WO2012037603A1 - Biomarkers associated with pre-diabetes, diabetes and diabetes related conditions - Google Patents

Biomarkers associated with pre-diabetes, diabetes and diabetes related conditions Download PDF

Info

Publication number
WO2012037603A1
WO2012037603A1 PCT/AU2011/001212 AU2011001212W WO2012037603A1 WO 2012037603 A1 WO2012037603 A1 WO 2012037603A1 AU 2011001212 W AU2011001212 W AU 2011001212W WO 2012037603 A1 WO2012037603 A1 WO 2012037603A1
Authority
WO
WIPO (PCT)
Prior art keywords
diabetes
biomarker
subject
related condition
sample
Prior art date
Application number
PCT/AU2011/001212
Other languages
English (en)
French (fr)
Inventor
Thomas Stoll
Scott Bringans
Kaye Winfield
Tammy Casey
Wendy Davis
Kirsten Peters
Timothy Davis
Richard Lipscombe
Original Assignee
Proteomics International Pty Ltd
The University Of Western Australia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2010904249A external-priority patent/AU2010904249A0/en
Priority to RU2013113927/15A priority Critical patent/RU2596486C2/ru
Priority to US13/824,359 priority patent/US20130177544A1/en
Priority to AU2011305050A priority patent/AU2011305050B2/en
Priority to JP2013528474A priority patent/JP6271250B2/ja
Priority to BR112013006764-0A priority patent/BR112013006764B1/pt
Priority to SG2013018593A priority patent/SG188527A1/en
Priority to EP18155797.6A priority patent/EP3343226B1/en
Priority to CA2811654A priority patent/CA2811654C/en
Priority to EP11826214.6A priority patent/EP2619592A4/en
Priority to CN201180053583.9A priority patent/CN103299192B/zh
Application filed by Proteomics International Pty Ltd, The University Of Western Australia filed Critical Proteomics International Pty Ltd
Publication of WO2012037603A1 publication Critical patent/WO2012037603A1/en
Priority to US14/277,371 priority patent/US9146243B2/en
Priority to AU2015202230A priority patent/AU2015202230B2/en
Priority to US14/833,199 priority patent/US9733259B2/en
Priority to US15/632,753 priority patent/US10191067B2/en
Priority to US16/218,777 priority patent/US20190107546A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4716Complement proteins, e.g. anaphylatoxin, C3a, C5a
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/775Apolipopeptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/90212Oxidoreductases (1.) acting on a sulfur group of donors (1.8)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/908Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/34Genitourinary disorders
    • G01N2800/347Renal failures; Glomerular diseases; Tubulointerstitial diseases, e.g. nephritic syndrome, glomerulonephritis; Renovascular diseases, e.g. renal artery occlusion, nephropathy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease

Definitions

  • the invention relates to biomarkers associated with pre-Diabetes, Diabetes and Diabetes related conditions, such as diabetic nephropathy, methods of using the biomarkers to determine the risk that an individual will develop pre-Diabetes, Diabetes and Diabetes related conditions, methods of screening a population to identify persons at risk for developing pre-Diabetes, Diabetes and Diabetes related conditions and drug targets for pre-Diabetes, Diabetes and Diabetes.
  • biomarkers associated with pre-Diabetes, Diabetes and Diabetes related conditions such as diabetic nephropathy
  • Diabetes mellitus is a chronic disease and one of the major public health problems of our time.
  • the prevalence of diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% by 2030.
  • the total number of people with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030.
  • the prevalence of diabetes in the Australian population was 7.4% in those 25 years and older, and the number of Australians with diabetes has trebled since 1981.
  • Type 2 diabetes is by far the most common, e.g. affecting 90 to 95% of the U.S. diabetes population. Diabetes mellitus prevalence increases with age, and the numbers of older persons with diabetes are expected to grow as the elderly population increases in number. Along with the rising rate of diabetes there is also a higher prevalence of impaired glucose metabolism, which is associated with an increased risk of heart disease and diabetes. Diabesity is a term which encompasses the prevalence of diabetes, obesity, impaired glucose metabolism and the associated risk factors of hypertension and abnormal plasma lipid profiles (dyslipideamia). The "diabetes epidemic" will continue even if levels of obesity remain constant. Given the increasing prevalence of obesity, it is likely that these figures underestimate future diabetes prevalence.
  • Diabetes mellitus is a condition where the body cannot maintain normal blood glucose levels. Most cases of diabetes mellitus fall into three broad categories: Type 1, Type 2 and gestational diabetes. Type 1 diabetes results from the body's failure to produce insulin, and presently requires the person to inject insulin. Type 2 diabetes results from insulin resistance, a condition in which cells fail to use insulin properly, sometimes combined with an absolute insulin deficiency.
  • Type 2 diabetes can usually be controlled in the first instance by regular exercise and diet. Tablets and eventually insulin injections may be needed as the disease progresses. Over time, high blood glucose levels may damage blood vessels and nerves. These complications of diabetes can cause damage to eyes, nerves and kidneys and increase the risk of heart attack, stroke, impotence and foot problems. This damage can happen before an individual knows that they have diabetes if left undetected for a long time. Therefore, it is important to diagnose and control diabetes and its complications at a very early stage.
  • nephropathy kidney disease
  • renal kidney failure
  • the reasons behind the complication of nephropathy in diabetes is complex, and includes the toxic effects of high glucose levels; elevated blood pressure; abnormal lipid levels and abnormalities of small blood vessels.
  • the accumulative result is that there is thickening of the glomeruli in the kidney which allows protein (albumin) to be excreted in the urine.
  • ESRF end stage renal failure
  • Diabetic nephropathy is detected primarily by measuring the amount of albumin excreted in the urine (albuminuria).
  • Albuminuria is usually measured using the albumin creatinine ratio (ACR). This is the ratio between the albumin and the creatinine in the urine. The ratio considers the concentration of the albumin in relation to the glomerular filtration rate, which is determined by the amount of creatinine in the urine.
  • ACR albumin creatinine ratio
  • the ratio considers the concentration of the albumin in relation to the glomerular filtration rate, which is determined by the amount of creatinine in the urine.
  • Albuminuria is defined as: ACR >2.5mg/mmol (men) or >3.5mg/ mmol (women).
  • the present invention provides a method of assessing a subject for pre- Diabetes, Diabetes and/or a Diabetes related condition comprising measuring at least one biomarker in a sample from the subject, wherein said at least one biomarker is selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a kit comprising reagents for measuring at least one biomarker in a sample from a subject, wherein said at least one biomarker is selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a computer readable medium having computer executable instructions for assessing a subject for pre-Diabetes, Diabetes and/or a Diabetes related condition, the computer readable medium comprising: a routine, stored on the computer readable medium and adapted to be executed by a processor, to store biomarker measurement data representing at least one biomarker selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a method of assessing a treatment for pre-Diabetes, Diabetes and/or a Diabetes related condition in a subject comprising measuring at least one biomarker, in a sample from the subject undergoing the treatment, selected from the list of biomarkers in Table 1 or 2, at least twice over the course of the treatment.
  • the present invention provides a method of assessing the risk of a subject developing pre-Diabetes, Diabetes and/or a Diabetes related condition comprising measuring at least one biomarker, in a sample from the subject, selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a method of monitoring pre-Diabetes, Diabetes and/or a Diabetes related condition in a subject comprising measuring at least one biomarker, in a sample from the subject, selected from the list of biomarkers in Table 1 or 2 and comparing the measurement obtained with another measure of the at least one biomarker.
  • the present invention provides a method of diagnosing or identifying pre-Diabetes, Diabetes and/or a Diabetes related condition in a subject comprising measuring at least one biomarker, in a sample from the subject, selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a method of differentially diagnosing kidney disease from other conditions that also cause proteinuria in a subject comprising measuring at least one biomarker, in a sample from the subject, selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a method of differentially diagnosing sub-classses or stages of pre-Diabetes, Diabetes and/or a Diabetes related condition in a subject comprising measuring at least one biomarker, in a sample from the subject, selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a test system comprising: (i) means for obtaining test results data representing levels of at least one biomarker selected from the list of biomarkers in Table 1 or 2, in a sample from the subject;
  • (iii) means for calculating a pre-Diabetes, Diabetes and/or a Diabetes related condition risk index value from the test results data, wherein said risk index value is representative of the risk of an individual developing or having pre-Diabetes, Diabetes and/or a Diabetes related condition;
  • the present invention provides a method of ranking or grouping a population of individuals, comprising: obtaining pre-Diabetes, Diabetes and/or a Diabetes related condition risk index data for individuals in said population; and ranking individuals within the population relative to the remaining individuals in the population or dividing the population into at least two groups, based on factors comprising said obtained risk index data.
  • the present invention provides a method of evaluating a pre- Diabetes, Diabetes and/or a Diabetes related condition surrogate endpoint in a subject, the method comprising: measuring at least one biomarker from the list of biomarkers in Table 1 or 2; and evaluating a pre-Diabetes, Diabetes and/or a Diabetes related condition surrogate endpoint in the subject based on said measure.
  • the present invention provides a method of evaluating the risk of a subject developing pre-Diabetes, Diabetes and/or a Diabetes related condition comprising measuring at least one biomarker in a sample from the subject, wherein said at least one biomarker is selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a method of monitoring the risk of a subject developing pre-Diabetes, Diabetes and/or a Diabetes related condition comprising measuring at least one biomarker in a sample from the subject, wherein said at least one biomarker is selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a method of diagnosing or identifying a subject with pre-Diabetes, Diabetes and/or a Diabetes related condition comprising measuring at least one biomarker in a sample from the subject, wherein said at least one biomarker is selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a method of monitoring pre-Diabetes, Diabetes and/or a Diabetes related condition therapy or intervention comprising measuring at least one biomarker in a sample from the subject, wherein said at least one biomarker is selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a method of differentially diagnosing a disease state or sub-class of pre-Diabetes, Diabetes and/or a Diabetes related condition comprising measuring at least one biomarker in a sample from the subject, wherein said at least one biomarker is selected from the list of biomarkers in Table 1 or 2.
  • the present invention provides a method of treating pre-Diabetes, Diabetes and/or a Diabetes related condition in a subject comprising: evaluating risk, for the subject, of developing pre-Diabetes, Diabetes and/or a Diabetes related condition using at least one biomarker from Table 1 or 2 and treating the subject when identified as being at elevated risk for pre-Diabetes, Diabetes and/or a Diabetes related condition with a treatment regimen to delay or prevent the onset of pre-Diabetes, Diabetes and/or a Diabetes related condition.
  • the present invention provides a method of ranking or grouping a population of subjects, comprising: obtaining data representing a pre-Diabetes, Diabetes and/or a Diabetes related condition risk score for subjects comprised within said population, wherein said risk score is calculated using at least one biomarker from Table 1 or 2 and ranking subjects within the population relative to the remaining individuals in the population or dividing the population into at least two groups, based on factors comprising said obtained risk score data.
  • the present invention provides a method of identifying or assessing an agent for treating or reducing the risk of developing pre-Diabetes, Diabetes and/or a Diabetes related condition comprising:
  • a change in the level or expression identifies the agent as an agent for treating pre-Diabetes, Diabetes and/or a Diabetes related condition.
  • Another aspect of the present invention provides for the use of at least one biomarker in Table 1 or 2 as a drug target for pre-Diabetes, Diabetes and/or a Diabetes related condition.
  • the present invention provides a method of treating or reducing the risk of developing pre-Diabetes, Diabetes and/or a Diabetes related condition in a subject comprising administering to the subject an effective amount of an agent adapted to change the expression or level of at least one biomarker in Table 1 or 2.
  • the present invention provides for the use of an agent adapted to change the expression or level of at least one biomarker in Table 1 or 2 for preparing a medication for treating or reducing the risk of developing pre-Diabetes, Diabetes and/or a Diabetes related condition.
  • Figure 1 is a table listing biomarker protein data obtained from three studies with respect to the presence of diabetic nephropathy in diabetes patients measured by multiple reaction monitoring (MRM);
  • MRM multiple reaction monitoring
  • Figure 5 is a table listing biomarker protein data obtained from the BDS study with respect to patients with diabetic nephropathy and healthy patients measured by MRM. DETAILED DES CRIPTION OF THE INVENTION
  • the present invention relates to the identification of biomarkers associated with pre- Diabetes, Diabetes and/or Diabetes related conditions, such as diabetic nephropathy. Accordingly, the present invention features methods for identifying subjects who are at risk of developing pre-Diabetes, Diabetes and/or Diabetes related conditions, including those subjects who are asymptomatic or only exhibit non-specific indicators of pre- Diabetes, Diabetes and/or Diabetes related conditions by detection of the biomarkers disclosed herein.
  • biomarkers are also useful for monitoring subjects undergoing treatments and therapies for pre-Diabetes, Diabetes and/or Diabetes related conditions, and for selecting or modifying therapies and treatments that would be efficacious in subjects having pre-Diabetes, Diabetes and/or Diabetes related conditions, wherein selection and use of such treatments and therapies slow the progression of pre-Diabetes, Diabetes and/or Diabetes related conditions, or prevent their onset.
  • the present invention also features new drug targets for pre-Diabetes, Diabetes and/or Diabetes related conditions comprising at least one of the biomarkers in Table 1 or 2.
  • Agents for treating or reducing the risk of developing pre-Diabetes, Diabetes and/or a Diabetes related condition include: insulin such as mature insulin, pro-insulin and soluble c-peptide (SCp), rapid acting forms of insulin, regular insulin, intermediate-acting insulin and long-acting forms of insulin; hypoglycaemic agents; anti -inflammatory agents; lipid reducing agents; anti-hypertensives such as calcium channel blockers, beta- adrenergic receptor blockers, cyclooxygenase-2 inhibitors including prodrugs of COX-2 inhibitors, angiotensin system inhibitors including angiotensin II receptor blockers (ARBs), ACE inhibitors and rennin inhibitors including amino acids and derivatives thereof, peptides and derivatives thereof, and antibodies to renin.
  • insulin such as mature insulin, pro-insulin and soluble c-peptide (SCp), rapid acting forms of insulin, regular insulin, intermediate-acting insulin and long-acting forms of insulin
  • hypoglycaemic agents
  • Angiotensin II antagonists are compounds which interfere with the activity of angiotensin II by binding to angiotensin II receptors and interfering with its activity and include peptide compounds and non-peptide compounds. Most angiotensin II antagonists are slightly modified congeners in which agonist activity is attenuated by replacement of phenylalanine in position 8 with some other amino acid.
  • angiotensin II antagonists include: peptidic compounds (e.g., saralasin, angiotensin-(l-8) octapeptide and related analogs); N-substituted imidazole-2-one; imidazole acetate derivatives including 2-N-butyl-4-chloro-l-(2-chlorobenzile) imidazole-5-acetic acid; 4,5,6,7- tetrahydro-lH-imidazo[4,5-c]pyridine-6-carboxylic acid and analog derivatives; N2- tetrazole beta-glucuronide analogs; substituted pyrroles, pyrazoles, and tryazoles; phenol and heterocyclic derivatives such as 1,3 -imidazoles; imidazo-fused 7-member ring heterocycles; antibodies to angiotensin II; and aralkyl imidazole compounds such as biphenyl-methyl substituted imidazoles; ES8891 (N-
  • Angiotensin converting enzyme (ACE) inhibitors include amino acids and derivatives thereof, peptides, including di- and tri-peptides and antibodies to ACE which intervene in the renin-angiotensin system by inhibiting the activity of ACE thereby reducing or eliminating the formation of pressor substance angiotensin II.
  • Classes of compounds known to be useful as ACE inhibitors include acylmercapto and mercaptoalkanoyl prolines such as captopril and zofenopril, carboxyalkyl dipeptides such as enalapril, lisinopril, quinapril, ramipril, and perindopril, carboxyalkyl dipeptide mimics such as cilazapril and benazapril, phosphinylalkanoyl prolines such as fosinopril and trandolopril.
  • acylmercapto and mercaptoalkanoyl prolines such as captopril and zofenopril
  • carboxyalkyl dipeptides such as enalapril, lisinopril, quinapril, ramipril, and perindopril
  • carboxyalkyl dipeptide mimics such as cilazapril and benazapril
  • Anti-inflammatory agents include Alclofenac; Alclometasone Dipropionate; Algestone
  • Clobetasone Butyrate Clopirac
  • Cloticasone Propionate Cormethasone Acetate
  • Diclofenac Potassium Diclofenac Sodium; Diflorasone Diacetate; Diflumidone Sodium; Diflunisal; Difluprednate; Diftalone; Dimethyl Sulfoxide; Drocinonide; Endrysone;
  • Enlimomab Enolicam Sodium; Epirizole; Etodolac; Etofenamate; Felbinac; Fenamole; Fenbufen; Fenclofenac; Fenclorac; Fendosal; Fenpipalone; Fentiazac; Flazalone;
  • Fluazacort Flufenamic Acid
  • Flumizole Flunisolide Acetate
  • Flunixin Flunixin
  • Fluretofen Fluticasone Propionate; Furaprofen; Furobufen; Halcinonide; Halobetasol Propionate; Halopredone Acetate; Ibufenac; Ibuprofen; Ibuprofen Aluminum; Ibuprofen
  • Piconol Piconol; Ilonidap; Indomethacin; Indomethacin Sodium; Indoprofen; Indoxole; Intrazole;
  • Isoflupredone Acetate Isoxepac; Isoxicam; Ketoprofen; Lofemizole Hydrochloride;
  • Meclorisone Dibutyrate Mefenamic Acid; Mesalamine; Meseclazone; Methylprednisolone Suleptanate; Morniflumate; Nabumetone; Naproxen; Naproxen
  • Oxyphenbutazone Paranyline Hydrochloride; Pentosan Polysulfate Sodium;
  • Piroxicam Diamine; Pirprofen; Prednazate; Prifelone; Prodolic Acid; Proquazone; Proxazole; Proxazole Citrate; Rimexolone; Romazarit; Salcolex; Salnacedin; Salsalate;
  • cytokine inhibitors such as cytokine antagonists (e.g., IL-6 receptor antagonists), aza-alkyl lysophospholipids (AALP), and Tumor Necrosis Factor-alpha
  • TNF-alpha inhibitors such as anti-TNF-alpha antibodies, soluble TNF receptor, TNF- alpha, anti-sense nucleic acid molecules, multivalent guanylhydrazone (CNI-1493), N- acetylcysteine, pentoxiphylline, oxpentifylline, carbocyclic nucleoside analogues, Dexanabinol and TNF-alpha inhibitors such as Etanercept and Infliximab.
  • CNI-1493 multivalent guanylhydrazone
  • N- acetylcysteine N- acetylcysteine
  • pentoxiphylline pentoxiphylline
  • oxpentifylline carbocyclic nucleoside analogues
  • Dexanabinol and TNF-alpha inhibitors such as Etanercept and Infliximab.
  • Beta-adrenergic receptor blocking agents antagonize the cardiovascular effects of catecholamines in angina pectoris, hypertension, and cardiac arrhythmias and include atenolol, acebutolol, alprenolol, befunolol, betaxolol, bunitrolol, carteolol, celiprolol, hydroxalol, indenolol, labetalol, levobunolol, mepindolol, methypranol, metindol, metoprolol, metrizoranolol, oxprenolol, pindolol, propranolol, practolol, practolol, sotalolnadolol, tiprenolol, tomalolol, timolol, bupranolol, penbutolol, trimepranol,
  • Calcium channel blockers belong to one of three major chemical groups of drugs, the dihydropyridines, such as nifedipine, the phenyl alkyl amines, such as verapamil, and the benzothiazepines, such as diltiazem.
  • calcium channel blockers useful according to the invention include aminone, amlodipine, bencyclane, felodipine, fendiline, flunarizine, isradipine, nicardipine, nimodipine, perhexylene, gallopamil, tiapamil and tiapamil analogues, phenyloin, barbiturates, and the peptides dynorphin, omega-conotoxin, and omega-agatoxin.
  • Diabetes includes Type 1 Diabetes, both autoimmune and idiopathic, Type 2 Diabetes and gestational Diabetes. Diabetes can be characterised by recurrent and persistent hyperglycaemia and may be diagnosed by increased blood glucose levels and glycated haemoglobin (> 6.5%). According to the current definition, two fasting glucose measurements above 126 mg/dL (7.0 mmol/L) is considered diagnostic for Diabetes Mellitus.
  • Diabetes related condition includes any condition or disease that is a result or complication of or is otherwise correlated or associated with Diabetes including a condition caused by higher than normal blood glucose levels and a condition selected from the list consisting of: hypoglycaemia, diabetic ketoacidosis, diabetic neuropathy, kidney disease including diabetic nephropathy, cardiovascular disease, stroke and diabetic retinopathy and arteriovascular disease.
  • Biomarker in the context of the present invention encompasses, without limitation, the proteins in Table 1 or 2 and de facto measures thereof; nucleic acids encoding the proteins in Table 1 or 2; metabolites and degradation products of the proteins in Table 1 or 2; polymorphisms, mutations, variants, modifications, subunits, peptides (such as those in Table 3) and fragments of the proteins in Table 1 or 2; and protein-ligand complexes including the proteins in Table 1 or 2.
  • Biomarkers can also include proteins with at least 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98% or 99% identity or similarity with the proteins in Table 1 or 2 as well as mutated forms of the proteins in Table 1 or 2 and nucleic acids encoding such mutations.
  • the Biomarkers can be used to calculate mathematical indices or other measurements, including temporal trends and differences that are useful with respect to the present invention.
  • “Gestational Diabetes” refers to glucose intolerance during pregnancy. This condition results in high blood sugar that starts or is first diagnosed during pregnancy.
  • “Hypoglycaemic” agents include oral hypoglycaemic agents and include, without limitation, first-generation sulfonylureas: Acetohexamide, Chlorpropamide, Tolbutamide; second-generation sulfonylureas: Glipizide, Glyburide, Glimepiride; Biguanides: Metformin; Alpha-glucosidase inhibitors: Acarbose, Miglitol, Thiazolidinediones: Rosiglitazone, Pioglitazone, Troglitazone; Meglitinides: Repaglinide; and other hypoglycemics such as Acarbose; Buformin; Butoxamine Hydrochloride; Camiglibose; Ciglitazone; Englitazone Sodium; Darglitazone Sodium; Etoformin Hydrochloride; Gliamilide; Glibomuride; Glicetanile Gliclazide Sodium; G
  • IFG is a pre-Diabetic condition associated with a blood glucose level that is higher than normal, but not high enough to be classified as Diabetes.
  • a subject with IFG may have a fasting blood sugar (glucose) level below or equal to 125mg/L, between 100 and 125mg/dL or between 105 and 125mg/dL.
  • identity refers to a relationship between the sequences of two or more molecules, as determined by comparing the sequences. “Identity” also means the degree of sequence relatedness between polypeptide or nucleic acid molecule sequences, as the case may be, as determined by the match between strings of nucleotide or amino acid sequences. “Identity” measures the percent of identical matches between two or more sequences with gap alignments addressed by a particular mathematical model of computer programs.
  • Impaired glucose tolerance IGT is a pre-Diabetic condition associated with a blood glucose level that is higher than normal, but not high enough to be classified as Diabetes. A subject with IGT may have two-hour glucose levels of 140 to 199 mg/dL (7.8 to 11.0 mmol) on the 75-g oral glucose tolerance test.
  • Lipid reducing agents include gemfibrozil, cholystyramine, colestipol, nicotinic acid, and HMG-CoA reductase inhibitors such as simvastatin, lovastatin, pravastatin sodium, fluvastatin, atorvastatin and cerivastatin.
  • measuring and variants such as “measure” as used herein in relation to the biomarkers described herein refers to determining the presence and/or quantity of a given biomarker.
  • pre-Diabetes is a state in which some but not all of the diagnostic criteria for Diabetes are met. It includes conditions where subjects display blood sugar levels between normal and diabetic levels, conditions where subjects suffer from impaired glucose tolerance (IGT), impaired fasting glucose (IFG) and/or glycated haemoglobin between 5.7 and 6.4%.
  • ITT impaired glucose tolerance
  • ISG impaired fasting glucose
  • glycated haemoglobin between 5.7 and 6.4%.
  • sample in the context of the present invention is a biological sample isolated from a subject and can include, by way of example and not limitation, whole blood, blood fraction, serum, plasma, blood cells, endothelial cells, tissue biopsies, lymphatic fluid, ascites fluid, interstitial fluid (also known as "extracellular fluid” and encompasses the fluid found in spaces between cells, including, inter alia, gingival crevicular fluid), bone marrow, cerebrospinal fluid (CSF), saliva, mucous, sputum, sweat, urine, or any other secretion, excretion, or other bodily fluids.
  • interstitial fluid also known as "extracellular fluid” and encompasses the fluid found in spaces between cells, including, inter alia, gingival crevicular fluid
  • CSF cerebrospinal fluid
  • saliva mucous, sputum, sweat, urine, or any other secretion, excretion, or other bodily fluids.
  • similarity is a related concept to "identity”, but in contrast refers to a measure of similarity which includes both identical matches and conservative substitution matches. Since conservative substitutions apply to polypeptides and not nucleic acid molecules, similarity only deals with polypeptide sequence comparisons. If two polypeptide sequences have, for example, 10 out of 20 identical amino acids, and the remainder are all non-conservative substitutions, then the percent identity and similarity would both be 50%. If in the same example, there are 5 more positions where there are conservative substitutions, then the percent identity remains 50%, but the percent similarity would be 75% (15 out of 20). Therefore, in cases where there are conservative substitutions, the degree of similarity between two polypeptide sequences will be higher than the percent identity between those two sequences.
  • conservative amino acid substitution refers to a substitution of a native amino acid residue with a normative residue such that there is little or no effect on the polarity or charge of the amino acid residue at that position. For example, a conservative substitution results from the replacement of a non-polar residue in a polypeptide with any other non-polar residue. Furthermore, any native residue in the polypeptide may also be substituted with alanine. General rules for conservative amino acid substitutions are set forth in the table hereunder:
  • amino acid substitutions also encompass non-naturally occurring amino acid residues that are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. These include peptidomimetics, and other reversed or inverted forms of amino acid moieties. Conservative modifications to the amino acid sequence (and the corresponding modifications to the encoding nucleotides) are expected to produce polypeptides having functional and chemical characteristics similar to those of the biomarkers in Table 1.
  • Preferred methods to determine identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include the GCG program package, including GAP (Devereux et al., Nuc. Acids Res. 12:387 (1984); Genetics Computer Group, University of Wisconsin, Madison, Wis.), BLASTP, BLASTN, and FASTA (Atschul et al., J. Mol. Biol. 215:403-10 (1990)).
  • the BLAST X program is publicly available from the National Center for Biotechnology Information (NCBI) and other sources (Altschul et al., BLAST Manual (NCB NLM NIH, Bethesda, Md.); Altschul et al., 1990, supra).
  • NCBI National Center for Biotechnology Information
  • the well-known Smith Waterman algorithm may also be used to determine identity.
  • a "subject" in the context of the present invention is preferably a mammal.
  • the mammal can be a human, non-human primate, mouse, rat, dog, cat, horse, or cow.
  • a subject can be one who has been previously diagnosed or identified as having Diabetes, pre-Diabetes, or a Diabetes related condition, and optionally has already undergone, or is undergoing, a therapeutic intervention for the Diabetes, pre-Diabetes, or Diabetes related condition.
  • a subject can also be one who has not been previously diagnosed as having pre-Diabetes, Diabetes and/or a Diabetes related condition.
  • a subject can be one who exhibits one or more risk factors for pre-Diabetes, Diabetes and/or a Diabetes related condition, or a subject who does not exhibit any such risk factors or a subject who is asymptomatic for pre-Diabetes, Diabetes and/or a Diabetes related condition.
  • a subject can also be one who is suffering from or at risk of developing pre-Diabetes, Diabetes and/or a Diabetes related condition.
  • the invention provides improved diagnosis and prognosis of pre-Diabetes, Diabetes or a Diabetes related condition.
  • the risk of developing pre-Diabetes, Diabetes or a Diabetes related condition can be assessed by measuring one or more of the biomarkers described herein, and comparing the measured values to reference or index values. Such a comparison can be undertaken with mathematical algorithms or formula in order to combine information from results of multiple individual biomarkers and other parameters into a single measurement or index.
  • Subjects identified as having an increased risk of pre-Diabetes, Diabetes or a Diabetes related condition can optionally be selected to receive treatment regimens, such as administration of prophylactic or therapeutic compounds or implementation of exercise regimens or dietary supplements to prevent, treat or delay the onset of pre-Diabetes, Diabetes or a Diabetes related condition.
  • the amount of the biomarker can be measured in a test sample and compared to a reference or normal level, utilizing techniques such as reference limits, discrimination limits, or risk defining thresholds to define cut-off points and abnormal values for pre- Diabetes, Diabetes or a Diabetes related condition.
  • the normal control level is the level of one or more biomarkers or combined biomarker indices typically found in a subject not suffering from pre-Diabetes, Diabetes or a Diabetes related condition.
  • the normal and abnormal levels and cut-off points may vary based on whether a biomarker is used alone or in a formula combining with other biomarkers into an index.
  • the normal or abnormal level can be a database of biomarker patterns or "signatures" from previously tested subjects who did or did not develop or convert to pre-Diabetes, Diabetes or a Diabetes related condition over a clinically relevant time horizon.
  • the present invention may be used to make continuous or categorical measurements of the risk of develop or convert to pre-Diabetes, Diabetes or a Diabetes related condition, thus diagnosing and defining the risk spectrum of a category of subjects with a defined clinical status.
  • the methods of the present invention can be used to discriminate between normal cohorts and cohort with pre-Diabetes, Diabetes or a Diabetes related condition.
  • the present invention may be used so as to discriminate pre-Diabetes from Diabetes, Diabetes from normal, different Diabetes related conditions or different Diabetes conditions from normal. Such differing use may require different biomarker combinations in individual panels, mathematical algorithms, and/or cut-off points, but subject to the same aforementioned measurements of accuracy for the intended use.
  • Identifying a subject before they develop pre-Diabetes, Diabetes or a Diabetes related condition enables the selection and initiation of various therapeutic interventions or treatment regimens in order to delay, reduce or prevent that subject's conversion to a disease state.
  • Monitoring the levels of at least one biomarker also allows for the course of treatment of pre-Diabetes, Diabetes or a Diabetes related condition to be monitored.
  • a sample can be provided from a subject undergoing treatment regimens or therapeutic interventions, e.g., drug treatments, for pre-Diabetes, Diabetes or a Diabetes related condition.
  • Such treatment regimens or therapeutic interventions can include exercise regimens, dietary modification, dietary supplementation, bariatric surgical intervention, administration of pharmaceuticals, and treatment with therapeutics or prophylactics used in subjects diagnosed or identified with pre-Diabetes, Diabetes or a Diabetes related condition.
  • Samples can be obtained from the subject at various time points before, during, or after treatment.
  • the present invention can also be used to screen populations in a variety of settings. For groups of subjects can be screened: to identify those requiring interventions; for the collection of epidemiological data; to assess them for health insurance purposes. Data obtained through population screens will be particularly valuable when correlated with clinical measures of pre-Diabetes, Diabetes or a Diabetes related condition and can be stored in data arrays or other collections in machine -readable media for convenient use by healthcare service providers and the allied health industry to improve service delivery and efficiency and hence improve patient outcomes.
  • a machine-readable storage medium includes any data storage material encoded with machine readable data or data arrays which, when using a machine programmed with instructions for using said data, is capable of use for a variety of purposes, such as, without limitation, providing or generating subject information relating to pre-Diabetes, Diabetes or a Diabetes related condition risk factors over time or in response to interventions or therapies and drug discovery.
  • Assessment or measurement of the biomarkers of the invention and/or the corresponding risk determined therefrom may be implemented in computer programs executing on programmable computers, comprising, inter alia, a processor, a data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device.
  • Program code or software can be applied to input data to perform the functions required to generate the required output.
  • the program code or software can perform one or more of the functions in relation to data concerning the biomarkers including: determining normal or abnormal levels of a biomarker and comparing a level of a biomarker to a reference value, e.g. a control subject or population whose pre-Diabetes, Diabetes or a Diabetes related condition state is known or an index value or baseline value.
  • a reference value e.g. a control subject or population whose pre-Diabetes, Diabetes or a Diabetes related condition state is known or an index value or baseline value.
  • the reference sample or index value or baseline value may be taken or derived from one or more subjects who have been exposed to a treatment, or may be taken or derived from one or more subjects who are at low risk of developing pre-Diabetes, Diabetes or a Diabetes related condition, or may be taken or derived from subjects who have shown improvements in one or more risk factors associated with pre-Diabetes, Diabetes or a Diabetes related condition (including established clinical parameters) as a result of exposure to a treatment.
  • the reference sample or index value or baseline value may also be taken or derived from one or more subjects who have not been exposed to the treatment.
  • samples may be collected from subjects who have received initial treatment for pre-Diabetes, Diabetes or a Diabetes related condition and subsequent treatment for pre-Diabetes, Diabetes or a Diabetes related condition to monitor the progress of the treatment.
  • a reference value can also comprise a value derived from a risk prediction algorithm or computed indices from population studies.
  • the biomarkers of the present invention can thus be used to generate a biomarker profile or signature of subjects: (i) who do not have and are not expected to develop pre- Diabetes, Diabetes or a Diabetes related condition and/or (ii) who have or expected to develop pre-Diabetes, Diabetes or a Diabetes related condition.
  • the biomarker profile of a subject can be compared to a predetermined or reference biomarker profile to diagnose or identify subjects at risk for developing pre-Diabetes, Diabetes or a Diabetes related condition, to monitor the progression of disease, as well as the rate of progression of disease, and to monitor the effectiveness of pre-Diabetes, Diabetes or a Diabetes related condition treatments.
  • Biomarker profiles of the present invention are preferably contained in a machine-readable medium and are "live” insofar as they can be updated with further data that comes to hand, thus improving the strength and clinical significance of the biomarkers.
  • Data concerning the biomarkers of the present invention can also be combined or correlated with other data or test results, such as, without limitation, measurements of clinical parameters or other algorithms for pre-Diabetes, Diabetes or a Diabetes related condition. Other data includes age, ethnicity, body mass index (BMI), total cholesterol levels, blood glucose levels, blood pressure, LDL and HDL levels.
  • the machine -readable media can also comprise subject information such as medical history and any relevant family history.
  • the present invention also provides methods for identifying agents for treating pre- Diabetes, Diabetes or a Diabetes related condition that are appropriate or otherwise customised for a specific subject.
  • a test sample from a subject, exposed to a therapeutic agent or a drug can be taken and the level of one or more biomarkers can be determined.
  • the level of one or more biomarkers can be compared to a sample derived from the subject before and after treatment, or can be compared to samples derived from one or more subjects who have shown improvements in risk factors as a result of such treatment or exposure. Tests
  • test systems include a means for obtaining test results from a sample, a means for collecting, storing, processing and/or tracking test results for the sample, usually in a database and a means for reporting test results.
  • the means for obtaining test results can include a module adapted for automatic testing utilising one or more of biochemical, immunological and nucleic acid detection assays.
  • Some test systems can process multiple samples and can run multiple tests on a given sample.
  • the means for collecting, storing, processing and/or tracking test results may comprise a physical and/or electronic data storage device such as a hard drive or flash memory or paper print-outs.
  • the means for reporting test results can include a visible display, a link to a data structure or database, or a printer.
  • the reporting means may simply be a data link that is adapted to send results to another device such as a database, visual display, or printer.
  • the present invention provides a test system adapted to aid in the identification of individuals at risk of developing pre-Diabetes, Diabetes or a Diabetes related condition or diagnose pre-Diabetes, Diabetes or a Diabetes related condition, the test system comprising a means that uses data relating to at least one of the biomarkers described herein.
  • test results from system of the present invention serve as inputs to a computer or microprocessor programmed with a machine code or software that takes the data relating to at least one of the biomarkers described herein and determines the risk of developing or already having pre-Diabetes, Diabetes or a Diabetes related condition.
  • biomarkers in Table 1 have been identified as being found to have altered or modified presence or concentration levels in subjects who have Diabetes and or diabetic nephropathy.
  • the biomarkers and methods of the present invention allow one of skill in the art to identify, diagnose, or otherwise assess subjects who do not exhibit any symptoms of pre-Diabetes, Diabetes or a Diabetes related condition, but who nonetheless may have or be at risk for developing pre-Diabetes, Diabetes or a Diabetes related condition.
  • One or more of the biomarkers in Table 1 or 2 can be selected to form a panel of markers.
  • one embodiment of the invention is a method of evaluating the risk of developing pre-Diabetes, Diabetes or a Diabetes related condition, comprising the step of measuring the levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 biomarkers from Table 1 or 2.
  • the panel includes at least one of: Peroxiredoxin-2 (P32119), Protein AMBP (P02760); Apolipoprotein A-IV (P06727) and Complement Clq subcomponent subunit B (P02746); at least one of Adiponectin (Q15848), Complement factor H-related protein 2 (P36980), Haemoglobin subunit beta (P68871), Apolipoprotein B-100 (P04114) and Sulfhydryl oxidase 1 (000391) or; at least one of Apolipoprotein C- III (P02656), Insulin-like growth factor-binding protein 3 (P17936), CD5 antigen-like (043866) and Complement component C8 beta chain (P07358).
  • Peroxiredoxin-2 P32119
  • Protein AMBP Protein AMBP
  • Apolipoprotein A-IV P06727)
  • Complement Clq subcomponent subunit B P02746
  • Adiponectin Q15848
  • results obtained using the biomarkers of the present invention can be combined into indices useful in the practice of the invention using any one or more formulae.
  • indices may indicate, among the various other indications, the probability, likelihood, absolute or relative risk, time to or rate of conversion from one to another disease states, or make predictions of future biomarkers measurements of pre-Diabetes, Diabetes or a Diabetes related condition. This may be for a specific time period or horizon, or for remaining lifetime risk, or simply be provided as an index relative to another reference subject population.
  • Preferred formulas include the broad class of statistical classification algorithms such as relative operating characteristic (ROC), the use of discriminant analysis e.g. linear discriminant analysis (LDA).
  • LDA linear discriminant analysis
  • Features can be identified for LDA using an eigengene based approach with different thresholds (ELD A) or a stepping algorithm based on a multivariate analysis of variance (MANOVA).
  • ELD A eigengene based approach with different thresholds
  • MANOVA multivariate analysis of variance
  • Forward, backward, and stepwise algorithms can be performed that minimize the probability of no separation based on the Hotelling-Lawley statistic.
  • Other formulas include a support vector machine (SVM), a random forest or recursive partitioning can also be used separately or in combination to identify biomarker combinations that are most important.
  • SVM support vector machine
  • a random forest or recursive partitioning can also be used separately or in combination to identify biomarker combinations that are most important.
  • Preprocessing includes inverse and square root transformations, normalisation of biomarker results, using mathematical transformations such as logarithmic or logistic functions. Normalisations based on clinical parameters such as age, gender, race, BMI or sex are particularly preferred.
  • One or more clinical parameters may be used in the practice of the invention in combination with the biomarkers of the present invention as an input to a formula or as pre- selection criteria defining a relevant population to be measured using a particular biomarker panel and formula.
  • Clinical parameters may also be useful in the biomarker normalization and pre-processing, or in biomarker selection, panel construction, formula type selection and derivation, and formula result post-processing.
  • biomarker panels of the present invention may be tailored to the population and end point or use that is intended.
  • biomarker panels and formulas may be used for assessment of subjects for primary prevention and diagnosis and for secondary prevention and management.
  • the panels and formulas may be used for prediction and risk stratification for conditions, for the diagnosis of diabetic conditions, for the prognosis of glucose level and rate of change and for indication for future diagnosis.
  • the panels and formulas may be used for prognosis and risk stratification for Diabetes complications.
  • the panels and formulas may be used for clinical decision support, such as determining whether to defer intervention to next visit, to recommend normal preventive check-ups, to recommend increased visit frequency, to recommend increased testing and to recommend therapeutic intervention.
  • the panels and formulas may also be useful for intervention in subjects with diabetic conditions, such as therapeutic selection and response, adjustment and dosing of therapy, monitoring ongoing therapeutic efficiency and indication for change in therapeutic intervention.
  • the disease endpoints of the invention include pre-Diabetes, Diabetes or a Diabetes related condition.
  • the panels and formulas herein may be used to evaluate current status of the disease endpoints by aiding in the diagnosis and/or the determination of severity of the pre-Diabetes, Diabetes or a Diabetes related condition and/or determination of the subclass of the disease or condition.
  • the panels and formulas herein are also useful for determining the future status of intervention such as determining the prognosis of future pre-Diabetes, Diabetes or a Diabetes related condition with therapy, intervention and drug therapy.
  • the invention may be tailored to a specific intervention, drug class, therapeutic class or therapy or drug therapy or a combination thereof.
  • the surrogate endpoints of the invention include measuring HBAIc, glucose (I7PG and OGTT), and glucose class (normal glucose tolerance (NGT), IGT, IFG and T2DM).
  • the panels and formulas herein are useful for determining the current status of the surrogate endpoints by diagnosing glucose class with or without fasting.
  • the future status of surrogate endpoints may be determined using the biomarker panels herein such as determination of the prognosis of future glucose class.
  • the biomarker panels and formulas are also useful for determining the future status of intervention such as determination of prognosis of future glucose class with drug therapy.
  • the complication endpoints of diabetic conditions include the Diabetes related conditions herein such as kidney disease, eye retinopathy, microvascular damage, liver damage, limb amputation and cardiovascular complications.
  • the biomarker panels and formulas may be used to evaluate the current status of the disease endpoints by aiding in the diagnosis of pre-Diabetes, Diabetes or a Diabetes related condition.
  • the future status of complication endpoints may be determined using the biomarker panels and formulas such as determination of the prognosis of future pre-Diabetes, Diabetes or a Diabetes related condition.
  • the panels and formulas are also useful for determining the future status of intervention such as determining the prognosis of future pre-Diabetes, Diabetes or a Diabetes related condition with therapy.
  • the biomarkers of the present invention can also be used to identify and assess agents for treating or reducing the risk of developing pre-Diabetes, Diabetes or a Diabetes related condition.
  • the present invention also provides a method of identifying or assessing an agent for treating or reducing the risk of developing pre-Diabetes, Diabetes and/or a Diabetes related condition comprising:
  • the cells may be contacted with the putative agent in vivo, such as in an animal model, or in vitro, such as in a cell culture or line.
  • the expression or level may be compared using a computer driven program or software.
  • the present invention also provides a method of treating or reducing the risk of developing pre-Diabetes, Diabetes and/or a Diabetes related condition in a subject comprising administering an effective amount of an agent adapted to change the expression or level of at least one biomarker in Table 1 or 2 to the subject.
  • the agent may be administered according to any one of the known methods as selected by a suitably qualified practitioner.
  • the agents may be administered as part of a composition comprising an effective amount of the agent in admixture with a pharmaceutically acceptable agent such as a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable agent such as a pharmaceutically acceptable carrier.
  • the carrier material may be water for injection, preferably supplemented with other materials common in solutions for administration to mammals.
  • Standard pharmaceutically acceptable agents such as carriers, diluents, and excipients may be included as desired.
  • Other exemplary compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, which may further include sorbitol or a suitable substitute therefor.
  • the optimal formulation of the agent will be determined by one skilled in the art depending upon the intended route of administration, delivery format and desired dosage.
  • compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance.
  • the present invention also provides for the use of an agent adapted to change the expression or level of at least one biomarker in Table 1 or 2 for preparing a medicament for treating or reducing the risk of developing pre-Diabetes, Diabetes and/or a Diabetes related condition.
  • the agent adapted to change the expression or level of at least one biomarker in Table 1 or 2 is an agent for treating or reducing the risk of developing pre-Diabetes, Diabetes and/or a Diabetes related condition as defined herein.
  • Other Agents for treating or reducing the risk of developing pre-Diabetes, Diabetes and/or Diabetes related conditions include, lipase inhibitors such as cetilistat; synthetic amylin analogs such as Symlin pramlintide with or without recombinant leptin; sodium-glucose cotransporter 2 inhibitors like sergliflozin, YM543, dapagliflozin, dual adipose triglyceride lipase and PI3 kinase activators like Adyvia; antagonists of neuropeptide Y2, Y4, and Y5 receptors, synthetic analog of human hormones PYY3-36 and pancreatic polypeptide; cannabinoid CBl receptor antagonists such as rimonabant, tara
  • beta. -hydroxysteroid dehydrogenase type 1 (l lb-HSDl); inhibitors of Cortisol synthesis such as ketoconazole; inhibitors of gluconeogenesis; glucokinase activators; antisense inhibitors of protein tyrosine phosphatase- IB; as well as other agents like injections of gastrin and epidermal growth factor (EGF) analogs such as Islet Neogenesis Therapy (El-I.N.T.); and betahistine.
  • GEF epidermal growth factor
  • Biomarkers may be measured using one or more of a range of techniques. Preferably the biomarkers are measured in a way that minimises subject variability. For example, they may be measured in a fasting state, and most commonly in the morning, providing a reduced level of subject variability due to both food consumption and metabolism and diurnal variation. Any fasting or temporal-based sampling procedure can be used in the present invention.
  • biomarker levels can be determined at the protein or nucleic acid level using any method known in the art. For example, at the nucleic acid level, Northern and Southern hybridization analysis, as well as ribonuclease protection assays using probes which specifically recognize one or more of these sequences can be used to determine gene expression. Biomarker levels can also be measured using reverse-transcription- based PCR assays (RT-PCR), e.g., using primers specific for the differentially expressed sequence of genes. Preferably, biomarker levels are determined at the protein level, e.g., by measuring the levels of peptides encoded by the gene products described herein, or activities thereof. Such methods include, e.g., immunoassays based on antibodies to proteins encoded by the genes, aptamers or molecular imprints.
  • biomarkers in Table 1 or 2 polypeptides, peptides, mutations, and polymorphisms thereof can be detected in any suitable manner, but are typically detected by contacting a sample from the subject with an antibody which binds the biomarker protein, polypeptide, mutation, or polymorphism and then detecting the presence or absence of a reaction product.
  • Antibodies can be monoclonal, polyclonal, chimeric, or a fragment of the foregoing, and the step of detecting the reaction product may be carried out with any suitable immunoassay.
  • Immunoassays carried out in accordance with the present invention may be homogeneous assays or heterogeneous assays.
  • the immunological reaction usually involves the specific antibody to the biomarker, a labelled analyte, and the sample of interest.
  • the signal arising from the label is modified, directly or indirectly, upon the binding of the antibody to the labelled analyte. Both the immunological reaction and detection of the extent thereof can be carried out in a homogeneous solution.
  • Immunochemical labels which may be employed include free radicals, radioisotopes, fluorescent dyes, enzymes, bacteriophages, or coenzymes.
  • the reagents are usually the sample, the antibody, and means for producing a detectable signal.
  • Samples as described above may be used.
  • the antibody can be immobilized on a support, such as a bead (such as protein A and protein G agarose beads), plate or slide, and contacted with the specimen suspected of containing the antigen in a liquid phase.
  • the support is then separated from the liquid phase and either the support phase or the liquid phase is examined for a detectable signal employing means for producing such signal.
  • the signal is related to the presence of the analyte in the sample.
  • Means for producing a detectable signal include the use of radioactive labels, fluorescent labels, or enzyme labels.
  • an antibody which binds to that site can be conjugated to a detectable group and added to the liquid phase reaction solution before the separation step.
  • the presence of the detectable group on the solid support indicates the presence of the antigen in the test sample.
  • suitable immunoassays include oligonucleotides, immunoblotting, immunoprecipitation, immunofluorescence methods, chemiluminescence methods, electrochemiluminescence (ECL) or enzyme-linked immunoassays.
  • sequence information provided by the database entries for the biomarkers in Table 1 expression of the biomarker sequences can be detected (if present) and measured using techniques well known to one of ordinary skill in the art such as Northern blot hybridization analyses or methods which specifically, and, preferably, quantitatively amplify specific nucleic acid sequences.
  • the sequences can be used to construct primers for specifically amplifying the biomarker sequences in, e.g., amplification-based detection methods such as reverse-transcription based polymerase chain reaction (RT-PCR).
  • RT-PCR reverse-transcription based polymerase chain reaction
  • sequence comparisons in test and reference populations can be made by comparing relative amounts of the examined DNA or RNA sequences in the test and reference cell populations.
  • Biomarker protein and/or nucleic acid metabolites can also be measured using one or more of a variety of ways known to one of skill in the art, including the refractive index spectroscopy (RI), ultra-violet spectroscopy (UV), fluorescence analysis, radiochemical analysis, near-infrared spectroscopy (near- IR), nuclear magnetic resonance spectroscopy (NMR), light scattering analysis (LS), mass spectrometry including multiple reaction monitoring (MRM) mass spectrometry, pyrolysis mass spectrometry, nephelometry, dispersive Raman spectroscopy, gas chromatography combined with mass spectrometry, liquid chromatography combined with mass spectrometry, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) combined with mass spectrometry, ion spray spectroscopy combined with mass spectrometry, capillary electrophoresis, NMR and IR detection.
  • RI refractive index spectroscopy
  • biomarkers When the biomarkers are measured using mass spectrometry they may be measured via a peptide selected from the list of:
  • the invention also includes a biomarker-detection reagent, e.g., an antibody specific for a biomarker protein in Table 1 or 2 or peptide in Table 3 or a nucleic acid that specifically identifies or binds to one or more nucleic acids encoding a biomarker protein in Table 1 or 2 or a peptide in Table 3 by having homologous nucleic acid sequences, such as oligonucleotide sequences or aptamers, complementary to a portion of the nucleic acid packaged together in the form of a kit.
  • a biomarker-detection reagent e.g., an antibody specific for a biomarker protein in Table 1 or 2 or peptide in Table 3 or a nucleic acid that specifically identifies or binds to one or more nucleic acids encoding a biomarker protein in Table 1 or 2 or a peptide in Table 3 by having homologous nucleic acid sequences, such as oligonucleo
  • the kit may contain in separate containers a nucleic acid or antibody (either already bound to a solid matrix or packaged separately with reagents for binding them to the matrix), control formulations (positive and/or negative), and/or a detectable label such as fluorescein, green fluorescent protein, rhodamine, cyanine dyes, Alexa dyes, luciferase, radiolabels, among others. Instructions for carrying out the assay may also be included in the kit.
  • the assay may for example be in the form of a Northern hybridization, sandwich ELISA or protein antibody array.
  • Reagents for detecting biomarkers of the present invention can be immobilized on a solid matrix such as a porous strip to form at least one biomarker detection site.
  • the measurement or detection region of the porous strip may include a plurality of sites containing an antibody or nucleic acid.
  • a test strip may also contain sites for negative and/or positive controls. Alternatively, control sites can be located on a separate strip from the test strip.
  • the different detection sites may contain different amounts of immobilized antibodies or nucleic acids, e.g., a higher amount in the first detection site and lesser amounts in subsequent sites.
  • the number of sites displaying a detectable signal provides a quantitative indication of the amount of biomarker present in the sample.
  • the detection sites may be configured in any suitably detectable shape and are typically in the shape of a bar or dot spanning the width of a test strip.
  • the kit contains a nucleic acid substrate array comprising one or more nucleic acid sequences.
  • the nucleic acids on the array specifically identify one or more nucleic acid sequences adapted to bind a nucleic acid sequence encoding a biomarker in Table 1 or 2.
  • the substrate array can be on, e.g., a solid substrate or "chip".
  • the substrate array can be a solution array.
  • the FDS1 cohort comprised 1294 patients who had type 2 diabetes. Diabetic subjects with and without diabetic nephropathy were selected to give markedly different phenotypic presentations enabling the greatest difference in protein expression.
  • the Fremantle Diabetes Study (FDS) Phase I was a longitudinal observational study of diabetes care, control, complications and cost in patients from a stable postcode-defined urban community of 120,097 people. When Phase I was conceived in 1991, there were few published diabetes natural history data.
  • the FDS2 cohort recruited diabetics referred by clinicians in the Fremantle locality and those from the FDS1 cohort database. Diabetic subjects with and without diabetic nephropathy were selected to give markedly different phenotypic presentations enabling the greatest difference in protein expression.
  • Phase II was conceived in 2007 for improved and extended data collection in order to characterise the nature of diabetes in contemporary urban Australia.
  • Group 2 Macroalbuminuia (ACR 34.1- 405.0 mg/mmol)
  • Group 3 Microalbuminuria (ACR 3.5 - 18.3 mg/mmol)
  • Plasma Plasma, serum, whole blood & urine
  • Rational Expand information on diabetic patients from a rural community. Complement information obtained from the FDS1 & FDS2 urban studies. Includes matched non- diabetic control subjects.
  • the Busselton Health Study is one of the longest running epidemiological research programs in the world.
  • Group 1 Diabetic with worst albuminuria (ACR 17.5 - 408 mg/mmol)
  • Group 2 Diabetic with normoalbuminuria (ACR 0.4 - 2.6 mg/mmol)
  • Group 3 Controls with normoalbuminuria (ACR 0.2 - 1.7 mg/mmol)
  • Selection range 250 from 329 adults with diabetes, 250 controls from 2595 non- diabetic
  • Plasma Plasma, serum, whole blood & urine
  • This discovery methodology involves chemically labelling the plasma of different groups of patients (e.g. diabetic nephropathy vs. diabetic with no nephropathy) and determining by mass spectrometry the relative ratio of the presence of a particular protein. Proteins with significantly altered concentrations after analysis indicate a change in the biochemistry of one group of patients versus another. This technique was used to measure the relative concentrations of 130-200 proteins per sample. Proteins of significantly different concentration between groups were identified, and these were selected for further examination by MRM methodology (section C below).
  • Peptides were desalted on a Strata-X 33 ⁇ polymeric reversed phase column (Phenomenex) before separation by strong cation exchange liquid chromatography (SCX) on an Agilent 1100 HPLC using a PolySulfoethyl column (4.6 x 100 mm, 5 ⁇ , 300 A). Peptides were eluted with a linear gradient of 0-400 mM KC1. SCX fractions were desalted and loaded onto an Ultimate 3000 nano HPLC system (Dionex C18, PepMap 100, 3 ⁇ ) and separated with a gradient of 10-40% acetonitrile (0.1% formic acid) with spotting using a ProBot (LC Packings) robotic spotter. The resultant spots were analysed on a 4800 MALDI TOF/TOF Analyzer.
  • SCX strong cation exchange liquid chromatography
  • MRM Multiple Reaction Monitoring
  • Preliminary MRM transition lists were generated by a series of steps which included downloading protein sequences, digesting proteins in silico in conjunction with a filter (e.g. 7-21 amino acids, 0 missed cleavage) and selecting a minimum of 4 transitions per peptide (usually precursor charge z2, product charge zl).
  • a filter e.g. 7-21 amino acids, 0 missed cleavage
  • Useful information on proteotypic peptides from literature and repositories (Pep tide Atlas, MRMaid) was also incorporated and the selection of transitions was supported by spectral libraries (ISB, NIST, GPM, BiblioSpec).
  • An open-source software called Skyline MacCoss laboratory, University of Washington, Seattle, WA, USA was used to generate and refine MRM transitions as well as to analyse MRM transition data.
  • Apolipoprotein splP06727IAPOA4_H 135-143 LEPYADQLR SEQ APOA4/LEP A-IV UMAN ID NO:2
  • CD5 antigenspl043866ICD5L_HU 246-256 LVGGDNLCSGR CD5L/LVG like MAN SEQ ID NO:4
  • Apolipoprotein splP04114IAPOB_HU 642-654 SVSLPSLDPASAK APOB/SVS B-100 MAN SEQ ID NO:7
  • Hemoglobin splP68871IHBB_HU 10-18 SAVTALWGK SEQ 11 subunit beta MAN ID NO: 12
  • binding protein MAN (SEQ ID NO: 16)
  • Adiponectin UMAN (SEQ ID NO: 18) Complement splP36980IFHR2_HU 233-242 TGDIVEFVCK FHR2/TGD factor H-related MAN (SEQ ID NO: 19)
  • sensitivity, or true positive rate, vs. false positive rate were also plotted for a range of markers (univariate and multivariate).
  • a number of statistical transformations were used to improve power including natural logarithm (In), inverse (inv) and square root (V).
  • the ROC data in Tables 4-8 further illustrate that the biomarker(s) can be used as a diagnostic for diabetic nephropathy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
PCT/AU2011/001212 2010-09-21 2011-09-20 Biomarkers associated with pre-diabetes, diabetes and diabetes related conditions WO2012037603A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
CA2811654A CA2811654C (en) 2010-09-21 2011-09-20 Biomarkers associated with pre-diabetes, diabetes and diabetes related conditions
CN201180053583.9A CN103299192B (zh) 2010-09-21 2011-09-20 与糖尿病前期、糖尿病以及糖尿病相关病症相关的生物标记
EP11826214.6A EP2619592A4 (en) 2010-09-21 2011-09-20 BIOMARKERS ASSOCIATED WITH PRE DIABETES, DIABETES AND DISORDERS ASSOCIATED WITH DIABETES
JP2013528474A JP6271250B2 (ja) 2010-09-21 2011-09-20 糖尿病前症、糖尿病、および糖尿病関連症状に関連するバイオマーカー
US13/824,359 US20130177544A1 (en) 2010-09-21 2011-09-20 Biomarkers associated with pre-diabetes, diabetes and diabetes related conditions
SG2013018593A SG188527A1 (en) 2010-09-21 2011-09-20 Biomarkers associated with pre-diabetes, diabetes and diabetes related conditions
EP18155797.6A EP3343226B1 (en) 2010-09-21 2011-09-20 Biomarkers associated with pre-diabetes, diabetes and diabetes related conditions
RU2013113927/15A RU2596486C2 (ru) 2010-09-21 2011-09-20 Биомаркеры, ассоциированные с предиабетом, диабетом и связанными с диабетом состояниями
AU2011305050A AU2011305050B2 (en) 2010-09-21 2011-09-20 Biomarkers associated with pre-diabetes, diabetes and diabetes related conditions
BR112013006764-0A BR112013006764B1 (pt) 2010-09-21 2011-09-20 método in vitro para avaliar um paciente quanto a nefropatia diabética
US14/277,371 US9146243B2 (en) 2010-09-21 2014-05-14 Method of assessing diabetic nephropathy using CD5 antigen-like
AU2015202230A AU2015202230B2 (en) 2010-09-21 2015-04-29 Biomarkers associated with kidney disease
US14/833,199 US9733259B2 (en) 2010-09-21 2015-08-24 Method of assessing a subject for abnormal kidney function
US15/632,753 US10191067B2 (en) 2010-09-21 2017-06-26 Method for identifying an agent for treating abnormal kidney function
US16/218,777 US20190107546A1 (en) 2010-09-21 2018-12-13 Method for Identifying an Agent for Treating Abnormal Kidney Function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2010904249 2010-09-21
AU2010904249A AU2010904249A0 (en) 2010-09-21 Biomarkers associated with pre-diabetes,diabetes and diabetes related conditions

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/824,359 A-371-Of-International US20130177544A1 (en) 2010-09-21 2011-09-20 Biomarkers associated with pre-diabetes, diabetes and diabetes related conditions
US14/277,371 Continuation US9146243B2 (en) 2010-09-21 2014-05-14 Method of assessing diabetic nephropathy using CD5 antigen-like

Publications (1)

Publication Number Publication Date
WO2012037603A1 true WO2012037603A1 (en) 2012-03-29

Family

ID=45873304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2011/001212 WO2012037603A1 (en) 2010-09-21 2011-09-20 Biomarkers associated with pre-diabetes, diabetes and diabetes related conditions

Country Status (12)

Country Link
US (5) US20130177544A1 (es)
EP (3) EP2619592A4 (es)
JP (2) JP6271250B2 (es)
CN (2) CN105974123A (es)
AU (2) AU2011305050B2 (es)
BR (1) BR112013006764B1 (es)
CA (1) CA2811654C (es)
ES (2) ES2928585T3 (es)
HK (1) HK1256827A1 (es)
RU (1) RU2596486C2 (es)
SG (1) SG188527A1 (es)
WO (1) WO2012037603A1 (es)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056619A1 (ja) * 2013-10-16 2015-04-23 日本水産株式会社 ペプチド又はその酸付加塩、飲食品、及び糖尿病予防等の組成物
CN104737020A (zh) * 2012-08-30 2015-06-24 桥田诚一 早期肾障碍的评价指标和其测定方法
JP2016512354A (ja) * 2013-03-14 2016-04-25 オートレイシーズ・インコーポレイテッドOTraces Inc. 測定分析物を使用する、疾患診断を改善するための方法
WO2020033537A1 (en) * 2018-08-08 2020-02-13 Regeneron Pharmaceuticals, Inc. Use of lc-ms/ms to quantitate protein biomarkers
EP3540439A4 (en) * 2016-11-11 2020-09-16 Otsuka Pharmaceutical Co., Ltd. METHOD OF EVALUATING THE SUGAR ABSORBANCE OF THE LIVER
WO2021142200A1 (en) * 2020-01-10 2021-07-15 Somalogic, Inc. Methods of determining impaired glucose tolerance
US11694802B2 (en) 2016-01-22 2023-07-04 Otraces Inc. Systems and methods for improving diseases diagnosis

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105974123A (zh) * 2010-09-21 2016-09-28 普罗蒂阿米克斯国际有限公司 与糖尿病前期、糖尿病及糖尿病相关病症相关的生物标记
US9928345B2 (en) 2012-06-08 2018-03-27 Liposciences, Inc. Multiple-marker risk parameters predictive of conversion to diabetes
US9361429B2 (en) 2012-06-08 2016-06-07 Liposcience, Inc. Multi-parameter diabetes risk evaluations
CN103473569A (zh) * 2013-09-22 2013-12-25 江苏美伦影像系统有限公司 基于svm的医学影像分类方法
JP6759104B2 (ja) 2014-04-04 2020-09-23 メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ 精密分子質量を用いた免疫グロブリンのアイソタイピング
AU2016326757B2 (en) 2015-09-24 2022-09-01 Mayo Foundation For Medical Education And Research Identification of immunoglobulin free light chains by mass spectrometry
EP3523647B1 (en) 2016-09-07 2024-06-26 Mayo Foundation for Medical Education and Research Identification and monitoring of cleaved immunoglobulins by molecular mass
PL3358355T3 (pl) * 2017-02-04 2024-04-08 Warszawski Uniwersytet Medyczny Zastosowanie surowiczych peroksyredoksyn dwucysteinowych (2-Cys-PRDX) jako biomarkerów przewlekłej choroby nerek (PChN, ang. CKD) takiej jak toczniowe zapalenie nerek (LN), nefropatia IgA (IgAN) i autosomalna dominująca wielotorbielowatość nerek (ADPKD) użytecznych do diagnozowania tych chorób i sposoby różnicowania tych chorób
CN106645757B (zh) * 2017-03-13 2019-01-15 新疆医科大学 一种诊断早发糖尿病mody的血清蛋白标志物组及其应用
CN107144620A (zh) * 2017-03-31 2017-09-08 兰州百源基因技术有限公司 糖尿病肾病检测标志物
JP7337701B2 (ja) * 2017-03-31 2023-09-04 クエスト ダイアグノスティックス インヴェストメンツ エルエルシー インスリン及びc-ペプチドの定量の方法
CN108732253A (zh) * 2017-04-14 2018-11-02 杭州量康科技有限公司 用于血清蛋白质定量测定的肽段组合物及测定方法
EP3681528A4 (en) 2017-09-13 2021-07-21 Mayo Foundation for Medical Education and Research IDENTIFICATION AND MONITORING OF THE APOPTOSIS INHIBITOR OF MACROPHAGES
RU2687256C1 (ru) * 2018-03-26 2019-05-08 Федеральное Государственное бюджетное образовательное учреждение высшего образования Дагестанский государственный медицинский университет Министерства здравоохранения Российской Федерации Даггосмедуниверситет Способ персонализированного лечения хронической болезни почек у больных с диабетической нефропатией
CA3103150A1 (en) * 2018-06-21 2019-12-20 China Medical University Protein biomarkers for nephropathy and applications thereof
CN110286234B (zh) * 2019-07-02 2023-03-24 安肽和(杭州)医疗科技有限公司 尿液中妊娠糖尿病的蛋白质标志物及其在早期诊断中的用途
CN111876479A (zh) * 2020-06-29 2020-11-03 中国人民解放军总医院 基于尿沉渣特定微小rna无创鉴别诊断糖尿病肾病/非糖尿病性肾病方面的应用
CN117310148A (zh) * 2023-09-11 2023-12-29 杭州珞米医疗科技有限公司 一种蛋白标志物作为生物标志物的用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060063108A (ko) * 2004-12-07 2006-06-12 (주) 대홍기업 히트파이프가 설치된 도어 조립체 및 이 도어 조립체를채택한 김치저장고
WO2007028636A1 (en) * 2005-09-09 2007-03-15 Medizinische Universität Innsbruck Method for predicting the progression of chronic kidney disease by measuring apolipoprotein a-iv

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1872138A1 (en) * 2005-04-11 2008-01-02 AstraZeneca AB A method and a kit for diagnosing type 2 diabetes, metabolic syndrome, sub clinical atherosclerosis, myocardial infarct, stroke or clinical manifestations of diabetes.
US20090325302A1 (en) * 2005-05-05 2009-12-31 Fibrogen, Inc. Diagnostic marker for diabetic vascular complications
BRPI0617332A2 (pt) * 2005-10-11 2011-07-26 Tethys Bioscience Inc marcadores asoociados ao diabetes e mÉtodos de uso dos mesmos
WO2007056587A2 (en) * 2005-11-09 2007-05-18 The General Hospital Corporation Predicting diabetic nephropathy (dn)
WO2007082586A1 (en) * 2006-01-20 2007-07-26 Mosaiques Diagnostics And Therapeutics Ag Method and markers for the diagnosis of renal diseases
JP2009531712A (ja) * 2006-03-23 2009-09-03 デ グスマン ブレイヤー、エメリタ アポリポタンパク質フィンガープリント技術
WO2007128884A1 (en) * 2006-05-09 2007-11-15 Oy Jurilab Ltd Novel genes and markers in type 2 diabetes and obesity
KR100792630B1 (ko) * 2006-07-05 2008-01-09 고려대학교 산학협력단 당뇨병성 신증 진단용 바이오 마커
EP2067043B1 (en) * 2006-09-08 2013-07-17 University of Oxford Clinical diagnosis of hepatic fibrosis using inter-alpha-trypsin inhibitor heavy chain h4
EP2203743A4 (en) * 2007-09-20 2011-03-02 Univ Louisville Res Found PEPTIDE BIOMARKER FOR PREDICTING WEARNING OF THE KIDNEY FUNCTION AND A CHILDNESS
WO2009103312A1 (en) * 2008-02-19 2009-08-27 Ludwig-Maximilians-Universität Ezrin, serpin b5, peroxiredoxin-2 and heat shock protein beta-1 as autoantigens for psoriasis and poststreptococcal diseases
CA2720563A1 (en) * 2008-04-11 2009-10-15 China Synthetic Rubber Corporation Methods, agents and kits for the detection of cancer
US8673644B2 (en) * 2008-05-13 2014-03-18 Battelle Memorial Institute Serum markers for type II diabetes mellitus
US20100099091A1 (en) * 2008-06-13 2010-04-22 Pavel Hamet Genetic component of complications in type 2 diabetes
WO2010001617A1 (en) * 2008-07-04 2010-01-07 Ono Pharmaceutical Co., Ltd. Use of an efficacy marker for optimizing therapeutic efficacy of an anti-human pd-1 antibody on cancers
WO2010005982A2 (en) * 2008-07-07 2010-01-14 The General Hospital Corporation Multiplexed biomarkers of insulin resistance
US8735443B2 (en) * 2008-10-21 2014-05-27 Kuwait University Method of treating diabetes-related vascular complications
CA2750818A1 (en) * 2009-01-27 2010-08-05 Proteogenix, Inc. Biomarkers for detection of neonatal sepsis in biological fluid
PT2623517E (pt) * 2009-01-28 2015-11-19 Ind Tech Res Inst Biomarcadores na urina e séricos associados com nefropatia diabética
WO2011072197A2 (en) * 2009-12-11 2011-06-16 Purdue Research Foundation Detection of oxidized polypeptides
WO2011145725A1 (ja) * 2010-05-20 2011-11-24 Miyazaki Toru Aim関連疾患の診断方法及び診断用キット
CN105974123A (zh) * 2010-09-21 2016-09-28 普罗蒂阿米克斯国际有限公司 与糖尿病前期、糖尿病及糖尿病相关病症相关的生物标记

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060063108A (ko) * 2004-12-07 2006-06-12 (주) 대홍기업 히트파이프가 설치된 도어 조립체 및 이 도어 조립체를채택한 김치저장고
WO2007028636A1 (en) * 2005-09-09 2007-03-15 Medizinische Universität Innsbruck Method for predicting the progression of chronic kidney disease by measuring apolipoprotein a-iv

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
BOSTROM, M. A. ET AL.: "Association of adiponectin gene polymorphisms with type 2 diabetes in an African American population enriched for nephropathy", DIABETES, vol. 58, 2009, pages 499 - 504, XP055106011 *
DATABASE HCAPLUS accession no. 996:120772 *
GRANIER, C. ET AL.: "Gene and protein markers of diabetic nephropathy", NEPHROLOGY DIALYSIS TRANSPLANTATION, vol. 23, 2008, pages 792 - 799, XP008167964 *
KIM, K. ET AL.: "Verification of biomarkers for diabetic retinopathy by multiple reaction monitoring", JOURNAL OFPROTEOME RESEARCH, vol. 9, 2010, pages 689 - 699, XP055064106 *
KOMURA, N. ET AL.: "Increment and impairment ofadiponectin in renal failure", CARDIOVASCULAR RESEARCH, vol. 86, 2010, pages 471 - 477, XP055106005 *
LONG, Z. ET AL.: "Analysis of serum apolipoprotein profile in middle-aged and old-aged patients with diabetic nephropathy", HUNAN YIKE DAXUE XUEBAO, vol. 20, no. 5, 1995, CHINESE, pages 460 - 462, XP008168244 *
PROTEOMICS INTERNATIONAL: "Discovery and validation of 13 diabetes biomarkers to be commercialized", MEDIA RELEASE, 29 September 2010 (2010-09-29), XP055106019 *
RAO, P. V. ET AL.: "`Proteomic identification of salivary biomarkers of type-2 diabetes", JOURNAL OFPROTEOME RESEARCH, vol. 8, 2009, pages 239 - 245, XP009122608 *
RAO, P.V. ET AL.: "Proteomic identification of urinary biomarkers of diabetic nephropathy", DIABETES CARE, vol. 30, 2007, pages 629 - 637, XP002492989 *
SALOMAA, V. ET AL.: "Thirty-one novel biomarkers as predictors for clinically incident diabetes", PLOS ONE, vol. 5, no. 4, April 2010 (2010-04-01), pages E10100 1 - 8, XP055106003 *
SARAHEIMO, M. ET AL.: "Serum adiponectin and progression of diabetic nephropathy in patients with type 1 diabetes", DIABETES CARE, vol. 31, 2008, pages 1165 - 1169, XP055106009 *
See also references of EP2619592A4 *
VASYLYEVA, T. L. ET AL.: "Novel roles of the IGF-IGFBP axis in etiopathophysiology of diabetic nephropathy", DIABETES RESEARCH AND CLINICAL PRACTICE, vol. 76, 2007, pages 177 - 86, XP055106016 *
WU, L. S.-H. ET AL.: "Association and interaction analyses of genetic variants in ADIPOQ, ENPP1, GHSR, PPARgamma and TCF7L2 genes for diabetic nephropathy in a Taiwanese population with type 2 diabetes", NEPHROLOGY DIALYSIS TRANSPLANTATION, vol. 24, 2009, pages 3360 - 3366, XP008167963 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104737020A (zh) * 2012-08-30 2015-06-24 桥田诚一 早期肾障碍的评价指标和其测定方法
JP2016512354A (ja) * 2013-03-14 2016-04-25 オートレイシーズ・インコーポレイテッドOTraces Inc. 測定分析物を使用する、疾患診断を改善するための方法
JP2019145127A (ja) * 2013-03-14 2019-08-29 オートレイシーズ・インコーポレイテッドOTraces Inc. 測定分析物を使用する、疾患診断を改善するための方法
JP7326402B2 (ja) 2013-03-14 2023-08-15 オートレイシーズ・インコーポレイテッド 測定分析物を使用する、疾患診断を改善するための方法
US11699527B2 (en) 2013-03-14 2023-07-11 Otraces, Inc. Method for improving disease diagnosis using measured analytes
JP2022020738A (ja) * 2013-03-14 2022-02-01 オートレイシーズ・インコーポレイテッド 測定分析物を使用する、疾患診断を改善するための方法
WO2015056619A1 (ja) * 2013-10-16 2015-04-23 日本水産株式会社 ペプチド又はその酸付加塩、飲食品、及び糖尿病予防等の組成物
US11694802B2 (en) 2016-01-22 2023-07-04 Otraces Inc. Systems and methods for improving diseases diagnosis
EP3540439A4 (en) * 2016-11-11 2020-09-16 Otsuka Pharmaceutical Co., Ltd. METHOD OF EVALUATING THE SUGAR ABSORBANCE OF THE LIVER
US11313861B2 (en) 2016-11-11 2022-04-26 Otsuka Pharmaceutical Co., Ltd. Method of evaluating hepatic glucose uptake capacity
US11592449B2 (en) 2018-08-08 2023-02-28 Regeneron Pharmaceuticals, Inc. Use of LC-MS/MS to quantitate protein biomarkers
WO2020033537A1 (en) * 2018-08-08 2020-02-13 Regeneron Pharmaceuticals, Inc. Use of lc-ms/ms to quantitate protein biomarkers
WO2021142200A1 (en) * 2020-01-10 2021-07-15 Somalogic, Inc. Methods of determining impaired glucose tolerance

Also Published As

Publication number Publication date
JP2013541706A (ja) 2013-11-14
ES2928585T3 (es) 2022-11-21
EP3343226A1 (en) 2018-07-04
BR112013006764A2 (pt) 2016-06-28
US20130177544A1 (en) 2013-07-11
CN103299192B (zh) 2016-05-11
JP2017223682A (ja) 2017-12-21
CN105974123A (zh) 2016-09-28
CN103299192A (zh) 2013-09-11
US20190107546A1 (en) 2019-04-11
US9733259B2 (en) 2017-08-15
ES2665910T3 (es) 2018-04-30
BR112013006764B1 (pt) 2020-11-03
RU2013113927A (ru) 2014-10-27
US10191067B2 (en) 2019-01-29
HK1256827A1 (zh) 2019-10-04
CA2811654C (en) 2020-06-30
EP2619592A4 (en) 2014-05-07
US9146243B2 (en) 2015-09-29
US20170299613A1 (en) 2017-10-19
JP6271250B2 (ja) 2018-01-31
AU2011305050B2 (en) 2015-05-21
US20140249049A1 (en) 2014-09-04
RU2596486C2 (ru) 2016-09-10
EP3151012B1 (en) 2018-03-21
CA2811654A1 (en) 2012-03-29
AU2015202230B2 (en) 2017-08-03
AU2011305050A1 (en) 2013-03-28
EP3151012A1 (en) 2017-04-05
SG188527A1 (en) 2013-04-30
EP3343226B1 (en) 2022-07-27
EP2619592A1 (en) 2013-07-31
US20150355198A1 (en) 2015-12-10
AU2015202230A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
US10191067B2 (en) Method for identifying an agent for treating abnormal kidney function
US8101363B2 (en) Inflammatory markers as tools in the detection and prevention of diabetes mellitus and as tools to aid in the selection of agents to be used for the prevention and treatment of diabetes
DK2354795T3 (en) Methods and compositions relating to Alzheimer's disease
WO2008131224A2 (en) Diabetes-related biomarkers and methods of use thereof
US20140324460A1 (en) Method for determining and managing total cardiodiabetes risk
AU2002230848A1 (en) Inflammatory markers for detection and prevention of diabetes mellitus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180053583.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824359

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013528474

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2811654

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011826214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011826214

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011305050

Country of ref document: AU

Date of ref document: 20110920

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013113927

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013006764

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013006764

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130325