amplitude set The value is greater than and closest to (not less than);
  • the floor function quantizes the phase ⁇ and the amplitude ⁇ into phase sets, respectively.
  • amplitude set The value is less than and closest to (not greater than); round quantizes phase ⁇ and amplitude ⁇ into phase sets, respectively And amplitude set The closest value to it.
  • Amplitude quantization and phase quantization may use the same quantization function or different quantization functions.
  • each element of the weighting vector of the training beam set is synthesized by an element in the phase set and an element in the element in the amplitude set;
  • each element a i of the weight vector of the training beam set adopts a formula synthesis
  • S is the number of phase quantization bits
  • is the length of the coverage of the target area.
  • FIG. 8 is a flowchart of a method for receiving a training beam according to Embodiment 2 of the present invention. As shown in FIG. 8, the method provided by the embodiment of the present invention includes:
  • the receiving end receives the basic weight vector and the cyclic shift information of the training beam set sent by the transmitting end, and the receiving end obtains the weighting vector of the training beam set by cyclic shift processing of the cyclic shift information.
  • the weighting vector of the training beam set is used to represent the phase and amplitude weighting values of each training beam in the training beam set.
  • the receiving end obtains the weight of each training beam in the training beam set according to the weighting vector of the training beam set.
  • the receiving end sequentially receives the training beam in the training beam set sent by the sending end according to the weight of each training beam in the training beam set.
  • the receiving end sends the training beam set to the receiving end according to the basic weighting vector and the cyclic shift information of the training beam set sent by the transmitting end.
  • the weighting value of the training beam set is not directly received by the receiving end, which greatly reduces the overhead of transmitting the training beam.
  • the method further includes:
  • S804 The receiving end calculates the wave departure angle information of the training beam set.
  • the receiving end obtains the weight of each training beam in the training beam set according to the indication information used by the sending end to indicate the weighting vector of the training beam set, and further calculates the wave departure angle information of the training beam set.
  • S805 The receiving end feeds back the wave off angle information of the training beam set to the transmitting end, and the wave off angle information is used to enable the transmitting end to determine the transmit beam to the receiving end according to the wave off angle information.
  • the receiving end sends the weighting value of the training beam set to the receiving end according to the basic weighting vector and the cyclic shift information of the training beam set sent by the transmitting end, without directly receiving the receiving end by the receiving end.
  • the transmitting end sends the weighting value of the training beam set, which greatly reduces the overhead of transmitting the training beam.
  • the receiving end calculates the wave-off angle information of the training beam set, and the receiving end feeds back the wave-offer information of the training beam set to the transmitting end, so that the transmitting end determines the transmitting beam to the receiving end according to the wave-off angle information, that is, the transmitting end
  • a communication link is established between the receiving end and the receiving end to implement beam pairing between the transmitting end and the receiving end.
  • FIG. 9 is a flowchart of a training beam transmission method according to Embodiment 1 of the present invention. As shown in FIG. 9, the method provided by the embodiment of the present invention includes:
  • the transmitting end determines a training beam set sent to the receiving end, where the training beam set includes at least one training beam.
  • the transmitting end sends indication information for indicating a weighting vector of the training beam set to the receiving end, where the weighting vector of the training beam set is used to represent the phase and amplitude weighting value of each training beam in the training beam set.
  • the receiving end receives indication information used by the sending end to indicate a weighting vector of the training beam set, and the weighting vector of the training beam set is used to represent a phase and amplitude weighting value of each training beam in the training beam set.
  • the receiving end obtains the weight of each training beam in the training beam set according to the weighting vector of the training beam set.
  • S905 The transmitting end sequentially sends the training beam in the training beam set to the receiving end.
  • the receiving end sequentially receives the sending end according to the weight of each training beam in the training beam set.
  • the training beam of the transmitted training beam set The training beam of the transmitted training beam set.
  • the transmitting end only sends the weighting vector of the training beam set to the receiving end, instead of the transmitting end transmitting the weighting value of the training beam set to the receiving end, and the receiving end sends the training beam set according to the transmitting end.
  • the weighting vector is used to calculate the weighting value of the training beam set sent by the transmitting end to the receiving end, instead of the receiving end directly receiving the weighting value of the transmitting beam set sent by the transmitting end, which reduces the overhead of transmitting the training beam.
  • the method further includes:
  • S907 The receiving end calculates the wave angle information of the training beam set.
  • the receiving end obtains the weight of each training beam in the training beam set according to the indication information used by the sending end to indicate the weighting vector of the training beam set, and further calculates the wave departure angle information of the training beam set.
  • the receiving end feeds back the wave off angle information of the training beam set to the transmitting end, and the wave off angle information is used to enable the transmitting end to determine the transmit beam to the receiving end according to the wave off angle information.
  • the transmitting end receives the wave departure angle information of the training beam set fed back by the receiving end.
  • the transmitting end determines a transmit beam to the receiving end according to the wave departure angle information.
  • the transmitting end only sends the weighting vector of the training beam set to the receiving end, instead of the transmitting end transmitting the weighting value of the training beam set to the receiving end, and the receiving end sends the training beam set according to the transmitting end.
  • the weighting vector is used to calculate the weighting value of the training beam set sent by the transmitting end to the receiving end, instead of the receiving end directly receiving the weighting value of the transmitting beam set sent by the transmitting end, which reduces the overhead of transmitting the training beam.
  • the receiving end calculates the wave-off angle information of the training beam set, and the receiving end feeds back the wave-offer information of the training beam set to the transmitting end, so that the transmitting end determines the transmitting beam to the receiving end according to the wave-off angle information, and the transmitting end receives the receiving end.
  • the wave-off angle information of the feedback training beam set, the transmitting end determines the transmitting beam to the receiving end according to the wave-off angle information, and can establish a communication link between the transmitting end and the receiving end to implement a beam between the transmitting end and the receiving end. pair.
  • FIG. 10 is a flowchart of a training beam transmission method according to Embodiment 2 of the present invention. As shown in FIG. 10, the method provided by the embodiment of the present invention includes:
  • the transmitting end determines a training beam set sent to the receiving end, where the training beam set includes at least one training beam.
  • the transmitting end sends a basic weight vector and a cyclic shift information of the training beam set to the receiving end, and the basic weight vector obtains the weight of the training beam set by cyclic shift processing of the cyclic shift information. vector.
  • the receiving end receives the basic weight vector and the cyclic shift information of the training beam set sent by the transmitting end, and the receiving end obtains the weighting vector of the training beam set by cyclic shift processing of the cyclic shift information.
  • the receiving end obtains the weight of each training beam in the training beam set according to the weighting vector of the training beam set.
  • the transmitting end sequentially sends the training beam in the training beam set to the receiving end.
  • the receiving end sequentially receives the training beam in the training beam set sent by the sending end according to the weight of each training beam in the training beam set.
  • the transmitting end only sends the basic weight vector and the cyclic shift information of the training beam set to the receiving end, without the transmitting end transmitting the weighting value of the training beam set to the receiving end, and the receiving end transmits according to the receiving end.
  • the terminal sends the basic weight vector and the cyclic shift information of the training beam set, and calculates the weight value of the training beam set sent by the transmitting end to the receiving end, without the receiving end directly receiving the weighting value of the transmitting beam set sent by the transmitting end, thereby greatly reducing the sending.
  • the overhead of training the beam is not limited to train the beam.
  • the method further includes:
  • the receiving end calculates the wave angle information of the training beam set.
  • the receiving end obtains the weight of each training beam in the training beam set according to the indication information used by the sending end to indicate the weighting vector of the training beam set, and further calculates the wave departure angle information of the training beam set.
  • the receiving end feeds back the wave off angle information of the training beam set to the transmitting end, and the wave off angle information is used to enable the transmitting end to determine the transmit beam to the receiving end according to the wave off angle information.
  • the transmitting end receives the wave departure angle information of the training beam set fed back by the receiving end.
  • the transmitting end determines a transmit beam to the receiving end according to the wave departure angle information.
  • the transmitting end only sends the basic weight vector and the cyclic shift information of the training beam set to the receiving end, without the transmitting end transmitting the weighting value of the training beam set to the receiving end, and the receiving end transmits according to the receiving end.
  • the terminal sends the basic weight vector and the cyclic shift information of the training beam set, and calculates the weight value of the training beam set sent by the transmitting end to the receiving end, without the receiving end directly receiving the weighting value of the transmitting beam set sent by the transmitting end, thereby greatly reducing the sending.
  • the overhead of training the beam is not limited to train the beam.
  • the receiving end calculates the wave-off angle information of the training beam set, and the receiving end feeds back the wave-offer information of the training beam set to the transmitting end, so that the transmitting end determines the transmitting beam to the receiving end according to the wave-off angle information,
  • the transmitting end receives the wave-off angle information of the training beam set fed back by the receiving end, and the transmitting end determines the transmitting beam to the receiving end according to the wave-off angle information, and can establish a communication link between the transmitting end and the receiving end to implement the transmitting end and the receiving end. Beam pairing between the ends.
  • FIG. 11 is a schematic diagram of simulation results of a training beam transmission method according to an embodiment of the present invention.
  • L1 is a simulation diagram of a training beam generated by using a random weighting vector ⁇ -1, 1, -j, j ⁇
  • L2 is a simulation diagram of a training beam generated by using a 2-bit phase quantization bit number
  • L3 is a simulation result obtained by using the training beam transmission method provided by the embodiment of the present invention.
  • the present invention provides a training beam generation and low overhead transmission method for estimating the transmitter AoD by using the CS framework.
  • the invention generates a training beam weight vector by weighting the training beam weight vector, and the training beam formed by the generated training beam weight can focus the energy to the target area to improve the receiving signal to noise ratio (Signal-to-Noise Ratio, SNR for short). ).
  • the simulation result obtained by the training beam transmission method provided by the embodiment of the present invention reduces the requirement of receiving signal to noise ratio by about 10 dB, and the probability of success is increased from 60% to 70%.
  • the simulation results in FIG. 11 are all obtained by using an 8 ⁇ 8 antenna array at the transmitting end, a 4 ⁇ 4 antenna array at the receiving end, and a training beam using 64 conditions.
  • FIG. 12 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention. As shown in FIG. 12, a base station provided by an embodiment of the present invention includes:
  • the determining unit 1201 is configured to determine, by the base station, a training beam set sent to the terminal, where the training beam set includes at least one training beam.
  • the sending unit 1202 is configured to send, by the base station, indication information for indicating a weighting vector of the training beam set, where the weighting vector of the training beam set is used to represent a phase and amplitude weighting value of each training beam in the training beam set.
  • the training unit 1203 is configured to, by the base station, sequentially send the training beams in the training beam set to the terminal.
  • the method further includes:
  • the receiving unit 1204 is configured to receive, by the base station, wave departure angle information of the training beam set fed back by the terminal.
  • the configuration unit 1205 is configured to determine, by the base station, a transmit beam to the terminal according to the wave off angle information.
  • the base station of this embodiment is used to perform the technical solution of the method embodiment shown in FIG. 3, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the sending unit 1202 is specifically configured to:
  • the base station transmits a weight vector of the training beam set to the terminal.
  • the base station sends the number of columns of the weight vector set of the training beam set to the terminal.
  • the determining unit 1201 is specifically configured to:
  • the base station uses a beam located in the target area among the beam sets of the base station as a training beam set.
  • the determining unit 1201 is specifically configured to:
  • the base station receives the notification information sent by the terminal, and the notification information includes the target area information.
  • the sending unit 1202 is specifically configured to:
  • the base station sends a basic weight vector and a cyclic shift information of the training beam set to the terminal, and the basic weight vector obtains a weight vector of the training beam set by cyclic shift processing of the cyclic shift information.
  • the sending unit 1202 is further configured to:
  • the codebook set is used to represent the codebook used by each training beam in the training beam set.
  • the sending unit 1202 is further configured to:
  • the base station sends a determined quantization method of the training beam to the terminal, and the quantization method is used to represent the phase and amplitude quantization information of the training beam in the training beam.
  • the training unit 1203 is further configured to:
  • the base station generates a training beam in the training beam set according to the weighting vector of the training beam set, the codebook set of the training beam, and the quantization method.
  • the training unit 1203 is specifically configured to:
  • Base station adopts formula Generating a training beam in the training beam set
  • C ⁇ is the codebook set of the training beam
  • quan( ⁇ ) is the quantization method.
  • the quantization method is determined by the phase quantization bit number, the amplitude quantization bit number, the normalization method and the quantization function.
  • the training unit 1203 specifically includes:
  • the determining unit 1201 is specifically configured to:
  • Each element of the weighting vector of the training beam set is synthesized by elements in the phase set and elements in the elements in the amplitude set;
  • each element a i of the weight vector of the training beam set adopts a formula synthesis
  • S is the number of phase quantization bits
  • is the length of the coverage of the target area.
  • FIG. 13 is a schematic structural diagram of a terminal according to Embodiment 1 of the present invention. As shown in FIG. 13, the terminal provided by the embodiment of the present invention includes:
  • the receiving unit 1301 is configured to receive, by the terminal, indication information, used by the base station, to indicate a weighting vector of the training beam set, where the weighting vector of the training beam set is used to represent a phase and an amplitude weighting value of each training beam in the training beam set.
  • the first calculating unit 1302 is configured to obtain, by the terminal, weights of each training beam in the training beam set according to the weighting vector of the training beam set.
  • the training unit 1303 is configured to receive, by the terminal, the training beams in the training beam set sent by the base station according to the weights of each training beam in the training beam set.
  • the method further includes:
  • the second calculating unit 1304 is configured to calculate, by the terminal, wave angle information of the training beam set.
  • the feedback unit 1305 is configured to: the terminal feeds back to the base station, the wave departure angle information of the training beam set, and the wave departure angle information is used to enable the base station to determine the transmit beam to the terminal according to the wave departure angle information.
  • the base station of this embodiment is used to implement the technical solution of the method embodiment shown in FIG. 7.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • the receiving unit 1301 is specifically configured to:
  • the terminal receives a weight vector of the training beam set transmitted by the base station.
  • the terminal receives the number of columns of the weight vector set of the training beam set sent by the base station.
  • the receiving unit 1301 is further configured to:
  • the target receiving area of the terminal receiving base station transmitting the determined beam is used to indicate that the base station determines the training beam set sent to the terminal.
  • the feedback unit 1305 is further configured to:
  • the terminal sends a notification message to the base station, where the notification information includes the target area information.
  • the receiving unit 1301 is specifically configured to:
  • the terminal obtains a weight vector of the training beam set by cyclic shift processing of the cyclic shift information.
  • the receiving unit 1301 is further configured to:
  • the codebook set is used to represent the codebook used by each training beam in the training beam set.
  • the receiving unit 1301 is further configured to:
  • the terminal receives a quantization method in which the base station transmits the determined training beam, and the quantization method is used to represent phase and amplitude quantization information of the training beam concentrated training beam.
  • the first calculating unit 1302 is specifically configured to:
  • the terminal adopts a formula according to the weight vector of the training beam set Calculating a weight w of each training beam in the training beam set;
  • C ⁇ is the codebook set of the training beam
  • quan( ⁇ ) is the quantization method.
  • the quantization method is determined by the phase quantization bit number, the amplitude quantization bit number, the normalization method and the quantization function.
  • the first calculating unit 1302 is specifically configured to:
  • the second calculating unit 1304 is specifically configured to:
  • the terminal calculates the wave angle information of the training beam set according to the compressed sensing framework
  • h T is the wave angle information of the training beam set
  • each h T non-zero element corresponds to a wave off angle
  • y is the information of the training beam in the training beam set sent by the base station received by the terminal
  • W T is the training beam a matrix of weights w, Transposed for the W T matrix.
  • the first calculating unit is specifically configured to:
  • Each element of the weighting vector of the training beam set is synthesized by elements in the phase set and elements in the elements in the amplitude set;
  • each element a i of the weight vector of the training beam set adopts a formula synthesis
  • S is the number of phase quantization bits
  • is the length of the coverage of the target area.
  • FIG. 14 is a schematic structural diagram of a base station according to Embodiment 2 of the present invention.
  • a base station provided by an embodiment of the present invention includes: a transmitter 1401, a receiver 1402, and a processor 1403.
  • the transmitter 1401 in the embodiment of the present invention may correspond to the sending unit 1202 of the base station.
  • the receiver 1402 may correspond to the receiving unit 1204 of the base station.
  • the processor 1403 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits that implement the embodiments of the present invention.
  • the processor 1403 corresponds to the determining unit 1201, the training unit 1203, and the configuration unit 1205 in the base station, and may control the determining unit 1201, the training unit 1203, and the configuration unit 1205 to perform corresponding operations.
  • the base station may further include a memory for storing the instruction code, and the processor 1403 calls the instruction code of the memory to control the transmitter 1401 and the receiver 1402 in the embodiment of the present invention to perform the above operations.
  • FIG. 15 is a schematic structural diagram of a terminal according to Embodiment 2 of the present invention.
  • a terminal provided by an embodiment of the present invention includes: a receiver 1501, a transmitter 1502, and a processor 1503.
  • the receiver 1501 in the embodiment of the present invention may correspond to the receiving unit 1301 of the terminal.
  • the transmitter 1502 can correspond to the feedback unit 1305 of the terminal.
  • the processor 1503 may be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits that implement the embodiments of the present invention.
  • the processor 1503 corresponds to the first calculating unit 1302, the training unit 1303, and the second calculating unit 1304 in the terminal, and can control the first calculating unit 1302, the training unit 1303, and the second calculating unit 1304 to perform corresponding operations.
  • the terminal may further include a memory, the memory is used to store the instruction code, and the processor 1503 calls the instruction code of the memory to control
  • the receiver 1501 and the transmitter 1502 in the embodiment of the present invention perform the above operations.
  • the beam transmission system provided by the embodiment of the present invention includes: the base station in any one of the foregoing embodiments, and the terminal in any one of the foregoing embodiments.
  • the base station and the terminal may be used as the transmitting end or the receiving end, which is not limited herein.
  • the base station and the terminal in this embodiment can refer to the related content disclosed in the related embodiments of the base station and the terminal in the foregoing embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the transmitting end only sends the weighting vector of the training beam set to the receiving end, so that the receiving end obtains the weight of each training beam in the training beam set according to the weighting vector, without using the transmitting end.
  • the weighting value reduces the overhead of sending training beams.
  • the receiving end calculates the wave-off angle information of the training beam set according to the weight vector sent by the transmitting end, and the receiving end feeds back the wave-offer information of the training beam set to the transmitting end, so that the transmitting end determines the transmitting to the receiving end according to the wave-off angle information.
  • the beam receives the wave-off angle information of the training beam set fed back by the receiving end, and the transmitting end determines the transmitting beam to the receiving end according to the wave-off angle information, so that a communication link can be established between the transmitting end and the receiving end to implement the transmitting end. Beam pairing with the receiver.

Abstract

本发明提供一种训练波束传输方法、装置及系统,该训练波束发送方法包括:发送端确定向接收端发送的训练波束集;发送端向接收端发送用于指示训练波束集的加权向量的指示信息;发送端向接收端依次发送训练波束集中的训练波束。本发明提供的训练波束传输方法、装置及系统,能够降低发送训练波束的开销。

Description

训练波束传输方法、装置及系统 技术领域
本发明涉及无线通信领域,尤其涉及一种训练波束传输方法、装置及系统。
背景技术
随着无线通信技术的高速发展,网络容量需求持续增加,而传统的无线通信频段的频谱资源日趋紧张,将不能满足未来高速无线通信需求,这使得大于6吉赫兹(GHz)的频段受到业界和学术界的关注。6GHz以上的频段拥有丰富的频谱资源,可以支持200米左右的吉比特每秒(Gbps)级别无线传输。然而,电磁传输时的空间损耗与波长成反比,传输频率越高波长越短,空间传输损耗越大。因此,使用高频段进行无线传输的空间损耗将比低频短高。
目前,为了减少高频率空间信道的传输损耗,保证基站覆盖范围,高频率无线通信主要采用大规模天线阵列形成高增益的窄波束进行传输,以弥补高频率传输中信道空间大的路径、反射等损耗。具体的,天线阵列规模越大,形成的波束越窄,天线增益越大。基站(Base Station,简称BS)和用户设备终端(Mobile Station,简称MS)通过波束配对建立无线通信链路,BS端的天线阵列发送波束,MS端的天线阵列接收波束,通过分别对BS端和MS端的波束方向扫描,寻找最佳配对波束,实现BS端和MS端的的波束配对,进而在BS端和MS端之间建立最佳的通信链路。
然而,目前高频率无线通信采用大规模天线阵列形成高增益的窄波束进行传输时,BS端和MS端都要进行波束扫描。比如,BS端的天线阵列规模为16×16,波束宽度约为6度(deg),覆盖水平空间60度(deg)、垂直空间50度(deg)的区域需要扫描60个波束,MS端的天线阵列规模为4×4,需要扫描16个波束,为了在BS端和MS端之间建立最佳的通信链路,MS端则需要扫描60×16=960次,如果单次扫描需耗时要1微秒(us),则完成上述波束扫描需要1毫秒(ms),即一个LTE子帧时间,通过波束扫描建立 和维护通信链路将占用高频无线通信系统很大一部分开销。
发明内容
本发明提供一种训练波束传输方法、装置及系统,能够降低发送训练波束的开销。
本发明第一方面提供的训练波束发送方法,包括:
发送端确定向接收端发送的训练波束集,所述训练波束集中包括至少一个训练波束;
所述发送端向所述接收端发送用于指示训练波束集的加权向量的指示信息,所述训练波束集的加权向量用于表示所述训练波束集中每一训练波束的相位和幅度加权值;
所述发送端向所述接收端依次发送所述训练波束集中的训练波束。
结合第一方面,在第一方面第一种可能的实现方式中,在所述发送端向所述接收端依次发送所述训练波束集中的训练波束之后,还包括:
所述发送端接收所述接收端反馈的所述训练波束集的波离角信息;
所述发送端根据所述波离角信息确定到所述接收端的发射波束。
结合第一方面和第一方面第一种可能的实现方式,在第一方面第二种可能的实现方式中,所述指示信息包括:所述训练波束集的加权向量;
或者所述指示信息包括:所述训练波束集的加权向量集的列数。
结合第一方面至第一方面第二种可能的实现方式中,在第一方面第三种可能的实现方式中,所述发送端确定向接收端发送的训练波束集,包括:
所述发送端确定向接收端发送波束的目标区域;
所述发送端将所述发送端的波束集合中位于所述目标区域中的波束作为所述训练波束集。
结合第一方面第三种可能的实现方式,在第一方面第四种可能的实现方式中,在所述发送端确定向接收端发送波束的目标区域之前,还包括:
所述发送端接收所述接收端发送的通知信息,所述通知信息中包含所述目标区域信息。
结合第一方面至第一方面第四种可能的实现方式,在第一方面第五种可能的实现方式中,所述发送端向所述接收端发送训练波束集的加权向量,包 括:
所述发送端向所述接收端发送训练波束集的基本加权向量和循环移位信息,所述基本加权向量通过所述循环移位信息的循环移位处理得到所述训练波束集的加权向量。
结合第一方面至第一方面第五种可能的实现方式,在第一方面第六种可能的实现方式中,在所述发送端向所述接收端依次发送所述训练波束集中的训练波束之前,还包括:
所述发送端向所述接收端发送用于指示所述训练波束集合中训练波束的码本集合的信息;
码本集合用于表示训练波束集合中每一训练波束所使用的码本。
结合第一方面至第一方面第六种可能的实现方式,在第一方面第七种可能的实现方式中,在所述发送端向所述接收端依次发送所述训练波束集中的训练波束之前,还包括:
所述发送端向所述接收端发送确定的训练波束的量化方法,所述量化方法用于表示所述训练波束集中训练波束的相位和幅度量化信息。
结合第一方面第七种可能的实现方式,在第一方面第八种可能的实现方式中,在所述发送端向所述接收端依次发送所述训练波束集中的训练波束之前,还包括:
所述发送端根据所述训练波束集的加权向量、所述训练波束的码本集合和所述量化方法生成所述训练波束集中的训练波束。
结合第一方面第八种可能的实现方式,在第一方面第九种可能的实现方式中,所述发送端根据所述训练波束集的加权向量、训练波束的码本集合和量化方法生成所述训练波束集中的训练波束,包括:
所述发送端采用公式
Figure PCTCN2015085801-appb-000001
生成所述训练波束集中的训练波束;
其中,
Figure PCTCN2015085801-appb-000002
为所述训练波束集的加权向量,CΩ为所述训练波束的码本集合,quan(·)为量化方法,所述量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
结合第一方面第九种可能的实现方式,在第一方面第十种可能的实现方式中,所述量化方法包括:
根据相位量化比特数S和幅度量化比特数Q确定相位集合
Figure PCTCN2015085801-appb-000003
和 幅度集合
Figure PCTCN2015085801-appb-000004
对每一训练波束权值向量w进行归一化处理;
对相位集合
Figure PCTCN2015085801-appb-000005
和幅度集合
Figure PCTCN2015085801-appb-000006
进行量化。
结合第一方面第三种和第四种可能的实现方式,在第一方面第十一种可能的实现方式中,所述训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成;
具体的,所述训练波束集的加权向量的每个元素ai采用公式
Figure PCTCN2015085801-appb-000007
合成;
其中,相位集合中的元素,
Figure PCTCN2015085801-appb-000008
S为相位量化比特数,幅度集合中的元素,
Figure PCTCN2015085801-appb-000009
Q为幅度量化比特数,i=1,2...,|Ω|,|Ω|为所述目标区域覆盖范围的长度。
本发明第二方面提供的训练波束接收方法,包括:
接收端接收发送端发送的用于指示训练波束集的加权向量的指示信息,所述训练波束集的加权向量用于表示所述训练波束集中每一训练波束的相位和幅度加权值;
所述接收端根据所述训练波束集的加权向量,得到所述训练波束集中每一训练波束的权值;
所述接收端根据所述训练波束集中每一训练波束的权值,依次接收所述发送端发送的所述训练波束集中的训练波束。
结合第二方面,在第二方面第一种可能的实现方式中,在所述接收端根据所述训练波束集中每一训练波束的权值,依次接收所述发送端发送的所述训练波束集中的训练波束之后,还包括:
所述接收端计算所述训练波束集的波离角信息;
所述接收端向所述发送端反馈所述训练波束集训练波束集的波离角信息,所述波离角信息用于使所述发送端根据所述波离角信息确定到所述接收端的发射波束。
结合第二方面和第二方面第一种可能的实现方式,在第二方面第二种可能的实现方式中,所述指示信息包括:所述训练波束集的加权向量;
或者所述指示信息包括:所述训练波束集的加权向量集的列数。
结合第二方面至第二方面第二种可能的实现方式,在第二方面第三种可能的实现方式中,在所述接收端根据所述训练波束集的加权向量,得到所述训练波束集中每一训练波束的权值之前,还包括:
所述接收端接收所述发送端发送确定的波束的目标区域,所述目标区域用于表示所述发送端确定向所述接收端发送的训练波束集。
结合第二方面第三种可能的实现方式,在第二方面第四种可能的实现方式中,在所述接收端接收所述发送端发送确定的波束的目标区域之后,还包括:
所述接收端向所述发送端发送通知信息,所述通知信息中包含所述目标区域信息。
结合第二方面至第二方面第四种可能的实现方式,在第二方面第五种可能的实现方式中,所述接收端接收发送端发送的训练波束集的加权向量,包括:
所述接收端接收所述发送端发送训练波束集的基本加权向量和循环移位信息,所述接收端将所述基本加权向量通过所述循环移位信息的循环移位处理得到所述训练波束集的加权向量。
结合第二方面至第二方面第五种可能的实现方式,在第二方面第六种可能的实现方式中,在所述接收端根据所述训练波束集的加权向量,得到所述训练波束集中每一训练波束的权值之前,还包括:
所述接收端接收所述发送端发送用于指示所述训练波束集合中训练波束的码本集合的信息;
码本集合用于表示训练波束集合中每一训练波束所使用的码本。
结合第二方面至第二方面第六种可能的实现方式,在第二方面第七种可能的实现方式中,在所述接收端根据所述训练波束集的加权向量,得到所述训练波束集中每一训练波束的权值之前,还包括:
所述接收端接收所述发送端发送确定的训练波束的量化方法,所述量化方法用于表示所述训练波束集中训练波束的相位和幅度量化信息。
结合第二方面第七种可能的实现方式,在第二方面第八种可能的实现方式中,所述接收端根据所述训练波束集的加权向量,得到所述训练波束集中 每一训练波束的权值,包括:
所述接收端根据所述训练波束集的加权向量,采用公式
Figure PCTCN2015085801-appb-000010
计算得到所述训练波束集中每一训练波束的权值w;
其中,
Figure PCTCN2015085801-appb-000011
为所述训练波束集的加权向量,CΩ为所述训练波束的码本集合,quan(·)为量化方法,所述量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
结合第二方面第八种可能的实现方式,在第二方面第九种可能的实现方式中,所述量化方法包括:
根据相位量化比特数S和幅度量化比特数Q确定相位集合
Figure PCTCN2015085801-appb-000012
和幅度集合
Figure PCTCN2015085801-appb-000013
对每一训练波束权值向量w进行归一化处理;
对相位集合
Figure PCTCN2015085801-appb-000014
和幅度集合
Figure PCTCN2015085801-appb-000015
进行量化。
结合第二方面第九种可能的实现方式,在第二方面第十种可能的实现方式中,所述接收端计算所述训练波束集的波离角信息,包括:
所述接收端根据压缩感知框架计算所述训练波束集的波离角信息;
具体的,采用以下公式计算所述训练波束集的波离角信息:
Figure PCTCN2015085801-appb-000016
Figure PCTCN2015085801-appb-000017
其中,hT为所述训练波束集的波离角信息,每一个hT非零元素对应一个波离角,y为接收端接收的所述发送端发送的所述训练波束集中的训练波束的信息,WT为训练波束的权值w构成的矩阵,
Figure PCTCN2015085801-appb-000018
为WT矩阵的转置。
结合第二方面第三种和第四种可能的实现方式,在第二方面第十一种可能的实现方式中,所述训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成;
具体的,所述训练波束集的加权向量的每个元素ai采用公式
Figure PCTCN2015085801-appb-000019
合成;
其中,相位集合中的元素,
Figure PCTCN2015085801-appb-000020
S为相位量化比特数,幅度集合中的元素,
Figure PCTCN2015085801-appb-000021
Q为幅度量化比特数,i=1,2...,|Ω|,|Ω|为所 述目标区域覆盖范围的长度。
本发明第三方面提供的基站,包括:
确定单元,用于基站确定向终端发送的训练波束集,所述训练波束集中包括至少一个训练波束;
发送单元,所述基站向所述终端发送用于指示训练波束集的加权向量的指示信息,所述训练波束集的加权向量用于表示所述训练波束集中每一训练波束的相位和幅度加权值;
训练单元,用于所述基站向所述终端依次发送所述训练波束集中的训练波束。
结合第三方面,在第三方面第一种可能的实现方式中,还包括:
接收单元,用于所述基站接收所述终端反馈的所述训练波束集的波离角信息;
配置单元,用于所述基站根据所述波离角信息确定到所述终端的发射波束。
结合第三方面和第三方面第一种可能的实现方式,在第三方面第二种可能的实现方式中,所述发送单元具体用于:
所述发送端向所述接收端发送所述训练波束集的加权向量;
或者所述发送端向所述接收端发送所述训练波束集的加权向量集的列数。
结合第三方面至第三方面第二种可能的实现方式,在第三方面第三种可能的实现方式中,所述确定单元具体用于:
所述基站确定向终端发送波束的目标区域;
所述基站将所述基站的波束集合中位于所述目标区域中的波束作为所述训练波束集。
结合第三方面第三种可能的实现方式,在第三方面第四种可能的实现方式中,所述确定单元具体用于:
所述基站接收所述终端发送的通知信息,所述通知信息中包含所述目标区域信息。
结合第三方面至第三方面第四种可能的实现方式,在第三方面第五种可能的实现方式中,所述发送单元具体用于:
所述基站向所述终端发送训练波束集的基本加权向量和循环移位信息,所述基本加权向量通过所述循环移位信息的循环移位处理得到所述训练波束集的加权向量。
结合第三方面至第三方面第五种可能的实现方式,在第三方面第六种可能的实现方式中,所述发送单元还用于:
所述发送端向所述接收端发送用于指示所述训练波束集合中训练波束的码本集合的信息;
码本集合用于表示训练波束集合中每一训练波束所使用的码本。
结合第三方面至第三方面第六种可能的实现方式,在第三方面第七种可能的实现方式中,所述发送单元还用于:
所述发送端向所述接收端发送确定的训练波束的量化方法,所述量化方法用于表示所述训练波束集中训练波束的相位和幅度量化信息。
结合第三方面第七种可能的实现方式,在第三方面第八种可能的实现方式中,所述训练单元还用于:
所述发送端根据所述训练波束集的加权向量、所述训练波束的码本集合和所述量化方法生成所述训练波束集中的训练波束。
结合第三方面第八种可能的实现方式,在第三方面第九种可能的实现方式中,所述训练单元具体用于:
所述基站采用公式
Figure PCTCN2015085801-appb-000022
生成所述训练波束集中的训练波束;
其中,
Figure PCTCN2015085801-appb-000023
为所述训练波束集的加权向量,CΩ为所述训练波束的码本集合,quan(·)为量化方法,所述量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
结合第三方面第九种可能的实现方式,在第三方面第十种可能的实现方式中,所述训练单元具体包括:
根据相位量化比特数S和幅度量化比特数Q确定相位集合
Figure PCTCN2015085801-appb-000024
和幅度集合
Figure PCTCN2015085801-appb-000025
对每一训练波束权值向量w进行归一化处理;
对相位集合
Figure PCTCN2015085801-appb-000026
和幅度集合
Figure PCTCN2015085801-appb-000027
进行量化。
结合第三方面第三种和第四种可能的实现方式,在第三方面第十一种可 能的实现方式中,所述确定单元具体用于:
所述训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成;
具体的,所述训练波束集的加权向量的每个元素ai采用公式
Figure PCTCN2015085801-appb-000028
合成;
其中,相位集合中的元素,
Figure PCTCN2015085801-appb-000029
S为相位量化比特数,幅度集合中的元素,
Figure PCTCN2015085801-appb-000030
Q为幅度量化比特数,i=1,2...,|Ω|,|Ω|为所述目标区域覆盖范围的长度。
本发明第四方面提供的终端,包括:
接收单元,用于终端接收基站发送的用于指示训练波束集的加权向量的指示信息,所述训练波束集的加权向量用于表示所述训练波束集中每一训练波束的相位和幅度加权值;
第一计算单元,用于所述终端根据所述训练波束集的加权向量,得到所述训练波束集中每一训练波束的权值;
训练单元,用于所述终端根据所述训练波束集中每一训练波束的权值,依次接收所述基站发送的所述训练波束集中的训练波束。
结合第四方面,在第四方面第一种可能的实现方式中,还包括:
第二计算单元,用于所述终端计算所述训练波束集的波离角信息;
反馈单元,用于所述终端向所述基站反馈所述训练波束集的波离角信息,所述波离角信息用于使所述基站根据所述波离角信息确定到所述终端的发射波束。
结合第四方面和第四方面第一种可能的实现方式,在第四方面第二种可能的实现方式中,所述接收单元具体用于:
所述终端接收所述基站发送的所述训练波束集的加权向量。
或者所述终端接收所述基站发送的所述训练波束集的加权向量集的列数。
结合第四方面至第四方面第二种可能的实现方式,在第四方面第三种可能的实现方式中,所述接收单元还用于:
所述终端接收所述基站发送确定的波束的目标区域所述目标区域用于表 示所述基站确定向所述终端发送的训练波束集。
结合第四方面第三种可能的实现方式,在第四方面第四种可能的实现方式中,所述反馈单元还用于:
所述终端向所述基站发送通知信息,所述通知信息中包含所述目标区域信息。
结合第四方面至第四方面第四种可能的实现方式,在第四方面第五种可能的实现方式中,所述接收单元具体用于:
所述终端接收所述基站发送训练波束集的基本加权向量和循环移位信息;
所述终端将所述基本加权向量通过所述循环移位信息的循环移位处理得到所述训练波束集的加权向量。
结合第四方面至第四方面第五种可能的实现方式,在第四方面第六种可能的实现方式中,所述接收单元还用于:
所述终端接收所述基站发送用于指示所述训练波束集合中训练波束的码本集合的信息;
码本集合用于表示训练波束集合中每一训练波束所使用的码本。
结合第四方面至第四方面第六种可能的实现方式,在第四方面第七种可能的实现方式中,所述接收单元还用于:
所述终端接收所述基站发送确定的训练波束的量化方法,所述量化方法用于表示所述训练波束集中训练波束的相位和幅度量化信息。
结合第四方面第七种可能的实现方式,在第四方面第八种可能的实现方式中,所述第一计算单元具体用于:
所述终端根据所述训练波束集的加权向量,采用公式
Figure PCTCN2015085801-appb-000031
计算得到所述训练波束集中每一训练波束的权值w;
其中,
Figure PCTCN2015085801-appb-000032
为所述训练波束集的加权向量,CΩ为所述训练波束的码本集合,quan(·)为量化方法,所述量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
结合第四方面第八种可能的实现方式,在第四方面第九种可能的实现方式中,所述第一计算单元具体用于:
根据相位量化比特数S和幅度量化比特数Q确定相位集合
Figure PCTCN2015085801-appb-000033
和 幅度集合
Figure PCTCN2015085801-appb-000034
对每一训练波束权值向量w进行归一化处理;
对相位集合
Figure PCTCN2015085801-appb-000035
和幅度集合
Figure PCTCN2015085801-appb-000036
进行量化。
结合第四方面第九种可能的实现方式,在第四方面第十种可能的实现方式中,所述第二计算单元具体用于:
所述终端根据压缩感知框架计算所述训练波束集的波离角信息;
具体的,采用以下公式计算所述训练波束集的波离角信息:
Figure PCTCN2015085801-appb-000037
Figure PCTCN2015085801-appb-000038
其中,hT为所述训练波束集的波离角信息,每一个hT非零元素对应一个波离角,y为终端接收的所述基站发送的所述训练波束集中的训练波束的信息,WT为训练波束的权值W构成的矩阵,
Figure PCTCN2015085801-appb-000039
为WT矩阵的转置。
结合第四方面第三种和第四种可能的实现方式,在第四方面第十一种可能的实现方式中,所述第一计算单元具体用于:
所述训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成;
具体的,所述训练波束集的加权向量的每个元素ai采用公式
Figure PCTCN2015085801-appb-000040
合成;
其中,相位集合中的元素,
Figure PCTCN2015085801-appb-000041
S为相位量化比特数,幅度集合中的元素,
Figure PCTCN2015085801-appb-000042
Q为幅度量化比特数,i=1,2...,|Ω|,|Ω|为所述目标区域覆盖范围的长度。
本发明第五方面提供的波束传输系统,包括:如第三方面至第三方面第十一种可能的实现方式中任一种可能的实现方式所述的基站和如第四方面至第四方面第十一种可能的实现方式中任一种可能的实现方式所述的终端。
本发明提供的训练波束传输方法、装置及系统,发送端仅向接收端发送训练波束集的加权向量,而不用发送端向接收端发送训练波束集的加权值,降低了发送训练波束的开销。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中天线阵列波束扫描配对示意图;
图2为本发明实施例提供的发送端和接收端系统示意图;
图3为本发明实施例一提供的训练波束发送方法流程图;
图4为本发明实施例一提供的均匀线性阵列结构示意图;
图5为发明本实施例一提供的目标区域结构示意图;
图6为本发明实施例二提供的训练波束发送方法流程图;
图7为本发明实施例一提供的训练波束接收方法流程图;
图8为本发明实施例二提供的训练波束接收方法流程图;
图9为本发明实施例一提供的训练波束传输方法流程图;
图10为本发明实施例二提供的训练波束传输方法流程图;
图11为本发明实施例提供的训练波束传输方法的仿真结果示意图;
图12为本发明实施例一提供的基站结构示意图;
图13为本发明实施例一提供的终端结构示意图;
图14为本发明实施例二提供的基站结构示意图;
图15为本发明实施例二提供的终端结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
无线通信技术中,尤其是高频率无线通信技术中,为了减少高频率空间信道的传输损耗,保证基站覆盖范围,需要高增益的训练天线。目前,主要是采用大规模天线阵列的波束成形技术形成高增益的窄波束进行传输,在基 站(Base Station,简称BS)和用户设备终端(Mobile Station,简称MS)之间建立最佳的通信链路,以弥补高频率传输中信道空间大的路径、反射等损耗。其中,大规模天线阵列的波束成形技术的基本原理是天线阵列形成的每一个波束都对应一个波束指向的中心方向和该波束覆盖的区域,每一个波束宽度的码本形成的波束都可以覆盖整个空间,只需要通过扫描天线阵列生成的波束就可以得到最佳的波束对,然后将BS和MS形成的波束指向最佳的波束对,即可实现在BS和MS之间建立最佳的通信链路。
图1为现有技术中天线阵列波束扫描配对示意图。如图1所示,BS包括发送无线信号的发送天线阵列,用于发射波束,MS包括接收无线信号的接收天线阵列,用于接收波束。BS固定一个发射波束,BS发送了b0、b1…bM共M个波束,MS中天线阵列形成有c0、c1…cN共N个波束,MS中N个波束的每一个波束扫描BS发送的M个波束的每一个波束进行接收,当MS扫描完BS发送的M个波束后,MS通过计算接收信号功率、信噪比等信息获取最佳的通信波束对,从而实现在BS和MS之间建立最佳的通信链路。
然而,目前天线阵列波束扫描配对时,MS中的每一个波束需要对BS发送的每一个波束进行扫描,在BS和MS之间建立通信链路大约需要扫描M×N次,使得BS和MS之间建立通信链路消耗的时间长,导致发送的训练波束开销非常大。
本发明所要解决的技术问题是在确定BS端和MS端之间的通信链路,发送训练波束时,如何减少通信链路建立的消耗时间,降低发射训练波束的开销。
本发明的主要思想是在建立通信链路,确定发送端需要向接收端发送的训练波束时,发送端向接收端发送训练波束集的加权向量,接收端接收发送端发送的训练波束集的加权向量,接收端根据训练波束集的加权向量,得到训练波束集中每一训练波束的权值,而不需要发送端向接收端直接发送训练波束集中每一训练波束的权值,从而减少建立通信链路消耗的时间长,降低发送训练波束的开销。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本发明实施例提供的发送端和接收端系统示意图。如图2所示,本发明针对图2所示波束成形收发机系统,发送端侧包括射频前端(Radio Front)、数模转换器(D/A)、基带处理器(Baseband processor)和波束成形单元(Beamforming Unit),接收端侧包括射频前端(Radio Front)、模数转换器(A/D)、基带处理器(Baseband processor)和波束成形单元(Beamforming Unit)。发送端基带处理器对来自于介质访问控制(Media Access Control,简称MAC)的数据进行正交振幅调制(Quadrature Amplitude Modulation,简称QAM)、成型和成帧等处理,然后输入给数模转换器,数模转换器的数据再通过射频前端将信号上变频调制到载波频率通过天线发射出去。发送端射频前端为了支持波束成形功能通常会包括功率分配器网络(Divider)、移相器和天线阵列。波束成形单元则根据基带处理器反馈的信息控制射频单元进行移相操作,实现波束成形,波束成形原理是通过调节各天线阵元信号的加权幅度和相位将无线电信号导向具体的方向,产生空间指向性波束。接收端射频前端除了包含天线阵列和移相器外,还包含功率合成网络。接收端射频前端将接收信号从某个载波频率的信号下变频到基带的模拟信号。基带模拟信号通过模数转换成数字信号,基带处理通过信道估计和QAM解调等操作将提取出发射数据。接收端的波束成形单元与发送端波束成形单元功能一致,均通过控制移相器移相值进行形成波束。
由上述波束成形原理可知,发送端由多个天线单元组成的阵列天线,通过调节各阵列单元信号的加权幅度和相位,发送端发送的波束具有一指向方向,其指向方向的角度称为波离角(Angle of Departure,简称AoD)。接收机由多个天线单元组成的阵列天线,通过调节各阵列单元信号的加权幅度和相位,接收机发送的波束具有一指向方向,其指向方向的角度称为波达角(Angle of Arrival,简称AoA)。因此,只要确定发送端波束和接收端波束的指向方向,也即确定发送端的波离角和接收端的波达角,即可在发送端和接收端之间建立通信链路,实现发送端和接收端之间的波束配对。
需要说明的是,确定发送端的波离角和接收端的波达角,即可在发送端和接收端之间建立通信链路,实现发送端和接收端之间的波束配对,本发明实施例主要以确定发射机的波离角为例阐述本发明的训练波束的发送和接收方法,确定接收机的波达角与确定发射机的波离角的训练波束的发送和接收 方法类似,本发明实施例在此不进行赘述。波离角(Angle of Departure,简称AoD)指的是波束离开线性天线阵列时的离开角度,波达角(Angle of Arrival,简称AoA)指的是波束到达线性天线阵列时的到达角度。基站和终端既可以是发送端,也可以是接收端,一般地,当基站作为发送端,则终端作为接收端;当基站终端作为发送端,则基站作为接收端。本发明实施例主要以基站作为发送端、终端作为接收端的情况进行阐述,终端作为发送端、基站作为接收端的情况与基站作为发送端、终端作为接收端的情况类似,本发明实施例在此不进行赘述。
图3为本发明实施例一提供的训练波束发送方法流程图。如图3所示,本发明实施例提供的方法,包括:
S301:发送端确定向接收端发送的训练波束集,训练波束集中包括至少一个训练波束。
具体的,发送端确定向接收端发送的训练波束集,启动波束训练机制。本发明实施例中主要采用压缩感知/压缩采用(Compressive Sensing/Compressed Sampling,简称CS)框架训练机制,但并不仅限于此。
S302:发送端向接收端发送用于指示训练波束集的加权向量的指示信息,训练波束集的加权向量用于表示训练波束集中每一训练波束的相位和幅度加权值。
具体的,发送端向接收端发送用于指示训练波束集的加权向量的指示信息,以使接收端根据加权向量得到训练波束集中每一训练波束的权值。发送端向接收端发送用于指示训练波束集的加权向量的指示信息,通知接收端所需要使用的训练波束集的加权向量。每一个发送训练波束的生成都对应一个唯一的权值向量,且其权值向量的取值确定了发送端和接收端射频前端的一个天线单元的幅度和相位加权值。训练波束集中每一训练波束的相位和幅度分别由相位量化比特数和幅度量化比特数确定,其中,相位量化比特数Q和幅度量化比特数S由射频前端的硬件能力确定。量化比特数指的是要区分所有量化级所需的二进制数的位数,相位量化比特数指的是相位量化所需的二进制位数,幅度量化比特数指的是幅度量化所需的二进制位数。
需要说明的是,发送端直接向接收端发送训练波束集的加权向量的开销小于现有技术中发送端直接向接收端发送训练波束集的加权值,具体来说, 假设发送端有Nt根发射天线,也即Nt个发射天线单元,加权向量的长度为|Ω|,|Ω|<Nt。发送端直接发送单个训练波束集的加权值的反馈开销为Nt×Qh,而送端直接发送训练波束集的加权向量的开销为|Ω|×Qw,其中Qh为发送端移相器和幅度量化所需的比特数,Qw为加权向量的量化比特数,Qw通常比Qh稍多几比特。由于|Ω|通常远小于Nt,所以发送端直接向接收端发送训练波束集的加权向量的开销|Ω|×Qw小于发送端直接向接收端发送训练波束集的加权值的开销Nt×Qh。由于反馈加权向量给接收端计算训练波束权值的开销小于直接反馈训练波束生成权值,因此,发送端直接向接收端发送训练波束集的加权向量的开销小于发送端直接向接收端发送训练波束集的加权值,降低了发送训练波束的开销。
S303:发送端向接收端依次发送训练波束集中的训练波束。
具体的,发送端在接收端启动CS训练后,发送端发送P个训练波束进行训练,发送端通过P个训练波束向接收端发送训练序列。
需要说明的是,当需要P个发送训练波束时,会独立生成
Figure PCTCN2015085801-appb-000043
个不同的训练波束集的加权向量,且发送端必须将这P个训练波束集的加权向量发送给接收端,接收端才可以计算出发送端的P个训练波束的权值。由于不同的设备厂商的发送端可能会使用不同的加权向量,因此,发送端必须每次都给接收端发送用于指示训练波束集的加权向量
Figure PCTCN2015085801-appb-000044
的指示信息。
本发明实施例提供的训练波束发送方法,发送端仅向接收端发送用于指示训练波束集的加权向量的指示信息,而不用发送端向接收端发送训练波束集的加权值,降低了发送训练波束的开销。
进一步地,在本发明实施例中,可选的,在S303之后,还包括:
S304:发送端接收接收端反馈的训练波束集的波离角信息。
S305:发送端根据波离角信息确定到接收端的发射波束。
具体的,发送端根据接收到的接收端反馈的训练波束集的波离角信息,调整发送端发射波束的方向,即可在发送端和接收端之间建立通信链路,实现发送端和接收端之间的波束配对。
本发明实施例提供的训练波束发送方法,发送端仅向接收端发送训练波束集的加权向量,而不用发送端向接收端发送训练波束集的加权值,降低了发送训练波束的开销。进一步地,发送端接收接收端反馈的训练波束集的波 离角信息,发送端根据波离角信息确定到接收端的发射波束,即可在发送端和接收端之间建立通信链路,实现发送端和接收端之间的波束配对。
进一步地,在上述所示实施例中,指示信息包括:训练波束集的加权向量。
具体的,在实际应用中,接收端可能并不知道发送端使用的训练波束集的加权向量,此时,发送端直接向接收端发送训练波束集的加权向量,接收端接收发送端发送的训练波束集的加权向量,得到训练波束集的加权向量。
需要说明的是,指示信息中包括至少一个训练波束集的加权向量,指示信息中训练波束集的加权向量的个数与训练波束集中的训练波束一一对应,也即训练波束集中有多少个训练波束,指示信息中就包括多少个训练波束集的加权向量。
或者指示信息包括:训练波束集的加权向量集的列数。
具体的,发送端发送的所有训练波束可以生成一组加权向量,这组加权向量可以称之为所有训练波束的加权向量集。在实际应用中,所有训练波束的加权向量集可以预先存储在接收机,也即接收端中已经知道所有训练波束的加权向量集,此时,发送端只需要向接收端发送训练波束集的加权向量集的列数,也即,发送端只需要通过发送指示信息提示接收机使用了加权向量集中的哪些训练波束集的加权向量,接收端即可根据接收端中的训练波束的加权向量集以及发送端发送的训练波束集的加权向量集的列数确定需要使用的波束集的加权向量。举例来说,假设发送端向接收端发送用于指示训练波束集的加权向量的指示信息中的训练波束集的加权向量集的列数为10,接收端中已经预先存储了所有训练波束的加权向量φ中有100个元素,其中
Figure PCTCN2015085801-appb-000045
此时,接收端根据指示消息中训练波束集的加权向量集的列数,找到所有训练波束的加权向量φ中的其中10个加权向量作为训练波束集的加权向量。
需要说明的是,指示信息中包括的训练波束集的加权向量的列数至少为一个,指示信息中训练波束集的加权向量的列数与训练波束集中的训练波束 一一对应,也即训练波束集中有多少个训练波束,指示信息中就包括训练波束集的加权向量的列数为多少个。
进一步地,在上述所示实施例中,发送端确定向接收端发送的训练波束集,包括:
发送端确定向接收端发送波束的目标区域。
发送端将发送端的波束集合中位于目标区域中的波束作为训练波束集。
具体的,目标区域即希望波束能量聚焦的区域。目标区域标示了训练波束的码本中的一些列,这些列对应的训练波束权值向量形成的训练波束覆盖了一个空间区域。目标区域可以是一个扇区,一个需要跟踪的AoD区域或多个需要跟踪的AoD区域。目标区域的位置可以根据上一时刻AoD/AoA方向而定,目标区域的大小可以根据信道的角度扩展、天线提供的波束宽度和移动速度等确定。
举例来说,图4为本发明实施例一提供的均匀线性阵列结构示意图,如图4所示,该均匀线性阵列包括Nt个天线单元,每两个天线单元之间的距离为d,波束离开天线阵列的角度(波离角)为θ。图5为发明本实施例一提供的目标区域结构示意图,如图5所示,波束空间按角度θ被划分成Nb个格子,
Figure PCTCN2015085801-appb-000046
为训练波束码本中包含的训练波束个数,每个格子与一个角度θi所对应,其中,i=1,2,...,Nb。假设相邻格子之间的角度间隔为
Figure PCTCN2015085801-appb-000047
波束宽度为
Figure PCTCN2015085801-appb-000048
以当前发送端的波离角θAoD为中心左右各
Figure PCTCN2015085801-appb-000049
的一个区域作为目标区域Ω。目标区域Ω的中心位置为当前发送端的波离角θAoD,假设其训练波束权值向量对应训练波束码矩阵C中的i3列。由于波束宽度为
Figure PCTCN2015085801-appb-000050
如果要用波束覆盖目标区域Ω,则中心位置左右各需要占用两个格子。此时,目标区域Ω所含格子对应的标示i1,i2,i3,i4,i5依次对应训练波束的码本C中的i1,i2,i3,i4,i5列,训练波束的码本C的i1,i2,i3,i4,i5列构成训练波束的码本集合CΩ
需要说明的是,波束宽度指的是在波束最大辐射方向两侧,辐射功率下降3分贝(dB)的两个波束方向的夹角。本领域技术人员很容易结合水平角和俯仰角对或俯仰角和方位角度对得到平面阵列对应的目标区域及目标区域确定的训练波束的码本集合,本实施例在此不进行限定和赘述。目标区域可以是发送端发送给接收端,也可以预先存储在接收端,本发明实施例在此不 进行限定。
进一步地,在上述所示实施例中,在发送端确定向接收端发送波束的目标区域之前,还包括:
发送端接收接收端发送的通知信息,通知信息中包含目标区域信息。
进一步地,在上述所示实施例中,在发送端向接收端依次发送训练波束集中的训练波束之前,还包括:
发送端向接收端发送用于指示训练波束集合中训练波束的码本集合的信息;
码本集合用于表示训练波束集合中每一训练波束所使用的码本。
其中,训练波束的码本集合CΩ由训练波束的码本C和目标区域Ω确定。训练波束的码本C的|Ω|列构成训练波束的码本集合CΩ,|Ω|为目标区域Ω覆盖范围的长度。
需要说明的是,发送端的天线阵列可以是均匀的线性阵列、均匀的平面阵列、环形阵列和圆形平面阵列等中的某一种。不同的发射天线阵列,对应不同的训练波束码本集。接收机可以预先存储多个与发射机天线形态相关的多个训练波束码本集,此时,发射机只要通知接收机其天线形态信息,接收机即可根据该信息确认计算发射训练波束权值向量时使用的训练波束集。
具体的,每一个发射训练波束的生成都对应一个唯一的权值,训练波束的码本C是由发送端发送的每一个训练波束生成的权值组成,C中每一列对对应一个训练波束形成的权值,C中所有列构成一个覆盖整个空间或某个基站的扇区训练波束码本的集合。需要说明的是,训练波束码本C可以是一个离散傅里叶变换(Discrete Fourier Transform,简称DFT)矩阵或部分DFT矩阵,也可以是由训练波束指向向量作为列构成的训练波束指向矩阵。
可选的,训练波束码本C为Nt×Nt离散傅里叶变换DFT矩阵,每一列对应一个指定方向的训练波束权值向量。
具体的,
Figure PCTCN2015085801-appb-000051
其中,
Figure PCTCN2015085801-appb-000052
m=0,1...,Nt-1,n=0,1...,Nt-1,Nt为基站包含的天线 单元个数。
可选的,训练波束码本C为Nt×Nb训练波束指向矩阵,训练波束指向矩阵的每一列的指向方向相同,每一列都对应一个训练波束指向为θi的训练波束权值向量。
具体的,
Figure PCTCN2015085801-appb-000053
其中,
Figure PCTCN2015085801-appb-000054
C的列ci是一个Nt×1的向量,其每一个元素对应一个与基站中天线单元相关的加权值,0≤θi≤π,i=1,2...,Nt,Nb为训练波束码本中包含的训练波束个数,d为两个天线单元之间距离,λc为训练波束对应的波长。
需要说明的是,本发明实施例主要以均匀线性阵列训练波束的码本为例进行阐述。但是本发明实施例并不仅限于均匀线性阵列训练波束的码本,本领域技术人员很容易根据实际需要场景定义其它的线性阵列训练波束的码本,或者基于线性阵列训练波束的码本扩展得到平面阵列的训练波束的码本。比如,本领域技术人员可以很容易的将线性阵列的DFT矩阵扩展至平面矩阵,或者,本领域技术人员可以很容易通过水平角和仰俯角度对或俯仰角和方位角度对定义平面阵列的训练波束的码本,本实施在此不进行限定和阐述。
进一步地,在上述所示实施例中,在发送端向接收端依次发送训练波束集中的训练波束之前,还包括:
发送端向接收端发送确定的训练波束的量化方法,量化方法用于表示训练波束集中训练波束的相位和幅度量化信息。
具体的,量化方法由发送端射频前端支持的相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定,量化方法在同一个发送端下只需要发送一次,且同一个发送端下只需要发送一次量化方法,可以使得发送开销可以控制在10个比特左右。
需要说明的是,量化方法可以是发送端发送给接收端的,也可以是预先存储在接收端的,本发明实施例在此不进行限定。
进一步地,在上述所示实施例中,在发送端向接收端依次发送训练波束集中的训练波束之前,还包括:
发送端根据训练波束集的加权向量、训练波束的码本集合和量化方法生 成训练波束集中的训练波束。
进一步地,在上述所示实施例中,发送端根据训练波束集的加权向量、训练波束的码本集合和量化方法生成训练波束集中的训练波束,包括:
发送端采用公式
Figure PCTCN2015085801-appb-000055
生成训练波束集中的训练波束;
其中,
Figure PCTCN2015085801-appb-000056
为训练波束集的加权向量,CΩ为训练波束的码本集合,quan(·)为量化方法,量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
进一步地,在上述所示实施例中,量化方法包括:
根据相位量化比特数S和幅度量化比特数Q确定相位集合
Figure PCTCN2015085801-appb-000057
和幅度集合
Figure PCTCN2015085801-appb-000058
对每一训练波束权值向量w进行归一化处理;
对相位集合
Figure PCTCN2015085801-appb-000059
和幅度集合
Figure PCTCN2015085801-appb-000060
进行量化。
进一步地,在上述所示实施例中,训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成。
具体的,训练波束集的加权向量的每个元素ai采用公式
Figure PCTCN2015085801-appb-000061
合成。
其中,相位集合中的元素,
Figure PCTCN2015085801-appb-000062
S为相位量化比特数,幅度集合中的元素,
Figure PCTCN2015085801-appb-000063
Q为幅度量化比特数,i=1,2...,|Ω|,|Ω|为目标区域覆盖范围的长度。
在本发明实施例中,训练波束集的加权向量
Figure PCTCN2015085801-appb-000064
是一个|Ω|×1的列向量。其中,|Ω|为目标区域Ω的长度,且训练波束集的加权向量
Figure PCTCN2015085801-appb-000065
的长度|Ω|与训练波束的码本集合CΩ中包含的训练波束相同。
举例来说,当幅度量化比特数Q=0时,幅度集合中只有一个元素1,即训练波束集的加权向量中的所有元素幅度均相同。下面给出一个只有相位量化的例子,假设|Ω|=4,Q=0,S=2,即只有相位量化。此时,移向器只有4个相位状态
Figure PCTCN2015085801-appb-000066
所以相位集合为
Figure PCTCN2015085801-appb-000067
例如
Figure PCTCN2015085801-appb-000068
则对应的训练波束集的加权向量
Figure PCTCN2015085801-appb-000069
为:
Figure PCTCN2015085801-appb-000070
图6为本发明实施例二提供的训练波束发送方法流程图。如图6所示,本发明实施例提供的方法,包括:
S601:发送端确定向接收端发送的训练波束集,训练波束集中包括至少一个训练波束。
S602:发送端向接收端发送训练波束集的基本加权向量和循环移位信息,基本加权向量通过循环移位信息的循环移位处理得到训练波束集的加权向量。
其中,训练波束集的加权向量用于表示训练波束集中每一训练波束的相位和幅度加权值。
具体的,为了进一步减少发送端发送训练波束集的加权向量的开销,发送端可以先生成一个训练波束集的基本加权向量,发送端向接收端发送训练波束集的基本加权向量和循环移位信息,不同的训练波束集的加权向量则通过循环移位和截取训练波束集的基本加权向量得到。需要说明的是,训练波束集的基本加权向量的长度大于训练波束子集包含的最大波束数,也即,训练波束集的基本加权向量的长度大于目标区域覆盖范围的长度|Ω|。
举例来说,发送端生成一个训练波束集的基本加权向量
Figure PCTCN2015085801-appb-000071
其长度为M,循环移位信息中循环移位的位数为1位,其中,训练波束集的基本加权向量
Figure PCTCN2015085801-appb-000072
M>|Ω|,将训练波束集的基本加权向量
Figure PCTCN2015085801-appb-000073
向上循环1位,可以得到
Figure PCTCN2015085801-appb-000074
然后截取
Figure PCTCN2015085801-appb-000075
的前|Ω|个元素构成训练波束集的加权向量
Figure PCTCN2015085801-appb-000076
需要说明的是,基本加权向量的长度为M,表示其需要M·Qw比特,其中Qw为加权向量的量化比特数。长度为M的基本加权向量,表示其所有循环移 位只需要log2(M)个比特。若总的使用了P个训练波束,则完全表示训练波束权值信息需要P·Qh·Nt个比特,而发送端直接发送训练波束集的基本加权向量需要大约P·Qw·|Ω|比特。如果通过发送端发送的基本加权向量和循环移位信息则只需要反馈P·log2(M)+M·Qw比特,随着训练次数P的增加P·log2(M)部分为主要开销,因此,本实施例中发送端发送训练波束集的基本加权向量和循环移位信息比发送训练波束集的加权向量节省的发送波束开销将越大。
S603:发送端向接收端依次发送训练波束集中的训练波束。
本发明实施例提供的训练波束发送方法,发送端仅向接收端发送训练波束集的基本加权向量和循环移位信息,而不用发送端向接收端发送训练波束集的加权值,更大地降低了发送训练波束的开销。
进一步地,在本发明实施例中,可选的,在S603之后,还包括:
S604:发送端接收接收端反馈的训练波束集的波离角信息。
S605:发送端根据波离角信息确定到接收端的发射波束。
本发明实施例提供的训练波束发送方法,发送端仅向接收端发送训练波束集的基本加权向量和循环移位信息,而不用发送端向接收端发送训练波束集的加权值,更大地降低了发送训练波束的开销。进一步地,发送端接收接收端反馈的训练波束集的波离角信息,发送端根据波离角信息确定到接收端的发射波束,即可在发送端和接收端之间建立通信链路,实现发送端和接收端之间的波束配对。
图7为本发明实施例一提供的训练波束接收方法流程图。如图7所示,本发明实施例提供的方法,包括:
S701:接收端接收发送端发送的用于指示训练波束集的加权向量的指示信息,训练波束集的加权向量用于表示训练波束集中每一训练波束的相位和幅度加权值。
具体的,接收端根据接收的发送端发送的用于指示训练波束集的加权向量的指示信息,即可确定训练波束集的加权向量。
S702:接收端根据训练波束集的加权向量,得到训练波束集中每一训练波束的权值。
可选的,接收端根据训练波束集的加权向量,得到训练波束集中每一训练波束的权值,包括:
接收端根据训练波束集的加权向量,采用公式
Figure PCTCN2015085801-appb-000077
计算得到训练波束集中每一训练波束的权值w。
其中,
Figure PCTCN2015085801-appb-000078
为训练波束集的加权向量,CΩ为训练波束的码本集合,quan(·)为量化方法,量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
具体的,公式
Figure PCTCN2015085801-appb-000079
也可以写成
Figure PCTCN2015085801-appb-000080
也即,接收端根据训练波束集的加权向量,采用公式
Figure PCTCN2015085801-appb-000081
计算得到训练波束集中每一训练波束的权值w。其中,ci为训练波束码本C中的元素,
Figure PCTCN2015085801-appb-000082
为训练波束集的加权向量中的元素。
需要说明的是,量化方法quan(·)操作的目的是使生成的训练波束的权值w满足硬件约束,量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
S703:接收端根据训练波束集中每一训练波束的权值,依次接收发送端发送的训练波束集中的训练波束。
本发明实施例提供的训练波束接收方法,接收端根据发送端发送训练波束集的加权向量,计算发送端向接收端发送训练波束集的加权值,而不用接收端直接接收发送端发送训练波束集的加权值,降低了发送训练波束的开销。
进一步地,在本发明实施例中,可选的,在S703之后,还包括:
S704:接收端计算训练波束集的波离角信息。
具体的,接收端根据发送端发送的用于指示训练波束集的加权向量的指示信息,得到训练波束集中每一训练波束的权值,进而计算训练波束集的波离角信息。在本发明实施例中,接收端采用压缩感知/压缩采用(Compressive Sensing/Compressed Sampling,简称CS)框架估计发送端波束的波离角信息。接收端估计发送端波束的波离角信息时,需要发送端发射一组训练波束进行训练,且接收端必须知道发送端发送的训练波束对应的权值向量。
需要说明的是,训练完每一组训练波束集,接收端才能计算获取训练波束集的波离角信息。
可选的,接收端计算训练波束集的波离角信息,包括:
接收端根据压缩感知框架计算训练波束集的波离角信息。
具体的,采用以下公式计算训练波束集的波离角信息:
Figure PCTCN2015085801-appb-000083
Figure PCTCN2015085801-appb-000084
其中,hT为训练波束集的波离角信息,每一个hT非零元素对应一个波离角,y为接收端接收的发送端发送的训练波束集中的训练波束的信息,WT为训练波束的权值W构成的矩阵,
Figure PCTCN2015085801-appb-000085
为WT矩阵的转置,s.t.是约束条件。
需要说明的是,训练波束的权值向量WT为P个训练波束权值的列构成的矩阵,大小为Nt×P,称之为训练矩阵。
具体的,接收端采用接收波束权值向量WR的接收波束进行接收,接收端根据发送端发送的训练波束集的加权向量
Figure PCTCN2015085801-appb-000086
计算训练波束集中每一训练波束的权值w,接收端利用自身接收波束的权值向量WR和计算出的发射波束的权值向量w,其中,采用公式得到接收测量信息y,其中,y=[y1 y2 ... yP]T,H为发送端和接收端建立的通信链路的信道矩阵。
需要说明的是,根据CS框架计算发送端的AoD信息也可以采用其它计算方法,比如,迭代门限算法、匹配追踪算法和基追踪算法等,本发明实施例在此不进行限定和赘述。发送端和接收端建立的通信链路的信道矩阵与现有技术中的送端和接收端建立的通信链路的信道矩阵构成和计算原理相同,本发明实施例在此不进行赘述。
需要说明的是,现有技术中发送端直接将训练波束集中每一训练波束的权值w发送给接收端,接收端利用自身接收波束的权值向量WR和发送端直接发送的训练波束集中训练波束的权值W得到接收测量信息y。现有技术中发送端直接发送训练波束集中每一训练波束的权值w需要发送一个Nt×P的矩阵,使得发送训练波束的反馈开销非常大。
S705:接收端向发送端反馈训练波束集的波离角信息,波离角信息用于使发送端根据波离角信息确定到接收端的发射波束。
本发明实施例提供的训练波束接收方法,接收端根据发送端发送训练波束集的加权向量,计算发送端向接收端发送训练波束集的加权值,而不用接收端直接接收发送端发送训练波束集的加权值,降低了发送训练波束的开销。进一步地,接收端计算训练波束集的波离角信息,接收端向发送端反馈训练波束集的波离角信息,使得发送端根据波离角信息确定到接收端的发射波束,即可在发送端和接收端之间建立通信链路,实现发送端和接收端之间的波束 配对。
进一步地,在上述所示实施例中,指示信息包括:训练波束集的加权向量。
具体的,发送端直接向接收端发送训练波束集的加权向量,接收端接收发送端发送的训练波束集的加权向量,得到训练波束集的加权向量。
或者指示信息包括:训练波束集的加权向量集的列数。
具体的,在实际应用中,接收端中已经预先存储了所有训练波束的加权向量,此时,接收端只需要接收发送端发送的训练波束集的加权向量集的列数,接收端即可根据接收端中预先存储的训练波束的加权向量以及发送端发送的训练波束集的加权向量集的列数确定需要使用的波束集的加权向量。举例来说,假设接收端接收到发送端发送的用于指示训练波束集的加权向量的指示信息中的训练波束集的加权向量集的列数为10,接收端中已经预先存储了所有训练波束的加权向量φ中有100个元素,其中
Figure PCTCN2015085801-appb-000088
此时,接收端根据指示消息中训练波束集的加权向量集的列数,确定所有训练波束的加权向量φ中的10个加权向量作为训练波束集的加权向量。
进一步地,在上述所示实施例中,在接收端根据训练波束集的加权向量,得到训练波束集中每一训练波束的权值之前,还包括:
接收端接收发送端发送确定的波束的目标区域,目标区域用于表示发送端确定向接收端发送的训练波束集。
进一步地,在上述所示实施例中,在接收端接收发送端发送确定的波束的目标区域之后,还包括:
接收端向发送端发送通知信息,通知信息中包含目标区域信息。
进一步地,在上述所示实施例中,在接收端根据训练波束集的加权向量,得到训练波束集中每一训练波束的权值之前,还包括:
接收端接收发送端发送用于指示训练波束集合中训练波束的码本集合的信息;
码本集合用于表示训练波束集合中每一训练波束所使用的码本。
进一步地,在上述所示实施例中,在接收端根据训练波束集的加权向量,得到训练波束集中每一训练波束的权值之前,还包括:
接收端接收发送端发送确定的训练波束的量化方法,量化方法用于表示训练波束集中训练波束的相位和幅度量化信息。
进一步地,在上述所示实施例中,量化方法包括:
根据相位量化比特数S和幅度量化比特数Q确定相位集合
Figure PCTCN2015085801-appb-000089
和幅度集合
Figure PCTCN2015085801-appb-000090
具体的,由上可知,幅度量化比特数S和相位量化比特数Q由射频前端的硬件能力确定。S确定了相位集合
Figure PCTCN2015085801-appb-000091
Q确定了幅度集合
Figure PCTCN2015085801-appb-000092
特别当Q=0时表示只有相位量化。
对每一训练波束权值w进行归一化处理。
具体的,通过量化函数进行量化前需对未量化的每一训练波束权值
Figure PCTCN2015085801-appb-000093
进行归一化处理,其中u≥0,βi为相位加权对应的相位值。归一化因子取未量化的每一训练波束权值最大值的倒数
Figure PCTCN2015085801-appb-000094
归一化的未量化的每一训练波束权值
Figure PCTCN2015085801-appb-000095
本发明采用加权向量中最大的幅度值进行归一化,这样可以保证射频前端以最大的发射功率进行发射的同时每个天线通道的发射功率不会饱和。需要说明的是,本领域的技术人员也可以采用其它归一化方法,本实施例在此不进行限定和赘述。
对相位集合
Figure PCTCN2015085801-appb-000096
和幅度集合
Figure PCTCN2015085801-appb-000097
进行量化。
具体的,采用量化函数对对相位集合
Figure PCTCN2015085801-appb-000098
和幅度集合
Figure PCTCN2015085801-appb-000099
进行量化。常用的量化函数有ceil、floor和round等,其功能是将相位和幅度依照某个原则分别量化到相位集合
Figure PCTCN2015085801-appb-000100
和幅度集合
Figure PCTCN2015085801-appb-000101
中的某个元素。其中ceil函数把相位θ和幅度α分别量化为相位集合
Figure PCTCN2015085801-appb-000102
和 幅度集合
Figure PCTCN2015085801-appb-000103
中大于且与其最接近(不小于)的数值;floor函数则将相位θ和幅度α分别量化为相位集合和幅度集合中小于且于其最接近(不大于)的数值;round则把相位θ和幅度α分别量化为相位集合
Figure PCTCN2015085801-appb-000106
和幅度集合
Figure PCTCN2015085801-appb-000107
中与其最接近的数值。幅度量化和相位量化可以采用同一个量化函数也可以采用不同的量化函数。现通过一个相位量化的例子说明三种量化函数输出结果的差异。给定S=2,则相位集合为
Figure PCTCN2015085801-appb-000108
比如,若给定
Figure PCTCN2015085801-appb-000109
Figure PCTCN2015085801-appb-000110
floor(θ)=0,
Figure PCTCN2015085801-appb-000111
若给定
Figure PCTCN2015085801-appb-000112
Figure PCTCN2015085801-appb-000113
floor(θ)=0,round(θ)=0。
进一步地,在上述所示实施例中,训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成;
具体的,训练波束集的加权向量的每个元素ai采用公式
Figure PCTCN2015085801-appb-000114
合成;
其中,相位集合中的元素,
Figure PCTCN2015085801-appb-000115
S为相位量化比特数,幅度集合中的元素,
Figure PCTCN2015085801-appb-000116
Q为幅度量化比特数,i=1,2...,|Ω|,|Ω|为目标区域覆盖范围的长度。
图8为本发明实施例二提供的训练波束接收方法流程图。如图8所示,本发明实施例提供的方法,包括:
S801:接收端接收发送端发送训练波束集的基本加权向量和循环移位信息,接收端将基本加权向量通过循环移位信息的循环移位处理得到训练波束集的加权向量。
其中,训练波束集的加权向量用于表示训练波束集中每一训练波束的相位和幅度加权值。
S802:接收端根据训练波束集的加权向量,得到训练波束集中每一训练波束的权值。
S803:接收端根据训练波束集中每一训练波束的权值,依次接收发送端发送的训练波束集中的训练波束。
本发明实施例提供的训练波束接收方法,接收端根据发送端发送训练波束集的基本加权向量和循环移位信息,计算发送端向接收端发送训练波束集 的加权值,而不用接收端直接接收发送端发送训练波束集的加权值,更大地降低了发送训练波束的开销。
进一步地,在本发明实施例中,可选的,在S803之后,还包括:
S804:接收端计算训练波束集的波离角信息。
具体的,接收端根据发送端发送的用于指示训练波束集的加权向量的指示信息,得到训练波束集中每一训练波束的权值,进而计算训练波束集的波离角信息。
S805:接收端向发送端反馈训练波束集的波离角信息,波离角信息用于使发送端根据波离角信息确定到接收端的发射波束。
本发明实施例提供的训练波束接收方法,接收端根据发送端发送训练波束集的基本加权向量和循环移位信息,计算发送端向接收端发送训练波束集的加权值,而不用接收端直接接收发送端发送训练波束集的加权值,更大地降低了发送训练波束的开销。进一步地,接收端计算训练波束集的波离角信息,接收端向发送端反馈训练波束集的波离角信息,使得发送端根据波离角信息确定到接收端的发射波束,即可在发送端和接收端之间建立通信链路,实现发送端和接收端之间的波束配对。
图9为本发明实施例一提供的训练波束传输方法流程图。如图9所示,本发明实施例提供的方法,包括:
S901:发送端确定向接收端发送的训练波束集,训练波束集中包括至少一个训练波束。
S902:发送端向接收端发送用于指示训练波束集的加权向量的指示信息,训练波束集的加权向量用于表示训练波束集中每一训练波束的相位和幅度加权值。
S903:接收端接收发送端发送的用于指示训练波束集的加权向量的指示信息,训练波束集的加权向量用于表示训练波束集中每一训练波束的相位和幅度加权值。
S904:接收端根据训练波束集的加权向量,得到训练波束集中每一训练波束的权值。
S905:发送端向接收端依次发送训练波束集中的训练波束。
S906:接收端根据训练波束集中每一训练波束的权值,依次接收发送端 发送的训练波束集中的训练波束。
本发明实施例提供的训练波束传输方法,发送端仅向接收端发送训练波束集的加权向量,而不用发送端向接收端发送训练波束集的加权值,接收端根据发送端发送训练波束集的加权向量,计算发送端向接收端发送训练波束集的加权值,而不用接收端直接接收发送端发送训练波束集的加权值,降低了发送训练波束的开销。
进一步地,在本发明实施例中,可选的,在S906之后,还包括:
S907:接收端计算训练波束集的波离角信息。
具体的,接收端根据发送端发送的用于指示训练波束集的加权向量的指示信息,得到训练波束集中每一训练波束的权值,进而计算训练波束集的波离角信息。
S908:接收端向发送端反馈训练波束集的波离角信息,波离角信息用于使发送端根据波离角信息确定到接收端的发射波束。
S909:发送端接收接收端反馈的训练波束集的波离角信息。
S910:发送端根据波离角信息确定到接收端的发射波束。
本发明实施例提供的训练波束传输方法,发送端仅向接收端发送训练波束集的加权向量,而不用发送端向接收端发送训练波束集的加权值,接收端根据发送端发送训练波束集的加权向量,计算发送端向接收端发送训练波束集的加权值,而不用接收端直接接收发送端发送训练波束集的加权值,降低了发送训练波束的开销。进一步地,接收端计算训练波束集的波离角信息,接收端向发送端反馈训练波束集的波离角信息,使得发送端根据波离角信息确定到接收端的发射波束,发送端接收接收端反馈的训练波束集的波离角信息,发送端根据波离角信息确定到接收端的发射波束,即可在发送端和接收端之间建立通信链路,实现发送端和接收端之间的波束配对。
图10为本发明实施例二提供的训练波束传输方法流程图。如图10所示,本发明实施例提供的方法,包括:
S1001:发送端确定向接收端发送的训练波束集,训练波束集中包括至少一个训练波束。
S1002:发送端向接收端发送训练波束集的基本加权向量和循环移位信息,基本加权向量通过循环移位信息的循环移位处理得到训练波束集的加权 向量。
S1003:接收端接收发送端发送训练波束集的基本加权向量和循环移位信息,接收端将基本加权向量通过循环移位信息的循环移位处理得到训练波束集的加权向量。
S1004:接收端根据训练波束集的加权向量,得到训练波束集中每一训练波束的权值。
S1005:发送端向接收端依次发送训练波束集中的训练波束。
S1006:接收端根据训练波束集中每一训练波束的权值,依次接收发送端发送的训练波束集中的训练波束。
本发明实施例提供的训练波束传输方法,发送端仅向接收端发送训练波束集的基本加权向量和循环移位信息,而不用发送端向接收端发送训练波束集的加权值,接收端根据发送端发送训练波束集的基本加权向量和循环移位信息,计算发送端向接收端发送训练波束集的加权值,而不用接收端直接接收发送端发送训练波束集的加权值,更大地降低了发送训练波束的开销。
进一步地,在本发明实施例中,可选的,在S1006之后,还包括:
S1007:接收端计算训练波束集的波离角信息。
具体的,接收端根据发送端发送的用于指示训练波束集的加权向量的指示信息,得到训练波束集中每一训练波束的权值,进而计算训练波束集的波离角信息。
S1008:接收端向发送端反馈训练波束集的波离角信息,波离角信息用于使发送端根据波离角信息确定到接收端的发射波束。
S1009:发送端接收接收端反馈的训练波束集的波离角信息。
S1010:发送端根据波离角信息确定到接收端的发射波束。
本发明实施例提供的训练波束传输方法,发送端仅向接收端发送训练波束集的基本加权向量和循环移位信息,而不用发送端向接收端发送训练波束集的加权值,接收端根据发送端发送训练波束集的基本加权向量和循环移位信息,计算发送端向接收端发送训练波束集的加权值,而不用接收端直接接收发送端发送训练波束集的加权值,更大地降低了发送训练波束的开销。进一步地,接收端计算训练波束集的波离角信息,接收端向发送端反馈训练波束集的波离角信息,使得发送端根据波离角信息确定到接收端的发射波束, 发送端接收接收端反馈的训练波束集的波离角信息,发送端根据波离角信息确定到接收端的发射波束,即可在发送端和接收端之间建立通信链路,实现发送端和接收端之间的波束配对。
图11为本发明实施例提供的训练波束传输方法的仿真结果示意图。如图11所示,图中L1为采用随机加权向量{-1,1,-j,j}生成的训练波束的仿真示意图,L2为采用2比特相位量化比特数生成的训练波束的仿真示意图,L3为采用本发明实施例提供的训练波束传输方法得到的仿真结果图,本发明通过上述实施例给出了一种可以用CS框架下估计发射机AoD的训练波束生成和低开销的传输方法,本发明通过加权训练波束权值向量生成训练波束权值向量,生成的训练波束权值形成的训练波束可以将能量聚焦到目标区域改善接收端的接收信噪比(Signal-to-Noise Ratio,简称SNR)。根据图11所示,采用本发明实施例提供的训练波束传输方法得到的仿真结果图,对接收信噪比的要求降低了大约10dB,同时估计成功的概率由60%提升至70%。需要说明的是,图11中的仿真结果都是在发送端采用8×8的天线阵列,接收端采用4×4的天线阵列,训练波束采用64个的条件下仿真得到的。
图12为本发明实施例一提供的基站结构示意图。如图12所示,本发明实施例提供的基站,包括:
确定单元1201,用于基站确定向终端发送的训练波束集,训练波束集中包括至少一个训练波束。
发送单元1202,用于基站向终端发送用于指示训练波束集的加权向量的指示信息,训练波束集的加权向量用于表示训练波束集中每一训练波束的相位和幅度加权值。
训练单元1203,用于基站向终端依次发送训练波束集中的训练波束。
进一步地,在本发明实施例中,可选的,还包括:
接收单元1204,用于基站接收终端反馈的训练波束集的波离角信息。
配置单元1205,用于基站根据波离角信息确定到终端的发射波束。
本实施例的基站用于执行图3所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
进一步地,在上述所示实施例中,发送单元1202具体用于:
基站向终端发送训练波束集的加权向量。
或者基站向终端发送训练波束集的加权向量集的列数。
进一步地,在上述所示实施例中,确定单元1201具体用于:
基站确定向终端发送波束的目标区域;
基站将基站的波束集合中位于目标区域中的波束作为训练波束集。
进一步地,在上述所示实施例中,确定单元1201具体用于:
基站接收终端发送的通知信息,通知信息中包含目标区域信息。
进一步地,在上述所示实施例中,发送单元1202具体用于:
基站向终端发送训练波束集的基本加权向量和循环移位信息,基本加权向量通过循环移位信息的循环移位处理得到训练波束集的加权向量。
进一步地,在上述所示实施例中,发送单元1202还用于:
基站向终端发送用于指示训练波束集合中训练波束的码本集合的信息;
码本集合用于表示训练波束集合中每一训练波束所使用的码本。
进一步地,在上述所示实施例中,发送单元1202还用于:
基站向终端发送确定的训练波束的量化方法,量化方法用于表示训练波束集中训练波束的相位和幅度量化信息。
进一步地,在上述所示实施例中,训练单元1203还用于:
基站根据训练波束集的加权向量、训练波束的码本集合和量化方法生成训练波束集中的训练波束。
进一步地,在上述所示实施例中,训练单元1203具体用于:
基站采用公式
Figure PCTCN2015085801-appb-000117
生成训练波束集中的训练波束;
其中,
Figure PCTCN2015085801-appb-000118
为训练波束集的加权向量,CΩ为训练波束的码本集合,quan(·)为量化方法,量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
进一步地,在上述所示实施例中,训练单元1203具体包括:
根据相位量化比特数S和幅度量化比特数Q确定相位集合
Figure PCTCN2015085801-appb-000119
和幅度集合
Figure PCTCN2015085801-appb-000120
对每一训练波束权值向量w进行归一化处理;
对相位集合
Figure PCTCN2015085801-appb-000121
和幅度集合
Figure PCTCN2015085801-appb-000122
进行量化。
进一步地,在上述所示实施例中,确定单元1201具体用于:
训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成;
具体的,训练波束集的加权向量的每个元素ai采用公式
Figure PCTCN2015085801-appb-000123
合成;
其中,相位集合中的元素,
Figure PCTCN2015085801-appb-000124
S为相位量化比特数,幅度集合中的元素,
Figure PCTCN2015085801-appb-000125
Q为幅度量化比特数,i=1,2...,|Ω|,|Ω|为目标区域覆盖范围的长度。
图13为本发明实施例一提供的终端结构示意图。如图13所示,本发明实施例提供的终端,包括:
接收单元1301,用于终端接收基站发送的用于指示训练波束集的加权向量的指示信息,训练波束集的加权向量用于表示训练波束集中每一训练波束的相位和幅度加权值。
第一计算单元1302,用于终端根据训练波束集的加权向量,得到训练波束集中每一训练波束的权值。
训练单元1303,用于终端根据训练波束集中每一训练波束的权值,依次接收基站发送的训练波束集中的训练波束。
进一步地,在本发明实施例中,可选的,还包括:
第二计算单元1304,用于终端计算训练波束集的波离角信息。
反馈单元1305,用于终端向基站反馈训练波束集的波离角信息,波离角信息用于使基站根据波离角信息确定到终端的发射波束。
本实施例的基站用于执行图7所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
进一步地,在上述所示实施例中,接收单元1301具体用于:
终端接收基站发送的训练波束集的加权向量。
或者终端接收基站发送的训练波束集的加权向量集的列数。
进一步地,在上述所示实施例中,接收单元1301还用于:
终端接收基站发送确定的波束的目标区域用于表示基站确定向终端发送的训练波束集。
进一步地,在上述所示实施例中,反馈单元1305还用于:
终端向基站发送通知信息,通知信息中包含目标区域信息。
进一步地,在上述所示实施例中,接收单元1301具体用于:
终端接收基站发送训练波束集的基本加权向量和循环移位信息;
终端将基本加权向量通过循环移位信息的循环移位处理得到训练波束集的加权向量。
进一步地,在上述所示实施例中,接收单元1301还用于:
终端接收基站发送用于指示训练波束集合中训练波束的码本集合的信息;
码本集合用于表示训练波束集合中每一训练波束所使用的码本。
进一步地,在上述所示实施例中,接收单元1301还用于:
终端接收基站发送确定的训练波束的量化方法,量化方法用于表示训练波束集中训练波束的相位和幅度量化信息。
进一步地,在上述所示实施例中,第一计算单元1302具体用于:
终端根据训练波束集的加权向量,采用公式
Figure PCTCN2015085801-appb-000126
计算得到训练波束集中每一训练波束的权值w;
其中,
Figure PCTCN2015085801-appb-000127
为训练波束集的加权向量,CΩ为训练波束的码本集合,quan(·)为量化方法,量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
进一步地,在上述所示实施例中,第一计算单元1302具体用于:
根据相位量化比特数S和幅度量化比特数Q确定相位集合
Figure PCTCN2015085801-appb-000128
和幅度集合
Figure PCTCN2015085801-appb-000129
对每一训练波束权值向量w进行归一化处理;
对相位集合
Figure PCTCN2015085801-appb-000130
和幅度集合
Figure PCTCN2015085801-appb-000131
进行量化。
进一步地,在上述所示实施例中,第二计算单元1304具体用于:
终端根据压缩感知框架计算训练波束集的波离角信息;
具体的,采用以下公式计算训练波束集的波离角信息:
Figure PCTCN2015085801-appb-000132
Figure PCTCN2015085801-appb-000133
其中,hT为训练波束集的波离角信息,每一个hT非零元素对应一个波离角,y为终端接收的基站发送的训练波束集中的训练波束的信息,WT为训练 波束的权值w构成的矩阵,
Figure PCTCN2015085801-appb-000134
为WT矩阵的转置。
进一步地,在上述所示实施例中,第一计算单元具体用于:
训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成;
具体的,训练波束集的加权向量的每个元素ai采用公式
Figure PCTCN2015085801-appb-000135
合成;
其中,相位集合中的元素,
Figure PCTCN2015085801-appb-000136
S为相位量化比特数,幅度集合中的元素,
Figure PCTCN2015085801-appb-000137
Q为幅度量化比特数,i=1,2...,|Ω|,|Ω|为目标区域覆盖范围的长度。
图14为本发明实施例二提供的基站结构示意图。如图14所示,本发明实施例提供的基站,包括:发射机1401、接收机1402和处理器1403。
需要说明的是,本发明实施例中的发射机1401可以与基站的发送单元1202对应。接收机1402可以与基站的接收单元1204对应。处理器1403可以是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者完成实施本发明实施例的一个或多个集成电路。处理器1403与基站中的确定单元1201、训练单元1203以及配置单元1205相对应,可以控制确定单元1201、训练单元1203以及配置单元1205执行相应的操作。基站还可以包括存储器,存储器用于存储指令代码,处理器1403调用存储器的指令代码,控制本发明实施例中的发射机1401和接收机1402执行上述操作。
图15为本发明实施例二提供的终端结构示意图。如图15所示,本发明实施例提供的终端,包括:接收机1501、发射机1502和处理器1503。
需要说明的是,本发明实施例中的接收机1501可以与终端的接收单元1301对应。发射机1502可以与终端的反馈单元1305对应。处理器1503可以是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者完成实施本发明实施例的一个或多个集成电路。处理器1503与终端中的第一计算单元1302、训练单元1303以及第二计算单元1304相对应,可以控制第一计算单元1302、训练单元1303以及第二计算单元1304执行相应的操作。终端还可以包括存储器,存储器用于存储指令代码,处理器1503调用存储器的指令代码,控制 本发明实施例中的接收机1501和发射机1502执行上述操作。
本发明实施例提供的波束传输系统,包括:上述实施例任一项实施例中的基站和上述实施例任一项实施例中的终端。
需要说明的是,基站和终端既可以作为发送端,也可以作为接收端,本发明实施例在此不进行限定。本实施例中基站和终端均可以参考上述实施例中基站和终端所涉及的相关实施例揭露的相关内容,其实现原理和技术效果类似,在此不再赘述。
本发明提供的训练波束传输方法、装置及系统,发送端仅向接收端发送训练波束集的加权向量,以使接收端根据加权向量得到训练波束集中每一训练波束的权值,而不用发送端向接收端发送训练波束集的加权值,接收端根据发送端发送训练波束集的加权向量,计算发送端向接收端发送训练波束集的加权值,而不用接收端直接接收发送端发送训练波束集的加权值,降低了发送训练波束的开销。进一步地,接收端根据发送端发送的加权向量计算训练波束集的波离角信息,接收端向发送端反馈训练波束集的波离角信息,使得发送端根据波离角信息确定到接收端的发射波束,发送端接收接收端反馈的训练波束集的波离角信息,发送端根据波离角信息确定到接收端的发射波束,即可在发送端和接收端之间建立通信链路,实现发送端和接收端之间的波束配对。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使对应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (49)

  1. 一种训练波束发送方法,其特征在于,包括:
    发送端确定向接收端发送的训练波束集,所述训练波束集中包括至少一个训练波束;
    所述发送端向所述接收端发送用于指示训练波束集的加权向量的指示信息,所述训练波束集的加权向量用于表示所述训练波束集中每一训练波束的相位和幅度加权值;
    所述发送端向所述接收端依次发送所述训练波束集中的训练波束。
  2. 根据权利要求1所述的方法,其特征在于,在所述发送端向所述接收端依次发送所述训练波束集中的训练波束之后,还包括:
    所述发送端接收所述接收端反馈的所述训练波束集的波离角信息;
    所述发送端根据所述波离角信息确定到所述接收端的发射波束。
  3. 根据权利要求1或2所述的方法,其特征在于,所述指示信息包括:所述训练波束集的加权向量;
    或者所述指示信息包括:所述训练波束集的加权向量集的列数。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述发送端确定向接收端发送的训练波束集,包括:
    所述发送端确定向接收端发送波束的目标区域;
    所述发送端将所述发送端的波束集合中位于所述目标区域中的波束作为所述训练波束集。
  5. 根据权利要求4所述的方法,其特征在于,在所述发送端确定向接收端发送波束的目标区域之前,还包括:
    所述发送端接收所述接收端发送的通知信息,所述通知信息中包含所述目标区域信息。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述发送端向所述接收端发送训练波束集的加权向量,包括:
    所述发送端向所述接收端发送训练波束集的基本加权向量和循环移位信息,所述基本加权向量通过所述循环移位信息的循环移位处理得到所述训练波束集的加权向量。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,在所述发送端 向所述接收端依次发送所述训练波束集中的训练波束之前,还包括:
    所述发送端向所述接收端发送用于指示所述训练波束集合中训练波束的码本集合的信息;
    所述码本集合用于表示训练波束集合中每一训练波束所使用的码本。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,在所述发送端向所述接收端依次发送所述训练波束集中的训练波束之前,还包括:
    所述发送端向所述接收端发送确定的训练波束的量化方法,所述量化方法用于表示所述训练波束集中训练波束的相位和幅度量化信息。
  9. 根据权利要求8所述的方法,其特征在于,在所述发送端向所述接收端依次发送所述训练波束集中的训练波束之前,还包括:
    所述发送端根据所述训练波束集的加权向量、所述训练波束的码本集合和所述量化方法生成所述训练波束集中的训练波束。
  10. 根据权利要9所述的方法,其特征在于,所述发送端根据所述训练波束集的加权向量、训练波束的码本集合和量化方法生成所述训练波束集中的训练波束,包括:
    所述发送端采用公式
    Figure PCTCN2015085801-appb-100001
    生成所述训练波束集中的训练波束;
    其中,
    Figure PCTCN2015085801-appb-100002
    为所述训练波束集的加权向量,CΩ为所述训练波束的码本集合,quan(·)为量化方法,所述量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
  11. 根据权利要求10所述的方法,其特征在于,所述量化方法包括:
    根据相位量化比特数S和幅度量化比特数Q确定相位集合
    Figure PCTCN2015085801-appb-100003
    和幅度集合
    Figure PCTCN2015085801-appb-100004
    对每一训练波束权值向量w进行归一化处理;
    对相位集合
    Figure PCTCN2015085801-appb-100005
    和幅度集合
    Figure PCTCN2015085801-appb-100006
    进行量化。
  12. 根据权利要求4或5所述的方法,其特征在于,所述训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成;
    具体的,所述训练波束集的加权向量的每个元素ai采用公式
    Figure PCTCN2015085801-appb-100007
    合成;
    其中,相位集合中的元素,
    Figure PCTCN2015085801-appb-100008
    S为相位量化比特数,幅度集合中的元素,
    Figure PCTCN2015085801-appb-100009
    Q为幅度量化比特数,i=1,2…,|Ω|,|Ω|为所述目标区域覆盖范围的长度。
  13. 一种训练波束接收方法,其特征在于,包括:
    接收端接收发送端发送的用于指示训练波束集的加权向量的指示信息,所述训练波束集的加权向量用于表示所述训练波束集中每一训练波束的相位和幅度加权值;
    所述接收端根据所述训练波束集的加权向量,得到所述训练波束集中每一训练波束的权值;
    所述接收端根据所述训练波束集中每一训练波束的权值,依次接收所述发送端发送的所述训练波束集中的训练波束。
  14. 根据权利要求13所述的方法,其特征在于,在所述接收端根据所述训练波束集中每一训练波束的权值,依次接收所述发送端发送的所述训练波束集中的训练波束之后,还包括:
    所述接收端计算所述训练波束集的波离角信息;
    所述接收端向所述发送端反馈所述训练波束集的波离角信息,所述波离角信息用于使所述发送端根据所述波离角信息确定到所述接收端的发射波束。
  15. 根据权利要求13或14所述的方法,其特征在于,所述指示信息包括:所述训练波束集的加权向量;
    或者所述指示信息包括:所述训练波束集的加权向量集的列数。
  16. 根据权利要求13~15任一项所述的方法,其特征在于,在所述接收端根据所述训练波束集的加权向量,得到所述训练波束集中每一训练波束的权值之前,还包括:
    所述接收端接收所述发送端发送确定的波束的目标区域,所述目标区域用于表示所述发送端确定向所述接收端发送的训练波束集。
  17. 根据权利要求16所述的方法,其特征在于,在所述接收端接收所述发送端发送确定的波束的目标区域之后,还包括:
    所述接收端向所述发送端发送通知信息,所述通知信息中包含所述目标 区域信息。
  18. 根据权利要求13~17任一项所述的方法,其特征在于,所述接收端接收发送端发送的训练波束集的加权向量,包括:
    所述接收端接收所述发送端发送训练波束集的基本加权向量和循环移位信息,所述接收端将所述基本加权向量通过所述循环移位信息的循环移位处理得到所述训练波束集的加权向量。
  19. 根据权利要求13~18任一项所述的方法,其特征在于,在所述接收端根据所述训练波束集的加权向量,得到所述训练波束集中每一训练波束的权值之前,还包括:
    所述接收端接收所述发送端发送用于指示所述训练波束集合中训练波束的码本集合的信息;
    码本集合用于表示训练波束集合中每一训练波束所使用的码本。
  20. 根据权利要求13~19任一项所述的方法,其特征在于,在所述接收端根据所述训练波束集的加权向量,得到所述训练波束集中每一训练波束的权值之前,还包括:
    所述接收端接收所述发送端发送确定的训练波束的量化方法,所述量化方法用于表示所述训练波束集中训练波束的相位和幅度量化信息。
  21. 根据权利要求20所述的方法,其特征在于,所述接收端根据所述训练波束集的加权向量,得到所述训练波束集中每一训练波束的权值,包括:
    所述接收端根据所述训练波束集的加权向量,采用公式
    Figure PCTCN2015085801-appb-100010
    计算得到所述训练波束集中每一训练波束的权值w;
    其中,
    Figure PCTCN2015085801-appb-100011
    为所述训练波束集的加权向量,CΩ为所述训练波束的码本集合,quan(·)为量化方法,所述量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
  22. 根据权利要求21所述的方法,其特征在于,所述量化方法包括:
    根据相位量化比特数S和幅度量化比特数Q确定相位集合
    Figure PCTCN2015085801-appb-100012
    和幅度集合
    Figure PCTCN2015085801-appb-100013
    对每一训练波束权值向量w进行归一化处理;
    对相位集合
    Figure PCTCN2015085801-appb-100014
    和幅度集合
    Figure PCTCN2015085801-appb-100015
    进行量化。
  23. 根据权利要求14所述的方法,其特征在于,所述接收端计算所述训练波束集的波离角信息,包括:
    所述接收端根据压缩感知框架计算所述训练波束集的波离角信息;
    具体的,采用以下公式计算所述训练波束集的波离角信息:
    Figure PCTCN2015085801-appb-100016
    Figure PCTCN2015085801-appb-100017
    其中,hT为所述训练波束集的波离角信息,每一个hT非零元素对应一个波离角,y为接收端接收的所述发送端发送的所述训练波束集中的训练波束的信息,WT为训练波束的权值w构成的矩阵,
    Figure PCTCN2015085801-appb-100018
    为WT矩阵的转置。
  24. 根据权利要求16或17所述的方法,其特征在于,所述训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成;
    具体的,所述训练波束集的加权向量的每个元素ai采用公式
    Figure PCTCN2015085801-appb-100019
    合成;
    其中,相位集合中的元素,
    Figure PCTCN2015085801-appb-100020
    S为相位量化比特数,幅度集合中的元素,
    Figure PCTCN2015085801-appb-100021
    Q为幅度量化比特数,i=1,2…,|Ω|,|Ω|为所述目标区域覆盖范围的长度。
  25. 一种基站,其特征在于,包括:
    确定单元,用于基站确定向终端发送的训练波束集,所述训练波束集中包括至少一个训练波束;
    发送单元,用于所述基站向所述终端发送用于指示训练波束集的加权向量的指示信息,所述训练波束集的加权向量用于表示所述训练波束集中每一训练波束的相位和幅度加权值;
    训练单元,用于所述基站向所述终端依次发送所述训练波束集中的训练波束。
  26. 根据权利要求25所述的基站,其特征在于,还包括:
    接收单元,用于所述基站接收所述终端反馈的所述训练波束集的波离角信息;
    配置单元,用于所述基站根据所述波离角信息确定到所述终端的发射波 束。
  27. 根据权利要求25或26所述的基站,其特征在于,所述发送单元具体用于:
    所述基站向所述终端发送所述训练波束集的加权向量;
    或者所述基站向所述终端发送所述训练波束集的加权向量集的列数。
  28. 根据权利要求25~28任一项所述的基站,其特征在于,所述确定单元具体用于:
    所述基站确定向终端发送波束的目标区域;
    所述基站将所述基站的波束集合中位于所述目标区域中的波束作为所述训练波束集。
  29. 根据权利要求28所述的基站,其特征在于,所述确定单元具体用于:
    所述基站接收所述终端发送的通知信息,所述通知信息中包含所述目标区域信息。
  30. 根据权利要求25~29任一项所述的基站,其特征在于,所述发送单元具体用于:
    所述基站向所述终端发送训练波束集的基本加权向量和循环移位信息,所述基本加权向量通过所述循环移位信息的循环移位处理得到所述训练波束集的加权向量。
  31. 根据权利要求25~30任一项所述的基站,其特征在于,所述发送单元还用于:
    所述基站向所述终端发送用于指示所述训练波束集合中训练波束的码本集合的信息;
    码本集合用于表示训练波束集合中每一训练波束所使用的码本。
  32. 根据权利要求25~31任一项所述的基站,其特征在于,所述发送单元还用于:
    所述基站向所述终端发送确定的训练波束的量化方法,所述量化方法用于表示所述训练波束集中训练波束的相位和幅度量化信息。
  33. 根据权利要求32所述的基站,其特征在于,所述训练单元还用于:
    所述基站根据所述训练波束集的加权向量、所述训练波束的码本集合和所述量化方法生成所述训练波束集中的训练波束。
  34. 根据权利要求33所述的基站,其特征在于,所述训练单元具体用于:
    所述基站采用公式
    Figure PCTCN2015085801-appb-100022
    生成所述训练波束集中的训练波束;
    其中,
    Figure PCTCN2015085801-appb-100023
    为所述训练波束集的加权向量,CΩ为所述训练波束的码本集合,quan(·)为量化方法,所述量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
  35. 根据权利要求34所述的基站,其特征在于,所述训练单元具体包括:
    根据相位量化比特数S和幅度量化比特数Q确定相位集合
    Figure PCTCN2015085801-appb-100024
    和幅度集合
    Figure PCTCN2015085801-appb-100025
    对每一训练波束权值向量w进行归一化处理;
    对相位集合
    Figure PCTCN2015085801-appb-100026
    和幅度集合
    Figure PCTCN2015085801-appb-100027
    进行量化。
  36. 根据权利要求28或29所述的基站,其特征在于,所述确定单元具体用于:
    所述训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成;
    具体的,所述训练波束集的加权向量的每个元素ai采用公式
    Figure PCTCN2015085801-appb-100028
    合成;
    其中,相位集合中的元素,
    Figure PCTCN2015085801-appb-100029
    S为相位量化比特数,幅度集合中的元素,
    Figure PCTCN2015085801-appb-100030
    Q为幅度量化比特数,i=1,2…,|Ω|,|Ω|为所述目标区域覆盖范围的长度。
  37. 一种终端,其特征在于,包括:
    接收单元,用于终端接收基站发送的用于指示训练波束集的加权向量的指示信息,所述训练波束集的加权向量用于表示所述训练波束集中每一训练波束的相位和幅度加权值;
    第一计算单元,用于所述终端根据所述训练波束集的加权向量,得到所述训练波束集中每一训练波束的权值;
    训练单元,用于所述终端根据所述训练波束集中每一训练波束的权值,依次接收所述基站发送的所述训练波束集中的训练波束。
  38. 根据权利要求37所述的终端,其特征在于,还包括:
    第二计算单元,用于所述终端计算所述训练波束集的波离角信息;
    反馈单元,用于所述终端向所述基站反馈所述训练波束集的波离角信息,所述波离角信息用于使所述基站根据所述波离角信息确定到所述终端的发射波束。
  39. 根据权利要求37或38所述的终端,其特征在于,所述接收单元具体用于:
    所述终端接收所述基站发送的所述训练波束集的加权向量;
    或者所述终端接收所述基站发送的所述训练波束集的加权向量集的列数。
  40. 根据权利要求37~39任一项所述的终端,其特征在于,所述接收单元还用于:
    所述终端接收所述基站发送确定的波束的目标区域所述目标区域用于表示所述基站确定向所述终端发送的训练波束集。
  41. 根据权利要求40所述的终端,其特征在于,所述反馈单元还用于:
    所述终端向所述发送端发送通知信息,所述通知信息中包含所述目标区域信息。
  42. 根据权利要求37~41任一项所述的终端,其特征在于,所述接收单元具体用于:
    所述终端接收所述基站发送训练波束集的基本加权向量和循环移位信息;
    所述终端将所述基本加权向量通过所述循环移位信息的循环移位处理得到所述训练波束集的加权向量。
  43. 根据权利要求37~42任一项所述的终端,其特征在于,所述接收单元还用于:
    所述终端接收所述基站发送用于指示所述训练波束集合中训练波束的码本集合的信息;
    码本集合用于表示训练波束集合中每一训练波束所使用的码本。
  44. 根据权利要求37~43任一项所述的终端,其特征在于,所述接收单元还用于:
    所述终端接收所述基站发送确定的训练波束的量化方法,所述量化方法 用于表示所述训练波束集中训练波束的相位和幅度量化信息。
  45. 根据权利要求44所述的终端,其特征在于,所述第一计算单元具体用于:
    所述终端根据所述训练波束集的加权向量,采用公式
    Figure PCTCN2015085801-appb-100031
    计算得到所述训练波束集中每一训练波束的权值w;
    其中,
    Figure PCTCN2015085801-appb-100032
    为所述训练波束集的加权向量,CΩ为所述训练波束的码本集合,quan(·)为量化方法,所述量化方法由相位量化比特数、幅度量化比特数、归一化方法和量化函数共同确定。
  46. 根据权利要求45所述的终端,其特征在于,所述第一计算单元具体用于:
    根据相位量化比特数S和幅度量化比特数Q确定相位集合
    Figure PCTCN2015085801-appb-100033
    和幅度集合
    Figure PCTCN2015085801-appb-100034
    对每一训练波束权值向量w进行归一化处理;
    对相位集合
    Figure PCTCN2015085801-appb-100035
    和幅度集合
    Figure PCTCN2015085801-appb-100036
    进行量化。
  47. 根据权利要求38所述的终端,其特征在于,所述第二计算单元具体用于:
    所述终端根据压缩感知框架计算所述训练波束集的波离角信息;
    具体的,采用以下公式计算所述训练波束集的波离角信息:
    Figure PCTCN2015085801-appb-100037
    Figure PCTCN2015085801-appb-100038
    其中,hT为所述训练波束集的波离角信息,每一个hT非零元素对应一个波离角,y为终端接收的所述基站发送的所述训练波束集中的训练波束的信息,WT为训练波束的权值w构成的矩阵,
    Figure PCTCN2015085801-appb-100039
    为WT矩阵的转置。
  48. 根据权利要求40或41所述的终端,其特征在于,所述第一计算单元具体用于:
    所述训练波束集的加权向量的每个元素由相位集合中的元素和幅度集合中的元素中的元素合成;
    具体的,所述训练波束集的加权向量的每个元素ai采用公式
    Figure PCTCN2015085801-appb-100040
    合成;
    其中,相位集合中的元素,
    Figure PCTCN2015085801-appb-100041
    S为相位量化比特数,幅度集合中的元素,
    Figure PCTCN2015085801-appb-100042
    Q为幅度量化比特数,i=1,2…,|Ω|,|Ω|为所述目标区域覆盖范围的长度。
  49. 一种波束传输系统,其特征在于,包括:如权利要求25-36任一项的基站和如权利要求37-48任一项的终端。
PCT/CN2015/085801 2015-07-31 2015-07-31 训练波束传输方法、装置及系统 WO2017020202A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/085801 WO2017020202A1 (zh) 2015-07-31 2015-07-31 训练波束传输方法、装置及系统
CN201580081582.3A CN107852209B (zh) 2015-07-31 2015-07-31 训练波束传输方法、装置及系统
EP15899977.1A EP3316493A4 (en) 2015-07-31 2015-07-31 Training beam transmission method, apparatus and system
US15/878,406 US10270509B2 (en) 2015-07-31 2018-01-23 Training beam transmission method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/085801 WO2017020202A1 (zh) 2015-07-31 2015-07-31 训练波束传输方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/878,406 Continuation US10270509B2 (en) 2015-07-31 2018-01-23 Training beam transmission method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2017020202A1 true WO2017020202A1 (zh) 2017-02-09

Family

ID=57942241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085801 WO2017020202A1 (zh) 2015-07-31 2015-07-31 训练波束传输方法、装置及系统

Country Status (4)

Country Link
US (1) US10270509B2 (zh)
EP (1) EP3316493A4 (zh)
CN (1) CN107852209B (zh)
WO (1) WO2017020202A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463071A (zh) * 2017-03-24 2019-11-15 高通股份有限公司 用于无线通信中的波束发现和波束成形的技术
EP3646475A4 (en) * 2017-07-28 2020-09-16 Samsung Electronics Co., Ltd. DEVICE AND METHOD FOR CONTROLLING DIRECTIVITY IN A WIRELESS COMMUNICATION SYSTEM

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10797389B2 (en) * 2015-08-17 2020-10-06 King Abdullah University Of Science And Technology Non-invasive beam forming add-on module
US10652775B2 (en) * 2017-03-14 2020-05-12 Qualcomm Incorporated Techniques for mitigating interference for transmissions of a periodic multi-beam discovery reference signal
CN112204897A (zh) 2018-06-01 2021-01-08 瑞典爱立信有限公司 用于波束选择的方法
US10955516B2 (en) * 2018-06-26 2021-03-23 Intel Corporation Object detection enhancement using receiver perspective
US11122571B2 (en) 2018-11-30 2021-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Approaches for beam selection
US11539424B2 (en) * 2019-08-27 2022-12-27 Samsung Electronics Co., Ltd System and method for providing channel recovery for angle domain sparse channels
US20220007207A1 (en) * 2020-07-06 2022-01-06 Qualcomm Incorporated Beam switching and enhanced beam reporting to mitigate interference in beamforming

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090225813A1 (en) * 2001-10-18 2009-09-10 Heung-Jae Im Weight vector calculation unit for beamforming using received and/or integrated signal without training signal
CN104618964A (zh) * 2015-01-15 2015-05-13 青岛科技大学 一种基于切换波束成形的毫米波协作通信方法
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485878B2 (ja) * 2007-06-11 2014-05-07 コーニンクレッカ フィリップス エヌ ヴェ アナログビームフォーミングに関する方法、送信局及び受信局
US8503928B2 (en) * 2008-06-18 2013-08-06 Mediatek Inc. Method and system for beamforming training and communications apparatuses utilizing the same
JP2010212804A (ja) * 2009-03-06 2010-09-24 Sony Corp 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
CN102412881B (zh) * 2010-09-26 2015-06-17 日电(中国)有限公司 无线通信系统和用于无线通信系统的波束形成训练方法
CN102468879B (zh) * 2010-10-29 2015-08-05 日电(中国)有限公司 用于无线通信系统的波束形成训练方法、设备和系统
US9077415B2 (en) * 2011-12-19 2015-07-07 Samsung Electronics Co., Ltd. Apparatus and method for reference symbol transmission in an OFDM system
KR102109655B1 (ko) * 2012-02-23 2020-05-12 한국전자통신연구원 대규모 안테나 시스템에서의 다중 입력 다중 출력 통신 방법
US9048894B2 (en) * 2012-05-22 2015-06-02 Mediatek Singapore Pte. Ltd. Method and apparatus of beam training for MIMO operation
US9794854B2 (en) * 2013-03-14 2017-10-17 Google Inc. Optimizing packet/frame forwarding or routing in a wireless backhaul transport system
US9203497B2 (en) * 2013-05-10 2015-12-01 Samsung Electronics Co., Ltd. Apparatus and method for selecting transmit and receive beam in a wireless communication system
US9876549B2 (en) * 2014-05-23 2018-01-23 Mediatek Inc. Methods for efficient beam training and communications apparatus and network control device utilizing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090225813A1 (en) * 2001-10-18 2009-09-10 Heung-Jae Im Weight vector calculation unit for beamforming using received and/or integrated signal without training signal
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端
CN104618964A (zh) * 2015-01-15 2015-05-13 青岛科技大学 一种基于切换波束成形的毫米波协作通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE.: "Part 15.3: Wireless Medium Access Control (MAC) and Physical layer(PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs", IEEE, vol. 802, no. 15, 12 October 2009 (2009-10-12), pages 3c, XP055446696 *
See also references of EP3316493A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463071A (zh) * 2017-03-24 2019-11-15 高通股份有限公司 用于无线通信中的波束发现和波束成形的技术
EP3646475A4 (en) * 2017-07-28 2020-09-16 Samsung Electronics Co., Ltd. DEVICE AND METHOD FOR CONTROLLING DIRECTIVITY IN A WIRELESS COMMUNICATION SYSTEM
US10925030B2 (en) 2017-07-28 2021-02-16 Samsung Electronics Co., Ltd. Apparatus and method for controlling directivity in wireless communication system

Also Published As

Publication number Publication date
CN107852209B (zh) 2021-01-12
EP3316493A4 (en) 2018-07-11
US20180219595A1 (en) 2018-08-02
EP3316493A1 (en) 2018-05-02
US10270509B2 (en) 2019-04-23
CN107852209A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2017020202A1 (zh) 训练波束传输方法、装置及系统
US9300383B2 (en) Precoder selection method and apparatus for performing hybrid beamforming in wireless communication system
US11323293B2 (en) Wireless communication method and wireless communication device
US9967124B2 (en) Use of basis functions for transmission of broadcast control information in a wireless network
KR102178037B1 (ko) 무선 네트워크에서 피드백을 위한 기저 함수의 변환 기법
US9537548B2 (en) Random access channel using basis functions
US9252864B2 (en) Method and apparatus for fast beam-link construction in mobile communication system
US10050686B2 (en) Methods and apparatus for beamforming
US20130229309A1 (en) Beam alignment method utilizing omni-directional sounding and use thereof
US9912393B2 (en) Radio frequency beamforming basis function feedback
US20140334564A1 (en) Method and system for providing low-complexity hybrid precoding in wireless communication systems
US11265054B2 (en) Beamforming method and device
US20120190396A1 (en) Radio base station and antenna weight setting method
CN110212312A (zh) 一种天线装置及相关设备
CN107276649B (zh) 低精度模数转换与混合预编码结合的无反馈波束训练方法
US10320457B2 (en) Beam tracking method, apparatus, and system
WO2017173916A1 (zh) 一种波束训练阶段自动增益控制的方法及装置
JP2010166316A (ja) Mimo通信システム
CN113543322A (zh) 一种波束对准方法及装置
EP4180833A1 (en) Method for measuring angle of arrival with phased array
CN110912600B (zh) 一种通信方法、装置、设备及存储介质
CN117880968A (zh) 一种定位辅助通信波束优化方法和系统
KR20200120458A (ko) 빔 학습을 포함하는 무선 통신을 위한 장치 및 방법
EP3298701A1 (en) Use of basis functions for transmission of broadcast control information in a wireless network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015899977

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE