WO2012035729A1 - Led電球 - Google Patents

Led電球 Download PDF

Info

Publication number
WO2012035729A1
WO2012035729A1 PCT/JP2011/005073 JP2011005073W WO2012035729A1 WO 2012035729 A1 WO2012035729 A1 WO 2012035729A1 JP 2011005073 W JP2011005073 W JP 2011005073W WO 2012035729 A1 WO2012035729 A1 WO 2012035729A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
led
led bulb
globe
light
Prior art date
Application number
PCT/JP2011/005073
Other languages
English (en)
French (fr)
Inventor
恭正 大屋
昌彦 山川
康博 白川
勝利 中川
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to CN201180041743.8A priority Critical patent/CN103080635B/zh
Priority to EP11824747.7A priority patent/EP2618041B1/en
Publication of WO2012035729A1 publication Critical patent/WO2012035729A1/ja
Priority to US13/797,192 priority patent/US9228718B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • F21V3/12Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • Embodiments of the present invention relate to an LED bulb.
  • LEDs light emitting diodes
  • a light bulb to which an LED lamp is applied (hereinafter referred to as an LED light bulb), for example, a globe is attached to a base portion provided with a bulb base, an LED chip is disposed in the globe, and an LED chip lighting circuit is further provided in the base portion.
  • an LED light bulb for example, a globe is attached to a base portion provided with a bulb base, an LED chip is disposed in the globe, and an LED chip lighting circuit is further provided in the base portion.
  • an LED light bulb for example, a globe is attached to a base portion provided with a bulb base, an LED chip is disposed in the globe, and an LED chip lighting circuit is further provided in the base portion.
  • a combination of a blue light emitting LED chip (blue LED) and a yellow phosphor (YAG phosphor, etc.) that absorbs blue light emitted from the blue LED and emits yellow light is applied.
  • the white light is obtained by mixing the blue light emitted from the blue LED and the yellow light emitted from the yellow phosphor by absorbing the blue light.
  • An LED bulb combining a blue LED and a yellow phosphor has a feature that it is easy to ensure brightness.
  • white light based on a mixed color of blue light from a blue LED and yellow light from a yellow phosphor has a drawback that it is inferior in color rendering evaluated by an average color rendering index (Ra) or the like.
  • An LED bulb combining a blue LED and a yellow phosphor has a light distribution biased to a blue component and a yellow component, and the light from the LED bulb is seen because the light of the red component is insufficient.
  • reflected light is different from the natural color seen under sunlight.
  • a conventional LED bulb light emitted from a blue LED is used to generate white light, and thus the luminance of the entire bulb tends to be uneven. For this reason, it is difficult to reduce glare of the light bulb, local glare, so-called glare.
  • the blue light emitted from the blue LED has strong straightness, and the light traveling in the horizontal direction goes straight as it is and does not spread around, so it is difficult to sufficiently increase the so-called light distribution angle.
  • the problem to be solved by the present invention is to provide an LED bulb capable of improving color rendering properties and reducing glare and increasing a light distribution angle.
  • the LED bulb according to the embodiment includes an LED module, a base portion on which the LED module is installed, and a globe that is attached to the base portion so as to cover the LED module and has a circular cross section in a direction parallel to the surface of the substrate.
  • the LED module includes an ultraviolet or purple LED chip mounted on a substrate.
  • the base portion is provided with a lighting circuit for lighting the LED chip and a base electrically connected to the lighting circuit.
  • the globe has a shape in which the diameter of the attachment portion to the base portion is smaller than the diameter of the portion having the largest cross section.
  • FIG. 1 is a diagram showing an LED bulb according to a first embodiment
  • FIG. 2 is a diagram showing an LED bulb according to a second embodiment
  • FIG. 3 is a diagram showing an LED bulb according to a third embodiment
  • FIG. It is a figure which shows the LED light bulb by embodiment of this.
  • the LED bulb 1 shown in these drawings includes an LED module 2, a base portion 3 on which the LED module 2 is installed, a globe 4 attached on the base portion 3 so as to cover the LED module 2, and the base portion 3.
  • a base 6 attached to the lower end through an insulating member 5 and a lighting circuit (not shown) provided in the base 3 are provided.
  • the LED module 2 includes an ultraviolet or purple LED chip 8 mounted on the surface 7 a of the substrate 7.
  • a plurality of LED chips 8 are surface-mounted on the substrate 7.
  • a light emitting diode of InGaN, GaN, AlGaN or the like is used for the LED chip 8 emitting ultraviolet to purple light.
  • a wiring network (not shown) is provided on the surface 7a (and inside as needed) of the substrate 7, and the electrodes of the LED chip 8 are electrically connected to the wiring network of the substrate 7.
  • a wiring (not shown) is drawn out on the side surface or bottom surface of the LED module 2, and this wiring is electrically connected to a lighting circuit (not shown) provided in the base portion 3.
  • the LED chip 8 is lit by a DC voltage applied through a lighting circuit.
  • the phosphor film 9 is composed of a mixed phosphor (BGR or BYR phosphor) containing a blue phosphor, a green to yellow phosphor, and a red phosphor. It is preferable to do.
  • the mixed phosphor may further contain at least one phosphor selected from a blue-green phosphor and a deep red phosphor.
  • the phosphor film 9 includes a mixed phosphor that can obtain white light only by light emission from the phosphor film 9 (not including light emitted from the LED chip 8).
  • each phosphor constituting the above-mentioned BGR or BYR phosphor, and a blue-green phosphor or a deep red phosphor added as necessary a combination with ultraviolet to purple light from the LED chip 8 is obtained, and white is obtained.
  • the blue phosphor a phosphor having an emission peak wavelength in the range of 430 to 460 nm is used.
  • a europium (Eu) activated alkaline earth chlorophosphate phosphor having a composition represented by the formula (1) is used. It is preferable to use it.
  • a phosphor having an emission peak wavelength in the range of 490 to 580 nm is used.
  • europium (Eu) and manganese (Mn) activated alkaline earth having a composition represented by the formula (2) Aluminate phosphors, europium (Eu) and manganese (Mn) activated alkaline earth silicate phosphors having the composition represented by formula (3), cerium having the composition represented by formula (4) Ce) activated rare earth aluminate phosphor, europium (Eu) activated sialon phosphor having a composition represented by formula (5), and europium (Eu) activated having a composition represented by formula (6) It is preferable to use at least one selected from sialon phosphors.
  • a phosphor having an emission peak wavelength in the range of 580 to 630 nm is used.
  • a europium (Eu) activated lanthanum oxysulfide phosphor having a composition represented by the formula (7) a formula (8 ) Europium (Eu) and bismuth (Bi) activated yttrium oxide phosphors having the composition represented by formula (9), europium (Eu) activated couun phosphor having the composition represented by formula (9), and formula (10)
  • a phosphor having a light emission peak wavelength in the range of 460 to 490 nm is used.
  • Eu europium
  • Mn manganese
  • a silicate phosphor is preferable to use a silicate phosphor.
  • a phosphor having an emission peak wavelength in the range of 630 to 780 nm is used.
  • a manganese (Mn) -activated magnesium fluorogermanate phosphor having a composition represented by the formula (12) is used. It is preferable to use it.
  • the ratio of each phosphor composing the mixed phosphor is appropriately set according to the emission color of the LED bulb 1, etc.
  • the mixed phosphor is a blue phosphor in the range of 10 to 60% by mass, Blue-green phosphor in the range of 0 to 10% by mass, green to yellow phosphor in the range of 1 to 30% by mass, red phosphor in the range of 30 to 90% by mass, and deep red in the range of 0 to 35% by mass It is preferable to contain a phosphor. According to such a mixed phosphor, a wide range of white light having a correlated color temperature of 6500K to 2500K can be obtained with the same fluorescent species.
  • the phosphor film 9 is formed, for example, by mixing a mixed phosphor powder with a binder resin or the like, applying the mixture (for example, slurry) to the inner surface of the globe 4 and then heating and curing the mixture.
  • the mixed phosphor powder preferably has an average particle size (median value of particle size distribution (D50)) in the range of 3 to 50 ⁇ m.
  • the film thickness of the fluorescent film 9 is preferably in the range of 80 to 800 ⁇ m.
  • the LED chip 8 emitting ultraviolet to violet light is used as the excitation source of the fluorescent film 9, it is preferable to suppress leakage of ultraviolet rays from the globe 4.
  • the ultraviolet rays leaking from the globe 4 may adversely affect printed matter, food, medicine, human body, etc. existing in the vicinity of the LED bulb 1 or in the arrangement space.
  • the thickness of the fluorescent film 9 is less than 80 ⁇ m, the leakage amount of ultraviolet rays increases.
  • the thickness of the fluorescent film 9 exceeds 800 ⁇ m, the brightness of the LED bulb 1 decreases.
  • the brightness of the LED bulb 1 is reduced while reducing the amount of ultraviolet rays (energy amount of ultraviolet rays) leaking from the globe 4 to, for example, 0.3 mW / nm / lm or less. Can be suppressed.
  • the film thickness of the fluorescent film 9 is more preferably in the range of 150 to 600 ⁇ m.
  • the fluorescent film 9 in the LED bulb 1 of this embodiment is provided on the inner surface of the globe 4 so as to be separated from the LED chip 8, unlike the LED module in which the conventional phosphor particles are dispersed in the sealing resin of the LED chip. It has been.
  • the electrical energy applied to the LED bulb 1 is converted into ultraviolet to violet light by the LED chip 8, and further converted into light having a longer wavelength by the fluorescent film 9, and emitted as white light.
  • the white light emitted from the LED bulb 1 is constituted only by the light emission of the fluorescent film 9, unlike a conventional LED bulb combining a blue LED and a yellow phosphor.
  • the fluorescent film 9 provided on the entire inner surface of the globe 4 emits light. Therefore, unlike the LED module in which the conventional phosphor particles are dispersed in the sealing resin, the entire fluorescent film 9 emits light. The white light spreads from the fluorescent film 9 in all directions.
  • white light is obtained only by light emission from the fluorescent film 9, so that local luminance unevenness and the like can be suppressed. As a result, uniform and soft white light can be obtained without glare. That is, the glare of the LED bulb 1 can be greatly reduced as compared with a conventional LED bulb combining a blue LED and a yellow phosphor.
  • the fluorescent film 9 is composed of various phosphors, unlike a conventional LED bulb that combines a blue LED and a yellow phosphor. can do. That is, since the selection range of the phosphor species constituting the fluorescent film 9 is widened, the color rendering property of white light emitted from the LED bulb 1 can be enhanced. Specifically, white light having a correlated color temperature of 6500 K or less and an average color rendering index (Ra) of 85 or more can be easily obtained. By obtaining such white light, it is possible to improve the practicality of the LED bulb 1 as an alternative to the incandescent bulb.
  • the LED chip 8 may be any LED of ultraviolet to violet emission type (emission peak wavelength is 350 to 430 nm). In particular, the emission peak wavelength is in the range of 370 to 415 nm and the half width of the emission spectrum is 10 to 15 nm. It is preferable to use the LED chip 8.
  • the output variation of the LED chip directly affects the correlated color temperature (light emission color), and thus the yield of the LED bulb is likely to be reduced.
  • the plurality of LED chips 8 surface-mounted on the substrate 7 are preferably covered with a transparent resin layer 10. That is, the LED module 2 preferably includes a plurality of LED chips 8 surface-mounted on the substrate 7 and a transparent resin layer 10 provided on the substrate 7 so as to cover the plurality of LED chips 8. .
  • a transparent resin layer 10 for example, a silicone resin or an epoxy resin is used, and it is particularly preferable to use a silicone resin excellent in ultraviolet resistance.
  • the globe 4 is preferably formed of a transparent or white body color material having a visible light transmittance of 80% or more, such as glass or resin. Thereby, the white light emitted from the fluorescent film 9 can be efficiently extracted outside the bulb.
  • the globe 4 has, for example, a dome shape as shown in FIG.
  • the dome shape shown in FIG. 1 has a circular cross section (first cross section) in a direction parallel to the surface 7 a of the substrate 7, and the first cross section extends from the diameter D 2 of the largest portion to the base portion 3.
  • the mounting portion 4a has a small diameter D1.
  • the light distribution angle of the LED bulb 1 can be increased, and in addition, the temperature of the fluorescent film 9 is increased over time. Brightness reduction can be suppressed.
  • the light distribution angle indicates the spread of light around the bulb, and if the light distribution angle is small, even if the luminance directly under the bulb is high, the overall light bulb feels insufficient. Is.
  • the light distribution angle in this embodiment is obtained by obtaining an angle at which the luminance becomes 1 ⁇ 2 with respect to the central luminance of the bulb on both the left and right sides, and adding the angles of both. In the case of left-right symmetry, the value is twice the one-side angle.
  • the energy radiated from the LED chip is converted into visible light by the phosphor in the resin layer, and this visible light is converted into various kinds of light from the resin layer. Will diffuse in the direction. However, since light that travels horizontally with the surface of the substrate on which the LED chip is mounted travels straight, the light hardly spreads on the back side (below the substrate) of the substrate. For this reason, as shown in FIG. 6, the light distribution angle of the LED bulb in which the LED chip is covered with a resin layer containing a phosphor is about 120 degrees.
  • a conventional LED bulb combining a blue LED and a yellow phosphor, etc.
  • a phosphor film made of a yellow phosphor or the like when a phosphor film made of a yellow phosphor or the like is formed on the inner surface of the globe, the light emitted from the phosphor film diffuses to the surroundings, so that the phosphor
  • the light distribution angle is larger than that of the LED bulb in which the LED chip is covered with the resin layer containing the.
  • the light emitted from the blue LED that constitutes a part of the white light has high straightness, and in that state, the light passes through the globe and is emitted to the outside, so that it spreads to the back side of the substrate (below the substrate). Hateful. Therefore, there is a limit to improving the light distribution angle of the LED bulb.
  • the LED bulb 1 of the embodiment causes the entire fluorescent film 9 provided on the inner surface of the globe 4 to emit light and obtains white light only by light emission from the fluorescent film 9.
  • White light will spread in all directions. That is, since all of the light emitting components constituting the white light are emitted inside the globe 4 and the white light is diffused from the entire surface of the fluorescent film 9 to the surroundings, the spread of the white light itself to the back of the bulb is increased.
  • the globe 4 has a shape in which the diameter D1 of the attaching portion 4a to the base portion 3 is smaller than the diameter D2 of the maximum portion in the first cross section. That is, since the globe 4 has a shape squeezed toward the attachment portion 4a, the spread of white light in the back direction becomes larger. Therefore, as shown in FIG. 5, the light distribution angle of the white light of the LED bulb 1 can be increased. According to the LED bulb 1 of this embodiment, the light distribution angle can be set to, for example, 180 degrees or more, and further can be set to 200 degrees or more.
  • the globe 4 having the dome shape shown in FIG. 2 is more effective.
  • the globe 4 shown in FIG. 2 has a hemispherical dome part 11 and a squeezed part 12 that connects the dome part 11 and the attachment part 4 a to the base part 3.
  • the squeezed portion 12 has a linear shape in the cross section (the cross section shown in FIG. 2 / the second cross section shown in FIG. 2) in the direction perpendicular to the surface 7a of the substrate 7, whereby the shape of the globe 4 is squeezed larger. And a part of the globe 4 can be directed to the back side.
  • the hemispherical dome portion 11 has a maximum diameter D2 at the connection portion with the squeezed portion 12.
  • the amount of protrusion (overhang amount) of the dome portion 11 from the base portion 3 is increased while suppressing an increase in the overall shape of the globe 4.
  • a part of the fluorescent film 9 formed on the inner surface of the globe 4 can be more effectively directed in the back direction. Thereby, it becomes possible to effectively increase the light distribution angle of the white light emitted from the LED bulb 1.
  • the ratio (D2 / D1) of the maximum diameter of the dome portion 11 (the diameter of the maximum portion in the first cross section) D2 to the diameter D1 of the mounting portion 4a is in the range of 1.07 to 1.61.
  • the ratio of the height H of the squeezed portion 12 to the difference (D2-D1) between the maximum diameter D2 and the diameter D1 of the mounting portion 4a (H / (D2-D1)) is in the range of 0.147 to 3.125. More preferably, it has a shape.
  • the effect of expanding the light distribution angle by the narrowed portion 12 may not be sufficiently obtained.
  • the D2 / D1 ratio exceeds 1.61, not only a further increase in the effect cannot be expected, but the overall shape of the LED bulb 1 may be enlarged and the practicality may be reduced.
  • the H / (D2-D1) ratio is less than 0.147, white light cannot be effectively circulated in the back direction, and the effect of expanding the light distribution angle may be reduced.
  • the D2 / D1 ratio is more preferably in the range of 1.07 to 1.43, and the H / (D2-D1) ratio is more preferably in the range of 0.294 to 1.7.
  • the globe 4 shown in FIG. 1 preferably has a shape in which the ratio (D2 / D1) of the maximum diameter D2 of the globe 4 to the diameter D1 of the mounting portion 4a is in the range of 1.07 to 1.61.
  • the ratio (D2 / D1) of the maximum diameter D2 of the globe 4 to the diameter D1 of the mounting portion 4a is in the range of 1.07 to 1.61.
  • the specific shapes of the dome part 11 and the squeezing part 12 are appropriately selected according to the type of the base 6.
  • the maximum diameter D2 is preferably in the range of 60 to 90 mm.
  • the diameter D1 of the attachment portion 4a is preferably in the range of 40 to 84 mm, and the height H of the aperture portion 12 is preferably in the range of 5 to 45 mm.
  • the conventional structure in which the LED chip is covered with a phosphor-containing resin layer is based on the LED chip temperature increase when the LED bulb is continuously lit.
  • the temperature of the phosphor easily rises.
  • luminance degradation is likely to occur due to the temperature rise of the phosphor.
  • the temperature increase of the fluorescent film 9 can be suppressed.
  • the temperature of the fluorescent film 9 rises only to around 60 ° C. Accordingly, it is possible to suppress a decrease in luminance over time while the LED bulb 1 is lit.
  • the shape in which the diameter D1 of the attaching portion 4a to the base portion 3 is smaller than the diameter D2 of the maximum portion of the globe 4 described above is not limited to the dome shape shown in FIGS.
  • the diameter D1 of the attachment portion 4a is smaller than the diameter D2 of the maximum portion based on the eggplant-shaped shape.
  • a cylindrical glove 4 shown in FIG. 4 has a squeezed portion 14 that connects the cylindrical portion 13 and the mounting portion 4a, whereby the diameter D1 of the mounting portion 4a is smaller than the diameter D2 of the maximum portion. .
  • the LED bulb 1 of this embodiment is manufactured as follows, for example.
  • a phosphor slurry containing phosphor powder is prepared.
  • the phosphor slurry is prepared, for example, by mixing phosphor powder with a binder resin such as silicone resin, epoxy resin, or urethane resin, and filler such as alumina or silica.
  • the mixing ratio of the phosphor and the binder resin is appropriately selected depending on the type and particle size of the phosphor. For example, when the phosphor is 100 parts by mass, the binder resin is in the range of 20 to 1000 parts by mass. Is preferred. It is preferable to appropriately set the type, average particle size, mixing ratio, etc. of the phosphor from the above-described condition range according to the target white light.
  • a phosphor slurry is applied to the inner surface of the globe 4.
  • the phosphor slurry is applied by, for example, a spray method, a dip method, or a method of rotating the globe 4, and uniformly applied to the inner surface of the globe 4.
  • the phosphor slurry coating film is formed on the inner surface of the globe 4 by heating and drying the phosphor slurry coating film using a heating device such as a dryer or oven. Thereafter, the target LED bulb 1 is manufactured by attaching the globe 4 having the fluorescent film 9 to the base portion 3 on which the LED module 2 and the base 6 are installed.
  • Example 1 First, Eu-activated alkaline earth chlorophosphate ((Sr 0.604 Ba 0.394 Eu 0.002 ) 5 (PO 4 ) 3 Cl) phosphor having an average particle size of 40 ⁇ m as a blue phosphor and an average particle as a green to yellow phosphor diameter Eu and Mn-activated alkaline earth silicate 17 ⁇ m ((Sr 0.675 Ba 0.25 Mg 0.0235 Eu 0.05 Mn 0.0015) 2 SiO 4) phosphor having an average particle diameter 45 ⁇ m of Eu Tsukekatsusan sulfide as a red phosphor A lanthanum ((La 0.9 Eu 0.1 ) 2 O 2 S) phosphor was prepared. These phosphors are mixed so that the ratio of the blue phosphor, the green to yellow phosphor, and the red phosphor is 17.6: 4.1: 78.3 by mass ratio, and the mixed phosphor (BGR phosphor). Was prepared.
  • the globe is made of a polycarbonate resin that is translucent and has a visible light transmittance of 88%, and has a dome shape with a thickness of about 1 mm, a maximum diameter D2 of 63 mm, and a diameter D1 of an attachment portion to the base portion of 59 mm. .
  • a fluorescent film was formed on the inner surface of such a glove as follows. First, the above mixed phosphor is dispersed in a silicone resin as a binder resin and defoamed. Next, an amount of phosphor slurry having a desired film thickness is introduced into the globe, and the globe is rotated while changing the angle so as to spread uniformly on the inner surface of the globe.
  • the phosphor slurry is heated using an infrared heater, a dryer or the like until the coating film stops flowing. Thereafter, heat treatment is performed using an oven or the like under conditions of about 100 ° C. ⁇ 5 hours to completely cure the phosphor slurry coating film.
  • the LED module uses 112 LED chips having an emission peak wavelength of 405 nm and an emission spectrum half-value width of 15 nm, these LED chips are surface-mounted on a substrate, and further covered with a silicone resin. In addition, a substrate having an E26 base was prepared. An LED bulb was assembled using these components. The LED bulb thus obtained was subjected to the characteristic evaluation described later.
  • Example 2 A plurality of gloves whose shapes are shown in FIG. 2 were prepared.
  • the specific shapes of these gloves that is, the diameter D2 of the maximum portion, the diameter D1 of the attachment portion to the base portion, and the height H of the narrowing portion are as shown in Table 1, respectively.
  • An LED bulb was produced in the same manner as in Example 1 except that such a glove was used. These LED bulbs were subjected to the characteristic evaluation described later.
  • Example 5 A glove having the same shape as in Examples 2 to 5 was used, and a mixed phosphor similar to that in Example 1 was dispersed in a resin layer covering the same LED chip (emission peak wavelength: 405 nm) as in Example 1. In the same manner as in Example 1, an LED bulb was produced. No fluorescent film is formed on the inner surface of the globe. These LED bulbs were subjected to the characteristic evaluation described later.
  • the light distribution angles of the LED bulbs of Examples 1 to 22 and Comparative Examples 1 to 5 were measured with an illuminometer T-10 manufactured by Konica Minolta. Further, the glare of each LED bulb was visually evaluated. The measurement / evaluation results are shown in Table 1. Glare was relatively evaluated in three stages: ⁇ , ⁇ , and ⁇ .
  • the LED bulb according to each example had a correlated color temperature of 2700 K, a brightness of 50 l / W, and an average. Whereas the color rendering index Ra was 94, the LED bulb according to Comparative Example 1 had a correlated color temperature of 5000 K, a brightness of 89 l / W, and an average color rendering index Ra of 70.
  • the LED bulbs according to Examples 1 to 22 have a large light distribution angle and a small glare.
  • the light distribution angle can be increased more effectively.
  • the LED bulbs of Comparative Examples 1 to 5 in which the phosphor is dispersed in the resin layer covering the LED chip have a small light distribution angle and are not sufficiently reduced in glare.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 実施形態のLED電球1は、LEDモジュール2と、LEDモジュール2が設置された基体部3と、基体部3に取り付けられたグローブ4とを具備する。LEDモジュール2は、基板7の表面7aに実装された紫外乃至紫色発光のLEDチップ8を備える。グローブ4は基板7の表面と平行な方向への断面が円形の形状を有する。グローブ4の内面には、LEDチップから出射された紫外乃至紫色光を吸収して白色光を発光する蛍光膜9が設けられている。グローブ4は上記断面が最大の部分の直径D2より基体部3への取り付け部の直径D1が小さい形状を有する。

Description

LED電球
 本発明の実施形態は、LED電球に関する。
 発光ダイオード(LED)を用いた発光装置は、液晶表示装置のバックライト、信号装置、各種スイッチ類、車載用ランプ、一般照明等の照明装置に幅広く利用されている。LEDと蛍光体とを組合せた白色発光型のLEDランプは、白熱電球の代替品として注目されており、その開発が急速に進められている。LEDランプを適用した電球(以下、LED電球と記す)としては、例えば電球口金が設けられた基体部にグローブを取り付けると共に、グローブ内にLEDチップを配置し、さらに基体部内にLEDチップの点灯回路を設けた一体型のランプ構造を有するものが知られている。
 従来のLED電球においては、青色発光のLEDチップ(青色LED)と、青色LEDから出射された青色光を吸収して黄色光を発光する黄色蛍光体(YAG蛍光体等)との組合せが適用されており、青色LEDから出射された青色光とそれを吸収して黄色蛍光体が発光する黄色光との混色により白色光を得ている。青色LEDと黄色蛍光体とを組合せたLED電球は、明るさを確保しやすいというような特徴を有する。しかしながら、青色LEDからの青色光と黄色蛍光体からの黄色光との混色に基づく白色光は、平均演色評価数(Ra)等で評価される演色性に劣るという難点を有する。
 青色LEDと黄色蛍光体とを組合せたLED電球は、光の分布が青色成分と黄色成分とに偏っており、赤色成分の光が不足しているため、LED電球からの光で物体を見たときの反射光が太陽光の下で見る自然色とは異なる。従来のLED電球では、青色LEDから出射された光が白色光の生成に使用されるため、電球全体の輝度が不均一になりやすい。このため、電球のぎらつきや局所的なまぶしさ、いわゆるグレアを低減することが困難である。青色LEDから出射された青色光は直進性が強く、水平方向に進んだ光はそのまま直進して周囲に広がらないため、いわゆる配光角を十分に大きくすることが難しい。
特開2005-005546号公報 特開2009-170114号公報
 本発明が解決しようとする課題は、演色性の向上とグレアの低減とを実現すると共に、配光角を大きくすることを可能にしたLED電球を提供することにある。
 実施形態のLED電球は、LEDモジュールと、LEDモジュールが設置された基体部と、LEDモジュールを覆うように基体部に取り付けられ、基板の表面と平行な方向への断面が円形のグローブとを具備する。LEDモジュールは、基板上に実装された紫外乃至紫色発光のLEDチップを備える。基体部には、LEDチップを点灯させる点灯回路と、点灯回路と電気的に接続された口金とが設けられている。グローブは上記断面が最大の部分の直径より基体部への取り付け部の直径が小さい形状を有する。
第1の実施形態によるLED電球を一部断面で示す図である。 第2の実施形態によるLED電球を一部断面で示す図である。 第3の実施形態によるLED電球を示す図である。 第4の実施形態によるLED電球を示す図である。 実施形態によるLED電球の配光角の一例を示す図である。 蛍光体を含有する樹脂層でLEDチップを覆ったLED電球の配光角の一例を示す図である。
 以下、実施形態のLED電球について、図面を参照して説明する。図1は第1の実施形態によるLED電球を示す図、図2は第2の実施形態によるLED電球を示す図、図3は第3の実施形態によるLED電球を示す図、図4は第4の実施形態によるLED電球を示す図である。これらの図に示すLED電球1は、LEDモジュール2と、LEDモジュール2が設置された基体部3と、LEDモジュール2を覆うように基体部3上に取り付けられたグローブ4と、基体部3の下端部に絶縁部材5を介して取り付けられた口金6と、基体部3内に設けられた点灯回路(図示せず)とを具備する。
 LEDモジュール2は、基板7の表面7aに実装された紫外乃至紫色発光のLEDチップ8を備えている。基板7上には複数のLEDチップ8が面実装されている。紫外乃至紫色発光のLEDチップ8には、InGaN系、GaN系、AlGaN系等の発光ダイオードが用いられる。基板7の表面7a(さらに必要に応じて内部)には、配線網(図示せず)が設けられており、LEDチップ8の電極は基板7の配線網と電気的に接続されている。LEDモジュール2の側面もしくは底面には、図示を省略した配線が引き出されており、この配線が基体部3内に設けられた点灯回路(図示せず)と電気的に接続されている。LEDチップ8は、点灯回路を介して印加される直流電圧により点灯する。
 グローブ4の内面には、LEDチップ8から出射された紫外乃至紫色光を吸収して白色光を発光する蛍光膜9が設けられている。LED電球1の発光色は、LEDチップ8の発光波長と蛍光膜9を構成する蛍光体との組合せにより決定される。紫外乃至紫色光のLEDチップ8と組合せて白色光を得るにあたって、蛍光膜9は青色蛍光体、緑色乃至黄色蛍光体、及び赤色蛍光体を含有する混合蛍光体(BGR又はBYR蛍光体)で構成することが好ましい。混合蛍光体は、さらに青緑色蛍光体及び深赤色蛍光体から選ばれる少なくとも1種の蛍光体を含有していてもよい。蛍光膜9はそれからの発光のみ(LEDチップ8から出射された光を含まない)で白色光を得ることが可能な混合蛍光体を含んでいる。
 上記したBGR又はBYR蛍光体を構成する各蛍光体、また必要に応じて添加される青緑色蛍光体や深赤色蛍光体としては、LEDチップ8からの紫外乃至紫色光との組合せ、得られる白色光の色温度や演色性(平均演色評価数Ra等)等の観点から、以下に示す蛍光体を使用することが好ましい。青色蛍光体としては、発光のピーク波長が430~460nmの範囲の蛍光体が用いられ、例えば式(1)で表される組成を有するユーロピウム(Eu)付活アルカリ土類クロロ燐酸塩蛍光体を使用することが好ましい。
 一般式:(Sr1-x-y-zBaxCayEuz5(PO43・Cl …(1)
(式中、x、y、及びzは0≦x<0.5、0≦y<0.1、0.005≦z<0.1を満足する数である)
 緑色乃至黄色蛍光体としては、発光のピーク波長が490~580nmの範囲の蛍光体が用いられ、例えば式(2)で表される組成を有するユーロピウム(Eu)及びマンガン(Mn)付活アルカリ土類アルミン酸塩蛍光体、式(3)で表される組成を有するユーロピウム(Eu)及びマンガン(Mn)付活アルカリ土類珪酸塩蛍光体、式(4)で表される組成を有するセリウム(Ce)付活希土類アルミン酸塩蛍光体、式(5)で表される組成を有するユーロピウム(Eu)付活サイアロン蛍光体、及び式(6)で表される組成を有するユーロピウム(Eu)付活サイアロン蛍光体から選ばれる少なくとも1種を使用することが好ましい。
 一般式:(Ba1-x-y-zSrxCayEuz)(Mg1-uMnu)Al1017 …(2)
(式中、x、y、z、及びuは0≦x<0.2、0≦y<0.1、0.005<z<0.5、0.1<u<0.5を満足する数である)
 一般式:(Sr1-x-y-z-uBaxMgyEuzMnu2SiO4 …(3)
(式中、x、y、z、及びuは0.1≦x≦0.35、0.025≦y≦0.105、0.025≦z≦0.25、0.0005≦u≦0.02を満足する数である)
 一般式:RE3xAl5-x-yy12:Cez …(4)
(式中、REはY、Lu、及びGdから選ばれる少なくとも1種の元素を示し、A及びBは対をなす元素であって、(A,B)が(Mg,Si)、(B,Sc)、(B.In)のいずれかであり、x、y、及びzはx<2、y<2、0.9≦x/y≦1.1、0.05≦z≦0.5 を満足する数である)
 一般式:(Si,Al)6(O,N)8:Eux …(5)
(式中、xは0<x<0.3を満足する数である)
 一般式:(Sr1-xEuxαSiβAlγδω …(6)
(式中、x、α、β、γ、δ、及びωは0<x<1、0<α≦3、12≦β≦14、2≦γ≦3.5、1≦δ≦3、20≦ω≦22を満足する数である)
 赤色蛍光体としては、発光のピーク波長が580~630nmの範囲の蛍光体が用いられ、例えば式(7)で表される組成を有するユーロピウム(Eu)付活酸硫化ランタン蛍光体、式(8)で表される組成を有するユーロピウム(Eu)及びビスマス(Bi)付活酸化イットリウム蛍光体、式(9)で表される組成を有するユーロピウム(Eu)付活カズン蛍光体、及び式(10)で表される組成を有するユーロピウム(Eu)付活サイアロン蛍光体から選ばれる少なくとも1種を使用することが好ましい。
 一般式:(La1-x-yEuxy22S …(7)
(式中、MはSm、Ga、Sb、及びSnから選ばれる少なくとも1種の元素を示し、x及びyは0.08≦x<0.16、0.000001≦y<0.003を満足する数である)
 一般式:(Y1-x-yEuxBiy23 …(8)
(式中、x及びyは0.01≦x<0.15、0.001≦y<0.05を満足する数である)
 一般式:(Ca1-x-ySrxEuy)SiAlN3 …(9)
(式中、x及びyは0≦x<0.4、0<y<0.5を満足する数である)
 一般式:(Sr1-xEuxαSiβAlγδω …(10)
(式中、x、α、β、γ、δ、及びωは0<x<1、0<α≦3、5≦β≦9、1≦γ≦5、0.5≦δ≦2、5≦ω≦15を満足する数である)
 青緑色蛍光体としては、発光のピーク波長が460~490nmの範囲の蛍光体が用いられ、例えば式(11)で表される組成を有するユーロピウム(Eu)及びマンガン(Mn)付活アルカリ土類珪酸塩蛍光体を使用することが好ましい。
 一般式:(Ba1-x-y-z-uSrxMgyEuzMnu2SiO4 …(11)
(式中、x、y、z、及びuは0.1≦x≦0.35、0.025≦y≦0.105、0.025≦z≦0.25、0.0005≦u≦0.02を満足する数である)
 深赤色蛍光体としては、発光のピーク波長が630~780nmの範囲の蛍光体が用いられ、例えば式(12)で表される組成を有するマンガン(Mn)付活マグネシウムフロロジャーマネート蛍光体を使用することが好ましい。
 一般式:αMgO・βMgF2・(Ge1-xMnx)O2 …(12)
(式中、α、β、及びxは3.0≦α≦4.0、0.4≦β≦0.6、0.001≦x≦0.5を満足する数である)
 混合蛍光体を構成する各蛍光体の比率は、LED電球1の発光色等に応じて適宜に設定されるものであるが、例えば混合蛍光体は10~60質量%の範囲の青色蛍光体、0~10質量%の範囲の青緑色蛍光体、1~30質量%の範囲の緑色乃至黄色蛍光体、30~90質量%の範囲の赤色蛍光体、及び0~35質量%の範囲の深赤色蛍光体を含有することが好ましい。このような混合蛍光体によれば、相関色温度が6500K~2500Kというような広範囲の白色光を同一蛍光種で得ることができる。
 蛍光膜9は、例えば混合蛍光体の粉末をバインダ樹脂等と混合し、この混合物(例えばスラリー)をグローブ4の内面に塗布した後に加熱・硬化させることによって形成される。混合蛍光体粉末は平均粒子径(粒度分布の中位値(D50))が3~50μmの範囲であることが好ましい。このような平均粒子径を有する混合蛍光体(蛍光体粒子)を使用することによって、LEDチップ8から出射される紫外乃至紫色光の吸収効率を高めることができ、LED電球1の輝度を向上させることが可能となる。
 蛍光膜9の膜厚は80~800μmの範囲とすることが好ましい。蛍光膜9の励起源として紫外乃至紫色発光のLEDチップ8を用いた場合、グローブ4からの紫外線の漏出を抑制することが好ましい。グローブ4から漏出した紫外線は、LED電球1の近傍や配置空間に存在する印刷物、食品、薬品、人体等に悪影響を及ぼすおそれがある。蛍光膜9の膜厚が80μm未満の場合、紫外線の漏出量が多くなる。一方、蛍光膜9の膜厚が800μmを超えるとLED電球1の明るさが低下する。膜厚が80~800μmの蛍光膜9によれば、グローブ4から漏出する紫外線量(紫外線のエネルギー量)を例えば0.3mW/nm/lm以下まで低減しつつ、LED電球1の明るさの低下を抑制することができる。蛍光膜9の膜厚は150~600μmの範囲とすることがより好ましい。
 この実施形態のLED電球1における蛍光膜9は、従来の蛍光体粒子をLEDチップの封止樹脂中に分散させたLEDモジュールとは異なり、LEDチップ8から離間するようにグローブ4の内面に設けられている。LED電球1に印加された電気エネルギーは、LEDチップ8で紫外乃至紫色光に変換され、さらに蛍光膜9でより長波長の光に変換されて白色光として放出される。LED電球1から放出される白色光は、従来の青色LEDと黄色蛍光体とを組合せたLED電球とは異なり、蛍光膜9の発光のみにより構成される。
 LED電球1は、グローブ4の内面全体に設けられた蛍光膜9が発光するため、従来の蛍光体粒子を封止樹脂中に分散させたLEDモジュールとは異なり、蛍光膜9全体を面発光させることができ、蛍光膜9から全方位に白色光が広がる。また、従来の青色LEDと黄色蛍光体とを組合せたLED電球とは異なり、蛍光膜9からの発光のみで白色光を得ているため、局所的な輝度ムラ等を抑制することができる。これらによって、ぎらつきが無く、均一で柔らかい白色光が得られる。すなわち、LED電球1のグレアを従来の青色LEDと黄色蛍光体とを組合せたLED電球に比べて大幅に低減することが可能となる。
 LED電球1の励起源として紫外乃至紫色発光のLEDチップ8を使用した場合には、従来の青色LEDと黄色蛍光体とを組合せたLED電球とは異なり、蛍光膜9を種々の蛍光体で構成することができる。すなわち、蛍光膜9の構成する蛍光体種の選択幅が広がるため、LED電球1から放出される白色光の演色性等を高めることができる。具体的には、相関色温度が6500K以下で、平均演色評価数(Ra)が85以上の白色光を容易に得ることができる。このような白色光を得ることによって、白熱電球の代替品としてのLED電球1の実用性等を向上させることが可能となる。
 LEDチップ8は紫外乃至紫色発光タイプ(発光ピーク波長が350~430nm)のLEDであればよいが、特に発光ピーク波長が370~415nmの範囲であると共に、発光スペクトルの半値幅が10~15nmのLEDチップ8を使用することが好ましい。このようなLEDチップ8と上述した混合蛍光体(BGR又はBYR蛍光体、さらに必要に応じて青緑色蛍光体や深赤色蛍光体を加えた混合蛍光体)で構成した蛍光膜9とを組合せて使用した場合、相関色温度(発光色)についてはLEDチップ8の出力バラツキにかかわらず安定した白色光を得ることができ、LED電球1の歩留りを高めることが可能となる。従来の青色LEDと黄色蛍光体との組合せは、LEDチップの出力バラツキが直接相関色温度(発光色)に影響するため、LED電球の歩留りが低下しやすい。
 基板7上に面実装された複数のLEDチップ8は、透明樹脂層10で覆われていることが好ましい。すなわち、LEDモジュール2は、基板7上に面実装された複数のLEDチップ8と、複数のLEDチップ8を覆うように基板7上に設けられた透明樹脂層10とを備えていることが好ましい。透明樹脂層10には、例えばシリコーン樹脂やエポキシ樹脂等が用いられ、特に耐紫外線性に優れるシリコーン樹脂を使用することが好ましい。このように、複数のLEDチップ8を透明樹脂層10で覆うことによって、各LEDチップ8から出射された光が互いに伝播し、グレアの一因となる局所的な光の強弱が緩和されると共に、光の取出し効率を高めることができる。
 グローブ4は可視光の透過率が80%以上の透明又は白色系の体色を有する材料、例えばガラスや樹脂で形成することが好ましい。これによって、蛍光膜9から発光された白色光を電球外部に効率よく取り出すことができる。グローブ4は、例えば図1に示すようにドーム型形状を有している。図1に示すドーム型形状は、基板7の表面7aと平行な方向への断面(第1の断面)が円形であると共に、第1の断面が最大の部分の直径D2より基体部3への取り付け部4aの直径D1が小さい形状を有している。図1に示すグローブ4は、球体の中心を含む平面(大円を含む面/中心面)から下方の半球部の一部を中心面と平行に切り取り、この切り取り後の端部を取り付け部4aとした形状を有している。
 このような形状を有するグローブ4の内面に白色発光する蛍光膜9を設けることによって、LED電球1の配光角を大きくすることができ、加えて蛍光膜9の温度上昇等に起因する経時的な輝度低下を抑制することができる。ここで、配光角とは電球の周囲への光の広がりを示すものであり、配光角が小さいと電球直下の輝度が高くても電球全体として明るさが不足しているように感じられるものである。この実施形態における配光角は、電球の中心輝度に対して輝度が1/2になる角度を左右両側に求め、両者の角度を合計したものである。左右対称の場合には、片側角度の2倍の値となる。
 従来の蛍光体を含有する樹脂層でLEDチップを覆った電球構造においては、LEDチップから放射されたエネルギーが樹脂層中の蛍光体で可視光に変換され、この可視光が樹脂層から様々な方向に拡散することになる。ただし、LEDチップが実装された基板の表面と水平に進んだ光はそのまま直進することになるため、基板の裏側(基板より下方)には光が広がりにくい。このため、図6に示すように、蛍光体を含有する樹脂層でLEDチップを覆ったLED電球の配光角は120度程度である。
 さらに、従来の青色LEDと黄色蛍光体等とを組合せたLED電球において、黄色蛍光体等からなる蛍光膜をグローブの内面に形成した場合、蛍光膜からの発光が周囲に拡散するため、蛍光体を含有する樹脂層でLEDチップを覆ったLED電球より配光角が大きくなる。しかしながら、白色光の一部を構成する青色LEDから放射された光は直進性が高く、その状態でグローブを透過して外部に放出されるため、やはり基板の裏側(基板より下方)には広がりにくい。従って、LED電球の配光角の改善には限界がある。
 これらに対して、実施形態のLED電球1はグローブ4の内面に設けられた蛍光膜9全体を面発光させ、この蛍光膜9からの発光のみで白色光を得ているため、蛍光膜9から全方位に白色光が広がることになる。すなわち、白色光を構成する発光成分の全てをグローブ4の内側で発光させ、蛍光膜9の全面から周囲に白色光を拡散させているため、電球背面への白色光自体の広がりが大きくなる。
 さらに、グローブ4は第1の断面が最大部分の直径D2より基体部3への取り付け部4aの直径D1が小さい形状を有している。すなわち、グローブ4は取り付け部4aに向けてしぼった形状を有しているため、背面方向への白色光の広がりがより大きくなる。従って、図5に示すように、LED電球1の白色光の配光角を大きくすることが可能となる。この実施形態のLED電球1によれば、配光角を例えば180度以上とすることができ、さらには200度以上とすることができる。
 LED電球1の配光角を向上させる上で、図2に示すドーム型形状を有するグローブ4がさらに有効である。図2に示すグローブ4は、半球状のドーム部11と、ドーム部11と基体部3への取り付け部4aとを繋ぐしぼり部12とを有している。しぼり部12は基板7の表面7aに垂直な方向への断面(図2に示す断面/第2の断面)が直線状の形状を有しており、これによりグローブ4の形状をより大きくしぼることができると共に、グローブ4の一部を背面方向に向けることが可能となる。半球状のドーム部11は、しぼり部12との接続部分が最大直径D2を有している。
 このようなドーム部11としぼり部12とを有するグローブ4によれば、グローブ4の全体形状の増大を抑制した上で、ドーム部11の基体部3からの突出量(オーバーハング量)を大きくすると共に、グローブ4の内面に形成される蛍光膜9の一部をより効果的に背面方向に向けることができる。これによって、LED電球1から放出される白色光の配光角を効果的に大きくすることが可能となる。
 図2に示すグローブ4は、取り付け部4aの直径D1に対するドーム部11の最大直径(第1の断面における最大部分の直径)D2の比(D2/D1)が1.07~1.61の範囲で、かつ最大直径D2と取り付け部4aの直径D1の差(D2-D1)に対するしぼり部12の高さHの比(H/(D2-D1))が0.147~3.125の範囲の形状を有することがより好ましい。このような形状を有するグローブ4を適用することで、LED電球1から放出される白色光の配光角をより効率よく大きくすることができる。
 D2/D1比が1.07未満であると、しぼり部12による配光角の拡大効果を十分に得ることができないおそれがある。一方、D2/D1比が1.61を超えても、それ以上の効果の増加が期待できないだけでなく、LED電球1の全体形状が拡大して実用性が低下するおそれがある。また、H/(D2-D1)比が0.147未満であると、白色光を背面方向へ効果的に回り込ませることができず、配光角の拡大効果が低下するおそれがある。一方、H/(D2-D1)比が3.125を超えても、それ以上の効果の増加が期待できないだけでなく、LED電球1の全体形状が拡大して実用性が低下する。D2/D1比は1.07~1.43の範囲であることがより好ましく、またH/(D2-D1)比は0.294~1.7の範囲であることがより好ましい。
 図1に示すグローブ4も同様に、取り付け部4aの直径D1に対するグローブ4の最大直径D2の比(D2/D1)が1.07~1.61の範囲の形状を有することが好ましい。このような形状を有するグローブ4を適用することで、LED電球1から放出される白色光の配光角を効率よく大きくすることができる。D2/D1比が1.07未満であると、配光角の拡大効果を十分に得ることができないおそれがある。D2/D1比が1.61を超えても、それ以上の効果の増加が期待できないだけでなく、LED電球1の全体形状が拡大して実用性が低下するおそれがある。
 ドーム部11やしぼり部12の具体的な形状は、口金6の種類等に応じて適宜に選択することが好ましい。例えば、一般電球に用いられているE26口金を有するLED電球1の場合、最大直径D2は60~90mmの範囲とすることが好ましい。この際の取り付け部4aの直径D1は40~84mmの範囲、またしぼり部12の高さHは5~45mmの範囲とすることが好ましい。また、小型電球に用いられているE17口金等を有するLED電球1の場合には、それに応じて同様な比率の形状を適用することが好ましい。
 蛍光膜9の温度上昇等に起因する経時的な輝度低下に関して、従来の蛍光体含有の樹脂層でLEDチップを覆った構造では、LED電球を連続点灯させた際にLEDチップの温度上昇に基づいて蛍光体も温度上昇しやすい。このため、蛍光体の温度上昇による輝度劣化が生じやすい。これに対して、蛍光膜9をLEDチップ8から離間するようにグローブ4の内面に設けることによって、LEDチップ8が温度上昇した場合においても蛍光膜9の温度上昇を抑制することができる。蛍光膜9とLEDチップ8との間には十分な距離があるとき、例えば蛍光膜9の温度は60℃前後までしか上昇しない。従って、LED電球1の点灯中の経時的な輝度低下を抑制することができる。
 上述したグローブ4における最大部分の直径D2より基体部3への取り付け部4aの直径D1が小さい形状は、図1や図2に示したドーム型形状に限られるものではない。例えば、図3に示すようなナス型形状や図4に示すような円筒型形状を有するグローブ4を適用することも可能である。図3に示すナス型形状のグローブ4は、ナス型形状に基づいて最大部分の直径D2より取り付け部4aの直径D1が小さくなっている。図4に示す円筒型形状のグローブ4は、円筒部13と取り付け部4aとを繋ぐしぼり部14を有しており、これにより最大部分の直径D2より取り付け部4aの直径D1が小さくなっている。
 この実施形態のLED電球1は、例えば以下のようにして作製される。まず、蛍光体粉末を含む蛍光体スラリーを調製する。蛍光体スラリーは、例えば蛍光体粉末をシリコーン樹脂、エポキシ樹脂、ウレタン樹脂等のバインダ樹脂やアルミナ、シリカ等の充填材と混合して調製される。蛍光体とバインダ樹脂との混合比は、蛍光体の種類や粒子径により適宜に選択されるが、例えば蛍光体を100質量部としたとき、バインタ樹脂を20~1000質量部の範囲とすることが好ましい。蛍光体の種類、平均粒子径、混合比等は目的とする白色光に応じて、前述した条件範囲から適宜に設定することが好ましい。
 次に、グローブ4の内面に蛍光体スラリーを塗布する。蛍光体スラリーの塗布は、例えばスプレー法やディップ法、あるいはグローブ4を回転させる方法等により実施され、グローブ4の内面に均一に塗布する。次いで、蛍光体スラリーの塗布膜をドライヤやオーブン等の加熱装置を用いて加熱乾燥させることによって、グローブ4の内面に蛍光膜9を形成する。この後、LEDモジュール2や口金6等を設置した基体部3に、蛍光膜9を有するグローブ4を取り付けることによって、目的とするLED電球1を作製する。
 次に、具体的な実施例及びその評価結果について述べる。
(実施例1)
 まず、青色蛍光体として平均粒子径が40μmのEu付活アルカリ土類クロロ燐酸塩((Sr0.604Ba0.394Eu0.0025(PO43Cl)蛍光体と、緑色乃至黄色蛍光体として平均粒子径が17μmのEu及びMn付活アルカリ土類珪酸塩((Sr0.675Ba0.25Mg0.0235Eu0.05Mn0.00152SiO4)蛍光体と、赤色蛍光体として平均粒子径が45μmのEu付活酸硫化ランタン((La0.9Eu0.122S)蛍光体を用意した。これらの蛍光体を青色蛍光体と緑色乃至黄色蛍光体と赤色蛍光体の比率が質量比で17.6:4.1:78.3となるように混合して混合蛍光体(BGR蛍光体)を調製した。
 次いで、図1に形状を示したグローブを用意した。グローブは半透明で可視光の透過率が88%のポリカーボネート樹脂からなり、厚さが約1mm、最大部分の直径D2が63mm、基体部への取り付け部の直径D1が59mmのドーム型形状を有する。このようなグローブの内面に以下のようにして蛍光膜を形成した。まず、上記した混合蛍光体をバインダ樹脂としてのシリコーン樹脂に分散させて脱泡する。次に、グローブ内に所望の膜厚となる量の蛍光体スラリーを投入し、グローブの内面に均一に広がるように角度を変化させながらグローブを回転させる。次いで、赤外線ヒータやドライヤ等を用いて蛍光体スラリーが硬化し始めて塗布膜が流れなくなるまで加熱する。この後、オーブン等を用いて100℃×5時間程度の条件で熱処理し、蛍光体スラリーの塗布膜を完全に硬化させる。
 LEDモジュールは、発光ピーク波長が405nm、発光スペクトルの半値幅が15nmのLEDチップを112個使用し、これらLEDチップを基板上に面実装し、さらにシリコーン樹脂で被覆して構成したものである。また、基体部としてはE26口金を有するものを用意した。これらの構成部品を用いてLED電球を組み立てた。このようにして得たLED電球を後述する特性評価に供した。
(実施例2~22)
 図2に形状を示したグローブを複数用意した。これらグローブの具体的な形状、すなわち最大部分の直径D2、基体部への取り付け部の直径D1、しぼり部の高さHは、それぞれ表1に示す通りである。このようなグローブを用いる以外は、実施例1と同様にしてLED電球を作製した。これらLED電球を後述する特性評価に供した。
(比較例1)
 実施例2と同一形状のグローブを使用すると共に、青色発光のLEDチップ(発光ピーク波長:450nm)を覆う樹脂層中にCe付活希土類アルミン酸塩蛍光体(黄色蛍光体)を分散させる以外は、実施例1と同様にしてLED電球を作製した。グローブの内面には蛍光膜を形成していない。このLED電球を後述する特性評価に供した。
(比較例2~5)
 実施例2~5と同一形状のグローブを使用すると共に、実施例1と同一のLEDチップ(発光ピーク波長:405nm)を覆う樹脂層中に実施例1と同様な混合蛍光体を分散させる以外は、実施例1と同様にしてLED電球を作製した。グローブの内面には蛍光膜を形成していない。これらLED電球を後述する特性評価に供した。
 次に、実施例1~22及び比較例1~5の各LED電球の配光角をコニカミノルタ社製照度計T-10により測定した。また、各LED電球のグレアを目視により評価した。それらの測定・評価結果を表1に示す。グレアは○、△、×の三段階で相対的に評価した。各LED電球の点灯時に放出される白色光の相関色温度、明るさ、平均演色評価数Raを測定したところ、各実施例によるLED電球は相関色温度が2700K、明るさが50l/W、平均演色評価数Raが94であったのに対し、比較例1によるLED電球は相関色温度が5000K、明るさが89l/W、平均演色評価数Raが70であった。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~22によるLED電球は配光角が大きく、またグレアも少ないことが分かる。特に、図2に示した形状を有するグローブを用いることによって、配光角をより効果的に大きくすることができる。一方、LEDチップを覆う樹脂層中に蛍光体を分散させた比較例1~5のLED電球は配光角が小さく、またグレアの低減も十分ではないことが分かる。
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (15)

  1.  基板と、前記基板の表面に実装された紫外乃至紫色発光のLEDチップとを備えるLEDモジュールと、
     前記LEDモジュールが設置された基体部と、
     前記LEDモジュールを覆うように前記基体部に取り付けられ、前記基板の表面と平行な方向への断面が円形のグローブと、
     前記グローブの内面に前記LEDチップから離間させて設けられ、前記LEDチップから出射された紫外乃至紫色光を吸収して白色光を発光する蛍光膜と、
     前記基体部内に設けられ、前記LEDチップを点灯させる点灯回路と、
     前記点灯回路と電気的に接続された口金とを具備し、
     前記グローブは前記断面が最大の部分の直径より前記基体部への取り付け部の直径が小さい形状を有することを特徴とするLED電球。
  2.  請求項1記載のLED電球において、
     前記グローブはドーム型形状を有することを特徴とするLED電球。
  3.  請求項1記載のLED電球において、
     前記グローブは、半球状のドーム部と、前記基体部への取り付け部と、前記ドーム部と前記取り付け部とを繋ぐように設けられ、前記基板の表面に垂直な方向への断面が直線状のしぼり部とを有することを特徴とするLED電球。
  4.  請求項3記載のLED電球において、
     前記取り付け部の直径をD1、前記ドーム部の最大直径をD2、前記しぼり部の高さをHとしたとき、前記グローブはD2/D1が1.07~1.61の範囲で、かつH/(D2-D1)が0.147~3.125の範囲の形状を有することを特徴とするLED電球。
  5.  請求項1記載のLED電球において、
     前記グローブは、球体の中心を含む平面から下方の半球部の一部を前記平面と平行に切り取った形状を有し、前記切り取り後の端部が前記基体部に取り付けられていることを特徴とするLED電球。
  6.  請求項5記載のLED電球において、
     前記基体部に取り付けられた部分の直径をD1、前記グローブの最大直径をD2としたとき、前記グローブはD2/D1が1.07~1.61の範囲の形状を有することを特徴とするLED電球。
  7.  請求項1記載のLED電球において、
     前記LED電球から放射される前記白色光の配光角が180度以上であることを特徴とするLED電球。
  8.  請求項1記載のLED電球において、
     前記グローブは、透明又は白色系の体色を有し、かつ可視光の透過率が80%以上の材料からなることを特徴とするLED電球。
  9.  請求項1記載のLED電球において、
     前記紫外乃至紫色光は、発光ピーク波長が370nm以上415nm以下の範囲であると共に、発光スペクトルの半値幅が10nm以上15nm以下の範囲であることを特徴とするLED電球。
  10.  請求項1記載のLED電球において、
     前記LEDモジュールは、前記基板の表面に実装された複数の前記LEDチップと、前記複数のLEDチップを被覆するように前記基板の表面に設けられた透明樹脂層とを備えることを特徴とするLED電球。
  11.  請求項1記載のLED電球において、
     前記蛍光膜は、青色蛍光体、緑色乃至黄色蛍光体、及び赤色蛍光体を含むことを特徴とするLED電球。
  12.  請求項11記載のLED電球において、
     前記青色蛍光体は
     一般式:(Sr1-x-y-zBaxCayEuz5(PO43・Cl
    (式中、x、y、及びzは0≦x<0.5、0≦y<0.1、0.005≦z<0.1を満足する数である)
     で表される組成を有するユーロピウム付活アルカリ土類クロロ燐酸塩蛍光体であり、
     前記緑色乃至黄色蛍光体は
     一般式:(Ba1-x-y-zSrxCayEuz)(Mg1-uMnu)Al1017
    (式中、x、y、z、及びuは0≦x<0.2、0≦y<0.1、0.005<z<0.5、0.1<u<0.5を満足する数である)
     で表される組成を有するユーロピウム及びマンガン付活アルカリ土類アルミン酸塩蛍光体、
     一般式:(Sr1-x-y-z-uBaxMgyEuzMnu2SiO4
    (式中、x、y、z、及びuは0.1≦x≦0.35、0.025≦y≦0.105、0.025≦z≦0.25、0.0005≦u≦0.02を満足する数である)
     で表される組成を有するユーロピウム及びマンガン付活アルカリ土類珪酸塩蛍光体、
     一般式:RE3xAl5-x-yy12:Cez
    (式中、REはY、Lu、及びGdから選ばれる少なくとも1種の元素を示し、A及びBは対をなす元素であって、(A,B)が(Mg,Si)、(B,Sc)、(B.In)のいずれかであり、x、y、及びzはx<2、y<2、0.9≦x/y≦1.1、0.05≦z≦0.5 を満足する数である)
     で表される組成を有するセリウム付活希土類アルミン酸塩蛍光体、
     一般式:(Si,Al)6(O,N)8:Eux
    (式中、xは0<x<0.3を満足する数である)
     で表される組成を有するユーロピウム付活サイアロン蛍光体、及び
     一般式:(Sr1-xEuxαSiβAlγδω
    (式中、x、α、β、γ、δ、及びωは0<x<1、0<α≦3、12≦β≦14、2≦γ≦3.5、1≦δ≦3、20≦ω≦22を満足する数である)
     で表される組成を有するユーロピウム付活サイアロン蛍光体から選ばれる少なくとも1種であり、
     前記赤色蛍光体は
     一般式:(La1-x-yEuxy22
    (式中、MはSm、Ga、Sb、及びSnから選ばれる少なくとも1種の元素を示し、x及びyは0.08≦x<0.16、0.000001≦y<0.003を満足する数である)
     で表される組成を有するユーロピウム付活酸硫化ランタン蛍光体、
     一般式:(Y1-x-yEuxBiy23
    (式中、x及びyは0.01≦x<0.15、0.001≦y<0.05を満足する数である)
     で表される組成を有するユーロピウム及びビスマス付活酸化イットリウム蛍光体、
     一般式:(Ca1-x-ySrxEuy)SiAlN3
    (式中、x及びyは0≦x<0.4、0<y<0.5を満足する数である)
     で表される組成を有するユーロピウム付活カズン蛍光体、及び
     一般式:(Sr1-xEuxαSiβAlγδω
    (式中、x、α、β、γ、δ、及びωは0<x<1、0<α≦3、5≦β≦9、1≦γ≦5、0.5≦δ≦2、5≦ω≦15を満足する数である)
     で表される組成を有するユーロピウム付活サイアロン蛍光体から選ばれる少なくとも1種であることを特徴とするLED電球。
  13.  請求項11記載のLED電球において、
     前記蛍光膜は、さらに青緑色蛍光体及び深赤色蛍光体から選ばれる少なくとも1種の蛍光体を含むことを特徴とするLED電球。
  14.  請求項13記載のLED電球において、
     前記青緑色蛍光体は
     一般式:(Ba1-x-y-z-uSrxMgyEuzMnu2SiO4
    (式中、x、y、z、及びuは0.1≦x≦0.35、0.025≦y≦0.105、0.025≦z≦0.25、0.0005≦u≦0.02を満足する数である)
     で表される組成を有するユーロピウム及びマンガン付活アルカリ土類珪酸塩蛍光体であり、
     前記深赤色蛍光体は
     一般式:αMgO・βMgF2・(Ge1-xMnx)O2
    (式中、α、β、及びxは3≦α≦4、0.4≦β≦0.6、0.001≦x≦0.5を満足する数である)
     で表される組成を有するマンガン付活マグネシウムフロロジャーマネート蛍光体であることを特徴とするLED電球。
  15.  請求項1記載のLED電球において、
     前記白色光は、相関色温度が6500K以下で、平均演色評価数(Ra)が85以上であることを特徴とするLED電球。
PCT/JP2011/005073 2010-09-17 2011-09-09 Led電球 WO2012035729A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180041743.8A CN103080635B (zh) 2010-09-17 2011-09-09 Led电灯泡
EP11824747.7A EP2618041B1 (en) 2010-09-17 2011-09-09 Led light bulb
US13/797,192 US9228718B2 (en) 2010-09-17 2013-03-12 LED light bulb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-209142 2010-09-17
JP2010209142A JP4875198B1 (ja) 2010-09-17 2010-09-17 Led電球

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/797,192 Continuation US9228718B2 (en) 2010-09-17 2013-03-12 LED light bulb

Publications (1)

Publication Number Publication Date
WO2012035729A1 true WO2012035729A1 (ja) 2012-03-22

Family

ID=45781951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005073 WO2012035729A1 (ja) 2010-09-17 2011-09-09 Led電球

Country Status (5)

Country Link
US (1) US9228718B2 (ja)
EP (1) EP2618041B1 (ja)
JP (1) JP4875198B1 (ja)
CN (1) CN103080635B (ja)
WO (1) WO2012035729A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083897A1 (ja) * 2012-11-29 2014-06-05 東芝ライテック株式会社 発光装置および車両用照明装置
US11322660B2 (en) 2018-12-06 2022-05-03 Panasonic Intellectual Property Management Co., Ltd. Phosphor and semiconductor light emitting device using the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176062A1 (ja) * 2012-05-21 2013-11-28 株式会社ドゥエルアソシエイツ チップオンボード型のパッケージ基板を有する発光装置及びその製造方法
WO2014119313A1 (ja) * 2013-01-31 2014-08-07 株式会社 東芝 発光装置及びled電球
DE102013205836A1 (de) * 2013-04-03 2014-10-09 Osram Opto Semiconductors Gmbh Fahrzeugleuchte
CN104676457A (zh) * 2013-11-29 2015-06-03 欧普照明股份有限公司 一种高显色白光led灯及其制备方法
EP3133339A4 (en) 2014-03-28 2017-11-01 Kabushiki Kaisha Toshiba Lighting apparatus
WO2017044380A1 (en) * 2015-09-10 2017-03-16 Intematix Corporation Phosphor converted white light emitting devices and photoluminescence compounds for general lighting and display backlighting
US11901492B2 (en) 2015-09-10 2024-02-13 Intematix Corporation High color rendering white light emitting devices and high color rendering photoluminescence compositions
CN105331361B (zh) * 2015-12-03 2017-09-19 河北利福光电技术有限公司 一种β‑SiAlON∶Eu2+绿色荧光粉及其合成方法
US11174428B2 (en) * 2016-01-12 2021-11-16 The Board Of Regents, The University Of Texas System Nanophosphors for visible light enhancement
CN108278505A (zh) * 2017-01-04 2018-07-13 威力旸电子股份有限公司 激光灯泡结构
JP7028594B2 (ja) * 2017-09-21 2022-03-02 株式会社アイ・ライティング・システム 照明器具
NL2023498B1 (en) * 2019-07-12 2021-02-04 Physee Group B V Optical structures comprising luminescent materials for plant growth optimization
US20240026221A1 (en) * 2020-09-10 2024-01-25 Denka Company Limited Europium activating beta-type sialon phosphor, and light-emitting device
US11667433B2 (en) * 2021-10-15 2023-06-06 Hoch Brands, LLC Three dimensional article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087897A1 (ja) * 2008-01-07 2009-07-16 Toshiba Lighting & Technology Corporation Led電球及び照明器具
JP2009238729A (ja) * 2007-11-12 2009-10-15 Mitsubishi Chemicals Corp 照明装置
JP2010004035A (ja) * 2008-05-22 2010-01-07 Mitsubishi Chemicals Corp 半導体発光装置、照明装置、および画像表示装置
JP2010016223A (ja) * 2008-07-04 2010-01-21 Panasonic Corp ランプ
JP2010027725A (ja) * 2008-07-16 2010-02-04 Toshiba Corp パッケージ型発光装置およびそれを用いたバックライト、液晶表示装置並びに照明装置
WO2010090012A1 (ja) * 2009-02-04 2010-08-12 パナソニック株式会社 電球形ランプ及び照明装置
JP2010199145A (ja) * 2009-02-23 2010-09-09 Ushio Inc 光源装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071804B2 (ja) * 1989-02-15 1995-01-11 シャープ株式会社 発光素子アレイ光源
JP2005005546A (ja) 2003-06-13 2005-01-06 Hitachi Lighting Ltd Led照明装置
US7026755B2 (en) * 2003-08-07 2006-04-11 General Electric Company Deep red phosphor for general illumination applications
JP2007081234A (ja) 2005-09-15 2007-03-29 Toyoda Gosei Co Ltd 照明装置
KR20080081054A (ko) * 2005-12-27 2008-09-05 가세이 옵토닉스 가부시키가이샤 냉음극 형광 램프용 청색발광 알칼리토류 클로로 인산염형광체, 냉음극 형광 램프 및 컬러 액정표시장치
US7659549B2 (en) * 2006-10-23 2010-02-09 Chang Gung University Method for obtaining a better color rendering with a photoluminescence plate
JP2009040918A (ja) 2007-08-09 2009-02-26 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、並びに画像表示装置及び照明装置
JP2009170114A (ja) 2008-01-10 2009-07-30 Toshiba Lighting & Technology Corp Led電球及び照明器具
JP2010040364A (ja) * 2008-08-06 2010-02-18 Panasonic Corp 照明用光源
JP5152698B2 (ja) * 2008-11-21 2013-02-27 東芝ライテック株式会社 発光素子ランプ及び照明装置
US8506103B2 (en) 2008-11-26 2013-08-13 Keiji Iimura Semiconductor lamp and light bulb type LED lamp
WO2010128419A1 (en) 2009-05-04 2010-11-11 Koninklijke Philips Electronics N.V. Light source comprising a light emitter arranged inside a translucent outer envelope
JP5732059B2 (ja) * 2010-08-31 2015-06-10 株式会社東芝 Led電球

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238729A (ja) * 2007-11-12 2009-10-15 Mitsubishi Chemicals Corp 照明装置
WO2009087897A1 (ja) * 2008-01-07 2009-07-16 Toshiba Lighting & Technology Corporation Led電球及び照明器具
JP2010004035A (ja) * 2008-05-22 2010-01-07 Mitsubishi Chemicals Corp 半導体発光装置、照明装置、および画像表示装置
JP2010016223A (ja) * 2008-07-04 2010-01-21 Panasonic Corp ランプ
JP2010027725A (ja) * 2008-07-16 2010-02-04 Toshiba Corp パッケージ型発光装置およびそれを用いたバックライト、液晶表示装置並びに照明装置
WO2010090012A1 (ja) * 2009-02-04 2010-08-12 パナソニック株式会社 電球形ランプ及び照明装置
JP2010199145A (ja) * 2009-02-23 2010-09-09 Ushio Inc 光源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2618041A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083897A1 (ja) * 2012-11-29 2014-06-05 東芝ライテック株式会社 発光装置および車両用照明装置
US9618188B2 (en) 2012-11-29 2017-04-11 Toshiba Lighting & Technology Corporation Light emitting device and vehicular lighting device
US11322660B2 (en) 2018-12-06 2022-05-03 Panasonic Intellectual Property Management Co., Ltd. Phosphor and semiconductor light emitting device using the same

Also Published As

Publication number Publication date
EP2618041B1 (en) 2016-10-26
US20130188333A1 (en) 2013-07-25
JP4875198B1 (ja) 2012-02-15
EP2618041A1 (en) 2013-07-24
US9228718B2 (en) 2016-01-05
JP2012064496A (ja) 2012-03-29
CN103080635B (zh) 2015-11-25
CN103080635A (zh) 2013-05-01
EP2618041A4 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP4875198B1 (ja) Led電球
JP5732059B2 (ja) Led電球
JP4862098B1 (ja) Led電球
JP5509333B2 (ja) Led電球
WO2017200097A1 (ja) 白色光源
US8710532B2 (en) White light emitting lamp and white LED lighting apparatus including the same
JP6165248B2 (ja) 発光装置
JP5398657B2 (ja) 発光デバイス
WO2015166782A1 (ja) 発光装置
JP5300935B2 (ja) Led電球
JP5559338B2 (ja) 発光装置とled電球
JP5462211B2 (ja) 白色発光装置
JP5566822B2 (ja) Led電球
JP5921631B2 (ja) 発光装置
JP2015015435A (ja) 発光体及びこれを備える発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041743.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011824747

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011824747

Country of ref document: EP