WO2012036198A1 - Pattern formation method and device manufacturing method - Google Patents

Pattern formation method and device manufacturing method Download PDF

Info

Publication number
WO2012036198A1
WO2012036198A1 PCT/JP2011/070975 JP2011070975W WO2012036198A1 WO 2012036198 A1 WO2012036198 A1 WO 2012036198A1 JP 2011070975 W JP2011070975 W JP 2011070975W WO 2012036198 A1 WO2012036198 A1 WO 2012036198A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pattern
exposure
projection
exposure amount
Prior art date
Application number
PCT/JP2011/070975
Other languages
French (fr)
Japanese (ja)
Inventor
宗泰 横田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2012036198A1 publication Critical patent/WO2012036198A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Definitions

  • the present invention relates to a pattern forming method and a device manufacturing method.
  • a photosensitive substrate is irradiated with exposure light with exposure light from a projection optical system, and a pattern image is formed on the substrate. Is used.
  • the exposure apparatus when the exposure of the substrate is performed in a state where the surface (exposure surface) of the substrate is not arranged at a predetermined position with respect to the image plane of the projection optical system, for example, the dimension of the pattern formed on the substrate is the target. There is a possibility that the pattern formed on the substrate becomes non-uniform, such as deviation from the value. As a result, a defective device may occur.
  • An aspect of the present invention has been made in view of the above-described problems, and the object thereof is a pattern forming method capable of suppressing nonuniformity of a pattern formed on a substrate while maintaining an exposure amount within a predetermined range, and this An object of the present invention is to provide a device manufacturing method for manufacturing a device using a pattern forming method.
  • the pattern forming method forms a pattern on a photosensitive substrate by irradiating the photosensitive substrate with exposure light from a projection optical system through a mask pattern having a line portion and a space portion.
  • the device manufacturing method according to the second aspect of the present invention includes forming a pattern on the substrate using the pattern forming method according to the first aspect of the present invention, processing the substrate on which the pattern is formed, including.
  • a pattern forming method capable of suppressing nonuniformity of a pattern formed on a substrate while keeping an exposure amount within a predetermined range, and a device manufacturing method for manufacturing a device using the pattern forming method Can be provided.
  • FIG. 1 is a perspective view showing an example of an exposure apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating a relationship between the projection region and the substrate according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a positional relationship between the first projection area and the second projection area according to the first embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of a positional relationship between the first projection area and the second projection area according to the first embodiment.
  • FIG. 5 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment.
  • FIG. 7 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment.
  • FIG. 8 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment.
  • FIG. 9 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment.
  • FIG. 10 is a schematic diagram showing an example of a pattern of the photosensitive film according to the first embodiment.
  • FIG. 11 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment.
  • FIG. 12 is a schematic diagram for explaining a state in which the dimension of the photosensitive film changes due to the development according to the first embodiment.
  • FIG. 13 is a flowchart illustrating an example of a pattern forming method according to the first embodiment.
  • FIG. 14 is a flowchart illustrating an example of a pattern forming method according to the first embodiment.
  • FIG. 15 is a flowchart illustrating an example of a pattern forming method according to the first embodiment.
  • FIG. 16 is a schematic diagram for explaining an example of a procedure for determining a predetermined exposure condition and a predetermined development condition according to the first embodiment.
  • FIG. 17 is a schematic diagram for explaining an example of a procedure for determining a predetermined exposure condition and a predetermined development condition according to the first embodiment.
  • FIG. 18 is a schematic diagram for explaining an example of a procedure for determining a predetermined exposure condition and a predetermined development condition according to the first embodiment.
  • FIG. 19 is a schematic diagram illustrating an example of a relationship between a mask pattern and an integrated exposure amount according to the second embodiment.
  • FIG. 20 is a schematic diagram illustrating an example of the relationship between the mask pattern and the accumulated path light amount according to the second embodiment.
  • FIG. 21 is a flowchart illustrating an example of a pattern forming method according to the second embodiment.
  • FIG. 22 is a schematic diagram for explaining an example of a procedure for determining a predetermined exposure condition and a predetermined development condition according to the second embodiment.
  • FIG. 23 is a schematic diagram for explaining an example of a procedure for determining a predetermined exposure condition and a predetermined development condition according to the second embodiment.
  • FIG. 24A is a diagram illustrating a change in the integrated exposure amount accompanying a change in the defocus amount when the line widths of the line pattern and the space pattern are 4.0 [ ⁇ m] and 2.0 [ ⁇ m], respectively.
  • FIG. 24-2 is a diagram showing a change in the integrated exposure amount accompanying a change in the defocus amount when the line widths of the line pattern and the space pattern are 3.7 [ ⁇ m] and 2.3 [ ⁇ m], respectively.
  • FIG. 24C is a diagram illustrating a change in the integrated exposure amount accompanying a change in the defocus amount when the line widths of the line pattern and the space pattern are 3.5 [ ⁇ m] and 2.5 [ ⁇ m], respectively. .
  • FIG. 24-4 is a diagram illustrating a change in the integrated exposure amount accompanying a change in the defocus amount when the line widths of the line pattern and the space pattern are both set to 3.0 [ ⁇ m].
  • FIG. 25 is a diagram in which changes in the accumulated exposure amount shown in FIGS. 24-1, 24-3, and 24-4 are displayed in an overlapping manner.
  • FIG. 26 is a diagram showing a change in the integrated exposure amount shown in FIG. 24-1 accompanying a change in light intensity.
  • FIG. 27 is a diagram showing a change in the integrated exposure amount shown in FIGS. 24-1, 24-3, and 24-4 accompanying a change in light intensity.
  • FIG. 28 is a flowchart illustrating an example of a pattern forming method according to the third embodiment.
  • FIG. 29 is a flowchart illustrating an example of a device manufacturing method according to the present embodiment.
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be described with reference to this XYZ orthogonal coordinate system.
  • a predetermined direction in the horizontal plane is defined as an X-axis direction
  • a direction orthogonal to the X-axis direction in the horizontal plane is defined as a Y-axis direction
  • a direction orthogonal to each of the X-axis direction and the Y-axis direction (that is, a vertical direction) is defined as a Z-axis direction.
  • the rotation (inclination) directions around the X axis, Y axis, and Z axis are the ⁇ X, ⁇ Y, and ⁇ Z directions, respectively.
  • FIG. 1 is a perspective view schematically showing an example of an exposure apparatus EX according to the first embodiment.
  • the exposure apparatus EX includes a mask stage 1 that is movable while holding a mask M, a substrate stage 2 that is movable while holding a substrate P, and interference that measures the positions of the mask stage 1 and the substrate stage 2.
  • the operation of the measuring system 3 the illumination system IS for illuminating the mask M with the exposure light EL, the projection system PS for projecting the pattern image of the mask M illuminated with the exposure light EL onto the substrate P, and the operation of the exposure apparatus EX as a whole.
  • a control device 4 for controlling.
  • the mask M includes a reticle on which a device pattern projected onto the substrate P is formed.
  • the substrate P is a photosensitive substrate and includes, for example, a base material such as a glass plate and a photosensitive film (coated photosensitive material) formed on the base material.
  • the substrate P includes a large glass plate, and the size of one side of the substrate P is, for example, 500 mm or more.
  • a rectangular glass plate having a side of about 3000 mm is used as the base material of the substrate P.
  • the projection system PS has a plurality of projection optical systems.
  • the illumination system IS has a plurality of illumination modules corresponding to a plurality of projection optical systems.
  • the exposure apparatus EX of the present embodiment projects an image of the pattern of the mask M onto the substrate P while moving the mask M and the substrate P synchronously in a predetermined scanning direction. That is, the exposure apparatus EX of the present embodiment is a so-called multi-lens scan exposure apparatus.
  • the projection system PS has seven projection optical systems PL1 to PL7, and the illumination system IS has seven illumination modules IL1 to IL7.
  • the number of projection optical systems and illumination modules is not limited to seven.
  • the projection system PS may have 11 projection optical systems, and the illumination system IS may have 11 illumination modules.
  • the projection optical systems PL1 to PL7 are appropriately referred to as first to seventh projection optical systems PL1 to PL7, respectively, and the illumination modules IL1 to IL7 are appropriately referred to as first to seventh illumination modules IL1 to IL7. Called IL7.
  • the illumination system IS can irradiate the exposure light EL to each of the seven different illumination areas IR1 to IR7.
  • the illumination areas IR1 to IR7 correspond to irradiation areas irradiated with the exposure light EL emitted from the first to seventh illumination modules IL1 to IL7.
  • the illumination areas IR1 to IR7 are appropriately referred to as first to seventh illumination areas IR1 to IR7.
  • the illumination system IS illuminates each of the first to seventh illumination areas IR1 to IR7 with the exposure light EL.
  • the illumination system IS illuminates a part of the mask M arranged in the first to seventh illumination regions IR1 to IR7 with the exposure light EL having a uniform illuminance distribution.
  • bright lines g line, h line, i line
  • the exposure light EL emitted from the illumination system IS.
  • the illumination system IS includes an elliptic mirror 6 that reflects light emitted from the mercury lamp 5, a dichroic mirror 7 that reflects at least part of the light from the elliptic mirror 6, and light from the dichroic mirror 7.
  • a relay optical system 8 including a collimating lens and a condenser lens, and a light guide unit 9 that branches the light from the relay optical system 8 and supplies the light to each of the first to seventh illumination modules IL1 to IL7. I have.
  • Each of the first to seventh illumination modules IL1 to IL7 is supplied with a collimator lens to which light from the light guide unit 9 is supplied, a fly eye integrator to which light from the collimator lens is supplied, and light from the fly eye integrator. Equipped with a condenser lens.
  • the exposure light EL emitted from the condenser lenses of the first to seventh illumination modules IL1 to IL7 is applied to the first to seventh illumination regions IR1 to IR7.
  • Each of the first to seventh illumination modules IL1 to IL7 illuminates the first to seventh illumination regions IR1 to IR7 with the exposure light EL having a uniform illuminance distribution.
  • the illumination system IS illuminates at least a part of the mask M arranged in the first to seventh illumination regions IR1 to IR7 with the exposure light EL having a uniform illuminance distribution.
  • the mask stage 1 has a mask holding unit 10 that can hold the mask M, and can move relative to the first to seventh illumination regions IR1 to IR7 while holding the mask M.
  • the mask holding unit 10 holds the mask M so that the lower surface (pattern forming surface) of the mask M and the XY plane are substantially parallel.
  • the mask stage 1 is movable by a driving force of a driving system including a linear motor, for example.
  • the mask stage 1 can be moved in three directions of the X axis, the Y axis, and the ⁇ Z direction while the mask M is held by the mask holding unit 10 by the driving system.
  • Projection system PS can irradiate exposure light EL to seven different projection areas PR1 to PR7.
  • the projection areas PR1 to PR7 correspond to irradiation areas irradiated with the exposure light EL emitted from the first to seventh projection optical systems PL1 to PL7.
  • the projection areas PR1 to PR7 are appropriately referred to as first to seventh projection areas PR1 to PR7.
  • the projection system PS projects an image of the pattern of the mask M on each of the first to seventh projection areas PR1 to PR7.
  • the projection system PS projects an image of the pattern of the mask M on the part of the substrate P arranged in the first to seventh projection regions PR1 to PR7 with a predetermined projection magnification.
  • each of the first to seventh projection optical systems PL1 to PL7 includes a shift adjustment mechanism, a scaling adjustment mechanism, an image plane adjustment mechanism, and the like as disclosed in, for example, Japanese Patent No. 4211272.
  • An image characteristic adjusting device is included.
  • the control device 4 controls the image formation characteristic adjusting devices included in the first to seventh projection optical systems PL1 to PL7 to adjust the positions and sizes of the first to seventh projection regions PR1 to PR7. be able to.
  • the substrate stage 2 includes a substrate holder 11 that can hold the substrate P, and is movable relative to the first to seventh projection regions PR1 to PR7 while holding the substrate P.
  • the substrate holding unit 11 holds the substrate P so that the surface (exposure surface) of the substrate P and the XY plane are substantially parallel.
  • the substrate stage 2 is movable by a driving force of a driving system including a linear motor, for example.
  • the substrate stage 2 is moved in six directions including the X axis, the Y axis, the Z axis, the ⁇ X, the ⁇ Y, and the ⁇ Z directions in a state where the substrate P is held by the substrate holding unit 11 by the operation of the drive system. It is movable.
  • the interferometer system 3 optically measures the position of the first interferometer unit 3A capable of optically measuring the position of the mask stage 1 (mask M) in the XY plane and the position of the substrate stage 2 (substrate P) in the XY plane. And a second interferometer unit 3B capable of measuring.
  • the control device 4 determines the mask stage 1 (mask M) and the substrate stage 2 (substrate P) based on the measurement result of the interferometer system 3. ) Position control is executed.
  • the exposure apparatus EX of the present embodiment is an exposure apparatus that projects the pattern image of the mask M onto the substrate P while moving the mask M and the substrate P in a predetermined scanning direction (multi-lens scan). Exposure apparatus).
  • the control device 4 controls the mask stage 1 and the substrate stage 2 to move the mask M and the substrate P in a predetermined scanning direction in the XY plane.
  • the scanning direction (synchronous movement direction) of the substrate P is the X-axis direction
  • the scanning direction (synchronous movement direction) of the mask M is also the X-axis direction.
  • the control device 4 moves the substrate P in the X-axis direction with respect to the first to seventh projection regions PR1 to PR7 of the projection system PS, and synchronizes with the movement of the substrate P in the X-axis direction. While moving the mask M in the X-axis direction with respect to the first to seventh illumination regions IR1 to IR7 of IS, the illumination system IS illuminates the mask M with the exposure light EL, and from the mask M via the projection system PS. The substrate P is irradiated with the exposure light EL.
  • the substrate P is exposed with the exposure light EL from the mask M irradiated to the first to seventh projection regions PR1 to PR7 of the first to seventh projection optical systems PL1 to PL7, and an image of the pattern of the mask M is formed. Projected onto the substrate P.
  • FIG. 2 is a schematic diagram showing an example of the positional relationship between the first to seventh projection regions PR1 to PR7 and the substrate P, and shows the positional relationship in a plane including the surface of the substrate P.
  • each of the first to seventh projection regions PR1 to PR7 is trapezoidal in the XY plane.
  • the first, third, fifth, and seventh projection regions PR1, PR3, PR5, and PR7 by the first, third, fifth, and seventh projection optical systems PL1, PL3, PL5, and PL7 are Y They are arranged at almost equal intervals in the axial direction.
  • the second, fourth, and sixth projection regions PR2, PR4, and PR6 by the second, fourth, and sixth projection optical systems PL2, PL4, and PL6 are arranged at substantially equal intervals in the Y-axis direction.
  • the first, third, fifth, and seventh projection regions PR1, PR3, PR5, and PR7 are disposed on the ⁇ X side with respect to the second, fourth, and sixth projection regions PR2, PR4, and PR6. Further, the second, fourth, and sixth projection regions PR2, PR4, and PR6 are disposed between the first, third, fifth, and seventh projection regions PR1, PR3, PR5, and PR7 with respect to the Y-axis direction. .
  • Each of the first to seventh projection regions PR1 to PR7 is arranged so that the integrated exposure amounts in the X-axis direction (scanning direction) on the substrate P are equal.
  • the ends of the first to seventh projection regions PR1 to PR7 with respect to the Y-axis direction are arranged so as to overlap with each other with respect to the Y-axis direction, and the sum of the dimensions of the projection regions with respect to the X-axis direction is the same. It has been.
  • the end of the projection area refers to a triangular portion including an edge inclined with respect to the X axis in the trapezoidal projection area in the XY plane.
  • the rectangular part of the projection area other than the end part is appropriately referred to as a central part.
  • the + Y side end T1b of the first projection region PR1 and the ⁇ Y side end T2a of the second projection region PR2 are arranged so as to overlap with each other in the Y-axis direction.
  • the + Y side end T2b of the second projection region PR2 and the ⁇ Y side end T3a of the third projection region PR3 are arranged so as to overlap in the Y-axis direction.
  • the + Y side end T3b of the third projection region PR3 and the ⁇ Y side end T4a of the fourth projection region PR4 are arranged so as to overlap in the Y-axis direction.
  • the + Y side end T4b of the fourth projection region PR4 and the ⁇ Y side end T5a of the fifth projection region PR5 are arranged so as to overlap in the Y-axis direction.
  • the + Y side end T5b of the fifth projection region PR5 and the ⁇ Y side end T6a of the sixth projection region PR6 are arranged so as to overlap in the Y-axis direction.
  • the + Y side end T6b of the sixth projection region PR6 and the ⁇ Y side end T7a of the seventh projection region PR7 are arranged so as to overlap in the Y-axis direction.
  • the sum of the dimension of the end T1b and the dimension of the end T2a, the sum of the dimension of the end T2b and the dimension of the end T3a, the dimension of the end T3b, and the dimension of the end T4a The sum of the sum, the size of the end T4b and the size of the end T5a, the sum of the size of the end T5b and the size of the end T6a, and the sum of the size of the end T6b and the size of the end T7a.
  • the size of the central portion C1 of the first projection region PR1, the size of the central portion C2 of the second projection region PR2, the size of the central portion C3 of the third projection region PR3, and the fourth projection region are substantially the same. The same.
  • the dimension of the central part C1 and the sum of the dimension of the end part T1b and the dimension of the end part T2a are substantially the same.
  • the dimensions of the other central part and the sum of the dimensions of the end parts have a similar relationship.
  • the integrated exposure amount in the X-axis direction on the substrate P becomes substantially the same.
  • a portion where the projection areas overlap in the substrate P is appropriately referred to as an overlapping portion.
  • the overlapping portion B1 is provided on the substrate P by the first projection region PR1 and a part of the second projection region PR2.
  • An overlapping portion B2 is provided on the substrate P by the second projection region PR2 and a part of the third projection region PR3.
  • An overlapping portion B3 is provided on the substrate P by the third projection region PR3 and a part of the fourth projection region PR4.
  • the overlapping portion B4 is provided on the substrate P by the fourth projection region PR4 and a part of the fifth projection region PR5.
  • An overlapping portion B5 is provided on the substrate P by the fifth projection region PR5 and a part of the sixth projection region PR6.
  • An overlapping portion B6 is provided on the substrate P by the sixth projection region PR6 and a part of the seventh projection region PR7.
  • At least a part of the substrate P disposed in the overlapping part B1 is subjected to overlapping exposure by the first projection area PR1 and a part of the second projection area PR2.
  • At least a part of the substrate P arranged in the overlapping part B2 is subjected to overlapping exposure by the second projection region PR2 and a part of the third projection region PR3.
  • At least a part of the substrate P arranged in the overlapping part B3 is subjected to overlapping exposure by the third projection region PR3 and a part of the fourth projection region PR4.
  • At least a part of the substrate P arranged in the overlapping part B4 is subjected to overlapping exposure by the fourth projection region PR4 and a part of the fifth projection region PR5.
  • At least a part of the substrate P arranged in the overlapping part B5 is subjected to overlapping exposure by the fifth projection region PR5 and a part of the sixth projection region PR6. At least a part of the substrate P disposed in the overlapping part B6 is subjected to overlapping exposure by the sixth projection region PR6 and a part of the seventh projection region PR7.
  • the first to seventh projection regions PR1 to PR7 are irradiated with the exposure light EL in a state where the substrate P is disposed on at least a part of the first to seventh projection regions PR1 to PR7. Is done.
  • the exposure apparatus EX is connected to a coater / developer apparatus including a coating apparatus for forming a photosensitive film on the base material of the substrate P and a developer apparatus for developing the exposed substrate P.
  • the photosensitive substrate P on which the photosensitive film is formed in the coater / developer apparatus is carried into the exposure apparatus EX by a predetermined transport apparatus.
  • the base material of the substrate P includes a glass plate.
  • the base material is a glass plate, and a case where a photosensitive film is formed on the glass plate will be described as an example.
  • the surface (base) of the base material is anti-reflective. It may be a membrane.
  • the surface (base) of the base material may be a part of, for example, a thin film transistor formed on a glass plate by the previous process.
  • the surface (base) of the base material is an oxide film such as SiO 2 formed by the previous process, an insulating film such as SiO 2 and SiN x , a conductor film (metal film) such as Cu or ITO, amorphous Si, etc.
  • the surface is at least one surface of a semiconductor film.
  • the control apparatus 4 starts exposure of the substrate P.
  • the substrate P is moved in the scanning direction (X-axis direction) along the surface (XY plane) of the substrate P with respect to the first to seventh projection regions PR1 to PR7, and the mask M is moved to the first. Executed while moving in the scanning direction (X-axis direction) along the lower surface (XY plane) of the mask M with respect to the seventh illumination regions IR1 to IR7.
  • the substrate P is unloaded from the substrate stage 2 and then transferred to the coater / developer apparatus and developed. As a result, a pattern of the photosensitive film (exposure pattern layer) is formed on the substrate P. Thereafter, a pattern (device pattern) is formed on the substrate P by performing a predetermined process such as an etching process.
  • the integrated exposure amount in the X-axis direction on the substrate P becomes the same. That is, with respect to the X-axis direction, the first to seventh projection regions PR1 to PR7 are set so that the center size of the first to seventh projection regions PR1 to PR7 is the same as the sum of the sizes of the end portions.
  • Each shape, size, and positional relationship between the first to seventh projection regions PR1 to PR7 are determined. In other words, the first to seventh projection regions PR1 to PR7 overlap each other (B1 to B6) and the non-overlapping non-overlapping portions have the same accumulated exposure amount on the substrate P.
  • the shape and size of each of the seventh projection areas PR1 to PR7 and the positional relationship between the first to seventh projection areas PR1 to PR7 are determined.
  • FIG. 3 shows an example in which the positional relationship between the first projection region PR1 and the second projection region PR2 is an ideal state (target state) among the first to seventh projection regions PR1 to PR7. It is a schematic diagram.
  • the ideal state is a state in which the integrated exposure amount in the X-axis direction (scanning direction) of the exposure light EL irradiated to the projection areas (PR1, PR2) adjacent to each other in the Y-axis direction is equal, that is, The sum of the dimension of one projection area (PR1) and the dimension of the other projection area (PR2) in the X-axis direction at the overlapping portion between the projection area (PR1) and the other projection area (PR2) is non-overlapping This means that the dimensions of the projection areas (PR1, PR2) of one and the other in the part are the same.
  • the overlapping part B1 is formed only by the end part T1b and the end part T2a.
  • the non-overlapping part A1 is formed only by the central part C1.
  • the non-overlapping part A2 is formed only by the central part C2.
  • the integrated exposure amount in the overlapping portion B1, the integrated exposure amount in the non-overlapping portion A1 (center portion C1), and the integrated exposure amount in the non-overlapping portion A2 (center portion C2) are the same. is there.
  • the dimensions of the pattern to be formed are almost the same.
  • FIG. 4 is a schematic diagram showing an example of a state in which the positional relationship between the first projection region PR1 and the second projection region PR2 is deviated from the ideal state among the first to seventh projection regions PR1 to PR7. It is.
  • the first projection region PR1 and the second projection region PR2 are close to each other as compared to the ideal state, but may be separated.
  • a state where the projection regions (PR1, PR2) are deviated from the ideal state is appropriately referred to as a joint displacement state, and a deviation amount from the ideal state is appropriately referred to as a deviation amount.
  • the overlapping part B1 is formed by a part of the center part C1, an end part T1b, a part of the center part C2, and an end part T2a.
  • the non-overlapping part A1 is formed by a part of the central part C1.
  • the non-overlapping part A2 is formed by a part of the central part C2.
  • the integrated exposure amount in the overlapping portion B1 is different from the integrated exposure amount in the non-overlapping portions A1 and A2.
  • the dimension of the pattern to be formed is different.
  • the pattern formed on the substrate P becomes non-uniform, and a defective device may occur.
  • a process including exposure conditions and development conditions that can prevent the pattern from becoming non-uniform. Conditions are predetermined. Then, an exposure process and a development process for manufacturing a device on the substrate P are executed based on the determined process conditions.
  • the exposure conditions include the integrated exposure amount of the exposure light EL that is irradiated onto the projection area where the substrate P is disposed.
  • the development conditions include the development time of the substrate P irradiated with the exposure light EL (the time during which the developer and the photosensitive film of the substrate P are in contact), the type (physical properties) of the developer to be used, and the like.
  • a predetermined exposure condition that can prevent the pattern from becoming nonuniform is referred to as an optimal integrated exposure amount as appropriate, and the pattern can be suppressed from becoming nonuniform and the pattern can be set to a desired dimension.
  • the predetermined development conditions that can be obtained are appropriately referred to as optimum development time.
  • the predetermined exposure condition includes an integrated exposure amount at which the dimension of the pattern formed on the substrate P becomes uniform.
  • the integrated exposure amount is determined by the dimension of the pattern formed on the substrate P by the exposure light EL irradiated to the non-overlapping portion A1 of the first projection region PR1, and the non-overlapping portion A2 of the second projection region PR2.
  • the integrated exposure amount in the first projection region PR1 and the second projection region PR2 that substantially coincide with each other is included.
  • the predetermined development conditions include a development time in which the dimension of the pattern formed on the substrate P is a target value.
  • the optimum integrated exposure amount and the optimum development time that can make the pattern uniform on the substrate P will be described.
  • the non-overlapping portion A1 of the first projection region PR1 (or the non-overlapping portion A2 of the second projection region PR2) and the overlapping portion B1 of the first projection region PR1 and the second projection region PR2 will be described.
  • the pattern of the mask M is a line and space pattern, and a transmission part (space part) 21 that transmits the exposure light EL from the illumination system IS and a light shielding part (line part) that blocks the exposure light EL from the illumination system IS. ) 22.
  • the substrate P has a photosensitive film.
  • the photosensitive film of the substrate P is a so-called positive type in which a portion irradiated with the exposure light EL is removed by development.
  • a pattern (line and space pattern) corresponding to the pattern of the mask M is formed on the substrate P (photosensitive film).
  • the target dimension (target line width) of the pattern (line pattern) formed on the substrate P is WT.
  • the dimension of the line portion 22 of the mask M and the target dimension WT of the pattern formed on the substrate P are shown to be the same, but the dimension of the line portion 22 and the target dimension WT
  • ratio varies depending on, for example, the projection magnification of the projection optical system.
  • the horizontal axis indicates the position of the surface of the substrate P
  • the vertical axis indicates the value of the integrated exposure amount in the projection area.
  • FIG. 5 shows the pattern of the mask M and the exposure light EL from the mask M irradiated to the central portion C1 (non-overlapping portion A1) of the first projection region PR1 of the first projection optical system PL1 in the central portion C1. It is a schematic diagram which shows the relationship with distribution of integrated exposure amount.
  • a line LC1 indicates the distribution of the integrated exposure amount in the central portion C1.
  • the value of the integrated exposure amount corresponding to the space portion 21 is Jh.
  • FIG. 6 shows the relationship between the pattern of the mask M and the distribution of the integrated exposure amount when the substrate P is subjected to overlapping exposure when the positional relationship between the first projection region PR1 and the second projection region PR2 is an ideal state.
  • the line L1b shows an example of the distribution of the integrated exposure amount at the end T1b where the substrate P is arranged
  • the line L2a is the distribution of the integrated exposure amount at the end T2a where the substrate P is arranged.
  • An example is shown.
  • a line LB1a indicates the sum of the integrated exposure amount indicated by the line L1b and the integrated exposure amount indicated by the line L2a, that is, the distribution of the integrated exposure amount in the overlapping portion B1 where the substrate P is disposed.
  • the distribution of the integrated exposure amount at the end T1b and the distribution of the integrated exposure amount at the end T2a coincide. Further, since the positional relationship between the first projection region PR1 and the second projection region PR2 is an ideal state, the distribution of the integrated exposure amount in the central portion C1 (non-overlapping portion A1) shown in FIG. 5 and the overlapping portion shown in FIG. The distribution of the integrated exposure amount in B1 matches.
  • FIG. 7 shows the relationship between the pattern of the mask M and the distribution of the integrated exposure amount when the substrate P is subjected to overlapping exposure when the positional relationship between the first projection region PR1 and the second projection region PR2 is a joint displacement state.
  • the line L1b shows an example of the distribution of the integrated exposure amount at the end T1b where the substrate P is disposed
  • the line L2a is the distribution of the integrated exposure amount at the end T2a where the substrate P is disposed.
  • An example is shown.
  • a line LB1b indicates the sum of the integrated exposure amount indicated by the line L1b and the integrated exposure amount indicated by the line L2a, that is, the distribution of the integrated exposure amount in the overlapping portion B1 where the substrate P is disposed.
  • FIG. 8 shows the relationship between the pattern of the mask M and the distribution of the integrated exposure amount when the substrate P is subjected to overlapping exposure when the positional relationship between the first projection region PR1 and the second projection region PR2 is a joint displacement state. It is a schematic diagram which shows. The deviation amount in the example shown in FIG. 8 is larger than the deviation amount in the example shown in FIG.
  • the line L1b shows an example of the distribution of the integrated exposure amount at the end T1b where the substrate P is disposed
  • the line L2a is the distribution of the integrated exposure amount at the end T2a where the substrate P is disposed.
  • An example is shown.
  • a line LB1c indicates the sum of the integrated exposure amount indicated by the line L1b and the integrated exposure amount indicated by the line L2a, that is, the distribution of the integrated exposure amount in the overlapping portion B1 where the substrate P is disposed.
  • the positional relationship between the first projection region PR1 and the second projection region PR2 is a joint displacement state, and the displacement amount is larger than the example shown in FIG. 7, the distribution of the integrated exposure amount at the end T1b in the substrate P. And the distribution of the integrated exposure amount at the end T2a is greatly different from the example shown in FIG.
  • the distribution and value of the amount are different from the distribution and value of the integrated exposure amount in the overlapping portion B1 shown in FIG.
  • FIG. 9 shows the lines LB1a, LB1b, and LB1c shown in FIGS. 5 to 8 in one graph.
  • Jk there is a value Jk in which the integrated exposure amount in the ideal state and the integrated exposure amount in the joint shift state coincide. That is, by setting the integrated exposure amount in the non-overlapping portion A1 to the value Jh, the integrated exposure amount in the non-overlapping portion A1 and the integrated exposure amount in the overlapping portion B1 in the ideal state and the joint displacement state are values Jk. Match.
  • the photosensitive film used for the substrate P when the integrated exposure amount of the exposure light EL is greater than or equal to the value Jk, it is removed by development, and when it is less than the value Jk, it remains on the substrate P even after development (the pattern is changed).
  • FIG. 10 shows that the first projection region PR1 and the second projection region PR2 are irradiated with the exposure light EL and then the exposure light EL is irradiated so that the integrated exposure amount in the non-overlapping portions A1 and A2 becomes the value Jh.
  • a pattern of a photosensitive film formed on the substrate P by developing the substrate P is shown.
  • the line Ra is an ideal state as described with reference to FIG. 6, and when the substrate P is subjected to overlapping exposure so that the integrated exposure amount in the non-overlapping portions A ⁇ b> 1 and A ⁇ b> 2 becomes the value Jh.
  • the outline (outer shape) of the pattern of the photosensitive film after development is shown.
  • the line Rb is a state after development in the case where the substrate P is overlapped and exposed so that the integrated exposure amount in the non-overlapping portions A1 and A2 becomes the value Jh as described with reference to FIG.
  • the outline (outer shape) of the pattern of the photosensitive film is shown.
  • the line Rc indicates a photosensitive film after development when the substrate P is overlapped and exposed so that the accumulated exposure amount in the non-overlapping portion A1 becomes the value Jh as described with reference to FIG.
  • the outline (outer shape) of the pattern is shown.
  • the photosensitive film of the substrate P is a positive type and has a photosensitive characteristic (solubility) that is removed by development when the integrated exposure amount of the irradiated exposure light EL is equal to or greater than the value Jk, the value corresponding to the value Jk
  • the dimension of the pattern after development of the photosensitive film exposed in an ideal state And the dimension of the pattern after development of the photosensitive film exposed in the joint misalignment state can be matched.
  • the dimension of the pattern after development of the photosensitive film exposed in the ideal state and the dimension of the pattern after development of the photosensitive film exposed in the joint displacement state coincide with each other with the value Wa. Yes.
  • the dimension of the photosensitive film pattern is the width (line width) of the photosensitive film pattern formed in a line shape on the substrate P in accordance with the line and space pattern of the mask M.
  • the bottom width refers to the distance between the intersection between the surface of the substrate and one side surface of the photosensitive film and the intersection between the surface of the substrate and the other side surface of the photosensitive film.
  • the integrated exposure value Jh in the non-overlapping portions A1 and A2 is determined according to the photosensitive characteristic (solubility) of the substrate P (photosensitive film), and the integrated exposure amount in the non-overlapping portions A1 and A2 is the value Jh.
  • the dimensions of the pattern formed in the same are the same. Therefore, it is possible to prevent the pattern formed on the substrate P from becoming non-uniform.
  • FIG. 11 shows distributions of the integrated exposure amounts in the ideal state and the joint displacement state when the values of the integrated exposure amounts in the non-overlapping portions A1 and A2 are changed.
  • Line LP1a shows an ideal state where the value of the integrated exposure amount of non-overlapping portions A1 and A2 (center portions C1 and C2) is Jh1
  • line LP1b is a splice state and non-overlapping. The case where the value of the integrated exposure amount of the parts A1 and A2 (center parts C1 and C2) is Jh1 is shown.
  • the line LQ1a is an ideal state, and shows the case where the value of the integrated exposure amount of the non-overlapping portions A1 and A2 (center portions C1 and C2) is Jh2 different from Jh1, and the line LQ1b is in a joint shift state
  • the case where the value of the integrated exposure amount of the non-overlapping portions A1 and A2 (center portions C1 and C2) is Jh2 is shown.
  • Line LR1a shows an ideal state where the value of the integrated exposure amount of non-overlapping parts A1 and A2 (center parts C1 and C2) is Jh3 different from Jh1 and Jh2, and line LR1b shows a joint-shifted state. In this case, the value of the integrated exposure amount of the non-overlapping portions A1 and A2 (center portions C1 and C2) is Jh3.
  • the photosensitive film of the substrate P has a photosensitive characteristic that is removed by development when the integrated exposure amount of the irradiated exposure light EL is equal to or greater than the value Jk1, the non-overlapping portions A1, A2 (center portions C1, C2) The value Jh1 is determined as the integrated exposure amount in ().
  • the photosensitive film of the substrate P has a photosensitive characteristic that is removed by development when the integrated exposure amount of the irradiated exposure light EL is equal to or greater than the value Jk2
  • the non-overlapping portions A1, A2 center portion C1
  • the value Jh2 is determined as the integrated exposure amount in C2).
  • the photosensitive film of the substrate P has a photosensitive characteristic that is removed by development when the integrated exposure amount of the irradiated exposure light EL is equal to or greater than the value Jk3, the non-overlapping portions A1, A2 (center portions C1, C2) The value Jh3 is determined as the integrated exposure amount in ().
  • the integrated exposure amount Jh that can make the pattern dimension uniform on the substrate P is determined according to the photosensitive characteristics of the substrate P.
  • the integrated exposure amount at the non-overlapping portion (center portion) that can prevent the pattern from becoming non-uniform on the substrate P is appropriately referred to as an optimal integrated exposure amount JOPT.
  • the dimension Wa of the pattern shown in FIG. 10 is different from the target dimension WT. That is, in the substrate P, the pattern dimension Wa is uniform, but the dimension Wa is different from the target dimension WT. Therefore, in the present embodiment, by adjusting the development time T, the dimension of the pattern of the substrate P (photosensitive film pattern) is set to the target dimension WT.
  • FIG. 12 is a schematic diagram showing a state in which the dimension of the pattern is adjusted according to the development time T.
  • the contour (outer shape) of the photosensitive film changes isotropically. That is, as shown by the arrow in FIG. 12, the dimension of the photosensitive film isotropically decreases by the development process. Therefore, by adjusting the developing time T, the pattern of the photosensitive film having the dimension Wa can be changed to the pattern of the photosensitive film having the dimension WT.
  • optimum development time TOPT the development time during which the dimension Wa of the pattern uniformly formed on the substrate P can be set to the target dimension WT.
  • a predetermined exposure condition (optimum integrated exposure amount JOPT) and a predetermined development condition (optimal development time TOPT) that can prevent the pattern from becoming non-uniform. ) Is determined (step SP1), the substrate P is exposed under the determined predetermined exposure condition (optimum integrated exposure amount JOPT), and the substrate P is determined under the determined predetermined development condition (optimum development time TOPT). (Step SP2).
  • step SP1 in order to determine a predetermined exposure condition (optimum integrated exposure amount JOPT) and a predetermined development condition (optimum development time TOPT), a process of exposing the substrate and a process of developing the exposed substrate are performed. Executed.
  • step SP2 in order to form a device (device pattern) on the substrate P, a process of exposing the substrate under the determined predetermined exposure conditions and a process of developing the substrate under the determined predetermined development conditions are performed. Executed.
  • the exposure performed in step SP1 is appropriately referred to as test exposure, and the development performed in step SP1 is appropriately performed as test development. Called. Further, the substrate used in step SP1 is appropriately referred to as a test substrate Pt.
  • the exposure executed in step SP2 is appropriately referred to as main exposure, and the development executed in step SP2 is appropriately referred to as main development.
  • step SP1 includes test exposure of the test substrate Pt with the exposure light EL from the mask M irradiated onto the projection area of the projection optical system under different exposure conditions, and different developments. Based on the test development of the test substrate Pt subjected to the test exposure under each of the conditions, and the pattern formed on the test substrate Pt by the test exposure and the test development, the predetermined exposure condition (optimum integrated exposure amount JOPT) and the predetermined Determining development conditions (optimum development time TOPT).
  • the predetermined exposure condition optimum integrated exposure amount JOPT
  • optimum development time TOPT optimum development time TOPT
  • step SP2 the substrate P is exposed with the exposure light EL from the mask M irradiated onto the projection area of the projection optical system under the predetermined exposure condition (optimum integrated exposure amount JOPT) determined in step SP1. And exposing the substrate P subjected to the main exposure under the predetermined development condition (optimum development time TOPT) determined in step SP1.
  • the test exposure is performed using the first projection optical system PL1 among the first to seventh projection optical systems PL1 to PL7
  • the test exposure may be performed using at least one of the second to seventh projection optical systems PL2 to PL7 other than the first projection optical system PL1.
  • the first projection optical system PL1 is appropriately referred to as a projection optical system PL
  • the first projection region PR1 of the first projection optical system PL1 is appropriately referred to as a projection region PR.
  • the projection region PR where the test substrate Pt is arranged is irradiated with the exposure light EL a plurality of times, and the test substrate Pt is subjected to overlapping exposure.
  • a portion where the test substrate Pt is subjected to overlapping exposure is appropriately referred to as an overlapping portion.
  • the first test substrate Pt1 and the second test substrate Pt2 are used as the test substrate Pt.
  • the test exposure is performed from the mask M irradiated to the projection region PR so that the accumulated exposure amount in the projection region PR of the projection optical system PL becomes the first value Ja as shown in the flowchart of FIG. Exposing the first area AR1 of the first test substrate Pt1 with the exposure light EL (step SA1), and the projection area PR so that the integrated exposure amount at the overlapping portion of the projection area PR becomes the first value Ja.
  • step SA2 Multiple exposure of the second area AR2 of the first test substrate Pt1 with the exposure light EL from the mask M irradiated to the projection area PR at each of a plurality of different positions (step SA2), and integration in the projection area PR
  • the projection region PR was irradiated at each of a plurality of different positions with respect to the projection region PR so that the exposure (step SA3) and the integrated exposure amount at the overlapping portion of the projection region PR become the second value Jb.
  • step SA4 Overexposure is performed on the fourth area AR4 of the first test substrate Pt1 with the exposure light EL from the mask M (step SA4), and the integrated exposure amount in the projection area PR of the projection optical system PL becomes the first value Ja. Then, exposing the fifth area AR5 of the second test substrate Pt2 with the exposure light EL from the mask M irradiated to the projection area PR (step SA5), and the integrated exposure amount in the overlapping area of the projection area PR is the first value.
  • the sixth region A of the second test substrate Pt2 is exposed to the exposure light EL from the mask M irradiated to the projection region PR at each of a plurality of positions different from the projection region PR so as to be Ja. Comprising 6 to overlapping exposure (step SA6), the.
  • the test development is performed by developing the first test substrate Pt1 on which the first to fourth areas AR1 to AR4 are exposed for the first time Ta, A photosensitive film pattern is formed in each of the first to fourth areas AR1 to AR4 of Pt1 (step SB1), and the second test substrate Pt2 on which the fifth and sixth areas AR5 and AR6 are exposed is formed on the first test substrate Pt2.
  • Developing at a second time Tb different from the time Ta to form a pattern of a photosensitive film in each of the fifth and sixth regions AR5 and AR6 of the second test substrate Pt2 (step SB2).
  • the pattern of the photosensitive film formed in the first area AR1 after the test development is appropriately referred to as a first pattern.
  • the pattern of the photosensitive film formed in each of the second, third, fourth, fifth and sixth regions AR2, AR3, AR4, AR5, AR6 is appropriately changed to the second, third, third, These are called fourth, fifth and sixth patterns.
  • FIG. 16 is a schematic diagram illustrating an example of the first test substrate Pt1
  • FIG. 17 is a schematic diagram illustrating an example of the second test substrate Pt2.
  • the shape of the projection region PR is a rectangle.
  • the first test substrate Pt1 is exposed with the exposure light EL from the mask M irradiated to the projection region PR so that the integrated exposure amount in the projection region PR becomes the first value Ja.
  • the first area AR1 is exposed (step SA1).
  • the integrated exposure amount in the projection area PR becomes the first value Ja while the position of the first test substrate Pt1 with respect to the projection area PR is fixed.
  • Overlap exposure is performed. That is, in the ideal state, the first area AR1 is subjected to overlapping exposure so that the integrated exposure amount in the projection area PR becomes the first value Ja.
  • the exposure light EL from the mask M is irradiated onto the projection region PR so that the exposure amount in the projection region PR becomes 1 / H1 of the first value Ja, and the position of the first test substrate Pt1 is fixed.
  • H1 overlap exposure is executed.
  • the exposure amount in each exposure may be different.
  • the exposure light EL from the mask M is irradiated to the projection region PR so that the exposure amount in the projection region PR becomes the first value Ja, and the exposure is performed only once in a state where the position of the first test substrate Pt1 is fixed. (Single exposure) may be used.
  • the second exposure AR2 of the first test substrate Pt1 is subjected to overlapped exposure in a joint shift state (step SA2).
  • the projection region PR is at each of two different positions with respect to the projection region PR so that the integrated exposure amount at the overlapping portion of the projection region PR becomes the first value Ja.
  • the second area AR2 of the first test substrate Pt1 is subjected to overlapping exposure with the exposure light EL from the mask M irradiated on the surface.
  • the projection area PR is irradiated with the exposure light EL from the mask M so that the exposure amount in the projection area PR is 1 ⁇ 2 of the first value Ja, and is arranged in the projection area PR.
  • the second area AR2 of the first test substrate Pt1 is exposed at each of two different positions with respect to the projection area PR, and is exposed twice.
  • the distance (deviation) between the position of the substrate P relative to the projection region PR in the first exposure and the position of the substrate P relative to the projection region PR in the second exposure is, for example, 2 ⁇ m.
  • the overlap exposure is not limited to two times, and can be executed any number of times three or more.
  • the exposure amount in the projection region PR in one exposure is set to 1 / H2 of the first value Ja.
  • the exposure amount in each exposure may be different.
  • the third area AR3 of the first test substrate Pt1 is exposed with the exposure light EL from the mask M irradiated on the projection area PR so that the integrated exposure amount in the projection area PR becomes the second value Jb (step). SA3).
  • the second value Jb is different from the first value Ja.
  • the second value Jb is, for example, 1.2 times the first value Ja.
  • the integrated exposure amount in the projection area PR becomes the second value Jb in a state where the position of the first test substrate Pt1 with respect to the projection area PR is fixed.
  • Overlap exposure is performed. That is, in the ideal state, the third area AR3 is subjected to overlapping exposure so that the integrated exposure amount in the projection area PR becomes the second value Jb.
  • the exposure light EL from the mask M is irradiated onto the projection region PR so that the exposure amount in the projection region PR becomes 1 / H3 of the second value Jb, and the position of the first test substrate Pt1 is fixed.
  • Overlap exposure is executed H3 times.
  • the exposure amount in each exposure may be different.
  • the exposure light EL from the mask M is irradiated to the projection region PR so that the exposure amount in the projection region PR becomes the second value Jb, and the exposure is performed only once in a state where the position of the first test substrate Pt1 is fixed. (Single exposure) may be used.
  • Overlap exposure is performed in a joint shift state on the fourth area AR4 of the first test substrate Pt1 (step SA4).
  • the projection region PR is at each of two different positions with respect to the projection region PR so that the integrated exposure amount at the overlapping portion of the projection region PR becomes the second value Jb.
  • the fourth area AR4 of the first test substrate Pt1 is subjected to overlapping exposure with the exposure light EL from the mask M irradiated on the surface.
  • the projection area PR is irradiated with the exposure light EL from the mask M so that the exposure amount in the projection area PR is 1 ⁇ 2 of the second value Jb, and is arranged in the projection area PR.
  • the fourth area AR4 of the first test substrate Pt1 is exposed at each of two different positions with respect to the projection area PR, and is exposed twice.
  • the distance (deviation) between the position of the substrate P relative to the projection region PR in the first exposure and the position of the substrate P relative to the projection region PR in the second exposure is, for example, 2 ⁇ m.
  • the overlap exposure is not limited to two times, and can be executed any number of times three or more.
  • the exposure amount in the projection region PR in one exposure is set to 1 / H4 of the first value Ja.
  • the exposure amount in each exposure may be different.
  • the fifth region of the second test substrate Pt2 is exposed with the exposure light EL from the mask M irradiated on the projection region PR so that the integrated exposure amount in the projection region PR becomes the first value Ja. AR5 is exposed (step SA5).
  • the integrated exposure amount in the projection area PR becomes the first value Ja while the position of the second test substrate Pt2 with respect to the projection area PR is fixed.
  • Overlap exposure is performed. That is, in the ideal state, the fifth area AR5 is subjected to overlapping exposure so that the integrated exposure amount in the projection area PR becomes the first value Ja.
  • the exposure light EL from the mask M is irradiated onto the projection region PR so that the exposure amount in the projection region PR becomes 1 / H5 of the first value Ja, and the position of the second test substrate Pt2 is fixed. Overlap exposure is performed H5 times.
  • the exposure amount in each exposure may be different.
  • the exposure light EL from the mask M is irradiated to the projection region PR so that the exposure amount in the projection region PR becomes the first value Ja, and the exposure is performed only once in a state where the position of the first test substrate Pt1 is fixed. (Single exposure) may be used.
  • Overlap exposure is performed on the sixth area AR6 of the second test substrate Pt2 in a joint shift state (step SA6).
  • the projection region PR is at each of two different positions with respect to the projection region PR so that the integrated exposure amount at the overlapping portion of the projection region PR becomes the first value Ja.
  • the sixth area AR6 of the second test substrate Pt2 is subjected to overlapping exposure with the exposure light EL from the mask M irradiated on the surface.
  • the projection area PR is irradiated with the exposure light EL from the mask M so that the exposure amount in the projection area PR is 1 ⁇ 2 of the first value Ja, and is arranged in the projection area PR.
  • the sixth area AR6 of the second test substrate Pt2 is exposed at each of two different positions with respect to the projection area PR, and is exposed twice.
  • the distance (deviation) between the position of the substrate P relative to the projection region PR in the first exposure and the position of the substrate P relative to the projection region PR in the second exposure is, for example, 2 ⁇ m.
  • the overlap exposure is not limited to two times, and can be executed any number of times three or more.
  • the exposure amount in the projection region PR in one exposure is set to 1 / H6 of the first value Ja.
  • the exposure amount in each exposure may be different.
  • the development time of the first test substrate Pt1 is the first time Ta.
  • the development time of the second test substrate Pt2 is the second time Tb.
  • the first time Ta and the second time Tb are different.
  • the second time Tb is 0.8 times the first time Ta.
  • a first pattern of the photosensitive film is formed in the first area AR1, and a second pattern of the photosensitive film is formed in the second area AR2.
  • a third pattern of the photosensitive film is formed in the third area AR3, a fourth pattern of the photosensitive film is formed in the fourth area AR4, and a fifth pattern of the photosensitive film is formed in the fifth area AR5.
  • a sixth pattern of the photosensitive film is formed in the six area AR6.
  • Each of the first to sixth patterns is a line pattern.
  • the dimensions (bottom width) of the first pattern, the second pattern, the third pattern, the fourth pattern, the fifth pattern, and the sixth pattern are measured.
  • the measurement of the dimension (bottom width) of the pattern is performed using a predetermined measuring device such as SEM.
  • the dimension of the first pattern measured by the measuring device is W1.
  • the dimension of the second pattern is W2.
  • the dimension of the third pattern is W3.
  • the dimension of the fourth pattern is W4.
  • the dimension of the fifth pattern is W5.
  • the dimension of the sixth pattern is W6.
  • the optimum integrated exposure dose JOPT and A process for determining the optimum development time TOPT is executed.
  • calculation is performed using the known first value Ja, second value Jb, first time Ta, second time Tb, target dimension WT, and first to sixth pattern dimensions W1 to W6.
  • the optimum integrated exposure amount JOPT and the optimum development time TOPT are determined.
  • FIG. 18 is a diagram in which a part of the contour (outer shape) of the pattern of the photosensitive film formed on the substrate P is modeled.
  • Each line L1, L1 ′, L2, L2 ′, L3, L3 ′, L4, and L4 ′ shown in FIG. 18 (A) models a part of the contour of the pattern of the photosensitive film in contact with the substrate by a linear expression. Is.
  • the horizontal axis represents the half value of the dimension (line width) of the photosensitive film pattern, and the vertical axis represents the height of the photosensitive film pattern.
  • lines L4 and L4 ′ are contours of the photosensitive film that have the same bottom width of the photosensitive film pattern even when the exposure conditions and the development conditions are different, as shown in FIG. 18B. Represents part.
  • the optimum integrated exposure amount JOPT and the optimum development time TOPT that can obtain the line L4 and the line L4 'are obtained by calculation described below.
  • Line L1 represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the ideal state where the integrated exposure amount is Ja and the development time is Ta.
  • a line L1 ' represents the contour of the pattern of the photosensitive film when the exposure and development are performed with Ja as the integrated exposure amount and Ta as the development time in the joint displacement state. That is, the line L1 represents the contour of the pattern of the photosensitive film formed in the first area AR1 shown in FIG. 16, and the line L1 ′ represents the contour of the pattern of the photosensitive film formed in the second area AR2 shown in FIG. Represents.
  • Line L2 represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the ideal state where the integrated exposure amount is Jb and the development time is Ta.
  • a line L2 ' represents the outline of the pattern of the photosensitive film when the exposure and development are performed with the integrated exposure amount being Jb and the development time being Ta in the joint displacement state. That is, the line L2 represents the contour of the pattern of the photosensitive film formed in the third area AR3 shown in FIG. 16, and the line L2 ′ represents the contour of the pattern of the photosensitive film formed in the fourth area AR4 shown in FIG. Represents.
  • the line L2 is represented by the following expression (3A), and the line L2 'is represented by the following expression (4A).
  • A2, b2, a2 ', b2' are proportional to the integrated exposure amount.
  • the expressions (3A) and (4A) can be transformed into the following expressions (3A) and (4A).
  • Line L3 represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the ideal state where the integrated exposure amount is Ja and the development time is Tb.
  • a line L3 ' represents the outline of the pattern of the photosensitive film when the exposure and development are performed with the integrated exposure amount Ja and the development time Tb in the joint shift state. That is, the line L3 represents the outline of the pattern of the photosensitive film formed in the fifth area AR5 shown in FIG. 17, and the line L3 ′ represents the outline of the pattern of the photosensitive film formed in the sixth area AR6 shown in FIG. Represents.
  • the line L4 is represented by the following formula (7A), and the line L4 'is represented by the following formula (8A).
  • the following formula (15A) is derived from the formulas (9A) and (11A), the following formula (16A) is derived from the formulas (10A) and (12A), and the formulas (9A) and (15A) From the equation, the following equation (17A) is derived, from the equations (10A) and (16A), the following equation (18A) is derived, and from the equations (13A) and (15A), the following (19A) The following equation (20A) is derived from the equations (14A) and (16A).
  • a1 h0 ⁇ ⁇ 1- (Jb / Ja) ⁇ / ⁇ (Jb / Ja) ⁇ (W2 / 2-W1 / 2) ⁇
  • a1 ′ h0 ⁇ ⁇ 1- (Jb / Ja) ⁇ / ⁇ (Jb / Ja) ⁇ (W2 ′ / 2 ⁇ W1 ′ / 2) ⁇
  • b1 h0 ⁇ [1- ⁇ 1- (Jb / Ja) ⁇ / ⁇ (Jb / Ja) ⁇ (W2 / 2-W1 / 2) ⁇ ⁇ W1 / 2]
  • b1 ′ h0 ⁇ [1- ⁇ 1- (Jb / Ja) ⁇ / ⁇ (Jb / Ja) ⁇ (W2 ′ / 2 ⁇ W1 ′ / 2) ⁇ W1 ′ / 2 ⁇
  • b3 h0 ⁇ [1- ⁇ 1- (Jb / Ja) ⁇ / ⁇ (Jb
  • hP a1WP / 2 + b1 (21A)
  • hP a1′WP / 2 + b1 ′ (22A)
  • WP 2 ⁇ (b1′ ⁇ b1) / (a1 ⁇ a1 ′) (23A)
  • hP (a1b1′ ⁇ a1′b1) / (a1 ⁇ a1 ′) (24A)
  • hQ a1WQ / 2 + b3 (25A)
  • hQ a1′WQ / 2 + b3 ′ (26A)
  • WQ 2 ⁇ (b3′ ⁇ b3) / (a1 ⁇ a1 ′) (27A)
  • hQ (a1b3′ ⁇ a1′b3) / (a1 ⁇ a1 ′) (28A)
  • Equation (29A) is arranged for hR, the following equation (30A) is derived.
  • Equation (32A) is derived from equations (30A) and (31A).
  • JOPT Ja ⁇ h0 / [(a1b1′ ⁇ a1′b1) / (a1 ⁇ a1 ′) + ⁇ WT / 2 ⁇ (b1′ ⁇ b1) / (a1 ⁇ a1 ′) ⁇ ⁇ (a1b3′ ⁇ a1′b3 -A1b1'-a1'b1) / (b3'-b3-b1 '+ b1) (33A)
  • TOPT Ta + (Tb ⁇ Ta) ⁇ (WT ⁇ WP) / (WQ ⁇ WP) (35A)
  • TOPT Ta + (Tb ⁇ Ta) ⁇ ⁇ (a1 ⁇ a1 ′) ⁇ WT / 2 ⁇ (b1′ ⁇ b1) ⁇ / (b3′ ⁇ b3 ⁇ b1 ′ + b1) (36A)
  • step SP1 for determining the optimum integrated exposure amount JOPT and the optimum development time TOPT using the test substrate Pt (Pt1, Pt2) is completed.
  • a pattern (device pattern) having a uniform and desired dimension is formed on the substrate P by subjecting the substrate P to the main exposure with the determined optimum integrated exposure amount JOPT and performing the main development with the determined optimum development time TOPT.
  • a uniform pattern having a desired dimension can be formed on the substrate P. Therefore, generation
  • the first to fourth patterns are formed on the first test substrate Pt1, and the fifth and sixth patterns are formed on the second test substrate Pt2.
  • Each of the first to sixth patterns may be formed on different first to sixth test substrates.
  • the first and second patterns are formed on the first test substrate, and the third and fourth patterns are the first.
  • the fifth and sixth patterns may be formed on the second test substrate, and the fifth and sixth patterns may be formed on the third test substrate.
  • the photosensitive film is a positive type.
  • a negative type in which a portion not irradiated with the exposure light EL is removed by development may be used.
  • the substrate P is subjected to overlap exposure with a part of the second projection region PR2, and the substrate P is disposed in the first projection region PR1 and the second projection region PR2, so that the first projection region PR1 and the second projection region PR2 are exposed.
  • the case where the exposure light EL is irradiated has been described as an example.
  • the optimum integrated exposure amount JOPT is applied to the dimension of the pattern formed on the substrate P by the exposure light EL applied to the non-overlapping portion A1 of the first projection region PR1 and the non-overlapping portion A2 of the second projection region PR2.
  • the dimension of the pattern formed on the substrate P by the exposed exposure light EL and the dimension of the pattern formed on the substrate P by the exposure light EL irradiated to the overlapping portion B1 between the first projection region PR1 and the second projection region PR2.
  • the integrated exposure amounts in the first projection region PR1 and the second projection region PR2 and the optimum development time TOPT is a development time in which the dimension of the pattern formed on the substrate P is the target value WT. did.
  • the mask M and the substrate P are moved synchronously in a predetermined scanning direction, and the pattern image of the mask M is transferred to the substrate P.
  • the scanning exposure to be projected onto the projection surface relative vibration between the projection optical system and the substrate P (that is, relative vibration between the projection region and the substrate P), and relative vibration between the projection optical system and the mask M (that is, illumination region and mask M).
  • the pattern can be made uniform even when overlapping exposure is caused by the relative vibration of at least one of the relative vibrations in the same manner as in the joint displacement state.
  • the relative vibration means that the relative position between the projection optical system and the substrate P or the mask M is a component different from the intended synchronous movement, and the surface of the substrate P (photosensitive surface) or the surface of the mask M (pattern surface). ) In the direction along).
  • the dimension of the pattern formed on the substrate P by the exposure light EL irradiated to the non-overlapping portion and the exposure light EL irradiated to the overlapping portion has been described.
  • the dimension of the pattern formed on the substrate P exposed in a state of being arranged at the first position with respect to the image plane of the projection optical system PL, and the image plane of the projection optical system PL are determined so that the dimensions of the pattern formed on the substrate P exposed in a state of being arranged at the second position different from the first position can be made substantially coincident.
  • the pattern forming method according to the first embodiment described above is applied to a multi-lens type exposure apparatus having a plurality of projection optical systems PL1 to PL7.
  • the pattern forming method according to the second embodiment can be applied to a so-called single lens type exposure apparatus having one projection optical system PL, and can also be applied to a multi-lens type exposure apparatus.
  • the exposure apparatus EX is a single lens type exposure apparatus having one projection optical system PL, and that the projection optical system PL has one projection region PR.
  • the position of the surface (exposure surface) of the substrate P in the Z-axis direction may change. is there.
  • the image plane of the projection optical system PL is substantially parallel to the XY plane, and the direction perpendicular to the image plane of the projection optical system PL during the exposure of the substrate P (Z-axis direction).
  • the position of the surface of the substrate P is shifted in the direction of inclination (direction ⁇ X, ⁇ Y).
  • the dimension of the pattern formed on the substrate P may be nonuniform.
  • the dimension of the pattern formed on the substrate P and the first position there is a possibility that the dimension of the pattern formed on the substrate P will be different when exposed in a state of being arranged at a different second position.
  • the process includes an exposure condition and a development condition that can prevent the pattern from becoming non-uniform. A case where conditions are determined will be described. An exposure process and a development process for manufacturing a device on the substrate P are executed based on the determined process conditions.
  • the exposure conditions include the integrated exposure amount of the exposure light EL that is irradiated onto the projection area where the substrate P is disposed.
  • the development conditions include the development time of the substrate P irradiated with the exposure light EL (the time during which the developer and the photosensitive film of the substrate P are in contact), the type (physical properties) of the developer to be used, and the like.
  • a predetermined exposure condition that can prevent the pattern from becoming nonuniform is referred to as an optimal integrated exposure amount as appropriate, and the pattern can be suppressed from becoming nonuniform and the pattern can be set to a desired dimension.
  • the predetermined development conditions that can be obtained are appropriately referred to as optimum development time.
  • the predetermined exposure condition includes an integrated exposure amount at which the dimension of the pattern formed on the substrate P becomes uniform.
  • the accumulated exposure amount is determined by the exposure light EL emitted from the projection optical system PL in a state where the surface of the substrate P is disposed at the first position with respect to the image plane of the projection optical system PL. Formed on the substrate P by the exposure light EL emitted from the projection optical system PL in a state where the surface of the substrate P is disposed at the second position with respect to the dimension of the pattern formed on the projection optical system PL.
  • the integrated exposure amount in the projection region PR in which the dimension of the pattern to be substantially matched is included.
  • the predetermined development conditions include a development time in which the dimension of the pattern formed on the substrate P is a target value.
  • FIG. 19 shows exposure in a state where the surface of the substrate P is disposed at each of the first position, the second position, the third position, the fourth position, and the fifth position, which are different from each other with respect to the image plane of the projection optical system PL.
  • the relationship between the pattern of the mask M and the integrated exposure amount on the surface of the substrate P in the case where it is done is shown.
  • the pattern of the mask M is a line and space pattern, and a transmission part (space part) 21 that transmits the exposure light EL from the illumination system IS and a light shielding part (line part) that blocks the exposure light EL from the illumination system IS. ) 22.
  • the horizontal axis indicates the position of the surface of the substrate P
  • the vertical axis indicates the value of the integrated exposure amount in the projection region PR disposed on the surface of the substrate P.
  • the line LF1 indicates the substrate when the exposure light EL is irradiated to the projection region PR in a state where the surface of the substrate P is disposed at the first position with respect to the image plane of the projection optical system PL.
  • An example of the distribution of accumulated exposure on the surface of P is shown.
  • the lines LF2 to LF5 are obtained when the projection region PR is irradiated with the exposure light EL in a state where the surface of the substrate P is disposed at the second to fifth positions with respect to the image plane of the projection optical system PL.
  • An example of the distribution of the integrated exposure amount on the surface of the substrate P is shown.
  • first focus state the state in which the surface of the substrate P is disposed at the first position with respect to the image plane of the projection optical system PL is appropriately referred to as a first focus state.
  • second to fifth focus states the state where the surface of the substrate P is disposed at the second to fifth positions with respect to the image plane of the projection optical system PL will be appropriately referred to as second to fifth focus states, respectively.
  • the first position is a position (best focus position) where the surface of the substrate P coincides with the image plane of the projection optical system PL.
  • the second to fifth positions are positions (defocus positions) where the surface of the substrate P is displaced from the image plane of the projection optical system PL.
  • a state in which the surface of the substrate P coincides with the image plane of the projection optical system PL is referred to as a best focus state as appropriate, and a state in which the surface of the substrate P is displaced from the image plane of the projection optical system PL. This will be referred to as a defocused state as appropriate.
  • the first focus state is the best focus state
  • the first position is the position of the surface of the substrate P in the best focus state.
  • the second to fifth focus states are defocus states
  • the second to fifth positions are the positions of the surface of the substrate P in the defocus state.
  • the second position is a position shifted by 10 ⁇ m with respect to the image plane of the projection optical system PL
  • the third position is shifted by 20 ⁇ m with respect to the image plane of the projection optical system PL.
  • the fourth position is a position shifted by 30 ⁇ m with respect to the image plane of the projection optical system PL
  • the fifth position is a position shifted by 40 ⁇ m with respect to the image plane of the projection optical system PL.
  • the integrated exposure amount in the first focus state, the integrated exposure amount in the second focus state, the integrated exposure amount in the third focus state, the integrated exposure amount in the fourth focus state, and the fifth focus There is a value Jk that matches the integrated exposure amount in the state. That is, by setting the integrated exposure amount in the best focus state to the value Jh, even if the position of the surface of the substrate P changes with respect to the image plane of the projection optical system PL, the integrated exposure amount matches the value Jk.
  • the photosensitive film used for the substrate P when the integrated exposure amount of the exposure light EL is greater than or equal to the value Jk, it is removed by development, and when it is less than the value Jk, it remains on the substrate P even after development (the pattern is changed).
  • the dimensions of the pattern of the photosensitive film formed on the substrate P can be matched in each of the first to fifth focus states.
  • the value Jh of the integrated exposure amount in the best focus state is determined according to the photosensitive characteristic (solubility) of the substrate P (photosensitive film), and the projection region is set so that the integrated exposure amount in the best focus state becomes the value Jh.
  • a pattern (see FIG. 10) having the same dimension Wa is formed on the substrate P in each of the first to fifth focus states, as in the first embodiment.
  • the dimension of the pattern formed on the substrate P by the exposure light EL irradiated in the best focus state and the exposure light EL irradiated in the defocused state is the same. Therefore, it is possible to prevent the pattern formed on the substrate P from becoming non-uniform.
  • FIG. 20 shows distributions of the integrated exposure amounts in the best focus state and the defocus state when the value of the integrated exposure amount in the best focus state is changed.
  • Line LODB indicates the best focus state when the integrated exposure value in the best focus state is Jh1
  • line LODD indicates the defocus state
  • the integrated exposure value in the best focus state is Jh1.
  • the case is shown.
  • Line LBDB indicates the best focus state, and the value of the integrated exposure amount in the best focus state is Jh2, which is different from Jh1, and line LBDD is the defocus state, and indicates the integrated exposure amount in the best focus state. The case where the value is Jh2 is shown.
  • Line LUDB indicates the best focus state, and the value of the integrated exposure amount in the best focus state is Jh3 different from Jh1 and Jh2.
  • Line LUDD is the defocus state, and the integrated exposure in the best focus state. The case where the value of the quantity is Jh3 is shown.
  • the value Jh1 is the integrated exposure amount in the best focus state. It is determined.
  • the value Jh2 is used as the integrated exposure amount in the best focus state. Is determined.
  • the value Jh3 is the integrated exposure amount in the best focus state. It is determined.
  • the integrated exposure amount Jh that can make the pattern dimension uniform on the substrate P is determined according to the photosensitive characteristics of the substrate P.
  • the integrated exposure amount that can suppress the pattern non-uniformity on the substrate P is appropriately referred to as an optimal integrated exposure amount JOPT.
  • the pattern dimension Wa is different from the target dimension WT. That is, in the substrate P, the pattern dimension Wa is uniform, but the dimension Wa is different from the target dimension WT. Therefore, as in the first embodiment described above, in this embodiment as well, by adjusting the development time T, the dimension of the pattern on the substrate P (photosensitive film pattern) is set to the target dimension WT. For example, as described with reference to FIG. 12, in the development process, the contour (outer shape) of the photosensitive film changes isotropically. Therefore, by adjusting the developing time T, the pattern of the photosensitive film having the dimension Wa can be changed to the pattern of the photosensitive film having the dimension WT.
  • optimum development time TOPT the development time during which the dimension Wa of the pattern uniformly formed on the substrate P can be set to the target dimension WT.
  • the optimum integrated exposure amount JOPT corresponding to the predetermined exposure condition and the optimum development time TOPT corresponding to the predetermined development condition have been described.
  • a predetermined exposure condition (optimum integrated exposure amount JOPT) and a predetermined development condition (optimal development time) that can prevent the pattern from becoming non-uniform.
  • TOPT is determined (step SP1), the substrate P is exposed with the determined predetermined exposure condition (optimum integrated exposure amount JOPT), and the substrate is determined with the determined predetermined development condition (optimum development time TOPT).
  • Developing P (step SP2).
  • step SP1 in order to determine a predetermined exposure condition (optimum integrated exposure amount JOPT) and a predetermined development condition (optimum development time TOPT), a process of exposing the substrate and a process of developing the exposed substrate are performed. Executed.
  • step SP2 in order to form a device (device pattern) on the substrate P, a process of exposing the substrate under the determined predetermined exposure conditions and a process of developing the substrate under the determined predetermined development conditions are performed. Executed.
  • the exposure performed in step SP1 is appropriately referred to as test exposure, and the development performed in step SP1 is appropriately performed as test development. Called. Further, the substrate used in step SP1 is appropriately referred to as a test substrate Pt.
  • the exposure executed in step SP2 is appropriately referred to as main exposure, and the development executed in step SP2 is appropriately referred to as main development.
  • step SP1 includes test exposure of the test substrate Pt with the exposure light EL from the mask M irradiated onto the projection area of the projection optical system under different exposure conditions, and different developments. Based on the test development of the test substrate Pt subjected to the test exposure under each of the conditions, and the pattern formed on the test substrate Pt by the test exposure and the test development, the predetermined exposure condition (optimum integrated exposure amount JOPT) and the predetermined Determining development conditions (optimum development time TOPT).
  • the predetermined exposure condition optimum integrated exposure amount JOPT
  • optimum development time TOPT optimum development time TOPT
  • step SP2 the substrate P is exposed with the exposure light EL from the mask M irradiated onto the projection area of the projection optical system under the predetermined exposure condition (optimum integrated exposure amount JOPT) determined in step SP1. And exposing the substrate P subjected to the main exposure under the predetermined development condition (optimum development time TOPT) determined in step SP1.
  • test substrate Pt In the test exposure, the test substrate Pt is exposed.
  • test board Pt As the test board Pt, the first test board Pt1 and the second test board Pt2 are used.
  • the surface of the first area AR1 of the first test substrate Pt1 is set to the first position (for example, the best focus position) with respect to the image plane of the projection optical system PL. And exposing the first area AR1 of the first test substrate Pt1 by the exposure light EL irradiated to the projection area PR so that the integrated exposure amount in the projection area PR of the projection optical system PL becomes the first value Ja.
  • Step SC1 Step SC1 and disposing the surface of the second area AR2 of the first test substrate Pt1 at a second position (for example, a defocus position) different from the first position with respect to the image plane of the projection optical system PL,
  • the second area AR2 of the first test substrate Pt1 is exposed by the exposure light EL irradiated to the projection area PR so that the integrated exposure amount in the projection area PR of the projection optical system PL becomes the first value Ja.
  • Step SC2 the third area AR3 of the first test substrate Pt1 is arranged at the first position with respect to the image plane of the projection optical system PL, and the integrated exposure amount in the projection area PR of the projection optical system PL is Exposing the third area AR3 of the first test substrate Pt1 with the exposure light EL irradiated to the projection area PR of the projection optical system PL so that the second value Jb is different from the first value Ja (step SC3);
  • the fourth area AR4 of the first test substrate Pt1 is arranged at the second position with respect to the image plane of the projection optical system PL so that the integrated exposure amount in the projection area PR of the projection optical system PL becomes the second value Jb.
  • the fourth area AR4 of the first test substrate Pt1 is exposed by the exposure light EL irradiated to the projection area PR of the projection optical system PL (step SC4), and the second image area of the projection optical system PL is second.
  • Test board Pt Exposure light irradiated to the projection region PR of the projection optical system PL so that the integrated exposure amount in the projection region PR of the projection optical system PL becomes the first value Ja.
  • the fifth area AR5 of the second test substrate Pt2 is exposed by EL (step SC5), and the sixth area AR6 of the second test substrate Pt2 is disposed at the second position with respect to the image plane of the projection optical system PL.
  • the sixth area AR6 of the second test substrate Pt2 is exposed by the exposure light EL irradiated to the projection area PR of the projection optical system PL so that the integrated exposure amount in the projection area PR of the projection optical system PL becomes the first value Ja. Exposing (step SC6).
  • the test development is performed by developing the first test substrate Pt1 on which the first to fourth areas AR1 to AR4 are exposed for the first time Ta, A pattern of a photosensitive film is formed on each of the first to fourth areas AR1 to AR4 of the substrate Pt1 (step SB1), and the second test substrate Pt2 on which the fifth and sixth areas AR5 and AR6 are exposed is formed on the second test substrate Pt2. And developing in a second time Tb different from 1 hour Ta to form a pattern of a photosensitive film in each of the fifth and sixth regions AR5 and AR6 of the second test substrate Pt2 (step SB2).
  • the pattern of the photosensitive film formed in the first area AR1 after the test development is appropriately referred to as a first pattern.
  • the pattern of the photosensitive film formed in each of the second, third, fourth, fifth and sixth regions AR2, AR3, AR4, AR5, AR6 is appropriately changed to the second, third, third, These are called fourth, fifth and sixth patterns.
  • FIG. 22 is a schematic diagram illustrating an example of the first test board Pt1
  • FIG. 23 is a schematic diagram illustrating an example of the second test board Pt2.
  • the shape of the projection region PR is a rectangle.
  • the exposure light EL from the mask M irradiated to the projection region PR is set so that the integrated exposure amount in the projection region PR becomes the first value Ja.
  • the first area AR1 of the first test substrate Pt1 is exposed (Step SC1).
  • the second region of the first test substrate Pt1 is exposed by the exposure light EL from the mask M irradiated to the projection region PR so that the integrated exposure amount in the projection region PR becomes the first value Ja. AR2 is exposed (step SC2).
  • the third area AR3 of the first test substrate Pt1 is exposed by the exposure light EL from the mask M irradiated to the projection area PR so that the integrated exposure amount in the projection area PR becomes the second value Jb. Exposure is performed (step SC3).
  • the second value Jb is different from the first value Ja.
  • the second value Jb is, for example, 1.2 times the first value Ja.
  • step SC4 the exposure light from the mask M irradiated to the projection region PR so that the integrated exposure amount in the projection region PR becomes the second value Jb.
  • the fourth area AR4 of the first test substrate Pt1 is exposed by EL (step SC4).
  • the second test substrate is irradiated with the exposure light EL from the mask M irradiated on the projection region PR so that the integrated exposure amount in the projection region PR becomes the first value Ja.
  • the fifth area AR5 of Pt2 is exposed (step SC5).
  • step SC6 the exposure light from the mask M irradiated on the projection region PR so that the integrated exposure amount in the projection region PR becomes the first value Ja.
  • the sixth area AR6 of the second test substrate Pt2 is exposed by EL (step SC6).
  • the development time of the first test substrate Pt1 is the first time Ta.
  • the development time of the second test substrate Pt2 is the second time Tb.
  • the first time Ta and the second time Tb are different.
  • the second time Tb is, for example, 0.8 times the first time Ta.
  • a first pattern of the photosensitive film is formed in the first area AR1, and a second pattern of the photosensitive film is formed in the second area AR2.
  • a third pattern of the photosensitive film is formed in the third area AR3, a fourth pattern of the photosensitive film is formed in the fourth area AR4, and a fifth pattern of the photosensitive film is formed in the fifth area AR5.
  • a sixth pattern of the photosensitive film is formed in the six area AR6.
  • Each of the first to sixth patterns is a line pattern.
  • the dimensions (bottom width) of the first pattern, the second pattern, the third pattern, the fourth pattern, the fifth pattern, and the sixth pattern are measured.
  • the measurement of the dimension (bottom width) of the pattern is performed using a predetermined measuring device such as SEM.
  • the dimension of the first pattern measured by the measuring device is W1.
  • the dimension of the second pattern is W1 '.
  • the dimension of the third pattern is W2.
  • the dimension of the fourth pattern is W2 '.
  • the dimension of the fifth pattern is W3.
  • the dimension of the sixth pattern is W3 '.
  • the optimum integrated exposure dose JOPT and A process for determining the optimum development time TOPT is executed.
  • calculation is performed using the known first value Ja, second value Jb, first time Ta, second time Tb, target dimension WT, and first to sixth pattern dimensions W1 to W6.
  • the optimum integrated exposure amount JOPT and the optimum development time TOPT are determined.
  • lines L4 and L4 ′ are contours of the photosensitive film that have the same bottom width of the photosensitive film pattern even when the exposure conditions and the development conditions are different, as shown in FIG. 18B. Represents part.
  • the optimum integrated exposure amount JOPT and the optimum development time TOPT that can obtain the line L4 and the line L4 'are obtained by calculation described below.
  • Line L1 represents the contour of the pattern of the photosensitive film in the best focus state when the exposure and development are performed with the integrated exposure amount Ja and the development time Ta.
  • a line L1 ' represents the outline of the pattern of the photosensitive film when the exposure and development are performed in the defocus state where the integrated exposure amount is Ja and the development time is Ta. That is, the line L1 represents the contour of the pattern of the photosensitive film formed in the first area AR1 shown in FIG. 22, and the line L1 ′ represents the contour of the pattern of the photosensitive film formed in the second area AR2 shown in FIG. Represents.
  • Line L2 represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the best focus state where the integrated exposure amount is Jb and the development time is Ta.
  • a line L2 ' represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the defocus state where the integrated exposure amount is Jb and the development time is Ta. That is, the line L2 represents the contour of the pattern of the photosensitive film formed in the third area AR3 shown in FIG. 22, and the line L2 ′ represents the contour of the pattern of the photosensitive film formed in the fourth area AR4 shown in FIG. Represents.
  • A2, b2, a2 ', b2' are proportional to the integrated exposure amount.
  • Expressions (3B) and (4B) can be transformed into the following expressions (3B) and (4B).
  • Line L3 represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the best focus state where the integrated exposure amount is Ja and the development time is Tb.
  • a line L3 ' represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the defocus state where the integrated exposure amount is Ja and the development time is Tb. That is, the line L3 represents the outline of the pattern of the photosensitive film formed in the fifth area AR5 shown in FIG. 23, and the line L3 ′ represents the outline of the pattern of the photosensitive film formed in the sixth area AR6 shown in FIG. Represents.
  • the line L3 is represented by the following expression (5B), and the line L3 'is represented by the following expression (6B).
  • 5B the line L3 'is represented by the following expression
  • the following formula (15B) is derived from the formulas (9B) and (11B), and the following formula (16B) is derived from the formulas (10B) and (12B), and the formulas (9B) and (15B) are derived.
  • the following equation (17B) is derived, from the equations (10B) and (16B), the following equation (18B) is derived, and from the equations (13B) and (15B), the following (19B)
  • the following equation (20B) is derived from the equations (14B) and (16B).
  • a1 h0 ⁇ ⁇ 1- (Jb / Ja) ⁇ / ⁇ (Jb / Ja) ⁇ (W2 / 2-W1 / 2) ⁇
  • a1 ′ h0 ⁇ ⁇ 1- (Jb / Ja) ⁇ / ⁇ (Jb / Ja) ⁇ (W2 ′ / 2 ⁇ W1 ′ / 2) ⁇
  • b1 h0 ⁇ [1- ⁇ 1- (Jb / Ja) ⁇ / ⁇ (Jb / Ja) ⁇ (W2 / 2-W1 / 2) ⁇ ⁇ W1 / 2]
  • b1 ′ h0 ⁇ [1- ⁇ 1- (Jb / Ja) ⁇ / ⁇ (Jb / Ja) ⁇ (W2 ′ / 2 ⁇ W1 ′ / 2) ⁇ W1 ′ / 2 ⁇
  • b3 h0 ⁇ [1- ⁇ 1- (Jb / Ja) ⁇ / ⁇ (Jb
  • hP a1WP / 2 + b1 (21B)
  • hP a1′WP / 2 + b1 ′ (22B)
  • WP 2 ⁇ (b1′ ⁇ b1) / (a1 ⁇ a1 ′) (23B)
  • hP (a1b1′ ⁇ a1′b1) / (a1 ⁇ a1 ′) (24B)
  • hQ a1WQ / 2 + b3 (25B)
  • hQ a1′WQ / 2 + b3 ′ (26B)
  • WQ 2 ⁇ (b3′ ⁇ b3) / (a1 ⁇ a1 ′) (27B)
  • hQ (a1b3′ ⁇ a1′b3) / (a1 ⁇ a1 ′) (28B)
  • Equation (32B) is derived from equations (30B) and (31B).
  • JOPT Ja ⁇ h0 / [(a1b1′ ⁇ a1′b1) / (a1 ⁇ a1 ′) + ⁇ WT / 2 ⁇ (b1′ ⁇ b1) / (a1 ⁇ a1 ′) ⁇ ⁇ (a1b3′ ⁇ a1′b3 -A1b1'-a1'b1) / (b3'-b3-b1 '+ b1) (33B)
  • TOPT Ta + (Tb ⁇ Ta) ⁇ (WT ⁇ WP) / (WQ ⁇ WP) (35B)
  • TOPT Ta + (Tb ⁇ Ta) ⁇ ⁇ (a1 ⁇ a1 ′) ⁇ WT / 2 ⁇ (b1′ ⁇ b1) ⁇ / (b3′ ⁇ b3 ⁇ b1 ′ + b1) (36B)
  • step SP1 for determining the optimum integrated exposure amount JOPT and the optimum development time TOPT using the test substrate Pt (Pt1, Pt2) is completed.
  • a pattern (device pattern) having a uniform and desired dimension is formed on the substrate P by subjecting the substrate P to the main exposure with the determined optimum integrated exposure amount JOPT and performing the main development with the determined optimum development time TOPT.
  • a uniform pattern having a desired dimension can be formed on the substrate P. Therefore, generation
  • the first to fourth patterns are formed on the first test substrate Pt1, and the fifth and sixth patterns are formed on the second test substrate Pt2.
  • Each of the first to sixth patterns may be formed on different first to sixth test substrates.
  • the first and second patterns are formed on the first test substrate, and the third and fourth patterns are the second.
  • the fifth and sixth patterns may be formed on the test substrate, and the fifth and sixth patterns may be formed on the third test substrate.
  • the inventors of the present invention have conducted extensive research, and as a result, the value Jk and the L & S ratio of the mask pattern (the line width of the line part (line pattern) and the line width and ratio of the space part (space pattern)) It was found that there is a relationship as shown below.
  • FIG. 25 is a diagram in which changes in the accumulated exposure amount shown in FIGS. 24-1, 24-3, and 24-4 are superimposed and displayed.
  • the bottom width D does not change greatly, but the value Jk changes greatly.
  • the value Jk increases. Therefore, it can be seen that when the line width of the line pattern is reduced with the pitch fixed, the same effect as that obtained when the integrated exposure amount is increased can be obtained.
  • the value Jk increases as the light intensity increases.
  • FIG. 27 shows a state in which the integrated exposure values Jk1, Jk3, and Jk4 shown in FIGS. 24-1, 24-3, and 24-4 are matched by changing the light intensity. As shown in FIG. 27, it can be seen that the values Jk1, Jk3, and Jk4 match.
  • the integrated exposure amount changes by changing the L & S ratio of the mask pattern without changing the pitch. It can be seen that the same effect as obtained can be obtained. Accordingly, when the calculated optimum integrated exposure amount JOPT is very large or when it is expected that a large integrated exposure amount is required before the test exposure is performed due to the sensitivity of the photosensitive film, the L & S of the mask pattern is performed. It is preferable to increase the value Jk by changing the ratio and suppress the nonuniformity of the pattern formed on the substrate without increasing the integrated exposure amount.
  • FIG. 28 is a flowchart illustrating an example of a pattern forming method according to the third embodiment.
  • an optimum integrated exposure amount JOPT for a pattern is calculated by performing test exposure and test development in the same manner as the pattern forming method according to the first and second embodiments (step SP11).
  • it is determined whether or not the calculated optimum integrated exposure amount JOPT is within a predetermined range is determined whether or not the calculated optimum integrated exposure amount JOPT is within a predetermined range (step SP12).
  • step SP13 when the optimum integrated exposure amount JOPT is within a predetermined range, the main exposure and the main development are performed in the same manner as the pattern forming method according to the first and second embodiments (step SP13).
  • a mask pattern with a changed L & S ratio is prepared (SP14). Specifically, when the optimum integrated exposure amount JOPT is greater than or equal to a predetermined range, another mask pattern having the same pitch as the mask pattern used in step SP11 and having a smaller line width is used. prepare. Then, step SP11 is performed again using another prepared mask pattern, and the optimum exposure amount JOPT for the other mask pattern is calculated. If it is anticipated that a large integrated exposure amount will be required before the test exposure is performed due to the sensitivity of the photosensitive film, the process may be started from step SP14 described above.
  • the pattern forming method of the third embodiment of the present invention another mask pattern in which the L & S ratio is changed based on the magnitude of the optimum integrated exposure amount JOPT is prepared and prepared. Since the test exposure, test development, main exposure, and main development are performed using the different mask patterns, the non-uniformity of the pattern formed on the substrate can be suppressed without increasing the exposure amount.
  • the photosensitive film is a positive type.
  • a negative type in which a portion not irradiated with the exposure light EL is removed by development may be used.
  • the substrate P in the first and second embodiments described above is not only a glass substrate for display devices, but also a semiconductor wafer for manufacturing semiconductor devices, a ceramic wafer for thin film magnetic heads, or a mask used in an exposure apparatus. Alternatively, a reticle original (synthetic quartz, silicon wafer) or the like is applied.
  • a step-and-scan type scanning exposure apparatus that scans and exposes the substrate P with the exposure light EL through the pattern of the mask M by moving the mask M and the substrate P synchronously.
  • the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and is applied to a step-and-repeat type projection exposure apparatus (stepper) that sequentially moves the substrate P stepwise.
  • the present invention relates to a twin stage type exposure having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796 and the like. It can also be applied to devices.
  • the present invention relates to a substrate stage for holding a substrate as disclosed in US Pat. No. 6,897,963 and European Patent Application No. 1713113, and a reference mark without holding the substrate.
  • the present invention can also be applied to an exposure apparatus that includes a formed reference member and / or a measurement stage on which various photoelectric sensors are mounted.
  • An exposure apparatus including a plurality of substrate stages and measurement stages can be employed.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a liquid crystal display element or a display, but an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P, a thin film magnetic head, an image sensor (CCD)
  • the present invention can be widely applied to an exposure apparatus for manufacturing a micromachine, MEMS, DNA chip, reticle, mask, or the like.
  • the position information of each stage is measured using an interferometer system including a laser interferometer.
  • an interferometer system including a laser interferometer.
  • the present invention is not limited to this.
  • a scale diffiffraction grating provided in each stage You may use the encoder system which detects this.
  • a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • a variable shaped mask also called an electronic mask, an active mask, or an image generator
  • a pattern forming apparatus including a self-luminous image display element may be provided instead of the variable molding mask including the non-luminous image display element.
  • the exposure apparatus EX of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. After the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus is preferably manufactured in a clean room in which the temperature and cleanliness are controlled.
  • a microdevice such as a semiconductor device includes a step 201 for designing a function / performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, and a substrate which is a base material of the device.
  • the substrate processing includes exposing the substrate with the exposure light from the mask to project an image of the pattern onto the substrate and developing the exposed substrate (photosensitive film) according to the above-described embodiment.
  • the substrate is manufactured through a substrate processing step 204 including an exposure process, a device assembly step (including processing processes such as a dicing process, a bonding process, and a package process) 205, an inspection step 206, and the like.
  • Step 204 includes developing the photosensitive film to form an exposure pattern layer (development of the developed photosensitive film) corresponding to the mask pattern, and processing the substrate through the exposure pattern layer. It is. For example, processing the substrate includes etching the developed substrate.
  • the present invention has been described as being applied to an exposure apparatus.
  • the present invention is not limited to an exposure apparatus, and for example, a plurality of processing regions provided on a substrate P are sequentially used with a microscope or the like.
  • the present invention can also be applied to an inspection apparatus that observes and inspects.
  • a pattern forming method capable of suppressing nonuniformity of a pattern formed on a substrate while keeping an exposure amount within a predetermined range, and a device manufacturing method for manufacturing a device using the pattern forming method Can be provided.

Abstract

A pattern formation method in which a photosensitive substrate is illuminated by exposure light from projection optics via a master pattern that has lines and spaces, thereby forming a pattern on said substrate. Said method includes: determining whether or not the cumulative exposure amount needed in a projection region of the projection optics in order to form the aforementioned pattern on the aforementioned substrate falls within a prescribed range; changing the master pattern to a different master pattern that has the same pitch between lines and spaces but a different ratio of line width to space width if the aforementioned cumulative exposure amount does not fall within the prescribed range; using said different master pattern to determine exposure conditions and development conditions; exposing the substrate by means of exposure light shone on the aforementioned projection region under the determined exposure conditions; and developing the substrate under the determined development conditions.

Description

パターン形成方法及びデバイス製造方法Pattern forming method and device manufacturing method
 本発明は、パターン形成方法及びデバイス製造方法に関する。 The present invention relates to a pattern forming method and a device manufacturing method.
 フラットパネルディスプレイなどの電子デバイスの製造工程において、例えば下記特許文献に開示されているような、投影光学系からの露光光で感光性の基板に露光光を照射して、その基板にパターンの像を形成する露光装置が使用される。 In the manufacturing process of an electronic device such as a flat panel display, for example, as disclosed in the following patent document, a photosensitive substrate is irradiated with exposure light with exposure light from a projection optical system, and a pattern image is formed on the substrate. Is used.
特開2003-151880号公報JP 2003-151880 A
 露光装置において、投影光学系の像面に対して基板の表面(露光面)が所定の位置に配置されない状態でその基板の露光が実行された場合、例えば基板に形成されるパターンの寸法が目標値に対してずれてしまうなど、基板に形成されるパターンが不均一になる可能性がある。その結果、不良デバイスが発生する可能性がある。 In the exposure apparatus, when the exposure of the substrate is performed in a state where the surface (exposure surface) of the substrate is not arranged at a predetermined position with respect to the image plane of the projection optical system, for example, the dimension of the pattern formed on the substrate is the target. There is a possibility that the pattern formed on the substrate becomes non-uniform, such as deviation from the value. As a result, a defective device may occur.
 本発明の態様は、上記課題に鑑みてなされたものであって、その目的は、露光量を所定範囲内に保ちつつ基板に形成されるパターンの不均一性を抑制できるパターン形成方法、及びこのパターン形成方法を利用してデバイスを製造するデバイス製造方法を提供することにある。 An aspect of the present invention has been made in view of the above-described problems, and the object thereof is a pattern forming method capable of suppressing nonuniformity of a pattern formed on a substrate while maintaining an exposure amount within a predetermined range, and this An object of the present invention is to provide a device manufacturing method for manufacturing a device using a pattern forming method.
 本発明の第1の態様に係るパターン形成方法は、ライン部とスペース部とを有するマスクパターンを介して投影光学系からの露光光を感光性の基板に照射することにより該基板にパターンを形成するパターン形成方法であって、前記基板に前記パターンを形成するために必要な投影光学系の投影領域における積算露光量が所定範囲内にあるか否かを判別することと、前記積算露光量が所定範囲内にない場合、前記マスクパターンを、ライン部とスペース部とのピッチが同じであって、且つ、ライン部の線幅とスペース部の線幅との割合が異なる別のマスクパターンに変更することと、前記別のマスクパターンを用いて露光条件及び現像条件を決定することと、前記露光条件で前記投影領域に照射された露光光により前記基板を露光することと、前記現像条件で前記基板を現像することと、を含む。 The pattern forming method according to the first aspect of the present invention forms a pattern on a photosensitive substrate by irradiating the photosensitive substrate with exposure light from a projection optical system through a mask pattern having a line portion and a space portion. A pattern forming method for determining whether or not an integrated exposure amount in a projection region of a projection optical system necessary for forming the pattern on the substrate is within a predetermined range; and If not within the predetermined range, the mask pattern is changed to another mask pattern in which the pitch of the line portion and the space portion is the same, and the ratio of the line width of the line portion to the line width of the space portion is different. Determining exposure conditions and development conditions using the different mask pattern, and exposing the substrate with exposure light applied to the projection area under the exposure conditions Includes, and developing the substrate in the developing condition.
 本発明の第2の態様に係るデバイス製造方法は、本発明の第1の態様に係るパターン形成方法を用いて基板にパターンを形成することと、パターンが形成された基板を加工することと、を含む。 The device manufacturing method according to the second aspect of the present invention includes forming a pattern on the substrate using the pattern forming method according to the first aspect of the present invention, processing the substrate on which the pattern is formed, including.
 本発明の態様によれば、露光量を所定範囲内に保ちつつ基板に形成されるパターンの不均一性を抑制できるパターン形成方法、及びこのパターン形成方法を利用してデバイスを製造するデバイス製造方法を提供することができる。 According to an aspect of the present invention, a pattern forming method capable of suppressing nonuniformity of a pattern formed on a substrate while keeping an exposure amount within a predetermined range, and a device manufacturing method for manufacturing a device using the pattern forming method Can be provided.
図1は、第1実施形態に係る露光装置の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of an exposure apparatus according to the first embodiment. 図2は、第1実施形態に係る投影領域と基板との関係を示す図である。FIG. 2 is a diagram illustrating a relationship between the projection region and the substrate according to the first embodiment. 図3は、第1実施形態に係る第1投影領域と第2投影領域との位置関係の一例を示す模式図である。FIG. 3 is a schematic diagram illustrating an example of a positional relationship between the first projection area and the second projection area according to the first embodiment. 図4は、第1実施形態に係る第1投影領域と第2投影領域との位置関係の一例を示す模式図である。FIG. 4 is a schematic diagram illustrating an example of a positional relationship between the first projection area and the second projection area according to the first embodiment. 図5は、第1実施形態に係るマスクのパターンと積算露光量との関係の一例を示す模式図である。FIG. 5 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment. 図6は、第1実施形態に係るマスクのパターンと積算露光量との関係の一例を示す模式図である。FIG. 6 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment. 図7は、第1実施形態に係るマスクのパターンと積算露光量との関係の一例を示す模式図である。FIG. 7 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment. 図8は、第1実施形態に係るマスクのパターンと積算露光量との関係の一例を示す模式図である。FIG. 8 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment. 図9は、第1実施形態に係るマスクのパターンと積算露光量との関係の一例を示す模式図である。FIG. 9 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment. 図10は、第1実施形態に係る感光膜のパターンの一例を示す模式図である。FIG. 10 is a schematic diagram showing an example of a pattern of the photosensitive film according to the first embodiment. 図11は、第1実施形態に係るマスクのパターンと積算露光量との関係の一例を示す模式図である。FIG. 11 is a schematic diagram illustrating an example of the relationship between the mask pattern and the integrated exposure amount according to the first embodiment. 図12は、第1実施形態に係る現像により感光膜の寸法が変化する状態を説明するための模式図である。FIG. 12 is a schematic diagram for explaining a state in which the dimension of the photosensitive film changes due to the development according to the first embodiment. 図13は、第1実施形態に係るパターン形成方法の一例を示すフローチャートである。FIG. 13 is a flowchart illustrating an example of a pattern forming method according to the first embodiment. 図14は、第1実施形態に係るパターン形成方法の一例を示すフローチャートである。FIG. 14 is a flowchart illustrating an example of a pattern forming method according to the first embodiment. 図15は、第1実施形態に係るパターン形成方法の一例を示すフローチャートである。FIG. 15 is a flowchart illustrating an example of a pattern forming method according to the first embodiment. 図16は、第1実施形態に係る所定の露光条件及び所定の現像条件を決定するための手順の一例を説明するための模式図である。FIG. 16 is a schematic diagram for explaining an example of a procedure for determining a predetermined exposure condition and a predetermined development condition according to the first embodiment. 図17は、第1実施形態に係る所定の露光条件及び所定の現像条件を決定するための手順の一例を説明するための模式図である。FIG. 17 is a schematic diagram for explaining an example of a procedure for determining a predetermined exposure condition and a predetermined development condition according to the first embodiment. 図18は、第1実施形態に係る所定の露光条件及び所定の現像条件を決定するための手順の一例を説明するための模式図である。FIG. 18 is a schematic diagram for explaining an example of a procedure for determining a predetermined exposure condition and a predetermined development condition according to the first embodiment. 図19は、第2実施形態に係るマスクのパターンと積算露光量との関係の一例を示す模式図である。FIG. 19 is a schematic diagram illustrating an example of a relationship between a mask pattern and an integrated exposure amount according to the second embodiment. 図20は、第2実施形態に係るマスクのパターンと積算路光量との関係の一例を示す模式図である。FIG. 20 is a schematic diagram illustrating an example of the relationship between the mask pattern and the accumulated path light amount according to the second embodiment. 図21は、第2実施形態に係るパターン形成方法の一例を示すフローチャートである。FIG. 21 is a flowchart illustrating an example of a pattern forming method according to the second embodiment. 図22は、第2実施形態に係る所定の露光条件及び所定の現像条件を決定するための手順の一例を説明するための模式図である。FIG. 22 is a schematic diagram for explaining an example of a procedure for determining a predetermined exposure condition and a predetermined development condition according to the second embodiment. 図23は、第2実施形態に係る所定の露光条件及び所定の現像条件を決定するための手順の一例を説明するための模式図である。FIG. 23 is a schematic diagram for explaining an example of a procedure for determining a predetermined exposure condition and a predetermined development condition according to the second embodiment. 図24-1は、ラインパターン及びスペースパターンの線幅をそれぞれ4.0[μm]及び2.0[μm]としたときのデフォーカス量の変化に伴う積算露光量の変化を示す図である。FIG. 24A is a diagram illustrating a change in the integrated exposure amount accompanying a change in the defocus amount when the line widths of the line pattern and the space pattern are 4.0 [μm] and 2.0 [μm], respectively. . 図24-2は、ラインパターン及びスペースパターンの線幅をそれぞれ3.7[μm]及び2.3[μm]としたときのデフォーカス量の変化に伴う積算露光量の変化を示す図である。FIG. 24-2 is a diagram showing a change in the integrated exposure amount accompanying a change in the defocus amount when the line widths of the line pattern and the space pattern are 3.7 [μm] and 2.3 [μm], respectively. . 図24-3は、ラインパターン及びスペースパターンの線幅をそれぞれ3.5[μm]及び2.5[μm]としたときのデフォーカス量の変化に伴う積算露光量の変化を示す図である。FIG. 24C is a diagram illustrating a change in the integrated exposure amount accompanying a change in the defocus amount when the line widths of the line pattern and the space pattern are 3.5 [μm] and 2.5 [μm], respectively. . 図24-4は、ラインパターン及びスペースパターンの線幅を共に3.0[μm]としたときのデフォーカス量の変化に伴う積算露光量の変化を示す図である。FIG. 24-4 is a diagram illustrating a change in the integrated exposure amount accompanying a change in the defocus amount when the line widths of the line pattern and the space pattern are both set to 3.0 [μm]. 図25は、図24-1,図24-3,及び図24-4に示す積算露光量の変化を重ねて表示した図である。FIG. 25 is a diagram in which changes in the accumulated exposure amount shown in FIGS. 24-1, 24-3, and 24-4 are displayed in an overlapping manner. 図26は、光強度の変化に伴う図24-1に示す積算露光量の変化を示す図である。FIG. 26 is a diagram showing a change in the integrated exposure amount shown in FIG. 24-1 accompanying a change in light intensity. 図27は、光強度の変化に伴う図24-1,24-3,24-4に示す積算露光量の変化を示す図である。FIG. 27 is a diagram showing a change in the integrated exposure amount shown in FIGS. 24-1, 24-3, and 24-4 accompanying a change in light intensity. 図28は、第3実施形態に係るパターン形成方法の一例を示すフローチャートである。FIG. 28 is a flowchart illustrating an example of a pattern forming method according to the third embodiment. 図29は、本実施形態に係るデバイス製造方法の一例を示すフローチャートである。FIG. 29 is a flowchart illustrating an example of a device manufacturing method according to the present embodiment.
 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。水平面内の所定方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれと直交する方向(すなわち鉛直方向)をZ軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. In the following description, an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be described with reference to this XYZ orthogonal coordinate system. A predetermined direction in the horizontal plane is defined as an X-axis direction, a direction orthogonal to the X-axis direction in the horizontal plane is defined as a Y-axis direction, and a direction orthogonal to each of the X-axis direction and the Y-axis direction (that is, a vertical direction) is defined as a Z-axis direction. Further, the rotation (inclination) directions around the X axis, Y axis, and Z axis are the θX, θY, and θZ directions, respectively.
〔第1実施形態〕
 第1実施形態について説明する。図1は、第1実施形態に係る露光装置EXの一例を概略的に示す斜視図である。図1において、露光装置EXは、マスクMを保持して移動可能なマスクステージ1と、基板Pを保持して移動可能な基板ステージ2と、マスクステージ1及び基板ステージ2の位置を計測する干渉計システム3と、マスクMを露光光ELで照明する照明システムISと、露光光ELで照明されたマスクMのパターンの像を基板Pに投影する投影システムPSと、露光装置EX全体の動作を制御する制御装置4とを備えている。
[First Embodiment]
A first embodiment will be described. FIG. 1 is a perspective view schematically showing an example of an exposure apparatus EX according to the first embodiment. In FIG. 1, the exposure apparatus EX includes a mask stage 1 that is movable while holding a mask M, a substrate stage 2 that is movable while holding a substrate P, and interference that measures the positions of the mask stage 1 and the substrate stage 2. The operation of the measuring system 3, the illumination system IS for illuminating the mask M with the exposure light EL, the projection system PS for projecting the pattern image of the mask M illuminated with the exposure light EL onto the substrate P, and the operation of the exposure apparatus EX as a whole. And a control device 4 for controlling.
 マスクMは、基板Pに投影されるデバイスパターンが形成されたレチクルを含む。基板Pは、感光性の基板であって、例えばガラスプレートなどの基材と、その基材上に形成された感光膜(塗布された感光材)とを含む。本実施形態において、基板Pは、大型のガラスプレートを含み、その基板Pの一辺のサイズは、例えば500mm以上である。本実施形態においては、基板Pの基材として、一辺が約3000mmの矩形のガラスプレートを用いる。 The mask M includes a reticle on which a device pattern projected onto the substrate P is formed. The substrate P is a photosensitive substrate and includes, for example, a base material such as a glass plate and a photosensitive film (coated photosensitive material) formed on the base material. In the present embodiment, the substrate P includes a large glass plate, and the size of one side of the substrate P is, for example, 500 mm or more. In the present embodiment, a rectangular glass plate having a side of about 3000 mm is used as the base material of the substrate P.
 本実施形態において、投影システムPSは、複数の投影光学系を有する。照明システムISは、複数の投影光学系に対応する複数の照明モジュールを有する。また、本実施形態の露光装置EXは、マスクMと基板Pとを所定の走査方向に同期移動しながら、マスクMのパターンの像を基板Pに投影する。すなわち、本実施形態の露光装置EXは、所謂、マルチレンズ型スキャン露光装置である。 In the present embodiment, the projection system PS has a plurality of projection optical systems. The illumination system IS has a plurality of illumination modules corresponding to a plurality of projection optical systems. Further, the exposure apparatus EX of the present embodiment projects an image of the pattern of the mask M onto the substrate P while moving the mask M and the substrate P synchronously in a predetermined scanning direction. That is, the exposure apparatus EX of the present embodiment is a so-called multi-lens scan exposure apparatus.
 本実施形態において、投影システムPSは、7つの投影光学系PL1~PL7を有し、照明システムISは、7つの照明モジュールIL1~IL7を有する。なお、投影光学系及び照明モジュールの数は7つに限定されず、例えば投影システムPSが、投影光学系を11個有し、照明システムISが、照明モジュールを11個有してもよい。 In the present embodiment, the projection system PS has seven projection optical systems PL1 to PL7, and the illumination system IS has seven illumination modules IL1 to IL7. The number of projection optical systems and illumination modules is not limited to seven. For example, the projection system PS may have 11 projection optical systems, and the illumination system IS may have 11 illumination modules.
 以下の説明において、投影光学系PL1~PL7のそれぞれを適宜、第1~第7投影光学系PL1~PL7、と称し、照明モジュールIL1~IL7のそれぞれを適宜、第1~第7照明モジュールIL1~IL7、と称する。 In the following description, the projection optical systems PL1 to PL7 are appropriately referred to as first to seventh projection optical systems PL1 to PL7, respectively, and the illumination modules IL1 to IL7 are appropriately referred to as first to seventh illumination modules IL1 to IL7. Called IL7.
 照明システムISは、異なる7つの照明領域IR1~IR7のそれぞれに露光光ELを照射可能である。照明領域IR1~IR7は、第1~第7照明モジュールIL1~IL7から射出される露光光ELが照射される照射領域に相当する。以下の説明において、照明領域IR1~IR7を適宜、第1~第7照明領域IR1~IR7、と称する。 The illumination system IS can irradiate the exposure light EL to each of the seven different illumination areas IR1 to IR7. The illumination areas IR1 to IR7 correspond to irradiation areas irradiated with the exposure light EL emitted from the first to seventh illumination modules IL1 to IL7. In the following description, the illumination areas IR1 to IR7 are appropriately referred to as first to seventh illumination areas IR1 to IR7.
 照明システムISは、第1~第7照明領域IR1~IR7のそれぞれを露光光ELで照明する。照明システムISは、第1~第7照明領域IR1~IR7に配置されたマスクMの一部を、均一な照度分布の露光光ELで照明する。本実施形態においては、照明システムISから射出される露光光ELとして、水銀ランプ5から射出される輝線(g線、h線、i線)を用いる。 The illumination system IS illuminates each of the first to seventh illumination areas IR1 to IR7 with the exposure light EL. The illumination system IS illuminates a part of the mask M arranged in the first to seventh illumination regions IR1 to IR7 with the exposure light EL having a uniform illuminance distribution. In the present embodiment, bright lines (g line, h line, i line) emitted from the mercury lamp 5 are used as the exposure light EL emitted from the illumination system IS.
 本実施形態において、照明システムISは、水銀ランプ5から射出された光を反射する楕円鏡6と、楕円鏡6からの光の少なくとも一部を反射するダイクロイックミラー7と、ダイクロイックミラー7からの光が入射するコリメートレンズ及び集光レンズを含むリレー光学系8と、リレー光学系8からの光を分岐して、第1~第7照明モジュールIL1~IL7のそれぞれに供給するライトガイドユニット9とを備えている。 In the present embodiment, the illumination system IS includes an elliptic mirror 6 that reflects light emitted from the mercury lamp 5, a dichroic mirror 7 that reflects at least part of the light from the elliptic mirror 6, and light from the dichroic mirror 7. Includes a relay optical system 8 including a collimating lens and a condenser lens, and a light guide unit 9 that branches the light from the relay optical system 8 and supplies the light to each of the first to seventh illumination modules IL1 to IL7. I have.
 第1~第7照明モジュールIL1~IL7のそれぞれは、ライトガイドユニット9からの光が供給されるコリメートレンズ、コリメートレンズからの光が供給されるフライアイインテグレータ、及びフライアイインテグレータからの光が供給されるコンデンサレンズを備えている。第1~第7照明モジュールIL1~IL7それぞれのコンデンサレンズから射出された露光光ELは、第1~第7照明領域IR1~IR7に照射される。第1~第7照明モジュールIL1~IL7のそれぞれは、第1~第7照明領域IR1~IR7を均一な照度分布の露光光ELで照明する。照明システムISは、第1~第7照明領域IR1~IR7に配置されたマスクMの少なくとも一部を均一な照度分布の露光光ELで照明する。 Each of the first to seventh illumination modules IL1 to IL7 is supplied with a collimator lens to which light from the light guide unit 9 is supplied, a fly eye integrator to which light from the collimator lens is supplied, and light from the fly eye integrator. Equipped with a condenser lens. The exposure light EL emitted from the condenser lenses of the first to seventh illumination modules IL1 to IL7 is applied to the first to seventh illumination regions IR1 to IR7. Each of the first to seventh illumination modules IL1 to IL7 illuminates the first to seventh illumination regions IR1 to IR7 with the exposure light EL having a uniform illuminance distribution. The illumination system IS illuminates at least a part of the mask M arranged in the first to seventh illumination regions IR1 to IR7 with the exposure light EL having a uniform illuminance distribution.
 マスクステージ1は、マスクMを保持可能なマスク保持部10を有し、マスクMを保持した状態で、第1~第7照明領域IR1~IR7に対して移動可能である。本実施形態において、マスク保持部10は、マスクMの下面(パターン形成面)とXY平面とがほぼ平行となるように、マスクMを保持する。マスクステージ1は、例えばリニアモータなどを含む駆動システムの駆動力によって移動可能である。本実施形態において、マスクステージ1は、駆動システムにより、マスク保持部10でマスクMを保持した状態で、X軸、Y軸、及びθZ方向の3つの方向に移動可能である。 The mask stage 1 has a mask holding unit 10 that can hold the mask M, and can move relative to the first to seventh illumination regions IR1 to IR7 while holding the mask M. In the present embodiment, the mask holding unit 10 holds the mask M so that the lower surface (pattern forming surface) of the mask M and the XY plane are substantially parallel. The mask stage 1 is movable by a driving force of a driving system including a linear motor, for example. In the present embodiment, the mask stage 1 can be moved in three directions of the X axis, the Y axis, and the θZ direction while the mask M is held by the mask holding unit 10 by the driving system.
 投影システムPSは、異なる7つの投影領域PR1~PR7に露光光ELを照射可能である。投影領域PR1~PR7は、第1~第7投影光学系PL1~PL7から射出される露光光ELが照射される照射領域に相当する。以下の説明において、投影領域PR1~PR7を適宜、第1~第7投影領域PR1~PR7、と称する。 Projection system PS can irradiate exposure light EL to seven different projection areas PR1 to PR7. The projection areas PR1 to PR7 correspond to irradiation areas irradiated with the exposure light EL emitted from the first to seventh projection optical systems PL1 to PL7. In the following description, the projection areas PR1 to PR7 are appropriately referred to as first to seventh projection areas PR1 to PR7.
 投影システムPSは、第1~第7投影領域PR1~PR7のそれぞれに、マスクMのパターンの像を投影する。投影システムPSは、第1~第7投影領域PR1~PR7に配置された基板Pの一部に、マスクMのパターンの像を所定の投影倍率で投影する。 The projection system PS projects an image of the pattern of the mask M on each of the first to seventh projection areas PR1 to PR7. The projection system PS projects an image of the pattern of the mask M on the part of the substrate P arranged in the first to seventh projection regions PR1 to PR7 with a predetermined projection magnification.
 本実施形態において、第1~第7投影光学系PL1~PL7のそれぞれは、例えば特許第4211272号に開示されているような、シフト調整機構、スケーリング調整機構、及び像面調整機構などを含む結像特性調整装置を有する。制御装置4は、第1~第7投影光学系PL1~PL7のそれぞれが有する結像特性調整装置を制御して、第1~第7投影領域PR1~PR7それぞれの位置及び大きさなどを調整することができる。 In the present embodiment, each of the first to seventh projection optical systems PL1 to PL7 includes a shift adjustment mechanism, a scaling adjustment mechanism, an image plane adjustment mechanism, and the like as disclosed in, for example, Japanese Patent No. 4211272. An image characteristic adjusting device is included. The control device 4 controls the image formation characteristic adjusting devices included in the first to seventh projection optical systems PL1 to PL7 to adjust the positions and sizes of the first to seventh projection regions PR1 to PR7. be able to.
 基板ステージ2は、基板Pを保持可能な基板保持部11を有し、基板Pを保持した状態で、第1~第7投影領域PR1~PR7に対して移動可能である。本実施形態において、基板保持部11は、基板Pの表面(露光面)とXY平面とがほぼ平行となるように、基板Pを保持する。基板ステージ2は、例えばリニアモータなどを含む駆動システムの駆動力によって移動可能である。本実施形態において、基板ステージ2は、駆動システムの作動により、基板保持部11で基板Pを保持した状態で、X軸、Y軸、Z軸、θX、θY、及びθZ方向の6つの方向に移動可能である。 The substrate stage 2 includes a substrate holder 11 that can hold the substrate P, and is movable relative to the first to seventh projection regions PR1 to PR7 while holding the substrate P. In the present embodiment, the substrate holding unit 11 holds the substrate P so that the surface (exposure surface) of the substrate P and the XY plane are substantially parallel. The substrate stage 2 is movable by a driving force of a driving system including a linear motor, for example. In the present embodiment, the substrate stage 2 is moved in six directions including the X axis, the Y axis, the Z axis, the θX, the θY, and the θZ directions in a state where the substrate P is held by the substrate holding unit 11 by the operation of the drive system. It is movable.
 干渉計システム3は、XY平面内におけるマスクステージ1(マスクM)の位置を光学的に計測可能な第1干渉計ユニット3Aと、XY平面内における基板ステージ2(基板P)の位置を光学的に計測可能な第2干渉計ユニット3Bとを有する。基板Pの露光処理を実行するとき、あるいは所定の計測処理を実行するとき、制御装置4は、干渉計システム3の計測結果に基づいて、マスクステージ1(マスクM)及び基板ステージ2(基板P)の位置制御を実行する。 The interferometer system 3 optically measures the position of the first interferometer unit 3A capable of optically measuring the position of the mask stage 1 (mask M) in the XY plane and the position of the substrate stage 2 (substrate P) in the XY plane. And a second interferometer unit 3B capable of measuring. When executing the exposure process of the substrate P or when executing a predetermined measurement process, the control device 4 determines the mask stage 1 (mask M) and the substrate stage 2 (substrate P) based on the measurement result of the interferometer system 3. ) Position control is executed.
 上述のように、本実施形態の露光装置EXは、マスクMと基板Pとを所定の走査方向に同期移動しながら、マスクMのパターンの像を基板Pに投影する露光装置(マルチレンズ型スキャン露光装置)である。基板Pの露光時、制御装置4は、マスクステージ1及び基板ステージ2を制御して、マスクM及び基板Pを、XY平面内の所定の走査方向に移動する。本実施形態においては、基板Pの走査方向(同期移動方向)をX軸方向とし、マスクMの走査方向(同期移動方向)もX軸方向とする。制御装置4は、基板Pを投影システムPSの第1~第7投影領域PR1~PR7に対してX軸方向に移動するとともに、その基板PのX軸方向への移動と同期して、照明システムISの第1~第7照明領域IR1~IR7に対してマスクMをX軸方向に移動しつつ、照明システムISによりマスクMを露光光ELで照明し、投影システムPSを介して、マスクMからの露光光ELを基板Pに照射する。これにより、第1~第7投影光学系PL1~PL7の第1~第7投影領域PR1~PR7に照射されたマスクMからの露光光ELで基板Pが露光され、マスクMのパターンの像が基板Pに投影される。 As described above, the exposure apparatus EX of the present embodiment is an exposure apparatus that projects the pattern image of the mask M onto the substrate P while moving the mask M and the substrate P in a predetermined scanning direction (multi-lens scan). Exposure apparatus). When the substrate P is exposed, the control device 4 controls the mask stage 1 and the substrate stage 2 to move the mask M and the substrate P in a predetermined scanning direction in the XY plane. In the present embodiment, the scanning direction (synchronous movement direction) of the substrate P is the X-axis direction, and the scanning direction (synchronous movement direction) of the mask M is also the X-axis direction. The control device 4 moves the substrate P in the X-axis direction with respect to the first to seventh projection regions PR1 to PR7 of the projection system PS, and synchronizes with the movement of the substrate P in the X-axis direction. While moving the mask M in the X-axis direction with respect to the first to seventh illumination regions IR1 to IR7 of IS, the illumination system IS illuminates the mask M with the exposure light EL, and from the mask M via the projection system PS. The substrate P is irradiated with the exposure light EL. Thereby, the substrate P is exposed with the exposure light EL from the mask M irradiated to the first to seventh projection regions PR1 to PR7 of the first to seventh projection optical systems PL1 to PL7, and an image of the pattern of the mask M is formed. Projected onto the substrate P.
 図2は、第1~第7投影領域PR1~PR7と、基板Pとの位置関係の一例を示す模式図であり、基板Pの表面を含む平面内の位置関係を示している。図2に示すように、本実施形態において、第1~第7投影領域PR1~PR7のそれぞれは、XY平面内において台形である。本実施形態において、第1、第3、第5、第7投影光学系PL1、PL3、PL5、PL7による第1、第3、第5、第7投影領域PR1、PR3、PR5、PR7が、Y軸方向にほぼ等間隔で配置されている。また、第2、第4、第6投影光学系PL2、PL4、PL6による第2、第4、第6投影領域PR2、PR4、PR6が、Y軸方向にほぼ等間隔で配置されている。 FIG. 2 is a schematic diagram showing an example of the positional relationship between the first to seventh projection regions PR1 to PR7 and the substrate P, and shows the positional relationship in a plane including the surface of the substrate P. As shown in FIG. 2, in the present embodiment, each of the first to seventh projection regions PR1 to PR7 is trapezoidal in the XY plane. In the present embodiment, the first, third, fifth, and seventh projection regions PR1, PR3, PR5, and PR7 by the first, third, fifth, and seventh projection optical systems PL1, PL3, PL5, and PL7 are Y They are arranged at almost equal intervals in the axial direction. Further, the second, fourth, and sixth projection regions PR2, PR4, and PR6 by the second, fourth, and sixth projection optical systems PL2, PL4, and PL6 are arranged at substantially equal intervals in the Y-axis direction.
 第1、第3、第5、第7投影領域PR1、PR3、PR5、PR7は、第2、第4、第6投影領域PR2、PR4、PR6に対して、-X側に配置されている。また、Y軸方向に関して、第1、第3、第5、第7投影領域PR1、PR3、PR5、PR7の間に、第2、第4、第6投影領域PR2、PR4、PR6が配置される。 The first, third, fifth, and seventh projection regions PR1, PR3, PR5, and PR7 are disposed on the −X side with respect to the second, fourth, and sixth projection regions PR2, PR4, and PR6. Further, the second, fourth, and sixth projection regions PR2, PR4, and PR6 are disposed between the first, third, fifth, and seventh projection regions PR1, PR3, PR5, and PR7 with respect to the Y-axis direction. .
 第1~第7投影領域PR1~PR7のそれぞれは、基板PにおけるX軸方向(走査方向)の積算露光量が等しくなるように配置されている。Y軸方向に関する第1~第7投影領域PR1~PR7の端部のそれぞれが、Y軸方向に関して重複するように配置され、X軸方向に関する投影領域の寸法の和が、同じになるように設けられている。 Each of the first to seventh projection regions PR1 to PR7 is arranged so that the integrated exposure amounts in the X-axis direction (scanning direction) on the substrate P are equal. The ends of the first to seventh projection regions PR1 to PR7 with respect to the Y-axis direction are arranged so as to overlap with each other with respect to the Y-axis direction, and the sum of the dimensions of the projection regions with respect to the X-axis direction is the same. It has been.
 なお、本実施形態において、投影領域の端部とは、XY平面内において台形の投影領域のうち、X軸に対して傾斜するエッジを含む三角形の部分をいう。また、以下の説明において、端部以外の投影領域の長方形の部分を適宜、中央部、と称する。 In the present embodiment, the end of the projection area refers to a triangular portion including an edge inclined with respect to the X axis in the trapezoidal projection area in the XY plane. In the following description, the rectangular part of the projection area other than the end part is appropriately referred to as a central part.
 本実施形態において、第1投影領域PR1の+Y側の端部T1bと、第2投影領域PR2の-Y側の端部T2aとが、Y軸方向に関して重複するように配置されている。第2投影領域PR2の+Y側の端部T2bと、第3投影領域PR3の-Y側の端部T3aとが、Y軸方向に関して重複するように配置されている。第3投影領域PR3の+Y側の端部T3bと、第4投影領域PR4の-Y側の端部T4aとが、Y軸方向に関して重複するように配置されている。第4投影領域PR4の+Y側の端部T4bと、第5投影領域PR5の-Y側の端部T5aとが、Y軸方向に関して重複するように配置されている。第5投影領域PR5の+Y側の端部T5bと、第6投影領域PR6の-Y側の端部T6aとが、Y軸方向に関して重複するように配置されている。第6投影領域PR6の+Y側の端部T6bと、第7投影領域PR7の-Y側の端部T7aとが、Y軸方向に関して重複するように配置されている。 In the present embodiment, the + Y side end T1b of the first projection region PR1 and the −Y side end T2a of the second projection region PR2 are arranged so as to overlap with each other in the Y-axis direction. The + Y side end T2b of the second projection region PR2 and the −Y side end T3a of the third projection region PR3 are arranged so as to overlap in the Y-axis direction. The + Y side end T3b of the third projection region PR3 and the −Y side end T4a of the fourth projection region PR4 are arranged so as to overlap in the Y-axis direction. The + Y side end T4b of the fourth projection region PR4 and the −Y side end T5a of the fifth projection region PR5 are arranged so as to overlap in the Y-axis direction. The + Y side end T5b of the fifth projection region PR5 and the −Y side end T6a of the sixth projection region PR6 are arranged so as to overlap in the Y-axis direction. The + Y side end T6b of the sixth projection region PR6 and the −Y side end T7a of the seventh projection region PR7 are arranged so as to overlap in the Y-axis direction.
 X軸方向に関して、端部T1bの寸法と端部T2aの寸法との和と、端部T2bの寸法と端部T3aの寸法との和と、端部T3bの寸法と端部T4aの寸法との和と、端部T4bの寸法と端部T5aの寸法との和と、端部T5bの寸法と端部T6aの寸法との和と、端部T6bの寸法と端部T7aの寸法との和とは、ほぼ同じである。 Regarding the X-axis direction, the sum of the dimension of the end T1b and the dimension of the end T2a, the sum of the dimension of the end T2b and the dimension of the end T3a, the dimension of the end T3b, and the dimension of the end T4a The sum of the sum, the size of the end T4b and the size of the end T5a, the sum of the size of the end T5b and the size of the end T6a, and the sum of the size of the end T6b and the size of the end T7a. Are almost the same.
 また、X軸方向に関して、第1投影領域PR1の中央部C1の寸法と、第2投影領域PR2の中央部C2の寸法と、第3投影領域PR3の中央部C3の寸法と、第4投影領域PR4の中央部C4の寸法と、第5投影領域PR5の中央部C5の寸法と、第6投影領域PR6の中央部C6の寸法と、第7投影領域PR7の中央部C7の寸法とは、ほぼ同じである。 Further, with respect to the X-axis direction, the size of the central portion C1 of the first projection region PR1, the size of the central portion C2 of the second projection region PR2, the size of the central portion C3 of the third projection region PR3, and the fourth projection region The dimensions of the central portion C4 of PR4, the dimensions of the central portion C5 of the fifth projection region PR5, the dimensions of the central portion C6 of the sixth projection region PR6, and the dimensions of the central portion C7 of the seventh projection region PR7 are substantially the same. The same.
 また、X軸方向に関して、中央部C1の寸法と、端部T1bの寸法と端部T2aの寸法との和とは、ほぼ同じである。他の中央部の寸法と、端部どうしの寸法の和とも、同様の関係にある。 Further, with respect to the X-axis direction, the dimension of the central part C1, and the sum of the dimension of the end part T1b and the dimension of the end part T2a are substantially the same. The dimensions of the other central part and the sum of the dimensions of the end parts have a similar relationship.
 これにより、第1~第7投影領域PR1~PR7に対して基板PをX軸方向に移動しながら露光したときの、基板PにおけるX軸方向に関する積算露光量は、ほぼ同じになる。 Thus, when the substrate P is exposed to the first to seventh projection regions PR1 to PR7 while moving in the X-axis direction, the integrated exposure amount in the X-axis direction on the substrate P becomes substantially the same.
 以下の説明において、基板Pにおいて投影領域が重複する部分を適宜、重複部、と称する。 In the following description, a portion where the projection areas overlap in the substrate P is appropriately referred to as an overlapping portion.
 本実施形態においては、第1投影領域PR1と第2投影領域PR2の一部とによって、基板Pにおいて重複部B1が設けられる。第2投影領域PR2と第3投影領域PR3の一部とによって、基板Pにおいて重複部B2が設けられる。第3投影領域PR3と第4投影領域PR4の一部とによって、基板Pにおいて重複部B3が設けられる。第4投影領域PR4と第5投影領域PR5の一部とによって、基板Pにおいて重複部B4が設けられる。第5投影領域PR5と第6投影領域PR6の一部とによって、基板Pにおいて重複部B5が設けられる。第6投影領域PR6と第7投影領域PR7の一部とによって、基板Pにおいて重複部B6が設けられる。 In the present embodiment, the overlapping portion B1 is provided on the substrate P by the first projection region PR1 and a part of the second projection region PR2. An overlapping portion B2 is provided on the substrate P by the second projection region PR2 and a part of the third projection region PR3. An overlapping portion B3 is provided on the substrate P by the third projection region PR3 and a part of the fourth projection region PR4. The overlapping portion B4 is provided on the substrate P by the fourth projection region PR4 and a part of the fifth projection region PR5. An overlapping portion B5 is provided on the substrate P by the fifth projection region PR5 and a part of the sixth projection region PR6. An overlapping portion B6 is provided on the substrate P by the sixth projection region PR6 and a part of the seventh projection region PR7.
 重複部B1に配置される基板Pの少なくとも一部は、第1投影領域PR1と第2投影領域PR2の一部とによって重複露光される。重複部B2に配置される基板Pの少なくとも一部は、第2投影領域PR2と第3投影領域PR3の一部とによって重複露光される。重複部B3に配置される基板Pの少なくとも一部は、第3投影領域PR3と第4投影領域PR4の一部とによって重複露光される。重複部B4に配置される基板Pの少なくとも一部は、第4投影領域PR4と第5投影領域PR5の一部とによって重複露光される。重複部B5に配置される基板Pの少なくとも一部は、第5投影領域PR5と第6投影領域PR6の一部とによって重複露光される。重複部B6に配置される基板Pの少なくとも一部は、第6投影領域PR6と第7投影領域PR7の一部とによって重複露光される。基板Pの露光を実行するとき、第1~第7投影領域PR1~PR7の少なくとも一部に基板Pが配置された状態で、その第1~第7投影領域PR1~PR7に露光光ELが照射される。 At least a part of the substrate P disposed in the overlapping part B1 is subjected to overlapping exposure by the first projection area PR1 and a part of the second projection area PR2. At least a part of the substrate P arranged in the overlapping part B2 is subjected to overlapping exposure by the second projection region PR2 and a part of the third projection region PR3. At least a part of the substrate P arranged in the overlapping part B3 is subjected to overlapping exposure by the third projection region PR3 and a part of the fourth projection region PR4. At least a part of the substrate P arranged in the overlapping part B4 is subjected to overlapping exposure by the fourth projection region PR4 and a part of the fifth projection region PR5. At least a part of the substrate P arranged in the overlapping part B5 is subjected to overlapping exposure by the fifth projection region PR5 and a part of the sixth projection region PR6. At least a part of the substrate P disposed in the overlapping part B6 is subjected to overlapping exposure by the sixth projection region PR6 and a part of the seventh projection region PR7. When performing exposure of the substrate P, the first to seventh projection regions PR1 to PR7 are irradiated with the exposure light EL in a state where the substrate P is disposed on at least a part of the first to seventh projection regions PR1 to PR7. Is done.
 次に、露光装置EXの動作の一例について説明する。 Next, an example of the operation of the exposure apparatus EX will be described.
 本実施形態において、露光装置EXには、基板Pの基材上に感光膜を形成するコーティング装置、及び露光後の基板Pを現像するデベロッパ装置を含むコータ・デベロッパ装置が接続されている。コータ・デベロッパ装置において感光膜が形成された感光性の基板Pが、所定の搬送装置によって、露光装置EXに搬入される。 In the present embodiment, the exposure apparatus EX is connected to a coater / developer apparatus including a coating apparatus for forming a photosensitive film on the base material of the substrate P and a developer apparatus for developing the exposed substrate P. The photosensitive substrate P on which the photosensitive film is formed in the coater / developer apparatus is carried into the exposure apparatus EX by a predetermined transport apparatus.
 なお、上述のように、基板Pの基材は、ガラスプレートを含む。以下の説明においては、説明の簡単のため、基材がガラスプレートであり、そのガラスプレート上に感光膜を形成する場合を例にして説明するが、基材の表面(下地)が、反射防止膜の場合もある。また、基材の表面(下地)が、前のプロセスまでにガラスプレート上に形成された、例えば薄膜トランジスタの一部である場合もある。例えば、基材の表面(下地)が、前のプロセスまでに形成されたSiOなどの酸化膜、SiO及びSiNなどの絶縁膜、Cu、ITOなどの導体膜(金属膜)、アモルファスSiなどの半導体膜の少なくとも一つの表面である場合もある。 Note that, as described above, the base material of the substrate P includes a glass plate. In the following description, for simplicity of explanation, the base material is a glass plate, and a case where a photosensitive film is formed on the glass plate will be described as an example. However, the surface (base) of the base material is anti-reflective. It may be a membrane. Moreover, the surface (base) of the base material may be a part of, for example, a thin film transistor formed on a glass plate by the previous process. For example, the surface (base) of the base material is an oxide film such as SiO 2 formed by the previous process, an insulating film such as SiO 2 and SiN x , a conductor film (metal film) such as Cu or ITO, amorphous Si, etc. In some cases, the surface is at least one surface of a semiconductor film.
 露光前の基板Pが露光装置EXに搬入され、基板ステージ2に保持された後、制御装置4は、基板Pの露光を開始する。基板Pの露光は、基板Pを第1~第7投影領域PR1~PR7に対して基板Pの表面(XY平面)に沿って走査方向(X軸方向)に移動させるとともに、マスクMを第1~第7照明領域IR1~IR7に対してマスクMの下面(XY平面)に沿って走査方向(X軸方向)に移動させながら実行される。 After the substrate P before exposure is carried into the exposure apparatus EX and held on the substrate stage 2, the control apparatus 4 starts exposure of the substrate P. In the exposure of the substrate P, the substrate P is moved in the scanning direction (X-axis direction) along the surface (XY plane) of the substrate P with respect to the first to seventh projection regions PR1 to PR7, and the mask M is moved to the first. Executed while moving in the scanning direction (X-axis direction) along the lower surface (XY plane) of the mask M with respect to the seventh illumination regions IR1 to IR7.
 露光後の基板Pは、基板ステージ2からアンロードされた後、コータ・デベロッパ装置に搬送され、現像される。これにより、基板Pに感光膜のパターン(露光パターン層)が形成される。その後、エッチング処理など、所定のプロセス処理が実行されることによって、基板Pにパターン(デバイスパターン)が形成される。 After the exposure, the substrate P is unloaded from the substrate stage 2 and then transferred to the coater / developer apparatus and developed. As a result, a pattern of the photosensitive film (exposure pattern layer) is formed on the substrate P. Thereafter, a pattern (device pattern) is formed on the substrate P by performing a predetermined process such as an etching process.
 ところで、上述したように、第1~第7投影領域PR1~PR7に対して基板PをX軸方向に移動しながら露光したときの基板PにおけるX軸方向に関する積算露光量が同じになるように、すなわち、X軸方向に関して、第1~第7投影領域PR1~PR7の中央部の寸法と、端部どうしの寸法の和とが同じになるように、第1~第7投影領域PR1~PR7それぞれの形状、大きさ、及び第1~第7投影領域PR1~PR7の位置関係が定められている。換言すれば、第1~第7投影領域PR1~PR7が重複する重複部(B1~B6)と、重複しない非重複部とで、基板Pにおける積算露光量が同じになるように、第1~第7投影領域PR1~PR7それぞれの形状、大きさ、及び第1~第7投影領域PR1~PR7の位置関係が定められている。 By the way, as described above, when the substrate P is exposed to the first to seventh projection regions PR1 to PR7 while moving in the X-axis direction, the integrated exposure amount in the X-axis direction on the substrate P becomes the same. That is, with respect to the X-axis direction, the first to seventh projection regions PR1 to PR7 are set so that the center size of the first to seventh projection regions PR1 to PR7 is the same as the sum of the sizes of the end portions. Each shape, size, and positional relationship between the first to seventh projection regions PR1 to PR7 are determined. In other words, the first to seventh projection regions PR1 to PR7 overlap each other (B1 to B6) and the non-overlapping non-overlapping portions have the same accumulated exposure amount on the substrate P. The shape and size of each of the seventh projection areas PR1 to PR7 and the positional relationship between the first to seventh projection areas PR1 to PR7 are determined.
 図3は、第1~第7投影領域PR1~PR7のうち、一例として、第1投影領域PR1と第2投影領域PR2との位置関係が、理想状態(目標状態)である場合の一例を示す模式図である。 FIG. 3 shows an example in which the positional relationship between the first projection region PR1 and the second projection region PR2 is an ideal state (target state) among the first to seventh projection regions PR1 to PR7. It is a schematic diagram.
 ここで、理想状態とは、Y軸方向に関して隣り合う投影領域(PR1,PR2)に照射される露光光ELの基板PにおけるX軸方向(走査方向)の積算露光量が等しい状態、すなわち、一方の投影領域(PR1)と他方の投影領域(PR2)との重複部における、X軸方向に関する一方の投影領域(PR1)の寸法と他方の投影領域(PR2)の寸法との和と、非重複部における一方及び他方それぞれの投影領域(PR1,PR2)の寸法とが同じ状態をいう。 Here, the ideal state is a state in which the integrated exposure amount in the X-axis direction (scanning direction) of the exposure light EL irradiated to the projection areas (PR1, PR2) adjacent to each other in the Y-axis direction is equal, that is, The sum of the dimension of one projection area (PR1) and the dimension of the other projection area (PR2) in the X-axis direction at the overlapping portion between the projection area (PR1) and the other projection area (PR2) is non-overlapping This means that the dimensions of the projection areas (PR1, PR2) of one and the other in the part are the same.
 図3において、重複部B1は、端部T1b及び端部T2aのみで形成される。非重複部A1は、中央部C1のみで形成される。非重複部A2は、中央部C2のみで形成される。図3に示す例においては、重複部B1における積算露光量と、非重複部A1(中央部C1)における積算露光量と、非重複部A2(中央部C2)における積算露光量とは、同じである。この場合、非重複部A1を形成する第1投影領域PR1の中央部C1に照射された露光光ELにより基板Pに形成されるパターンの寸法と、非重複部A2を形成する第2投影領域PR2の中央部C2に照射された露光光ELにより基板Pに形成されるパターンの寸法と、第1投影領域PR1と第2投影領域PR2との重複部B1に照射された露光光ELにより基板Pに形成されるパターンの寸法とは、ほぼ一致する。 In FIG. 3, the overlapping part B1 is formed only by the end part T1b and the end part T2a. The non-overlapping part A1 is formed only by the central part C1. The non-overlapping part A2 is formed only by the central part C2. In the example shown in FIG. 3, the integrated exposure amount in the overlapping portion B1, the integrated exposure amount in the non-overlapping portion A1 (center portion C1), and the integrated exposure amount in the non-overlapping portion A2 (center portion C2) are the same. is there. In this case, the dimension of the pattern formed on the substrate P by the exposure light EL irradiated to the central portion C1 of the first projection region PR1 that forms the non-overlapping portion A1, and the second projection region PR2 that forms the non-overlapping portion A2. The dimension of the pattern formed on the substrate P by the exposure light EL irradiated to the central portion C2 of the substrate and the substrate P by the exposure light EL irradiated to the overlapping portion B1 between the first projection region PR1 and the second projection region PR2. The dimensions of the pattern to be formed are almost the same.
 図4は、第1~第7投影領域PR1~PR7のうち、一例として、第1投影領域PR1と第2投影領域PR2との位置関係が、理想状態からずれている状態の一例を示す模式図である。 FIG. 4 is a schematic diagram showing an example of a state in which the positional relationship between the first projection region PR1 and the second projection region PR2 is deviated from the ideal state among the first to seventh projection regions PR1 to PR7. It is.
 なお、図4においては、理想状態に比べて、第1投影領域PR1と第2投影領域PR2とが、近付いている状態を例にしているが、離れる場合もある。 In FIG. 4, the first projection region PR1 and the second projection region PR2 are close to each other as compared to the ideal state, but may be separated.
 ここで、以下の説明において、投影領域(PR1,PR2)が理想状態からずれている状態を適宜、継ぎずれ状態、と称し、理想状態からのずれ量を適宜、ずれ量、と称する。 Here, in the following description, a state where the projection regions (PR1, PR2) are deviated from the ideal state is appropriately referred to as a joint displacement state, and a deviation amount from the ideal state is appropriately referred to as a deviation amount.
 図4において、重複部B1は、中央部C1の一部、端部T1b、中央部C2の一部、及び端部T2aによって形成されている。非重複部A1は、中央部C1の一部によって形成される。非重複部A2は、中央部C2の一部によって形成される。図4に示す例においては、重複部B1における積算露光量と、非重複部A1,A2における積算露光量とは、異なる。この場合、非重複部A1を形成する第1投影領域PR1の中央部C1に照射された露光光ELにより基板Pに形成されるパターンの寸法、及び非重複部A2を形成する第2投影領域PR2の中央部C2に照射された露光光ELにより基板Pに形成されるパターンの寸法と、第1投影領域PR1と第2投影領域PR2との重複部B1に照射された露光光ELにより基板Pに形成されるパターンの寸法とは、異なる。 In FIG. 4, the overlapping part B1 is formed by a part of the center part C1, an end part T1b, a part of the center part C2, and an end part T2a. The non-overlapping part A1 is formed by a part of the central part C1. The non-overlapping part A2 is formed by a part of the central part C2. In the example shown in FIG. 4, the integrated exposure amount in the overlapping portion B1 is different from the integrated exposure amount in the non-overlapping portions A1 and A2. In this case, the dimension of the pattern formed on the substrate P by the exposure light EL irradiated to the central portion C1 of the first projection region PR1 that forms the non-overlapping portion A1, and the second projection region PR2 that forms the non-overlapping portion A2. The dimension of the pattern formed on the substrate P by the exposure light EL irradiated to the central portion C2 of the substrate and the substrate P by the exposure light EL irradiated to the overlapping portion B1 between the first projection region PR1 and the second projection region PR2. The dimension of the pattern to be formed is different.
 図4に示す例においては、基板Pに形成されるパターンが不均一になり、不良デバイスが発生する可能性がある。 In the example shown in FIG. 4, the pattern formed on the substrate P becomes non-uniform, and a defective device may occur.
 そこで、本実施形態においては、例えば図4に示すように、隣接する投影領域の位置関係が理想状態からずれた場合でも、パターンが不均一になることを抑制できる露光条件及び現像条件を含むプロセス条件を予め決定する。そして、その決定されたプロセス条件に基づいて、基板Pにデバイスを製造するための露光処理及び現像処理を実行する。 Therefore, in the present embodiment, for example, as shown in FIG. 4, even when the positional relationship between adjacent projection regions deviates from the ideal state, a process including exposure conditions and development conditions that can prevent the pattern from becoming non-uniform. Conditions are predetermined. Then, an exposure process and a development process for manufacturing a device on the substrate P are executed based on the determined process conditions.
 本実施形態において、露光条件は、基板Pが配置された投影領域に照射される露光光ELの積算露光量を含む。現像条件は、露光光ELが照射された基板Pの現像時間(現像液と基板Pの感光膜とを接触させている時間)、及び使用する現像液の種類(物性)などを含む。 In the present embodiment, the exposure conditions include the integrated exposure amount of the exposure light EL that is irradiated onto the projection area where the substrate P is disposed. The development conditions include the development time of the substrate P irradiated with the exposure light EL (the time during which the developer and the photosensitive film of the substrate P are in contact), the type (physical properties) of the developer to be used, and the like.
 以下の説明において、パターンが不均一になることを抑制できる所定の露光条件を適宜、最適積算露光量、と称し、パターンが不均一になることを抑制でき、パターンを所望の寸法にすることができる所定の現像条件を適宜、最適現像時間、と称する。 In the following description, a predetermined exposure condition that can prevent the pattern from becoming nonuniform is referred to as an optimal integrated exposure amount as appropriate, and the pattern can be suppressed from becoming nonuniform and the pattern can be set to a desired dimension. The predetermined development conditions that can be obtained are appropriately referred to as optimum development time.
 すなわち、所定の露光条件は、基板Pに形成されるパターンの寸法が均一になる積算露光量を含む。本実施形態において、その積算露光量は、第1投影領域PR1の非重複部A1に照射された露光光ELにより基板Pに形成されるパターンの寸法と、第2投影領域PR2の非重複部A2に照射された露光光ELにより基板Pに形成されるパターンの寸法と、第1投影領域PR1と第2投影領域PR2との重複部B1に照射された露光光ELにより基板Pに形成されるパターンの寸法とが、ほぼ一致する第1投影領域PR1及び第2投影領域PR2における積算露光量を含む。また、所定の現像条件は、基板Pに形成されるパターンの寸法が目標値になる現像時間を含む。 That is, the predetermined exposure condition includes an integrated exposure amount at which the dimension of the pattern formed on the substrate P becomes uniform. In the present embodiment, the integrated exposure amount is determined by the dimension of the pattern formed on the substrate P by the exposure light EL irradiated to the non-overlapping portion A1 of the first projection region PR1, and the non-overlapping portion A2 of the second projection region PR2. The dimension of the pattern formed on the substrate P by the exposure light EL irradiated on the substrate and the pattern formed on the substrate P by the exposure light EL irradiated on the overlapping portion B1 between the first projection region PR1 and the second projection region PR2. The integrated exposure amount in the first projection region PR1 and the second projection region PR2 that substantially coincide with each other is included. The predetermined development conditions include a development time in which the dimension of the pattern formed on the substrate P is a target value.
 以下、図5~図12を参照して、基板Pにおいてパターンを均一化できる最適積算露光量、及び最適現像時間について説明する。以下の説明においては、第1投影領域PR1の非重複部A1(あるいは第2投影領域PR2の非重複部A2)、及び第1投影領域PR1と第2投影領域PR2との重複部B1について説明するが、他の投影領域(PR2~PR7)の非重複部、及び他の投影領域(PR3~PR7)どうしの重複部についても同様である。 Hereinafter, with reference to FIGS. 5 to 12, the optimum integrated exposure amount and the optimum development time that can make the pattern uniform on the substrate P will be described. In the following description, the non-overlapping portion A1 of the first projection region PR1 (or the non-overlapping portion A2 of the second projection region PR2) and the overlapping portion B1 of the first projection region PR1 and the second projection region PR2 will be described. However, the same applies to the non-overlapping portions of the other projection regions (PR2 to PR7) and the overlapping portions of the other projection regions (PR3 to PR7).
 図5~図9、図11は、マスクMのパターンと、基板Pが配置された投影領域における積算露光量との関係を示す模式図である。マスクMのパターンは、ライン・アンド・スペースパターンであり、照明システムISからの露光光ELを透過する透過部(スペース部)21と、照明システムISからの露光光ELを遮る遮光部(ライン部)22とを有する。 5 to 9 and 11 are schematic diagrams showing the relationship between the pattern of the mask M and the integrated exposure amount in the projection area where the substrate P is arranged. The pattern of the mask M is a line and space pattern, and a transmission part (space part) 21 that transmits the exposure light EL from the illumination system IS and a light shielding part (line part) that blocks the exposure light EL from the illumination system IS. ) 22.
 基板Pは、感光膜を有する。本実施形態において、基板Pの感光膜は、露光光ELが照射された部分が現像によって除去される、所謂、ポジ型である。基板Pに対するマスクMからの露光光ELの照射、及び現像によって、基板P(感光膜)には、マスクMのパターンに応じたパターン(ライン・アンド・スペースパターン)が形成される。基板Pに形成されるパターン(ラインパターン)の目標寸法(目標線幅)は、WTである。なお、図5などにおいて、マスクMのライン部22の寸法と、基板Pに形成されるパターンの目標寸法WTとが同じであるように示しているが、ライン部22の寸法と目標寸法WTとの関係(比)は、例えば投影光学系の投影倍率などに応じて変化する。また、図5~図9、図11に示すグラフにおいて、横軸は、基板Pの表面の位置、縦軸は、投影領域における積算露光量の値を示す。 The substrate P has a photosensitive film. In this embodiment, the photosensitive film of the substrate P is a so-called positive type in which a portion irradiated with the exposure light EL is removed by development. By irradiating the substrate P with the exposure light EL from the mask M and developing, a pattern (line and space pattern) corresponding to the pattern of the mask M is formed on the substrate P (photosensitive film). The target dimension (target line width) of the pattern (line pattern) formed on the substrate P is WT. 5 and the like, the dimension of the line portion 22 of the mask M and the target dimension WT of the pattern formed on the substrate P are shown to be the same, but the dimension of the line portion 22 and the target dimension WT The relationship (ratio) varies depending on, for example, the projection magnification of the projection optical system. In the graphs shown in FIGS. 5 to 9 and FIG. 11, the horizontal axis indicates the position of the surface of the substrate P, and the vertical axis indicates the value of the integrated exposure amount in the projection area.
 図5は、マスクMのパターンと、第1投影光学系PL1の第1投影領域PR1の中央部C1(非重複部A1)に照射されたマスクMからの露光光ELの、その中央部C1における積算露光量の分布との関係を示す模式図である。図5に示すグラフにおいて、ラインLC1は、中央部C1における積算露光量の分布を示す。スペース部21に対応する積算露光量の値は、Jhである。 FIG. 5 shows the pattern of the mask M and the exposure light EL from the mask M irradiated to the central portion C1 (non-overlapping portion A1) of the first projection region PR1 of the first projection optical system PL1 in the central portion C1. It is a schematic diagram which shows the relationship with distribution of integrated exposure amount. In the graph shown in FIG. 5, a line LC1 indicates the distribution of the integrated exposure amount in the central portion C1. The value of the integrated exposure amount corresponding to the space portion 21 is Jh.
 図6は、第1投影領域PR1と第2投影領域PR2との位置関係が理想状態である場合において基板Pを重複露光したときの、マスクMのパターンと、積算露光量の分布との関係を示す模式図である。図6に示すグラフにおいて、ラインL1bは、基板Pが配置された端部T1bにおける積算露光量の分布の一例を示し、ラインL2aは、基板Pが配置された端部T2aにおける積算露光量の分布の一例を示す。また、ラインLB1aは、ラインL1bで示す積算露光量とラインL2aで示す積算露光量との和、すなわち、基板Pが配置された重複部B1における積算露光量の分布を示す。 FIG. 6 shows the relationship between the pattern of the mask M and the distribution of the integrated exposure amount when the substrate P is subjected to overlapping exposure when the positional relationship between the first projection region PR1 and the second projection region PR2 is an ideal state. It is a schematic diagram shown. In the graph shown in FIG. 6, the line L1b shows an example of the distribution of the integrated exposure amount at the end T1b where the substrate P is arranged, and the line L2a is the distribution of the integrated exposure amount at the end T2a where the substrate P is arranged. An example is shown. A line LB1a indicates the sum of the integrated exposure amount indicated by the line L1b and the integrated exposure amount indicated by the line L2a, that is, the distribution of the integrated exposure amount in the overlapping portion B1 where the substrate P is disposed.
 第1投影領域PR1と第2投影領域PR2との位置関係が理想状態なので、基板Pにおいて、端部T1bにおける積算露光量の分布と、端部T2aにおける積算露光量の分布とは、一致する。また、第1投影領域PR1と第2投影領域PR2との位置関係が理想状態なので、図5に示した中央部C1(非重複部A1)における積算露光量の分布と、図6に示す重複部B1における積算露光量の分布とは、一致する。 Since the positional relationship between the first projection region PR1 and the second projection region PR2 is an ideal state, on the substrate P, the distribution of the integrated exposure amount at the end T1b and the distribution of the integrated exposure amount at the end T2a coincide. Further, since the positional relationship between the first projection region PR1 and the second projection region PR2 is an ideal state, the distribution of the integrated exposure amount in the central portion C1 (non-overlapping portion A1) shown in FIG. 5 and the overlapping portion shown in FIG. The distribution of the integrated exposure amount in B1 matches.
 図7は、第1投影領域PR1と第2投影領域PR2との位置関係が継ぎずれ状態である場合において基板Pを重複露光したときの、マスクMのパターンと、積算露光量の分布との関係を示す模式図である。図7に示すグラフにおいて、ラインL1bは、基板Pが配置された端部T1bにおける積算露光量の分布の一例を示し、ラインL2aは、基板Pが配置された端部T2aにおける積算露光量の分布の一例を示す。また、ラインLB1bは、ラインL1bで示す積算露光量とラインL2aで示す積算露光量との和、すなわち、基板Pが配置された重複部B1における積算露光量の分布を示す。 FIG. 7 shows the relationship between the pattern of the mask M and the distribution of the integrated exposure amount when the substrate P is subjected to overlapping exposure when the positional relationship between the first projection region PR1 and the second projection region PR2 is a joint displacement state. It is a schematic diagram which shows. In the graph shown in FIG. 7, the line L1b shows an example of the distribution of the integrated exposure amount at the end T1b where the substrate P is disposed, and the line L2a is the distribution of the integrated exposure amount at the end T2a where the substrate P is disposed. An example is shown. A line LB1b indicates the sum of the integrated exposure amount indicated by the line L1b and the integrated exposure amount indicated by the line L2a, that is, the distribution of the integrated exposure amount in the overlapping portion B1 where the substrate P is disposed.
 第1投影領域PR1と第2投影領域PR2との位置関係が継ぎずれ状態なので、基板Pにおいて、端部T1bにおける積算露光量の分布と、端部T2aにおける積算露光量の分布とは、ずれる。 Since the positional relationship between the first projection region PR1 and the second projection region PR2 is in a jointly shifted state, on the substrate P, the distribution of the integrated exposure amount at the end portion T1b and the distribution of the integrated exposure amount at the end portion T2a deviate.
 また、第1投影領域PR1と第2投影領域PR2との位置関係が継ぎずれ状態なので、図5、図6に示した中央部C1(非重複部A1)、重複部B1における積算露光量の分布及び値と、図7に示す重複部B1における積算露光量の分布及び値とは、異なる。 Further, since the positional relationship between the first projection region PR1 and the second projection region PR2 is in a jointly shifted state, the distribution of the integrated exposure amount in the central portion C1 (non-overlapping portion A1) and the overlapping portion B1 shown in FIGS. The value and the distribution and value of the integrated exposure amount in the overlapping portion B1 shown in FIG. 7 are different.
 図8は、第1投影領域PR1と第2投影領域PR2との位置関係が継ぎずれ状態である場合において基板Pを重複露光したときの、マスクMのパターンと、積算露光量の分布との関係を示す模式図である。図8に示す例におけるずれ量は、図7に示す例におけるずれ量より大きい。図8に示すグラフにおいて、ラインL1bは、基板Pが配置された端部T1bにおける積算露光量の分布の一例を示し、ラインL2aは、基板Pが配置された端部T2aにおける積算露光量の分布の一例を示す。また、ラインLB1cは、ラインL1bで示す積算露光量とラインL2aで示す積算露光量との和、すなわち、基板Pが配置された重複部B1における積算露光量の分布を示す。 FIG. 8 shows the relationship between the pattern of the mask M and the distribution of the integrated exposure amount when the substrate P is subjected to overlapping exposure when the positional relationship between the first projection region PR1 and the second projection region PR2 is a joint displacement state. It is a schematic diagram which shows. The deviation amount in the example shown in FIG. 8 is larger than the deviation amount in the example shown in FIG. In the graph shown in FIG. 8, the line L1b shows an example of the distribution of the integrated exposure amount at the end T1b where the substrate P is disposed, and the line L2a is the distribution of the integrated exposure amount at the end T2a where the substrate P is disposed. An example is shown. A line LB1c indicates the sum of the integrated exposure amount indicated by the line L1b and the integrated exposure amount indicated by the line L2a, that is, the distribution of the integrated exposure amount in the overlapping portion B1 where the substrate P is disposed.
 第1投影領域PR1と第2投影領域PR2との位置関係が継ぎずれ状態であり、そのずれ量が図7に示す例に比べて大きいので、基板Pにおいて、端部T1bにおける積算露光量の分布と、端部T2aにおける積算露光量の分布とは、図7に示す例に比べて、大きくずれる。 Since the positional relationship between the first projection region PR1 and the second projection region PR2 is a joint displacement state, and the displacement amount is larger than the example shown in FIG. 7, the distribution of the integrated exposure amount at the end T1b in the substrate P. And the distribution of the integrated exposure amount at the end T2a is greatly different from the example shown in FIG.
 また、第1投影領域PR1と第2投影領域PR2との位置関係が継ぎずれ状態なので、図5、図6、図7に示した中央部C1(非重複部A1)、重複部B1における積算露光量の分布及び値と、図8に示す重複部B1における積算露光量の分布及び値とは、異なる。 Further, since the positional relationship between the first projection region PR1 and the second projection region PR2 is in a jointly shifted state, the integrated exposure at the central portion C1 (non-overlapping portion A1) and the overlapping portion B1 shown in FIGS. The distribution and value of the amount are different from the distribution and value of the integrated exposure amount in the overlapping portion B1 shown in FIG.
 図9は、図5~図8に示したラインLB1a、LB1b、LB1cを一つのグラフに記載したものである。図9に示すように、理想状態における積算露光量と、継ぎずれ状態における積算露光量とが一致する値Jkが存在する。すなわち、非重複部A1における積算露光量を値Jhにすることによって、理想状態及び継ぎずれ状態のそれぞれにおいて、非重複部A1における積算露光量と重複部B1における積算露光量とは、値Jkで一致する。 FIG. 9 shows the lines LB1a, LB1b, and LB1c shown in FIGS. 5 to 8 in one graph. As shown in FIG. 9, there is a value Jk in which the integrated exposure amount in the ideal state and the integrated exposure amount in the joint shift state coincide. That is, by setting the integrated exposure amount in the non-overlapping portion A1 to the value Jh, the integrated exposure amount in the non-overlapping portion A1 and the integrated exposure amount in the overlapping portion B1 in the ideal state and the joint displacement state are values Jk. Match.
 したがって、基板Pに使用される感光膜として、露光光ELの積算露光量が値Jk以上である場合、現像によって除去され、値Jk未満である場合、現像しても基板Pに残る(パターンを形成する)特性(感光特性、溶解度)を有する感光膜を使用することによって、理想状態及び継ぎずれ状態のそれぞれにおいて、非重複部A1に照射された露光光ELにより基板Pに形成される感光膜のパターンの寸法と、重複部B1に照射された露光光ELにより基板Pに形成される感光膜のパターンの寸法とを、一致させることができる。 Accordingly, as the photosensitive film used for the substrate P, when the integrated exposure amount of the exposure light EL is greater than or equal to the value Jk, it is removed by development, and when it is less than the value Jk, it remains on the substrate P even after development (the pattern is changed). The photosensitive film formed on the substrate P by the exposure light EL irradiated to the non-overlapping portion A1 in each of the ideal state and the joint shift state by using the photosensitive film having characteristics (photosensitive characteristics, solubility). And the dimension of the pattern of the photosensitive film formed on the substrate P by the exposure light EL irradiated to the overlapping portion B1 can be matched.
 図10は、非重複部A1、A2における積算露光量が値Jhになるように、第1投影領域PR1及び第2投影領域PR2に露光光ELを照射した後、その露光光ELが照射された基板Pを現像することによって、基板P上に形成された感光膜のパターンを示す。図10中、ラインRaは、図6を参照して説明したような、理想状態で、且つ非重複部A1、A2における積算露光量が値Jhになるように基板Pを重複露光した場合の、現像後の感光膜のパターンの輪郭(外形)を示す。ラインRbは、図7を参照して説明したような、継ぎずれ状態で、且つ非重複部A1、A2における積算露光量が値Jhになるように基板Pを重複露光した場合の、現像後の感光膜のパターンの輪郭(外形)を示す。ラインRcは、図8を参照して説明したような、継ぎずれ状態で、且つ非重複部A1における積算露光量が値Jhになるように基板Pを重複露光した場合の、現像後の感光膜のパターンの輪郭(外形)を示す。 FIG. 10 shows that the first projection region PR1 and the second projection region PR2 are irradiated with the exposure light EL and then the exposure light EL is irradiated so that the integrated exposure amount in the non-overlapping portions A1 and A2 becomes the value Jh. A pattern of a photosensitive film formed on the substrate P by developing the substrate P is shown. In FIG. 10, the line Ra is an ideal state as described with reference to FIG. 6, and when the substrate P is subjected to overlapping exposure so that the integrated exposure amount in the non-overlapping portions A <b> 1 and A <b> 2 becomes the value Jh. The outline (outer shape) of the pattern of the photosensitive film after development is shown. The line Rb is a state after development in the case where the substrate P is overlapped and exposed so that the integrated exposure amount in the non-overlapping portions A1 and A2 becomes the value Jh as described with reference to FIG. The outline (outer shape) of the pattern of the photosensitive film is shown. The line Rc indicates a photosensitive film after development when the substrate P is overlapped and exposed so that the accumulated exposure amount in the non-overlapping portion A1 becomes the value Jh as described with reference to FIG. The outline (outer shape) of the pattern is shown.
 基板Pの感光膜が、ポジ型であり、照射された露光光ELの積算露光量が値Jk以上である場合に現像によって除去される感光特性(溶解度)を有する場合、その値Jkに応じた感光特性を有する感光膜に、非重複部A1、A2における積算露光量が値Jhになるように露光光ELが照射されることによって、理想状態で露光された感光膜の現像後のパターンの寸法と、継ぎずれ状態で露光された感光膜の現像後のパターンの寸法とを一致させることができる。図10に示す例においては、理想状態で露光された感光膜の現像後のパターンの寸法と、継ぎずれ状態で露光された感光膜の現像後のパターンの寸法とは、値Waで一致している。 When the photosensitive film of the substrate P is a positive type and has a photosensitive characteristic (solubility) that is removed by development when the integrated exposure amount of the irradiated exposure light EL is equal to or greater than the value Jk, the value corresponding to the value Jk By irradiating the photosensitive film having photosensitive characteristics with the exposure light EL so that the integrated exposure amount at the non-overlapping portions A1 and A2 becomes the value Jh, the dimension of the pattern after development of the photosensitive film exposed in an ideal state And the dimension of the pattern after development of the photosensitive film exposed in the joint misalignment state can be matched. In the example shown in FIG. 10, the dimension of the pattern after development of the photosensitive film exposed in the ideal state and the dimension of the pattern after development of the photosensitive film exposed in the joint displacement state coincide with each other with the value Wa. Yes.
 なお、感光膜のパターンの寸法とは、マスクMのライン・アンド・スペースパターンに応じて基板P上にライン状に形成された感光膜のパターンの幅(線幅)であって、所謂、ボトム幅をいう。本実施形態において、ボトム幅とは、基材の表面と感光膜の一方の側面との交点と、基材の表面と感光膜の他方の側面との交点との距離をいう。 The dimension of the photosensitive film pattern is the width (line width) of the photosensitive film pattern formed in a line shape on the substrate P in accordance with the line and space pattern of the mask M. The width. In the present embodiment, the bottom width refers to the distance between the intersection between the surface of the substrate and one side surface of the photosensitive film and the intersection between the surface of the substrate and the other side surface of the photosensitive film.
 このように、基板P(感光膜)の感光特性(溶解度)に応じて、非重複部A1、A2における積算露光量の値Jhを決定し、非重複部A1、A2における積算露光量が値Jhになるように、第1投影領域PR1及び第2投影領域PR2に露光光ELが照射されることによって、理想状態及び継ぎずれ状態のそれぞれにおいて、同一の寸法Waを有するパターンが基板Pに形成される。 As described above, the integrated exposure value Jh in the non-overlapping portions A1 and A2 is determined according to the photosensitive characteristic (solubility) of the substrate P (photosensitive film), and the integrated exposure amount in the non-overlapping portions A1 and A2 is the value Jh. By irradiating the first projection region PR1 and the second projection region PR2 with the exposure light EL, a pattern having the same dimension Wa is formed on the substrate P in each of the ideal state and the joint displacement state. The
 すなわち、たとえ継ぎずれ状態になった場合でも、非重複部A1,A2に照射される露光光ELによって基板Pに形成されるパターンの寸法と、重複部B1に照射される露光光ELによって基板Pに形成されるパターンの寸法とは、同一になる。したがって、基板P上に形成されるパターンが不均一になることを抑制することができる。 That is, even when the joint is shifted, the size of the pattern formed on the substrate P by the exposure light EL irradiated to the non-overlapping portions A1 and A2 and the substrate P by the exposure light EL irradiated to the overlapping portion B1. The dimensions of the pattern formed in the same are the same. Therefore, it is possible to prevent the pattern formed on the substrate P from becoming non-uniform.
 図11は、非重複部A1、A2における積算露光量の値を変えた場合の、理想状態及び継ぎずれ状態それぞれの積算露光量の分布を示す。ラインLP1aは、理想状態であって、非重複部A1、A2(中央部C1、C2)の積算露光量の値がJh1である場合を示し、ラインLP1bは、継ぎずれ状態であって、非重複部A1、A2(中央部C1、C2)の積算露光量の値がJh1である場合を示す。ラインLQ1aは、理想状態であって、非重複部A1、A2(中央部C1、C2)の積算露光量の値がJh1と異なるJh2である場合を示し、ラインLQ1bは、継ぎずれ状態であって、非重複部A1、A2(中央部C1、C2)の積算露光量の値がJh2である場合を示す。ラインLR1aは、理想状態であって、非重複部A1、A2(中央部C1、C2)の積算露光量の値がJh1及びJh2と異なるJh3である場合を示し、ラインLR1bは、継ぎずれ状態であって、非重複部A1、A2(中央部C1、C2)の積算露光量の値がJh3である場合を示す。 FIG. 11 shows distributions of the integrated exposure amounts in the ideal state and the joint displacement state when the values of the integrated exposure amounts in the non-overlapping portions A1 and A2 are changed. Line LP1a shows an ideal state where the value of the integrated exposure amount of non-overlapping portions A1 and A2 (center portions C1 and C2) is Jh1, and line LP1b is a splice state and non-overlapping. The case where the value of the integrated exposure amount of the parts A1 and A2 (center parts C1 and C2) is Jh1 is shown. The line LQ1a is an ideal state, and shows the case where the value of the integrated exposure amount of the non-overlapping portions A1 and A2 (center portions C1 and C2) is Jh2 different from Jh1, and the line LQ1b is in a joint shift state The case where the value of the integrated exposure amount of the non-overlapping portions A1 and A2 (center portions C1 and C2) is Jh2 is shown. Line LR1a shows an ideal state where the value of the integrated exposure amount of non-overlapping parts A1 and A2 (center parts C1 and C2) is Jh3 different from Jh1 and Jh2, and line LR1b shows a joint-shifted state. In this case, the value of the integrated exposure amount of the non-overlapping portions A1 and A2 (center portions C1 and C2) is Jh3.
 図11に示すように、非重複部A1における積算露光量の値が、値Jh1、Jh2、Jh3に変化した場合でも、理想状態における積算露光量と継ぎずれ状態における積算露光量とが一致する値Jk1、Jk2、Jk3が存在する。これにより、基板P(感光膜)の感光特性に応じて、例えば値Jh1、Jh2、Jh3のなかから、最適な値を決定することによって、現像後において基板Pに形成されるパターンを均一にすることができる。 As shown in FIG. 11, even when the value of the integrated exposure amount in the non-overlapping portion A1 changes to the values Jh1, Jh2, and Jh3, the value that the integrated exposure amount in the ideal state and the integrated exposure amount in the joint shift state coincide with each other. Jk1, Jk2, and Jk3 exist. Thereby, according to the photosensitive characteristic of the substrate P (photosensitive film), for example, an optimum value is determined from the values Jh1, Jh2, and Jh3, thereby making the pattern formed on the substrate P after development uniform. be able to.
 例えば、基板Pの感光膜が、照射された露光光ELの積算露光量が値Jk1以上である場合に現像によって除去される感光特性を有する場合、非重複部A1、A2(中央部C1、C2)における積算露光量として、値Jh1が決定される。同様に、基板Pの感光膜が、照射された露光光ELの積算露光量が値Jk2以上である場合に現像によって除去される感光特性を有する場合、非重複部A1、A2(中央部C1、C2)における積算露光量として、値Jh2が決定される。また、基板Pの感光膜が、照射された露光光ELの積算露光量が値Jk3以上である場合に現像によって除去される感光特性を有する場合、非重複部A1、A2(中央部C1、C2)における積算露光量として、値Jh3が決定される。 For example, when the photosensitive film of the substrate P has a photosensitive characteristic that is removed by development when the integrated exposure amount of the irradiated exposure light EL is equal to or greater than the value Jk1, the non-overlapping portions A1, A2 (center portions C1, C2) The value Jh1 is determined as the integrated exposure amount in (). Similarly, when the photosensitive film of the substrate P has a photosensitive characteristic that is removed by development when the integrated exposure amount of the irradiated exposure light EL is equal to or greater than the value Jk2, the non-overlapping portions A1, A2 (center portion C1, The value Jh2 is determined as the integrated exposure amount in C2). Further, when the photosensitive film of the substrate P has a photosensitive characteristic that is removed by development when the integrated exposure amount of the irradiated exposure light EL is equal to or greater than the value Jk3, the non-overlapping portions A1, A2 (center portions C1, C2) The value Jh3 is determined as the integrated exposure amount in ().
 このように、基板Pにおいてパターンの寸法を均一にできる積算露光量Jhは、基板Pの感光特性に応じて決定される。 Thus, the integrated exposure amount Jh that can make the pattern dimension uniform on the substrate P is determined according to the photosensitive characteristics of the substrate P.
 以下の説明において、基板Pにおいてパターンが不均一になることを抑制できる、非重複部(中央部)における積算露光量を適宜、最適積算露光量JOPT、と称する。 In the following description, the integrated exposure amount at the non-overlapping portion (center portion) that can prevent the pattern from becoming non-uniform on the substrate P is appropriately referred to as an optimal integrated exposure amount JOPT.
 ところで、図10に示したパターンの寸法Waは、目標寸法WTと異なる。すなわち、基板Pにおいて、パターンの寸法Waは均一になるものの、その寸法Waは、目標寸法WTと異なる。そこで、本実施形態においては、現像時間Tを調整することによって、基板Pのパターン(感光膜のパターン)の寸法を、目標寸法WTにする。 Incidentally, the dimension Wa of the pattern shown in FIG. 10 is different from the target dimension WT. That is, in the substrate P, the pattern dimension Wa is uniform, but the dimension Wa is different from the target dimension WT. Therefore, in the present embodiment, by adjusting the development time T, the dimension of the pattern of the substrate P (photosensitive film pattern) is set to the target dimension WT.
 図12は、現像時間Tに応じてパターンの寸法が調整される状態を示す模式図である。現像処理においては、感光膜の輪郭(外形)は、等方的に変化する。すなわち、図12の矢印で示すように、現像処理によって、感光膜の寸法は、等方的に減少する。したがって、現像時間Tを調整することによって、寸法Waの感光膜のパターンを、寸法WTの感光膜のパターンに変化させることができる。 FIG. 12 is a schematic diagram showing a state in which the dimension of the pattern is adjusted according to the development time T. In the development process, the contour (outer shape) of the photosensitive film changes isotropically. That is, as shown by the arrow in FIG. 12, the dimension of the photosensitive film isotropically decreases by the development process. Therefore, by adjusting the developing time T, the pattern of the photosensitive film having the dimension Wa can be changed to the pattern of the photosensitive film having the dimension WT.
 以下の説明において、基板Pに均一に形成されたパターンの寸法Waを目標寸法WTにすることができる現像時間を適宜、最適現像時間TOPT、と称する。 In the following description, the development time during which the dimension Wa of the pattern uniformly formed on the substrate P can be set to the target dimension WT is appropriately referred to as optimum development time TOPT.
 以上、図5~図12を参照して、所定の露光条件に相当する最適積算露光量JOPT、及び所定の現像条件に相当する最適現像時間TOPTについて説明した。 As described above, the optimum integrated exposure amount JOPT corresponding to the predetermined exposure condition and the optimum development time TOPT corresponding to the predetermined development condition have been described with reference to FIGS.
 以下、最適積算露光量JOPT、及び最適現像時間TOPTの決定方法を含む、パターンの形成方法の一例について説明する。 Hereinafter, an example of a pattern forming method including a method for determining the optimum integrated exposure amount JOPT and the optimum developing time TOPT will be described.
 本実施形態に係るパターン形成方法は、図13のフローチャートに示すように、パターンが不均一になることを抑制できる所定の露光条件(最適積算露光量JOPT)及び所定の現像条件(最適現像時間TOPT)を決定すること(ステップSP1)と、その決定された所定の露光条件(最適積算露光量JOPT)で基板Pを露光し、その決定された所定の現像条件(最適現像時間TOPT)で基板Pを現像すること(ステップSP2)とを含む。 In the pattern forming method according to the present embodiment, as shown in the flowchart of FIG. 13, a predetermined exposure condition (optimum integrated exposure amount JOPT) and a predetermined development condition (optimal development time TOPT) that can prevent the pattern from becoming non-uniform. ) Is determined (step SP1), the substrate P is exposed under the determined predetermined exposure condition (optimum integrated exposure amount JOPT), and the substrate P is determined under the determined predetermined development condition (optimum development time TOPT). (Step SP2).
 ステップSP1においては、所定の露光条件(最適積算露光量JOPT)及び所定の現像条件(最適現像時間TOPT)を決定するために、基板を露光する処理、及びその露光された基板を現像する処理が実行される。ステップSP2においては、基板Pにデバイス(デバイスパターン)を形成するために、決定された所定の露光条件で、基板を露光する処理、及び決定された所定の現像条件で、基板を現像する処理が実行される。 In step SP1, in order to determine a predetermined exposure condition (optimum integrated exposure amount JOPT) and a predetermined development condition (optimum development time TOPT), a process of exposing the substrate and a process of developing the exposed substrate are performed. Executed. In step SP2, in order to form a device (device pattern) on the substrate P, a process of exposing the substrate under the determined predetermined exposure conditions and a process of developing the substrate under the determined predetermined development conditions are performed. Executed.
 以下の説明において、最適積算露光量JOPT及び最適現像時間TOPTを決定するために、ステップSP1において実行される露光を適宜、テスト露光、と称し、ステップSP1において実行される現像を適宜、テスト現像、と称する。また、ステップSP1において使用される基板を適宜、テスト基板Pt、と称する。また、デバイスパターンを形成するために、ステップSP2において実行される露光を適宜、本露光、と称し、ステップSP2において実行される現像を適宜、本現像、と称する。 In the following description, in order to determine the optimum integrated exposure amount JOPT and the optimum development time TOPT, the exposure performed in step SP1 is appropriately referred to as test exposure, and the development performed in step SP1 is appropriately performed as test development. Called. Further, the substrate used in step SP1 is appropriately referred to as a test substrate Pt. In order to form a device pattern, the exposure executed in step SP2 is appropriately referred to as main exposure, and the development executed in step SP2 is appropriately referred to as main development.
 本実施形態において、ステップSP1は、異なる複数の露光条件のそれぞれで、投影光学系の投影領域に照射されたマスクMからの露光光ELでテスト基板Ptをテスト露光することと、異なる複数の現像条件のそれぞれで、テスト露光されたテスト基板Ptをテスト現像することと、テスト露光及びテスト現像によりテスト基板Ptに形成されたパターンに基づいて、所定の露光条件(最適積算露光量JOPT)及び所定の現像条件(最適現像時間TOPT)を決定することと、を含む。 In the present embodiment, step SP1 includes test exposure of the test substrate Pt with the exposure light EL from the mask M irradiated onto the projection area of the projection optical system under different exposure conditions, and different developments. Based on the test development of the test substrate Pt subjected to the test exposure under each of the conditions, and the pattern formed on the test substrate Pt by the test exposure and the test development, the predetermined exposure condition (optimum integrated exposure amount JOPT) and the predetermined Determining development conditions (optimum development time TOPT).
 本実施形態において、ステップSP2は、ステップSP1で決定された所定の露光条件(最適積算露光量JOPT)で、投影光学系の投影領域に照射されたマスクMからの露光光ELで基板Pを本露光することと、ステップSP1で決定された所定の現像条件(最適現像時間TOPT)で、本露光された基板Pを本現像することと、を含む。 In this embodiment, in step SP2, the substrate P is exposed with the exposure light EL from the mask M irradiated onto the projection area of the projection optical system under the predetermined exposure condition (optimum integrated exposure amount JOPT) determined in step SP1. And exposing the substrate P subjected to the main exposure under the predetermined development condition (optimum development time TOPT) determined in step SP1.
 以下、テスト露光として、第1~第7投影光学系PL1~PL7のうち、第1投影光学系PL1を用いてテスト露光する場合を例にして説明する。なお、第1投影光学系PL1以外の第2~第7投影光学系PL2~PL7の少なくとも一つを用いてテスト露光が実行されてもよい。また、以下の説明においては、第1投影光学系PL1を適宜、投影光学系PL、と称し、第1投影光学系PL1の第1投影領域PR1を適宜、投影領域PR、と称する。 Hereinafter, a case where the test exposure is performed using the first projection optical system PL1 among the first to seventh projection optical systems PL1 to PL7 will be described as an example of the test exposure. Note that the test exposure may be performed using at least one of the second to seventh projection optical systems PL2 to PL7 other than the first projection optical system PL1. In the following description, the first projection optical system PL1 is appropriately referred to as a projection optical system PL, and the first projection region PR1 of the first projection optical system PL1 is appropriately referred to as a projection region PR.
 また、テスト露光においては、テスト基板Ptが配置された投影領域PRに露光光ELを複数回照射して、そのテスト基板Ptを重複露光することが行われる。以下の説明において、テスト基板Ptが重複露光される部分を適宜、重複部、と称する。また、本実施形態においては、テスト基板Ptとして、第1テスト基板Pt1と、第2テスト基板Pt2とが使用される。 In the test exposure, the projection region PR where the test substrate Pt is arranged is irradiated with the exposure light EL a plurality of times, and the test substrate Pt is subjected to overlapping exposure. In the following description, a portion where the test substrate Pt is subjected to overlapping exposure is appropriately referred to as an overlapping portion. In the present embodiment, the first test substrate Pt1 and the second test substrate Pt2 are used as the test substrate Pt.
 本実施形態において、テスト露光は、図14のフローチャートに示すように、投影光学系PLの投影領域PRにおける積算露光量が第1値Jaになるように、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第1領域AR1を露光すること(ステップSA1)と、投影領域PRの重複部における積算露光量が第1値Jaになるように、投影領域PRに対して異なる複数の位置のそれぞれで、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第2領域AR2を重複露光すること(ステップSA2)と、投影領域PRにおける積算露光量が第1値Jaと異なる第2値Jbになるように、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第3領域AR3を露光すること(ステップSA3)と、投影領域PRの重複部における積算露光量が第2値Jbになるように、投影領域PRに対して異なる複数の位置のそれぞれで、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第4領域AR4を重複露光すること(ステップSA4)と、投影光学系PLの投影領域PRにおける積算露光量が第1値Jaになるように、投影領域PRに照射されたマスクMからの露光光ELで第2テスト基板Pt2の第5領域AR5を露光すること(ステップSA5)と、投影領域PRの重複部における積算露光量が第1値Jaになるように、投影領域PRに対して異なる複数の位置のそれぞれで、投影領域PRに照射されたマスクMからの露光光ELで第2テスト基板Pt2の第6領域AR6を重複露光すること(ステップSA6)と、を含む。 In the present embodiment, the test exposure is performed from the mask M irradiated to the projection region PR so that the accumulated exposure amount in the projection region PR of the projection optical system PL becomes the first value Ja as shown in the flowchart of FIG. Exposing the first area AR1 of the first test substrate Pt1 with the exposure light EL (step SA1), and the projection area PR so that the integrated exposure amount at the overlapping portion of the projection area PR becomes the first value Ja. Multiple exposure of the second area AR2 of the first test substrate Pt1 with the exposure light EL from the mask M irradiated to the projection area PR at each of a plurality of different positions (step SA2), and integration in the projection area PR The third area AR3 of the first test substrate Pt1 with the exposure light EL from the mask M irradiated to the projection area PR so that the exposure amount becomes a second value Jb different from the first value Ja. The projection region PR was irradiated at each of a plurality of different positions with respect to the projection region PR so that the exposure (step SA3) and the integrated exposure amount at the overlapping portion of the projection region PR become the second value Jb. Overexposure is performed on the fourth area AR4 of the first test substrate Pt1 with the exposure light EL from the mask M (step SA4), and the integrated exposure amount in the projection area PR of the projection optical system PL becomes the first value Ja. Then, exposing the fifth area AR5 of the second test substrate Pt2 with the exposure light EL from the mask M irradiated to the projection area PR (step SA5), and the integrated exposure amount in the overlapping area of the projection area PR is the first value. The sixth region A of the second test substrate Pt2 is exposed to the exposure light EL from the mask M irradiated to the projection region PR at each of a plurality of positions different from the projection region PR so as to be Ja. Comprising 6 to overlapping exposure (step SA6), the.
 本実施形態において、テスト現像は、図15のフローチャートに示すように、第1~第4領域AR1~AR4が露光された第1テスト基板Pt1を第1時間Taで現像して、第1テスト基板Pt1の第1~第4領域AR1~AR4のそれぞれに、感光膜のパターンを形成すること(ステップSB1)と、第5,第6領域AR5,AR6が露光された第2テスト基板Pt2を第1時間Taと異なる第2時間Tbで現像して、第2テスト基板Pt2の第5,第6領域AR5,AR6のそれぞれに、感光膜のパターンを形成すること(ステップSB2)と、を含む。 In the present embodiment, as shown in the flowchart of FIG. 15, the test development is performed by developing the first test substrate Pt1 on which the first to fourth areas AR1 to AR4 are exposed for the first time Ta, A photosensitive film pattern is formed in each of the first to fourth areas AR1 to AR4 of Pt1 (step SB1), and the second test substrate Pt2 on which the fifth and sixth areas AR5 and AR6 are exposed is formed on the first test substrate Pt2. Developing at a second time Tb different from the time Ta to form a pattern of a photosensitive film in each of the fifth and sixth regions AR5 and AR6 of the second test substrate Pt2 (step SB2).
 以下の説明において、テスト現像後、第1領域AR1に形成された感光膜のパターンを適宜、第1パターン、と称する。同様に、テスト現像後、第2,第3,第4,第5,第6領域AR2,AR3,AR4,AR5,AR6のそれぞれに形成された感光膜のパターンを適宜、第2,第3,第4,第5,第6パターン、と称する。 In the following description, the pattern of the photosensitive film formed in the first area AR1 after the test development is appropriately referred to as a first pattern. Similarly, after the test development, the pattern of the photosensitive film formed in each of the second, third, fourth, fifth and sixth regions AR2, AR3, AR4, AR5, AR6 is appropriately changed to the second, third, third, These are called fourth, fifth and sixth patterns.
 図16は、第1テスト基板Pt1の一例を示す模式図、図17は、第2テスト基板Pt2の一例を示す模式図である。なお、図16及び図17においては、投影領域PRの形状を長方形とする。 FIG. 16 is a schematic diagram illustrating an example of the first test substrate Pt1, and FIG. 17 is a schematic diagram illustrating an example of the second test substrate Pt2. In FIGS. 16 and 17, the shape of the projection region PR is a rectangle.
 本実施形態においては、図16に示すように、投影領域PRにおける積算露光量が第1値Jaになるように、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第1領域AR1が露光される(ステップSA1)。 In the present embodiment, as shown in FIG. 16, the first test substrate Pt1 is exposed with the exposure light EL from the mask M irradiated to the projection region PR so that the integrated exposure amount in the projection region PR becomes the first value Ja. The first area AR1 is exposed (step SA1).
 本実施形態においては、第1領域AR1を露光するとき、投影領域PRに対する第1テスト基板Pt1の位置が固定された状態で、その投影領域PRにおける積算露光量が第1値Jaになるように、重複露光が実行される。すなわち、理想状態で、投影領域PRにおける積算露光量が第1値Jaになるように、第1領域AR1が重複露光される。例えば、投影領域PRにおける露光量が第1値Jaの1/H1になるようにマスクMからの露光光ELが投影領域PRに照射され、第1テスト基板Pt1の位置が固定された状態で、H1回重複露光が実行される。なお、重複露光する際、各露光における露光量が異なってもよい。また、投影領域PRにおける露光量が第1値JaになるようにマスクMからの露光光ELを投影領域PRに照射して、第1テスト基板Pt1の位置を固定した状態で、1回だけ露光(単露光)してもよい。 In the present embodiment, when the first area AR1 is exposed, the integrated exposure amount in the projection area PR becomes the first value Ja while the position of the first test substrate Pt1 with respect to the projection area PR is fixed. Overlap exposure is performed. That is, in the ideal state, the first area AR1 is subjected to overlapping exposure so that the integrated exposure amount in the projection area PR becomes the first value Ja. For example, the exposure light EL from the mask M is irradiated onto the projection region PR so that the exposure amount in the projection region PR becomes 1 / H1 of the first value Ja, and the position of the first test substrate Pt1 is fixed. H1 overlap exposure is executed. In addition, when performing overlapping exposure, the exposure amount in each exposure may be different. Further, the exposure light EL from the mask M is irradiated to the projection region PR so that the exposure amount in the projection region PR becomes the first value Ja, and the exposure is performed only once in a state where the position of the first test substrate Pt1 is fixed. (Single exposure) may be used.
 第1テスト基板Pt1の第2領域AR2に対しては、継ぎずれ状態で重複露光が実行される(ステップSA2)。図16に示すように、本実施形態においては、投影領域PRの重複部における積算露光量が第1値Jaになるように、投影領域PRに対して異なる2つの位置のそれぞれで、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第2領域AR2が重複露光される。 The second exposure AR2 of the first test substrate Pt1 is subjected to overlapped exposure in a joint shift state (step SA2). As shown in FIG. 16, in the present embodiment, the projection region PR is at each of two different positions with respect to the projection region PR so that the integrated exposure amount at the overlapping portion of the projection region PR becomes the first value Ja. The second area AR2 of the first test substrate Pt1 is subjected to overlapping exposure with the exposure light EL from the mask M irradiated on the surface.
 第2領域AR2を露光するとき、投影領域PRにおける露光量が第1値Jaの1/2になるようにマスクMからの露光光ELを投影領域PRに照射して、投影領域PRに配置された第1テスト基板Pt1の第2領域AR2を、投影領域PRに対して異なる2つの位置のそれぞれで露光して、2回重複露光する。また、本実施形態において、2回の重複露光のうち、第1回目の露光における投影領域PRに対する基板Pの位置と、第2回目の露光における投影領域PRに対する基板Pの位置との距離(ずれ量)は、例えば2μmである。 When the second area AR2 is exposed, the projection area PR is irradiated with the exposure light EL from the mask M so that the exposure amount in the projection area PR is ½ of the first value Ja, and is arranged in the projection area PR. The second area AR2 of the first test substrate Pt1 is exposed at each of two different positions with respect to the projection area PR, and is exposed twice. In the present embodiment, of the two overlapping exposures, the distance (deviation) between the position of the substrate P relative to the projection region PR in the first exposure and the position of the substrate P relative to the projection region PR in the second exposure. The amount is, for example, 2 μm.
 なお、重複露光は、2回に限られず、3回以上の任意の回数実行することができる。例えば、重複露光がH2回実行される場合、1回の露光での投影領域PRにおける露光量は、第1値Jaの1/H2に設定される。なお、重複露光する際、各露光における露光量が異なってもよい。 Note that the overlap exposure is not limited to two times, and can be executed any number of times three or more. For example, when overlapped exposure is executed H2 times, the exposure amount in the projection region PR in one exposure is set to 1 / H2 of the first value Ja. In addition, when performing overlapping exposure, the exposure amount in each exposure may be different.
 また、投影領域PRにおける積算露光量が第2値Jbになるように、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第3領域AR3が露光される(ステップSA3)。第2値Jbは、第1値Jaと異なる。本実施形態において、第2値Jbは、第1値Jaの例えば1.2倍である。 In addition, the third area AR3 of the first test substrate Pt1 is exposed with the exposure light EL from the mask M irradiated on the projection area PR so that the integrated exposure amount in the projection area PR becomes the second value Jb (step). SA3). The second value Jb is different from the first value Ja. In the present embodiment, the second value Jb is, for example, 1.2 times the first value Ja.
 本実施形態においては、第3領域AR3を露光するとき、投影領域PRに対する第1テスト基板Pt1の位置が固定された状態で、その投影領域PRにおける積算露光量が第2値Jbになるように、重複露光が実行される。すなわち、理想状態で、投影領域PRにおける積算露光量が第2値Jbになるように、第3領域AR3が重複露光される。例えば、投影領域PRにおける露光量が第2値Jbの1/H3になるようにマスクMからの露光光ELが投影領域PRに照射され、第1テスト基板Pt1の位置が固定された状態で、H3回重複露光が実行される。なお、重複露光する際、各露光における露光量が異なってもよい。また、投影領域PRにおける露光量が第2値JbになるようにマスクMからの露光光ELを投影領域PRに照射して、第1テスト基板Pt1の位置を固定した状態で、1回だけ露光(単露光)してもよい。 In the present embodiment, when the third area AR3 is exposed, the integrated exposure amount in the projection area PR becomes the second value Jb in a state where the position of the first test substrate Pt1 with respect to the projection area PR is fixed. Overlap exposure is performed. That is, in the ideal state, the third area AR3 is subjected to overlapping exposure so that the integrated exposure amount in the projection area PR becomes the second value Jb. For example, the exposure light EL from the mask M is irradiated onto the projection region PR so that the exposure amount in the projection region PR becomes 1 / H3 of the second value Jb, and the position of the first test substrate Pt1 is fixed. Overlap exposure is executed H3 times. In addition, when performing overlapping exposure, the exposure amount in each exposure may be different. Further, the exposure light EL from the mask M is irradiated to the projection region PR so that the exposure amount in the projection region PR becomes the second value Jb, and the exposure is performed only once in a state where the position of the first test substrate Pt1 is fixed. (Single exposure) may be used.
 第1テスト基板Pt1の第4領域AR4に対しては、継ぎずれ状態で重複露光が実行される(ステップSA4)。図16に示すように、本実施形態においては、投影領域PRの重複部における積算露光量が第2値Jbになるように、投影領域PRに対して異なる2つの位置のそれぞれで、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第4領域AR4が重複露光される。 Overlap exposure is performed in a joint shift state on the fourth area AR4 of the first test substrate Pt1 (step SA4). As shown in FIG. 16, in the present embodiment, the projection region PR is at each of two different positions with respect to the projection region PR so that the integrated exposure amount at the overlapping portion of the projection region PR becomes the second value Jb. The fourth area AR4 of the first test substrate Pt1 is subjected to overlapping exposure with the exposure light EL from the mask M irradiated on the surface.
 第4領域AR4を露光するとき、投影領域PRにおける露光量が第2値Jbの1/2になるようにマスクMからの露光光ELを投影領域PRに照射して、投影領域PRに配置された第1テスト基板Pt1の第4領域AR4を、投影領域PRに対して異なる2つの位置のそれぞれで露光して、2回重複露光する。また、本実施形態において、2回の重複露光のうち、第1回目の露光における投影領域PRに対する基板Pの位置と、第2回目の露光における投影領域PRに対する基板Pの位置との距離(ずれ量)は、例えば2μmである。 When the fourth area AR4 is exposed, the projection area PR is irradiated with the exposure light EL from the mask M so that the exposure amount in the projection area PR is ½ of the second value Jb, and is arranged in the projection area PR. The fourth area AR4 of the first test substrate Pt1 is exposed at each of two different positions with respect to the projection area PR, and is exposed twice. In the present embodiment, of the two overlapping exposures, the distance (deviation) between the position of the substrate P relative to the projection region PR in the first exposure and the position of the substrate P relative to the projection region PR in the second exposure. The amount is, for example, 2 μm.
 なお、重複露光は、2回に限られず、3回以上の任意の回数実行することができる。例えば、重複露光がH4回実行される場合、1回の露光での投影領域PRにおける露光量は、第1値Jaの1/H4に設定される。なお、重複露光する際、各露光における露光量が異なってもよい。 Note that the overlap exposure is not limited to two times, and can be executed any number of times three or more. For example, when overlap exposure is performed H4 times, the exposure amount in the projection region PR in one exposure is set to 1 / H4 of the first value Ja. In addition, when performing overlapping exposure, the exposure amount in each exposure may be different.
 また、図17に示すように、投影領域PRにおける積算露光量が第1値Jaになるように、投影領域PRに照射されたマスクMからの露光光ELで第2テスト基板Pt2の第5領域AR5が露光される(ステップSA5)。 Further, as shown in FIG. 17, the fifth region of the second test substrate Pt2 is exposed with the exposure light EL from the mask M irradiated on the projection region PR so that the integrated exposure amount in the projection region PR becomes the first value Ja. AR5 is exposed (step SA5).
 本実施形態においては、第5領域AR5を露光するとき、投影領域PRに対する第2テスト基板Pt2の位置が固定された状態で、その投影領域PRにおける積算露光量が第1値Jaになるように、重複露光が実行される。すなわち、理想状態で、投影領域PRにおける積算露光量が第1値Jaになるように、第5領域AR5が重複露光される。例えば、投影領域PRにおける露光量が第1値Jaの1/H5になるようにマスクMからの露光光ELが投影領域PRに照射され、第2テスト基板Pt2の位置が固定された状態で、H5回重複露光が実行される。なお、重複露光する際、各露光における露光量が異なってもよい。また、投影領域PRにおける露光量が第1値JaになるようにマスクMからの露光光ELを投影領域PRに照射して、第1テスト基板Pt1の位置を固定した状態で、1回だけ露光(単露光)してもよい。 In the present embodiment, when the fifth area AR5 is exposed, the integrated exposure amount in the projection area PR becomes the first value Ja while the position of the second test substrate Pt2 with respect to the projection area PR is fixed. Overlap exposure is performed. That is, in the ideal state, the fifth area AR5 is subjected to overlapping exposure so that the integrated exposure amount in the projection area PR becomes the first value Ja. For example, the exposure light EL from the mask M is irradiated onto the projection region PR so that the exposure amount in the projection region PR becomes 1 / H5 of the first value Ja, and the position of the second test substrate Pt2 is fixed. Overlap exposure is performed H5 times. In addition, when performing overlapping exposure, the exposure amount in each exposure may be different. Further, the exposure light EL from the mask M is irradiated to the projection region PR so that the exposure amount in the projection region PR becomes the first value Ja, and the exposure is performed only once in a state where the position of the first test substrate Pt1 is fixed. (Single exposure) may be used.
 第2テスト基板Pt2の第6領域AR6に対しては、継ぎずれ状態で重複露光が実行される(ステップSA6)。図17に示すように、本実施形態においては、投影領域PRの重複部における積算露光量が第1値Jaになるように、投影領域PRに対して異なる2つの位置のそれぞれで、投影領域PRに照射されたマスクMからの露光光ELで第2テスト基板Pt2の第6領域AR6が重複露光される。 Overlap exposure is performed on the sixth area AR6 of the second test substrate Pt2 in a joint shift state (step SA6). As shown in FIG. 17, in the present embodiment, the projection region PR is at each of two different positions with respect to the projection region PR so that the integrated exposure amount at the overlapping portion of the projection region PR becomes the first value Ja. The sixth area AR6 of the second test substrate Pt2 is subjected to overlapping exposure with the exposure light EL from the mask M irradiated on the surface.
 第6領域AR6を露光するとき、投影領域PRにおける露光量が第1値Jaの1/2になるようにマスクMからの露光光ELを投影領域PRに照射して、投影領域PRに配置された第2テスト基板Pt2の第6領域AR6を、投影領域PRに対して異なる2つの位置のそれぞれで露光して、2回重複露光する。また、本実施形態において、2回の重複露光のうち、第1回目の露光における投影領域PRに対する基板Pの位置と、第2回目の露光における投影領域PRに対する基板Pの位置との距離(ずれ量)は、例えば2μmである。 When the sixth area AR6 is exposed, the projection area PR is irradiated with the exposure light EL from the mask M so that the exposure amount in the projection area PR is ½ of the first value Ja, and is arranged in the projection area PR. The sixth area AR6 of the second test substrate Pt2 is exposed at each of two different positions with respect to the projection area PR, and is exposed twice. In the present embodiment, of the two overlapping exposures, the distance (deviation) between the position of the substrate P relative to the projection region PR in the first exposure and the position of the substrate P relative to the projection region PR in the second exposure. The amount is, for example, 2 μm.
 なお、重複露光は、2回に限られず、3回以上の任意の回数実行することができる。例えば、重複露光がH6回実行される場合、1回の露光での投影領域PRにおける露光量は、第1値Jaの1/H6に設定される。なお、重複露光する際、各露光における露光量が異なってもよい。 Note that the overlap exposure is not limited to two times, and can be executed any number of times three or more. For example, when overlapping exposure is performed H6 times, the exposure amount in the projection region PR in one exposure is set to 1 / H6 of the first value Ja. In addition, when performing overlapping exposure, the exposure amount in each exposure may be different.
 次に、第1テスト基板Pt1に対して、現像処理が実行される(ステップSB1)。第1テスト基板Pt1の現像時間は、第1時間Taである。 Next, development processing is performed on the first test substrate Pt1 (step SB1). The development time of the first test substrate Pt1 is the first time Ta.
 また、第2テスト基板Pt2に対して、現像処理が実行される(ステップSB2)。第2テスト基板Pt2の現像時間は、第2時間Tbである。第1時間Taと第2時間Tbとは異なる。本実施形態において、第2時間Tbは、第1時間Taの0.8倍である。 Further, development processing is performed on the second test substrate Pt2 (step SB2). The development time of the second test substrate Pt2 is the second time Tb. The first time Ta and the second time Tb are different. In the present embodiment, the second time Tb is 0.8 times the first time Ta.
 第1、第2テスト基板Pt1、Pt2に対する現像が実行されることによって、第1領域AR1には感光膜の第1パターンが形成され、第2領域AR2には感光膜の第2パターンが形成され、第3領域AR3には感光膜の第3パターンが形成され、第4領域AR4には感光膜の第4パターンが形成され、第5領域AR5には感光膜の第5パターンが形成され、第6領域AR6には感光膜の第6パターンが形成される。第1~第6パターンのそれぞれは、ラインパターンである。 By performing development on the first and second test substrates Pt1 and Pt2, a first pattern of the photosensitive film is formed in the first area AR1, and a second pattern of the photosensitive film is formed in the second area AR2. A third pattern of the photosensitive film is formed in the third area AR3, a fourth pattern of the photosensitive film is formed in the fourth area AR4, and a fifth pattern of the photosensitive film is formed in the fifth area AR5. A sixth pattern of the photosensitive film is formed in the six area AR6. Each of the first to sixth patterns is a line pattern.
 次に、本実施形態においては、第1パターン、第2パターン、第3パターン、第4パターン、第5パターン、及び第6パターンの寸法(ボトム幅)が計測される。パターンの寸法(ボトム幅)の計測は、例えばSEMなど、所定の計測装置を用いて実行される。 Next, in the present embodiment, the dimensions (bottom width) of the first pattern, the second pattern, the third pattern, the fourth pattern, the fifth pattern, and the sixth pattern are measured. The measurement of the dimension (bottom width) of the pattern is performed using a predetermined measuring device such as SEM.
 計測装置で計測された第1パターンの寸法は、W1である。第2パターンの寸法は、W2である。第3パターンの寸法は、W3である。第4パターンの寸法は、W4である。第5パターンの寸法は、W5である。第6パターンの寸法は、W6である。 The dimension of the first pattern measured by the measuring device is W1. The dimension of the second pattern is W2. The dimension of the third pattern is W3. The dimension of the fourth pattern is W4. The dimension of the fifth pattern is W5. The dimension of the sixth pattern is W6.
 次に、第1値Ja、第2値Jb、第1時間Ta、第2時間Tb、目標寸法WT、及び第1~第6パターンの寸法W1~W6に基づいて、最適積算露光量JOPT、及び最適現像時間TOPTを決定する処理が実行される。本実施形態においては、既知である第1値Ja、第2値Jb、第1時間Ta、第2時間Tb、目標寸法WT、及び第1~第6パターンの寸法W1~W6を使って、計算により、最適積算露光量JOPT、及び最適現像時間TOPTを決定する。 Next, based on the first value Ja, the second value Jb, the first time Ta, the second time Tb, the target dimension WT, and the first to sixth pattern dimensions W1 to W6, the optimum integrated exposure dose JOPT, and A process for determining the optimum development time TOPT is executed. In the present embodiment, calculation is performed using the known first value Ja, second value Jb, first time Ta, second time Tb, target dimension WT, and first to sixth pattern dimensions W1 to W6. Thus, the optimum integrated exposure amount JOPT and the optimum development time TOPT are determined.
 以下、最適積算露光量JOPT、及び最適現像時間TOPTの決定方法の一例について説明する。 Hereinafter, an example of a method for determining the optimum integrated exposure amount JOPT and the optimum development time TOPT will be described.
 図18は、基板Pに形成される感光膜のパターンの輪郭(外形)の一部をモデル化した図である。図18(A)に示す各ラインL1、L1’、L2、L2’、L3、L3’、L4、L4’は、基材に接する感光膜のパターンの輪郭の一部を一次式でモデル化したものである。図18(A)において、横軸は、感光膜のパターンの寸法(線幅)の半値であり、縦軸は、感光膜のパターンの高さである。 FIG. 18 is a diagram in which a part of the contour (outer shape) of the pattern of the photosensitive film formed on the substrate P is modeled. Each line L1, L1 ′, L2, L2 ′, L3, L3 ′, L4, and L4 ′ shown in FIG. 18 (A) models a part of the contour of the pattern of the photosensitive film in contact with the substrate by a linear expression. Is. In FIG. 18A, the horizontal axis represents the half value of the dimension (line width) of the photosensitive film pattern, and the vertical axis represents the height of the photosensitive film pattern.
 図18(A)において、ラインL4及びラインL4’は、図18(B)に示すような、露光条件及び現像条件が異なっても感光膜のパターンのボトム幅が同じになる感光膜の輪郭の一部を表す。本実施形態においては、以下に説明する計算により、ラインL4及びラインL4’が得られるような最適積算露光量JOPT、及び最適現像時間TOPTを求める。 In FIG. 18A, lines L4 and L4 ′ are contours of the photosensitive film that have the same bottom width of the photosensitive film pattern even when the exposure conditions and the development conditions are different, as shown in FIG. 18B. Represents part. In the present embodiment, the optimum integrated exposure amount JOPT and the optimum development time TOPT that can obtain the line L4 and the line L4 'are obtained by calculation described below.
 ラインL1は、理想状態において、積算露光量をJa、現像時間をTaとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。ラインL1’は、継ぎずれ状態において、積算露光量をJa、現像時間をTaとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。すなわち、ラインL1は、図16に示す第1領域AR1に形成された感光膜のパターンの輪郭を表し、ラインL1’は、図16に示す第2領域AR2に形成された感光膜のパターンの輪郭を表す。 Line L1 represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the ideal state where the integrated exposure amount is Ja and the development time is Ta. A line L1 'represents the contour of the pattern of the photosensitive film when the exposure and development are performed with Ja as the integrated exposure amount and Ta as the development time in the joint displacement state. That is, the line L1 represents the contour of the pattern of the photosensitive film formed in the first area AR1 shown in FIG. 16, and the line L1 ′ represents the contour of the pattern of the photosensitive film formed in the second area AR2 shown in FIG. Represents.
 ラインL1を、以下の(1A)式で表し、ラインL1’を、以下の(2A)式で表すこととする。 Suppose that the line L1 is represented by the following equation (1A), and the line L1 'is represented by the following equation (2A).
 y=a1x+b1…(1A)
 y=a1’x+b1’…(2A)
y = a1x + b1 (1A)
y = a1′x + b1 ′ (2A)
 また、ラインL1とラインL1’との交点の座標を(WP/2、hP)とする。 Also, the coordinates of the intersection of the line L1 and the line L1 'are (WP / 2, hP).
 ラインL2は、理想状態において、積算露光量をJb、現像時間をTaとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。ラインL2’は、継ぎずれ状態において、積算露光量をJb、現像時間をTaとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。すなわち、ラインL2は、図16に示す第3領域AR3に形成された感光膜のパターンの輪郭を表し、ラインL2’は、図16に示す第4領域AR4に形成された感光膜のパターンの輪郭を表す。 Line L2 represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the ideal state where the integrated exposure amount is Jb and the development time is Ta. A line L2 'represents the outline of the pattern of the photosensitive film when the exposure and development are performed with the integrated exposure amount being Jb and the development time being Ta in the joint displacement state. That is, the line L2 represents the contour of the pattern of the photosensitive film formed in the third area AR3 shown in FIG. 16, and the line L2 ′ represents the contour of the pattern of the photosensitive film formed in the fourth area AR4 shown in FIG. Represents.
 ラインL2を、以下の(3A)式で表し、ラインL2’を、以下の(4A)式で表すこととする。 The line L2 is represented by the following expression (3A), and the line L2 'is represented by the following expression (4A).
 y=a2x+b2…(3A)
 y=a2’x+b2’…(4A)
y = a2x + b2 (3A)
y = a2′x + b2 ′ (4A)
 a2、b2、a2’、b2’は、積算露光量に比例する。(3A)式、(4A)式は、以下の(3A)式、(4A)式に変形できる。 A2, b2, a2 ', b2' are proportional to the integrated exposure amount. The expressions (3A) and (4A) can be transformed into the following expressions (3A) and (4A).
 y=(a1x+b1)×(Jb/Ja)…(3A)
 y=(a1’x+b1’)×(Jb/Ja)…(4A)
y = (a1x + b1) × (Jb / Ja) (3A)
y = (a1′x + b1 ′) × (Jb / Ja) (4A)
 ラインL2とラインL2’との交点の座標は(WP/2、hP×(Jb/Ja))となる。 The coordinates of the intersection of the line L2 and the line L2 'are (WP / 2, hP × (Jb / Ja)).
 ラインL3は、理想状態において、積算露光量をJa、現像時間をTbとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。ラインL3’は、継ぎずれ状態において、積算露光量をJa、現像時間をTbとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。すなわち、ラインL3は、図17に示す第5領域AR5に形成された感光膜のパターンの輪郭を表し、ラインL3’は、図17に示す第6領域AR6に形成された感光膜のパターンの輪郭を表す。 Line L3 represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the ideal state where the integrated exposure amount is Ja and the development time is Tb. A line L3 'represents the outline of the pattern of the photosensitive film when the exposure and development are performed with the integrated exposure amount Ja and the development time Tb in the joint shift state. That is, the line L3 represents the outline of the pattern of the photosensitive film formed in the fifth area AR5 shown in FIG. 17, and the line L3 ′ represents the outline of the pattern of the photosensitive film formed in the sixth area AR6 shown in FIG. Represents.
 ラインL3を、以下の(5A)式で表し、ラインL3’を、以下の(6A)式で表すこととする。ここで、現像時間が変化しても、a1、a1’は変化しないものと仮定する。 Suppose that the line L3 is represented by the following expression (5A), and the line L3 'is represented by the following expression (6A). Here, it is assumed that a1 and a1 'do not change even if the development time changes.
 y=a1x+b3…(5A)
 y=a1’x+b3’…(6A)
y = a1x + b3 (5A)
y = a1′x + b3 ′ (6A)
 ラインL3とラインL3’との交点の座標を(WQ/2、hQ)とする。 Suppose that the coordinates of the intersection of the line L3 and the line L3 'are (WQ / 2, hQ).
 ラインL4を、以下の式(7A)で表し、ラインL4’を、以下の式(8A)で表すこととする。 The line L4 is represented by the following formula (7A), and the line L4 'is represented by the following formula (8A).
 y=aOPT+bOPT…(7A)
 y=aOPT’+bOPT’…(8A)
y = aOPT + bOPT (7A)
y = aOPT ′ + bOPT ′ (8A)
 ラインL4とラインL4’との交点の座標を(WT/2、h0)とする。 Suppose that the coordinates of the intersection of the line L4 and the line L4 'are (WT / 2, h0).
 ラインL1、L1’、L2、L2’、L3、L3’と、y=h0との交点は、計測装置を使って計測したボトム幅の半値である。したがって、以下の式が成り立つ。 The intersection of the lines L1, L1 ', L2, L2', L3, L3 'and y = h0 is the half value of the bottom width measured using the measuring device. Therefore, the following equation holds.
 h0=a1W1/2+b1…(9A)
 h0=a1’W1’/2+b1’…(10A)
 h0=a1(Jb/Ja)W2/2+b1(Jb/Ja)…(11A)
 h0=a1’(Jb/Ja)W2’/2+b1’(Jb/Ja)…(12A)
 h0=a1W3/2+b3…(13A)
 h0=a1’W3’/2+b3’…(14A)
h0 = a1W1 / 2 + b1 (9A)
h0 = a1′W1 ′ / 2 + b1 ′ (10A)
h0 = a1 (Jb / Ja) W2 / 2 + b1 (Jb / Ja) (11A)
h0 = a1 ′ (Jb / Ja) W2 ′ / 2 + b1 ′ (Jb / Ja) (12A)
h0 = a1W3 / 2 + b3 (13A)
h0 = a1′W3 ′ / 2 + b3 ′ (14A)
 (9A)式、(10A)式、(13A)式、(14A)式より、以下の式が導出される。 The following expressions are derived from the expressions (9A), (10A), (13A), and (14A).
 b1=h0-a1W1/2
 b1’=h0-a1’W1’/2
 b3=h0-a1W3/2
 b3’=h0-a1’W3’/2
b1 = h0-a1W1 / 2
b1 ′ = h0−a1′W1 ′ / 2
b3 = h0-a1W3 / 2
b3 ′ = h0−a1′W3 ′ / 2
 (9A)式及び(11A)式より、以下の(15A)式が導出され、(10A)式及び(12A)式より、以下の(16A)式が導出され、(9A)式及び(15A)式より、以下の(17A)式が導出され、(10A)式及び(16A)式より、以下の(18A)式が導出され、(13A)式及び(15A)式より、以下の(19A)式が導出され、(14A)式及び(16A)式より、以下の(20A)式が導出される。 The following formula (15A) is derived from the formulas (9A) and (11A), the following formula (16A) is derived from the formulas (10A) and (12A), and the formulas (9A) and (15A) From the equation, the following equation (17A) is derived, from the equations (10A) and (16A), the following equation (18A) is derived, and from the equations (13A) and (15A), the following (19A) The following equation (20A) is derived from the equations (14A) and (16A).
 a1=h0×{1-(Jb/Ja)}/{(Jb/Ja)×(W2/2-W1/2)}…(15A)
 a1’=h0×{1-(Jb/Ja)}/{(Jb/Ja)×(W2’/2-W1’/2)}…(16A)
 b1=h0×〔1-{1-(Jb/Ja)}/{(Jb/Ja)×(W2/2-W1/2)}×W1/2〕…(17A)
 b1’=h0×〔1-{1-(Jb/Ja)}/{(Jb/Ja)×(W2’/2-W1’/2)×W1’/2}…(18A)
 b3=h0×〔1-{1-(Jb/Ja)}/{(Jb/Ja)×(W2/2-W1/2)}×W3/2〕…(19A)
 b3’=h0×〔1-{1-(Jb/Ja)}/{(Jb/Ja)×(W2’/2-W1’/2)×W3’/2}…(20A)
a1 = h0 × {1- (Jb / Ja)} / {(Jb / Ja) × (W2 / 2-W1 / 2)} (15A)
a1 ′ = h0 × {1- (Jb / Ja)} / {(Jb / Ja) × (W2 ′ / 2−W1 ′ / 2)} (16A)
b1 = h0 × [1- {1- (Jb / Ja)} / {(Jb / Ja) × (W2 / 2-W1 / 2)} × W1 / 2] (17A)
b1 ′ = h0 × [1- {1- (Jb / Ja)} / {(Jb / Ja) × (W2 ′ / 2−W1 ′ / 2) × W1 ′ / 2} (18A)
b3 = h0 × [1- {1- (Jb / Ja)} / {(Jb / Ja) × (W2 / 2-W1 / 2)} × W3 / 2] (19A)
b3 ′ = h0 × [1- {1- (Jb / Ja)} / {(Jb / Ja) × (W2 ′ / 2−W1 ′ / 2) × W3 ′ / 2} (20A)
 ラインL1、及びラインL1’は、交点(WP/2、hP)を通るので、以下の(21A)式、(22A)式が成り立つ。 Since the line L1 and the line L1 'pass through the intersection (WP / 2, hP), the following expressions (21A) and (22A) are established.
 hP=a1WP/2+b1…(21A)
 hP=a1’WP/2+b1’…(22A)
hP = a1WP / 2 + b1 (21A)
hP = a1′WP / 2 + b1 ′ (22A)
 よって、以下の(23A)式、(24A)式が導出される。 Therefore, the following equations (23A) and (24A) are derived.
 WP=2×(b1’-b1)/(a1-a1’)…(23A)
 hP=(a1b1’-a1’b1)/(a1-a1’)…(24A)
WP = 2 × (b1′−b1) / (a1−a1 ′) (23A)
hP = (a1b1′−a1′b1) / (a1−a1 ′) (24A)
 ラインL3、及びラインL3’は、交点(WQ/2、hQ)を通るので、以下の(25A)式、(26A)式が成り立つ。 Since the line L3 and the line L3 'pass through the intersection (WQ / 2, hQ), the following expressions (25A) and (26A) are established.
 hQ=a1WQ/2+b3…(25A)
 hQ=a1’WQ/2+b3’…(26A)
hQ = a1WQ / 2 + b3 (25A)
hQ = a1′WQ / 2 + b3 ′ (26A)
 よって、以下の(27A)式、(28A)式が導出される。 Therefore, the following equations (27A) and (28A) are derived.
 WQ=2×(b3’-b3)/(a1-a1’)…(27A)
 hQ=(a1b3’-a1’b3)/(a1-a1’)…(28A)
WQ = 2 × (b3′−b3) / (a1−a1 ′) (27A)
hQ = (a1b3′−a1′b3) / (a1−a1 ′) (28A)
 点(WP/2、hP)と点(WQ/2、hQ)を通る直線上にあって、寸法(線幅)の半値が目標寸法WTの半値WT/2と等しくなる点の座標を点(WT/2、hR)とすると、点(WP/2、hP)、点(WQ/2、hQ)、点(WT/2、hR)は、同一直線上にあるので、以下の(29A)式が成り立つ。 The coordinates of a point on the straight line passing through the point (WP / 2, hP) and the point (WQ / 2, hQ), where the half value of the dimension (line width) is equal to the half value WT / 2 of the target dimension WT, Assuming that WT / 2, hR), the point (WP / 2, hP), the point (WQ / 2, hQ), and the point (WT / 2, hR) are on the same straight line, so the following equation (29A) Holds.
 (hQ-hP)/(WQ/2-WP/2)=(hR-hP)/(WT/2-WP/2)…(29A) (HQ-hP) / (WQ / 2-WP / 2) = (hR-hP) / (WT / 2-WP / 2) ... (29A)
 (29A)式を、hRについて整理すると、以下の(30A)式が導出される。 If the equation (29A) is arranged for hR, the following equation (30A) is derived.
 hR=hP+(WT-WP)×(hQ-hP)/(WQ-WP)…(30A) HR = hP + (WT-WP) × (hQ-hP) / (WQ-WP) ... (30A)
 最適積算露光量JOPTについて、以下の(31A)式が成り立つ。 The following equation (31A) holds for the optimum integrated exposure amount JOPT.
 JOPT/Ja=h0/hR…(31A) JOPT / Ja = h0 / hR (31A)
 (30A)式、(31A)式より、以下の(32A)式が導出される。 The following equation (32A) is derived from equations (30A) and (31A).
 JOPT=Ja×〔h0/{hP+(WT-WP)×(hQ-hP)/(WQ-WP)}〕…(32A) JOPT = Ja * [h0 / {hP + (WT-WP) * (hQ-hP) / (WQ-WP)}] ... (32A)
 (32A)式に、(23A)式、(24A)式、(27A)式、(28A)式を代入すると、以下の(33A)式が導出される。 Substituting (23A), (24A), (27A), and (28A) into (32A) yields the following (33A).
 JOPT=Ja×h0/〔(a1b1’-a1’b1)/(a1-a1’)+{WT/2-(b1’-b1)/(a1-a1’)}×(a1b3’-a1’b3-a1b1’-a1’b1)/(b3’-b3-b1’+b1)…(33A) JOPT = Ja × h0 / [(a1b1′−a1′b1) / (a1−a1 ′) + {WT / 2− (b1′−b1) / (a1−a1 ′)} × (a1b3′−a1′b3 -A1b1'-a1'b1) / (b3'-b3-b1 '+ b1) (33A)
 最適現像時間TOPTについて、以下の(34A)式が成り立つ。
 (TOPT-Ta)/(Tb-Ta)=(WT/2-WP/2)/(WQ/2-WP/2)…(34A)
The following equation (34A) holds for the optimum development time TOPT.
(TOPT-Ta) / (Tb-Ta) = (WT / 2-WP / 2) / (WQ / 2-WP / 2) (34A)
 (34A)式をTOPTについて展開すると、以下の(35A)式が導出される。 When the equation (34A) is expanded for TOPT, the following equation (35A) is derived.
 TOPT=Ta+(Tb-Ta)×(WT-WP)/(WQ-WP)…(35A) TOPT = Ta + (Tb−Ta) × (WT−WP) / (WQ−WP) (35A)
 (35A)式に、(23A)式、(27A)式を代入すると、以下の(36A)式が導出される。 When the expressions (23A) and (27A) are substituted into the expression (35A), the following expression (36A) is derived.
 TOPT=Ta+(Tb-Ta)×{(a1-a1’)×WT/2-(b1’-b1)}/(b3’-b3-b1’+b1)…(36A) TOPT = Ta + (Tb−Ta) × {(a1−a1 ′) × WT / 2− (b1′−b1)} / (b3′−b3−b1 ′ + b1) (36A)
 最適積算露光量JOPTを表す(33A)式、及び最適現像時間TOPTを表す(36A)式のa1~b3’に、(15A)式~(20A)式を代入すると、h0は、消去される。以上により、最適積算露光量JOPT、及び最適現像時間TOPTが導出される。 When substituting the equations (15A) to (20A) into a1 to b3 'in the equation (33A) representing the optimum integrated exposure amount JOPT and the equation (36A) representing the optimum development time TOPT, h0 is deleted. Thus, the optimum integrated exposure amount JOPT and the optimum development time TOPT are derived.
 以上により、テスト基板Pt(Pt1、Pt2)を用いて、最適積算露光量JOPT、及び最適現像時間TOPTを決定する処理(ステップSP1)が完了する。 Thus, the process (step SP1) for determining the optimum integrated exposure amount JOPT and the optimum development time TOPT using the test substrate Pt (Pt1, Pt2) is completed.
 決定された最適積算露光量JOPTで基板Pを本露光し、決定された最適現像時間TOPTで本現像することによって、基板Pに、均一で所望の寸法のパターン(デバイスパターン)が形成される。 A pattern (device pattern) having a uniform and desired dimension is formed on the substrate P by subjecting the substrate P to the main exposure with the determined optimum integrated exposure amount JOPT and performing the main development with the determined optimum development time TOPT.
 以上説明したように、本実施形態によれば、基板Pに、均一で所望の寸法を有するパターンを形成することができる。したがって、不良デバイスの発生を抑制できる。 As described above, according to the present embodiment, a uniform pattern having a desired dimension can be formed on the substrate P. Therefore, generation | occurrence | production of a defective device can be suppressed.
 なお、上述の実施形態においては、第1~第4パターンが、第1テスト基板Pt1に形成され、第5,第6パターンが、第2テスト基板Pt2に形成されることとしたが、もちろん、第1~第6パターンのそれぞれが、異なる第1~第6テスト基板に形成されてもよいし、例えば第1、第2パターンが第1テスト基板に形成され、第3,第4パターンが第2テスト基板に形成され、第5,第6パターンが第3テスト基板に形成されてもよい。 In the above-described embodiment, the first to fourth patterns are formed on the first test substrate Pt1, and the fifth and sixth patterns are formed on the second test substrate Pt2. Each of the first to sixth patterns may be formed on different first to sixth test substrates. For example, the first and second patterns are formed on the first test substrate, and the third and fourth patterns are the first. The fifth and sixth patterns may be formed on the second test substrate, and the fifth and sixth patterns may be formed on the third test substrate.
 なお、上述の実施形態においては、感光膜がポジ型であることとしたが、露光光ELが照射されていない部分が現像によって除去されるネガ型でもよい。 In the above-described embodiment, the photosensitive film is a positive type. However, a negative type in which a portion not irradiated with the exposure light EL is removed by development may be used.
 なお、上述の実施形態においては、マスクMのパターンの像が投影される第1投影光学系PL1の第1投影領域PR1と、マスクMのパターンの像が投影される第2投影光学系PL2の第2投影領域PR2の一部とによって基板Pが重複露光され、第1投影領域PR1及び第2投影領域PR2に基板Pが配置された状態で、第1投影領域PR1及び第2投影領域PR2に露光光ELが照射される場合を例にして説明した。そして、最適積算露光量JOPTが、第1投影領域PR1の非重複部A1に照射された露光光ELにより基板Pに形成されるパターンの寸法と、第2投影領域PR2の非重複部A2に照射された露光光ELにより基板Pに形成されるパターンの寸法と、第1投影領域PR1と第2投影領域PR2との重複部B1に照射された露光光ELにより基板Pに形成されるパターンの寸法とがほぼ一致する第1投影領域PR1及び第2投影領域PR2における積算露光量であり、最適現像時間TOPTが、基板Pに形成されるパターンの寸法が目標値WTになる現像時間であることとした。 In the above-described embodiment, the first projection region PR1 of the first projection optical system PL1 on which the pattern image of the mask M is projected and the second projection optical system PL2 on which the pattern image of the mask M is projected. The substrate P is subjected to overlap exposure with a part of the second projection region PR2, and the substrate P is disposed in the first projection region PR1 and the second projection region PR2, so that the first projection region PR1 and the second projection region PR2 are exposed. The case where the exposure light EL is irradiated has been described as an example. Then, the optimum integrated exposure amount JOPT is applied to the dimension of the pattern formed on the substrate P by the exposure light EL applied to the non-overlapping portion A1 of the first projection region PR1 and the non-overlapping portion A2 of the second projection region PR2. The dimension of the pattern formed on the substrate P by the exposed exposure light EL and the dimension of the pattern formed on the substrate P by the exposure light EL irradiated to the overlapping portion B1 between the first projection region PR1 and the second projection region PR2. Are the integrated exposure amounts in the first projection region PR1 and the second projection region PR2, and the optimum development time TOPT is a development time in which the dimension of the pattern formed on the substrate P is the target value WT. did.
 本実施形態のパターン形成方法によれば、マスクMと基板Pとを(すなわち、マスクステージ1と基板ステージ2とを)所定の走査方向に同期移動しながら、マスクMのパターンの像を基板Pに投影する走査露光において、投影光学系と基板Pとの相対振動(すなわち、投影領域と基板Pとの相対振動)、及び投影光学系とマスクMとの相対振動(すなわち、照明領域とマスクMとの相対振動)のうちの少なくとも一方の相対振動によって、実質的に継ぎずれ状態と同様に重複露光されてしまう場合でも、パターンの均一化を図ることができる。ここで相対振動とは、投影光学系と基板P又はマスクMとの相対位置が、所期の同期移動とは別の成分として、基板Pの表面(感光面)又はマスクMの表面(パターン面)に沿った方向に振動すること意味する。 According to the pattern formation method of this embodiment, the mask M and the substrate P (that is, the mask stage 1 and the substrate stage 2) are moved synchronously in a predetermined scanning direction, and the pattern image of the mask M is transferred to the substrate P. In the scanning exposure to be projected onto the projection surface, relative vibration between the projection optical system and the substrate P (that is, relative vibration between the projection region and the substrate P), and relative vibration between the projection optical system and the mask M (that is, illumination region and mask M). The pattern can be made uniform even when overlapping exposure is caused by the relative vibration of at least one of the relative vibrations in the same manner as in the joint displacement state. Here, the relative vibration means that the relative position between the projection optical system and the substrate P or the mask M is a component different from the intended synchronous movement, and the surface of the substrate P (photosensitive surface) or the surface of the mask M (pattern surface). ) In the direction along).
〔第2実施形態〕
 次に、第2実施形態について説明する。以下の説明において、上述の第1実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
[Second Embodiment]
Next, a second embodiment will be described. In the following description, the same or equivalent components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is simplified or omitted.
 上述の第1実施形態においては、基板Pを重複露光する場合において、非重複部に照射される露光光ELによって基板Pに形成されるパターンの寸法と、重複部に照射される露光光ELによって基板Pに形成されるパターンの寸法とをほぼ一致させることができる露光条件及び現像条件を決定する場合について説明した。第2実施形態においては、投影光学系PLの像面に対して第1位置に配置された状態で露光された基板Pに形成されるパターンの寸法と、投影光学系PLの像面に対して第1位置と異なる第2位置に配置された状態で露光された基板Pに形成されるパターンの寸法とをほぼ一致させることができる露光条件及び現像条件を決定する場合について説明する。 In the above-described first embodiment, when the substrate P is subjected to overlapping exposure, the dimension of the pattern formed on the substrate P by the exposure light EL irradiated to the non-overlapping portion and the exposure light EL irradiated to the overlapping portion. The case where the exposure conditions and development conditions that can substantially match the dimensions of the pattern formed on the substrate P has been described. In the second embodiment, the dimension of the pattern formed on the substrate P exposed in a state of being arranged at the first position with respect to the image plane of the projection optical system PL, and the image plane of the projection optical system PL. A case will be described in which the exposure condition and the development condition are determined so that the dimensions of the pattern formed on the substrate P exposed in a state of being arranged at the second position different from the first position can be made substantially coincident.
 なお、上述の第1実施形態に係るパターン形成方法は、複数の投影光学系PL1~PL7を有するマルチレンズ型露光装置に適用することとした。第2実施形態に係るパターン形成方法は、1つの投影光学系PLを有する、所謂、シングルレンズ型露光装置にも適用可能であるし、マルチレンズ型露光装置にも適用可能である。以下の説明においては、露光装置EXが、1つの投影光学系PLを有するシングルレンズ型露光装置であることとし、その投影光学系PLの投影領域PRも1つであることとする。 Note that the pattern forming method according to the first embodiment described above is applied to a multi-lens type exposure apparatus having a plurality of projection optical systems PL1 to PL7. The pattern forming method according to the second embodiment can be applied to a so-called single lens type exposure apparatus having one projection optical system PL, and can also be applied to a multi-lens type exposure apparatus. In the following description, it is assumed that the exposure apparatus EX is a single lens type exposure apparatus having one projection optical system PL, and that the projection optical system PL has one projection region PR.
 例えば、投影光学系PLの投影領域PRに対して基板PをX軸方向に移動しながら露光する場合において、Z軸方向に関する基板Pの表面(露光面)の位置が変動してしまう可能性がある。換言すれば、基板Pの露光中に、投影光学系PLの像面に対して基板Pの表面(露光面)の位置がずれてしまう可能性がある。本実施形態において、投影光学系PLの像面はXY平面とほぼ平行であり、基板Pの露光中に、投影光学系PLの像面に対してその像面と垂直な方向(Z軸方向)、あるいは傾斜する方向(θX、θY方向)に基板Pの表面の位置がずれてしまう可能性がある。その結果、基板Pに形成されるパターンの寸法が不均一になる可能性がある。 For example, when exposure is performed while moving the substrate P in the X-axis direction with respect to the projection region PR of the projection optical system PL, the position of the surface (exposure surface) of the substrate P in the Z-axis direction may change. is there. In other words, during the exposure of the substrate P, there is a possibility that the position of the surface (exposure surface) of the substrate P shifts with respect to the image plane of the projection optical system PL. In the present embodiment, the image plane of the projection optical system PL is substantially parallel to the XY plane, and the direction perpendicular to the image plane of the projection optical system PL during the exposure of the substrate P (Z-axis direction). Alternatively, there is a possibility that the position of the surface of the substrate P is shifted in the direction of inclination (direction θX, θY). As a result, the dimension of the pattern formed on the substrate P may be nonuniform.
 例えば、投影光学系PLの像面に対して基板Pの表面がZ軸方向に関して第1位置に配置された状態で露光された場合にその基板Pに形成されるパターンの寸法と、第1位置と異なる第2位置に配置された状態で露光された場合にその基板Pに形成されるパターンの寸法とが異なってしまう可能性がある。 For example, when the surface of the substrate P is exposed with respect to the image plane of the projection optical system PL arranged in the first position in the Z-axis direction, the dimension of the pattern formed on the substrate P and the first position There is a possibility that the dimension of the pattern formed on the substrate P will be different when exposed in a state of being arranged at a different second position.
 そこで、本実施形態においては、投影光学系PLの像面に対する基板Pの表面のZ軸方向に関する位置が変動した場合でも、パターンが不均一になることを抑制できる露光条件及び現像条件を含むプロセス条件を決定する場合について説明する。基板Pにデバイスを製造するための露光処理及び現像処理は、その決定されたプロセス条件に基づいて実行される。 Therefore, in the present embodiment, even when the position of the surface of the substrate P with respect to the image plane of the projection optical system PL in the Z-axis direction fluctuates, the process includes an exposure condition and a development condition that can prevent the pattern from becoming non-uniform. A case where conditions are determined will be described. An exposure process and a development process for manufacturing a device on the substrate P are executed based on the determined process conditions.
 上述の第1実施形態と同様、露光条件は、基板Pが配置された投影領域に照射される露光光ELの積算露光量を含む。現像条件は、露光光ELが照射された基板Pの現像時間(現像液と基板Pの感光膜とを接触させている時間)、及び使用する現像液の種類(物性)などを含む。 As in the first embodiment described above, the exposure conditions include the integrated exposure amount of the exposure light EL that is irradiated onto the projection area where the substrate P is disposed. The development conditions include the development time of the substrate P irradiated with the exposure light EL (the time during which the developer and the photosensitive film of the substrate P are in contact), the type (physical properties) of the developer to be used, and the like.
 以下の説明において、パターンが不均一になることを抑制できる所定の露光条件を適宜、最適積算露光量、と称し、パターンが不均一になることを抑制でき、パターンを所望の寸法にすることができる所定の現像条件を適宜、最適現像時間、と称する。 In the following description, a predetermined exposure condition that can prevent the pattern from becoming nonuniform is referred to as an optimal integrated exposure amount as appropriate, and the pattern can be suppressed from becoming nonuniform and the pattern can be set to a desired dimension. The predetermined development conditions that can be obtained are appropriately referred to as optimum development time.
 すなわち、所定の露光条件は、基板Pに形成されるパターンの寸法が均一になる積算露光量を含む。本実施形態において、その積算露光量は、投影光学系PLの像面に対して第1位置に基板Pの表面が配置された状態でその投影光学系PLから射出された露光光ELにより基板Pに形成されるパターンの寸法と、投影光学系PLの像面に対して第2位置に基板Pの表面が配置された状態でその投影光学系PLから射出された露光光ELにより基板Pに形成されるパターンの寸法とが、ほぼ一致する投影領域PRにおける積算露光量を含む。また、所定の現像条件は、基板Pに形成されるパターンの寸法が目標値になる現像時間を含む。 That is, the predetermined exposure condition includes an integrated exposure amount at which the dimension of the pattern formed on the substrate P becomes uniform. In the present embodiment, the accumulated exposure amount is determined by the exposure light EL emitted from the projection optical system PL in a state where the surface of the substrate P is disposed at the first position with respect to the image plane of the projection optical system PL. Formed on the substrate P by the exposure light EL emitted from the projection optical system PL in a state where the surface of the substrate P is disposed at the second position with respect to the dimension of the pattern formed on the projection optical system PL. The integrated exposure amount in the projection region PR in which the dimension of the pattern to be substantially matched is included. The predetermined development conditions include a development time in which the dimension of the pattern formed on the substrate P is a target value.
 以下、本実施形態に係る、基板Pにおいてパターンを均一化できる最適積算露光量、及び最適現像時間について説明する。 Hereinafter, the optimum integrated exposure amount and the optimum development time that can make the pattern uniform on the substrate P according to the present embodiment will be described.
 図19は、投影光学系PLの像面に対して基板Pの表面が互いに異なる第1位置、第2位置、第3位置、第4位置、及び第5位置のそれぞれに配置された状態で露光された場合における、マスクMのパターンと、基板Pの表面における積算露光量との関係を示す。マスクMのパターンは、ライン・アンド・スペースパターンであり、照明システムISからの露光光ELを透過する透過部(スペース部)21と、照明システムISからの露光光ELを遮る遮光部(ライン部)22とを有する。図19に示すグラフにおいて、横軸は、基板Pの表面の位置、縦軸は、基板Pの表面に配置された投影領域PRにおける積算露光量の値を示す。 FIG. 19 shows exposure in a state where the surface of the substrate P is disposed at each of the first position, the second position, the third position, the fourth position, and the fifth position, which are different from each other with respect to the image plane of the projection optical system PL. The relationship between the pattern of the mask M and the integrated exposure amount on the surface of the substrate P in the case where it is done is shown. The pattern of the mask M is a line and space pattern, and a transmission part (space part) 21 that transmits the exposure light EL from the illumination system IS and a light shielding part (line part) that blocks the exposure light EL from the illumination system IS. ) 22. In the graph shown in FIG. 19, the horizontal axis indicates the position of the surface of the substrate P, and the vertical axis indicates the value of the integrated exposure amount in the projection region PR disposed on the surface of the substrate P.
 図19に示すグラフにおいて、ラインLF1は、投影光学系PLの像面に対して基板Pの表面が第1位置に配置された状態で投影領域PRに露光光ELが照射された場合における、基板Pの表面における積算露光量の分布の一例を示す。同様に、ラインLF2~LF5は、投影光学系PLの像面に対して基板Pの表面が第2~第5位置に配置された状態で投影領域PRに露光光ELが照射された場合における、基板Pの表面における積算露光量の分布の一例を示す。 In the graph shown in FIG. 19, the line LF1 indicates the substrate when the exposure light EL is irradiated to the projection region PR in a state where the surface of the substrate P is disposed at the first position with respect to the image plane of the projection optical system PL. An example of the distribution of accumulated exposure on the surface of P is shown. Similarly, the lines LF2 to LF5 are obtained when the projection region PR is irradiated with the exposure light EL in a state where the surface of the substrate P is disposed at the second to fifth positions with respect to the image plane of the projection optical system PL. An example of the distribution of the integrated exposure amount on the surface of the substrate P is shown.
 以下の説明において、投影光学系PLの像面に対して基板Pの表面が第1位置に配置されている状態を適宜、第1フォーカス状態、と称する。同様に、投影光学系PLの像面に対して基板Pの表面が第2~第5位置に配置されている状態を適宜、第2~第5フォーカス状態、とそれぞれ称する。 In the following description, the state in which the surface of the substrate P is disposed at the first position with respect to the image plane of the projection optical system PL is appropriately referred to as a first focus state. Similarly, the state where the surface of the substrate P is disposed at the second to fifth positions with respect to the image plane of the projection optical system PL will be appropriately referred to as second to fifth focus states, respectively.
 一例として、第1位置は、基板Pの表面が投影光学系PLの像面と一致する位置(ベストフォーカス位置)である。第2~第5位置は、基板Pの表面が投影光学系PLの像面に対してずれた位置(デフォーカス位置)である。以下の説明において、投影光学系PLの像面に基板Pの表面が一致した状態を適宜、ベストフォーカス状態、と称し、投影光学系PLの像面に対して基板Pの表面がずれた状態を適宜、デフォーカス状態、と称する。 As an example, the first position is a position (best focus position) where the surface of the substrate P coincides with the image plane of the projection optical system PL. The second to fifth positions are positions (defocus positions) where the surface of the substrate P is displaced from the image plane of the projection optical system PL. In the following description, a state in which the surface of the substrate P coincides with the image plane of the projection optical system PL is referred to as a best focus state as appropriate, and a state in which the surface of the substrate P is displaced from the image plane of the projection optical system PL. This will be referred to as a defocused state as appropriate.
 したがって、図19に示す例において、第1フォーカス状態は、ベストフォーカス状態であり、第1位置は、ベストフォーカス状態となる基板Pの表面の位置である。また、第2~第5フォーカス状態は、デフォーカス状態であり、第2~第5位置は、デフォーカス状態となる基板Pの表面の位置である。また、本実施形態においては、一例として、第2位置は、投影光学系PLの像面に対して10μmずれた位置であり、第3位置は、投影光学系PLの像面に対して20μmずれた位置であり、第4位置は、投影光学系PLの像面に対して30μmずれた位置であり、第5位置は、投影光学系PLの像面に対して40μmずれた位置である。 Therefore, in the example shown in FIG. 19, the first focus state is the best focus state, and the first position is the position of the surface of the substrate P in the best focus state. The second to fifth focus states are defocus states, and the second to fifth positions are the positions of the surface of the substrate P in the defocus state. In the present embodiment, as an example, the second position is a position shifted by 10 μm with respect to the image plane of the projection optical system PL, and the third position is shifted by 20 μm with respect to the image plane of the projection optical system PL. The fourth position is a position shifted by 30 μm with respect to the image plane of the projection optical system PL, and the fifth position is a position shifted by 40 μm with respect to the image plane of the projection optical system PL.
 図19に示すように、第1フォーカス状態における積算露光量と、第2フォーカス状態における積算露光量と、第3フォーカス状態における積算露光量と、第4フォーカス状態における積算露光量と、第5フォーカス状態における積算露光量とが一致する値Jkが存在する。すなわち、ベストフォーカス状態における積算露光量を値Jhにすることによって、投影光学系PLの像面に対して基板Pの表面の位置が変化しても、積算露光量は、値Jkで一致する。 As shown in FIG. 19, the integrated exposure amount in the first focus state, the integrated exposure amount in the second focus state, the integrated exposure amount in the third focus state, the integrated exposure amount in the fourth focus state, and the fifth focus There is a value Jk that matches the integrated exposure amount in the state. That is, by setting the integrated exposure amount in the best focus state to the value Jh, even if the position of the surface of the substrate P changes with respect to the image plane of the projection optical system PL, the integrated exposure amount matches the value Jk.
 したがって、基板Pに使用される感光膜として、露光光ELの積算露光量が値Jk以上である場合、現像によって除去され、値Jk未満である場合、現像しても基板Pに残る(パターンを形成する)特性(感光特性、溶解度)を有する感光膜を使用することによって、第1~第5フォーカス状態のそれぞれにおいて、基板Pに形成される感光膜のパターンの寸法を一致させることができる。 Accordingly, as the photosensitive film used for the substrate P, when the integrated exposure amount of the exposure light EL is greater than or equal to the value Jk, it is removed by development, and when it is less than the value Jk, it remains on the substrate P even after development (the pattern is changed). By using a photosensitive film having characteristics (photosensitive characteristics and solubility), the dimensions of the pattern of the photosensitive film formed on the substrate P can be matched in each of the first to fifth focus states.
 このように、基板P(感光膜)の感光特性(溶解度)に応じて、ベストフォーカス状態における積算露光量の値Jhを決定し、ベストフォーカス状態における積算露光量が値Jhになるように投影領域PRに露光光ELが照射されることによって、第1~第5フォーカス状態のそれぞれにおいて、第1実施形態と同様、同一の寸法Waを有するパターン(図10参照)が基板Pに形成される。 As described above, the value Jh of the integrated exposure amount in the best focus state is determined according to the photosensitive characteristic (solubility) of the substrate P (photosensitive film), and the projection region is set so that the integrated exposure amount in the best focus state becomes the value Jh. By irradiating PR with exposure light EL, a pattern (see FIG. 10) having the same dimension Wa is formed on the substrate P in each of the first to fifth focus states, as in the first embodiment.
 すなわち、たとえデフォーカス状態になった場合でも、ベストフォーカス状態で照射される露光光ELによって基板Pに形成されるパターンの寸法と、デフォーカス状態で照射される露光光ELによって基板Pに形成されるパターンの寸法とは、同一になる。したがって、基板P上に形成されるパターンが不均一になることを抑制することができる。 That is, even in the defocused state, it is formed on the substrate P by the dimension of the pattern formed on the substrate P by the exposure light EL irradiated in the best focus state and the exposure light EL irradiated in the defocused state. The dimension of the pattern is the same. Therefore, it is possible to prevent the pattern formed on the substrate P from becoming non-uniform.
 図20は、ベストフォーカス状態における積算露光量の値を変えた場合の、ベストフォーカス状態及びデフォーカス状態それぞれの積算露光量の分布を示す。ラインLODBは、ベストフォーカス状態であって、ベストフォーカス状態における積算露光量の値がJh1である場合を示し、ラインLODDは、デフォーカス状態であって、ベストフォーカス状態における積算露光量の値がJh1である場合を示す。ラインLBDBは、ベストフォーカス状態であって、ベストフォーカス状態における積算露光量の値がJh1と異なるJh2である場合を示し、ラインLBDDは、デフォーカス状態であって、ベストフォーカス状態における積算露光量の値がJh2である場合を示す。ラインLUDBは、ベストフォーカス状態であって、ベストフォーカス状態における積算露光量の値がJh1及びJh2と異なるJh3である場合を示し、ラインLUDDは、デフォーカス状態であって、ベストフォーカス状態における積算露光量の値がJh3である場合を示す。 FIG. 20 shows distributions of the integrated exposure amounts in the best focus state and the defocus state when the value of the integrated exposure amount in the best focus state is changed. Line LODB indicates the best focus state when the integrated exposure value in the best focus state is Jh1, and line LODD indicates the defocus state, and the integrated exposure value in the best focus state is Jh1. The case is shown. Line LBDB indicates the best focus state, and the value of the integrated exposure amount in the best focus state is Jh2, which is different from Jh1, and line LBDD is the defocus state, and indicates the integrated exposure amount in the best focus state. The case where the value is Jh2 is shown. Line LUDB indicates the best focus state, and the value of the integrated exposure amount in the best focus state is Jh3 different from Jh1 and Jh2. Line LUDD is the defocus state, and the integrated exposure in the best focus state. The case where the value of the quantity is Jh3 is shown.
 図20に示すように、ベストフォーカス状態における積算露光量の値が、値Jh1、Jh2、Jh3に変化した場合でも、ベストフォーカス状態における積算露光量とデフォーカス状態における積算露光量とが一致する値Jk1、Jk2、Jk3が存在する。これにより、基板P(感光膜)の感光特性に応じて、例えば値Jh1、Jh2、Jh3のなかから、最適な値を決定することによって、現像後において基板Pに形成されるパターンを均一にすることができる。 As shown in FIG. 20, even when the integrated exposure value in the best focus state changes to the values Jh1, Jh2, and Jh3, the integrated exposure amount in the best focus state and the integrated exposure amount in the defocus state match. Jk1, Jk2, and Jk3 exist. Thereby, according to the photosensitive characteristic of the substrate P (photosensitive film), for example, an optimum value is determined from the values Jh1, Jh2, and Jh3, thereby making the pattern formed on the substrate P after development uniform. be able to.
 例えば、基板Pの感光膜が、照射された露光光ELの積算露光量が値Jk1以上である場合に現像によって除去される感光特性を有する場合、ベストフォーカス状態における積算露光量として、値Jh1が決定される。同様に、基板Pの感光膜が、照射された露光光ELの積算露光量が値Jk2以上である場合に現像によって除去される感光特性を有する場合、ベストフォーカス状態における積算露光量として、値Jh2が決定される。また、基板Pの感光膜が、照射された露光光ELの積算露光量が値Jk3以上である場合に現像によって除去される感光特性を有する場合、ベストフォーカス状態における積算露光量として、値Jh3が決定される。 For example, when the photosensitive film of the substrate P has a photosensitive characteristic that is removed by development when the integrated exposure amount of the irradiated exposure light EL is equal to or greater than the value Jk1, the value Jh1 is the integrated exposure amount in the best focus state. It is determined. Similarly, when the photosensitive film of the substrate P has a photosensitive characteristic that is removed by development when the integrated exposure amount of the irradiated exposure light EL is equal to or greater than the value Jk2, the value Jh2 is used as the integrated exposure amount in the best focus state. Is determined. When the photosensitive film on the substrate P has a photosensitive characteristic that is removed by development when the integrated exposure amount of the irradiated exposure light EL is equal to or greater than the value Jk3, the value Jh3 is the integrated exposure amount in the best focus state. It is determined.
 このように、基板Pにおいてパターンの寸法を均一にできる積算露光量Jhは、基板Pの感光特性に応じて決定される。 Thus, the integrated exposure amount Jh that can make the pattern dimension uniform on the substrate P is determined according to the photosensitive characteristics of the substrate P.
 以下の説明において、基板Pにおいてパターンが不均一になることを抑制できる積算露光量を適宜、最適積算露光量JOPT、と称する。 In the following description, the integrated exposure amount that can suppress the pattern non-uniformity on the substrate P is appropriately referred to as an optimal integrated exposure amount JOPT.
 また、図10を参照して説明したように、パターンの寸法Waは、目標寸法WTと異なる。すなわち、基板Pにおいて、パターンの寸法Waは均一になるものの、その寸法Waは、目標寸法WTと異なる。そこで、上述の第1実施形態と同様、本実施形態においても、現像時間Tを調整することによって、基板Pのパターン(感光膜のパターン)の寸法を、目標寸法WTにする。例えば図12を参照して説明したように、現像処理においては、感光膜の輪郭(外形)は、等方的に変化する。したがって、現像時間Tを調整することによって、寸法Waの感光膜のパターンを、寸法WTの感光膜のパターンに変化させることができる。 Also, as described with reference to FIG. 10, the pattern dimension Wa is different from the target dimension WT. That is, in the substrate P, the pattern dimension Wa is uniform, but the dimension Wa is different from the target dimension WT. Therefore, as in the first embodiment described above, in this embodiment as well, by adjusting the development time T, the dimension of the pattern on the substrate P (photosensitive film pattern) is set to the target dimension WT. For example, as described with reference to FIG. 12, in the development process, the contour (outer shape) of the photosensitive film changes isotropically. Therefore, by adjusting the developing time T, the pattern of the photosensitive film having the dimension Wa can be changed to the pattern of the photosensitive film having the dimension WT.
 以下の説明において、基板Pに均一に形成されたパターンの寸法Waを目標寸法WTにすることができる現像時間を適宜、最適現像時間TOPT、と称する。 In the following description, the development time during which the dimension Wa of the pattern uniformly formed on the substrate P can be set to the target dimension WT is appropriately referred to as optimum development time TOPT.
 以上、所定の露光条件に相当する最適積算露光量JOPT、及び所定の現像条件に相当する最適現像時間TOPTについて説明した。 As described above, the optimum integrated exposure amount JOPT corresponding to the predetermined exposure condition and the optimum development time TOPT corresponding to the predetermined development condition have been described.
 以下、最適積算露光量JOPT、及び最適現像時間TOPTの決定方法を含む、パターンの形成方法の一例について説明する。 Hereinafter, an example of a pattern forming method including a method for determining the optimum integrated exposure amount JOPT and the optimum developing time TOPT will be described.
 本実施形態に係るパターン形成方法は、図13のフローチャートに示したように、パターンが不均一になることを抑制できる所定の露光条件(最適積算露光量JOPT)及び所定の現像条件(最適現像時間TOPT)を決定すること(ステップSP1)と、その決定された所定の露光条件(最適積算露光量JOPT)で基板Pを露光し、その決定された所定の現像条件(最適現像時間TOPT)で基板Pを現像すること(ステップSP2)とを含む。 In the pattern forming method according to the present embodiment, as shown in the flowchart of FIG. 13, a predetermined exposure condition (optimum integrated exposure amount JOPT) and a predetermined development condition (optimal development time) that can prevent the pattern from becoming non-uniform. (TOPT) is determined (step SP1), the substrate P is exposed with the determined predetermined exposure condition (optimum integrated exposure amount JOPT), and the substrate is determined with the determined predetermined development condition (optimum development time TOPT). Developing P (step SP2).
 ステップSP1においては、所定の露光条件(最適積算露光量JOPT)及び所定の現像条件(最適現像時間TOPT)を決定するために、基板を露光する処理、及びその露光された基板を現像する処理が実行される。ステップSP2においては、基板Pにデバイス(デバイスパターン)を形成するために、決定された所定の露光条件で、基板を露光する処理、及び決定された所定の現像条件で、基板を現像する処理が実行される。 In step SP1, in order to determine a predetermined exposure condition (optimum integrated exposure amount JOPT) and a predetermined development condition (optimum development time TOPT), a process of exposing the substrate and a process of developing the exposed substrate are performed. Executed. In step SP2, in order to form a device (device pattern) on the substrate P, a process of exposing the substrate under the determined predetermined exposure conditions and a process of developing the substrate under the determined predetermined development conditions are performed. Executed.
 以下の説明において、最適積算露光量JOPT及び最適現像時間TOPTを決定するために、ステップSP1において実行される露光を適宜、テスト露光、と称し、ステップSP1において実行される現像を適宜、テスト現像、と称する。また、ステップSP1において使用される基板を適宜、テスト基板Pt、と称する。また、デバイスパターンを形成するために、ステップSP2において実行される露光を適宜、本露光、と称し、ステップSP2において実行される現像を適宜、本現像、と称する。 In the following description, in order to determine the optimum integrated exposure amount JOPT and the optimum development time TOPT, the exposure performed in step SP1 is appropriately referred to as test exposure, and the development performed in step SP1 is appropriately performed as test development. Called. Further, the substrate used in step SP1 is appropriately referred to as a test substrate Pt. In order to form a device pattern, the exposure executed in step SP2 is appropriately referred to as main exposure, and the development executed in step SP2 is appropriately referred to as main development.
 本実施形態において、ステップSP1は、異なる複数の露光条件のそれぞれで、投影光学系の投影領域に照射されたマスクMからの露光光ELでテスト基板Ptをテスト露光することと、異なる複数の現像条件のそれぞれで、テスト露光されたテスト基板Ptをテスト現像することと、テスト露光及びテスト現像によりテスト基板Ptに形成されたパターンに基づいて、所定の露光条件(最適積算露光量JOPT)及び所定の現像条件(最適現像時間TOPT)を決定することと、を含む。 In the present embodiment, step SP1 includes test exposure of the test substrate Pt with the exposure light EL from the mask M irradiated onto the projection area of the projection optical system under different exposure conditions, and different developments. Based on the test development of the test substrate Pt subjected to the test exposure under each of the conditions, and the pattern formed on the test substrate Pt by the test exposure and the test development, the predetermined exposure condition (optimum integrated exposure amount JOPT) and the predetermined Determining development conditions (optimum development time TOPT).
 本実施形態において、ステップSP2は、ステップSP1で決定された所定の露光条件(最適積算露光量JOPT)で、投影光学系の投影領域に照射されたマスクMからの露光光ELで基板Pを本露光することと、ステップSP1で決定された所定の現像条件(最適現像時間TOPT)で、本露光された基板Pを本現像することと、を含む。 In this embodiment, in step SP2, the substrate P is exposed with the exposure light EL from the mask M irradiated onto the projection area of the projection optical system under the predetermined exposure condition (optimum integrated exposure amount JOPT) determined in step SP1. And exposing the substrate P subjected to the main exposure under the predetermined development condition (optimum development time TOPT) determined in step SP1.
 テスト露光においては、テスト基板Ptが露光される。テスト基板Ptとして、第1テスト基板Pt1と、第2テスト基板Pt2とが使用される。 In the test exposure, the test substrate Pt is exposed. As the test board Pt, the first test board Pt1 and the second test board Pt2 are used.
 本実施形態において、テスト露光は、図21のフローチャートに示すように、投影光学系PLの像面に対して第1テスト基板Pt1の第1領域AR1の表面を第1位置(例えばベストフォーカス位置)に配置して、投影光学系PLの投影領域PRにおける積算露光量が第1値Jaになるように、投影領域PRに照射された露光光ELにより第1テスト基板Pt1の第1領域AR1を露光すること(ステップSC1)と、投影光学系PLの像面に対して第1テスト基板Pt1の第2領域AR2の表面を第1位置と異なる第2位置(例えばデフォーカス位置)に配置して、投影光学系PLの投影領域PRにおける積算露光量が第1値Jaになるように、投影領域PRに照射された露光光ELにより第1テスト基板Pt1の第2領域AR2を露光すること(ステップSC2)と、投影光学系PLの像面に対して第1テスト基板Pt1の第3領域AR3を第1位置に配置して、投影光学系PLの投影領域PRにおける積算露光量が第1値Jaと異なる第2値Jbになるように、投影光学系PLの投影領域PRに照射された露光光ELにより第1テスト基板Pt1の第3領域AR3を露光すること(ステップSC3)と、投影光学系PLの像面に対して第1テスト基板Pt1の第4領域AR4を第2位置に配置して、投影光学系PLの投影領域PRにおける積算露光量が第2値Jbになるように、投影光学系PLの投影領域PRに照射された露光光ELにより第1テスト基板Pt1の第4領域AR4を露光すること(ステップSC4)と、投影光学系PLの像面に対して第2テスト基板Pt2の第5領域AR5を第1位置に配置して、投影光学系PLの投影領域PRにおける積算露光量が第1値Jaになるように、投影光学系PLの投影領域PRに照射された露光光ELにより第2テスト基板Pt2の第5領域AR5を露光すること(ステップSC5)と、投影光学系PLの像面に対して第2テスト基板Pt2の第6領域AR6を第2位置に配置して、投影光学系PLの投影領域PRにおける積算露光量が第1値Jaになるように、投影光学系PLの投影領域PRに照射された露光光ELにより第2テスト基板Pt2の第6領域AR6を露光すること(ステップSC6)と、を含む。 In the present embodiment, as shown in the flowchart of FIG. 21, in the test exposure, the surface of the first area AR1 of the first test substrate Pt1 is set to the first position (for example, the best focus position) with respect to the image plane of the projection optical system PL. And exposing the first area AR1 of the first test substrate Pt1 by the exposure light EL irradiated to the projection area PR so that the integrated exposure amount in the projection area PR of the projection optical system PL becomes the first value Ja. (Step SC1) and disposing the surface of the second area AR2 of the first test substrate Pt1 at a second position (for example, a defocus position) different from the first position with respect to the image plane of the projection optical system PL, The second area AR2 of the first test substrate Pt1 is exposed by the exposure light EL irradiated to the projection area PR so that the integrated exposure amount in the projection area PR of the projection optical system PL becomes the first value Ja. (Step SC2), the third area AR3 of the first test substrate Pt1 is arranged at the first position with respect to the image plane of the projection optical system PL, and the integrated exposure amount in the projection area PR of the projection optical system PL is Exposing the third area AR3 of the first test substrate Pt1 with the exposure light EL irradiated to the projection area PR of the projection optical system PL so that the second value Jb is different from the first value Ja (step SC3); The fourth area AR4 of the first test substrate Pt1 is arranged at the second position with respect to the image plane of the projection optical system PL so that the integrated exposure amount in the projection area PR of the projection optical system PL becomes the second value Jb. In addition, the fourth area AR4 of the first test substrate Pt1 is exposed by the exposure light EL irradiated to the projection area PR of the projection optical system PL (step SC4), and the second image area of the projection optical system PL is second. Test board Pt Exposure light irradiated to the projection region PR of the projection optical system PL so that the integrated exposure amount in the projection region PR of the projection optical system PL becomes the first value Ja. The fifth area AR5 of the second test substrate Pt2 is exposed by EL (step SC5), and the sixth area AR6 of the second test substrate Pt2 is disposed at the second position with respect to the image plane of the projection optical system PL. The sixth area AR6 of the second test substrate Pt2 is exposed by the exposure light EL irradiated to the projection area PR of the projection optical system PL so that the integrated exposure amount in the projection area PR of the projection optical system PL becomes the first value Ja. Exposing (step SC6).
 本実施形態において、テスト現像は、図15のフローチャートに示したように、第1~第4領域AR1~AR4が露光された第1テスト基板Pt1を第1時間Taで現像して、第1テスト基板Pt1の第1~第4領域AR1~AR4のそれぞれに、感光膜のパターンを形成すること(ステップSB1)と、第5,第6領域AR5,AR6が露光された第2テスト基板Pt2を第1時間Taと異なる第2時間Tbで現像して、第2テスト基板Pt2の第5,第6領域AR5,AR6のそれぞれに、感光膜のパターンを形成すること(ステップSB2)と、を含む。 In this embodiment, as shown in the flowchart of FIG. 15, the test development is performed by developing the first test substrate Pt1 on which the first to fourth areas AR1 to AR4 are exposed for the first time Ta, A pattern of a photosensitive film is formed on each of the first to fourth areas AR1 to AR4 of the substrate Pt1 (step SB1), and the second test substrate Pt2 on which the fifth and sixth areas AR5 and AR6 are exposed is formed on the second test substrate Pt2. And developing in a second time Tb different from 1 hour Ta to form a pattern of a photosensitive film in each of the fifth and sixth regions AR5 and AR6 of the second test substrate Pt2 (step SB2).
 以下の説明において、テスト現像後、第1領域AR1に形成された感光膜のパターンを適宜、第1パターン、と称する。同様に、テスト現像後、第2,第3,第4,第5,第6領域AR2,AR3,AR4,AR5,AR6のそれぞれに形成された感光膜のパターンを適宜、第2,第3,第4,第5,第6パターン、と称する。 In the following description, the pattern of the photosensitive film formed in the first area AR1 after the test development is appropriately referred to as a first pattern. Similarly, after the test development, the pattern of the photosensitive film formed in each of the second, third, fourth, fifth and sixth regions AR2, AR3, AR4, AR5, AR6 is appropriately changed to the second, third, third, These are called fourth, fifth and sixth patterns.
 図22は、第1テスト基板Pt1の一例を示す模式図、図23は、第2テスト基板Pt2の一例を示す模式図である。なお、図22及び図23においては、投影領域PRの形状を長方形とする。 FIG. 22 is a schematic diagram illustrating an example of the first test board Pt1, and FIG. 23 is a schematic diagram illustrating an example of the second test board Pt2. In FIGS. 22 and 23, the shape of the projection region PR is a rectangle.
 本実施形態においては、図22に示すように、ベストフォーカス状態で、投影領域PRにおける積算露光量が第1値Jaになるように、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第1領域AR1が露光される(ステップSC1)。 In the present embodiment, as shown in FIG. 22, in the best focus state, the exposure light EL from the mask M irradiated to the projection region PR is set so that the integrated exposure amount in the projection region PR becomes the first value Ja. The first area AR1 of the first test substrate Pt1 is exposed (Step SC1).
 また、所定のデフォーカス状態で、投影領域PRにおける積算露光量が第1値Jaになるように、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第2領域AR2が露光される(ステップSC2)。 Further, in a predetermined defocus state, the second region of the first test substrate Pt1 is exposed by the exposure light EL from the mask M irradiated to the projection region PR so that the integrated exposure amount in the projection region PR becomes the first value Ja. AR2 is exposed (step SC2).
 また、ベストフォーカス状態で、投影領域PRにおける積算露光量が第2値Jbになるように、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第3領域AR3が露光される(ステップSC3)。第2値Jbは、第1値Jaと異なる。本実施形態において、第2値Jbは、第1値Jaの例えば1.2倍である。 In the best focus state, the third area AR3 of the first test substrate Pt1 is exposed by the exposure light EL from the mask M irradiated to the projection area PR so that the integrated exposure amount in the projection area PR becomes the second value Jb. Exposure is performed (step SC3). The second value Jb is different from the first value Ja. In the present embodiment, the second value Jb is, for example, 1.2 times the first value Ja.
 また、所定のデフォーカス状態(例えば、ステップSC2と同じデフォーカス状態)で、投影領域PRにおける積算露光量が第2値Jbになるように、投影領域PRに照射されたマスクMからの露光光ELで第1テスト基板Pt1の第4領域AR4が露光される(ステップSC4)。 Further, in a predetermined defocus state (for example, the same defocus state as in step SC2), the exposure light from the mask M irradiated to the projection region PR so that the integrated exposure amount in the projection region PR becomes the second value Jb. The fourth area AR4 of the first test substrate Pt1 is exposed by EL (step SC4).
 また、図23に示すように、ベストフォーカス状態で、投影領域PRにおける積算露光量が第1値Jaになるように、投影領域PRに照射されたマスクMからの露光光ELで第2テスト基板Pt2の第5領域AR5が露光される(ステップSC5)。 Further, as shown in FIG. 23, in the best focus state, the second test substrate is irradiated with the exposure light EL from the mask M irradiated on the projection region PR so that the integrated exposure amount in the projection region PR becomes the first value Ja. The fifth area AR5 of Pt2 is exposed (step SC5).
 また、所定のデフォーカス状態(例えば、ステップSC2と同じデフォーカス状態)で、投影領域PRにおける積算露光量が第1値Jaになるように、投影領域PRに照射されたマスクMからの露光光ELで第2テスト基板Pt2の第6領域AR6が露光される(ステップSC6)。 Further, in a predetermined defocus state (for example, the same defocus state as in step SC2), the exposure light from the mask M irradiated on the projection region PR so that the integrated exposure amount in the projection region PR becomes the first value Ja. The sixth area AR6 of the second test substrate Pt2 is exposed by EL (step SC6).
 次に、第1テスト基板Pt1に対して、現像処理が実行される(ステップSB1)。第1テスト基板Pt1の現像時間は、第1時間Taである。 Next, development processing is performed on the first test substrate Pt1 (step SB1). The development time of the first test substrate Pt1 is the first time Ta.
 また、第2テスト基板Pt2に対して、現像処理が実行される(ステップSB2)。第2テスト基板Pt2の現像時間は、第2時間Tbである。第1時間Taと第2時間Tbとは異なる。本実施形態において、第2時間Tbは、例えば第1時間Taの0.8倍である。 Further, development processing is performed on the second test substrate Pt2 (step SB2). The development time of the second test substrate Pt2 is the second time Tb. The first time Ta and the second time Tb are different. In the present embodiment, the second time Tb is, for example, 0.8 times the first time Ta.
 第1、第2テスト基板Pt1、Pt2に対する現像が実行されることによって、第1領域AR1には感光膜の第1パターンが形成され、第2領域AR2には感光膜の第2パターンが形成され、第3領域AR3には感光膜の第3パターンが形成され、第4領域AR4には感光膜の第4パターンが形成され、第5領域AR5には感光膜の第5パターンが形成され、第6領域AR6には感光膜の第6パターンが形成される。第1~第6パターンのそれぞれは、ラインパターンである。 By performing development on the first and second test substrates Pt1 and Pt2, a first pattern of the photosensitive film is formed in the first area AR1, and a second pattern of the photosensitive film is formed in the second area AR2. A third pattern of the photosensitive film is formed in the third area AR3, a fourth pattern of the photosensitive film is formed in the fourth area AR4, and a fifth pattern of the photosensitive film is formed in the fifth area AR5. A sixth pattern of the photosensitive film is formed in the six area AR6. Each of the first to sixth patterns is a line pattern.
 次に、本実施形態においては、第1パターン、第2パターン、第3パターン、第4パターン、第5パターン、及び第6パターンの寸法(ボトム幅)が計測される。パターンの寸法(ボトム幅)の計測は、例えばSEMなど、所定の計測装置を用いて実行される。 Next, in the present embodiment, the dimensions (bottom width) of the first pattern, the second pattern, the third pattern, the fourth pattern, the fifth pattern, and the sixth pattern are measured. The measurement of the dimension (bottom width) of the pattern is performed using a predetermined measuring device such as SEM.
 計測装置で計測された第1パターンの寸法は、W1である。第2パターンの寸法は、W1’である。第3パターンの寸法は、W2である。第4パターンの寸法は、W2’である。第5パターンの寸法は、W3である。第6パターンの寸法は、W3’である。 The dimension of the first pattern measured by the measuring device is W1. The dimension of the second pattern is W1 '. The dimension of the third pattern is W2. The dimension of the fourth pattern is W2 '. The dimension of the fifth pattern is W3. The dimension of the sixth pattern is W3 '.
 次に、第1値Ja、第2値Jb、第1時間Ta、第2時間Tb、目標寸法WT、及び第1~第6パターンの寸法W1~W6に基づいて、最適積算露光量JOPT、及び最適現像時間TOPTを決定する処理が実行される。本実施形態においては、既知である第1値Ja、第2値Jb、第1時間Ta、第2時間Tb、目標寸法WT、及び第1~第6パターンの寸法W1~W6を使って、計算により、最適積算露光量JOPT、及び最適現像時間TOPTを決定する。 Next, based on the first value Ja, the second value Jb, the first time Ta, the second time Tb, the target dimension WT, and the first to sixth pattern dimensions W1 to W6, the optimum integrated exposure dose JOPT, and A process for determining the optimum development time TOPT is executed. In the present embodiment, calculation is performed using the known first value Ja, second value Jb, first time Ta, second time Tb, target dimension WT, and first to sixth pattern dimensions W1 to W6. Thus, the optimum integrated exposure amount JOPT and the optimum development time TOPT are determined.
 以下、最適積算露光量JOPT、及び最適現像時間TOPTの決定方法の一例について説明する。本実施形態に係る決定方法は、上述の第1実施形態において図18を参照して説明した手順とほぼ同様である。以下、図18を参照して説明する。 Hereinafter, an example of a method for determining the optimum integrated exposure amount JOPT and the optimum development time TOPT will be described. The determination method according to the present embodiment is substantially the same as the procedure described with reference to FIG. 18 in the first embodiment described above. Hereinafter, a description will be given with reference to FIG.
 図18(A)において、ラインL4及びラインL4’は、図18(B)に示すような、露光条件及び現像条件が異なっても感光膜のパターンのボトム幅が同じになる感光膜の輪郭の一部を表す。本実施形態においては、以下に説明する計算により、ラインL4及びラインL4’が得られるような最適積算露光量JOPT、及び最適現像時間TOPTを求める。 In FIG. 18A, lines L4 and L4 ′ are contours of the photosensitive film that have the same bottom width of the photosensitive film pattern even when the exposure conditions and the development conditions are different, as shown in FIG. 18B. Represents part. In the present embodiment, the optimum integrated exposure amount JOPT and the optimum development time TOPT that can obtain the line L4 and the line L4 'are obtained by calculation described below.
 ラインL1は、ベストフォーカス状態において、積算露光量をJa、現像時間をTaとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。ラインL1’は、デフォーカス状態において、積算露光量をJa、現像時間をTaとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。すなわち、ラインL1は、図22に示す第1領域AR1に形成された感光膜のパターンの輪郭を表し、ラインL1’は、図22に示す第2領域AR2に形成された感光膜のパターンの輪郭を表す。 Line L1 represents the contour of the pattern of the photosensitive film in the best focus state when the exposure and development are performed with the integrated exposure amount Ja and the development time Ta. A line L1 'represents the outline of the pattern of the photosensitive film when the exposure and development are performed in the defocus state where the integrated exposure amount is Ja and the development time is Ta. That is, the line L1 represents the contour of the pattern of the photosensitive film formed in the first area AR1 shown in FIG. 22, and the line L1 ′ represents the contour of the pattern of the photosensitive film formed in the second area AR2 shown in FIG. Represents.
 ラインL1を、以下の(1B)式で表し、ラインL1’を、以下の(2B)式で表すこととする。 Suppose that the line L1 is represented by the following equation (1B), and the line L1 'is represented by the following equation (2B).
 y=a1x+b1…(1B)
 y=a1’x+b1’…(2B)
y = a1x + b1 (1B)
y = a1′x + b1 ′ (2B)
 また、ラインL1とラインL1’との交点の座標を(WP/2、hP)とする。 Also, the coordinates of the intersection of the line L1 and the line L1 'are (WP / 2, hP).
 ラインL2は、ベストフォーカス状態において、積算露光量をJb、現像時間をTaとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。ラインL2’は、デフォーカス状態において、積算露光量をJb、現像時間をTaとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。すなわち、ラインL2は、図22に示す第3領域AR3に形成された感光膜のパターンの輪郭を表し、ラインL2’は、図22に示す第4領域AR4に形成された感光膜のパターンの輪郭を表す。 Line L2 represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the best focus state where the integrated exposure amount is Jb and the development time is Ta. A line L2 'represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the defocus state where the integrated exposure amount is Jb and the development time is Ta. That is, the line L2 represents the contour of the pattern of the photosensitive film formed in the third area AR3 shown in FIG. 22, and the line L2 ′ represents the contour of the pattern of the photosensitive film formed in the fourth area AR4 shown in FIG. Represents.
 ラインL2を、以下の(3B)式で表し、ラインL2’を、以下の(4B)式で表すこととする。 Suppose that the line L2 is represented by the following equation (3B), and the line L2 'is represented by the following equation (4B).
 y=a2x+b2…(3B)
 y=a2’x+b2’…(4B)
y = a2x + b2 (3B)
y = a2′x + b2 ′ (4B)
 a2、b2、a2’、b2’は、積算露光量に比例する。(3B)式、(4B)式は、以下の(3B)式、(4B)式に変形できる。 A2, b2, a2 ', b2' are proportional to the integrated exposure amount. Expressions (3B) and (4B) can be transformed into the following expressions (3B) and (4B).
 y=(a1x+b1)×(Jb/Ja)…(3B)
 y=(a1’x+b1’)×(Jb/Ja)…(4B)
y = (a1x + b1) × (Jb / Ja) (3B)
y = (a1′x + b1 ′) × (Jb / Ja) (4B)
 ラインL2とラインL2’との交点の座標は(WP/2、hP×(Jb/Ja))となる。 The coordinates of the intersection of the line L2 and the line L2 'are (WP / 2, hP × (Jb / Ja)).
 ラインL3は、ベストフォーカス状態において、積算露光量をJa、現像時間をTbとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。ラインL3’は、デフォーカス状態において、積算露光量をJa、現像時間をTbとして、露光及び現像した場合の、感光膜のパターンの輪郭を表す。すなわち、ラインL3は、図23に示す第5領域AR5に形成された感光膜のパターンの輪郭を表し、ラインL3’は、図23に示す第6領域AR6に形成された感光膜のパターンの輪郭を表す。 Line L3 represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the best focus state where the integrated exposure amount is Ja and the development time is Tb. A line L3 'represents the contour of the pattern of the photosensitive film when the exposure and development are performed in the defocus state where the integrated exposure amount is Ja and the development time is Tb. That is, the line L3 represents the outline of the pattern of the photosensitive film formed in the fifth area AR5 shown in FIG. 23, and the line L3 ′ represents the outline of the pattern of the photosensitive film formed in the sixth area AR6 shown in FIG. Represents.
 ラインL3を、以下の(5B)式で表し、ラインL3’を、以下の(6B)式で表すこととする。ここで、現像時間が変化しても、a1、a1’は変化しないものと仮定する。 The line L3 is represented by the following expression (5B), and the line L3 'is represented by the following expression (6B). Here, it is assumed that a1 and a1 'do not change even if the development time changes.
 y=a1x+b3…(5B)
 y=a1’x+b3’…(6B)
y = a1x + b3 (5B)
y = a1′x + b3 ′ (6B)
 ラインL3とラインL3’との交点の座標を(WQ/2、hQ)とする。 Suppose that the coordinates of the intersection of the line L3 and the line L3 'are (WQ / 2, hQ).
 ラインL4を、以下の式(7B)で表し、ラインL4’を、以下の式(8B)で表すこととする。 Suppose that the line L4 is represented by the following formula (7B), and the line L4 'is represented by the following formula (8B).
 y=aOPT+bOPT…(7B)
 y=aOPT’+bOPT’…(8B)
y = aOPT + bOPT (7B)
y = aOPT ′ + bOPT ′ (8B)
 ラインL4とラインL4’との交点の座標を(WT/2、h0)とする。 Suppose that the coordinates of the intersection of the line L4 and the line L4 'are (WT / 2, h0).
 ラインL1、L1’、L2、L2’、L3、L3’と、y=h0との交点は、計測装置を使って計測したボトム幅の半値である。したがって、以下の式が成り立つ。 The intersection of the lines L1, L1 ', L2, L2', L3, L3 'and y = h0 is the half value of the bottom width measured using the measuring device. Therefore, the following equation holds.
 h0=a1W1/2+b1…(9B)
 h0=a1’W1’/2+b1’…(10B)
 h0=a1(Jb/Ja)W2/2+b1(Jb/Ja)…(11B)
 h0=a1’(Jb/Ja)W2’/2+b1’(Jb/Ja)…(12B)
 h0=a1W3/2+b3…(13B)
 h0=a1’W3’/2+b3’…(14B)
h0 = a1W1 / 2 + b1 (9B)
h0 = a1′W1 ′ / 2 + b1 ′ (10B)
h0 = a1 (Jb / Ja) W2 / 2 + b1 (Jb / Ja) (11B)
h0 = a1 ′ (Jb / Ja) W2 ′ / 2 + b1 ′ (Jb / Ja) (12B)
h0 = a1W3 / 2 + b3 (13B)
h0 = a1′W3 ′ / 2 + b3 ′ (14B)
 (9B)式、(10B)式、(13B)式、(14B)式より、以下の式が導出される。 The following equations are derived from the equations (9B), (10B), (13B), and (14B).
 b1=h0-a1W1/2
 b1’=h0-a1’W1’/2
 b3=h0-a1W3/2
 b3’=h0-a1’W3’/2
b1 = h0-a1W1 / 2
b1 ′ = h0−a1′W1 ′ / 2
b3 = h0-a1W3 / 2
b3 ′ = h0−a1′W3 ′ / 2
 (9B)式及び(11B)式より、以下の(15B)式が導出され、(10B)式及び(12B)式より、以下の(16B)式が導出され、(9B)式及び(15B)式より、以下の(17B)式が導出され、(10B)式及び(16B)式より、以下の(18B)式が導出され、(13B)式及び(15B)式より、以下の(19B)式が導出され、(14B)式及び(16B)式より、以下の(20B)式が導出される。 The following formula (15B) is derived from the formulas (9B) and (11B), and the following formula (16B) is derived from the formulas (10B) and (12B), and the formulas (9B) and (15B) are derived. From the equation, the following equation (17B) is derived, from the equations (10B) and (16B), the following equation (18B) is derived, and from the equations (13B) and (15B), the following (19B) The following equation (20B) is derived from the equations (14B) and (16B).
 a1=h0×{1-(Jb/Ja)}/{(Jb/Ja)×(W2/2-W1/2)}…(15B)
 a1’=h0×{1-(Jb/Ja)}/{(Jb/Ja)×(W2’/2-W1’/2)}…(16B)
 b1=h0×〔1-{1-(Jb/Ja)}/{(Jb/Ja)×(W2/2-W1/2)}×W1/2〕…(17B)
 b1’=h0×〔1-{1-(Jb/Ja)}/{(Jb/Ja)×(W2’/2-W1’/2)×W1’/2}…(18B)
 b3=h0×〔1-{1-(Jb/Ja)}/{(Jb/Ja)×(W2/2-W1/2)}×W3/2〕…(19B)
 b3’=h0×〔1-{1-(Jb/Ja)}/{(Jb/Ja)×(W2’/2-W1’/2)×W3’ /2}…(20B)
a1 = h0 × {1- (Jb / Ja)} / {(Jb / Ja) × (W2 / 2-W1 / 2)} (15B)
a1 ′ = h0 × {1- (Jb / Ja)} / {(Jb / Ja) × (W2 ′ / 2−W1 ′ / 2)} (16B)
b1 = h0 × [1- {1- (Jb / Ja)} / {(Jb / Ja) × (W2 / 2-W1 / 2)} × W1 / 2] (17B)
b1 ′ = h0 × [1- {1- (Jb / Ja)} / {(Jb / Ja) × (W2 ′ / 2−W1 ′ / 2) × W1 ′ / 2} (18B)
b3 = h0 × [1- {1- (Jb / Ja)} / {(Jb / Ja) × (W2 / 2-W1 / 2)} × W3 / 2] (19B)
b3 ′ = h0 × [1- {1- (Jb / Ja)} / {(Jb / Ja) × (W2 ′ / 2−W1 ′ / 2) × W3 ′ / 2} (20B)
 ラインL1、及びラインL1’は、交点(WP/2、hP)を通るので、以下の(21B)式、(22B)式が成り立つ。 Since the line L1 and the line L1 'pass through the intersection (WP / 2, hP), the following expressions (21B) and (22B) are established.
 hP=a1WP/2+b1…(21B)
 hP=a1’WP/2+b1’…(22B)
hP = a1WP / 2 + b1 (21B)
hP = a1′WP / 2 + b1 ′ (22B)
 よって、以下の(23B)式、(24B)式が導出される。 Therefore, the following equations (23B) and (24B) are derived.
 WP=2×(b1’-b1)/(a1-a1’)…(23B)
 hP=(a1b1’-a1’b1)/(a1-a1’)…(24B)
WP = 2 × (b1′−b1) / (a1−a1 ′) (23B)
hP = (a1b1′−a1′b1) / (a1−a1 ′) (24B)
 ラインL3、及びラインL3’は、交点(WQ/2、hQ)を通るので、以下の(25B)式、(26B)式が成り立つ。 Since the line L3 and the line L3 'pass through the intersection (WQ / 2, hQ), the following expressions (25B) and (26B) are established.
 hQ=a1WQ/2+b3…(25B)
 hQ=a1’WQ/2+b3’…(26B)
hQ = a1WQ / 2 + b3 (25B)
hQ = a1′WQ / 2 + b3 ′ (26B)
 よって、以下の(27B)式、(28B)式が導出される。 Therefore, the following equations (27B) and (28B) are derived.
 WQ=2×(b3’-b3)/(a1-a1’)…(27B)
 hQ=(a1b3’-a1’b3)/(a1-a1’)…(28B)
WQ = 2 × (b3′−b3) / (a1−a1 ′) (27B)
hQ = (a1b3′−a1′b3) / (a1−a1 ′) (28B)
 点(WP/2、hP)と点(WQ/2、hQ)を通る直線上にあって、寸法(線幅)の半値が目標寸法WTの半値WT/2と等しくなる点の座標を点(WT/2、hR)とすると、点(WP/2、hP)、点(WQ/2、hQ)、点(WT/2、hR)は、同一直線上にあるので、以下の(29B)式が成り立つ。 The coordinates of a point on the straight line passing through the point (WP / 2, hP) and the point (WQ / 2, hQ), where the half value of the dimension (line width) is equal to the half value WT / 2 of the target dimension WT, Assuming that WT / 2, hR), the point (WP / 2, hP), the point (WQ / 2, hQ), and the point (WT / 2, hR) are on the same straight line, so the following equation (29B) Holds.
 (hQ-hP)/(WQ/2-WP/2)=(hR-hP)/(WT/2-WP/2)…(29B) (HQ-hP) / (WQ / 2-WP / 2) = (hR-hP) / (WT / 2-WP / 2) ... (29B)
 (29B)式を、hRについて整理すると、以下の(30B)式が導出される。 (29B) is rearranged for hR, the following (30B) is derived.
 hR=hP+(WT-WP)×(hQ-hP)/(WQ-WP)…(30B) HR = hP + (WT-WP) × (hQ-hP) / (WQ-WP) ... (30B)
 最適積算露光量JOPTについて、以下の(31B)式が成り立つ。 The following equation (31B) is established for the optimum integrated exposure amount JOPT.
 JOPT/Ja=h0/hR…(31B) JOPT / Ja = h0 / hR (31B)
 (30B)式、(31B)式より、以下の(32B)式が導出される。 The following equation (32B) is derived from equations (30B) and (31B).
 JOPT=Ja×〔h0/{hP+(WT-WP)×(hQ-hP)/(WQ-WP)}〕…(32B) JOPT = Ja × [h0 / {hP + (WT−WP) × (hQ−hP) / (WQ−WP)}]… (32B)
 (32B)式に、(23B)式、(24B)式、(27B)式、(28B)式を代入すると、以下の(33B)式が導出される。 Substituting (23B), (24B), (27B), and (28B) into (32B) yields the following (33B).
 JOPT=Ja×h0/〔(a1b1’-a1’b1)/(a1-a1’)+{WT/2-(b1’-b1)/(a1-a1’)}×(a1b3’-a1’b3-a1b1’-a1’b1)/(b3’-b3-b1’+b1)…(33B) JOPT = Ja × h0 / [(a1b1′−a1′b1) / (a1−a1 ′) + {WT / 2− (b1′−b1) / (a1−a1 ′)} × (a1b3′−a1′b3 -A1b1'-a1'b1) / (b3'-b3-b1 '+ b1) (33B)
 最適現像時間TOPTについて、以下の(34B)式が成り立つ。
 (TOPT-Ta)/(Tb-Ta)=(WT/2-WP/2)/(WQ/2-WP/2)…(34B)
The following equation (34B) holds for the optimum development time TOPT.
(TOPT-Ta) / (Tb-Ta) = (WT / 2-WP / 2) / (WQ / 2-WP / 2) (34B)
 (34B)式をTOPTについて展開すると、以下の(35B)式が導出される。 When the equation (34B) is expanded for TOPT, the following equation (35B) is derived.
 TOPT=Ta+(Tb-Ta)×(WT-WP)/(WQ-WP)…(35B) TOPT = Ta + (Tb−Ta) × (WT−WP) / (WQ−WP) (35B)
 (35B)式に、(23B)式、(27B)式を代入すると、以下の(36B)式が導出される。 Substituting (23B) and (27B) into (35B), the following (36B) is derived.
 TOPT=Ta+(Tb-Ta)×{(a1-a1’)×WT/2-(b1’-b1)}/(b3’-b3-b1’+b1)…(36B) TOPT = Ta + (Tb−Ta) × {(a1−a1 ′) × WT / 2− (b1′−b1)} / (b3′−b3−b1 ′ + b1) (36B)
 最適積算露光量JOPTを表す(33B)式、及び最適現像時間TOPTを表す(36B)式のa1~b3’に、(15B)式~(20B)式を代入すると、h0は、消去される。以上により、最適積算露光量JOPT、及び最適現像時間TOPTが導出される。 When substituting the formulas (15B) to (20B) into a1 to b3 'in the formula (33B) representing the optimum integrated exposure amount JOPT and the formula (36B) representing the optimum development time TOPT, h0 is deleted. Thus, the optimum integrated exposure amount JOPT and the optimum development time TOPT are derived.
 以上により、テスト基板Pt(Pt1、Pt2)を用いて、最適積算露光量JOPT、及び最適現像時間TOPTを決定する処理(ステップSP1)が完了する。 Thus, the process (step SP1) for determining the optimum integrated exposure amount JOPT and the optimum development time TOPT using the test substrate Pt (Pt1, Pt2) is completed.
 決定された最適積算露光量JOPTで基板Pを本露光し、決定された最適現像時間TOPTで本現像することによって、基板Pに、均一で所望の寸法のパターン(デバイスパターン)が形成される。 A pattern (device pattern) having a uniform and desired dimension is formed on the substrate P by subjecting the substrate P to the main exposure with the determined optimum integrated exposure amount JOPT and performing the main development with the determined optimum development time TOPT.
 以上説明したように、本実施形態によれば、基板Pに、均一で所望の寸法を有するパターンを形成することができる。したがって、不良デバイスの発生を抑制できる。 As described above, according to the present embodiment, a uniform pattern having a desired dimension can be formed on the substrate P. Therefore, generation | occurrence | production of a defective device can be suppressed.
 なお、本実施形態においては、第1~第4パターンが、第1テスト基板Pt1に形成され、第5,第6パターンが、第2テスト基板Pt2に形成されることとしたが、もちろん、第1~第6パターンのそれぞれが、異なる第1~第6テスト基板に形成されてもよいし、例えば第1、第2パターンが第1テスト基板に形成され、第3,第4パターンが第2テスト基板に形成され、第5,第6パターンが第3テスト基板に形成されてもよい。 In the present embodiment, the first to fourth patterns are formed on the first test substrate Pt1, and the fifth and sixth patterns are formed on the second test substrate Pt2. Each of the first to sixth patterns may be formed on different first to sixth test substrates. For example, the first and second patterns are formed on the first test substrate, and the third and fourth patterns are the second. The fifth and sixth patterns may be formed on the test substrate, and the fifth and sixth patterns may be formed on the third test substrate.
〔第3実施形態〕
 上述の第1、第2実施形態のパターン形成方法によれば、均一で所望の寸法を有するパターンを基板P上に形成可能な最適積算露光量JOPTを算出することができる。しかしながら、算出された最適積算露光量JOPTが非常に大きい場合には、水銀ランプ5が射出する光の強度を上げる必要が生じ、パターンを形成するためのコストが増加する。また、感光膜の感度によっては、上述のテスト露光を行う前の段階で大きな積算露光量が必要になることが予想される場合がある。このような場合も同様に、水銀ランプ5が射出する光の強度を上げる必要が生じることから、パターンを形成するためのコストが増加する。従って、積算露光量を増大させることなく基板Pに形成されるパターンの不均一性を抑制できることが望ましい。そこで、本願発明の発明者らは、鋭意研究を重ねてきた結果、値JkとマスクパターンのL&S割合(ライン部(ラインパターン)の線幅とスペース部(スペースパターン)の線幅と割合)の間に以下に示すような関係があることを知見した。
[Third Embodiment]
According to the pattern forming methods of the first and second embodiments described above, it is possible to calculate the optimum integrated exposure amount JOPT that can form a uniform pattern having a desired dimension on the substrate P. However, when the calculated optimum integrated exposure amount JOPT is very large, it is necessary to increase the intensity of light emitted from the mercury lamp 5, and the cost for forming the pattern increases. Further, depending on the sensitivity of the photosensitive film, it may be expected that a large integrated exposure amount is required before the test exposure described above. In such a case as well, since it is necessary to increase the intensity of light emitted from the mercury lamp 5, the cost for forming the pattern increases. Therefore, it is desirable that the nonuniformity of the pattern formed on the substrate P can be suppressed without increasing the integrated exposure amount. Therefore, the inventors of the present invention have conducted extensive research, and as a result, the value Jk and the L & S ratio of the mask pattern (the line width of the line part (line pattern) and the line width and ratio of the space part (space pattern)) It was found that there is a relationship as shown below.
 図24-1は、ラインパターン及びスペースパターンの線幅をそれぞれ4.0[μm]及び2.0[μm]としたとき(ピッチ6[μm])のデフォーカス量(0,10,20[μm])の変化に伴う積算露光量の変化を示す図である。図24-1に示すように、ラインパターン及びスペースパターンの線幅をそれぞれ4.0[μm]及び2.0[μm]としたときには、値Jk1は相対強度H1=0.18の位置にあり、またボトム幅D1は2.80[μm]となっている。 FIG. 24A shows the defocus amount (0, 10, 20 [pitch]) when the line widths of the line pattern and the space pattern are 4.0 [μm] and 2.0 [μm], respectively (pitch 6 [μm]). It is a figure which shows the change of the integrated exposure amount accompanying the change of (micrometer)]. As shown in FIG. 24-1, when the line widths of the line pattern and the space pattern are 4.0 [μm] and 2.0 [μm], the value Jk1 is at the position of the relative intensity H1 = 0.18. The bottom width D1 is 2.80 [μm].
 図24-2は、ラインパターン及びスペースパターンの線幅をそれぞれ3.7[μm]及び2.3[μm]としたとき(ピッチ6[μm])のデフォーカス量(0,10,20[μm])の変化に伴う積算露光量の変化を示す図である。図24-2に示すように、ラインパターン及びスペースパターンの線幅をそれぞれ3.7[μm]及び2.3[μm]としたときには、値Jk2は相対強度H2=0.226の位置にあり、またボトム幅D2は2.82[μm]となっている。 FIG. 24-2 illustrates the defocus amounts (0, 10, 20 [pitch]) when the line widths of the line pattern and the space pattern are 3.7 [μm] and 2.3 [μm], respectively (pitch 6 [μm]). It is a figure which shows the change of the integrated exposure amount accompanying the change of (micrometer)]. As shown in FIG. 24-2, when the line widths of the line pattern and the space pattern are 3.7 [μm] and 2.3 [μm] respectively, the value Jk2 is at the position of the relative intensity H2 = 0.226. The bottom width D2 is 2.82 [μm].
 図24-3は、ラインパターン及びスペースパターンの線幅をそれぞれ3.5[μm]及び2.5[μm]としたとき(ピッチ6[μm])のデフォーカス量(0,10,20[μm])の変化に伴う積算露光量の変化を示す図である。図24-3に示すように、ラインパターン及びスペースパターンの線幅をそれぞれ3.5[μm]及び2.5[μm]としたときには、値Jk3は相対強度H3=0.26の位置にあり、またボトム幅D3は2.82[μm]となっている。 FIG. 24-3 illustrates the defocus amounts (0, 10, 20 [pitch]) when the line widths of the line pattern and the space pattern are 3.5 [μm] and 2.5 [μm], respectively (pitch 6 [μm]). It is a figure which shows the change of the integrated exposure amount accompanying the change of (micrometer)]. As shown in FIG. 24-3, when the line widths of the line pattern and the space pattern are 3.5 [μm] and 2.5 [μm], the value Jk3 is at the relative intensity H3 = 0.26. The bottom width D3 is 2.82 [μm].
 図24-4は、ラインパターン及びスペースパターンの線幅を共に3.0[μm]としたとき(ピッチ6[μm])のデフォーカス量(0,10,20[μm])の変化に伴う積算露光量の変化を示す図である。図24-4に示すように、ラインパターン及びスペースパターンの線幅を共に3.0[μm]としたときには、値Jk4は相対強度H4=0.348の位置にあり、またボトム幅D4は2.90[μm]となっている。 FIG. 24-4 is accompanied by a change in defocus amount (0, 10, 20 [μm]) when the line widths of the line pattern and the space pattern are both 3.0 [μm] (pitch 6 [μm]). It is a figure which shows the change of integrated exposure amount. As shown in FIG. 24-4, when the line widths of the line pattern and the space pattern are both 3.0 [μm], the value Jk4 is at the position of the relative intensity H4 = 0.348, and the bottom width D4 is 2 .90 [μm].
 図25は、図24-1,図24-3,及び図24-4に示す積算露光量の変化を重ねて表示した図である。図25から明らかなように、ピッチを固定した状態でマスクパターンのL&S割合を変化させた場合、ボトム幅Dは大きく変化しないのに対して、値Jkは大きく変化することがわかる。具体的には、ピッチを固定した状態でラインパターンの線幅を小さく(スペースパターンの線幅を大きく)した場合には、値Jkが大きくなる。従って、ピッチを固定した状態でラインパターンの線幅を小さくした場合には、積算露光量を大きくしたときと同様の効果が得られることがわかる。一方、図26に示すように、値Jkは光強度の増加に伴い増加する。従って、図24-1~4に示す値Jk1~Jk4は光強度を変更することによって一致可能であることが知見される。図27は、光強度を変更することによって図24-1,24-3,24-4に示す積算露光量の値Jk1,Jk3,Jk4を一致させた状態を示す。図27に示すように、値Jk1,Jk3,Jk4が一致していることがわかる。 FIG. 25 is a diagram in which changes in the accumulated exposure amount shown in FIGS. 24-1, 24-3, and 24-4 are superimposed and displayed. As is apparent from FIG. 25, when the L & S ratio of the mask pattern is changed with the pitch fixed, the bottom width D does not change greatly, but the value Jk changes greatly. Specifically, if the line width of the line pattern is reduced (the line width of the space pattern is increased) with the pitch fixed, the value Jk increases. Therefore, it can be seen that when the line width of the line pattern is reduced with the pitch fixed, the same effect as that obtained when the integrated exposure amount is increased can be obtained. On the other hand, as shown in FIG. 26, the value Jk increases as the light intensity increases. Accordingly, it is found that the values Jk1 to Jk4 shown in FIGS. 24-1 to 4 can be matched by changing the light intensity. FIG. 27 shows a state in which the integrated exposure values Jk1, Jk3, and Jk4 shown in FIGS. 24-1, 24-3, and 24-4 are matched by changing the light intensity. As shown in FIG. 27, it can be seen that the values Jk1, Jk3, and Jk4 match.
 以上をまとめると、値Jkはピッチを変化させることなくマスクパターンのL&S割合を変化させることにより変化することから、ピッチを変化させることなくマスクパターンのL&S割合を変化させることにより積算露光量を変化させたときと同様の効果が得られることがわかる。従って、算出された最適積算露光量JOPTが非常に大きい場合や感光膜の感度によってテスト露光を行う前の段階で大きな積算露光量が必要になることが予想される場合には、マスクパターンのL&S割合を変更することによって値Jkを大きくし、積算露光量を増大させることなく基板に形成されるパターンの不均一性を抑制するとよい。 In summary, since the value Jk changes by changing the L & S ratio of the mask pattern without changing the pitch, the integrated exposure amount changes by changing the L & S ratio of the mask pattern without changing the pitch. It can be seen that the same effect as obtained can be obtained. Accordingly, when the calculated optimum integrated exposure amount JOPT is very large or when it is expected that a large integrated exposure amount is required before the test exposure is performed due to the sensitivity of the photosensitive film, the L & S of the mask pattern is performed. It is preferable to increase the value Jk by changing the ratio and suppress the nonuniformity of the pattern formed on the substrate without increasing the integrated exposure amount.
 以下、図28に示すフローチャートを参照して、上述の知見に基づく第3実施形態に係るパターン形成方法について説明する。図28は、第3実施形態に係るパターン形成方法の一例を示すフローチャートである。本実施形態では、始めに、第1,第2実施形態に係るパターン形成方法と同様にしてテスト露光及びテスト現像を行うことによってパターンに対する最適積算露光量JOPTを算出する(ステップSP11)。次に、算出された最適積算露光量JOPTが所定範囲内であるか否かを判定する(ステップSP12)。判定の結果、最適積算露光量JOPTが所定範囲内にある場合、第1,第2実施形態に係るパターン形成方法と同様にして本露光及び本現像を行う(ステップSP13)。一方、最適積算路光量JOPTが所定範囲内にない場合には、L&S割合を変更したマスクパターンを用意する(SP14)。具体的には、最適積算露光量JOPTが所定範囲以上の大きさである場合、ステップSP11において用いたマスクパターンとピッチが同じであり、且つ、ラインパターンの線幅がより小さい別のマスクパターンを用意する。そして、用意した別のマスクパターンを用いて再びステップSP11を行い、別のマスクパターンに対する最適露光量JOPTを算出する。なお、感光膜の感度によってテスト露光を行う前の段階で大きな積算露光量が必要になることが予想される場合には、上述のステップSP14の処理から開始すればよい。 Hereinafter, a pattern forming method according to the third embodiment based on the above-described knowledge will be described with reference to a flowchart shown in FIG. FIG. 28 is a flowchart illustrating an example of a pattern forming method according to the third embodiment. In the present embodiment, first, an optimum integrated exposure amount JOPT for a pattern is calculated by performing test exposure and test development in the same manner as the pattern forming method according to the first and second embodiments (step SP11). Next, it is determined whether or not the calculated optimum integrated exposure amount JOPT is within a predetermined range (step SP12). As a result of the determination, when the optimum integrated exposure amount JOPT is within a predetermined range, the main exposure and the main development are performed in the same manner as the pattern forming method according to the first and second embodiments (step SP13). On the other hand, when the optimum integrated path light amount JOPT is not within the predetermined range, a mask pattern with a changed L & S ratio is prepared (SP14). Specifically, when the optimum integrated exposure amount JOPT is greater than or equal to a predetermined range, another mask pattern having the same pitch as the mask pattern used in step SP11 and having a smaller line width is used. prepare. Then, step SP11 is performed again using another prepared mask pattern, and the optimum exposure amount JOPT for the other mask pattern is calculated. If it is anticipated that a large integrated exposure amount will be required before the test exposure is performed due to the sensitivity of the photosensitive film, the process may be started from step SP14 described above.
 以上の説明から明らかなように、本発明の第3実施形態に係るパターン形成方法によれば、最適積算露光量JOPTの大きさに基づいてL&S割合を変更した別のマスクパターンを用意し、用意した別のマスクパターンを用いてテスト露光及びテスト現像と本露光及び本現像とを行うので、露光量を増大させることなく基板に形成されるパターンの不均一性を抑制できる。 As is clear from the above description, according to the pattern forming method of the third embodiment of the present invention, another mask pattern in which the L & S ratio is changed based on the magnitude of the optimum integrated exposure amount JOPT is prepared and prepared. Since the test exposure, test development, main exposure, and main development are performed using the different mask patterns, the non-uniformity of the pattern formed on the substrate can be suppressed without increasing the exposure amount.
 なお、上述の実施形態においては、感光膜がポジ型であることとしたが、露光光ELが照射されていない部分が現像によって除去されるネガ型でもよい。 In the above-described embodiment, the photosensitive film is a positive type. However, a negative type in which a portion not irradiated with the exposure light EL is removed by development may be used.
 なお、上述の第1、第2実施形態の基板Pとしては、ディスプレイデバイス用のガラス基板のみならず、半導体デバイス製造用の半導体ウエハ、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)などが適用される。 The substrate P in the first and second embodiments described above is not only a glass substrate for display devices, but also a semiconductor wafer for manufacturing semiconductor devices, a ceramic wafer for thin film magnetic heads, or a mask used in an exposure apparatus. Alternatively, a reticle original (synthetic quartz, silicon wafer) or the like is applied.
 なお、露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを介した露光光ELで基板Pを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。 As the exposure apparatus EX, a step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the substrate P with the exposure light EL through the pattern of the mask M by moving the mask M and the substrate P synchronously. In addition, the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and is applied to a step-and-repeat type projection exposure apparatus (stepper) that sequentially moves the substrate P stepwise. Can do.
 また、本発明は、米国特許第6341007号明細書、米国特許第6208407号明細書、米国特許第6262796号明細書などに開示されているような、複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。 Further, the present invention relates to a twin stage type exposure having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796 and the like. It can also be applied to devices.
 また、本発明は、米国特許第6897963号明細書、欧州特許出願公開第1713113号明細書などに開示されているような、基板を保持する基板ステージと、基板を保持せずに、基準マークが形成された基準部材及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも適用することができる。また、複数の基板ステージと計測ステージとを備えた露光装置を採用することができる。 Further, the present invention relates to a substrate stage for holding a substrate as disclosed in US Pat. No. 6,897,963 and European Patent Application No. 1713113, and a reference mark without holding the substrate. The present invention can also be applied to an exposure apparatus that includes a formed reference member and / or a measurement stage on which various photoelectric sensors are mounted. An exposure apparatus including a plurality of substrate stages and measurement stages can be employed.
 露光装置EXの種類としては、液晶表示素子製造用又はディスプレイ製造用の露光装置に限られず、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。 The type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a liquid crystal display element or a display, but an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P, a thin film magnetic head, an image sensor (CCD) In addition, the present invention can be widely applied to an exposure apparatus for manufacturing a micromachine, MEMS, DNA chip, reticle, mask, or the like.
 なお、上述の各実施形態においては、レーザ干渉計を含む干渉計システムを用いて各ステージの位置情報を計測するものとしたが、これに限らず、例えば各ステージに設けられるスケール(回折格子)を検出するエンコーダシステムを用いてもよい。 In each of the above-described embodiments, the position information of each stage is measured using an interferometer system including a laser interferometer. However, the present invention is not limited to this. For example, a scale (diffraction grating) provided in each stage You may use the encoder system which detects this.
 なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6778257号明細書に開示されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する可変成形マスク(電子マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれる)を用いてもよい。また、非発光型画像表示素子を備える可変成形マスクに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしても良い。 In the above-described embodiment, a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used. As disclosed in US Pat. No. 6,778,257, a variable shaped mask (also called an electronic mask, an active mask, or an image generator) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed. ) May be used. Further, a pattern forming apparatus including a self-luminous image display element may be provided instead of the variable molding mask including the non-luminous image display element.
 上述の実施形態の露光装置EXは、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続などが含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了した後、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度などが管理されたクリーンルームで行うことが望ましい。 The exposure apparatus EX of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. After the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus is preferably manufactured in a clean room in which the temperature and cleanliness are controlled.
 半導体デバイスなどのマイクロデバイスは、図29に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、上述の実施形態に従って、マスクからの露光光で基板を露光して基板にパターンの像を投影すること、露光された基板(感光膜)を現像することを含む基板処理(露光処理)を含む基板処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)205、検査ステップ206などを経て製造される。なお、ステップ204では、感光膜を現像することで、マスクのパターンに対応する露光パターン層(現像された感光膜の層)を形成し、この露光パターン層を介して基板を加工することが含まれる。例えば、基板の加工は、現像された基板をエッチング処理することを含む。 As shown in FIG. 29, a microdevice such as a semiconductor device includes a step 201 for designing a function / performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, and a substrate which is a base material of the device. In step 203, the substrate processing includes exposing the substrate with the exposure light from the mask to project an image of the pattern onto the substrate and developing the exposed substrate (photosensitive film) according to the above-described embodiment. The substrate is manufactured through a substrate processing step 204 including an exposure process, a device assembly step (including processing processes such as a dicing process, a bonding process, and a package process) 205, an inspection step 206, and the like. Step 204 includes developing the photosensitive film to form an exposure pattern layer (development of the developed photosensitive film) corresponding to the mask pattern, and processing the substrate through the exposure pattern layer. It is. For example, processing the substrate includes etching the developed substrate.
 なお、上述の実施形態及び変形例の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の実施形態及び変形例で引用した露光装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 It should be noted that the requirements of the above-described embodiments and modifications can be combined as appropriate. Some components may not be used. In addition, as long as it is permitted by law, the disclosure of all published publications and US patents related to the exposure apparatus and the like cited in the above-described embodiments and modifications are incorporated herein by reference.
 また、上述の実施形態では、本発明を露光装置に適用するものとして説明したが、本発明は、露光装置に限定されず、例えば基板Pに設けられた複数の被処理領域を顕微鏡などで順次観察して検査する検査装置などにも適用することができる。 In the above-described embodiment, the present invention has been described as being applied to an exposure apparatus. However, the present invention is not limited to an exposure apparatus, and for example, a plurality of processing regions provided on a substrate P are sequentially used with a microscope or the like. The present invention can also be applied to an inspection apparatus that observes and inspects.
 本発明の態様によれば、露光量を所定範囲内に保ちつつ基板に形成されるパターンの不均一性を抑制できるパターン形成方法、及びこのパターン形成方法を利用してデバイスを製造するデバイス製造方法を提供することができる。 According to an aspect of the present invention, a pattern forming method capable of suppressing nonuniformity of a pattern formed on a substrate while keeping an exposure amount within a predetermined range, and a device manufacturing method for manufacturing a device using the pattern forming method Can be provided.
 1 マスクステージ
 2 基板ステージ
 4 制御装置
 M マスク
 P 基板
 Pt テスト基板
 PL1~PL7 投影光学系
 PR1~PR7 投影領域
DESCRIPTION OF SYMBOLS 1 Mask stage 2 Substrate stage 4 Control apparatus M Mask P Substrate Pt Test substrate PL1-PL7 Projection optical system PR1-PR7 Projection area

Claims (8)

  1.  ライン部とスペース部とを有するマスクパターンを介して投影光学系からの露光光を感光性の基板に照射することにより該基板にパターンを形成するパターン形成方法であって、
     前記基板に前記パターンを形成するために必要な投影光学系の投影領域における積算露光量が所定範囲内にあるか否かを判別することと、
     前記積算露光量が所定範囲内にない場合、前記マスクパターンを、ライン部とスペース部とのピッチが同じであって、且つ、ライン部の線幅とスペース部の線幅との割合が異なる別のマスクパターンに変更することと、
     前記別のマスクパターンを用いて露光条件及び現像条件を決定することと、
     前記露光条件で前記投影領域に照射された露光光により前記基板を露光することと、
     前記現像条件で前記基板を現像することと、
     を含むことを特徴とするパターン形成方法。
    A pattern forming method for forming a pattern on a photosensitive substrate by irradiating a photosensitive substrate with exposure light from a projection optical system through a mask pattern having a line portion and a space portion,
    Determining whether or not an integrated exposure amount in a projection area of a projection optical system necessary for forming the pattern on the substrate is within a predetermined range;
    When the integrated exposure amount is not within a predetermined range, the mask pattern is different in that the pitch between the line portion and the space portion is the same, and the ratio between the line width of the line portion and the line width of the space portion is different. Changing to the mask pattern of
    Determining exposure conditions and development conditions using the different mask pattern;
    Exposing the substrate with exposure light applied to the projection region under the exposure conditions;
    Developing the substrate under the development conditions;
    A pattern forming method comprising:
  2.  前記マスクパターンの変更は、前記積算露光量が所定範囲以上の大きさである場合、前記マスクパターンを、ライン部とスペース部とのピッチが同じであって、且つ、ライン部の線幅を短くした別のマスクパターンに変更することを含むことを特徴とする請求項1に記載のパターン形成方法。 In the mask pattern change, when the integrated exposure amount is not less than a predetermined range, the mask pattern has the same pitch between the line portion and the space portion, and the line width of the line portion is shortened. The pattern forming method according to claim 1, further comprising changing to another mask pattern.
  3.  前記別のマスクパターンを用いて露光条件及び現像条件を決定することは、
     前記投影光学系の像面に対して第1基板の露光面を第1位置に配置して、前記投影光学系の投影領域における積算露光量が第1値になるように、前記投影領域に照射された前記露光光により前記第1基板を露光することと、
     前記像面に対して第2基板の露光面を前記第1位置と異なる第2位置に配置して、前記投影領域における積算露光量が前記第1値になるように、前記投影領域に照射された前記露光光により前記第2基板を露光することと、
     前記像面に対して第3基板を前記第1位置に配置して、前記投影領域における積算露光量が前記第1値と異なる第2値になるように、前記投影領域に照射された前記露光光により前記第3基板を露光することと、
     前記像面に対して第4基板を前記第2位置に配置して、前記投影領域における積算露光量が前記第2値になるように、前記投影領域に照射された前記露光光により前記第4基板を露光することと、
     前記像面に対して第5基板を前記第1位置に配置して、前記投影領域における積算露光量が前記第1値になるように、前記投影領域に照射された前記露光光により前記第5基板を露光することと、
     前記像面に対して第6基板を前記第2位置に配置して、前記投影領域における積算露光量が前記第1値になるように、前記投影領域に照射された前記露光光により前記第6基板を露光することと、
     前記第1基板を第1時間で現像して、前記第1基板に第1パターンを形成することと、
     前記第2基板を前記第1時間で現像して、前記第2基板に第2パターンを形成することと、
     前記第3基板を前記第1時間で現像して、前記第3基板に第3パターンを形成することと、
     前記第4基板を前記第1時間で現像して、前記第4基板に第4パターンを形成することと、
     前記第5基板を前記第1時間と異なる第2時間で現像して、前記第5基板に第5パターンを形成することと、
     前記第6基板を前記第2時間で現像して、前記第6基板に第6パターンを形成することと、
     前記第1乃至第6パターンに基づいて露光条件及び現像条件を決定することと、
     を含むことを特徴とする請求項1又は2に記載のパターン形成方法。
    Determining exposure conditions and development conditions using the other mask pattern,
    The exposure surface of the first substrate is arranged at a first position with respect to the image plane of the projection optical system, and the projection area is irradiated so that the integrated exposure amount in the projection area of the projection optical system becomes a first value. Exposing the first substrate with the exposed exposure light;
    The exposure area of the second substrate is arranged at a second position different from the first position with respect to the image plane, and the projection area is irradiated so that the integrated exposure amount in the projection area becomes the first value. Exposing the second substrate with the exposure light;
    The exposure irradiated to the projection area such that the third substrate is disposed at the first position with respect to the image plane, and the integrated exposure amount in the projection area becomes a second value different from the first value. Exposing the third substrate with light;
    The fourth substrate is arranged at the second position with respect to the image plane, and the fourth exposure light irradiated onto the projection area is set to the fourth value so that the integrated exposure amount in the projection area becomes the second value. Exposing the substrate;
    A fifth substrate is arranged at the first position with respect to the image plane, and the fifth exposure light irradiated onto the projection area causes the fifth exposure light to irradiate the projection area so that the integrated exposure amount in the projection area becomes the first value. Exposing the substrate;
    A sixth substrate is arranged at the second position with respect to the image plane, and the sixth exposure light is applied to the projection area so that the integrated exposure amount in the projection area becomes the first value. Exposing the substrate;
    Developing the first substrate in a first time to form a first pattern on the first substrate;
    Developing the second substrate in the first time to form a second pattern on the second substrate;
    Developing the third substrate in the first time to form a third pattern on the third substrate;
    Developing the fourth substrate in the first time to form a fourth pattern on the fourth substrate;
    Developing the fifth substrate at a second time different from the first time to form a fifth pattern on the fifth substrate;
    Developing the sixth substrate in the second time to form a sixth pattern on the sixth substrate;
    Determining exposure conditions and development conditions based on the first to sixth patterns;
    The pattern forming method according to claim 1, further comprising:
  4.  前記第1パターン、前記第2パターン、前記第3パターン、前記第4パターン、前記第5パターン、及び前記第6パターンの寸法を計測することを含み、前記露光条件及び現像条件の決定は、計測された寸法、前記第1値、前記第2値、前記第1時間、前記第2時間、及び前記寸法の計測結果に基づいて実行されることを特徴とする請求項3に記載のパターン形成方法。 Measuring the dimensions of the first pattern, the second pattern, the third pattern, the fourth pattern, the fifth pattern, and the sixth pattern, and determining the exposure condition and the development condition is a measurement 4. The pattern forming method according to claim 3, wherein the pattern forming method is performed based on a measurement result of the measured dimension, the first value, the second value, the first time, the second time, and the dimension. .
  5.  前記第1基板、前記第2基板、前記第3基板、前記第4基板、前記第5基板、及び前記第6基板の少なくも2つは、同一の基板であることを特徴とする請求項3又は4に記載のパターン形成方法。 The at least two of the first substrate, the second substrate, the third substrate, the fourth substrate, the fifth substrate, and the sixth substrate are the same substrate. Or the pattern formation method of 4.
  6.  前記露光条件は、前記像面に対して前記第1位置に配置された前記基板に形成されるパターンの寸法と、前記第2位置に配置された前記基板に形成されるパターンの寸法とがほぼ一致する前記投影領域における露光量を含むことを特徴とする請求項3~5のうちのいずれか1項に記載のパターン形成方法。 The exposure condition is that the dimension of the pattern formed on the substrate disposed at the first position relative to the image plane and the dimension of the pattern formed on the substrate disposed at the second position are approximately 6. The pattern forming method according to claim 3, further comprising an exposure amount in the matching projection region.
  7.  前記現像条件は、前記基板に形成されるパターンの寸法が目標値になる現像時間を含むことを特徴とする請求項3~6のうちのいずれか1項に記載のパターン形成方法。 7. The pattern forming method according to claim 3, wherein the developing condition includes a developing time in which a dimension of the pattern formed on the substrate is a target value.
  8.  請求項1~7のうちのいずれか1項に記載のパターン形成方法を用いて基板にパターンを形成することと、
     前記パターンが形成された前記基板を加工することと、
     を含むことを特徴とするデバイス製造方法。
    Forming a pattern on a substrate using the pattern forming method according to any one of claims 1 to 7,
    Processing the substrate on which the pattern is formed;
    A device manufacturing method comprising:
PCT/JP2011/070975 2010-09-14 2011-09-14 Pattern formation method and device manufacturing method WO2012036198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-205864 2010-09-14
JP2010205864A JP2012064666A (en) 2010-09-14 2010-09-14 Pattern formation method and device manufacturing method

Publications (1)

Publication Number Publication Date
WO2012036198A1 true WO2012036198A1 (en) 2012-03-22

Family

ID=45831654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070975 WO2012036198A1 (en) 2010-09-14 2011-09-14 Pattern formation method and device manufacturing method

Country Status (2)

Country Link
JP (1) JP2012064666A (en)
WO (1) WO2012036198A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016485A1 (en) * 2016-07-21 2018-01-25 凸版印刷株式会社 Photomask, method for manufacturing photomask, and method for manufacturing color filter using photomask

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012425A (en) * 1998-06-18 2000-01-14 Toshiba Corp Exposure amount measuring method and mask for measuring exposure amount
JP2000310850A (en) * 1999-02-22 2000-11-07 Toshiba Corp Exposure monitor mask, exposure regulation method and production of semiconductor device
JP2001244190A (en) * 2000-03-02 2001-09-07 Canon Inc Mask for multiple exposure, exposure method by use thereof, aligner, and method of manufacturing device
JP2002025895A (en) * 2000-07-07 2002-01-25 Toshiba Corp Exposure measurement method and exposure measurement device
JP2006041549A (en) * 2005-09-09 2006-02-09 Toshiba Corp Method of manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012425A (en) * 1998-06-18 2000-01-14 Toshiba Corp Exposure amount measuring method and mask for measuring exposure amount
JP2000310850A (en) * 1999-02-22 2000-11-07 Toshiba Corp Exposure monitor mask, exposure regulation method and production of semiconductor device
JP2001244190A (en) * 2000-03-02 2001-09-07 Canon Inc Mask for multiple exposure, exposure method by use thereof, aligner, and method of manufacturing device
JP2002025895A (en) * 2000-07-07 2002-01-25 Toshiba Corp Exposure measurement method and exposure measurement device
JP2006041549A (en) * 2005-09-09 2006-02-09 Toshiba Corp Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2012064666A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP4973652B2 (en) Exposure apparatus and device manufacturing method
US8208128B2 (en) Position measuring system and position measuring method, Movable body apparatus, movable body drive method, exposure apparatus and exposure method, pattern forming apparatus, and device manufacturing method
JP5516740B2 (en) MOBILE BODY DRIVING METHOD, MOBILE BODY DEVICE, EXPOSURE METHOD, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
US10678152B2 (en) Layout method, mark detection method, exposure method, measurement device, exposure apparatus, and device manufacturing method
WO2007123189A1 (en) Exposure apparatus, exposure method, and device production method
US20200057391A1 (en) Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
US20180364595A1 (en) Exposure apparatus, flat panel display manufacturing method, and device manufacturing method
JP2009147346A (en) Exposure apparatus, exposure method and device manufacturing method
JP2012004564A (en) Exposure method, exposure apparatus and method of manufacturing device
JP5151852B2 (en) Correction information creation method, exposure method, exposure apparatus, and device manufacturing method
JP6243616B2 (en) Exposure apparatus and article manufacturing method
WO2012036198A1 (en) Pattern formation method and device manufacturing method
JP6855008B2 (en) Exposure equipment, flat panel display manufacturing method, device manufacturing method, and exposure method
JP6727554B2 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JP2013083655A (en) Exposure equipment and manufacturing method for device
JP2011090197A (en) Pattern forming method and device manufacturing method
JP5414288B2 (en) Exposure method and apparatus, and device manufacturing method
JP2012220559A (en) Exposure method, exposure device, and device manufacturing method
JP2017198793A (en) Measurement device, exposure equipment, device production method, and pattern formation method
JP2012242811A (en) Mask, exposure apparatus, exposure method and device manufacturing method
JP2011033976A (en) Pattern forming method and device manufacturing method
JP6676941B2 (en) Control apparatus and control method, exposure apparatus and exposure method, device manufacturing method, data generation method, and program
JP5304959B2 (en) Exposure apparatus and device manufacturing method
JP5445905B2 (en) Alignment method and apparatus, and exposure method and apparatus
JP2007316340A (en) Mask, method for measuring aberration, adjustment method and exposure method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825198

Country of ref document: EP

Kind code of ref document: A1