WO2012035708A1 - 撮像レンズ - Google Patents

撮像レンズ Download PDF

Info

Publication number
WO2012035708A1
WO2012035708A1 PCT/JP2011/004847 JP2011004847W WO2012035708A1 WO 2012035708 A1 WO2012035708 A1 WO 2012035708A1 JP 2011004847 W JP2011004847 W JP 2011004847W WO 2012035708 A1 WO2012035708 A1 WO 2012035708A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging lens
imaging
focal length
refractive power
Prior art date
Application number
PCT/JP2011/004847
Other languages
English (en)
French (fr)
Inventor
正江 佐藤
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012533840A priority Critical patent/JP5630505B2/ja
Publication of WO2012035708A1 publication Critical patent/WO2012035708A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses

Definitions

  • the present invention relates to an imaging lens that is suitable for application to an imaging apparatus using a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor, and has a sufficient performance.
  • a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor
  • Small-sized imaging devices using solid-state imaging devices such as CCD-type image sensors and CMOS-type image sensors will be installed in portable terminals such as mobile phones and PDAs (Personal Digital Assistants), and even notebook PCs. It is now possible to transmit not only audio information but also image information to remote locations.
  • a solid-state imaging device having a 1/5 inch size (pixel pitch of 1.75 ⁇ m) has been commercialized as a sensor having 2M effective pixels.
  • a three-lens imaging lens is known as an imaging lens used for such a small imaging device (see Patent Documents 1 to 6).
  • Patent Documents 1 to 3 describe an imaging lens including a positive first lens, an aperture stop, a positive second lens, and a negative third lens.
  • This type of imaging lens has a relatively symmetrical configuration with the aperture stop interposed therebetween, which is advantageous for correction of coma and distortion.
  • Patent Document 1 and Patent Document 3 since all the lenses are made of the same material, correction of chromatic aberration is insufficient.
  • Patent Document 2 since the first lens is made of glass, the cost becomes high.
  • Patent Documents 4 and 5 describe an imaging lens including a positive first lens, an aperture stop, a negative second lens, and a negative third lens. Since this type of imaging lens has an asymmetric configuration with an aperture stop in between, it is disadvantageous for correction of coma and distortion. Further, since the positive refractive power in the entire lens system is borne by one positive lens, the error sensitivity of the first lens is increased and the processability is poor.
  • Patent Document 6 describes an imaging lens including an aperture stop, a positive first lens, a positive or negative second lens, and a negative third lens. Since this is a configuration of a front stop, it is easy to correct the chief ray incident angle, so-called telecentricity, of the light beam incident on the imaging surface of the solid-state imaging device, which is advantageous for downsizing of the lens. However, since the entire lens system has an asymmetric configuration, it is disadvantageous for correction of coma aberration, distortion aberration, and lateral chromatic aberration.
  • an imaging lens used in a solid-state imaging device having a small pixel size (for example, 1/5 inch size 2M pixel pitch 1.75 ⁇ m) is required to have a high resolving power in order to cope with highly thinned pixels. Since the resolving power of the lens is limited by the F value, and a bright lens having a small F value can obtain a high resolving power, sufficient performance cannot be obtained with an F value of about F3.2 as in Patent Document 6.
  • the present invention has been made in view of such problems, and the object thereof is an F value smaller than F3.0, a small size, good correction of aberrations, suppression of shading, and high productivity. It is to obtain an imaging lens.
  • An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device From the object side, A first meniscus lens having positive refractive power and having a convex surface facing the object side; An aperture stop, A second meniscus lens having positive refractive power and having a convex surface facing the image side; A third lens having negative refractive power and having a concave surface facing the image side, An imaging lens satisfying the following conditional expression:
  • f12 The combined focal length of the first lens and the second lens f3: The focal length of the third lens f1: The focal length of the first lens f2: The focal length of the second lens P: The entire imaging lens system Refractive power (reciprocal of focal length) P air12 is a refractive power of a so-called air lens formed by the image side surface of the first lens and the object side surface of the second lens, and is determined by the following conditional expression.
  • N1 Refractive index with respect to d-line of the first lens
  • N2 Refractive index with respect to d-line of the second lens
  • R2 Radius of curvature of the image side surface of the first lens
  • R3 Radius of curvature of the object side surface of the second lens
  • D2 Air spacing on the axis of the first lens and the second lens
  • P Refractive power of the entire imaging lens system (inverse of focal length)
  • P air23 is a refractive power of a so-called air lens formed by the image side surface of the second lens and the object side surface of the third lens, and is determined by the following conditional expression.
  • N2 Refractive index with respect to d-line of the second lens
  • N3 Refractive index with respect to d-line of the third lens
  • R4 Radius of curvature of the image side surface of the second lens
  • R5 Radius of curvature of the object side surface of the third lens
  • D4 Air spacing on the axis of the second lens and the third lens
  • the third lens has an object side surface and an image side surface formed as aspherical surfaces, has a negative refractive power in the vicinity of the optical axis and a positive refractive power in the peripheral portion, and satisfies the following conditional expression: 5.
  • the imaging lens described in 1 above (any one of the items 4). 15 ⁇ d3 ⁇ 35 (9) However, ⁇ d3: Abbe number of the third lens
  • the imaging lens of the present invention includes, in order from the object side, a first lens having a positive refractive power and a convex surface facing the object side, an aperture stop, and a positive refractive power on the image side.
  • a positive lens group including a first lens and a second lens and a negative third lens with a concave surface facing the image side are arranged.
  • This lens configuration is a so-called telephoto type, and the entire length of the imaging lens. This is advantageous for downsizing.
  • an aperture stop is disposed between the first lens and the second lens, the first lens has a shape with a convex surface facing the object side, and the second lens has a meniscus shape with the convex surface facing the image side. Therefore, the configuration is symmetric, and it is easy to correct lateral chromatic aberration and distortion.
  • positive refractive power is shared by the first lens and the second lens, it is possible to suppress the occurrence of spherical aberration and coma. Furthermore, since there are few factors of eccentricity error, a lens with good productivity can be realized.
  • Conditional expression (1) is for reducing the size and correcting the aberration in a balanced manner by appropriately setting the focal length of the positive lens group of the first lens and the second lens and the negative focal length of the third lens. This is a conditional expression.
  • f12 / f3 below the upper limit, it is possible to achieve a reduction in the overall length of the lens and to correct various off-axis aberrations such as field curvature and distortion.
  • f12 / f3 exceeds the lower limit, the focal length of the third lens does not become too small, and the light flux that forms an image on the periphery of the imaging surface of the solid-state imaging device is not excessively jumped up. The telecentricity of the luminous flux can be easily ensured. As a result, it is possible to suppress a phenomenon (shading) in which substantial aperture efficiency decreases in the peripheral portion of the imaging surface.
  • Conditional expression (2) is a conditional expression for achieving miniaturization and good aberration correction by appropriately setting the focal lengths of the first lens and the second lens in the positive lens group.
  • f1 / f2 is less than the upper limit, the focal length of the first lens does not become too large compared to the focal length of the second lens, and the overall length of the imaging lens can be reduced.
  • the position of the exit pupil of the imaging lens can be moved away from the solid-state imaging device toward the object side, it is advantageous to correct the chief ray incident angle so-called telecentricity of the light beam incident on the imaging surface.
  • the focal length of the first lens does not become too small compared to the focal length of the second lens, and higher-order spherical aberration and coma generated in the first lens are suppressed. Can do. Furthermore, the decentration error sensitivity can be reduced, and a lens with good productivity can be obtained.
  • Conditional expression (3) is a conditional expression for improving the image plane correction and lens processability by making the refractive power of the air lens formed by the first lens and the second lens appropriate.
  • P air12 / P is less than the upper limit, the negative refractive power by the air lens can be maintained, so that the Petzval sum does not become too large and the image plane can be flattened.
  • Pair12 / P exceeds the lower limit, the negative refractive power by the air lens does not become too strong, so that the radius of curvature of the second surface and the third surface sandwiching the stop can be increased, and the lens is processed. Sexuality is improved. Further, since the second surface and the third surface are separated from each other outside the shaft, a sufficient air space for inserting the diaphragm can be secured without increasing the space on the shaft, which is advantageous for downsizing of the imaging lens. .
  • the conditional expression (4) shows that the focal length of the first lens arranged on the object side from the aperture stop and the combined focal length of the second lens and the third lens arranged on the image side from the aperture stop. Is a conditional expression for setting the balance in a balanced manner.
  • f1 / f23 is less than the upper limit, the focal length of the first lens does not become too large compared to the combined focal length of the second lens and the third lens, and the principal point position of the entire imaging lens system approaches the image side. You can avoid passing. Therefore, the overall lens length of the entire imaging lens system can be kept small.
  • the focal length of the first lens does not become too small compared to the combined focal length of the second lens and the third lens, and the position of the exit pupil is changed from the solid-state imaging device to the object. You can move away. Therefore, it is possible to reduce the chief ray incident angle of the light beam that forms an image on the periphery of the imaging surface of the solid-state imaging device.
  • Effect of Claim 3 Conditional expression (5) is a conditional expression for satisfactorily correcting off-axis aberrations by making the refractive power of the air lens formed by the second lens and the third lens appropriate. Since P air23 / P is less than the upper limit, the positive refractive power by the air lens can be appropriately secured, so that off-axis aberrations generated by the negative third lens can be corrected in a balanced manner. On the other hand, when P air23 / P exceeds the lower limit, the positive refractive power by the air lens does not become too strong, and the occurrence of coma flare and distortion of off-axis light flux can be suppressed.
  • Conditional expressions (6), (7), and (8) are conditional expressions for appropriately setting the thickness of each lens.
  • each lens When each value exceeds the lower limit, each lens can be prevented from becoming too thin to increase the difficulty of workability.
  • each value is less than the upper limit each lens does not become too thick, and the overall length of the lens can be easily shortened, and the imaging lens can be downsized.
  • the third lens Since the third lens has negative refractive power in the vicinity of the optical axis, it has a telephoto type configuration. Therefore, the back focus can be shortened, which is advantageous for shortening the overall length. Further, by providing the lens periphery with positive refractive power due to the aspherical shape, the off-axis light beam emitted from the third lens has a converging action, and the angle of the principal ray incident on the imaging surface can be reduced.
  • Conditional expression (9) is a conditional expression for satisfactorily correcting chromatic aberration of the entire imaging lens system.
  • ⁇ d3 exceeds the lower limit, it is possible to satisfactorily correct the chromatic aberration of the axial light beam passing through the vicinity of the optical axis having negative refractive power.
  • ⁇ d3 is lower than the upper limit, it is possible to satisfactorily correct lateral chromatic aberration of off-axis light beams that pass through a peripheral portion having positive refractive power.
  • FIG. 2 is a cross-sectional view of an imaging lens of Example 1.
  • FIG. 3 is an aberration diagram (spherical aberration) of the imaging lens of Example 1.
  • FIG. 4 is an aberration diagram (astigmatism) of the imaging lens of Example 1.
  • FIG. 4 is an aberration diagram (distortion aberration) of the imaging lens of Example 1.
  • 6 is a cross-sectional view of an imaging lens of Example 2.
  • FIG. 6 is an aberration diagram (spherical aberration) of the imaging lens of Example 2.
  • FIG. 6 is an aberration diagram (astigmatism) of the imaging lens of Example 2.
  • FIG. 6 is an aberration diagram (distortion aberration) of the imaging lens of Example 2.
  • 6 is a cross-sectional view of an imaging lens of Example 3.
  • FIG. 6 is an aberration diagram (spherical aberration) of the imaging lens of Example 3.
  • FIG. 6 is an aberration diagram (astigmatism) of the imaging lens of Example 3.
  • FIG. 6 is an aberration diagram (distortion aberration) of the imaging lens of Example 3.
  • 6 is a cross-sectional view of an imaging lens of Example 4.
  • FIG. 6 is an aberration diagram (spherical aberration) of the imaging lens of Example 4.
  • FIG. 6 is an aberration diagram (astigmatism) of the imaging lens of Example 4.
  • FIG. 6 is an aberration diagram (distortion aberration) of the imaging lens of Example 4.
  • 6 is a cross-sectional view of an imaging lens of Example 5.
  • FIG. 10 is an aberration diagram (spherical aberration) of the imaging lens of Example 5.
  • FIG. 10 is an aberration diagram (astigmatism) of the imaging lens of Example 5.
  • FIG. 10 is an aberration diagram (distortion aberration) of the imaging lens of Example 5.
  • 6 is a cross-sectional view of an imaging lens of Example 6.
  • FIG. 10 is an aberration diagram (spherical aberration) of the imaging lens of Example 6.
  • FIG. 10 is an aberration diagram (astigmatism) of the imaging lens of Example 6.
  • FIG. 10 is an aberration diagram (distortion aberration) of the imaging lens of Example 6.
  • 10 is a cross-sectional view of an imaging lens of Example 7.
  • FIG. 10 is an aberration diagram (spherical aberration) of the imaging lens of Example 7.
  • FIG. 10 is an aberration diagram (astigmatism) of the imaging lens of Example 7.
  • FIG. 10 is an aberration diagram (distortion aberration) of the imaging lens of Example 7.
  • 10 is a cross-sectional view of an imaging lens of Example 8.
  • FIG. 10 is an aberration diagram (spherical aberration) of the imaging lens of Example 8.
  • FIG. 10 is an aberration diagram (astigmatism) of the imaging lens of Example 8.
  • FIG. 10 is an aberration diagram (distortion aberration) of the imaging lens of Example 8.
  • 10 is a cross-sectional view of an imaging lens of Example 9.
  • FIG. FIG. 10 is an aberration diagram (spherical aberration) of the imaging lens of Example 7.
  • FIG. 10 is an aberration diagram (astigmatism) of the imaging lens of Example 7.
  • FIG. 10 is an aberration diagram (distortion aberration) of the imaging
  • FIG. 10 is an aberration diagram (spherical aberration) of the imaging lens of Example 9.
  • FIG. 10 is an aberration diagram (astigmatism) of the imaging lens of Example 9.
  • FIG. 10 is an aberration diagram (distortion aberration) of the imaging lens of Example 9.
  • 10 is a cross-sectional view of an imaging lens of Example 10.
  • FIG. 10 is an aberration diagram (spherical aberration) of the imaging lens of Example 10.
  • FIG. 10 is an aberration diagram (astigmatism) of the imaging lens of Example 10.
  • FIG. 10 is an aberration diagram (distortion aberration) of the imaging lens of Example 10.
  • 14 is a cross-sectional view of the imaging lens of Example 11.
  • FIG. 14 is an aberration diagram (spherical aberration) of the imaging lens of Example 11.
  • FIG. 14 is an aberration diagram (astigmatism) of the imaging lens of Example 11.
  • FIG. 14 is an aberration diagram (distortion aberration) of the imaging lens according to Example 11;
  • 14 is a cross-sectional view of an imaging lens of Example 12.
  • FIG. 14 is an aberration diagram (spherical aberration) of the imaging lens of Example 12.
  • FIG. 14 is an aberration diagram (astigmatism) of the imaging lens of Example 12.
  • FIG. 14 is an aberration diagram (distortion aberration) of the imaging lens of Example 12.
  • f Focal length of the entire imaging lens fB: Back focus
  • F F number 2Y: Diagonal length of the imaging surface of the solid-state imaging device
  • R Radius of curvature
  • D Spatial distance between axes
  • Nd Refractive index of lens material with respect to d-line
  • ⁇ d Lens material
  • Abbe number of ENTP entrance pupil position (distance from first surface to entrance pupil position)
  • EXTP exit pupil position (distance from imaging surface to exit pupil position)
  • H1 Front principal point position (distance from the first surface to the front principal point position)
  • H2 Rear principal point position (distance from the final surface to the rear principal point position)
  • the surface described with (*) after each surface number is a surface having an aspherical shape.
  • the aspherical shape is expressed by the following formula 1 with the vertex of the surface as the origin, the X axis in the optical axis direction, and the height in the direction perpendicular to the optical axi
  • a power of 10 (for example, 2.5 ⁇ 10 ⁇ 02 ) is expressed by using E (for example, 2.5E-02).
  • the vicinity of the center of the lens (specifically, the central region within 10% of the lens outer diameter)
  • the approximate curvature radius when fitting the shape measurement value at with the least square method can be regarded as the paraxial curvature radius.
  • a radius of curvature that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as a paraxial curvature radius.
  • FIG. 1 is a cross-sectional view of the imaging lens of Example 1.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 2A, 2B, and 2C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 1.
  • FIG. 1 is a cross-sectional view of the imaging lens of Example 1.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 2A, 2B, and 2C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging
  • the surface data of the imaging lens is shown below.
  • Lens Start surface Focal length (mm) 1 1 2.563 2 4 3.666 3 6 -5.245
  • FIG. 3 is a cross-sectional view of the imaging lens of the second embodiment.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 4A, 4B, and 4C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 2.
  • the surface data of the imaging lens is shown below.
  • the aspheric coefficient is shown below.
  • Lens Start surface Focal length (mm) 1 1 2.420 2 4 4.850 3 6 -6.985
  • FIG. 5 is a cross-sectional view of the imaging lens of the third embodiment.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 6A, 6B, and 6C are aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens of Example 3.
  • FIG. 1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 6A, 6B, and 6C are aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens of Example 3.
  • Lens Start surface Focal length (mm) 1 1 2.475 2 4 4.062 3 6 -4.994
  • FIG. 7 is a sectional view of the imaging lens of Example 4.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 8A, 8B, and 8C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 4.
  • the surface data of the imaging lens is shown below.
  • Lens Start surface Focal length (mm) 1 1 2.442 2 4 4.220 3 6 -5.171
  • FIG. 9 is a sectional view of the imaging lens of Example 5.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 10A, 10B, and 10C are aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens of Example 5.
  • the surface data of the imaging lens is shown below.
  • Lens Start surface Focal length (mm) 1 1 2.663 2 4 4.169 3 6 -5.823
  • FIG. 11 is a sectional view of the imaging lens of Example 6.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 12A, 12B, and 12C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 6.
  • Lens Start surface Focal length (mm) 1 1 2.652 2 4 4.252 3 6 -6.265
  • FIG. 13 is a sectional view of the imaging lens of Example 7.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 14A, 14B, and 14C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 7.
  • Lens Start surface Focal length (mm) 1 1 2.375 2 4 5.501 3 6 -6.747
  • FIG. 15 is a sectional view of the imaging lens of Example 8.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 16A, 16B, and 16C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 8.
  • Lens Start surface Focal length (mm) 1 1 2.529 2 4 5.239 3 6 -8.347
  • FIG. 17 is a sectional view of the imaging lens of Example 9.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 18A, 18B, and 18C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 9.
  • Lens Start surface Focal length (mm) 1 1 2.609 2 4 6.313 3 6 -11.021
  • FIG. 19 is a cross-sectional view of the imaging lens of Example 10.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 20A, 20B, and 20C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 10.
  • Lens Start surface Focal length (mm) 1 1 1.956 2 4 3.022 3 6 -4.212
  • FIG. 21 is a sectional view of the imaging lens of Example 11.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 22A, 22B, and 22C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 11.
  • FIG. 1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 22A, 22B, and 22C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 11.
  • the surface data of the imaging lens is shown below.
  • Lens Start surface Focal length (mm) 1 1 2.089 2 4 3.629 3 6 -5.450
  • FIG. 23 is a cross-sectional view of the imaging lens of Example 12.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 24A, B, and C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 12.
  • FIG. 23 is a cross-sectional view of the imaging lens of Example 12.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • S is an aperture stop.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor.
  • 24A, B, and C are aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens of Example 12.
  • the chief ray incident angle of the light beam incident on the imaging surface of the solid-state imaging device is not necessarily designed to be sufficiently small in the peripheral portion of the imaging surface.
  • recent techniques have made it possible to reduce shading by reviewing the arrangement of the color filters of the solid-state imaging device and the on-chip microlens array.
  • the pitch of the arrangement of the color filters and the on-chip microlens array is set slightly smaller than the pixel pitch on the imaging surface of the imaging device.
  • the color filter or on-chip microlens array shifts toward the optical axis of the imaging lens for each pixel as it goes to the periphery of the imaging surface, and the obliquely incident light flux can be efficiently guided to the light receiving unit of each pixel. it can.
  • produces with a solid-state image sensor can be restrained small.
  • Each embodiment is a design example aiming at further miniaturization for the amount of the above points alleviated.

Abstract

 小型で、収差を良好に補正でき、生産性の良い撮像レンズを提供する。実施形態の撮像レンズは、物体側から順に、正の屈折力を有し物体側に凸面を向けたメニスカス形状の第1レンズと、開口絞りと、正の屈折力を有し像側に凸面を向けたメニスカス形状の第2レンズと、負の屈折力を有し像側に凹面を向けた第3レンズとから構成され、以下の条件式を満足する。 -0.45<f12/f3<-0.2 0.41<f1/f2<0.73 -2.15<Pair12/P<-1.45 但し、 f12:第1レンズと第2レンズとの合成焦点距離 f3:第3レンズの焦点距離 f1:第1レンズの焦点距離 f2:第2レンズの焦点距離 P:撮像レンズ全系の屈折力(焦点距離の逆数) Pair12:第1レンズの像側面と第2レンズの物体側面とにより形成されるいわゆる空気レンズの屈折力である。

Description

撮像レンズ
 本発明は、CCD型イメージセンサ若しくはCMOS型イメージセンサ等の固体撮像素子を用いた撮像装置への適用に好適であり、小型で充分な性能を有する撮像レンズに関する。
 CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子を用いた小型の撮像装置が、携帯電話やPDA(Personal Digital Assistant)等の携帯端末、更にはノートパソコン等にも搭載されるようになり、遠隔地へ音声情報だけでなく画像情報も相互に伝送することが可能になった。
 このような撮像装置に用いられる固体撮像素子においては、近年、画素の小型化が進み、撮像素子の高画素化や小型化が図られている。有効画素数が2Mクラスのセンサとしては、1/5インチサイズ(画素ピッチ1.75um)の固体撮像素子が製品化されている。このような小型の撮像素子に使用される撮像レンズとして、3枚構成の撮像レンズが知られている(特許文献1~6参照)。
特開2006-301221号公報 特開2008-203822号公報 特開2008-275832号公報 特開2009-31696号公報 特開2009-265451号公報 特開2007-264181号公報
 特許文献1~3には、正の第1レンズ、開口絞り、正の第2レンズ及び負の第3レンズから構成される撮像レンズが記載されている。このタイプの撮像レンズは開口絞りを挟んで比較的対称な構成になるので、コマ収差や歪曲収差の補正に有利である。しかしながら、特許文献1及び特許文献3は、全てのレンズが同一材料で構成されているため色収差の補正が不充分である。特許文献2は、第1レンズがガラスで構成されているため、コスト高になってしまう。
 特許文献4,5には、正の第1レンズ、開口絞り、負の第2レンズ及び負の第3レンズから構成される撮像レンズが記載されている。このタイプの撮像レンズは開口絞りを挟んで非対称な構成になるので、コマ収差や歪曲収差の補正に不利である。更に、レンズ全系における正の屈折力を1枚の正レンズで負担するため、第1レンズの誤差感度が高くなり、加工性が悪い。
 特許文献6には、開口絞り、正の第1レンズ、正若しくは負の第2レンズ、及び負の第3レンズから構成される撮像レンズが記載されている。これは前置絞りの構成なので、固体撮像素子の撮像面に入射する光束の主光線入射角いわゆるテレセントリック性の補正が容易になるので、レンズの小型化に有利である。しかしながら、レンズ全系が非対称な構成であるため、コマ収差や歪曲収差や倍率色収差の補正に不利である。また、画素サイズの小さい固体撮像素子(たとえば1/5インチサイズ2M画素ピッチ1.75um)に使用される撮像レンズは、高細化された画素に対応するために高い解像力が要求される。レンズの解像力はF値により制限され、F値の小さい明るいレンズの方が高解像力を得られるため、特許文献6のようにF3.2程度のF値では充分な性能を得ることができない。
 本発明はこのような問題に鑑みてなされたものであり、その目的は、F値がF3.0よりも小さく、小型で、収差を良好に補正でき、シェーディングを抑制でき、更に生産性の良い撮像レンズを得ることにある。
 上記目的は下記に記載した発明により達成される。
 1.固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、
 物体側から順に、
 正の屈折力を有し物体側に凸面を向けたメニスカス形状の第1レンズと、
 開口絞りと、
 正の屈折力を有し像側に凸面を向けたメニスカス形状の第2レンズと、
 負の屈折力を有し像側に凹面を向けた第3レンズとから構成され、
 以下の条件式を満足することを特徴とする撮像レンズ。
 -0.45<f12/f3<-0.2         (1)
 0.41<f1/f2<0.73           (2)
 -2.15<Pair12/P<-1.45        (3)
 但し、
 f12:前記第1レンズと前記第2レンズとの合成焦点距離
 f3:前記第3レンズの焦点距離
 f1:前記第1レンズの焦点距離
 f2:前記第2レンズの焦点距離
 P:撮像レンズ全系の屈折力(焦点距離の逆数)
 Pair12:前記第1レンズの像側面と前記第2レンズの物体側面とにより形成されるいわゆる空気レンズの屈折力であり、以下の条件式で求める。
 Pair12=(1-N1)/R2+(N2-1)/R3-{((1-N1)・(N2-1))/(R2・R3)}・D2
 但し、
 N1:前記第1レンズのd線に対する屈折率
 N2:前記第2レンズのd線に対する屈折率
 R2:前記第1レンズの像側面の曲率半径
 R3:前記第2レンズの物体側面の曲率半径
 D2:前記第1レンズと前記第2レンズの軸上の空気間隔
 2.以下の条件式を満足することを特徴とする前記1に記載の撮像レンズ。
 0.06<f1/f23<0.3           (4)
 但し、
 f1:前記第1レンズの焦点距離
 f23:前記第2レンズと前記第3レンズとの合成焦点距離
 3.以下の条件式を満足することを特徴とする前記1(又は前記2)に記載の撮像レンズ。
 2.1<Pair23/P<2.8            (5)
 但し、
 P:撮像レンズ全系の屈折力(焦点距離の逆数)
 Pair23:前記第2レンズの像側面と前記第3レンズの物体側面とにより形成されるいわゆる空気レンズの屈折力であり、以下の条件式で求める。
 Pair23=(1-N2)/R4+(N3-1)/R5-{((1-N2)・(N3-1))/(R4・R5)}・D4
 但し、
 N2:前記第2レンズのd線に対する屈折率
 N3:前記第3レンズのd線に対する屈折率
 R4:前記第2レンズの像側面の曲率半径
 R5:前記第3レンズの物体側面の曲率半径
 D4:前記第2レンズと前記第3レンズの軸上の空気間隔
 4.以下の条件式を満足することを特徴とする前記1(~前記3の何れか1項)に記載の撮像レンズ。
 0.18<D1/f<0.3             (6)
 0.18<D3/f<0.3             (7)
 0.12<D5/f<0.25            (8)
 但し、
 D1:前記第1レンズの軸上厚
 D3:前記第2レンズの軸上厚
 D5:前記第3レンズの軸上厚
 f:撮像レンズ全系の焦点距離
 5.前記第3レンズは、物体側面と像側面とが非球面に形成され、光軸近傍では負の屈折力を有すると共に周辺部では正の屈折力を有し、以下の条件式を満足することを特徴とする前記1(~前記4の何れか1項)に記載の撮像レンズ。
 15<νd3<35                 (9)
 但し、
 νd3:前記第3レンズのアッベ数
 6.実質的に屈折力を持たないレンズを更に有することを特徴とする前記1~5の何れか1項に記載の撮像レンズ。つまり、前記1~5の構成に、実質的に屈折力を持たないダミーレンズを付与した場合でも本発明の適用範囲内である。
 請求項1の効果
 本発明の撮像レンズは、物体側より順に、正の屈折力を有し物体側に凸面を向けた第1レンズと、開口絞りと、正の屈折力を有し像側に凸面を向けたメニスカス形状の第2レンズと、負の屈折力を有し像側に凹面を向けた第3レンズとから構成される。物体側より順に、第1レンズ及び第2レンズからなる正レンズ群と、像側に凹面を向けた負の第3レンズを配置する、このレンズ構成は、いわゆるテレフォトタイプであり、撮像レンズ全長の小型化に有利である。
 収差補正に関しては、開口絞りが第1レンズと第2レンズの間に配置され、第1レンズが物体側に凸面を向けた形状であり、第2レンズが像側に凸面を向けたメニスカス形状であるから、対称的な構成となり、倍率色収差や歪曲収差を補正し易い構成である。また、正の屈折力を第1レンズと第2レンズで分担しているので、球面収差やコマ収差の発生を抑えることができる。更に、偏芯誤差の要因が少ないので、生産性の良いレンズを実現できる。
 条件式(1)は、第1レンズ及び第2レンズによる正レンズ群の焦点距離と、第3レンズの負の焦点距離とを適切に設定することにより、小型化と収差補正をバランスよく行うための条件式である。f12/f3が上限を下回ることで、レンズ全長の小型化を達成し、像面湾曲や歪曲収差等の軸外諸収差の補正を良好に行うことができる。一方、f12/f3が下限を上回ることで、第3レンズの焦点距離が小さくなり過ぎず、固体撮像素子の撮像面の周辺部に結像する光束が過度に跳ね上げられることがなくなり、像側光束のテレセントリック性を容易に確保することができる。結果として、撮像面の周辺部において実質的な開口効率が減少する現象(シェーディング)を抑制することができる。
 条件式(2)は、正レンズ群における第1レンズと第2レンズの焦点距離を適切に設定することにより、小型化と良好な収差補正を達成するための条件式である。f1/f2が上限を下回ることで、第2レンズの焦点距離に比べて第1レンズの焦点距離が大きくなり過ぎず、撮像レンズ全長の小型化を図ることができる。また、撮像レンズの射出瞳の位置を固体撮像素子から物体側へ遠ざけることができるので、撮像面に入射する光束の主光線入射角いわゆるテレセントリック性の補正が有利になる。一方、f1/f2が下限を上回ることで、第2レンズの焦点距離に比べて第1レンズの焦点距離が小さくなり過ぎず、第1レンズで発生する高次の球面収差やコマ収差を抑えることができる。更に、偏芯誤差感度を小さくすることができ、生産性の良いレンズが得られる。
 条件式(3)は、第1レンズと第2レンズで形成される空気レンズの屈折力を適切にすることにより、像面補正及びレンズの加工性を良好にするための条件式である。Pair12/Pが上限を下回ることで、空気レンズによる負の屈折力を維持できるため、ペッツバール和が大きくなり過ぎず、像面を平坦にすることができる。一方、Pair12/Pが下限を上回ることで、空気レンズによる負の屈折力が強くなり過ぎないので、絞りを挟む第2面と第3面の曲率半径を大きくすることができ、レンズの加工性が良くなる。更に、軸外で第2面と第3面が離れるので、軸上での間隔を大きくしなくても絞りを挿入するための空気間隔を充分に確保でき、撮像レンズの小型化に有利になる。
 請求項2の効果
 条件式(4)は、開口絞りより物体側に配置される第1レンズの焦点距離と、開口絞りより像側に配置される第2レンズと第3レンズとの合成焦点距離をバランスよく設定するための条件式である。f1/f23が上限を下回ることで、第2レンズと第3レンズとの合成焦点距離に比べて第1レンズの焦点距離が大きくなり過ぎず、撮像レンズ全系の主点位置が像側に寄り過ぎることを回避できる。したがって、撮像レンズ全系のレンズ全長を小さく抑えることができる。一方、f1/f23が下限を上回ることで、第2レンズと第3レンズとの合成焦点距離に比べて、第1レンズの焦点距離が小さくなり過ぎず、射出瞳の位置を固体撮像素子から物体側へ遠ざけることができる。したがって、固体撮像素子の撮像面の周辺部に結像する光束の主光線入射角度を小さくすることが可能となる。
 請求項3の効果
 条件式(5)は、第2レンズと第3レンズで形成される空気レンズの屈折力を適切にすることにより、軸外収差を良好に補正するための条件式である。Pair23/Pが上限を下回ることで、空気レンズによる正の屈折力を適度に確保できるため、負の第3レンズで発生する軸外諸収差をバランスよく補正することができる。一方、Pair23/Pが下限を上回ることで、空気レンズによる正の屈折力が強くなり過ぎず、軸外光束のコマフレアや歪曲収差の発生を抑制することができる。
 請求項4の効果
 条件式(6),(7),(8)は、各レンズの厚みを適切に設定するための条件式である。各々の値が下限を上回ることで、各レンズが薄くなり過ぎて、加工性の難易度が上がることを抑えることができる。一方、各々の値が上限を下回ることで、各レンズが厚くなり過ぎず、レンズ全長の短縮が容易になり、撮像レンズの小型化が図れる。
 請求項5の効果
 第3レンズは、光軸近傍において負の屈折力を有しているので、テレフォトタイプの構成となる。よって、バックフォーカスを短くでき、全長の短縮に有利である。また、非球面形状によりレンズ周辺部に正の屈折力を持たせることで、第3レンズから射出する軸外光束は収斂作用となり、撮像面に入射する主光線の角度を小さくできる。
 条件式(9)は、撮像レンズ全系の色収差を良好に補正するための条件式である。νd3が下限を上回ることで、負の屈折力を有する光軸近傍を通過する軸上光束の色収差を良好に補正することができる。また、νd3が上限を下回ることで、正の屈折力を有する周辺部を通過する軸外光束の倍率色収差を良好に補正することができる。
実施例1の撮像レンズの断面図である。 実施例1の撮像レンズの収差図(球面収差)である。 実施例1の撮像レンズの収差図(非点収差)である。 実施例1の撮像レンズの収差図(歪曲収差)である。 実施例2の撮像レンズの断面図である。 実施例2の撮像レンズの収差図(球面収差)である。 実施例2の撮像レンズの収差図(非点収差)である。 実施例2の撮像レンズの収差図(歪曲収差)である。 実施例3の撮像レンズの断面図である。 実施例3の撮像レンズの収差図(球面収差)である。 実施例3の撮像レンズの収差図(非点収差)である。 実施例3の撮像レンズの収差図(歪曲収差)である。 実施例4の撮像レンズの断面図である。 実施例4の撮像レンズの収差図(球面収差)である。 実施例4の撮像レンズの収差図(非点収差)である。 実施例4の撮像レンズの収差図(歪曲収差)である。 実施例5の撮像レンズの断面図である。 実施例5の撮像レンズの収差図(球面収差)である。 実施例5の撮像レンズの収差図(非点収差)である。 実施例5の撮像レンズの収差図(歪曲収差)である。 実施例6の撮像レンズの断面図である。 実施例6の撮像レンズの収差図(球面収差)である。 実施例6の撮像レンズの収差図(非点収差)である。 実施例6の撮像レンズの収差図(歪曲収差)である。 実施例7の撮像レンズの断面図である。 実施例7の撮像レンズの収差図(球面収差)である。 実施例7の撮像レンズの収差図(非点収差)である。 実施例7の撮像レンズの収差図(歪曲収差)である。 実施例8の撮像レンズの断面図である。 実施例8の撮像レンズの収差図(球面収差)である。 実施例8の撮像レンズの収差図(非点収差)である。 実施例8の撮像レンズの収差図(歪曲収差)である。 実施例9の撮像レンズの断面図である。 実施例9の撮像レンズの収差図(球面収差)である。 実施例9の撮像レンズの収差図(非点収差)である。 実施例9の撮像レンズの収差図(歪曲収差)である。 実施例10の撮像レンズの断面図である。 実施例10の撮像レンズの収差図(球面収差)である。 実施例10の撮像レンズの収差図(非点収差)である。 実施例10の撮像レンズの収差図(歪曲収差)である。 実施例11の撮像レンズの断面図である。 実施例11の撮像レンズの収差図(球面収差)である。 実施例11の撮像レンズの収差図(非点収差)である。 実施例11の撮像レンズの収差図(歪曲収差)である。 実施例12の撮像レンズの断面図である。 実施例12の撮像レンズの収差図(球面収差)である。 実施例12の撮像レンズの収差図(非点収差)である。 実施例12の撮像レンズの収差図(歪曲収差)である。
 以下に本発明の撮像レンズの実施例を示す。各実施例に使用する記号は下記の通りである。
 f:撮像レンズ全系の焦点距離
 fB:バックフォーカス
 F:Fナンバー
 2Y:固体撮像素子の撮像面対角線長
 R:曲率半径
 D:軸上面間隔
 Nd:レンズ材料のd線に対する屈折率
 νd:レンズ材料のアッベ数
 ENTP:入射瞳位置(第1面から入射瞳位置までの距離)
 EXTP:射出瞳位置(撮像面から射出瞳位置までの距離)
 H1:前側主点位置(第1面から前側主点位置までの距離)
 H2:後側主点位置(最終面から後側主点位置までの距離)
 各実施例において、各面番号の後に(*)が記載されている面は非球面形状を有する面である。非球面形状は、面の頂点を原点とし、光軸方向にX軸を取り、光軸と垂直方向の高さをhとし、以下の数1で表す。
Figure JPOXMLDOC01-appb-M000001
 但し、
 Ai:i次の非球面係数
 K:円錐定数
 また、非球面係数において、10のべき乗数(例えば2.5×10-02)をE(例えば2.5E-02)を用いて表している。
 なお、請求の範囲及び実施例に記載の近軸曲率半径の意味合いについて、実際のレンズ測定の場面においては、レンズ中央近傍(具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径を、近軸曲率半径とみなすことができる。
 また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる。(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41~42を参照のこと)
[実施例1]
 撮像レンズの全体諸元を以下に示す。
 f=2.27mm
 fB=0.05mm
 F=2.8
 2Y=3.8mm
 ENTP=0.38mm
 EXTP=-1.93mm
 H1=0.05mm
 H2=-2.22mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  0.924     0.44    1.5447    56     0.56
 2(*)  2.288     0.03                 0.34
 3(絞り)   ∞      0.37                 0.34
 4(*)  -0.888     0.49    1.5447    56     0.47
 5(*)  -0.756     0.35                 0.70
 6(*)  1.497     0.33    1.6320    23      1.26
 7(*)  0.971     0.55                 1.47
 8      ∞      0.40    1.5168   64.2     2.00
 9      ∞                        2.00
 非球面係数を以下に示す。
第1面
 K=0.14767E+00, A4=0.86591E-01, A6=-0.17312E+00, A8=0.12543E+01, A10=-0.55317E+00, A12=-0.46811E+01, A14=0.91282E+01
第2面
 K=0.18030E+02, A4=0.19287E+00, A6=-0.59889E+01, A8=0.50638E+02, A10=-0.15146E+03, A12=-0.11847E+03
第4面
 K=-0.37247E+01, A4=-0.11312E+01, A6=-0.39143E+01, A8=0.10608E+02, A10=-0.31944E+02, A12=0.35018E+02
第5面
 K=-0.68435E+00, A4=-0.57714E+00, A6=0.11920E+01, A8=-0.33203E+01, A10=-0.96206E+00, A12=0.94673E+01
第6面
 K=-0.24723E+02, A4=-0.38084E+00, A6=0.19016E+00, A8=0.30936E-01, A10=-0.17326E-01, A12=-0.16629E-01, A14=0.42559E-02
第7面
 K=-0.84707E+01, A4=-0.25232E+00, A6=0.13290E+00, A8=-0.66150E-01, A10=0.19585E-01, A12=0.24825E-02, A14=-0.22619E-02
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      2.559
 2      4      4.039
 3      6      -5.789
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.368
(2)f1/f2=0.634
(3)Pair12/P=-2.062
(4)f1/f23=0.228
(5)Pair23/P=2.346
(6)d1/f=0.193
(7)d3/f=0.216
(8)d5/f=0.146
(9)ν3=23
 図1は実施例1の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。
図2A、B、Cは実施例1の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
[実施例2]
 撮像レンズの全体諸元を以下に示す。
 f=2.26mm
 fB=0.05mm
 F=2.8
 2Y=3.8mm
 ENTP=0.42mm
 EXTP=-1.92mm
 H1=0.09mm
 H2=-2.21mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  0.956     0.47    1.5447    56     0.59
 2(*)  2.504     0.04                 0.35
 3(絞り)   ∞      0.36                 0.33
 4(*)  -0.885     0.49    1.5447    56     0.47
 5(*)  -0.733     0.33                 0.70
 6(*)  1.455     0.30    1.6320    23     1.27
 7(*)  0.931     0.57                 1.46
 8      ∞      0.40    1.5168   64.2     2.00
 9      ∞                        2.00
 非球面係数を以下に示す。
第1面
 K=0.98179E-01, A4=0.79491E-01, A6=-0.28870E+00, A8=0.16918E+01, A10=-0.14358E+01, A12=-0.70644E+01, A14=0.13909E+02
第2面
 K=0.23134E+02, A4=0.10228E+00, A6=-0.45516E+01, A8=0.33536E+02, A10=-0.93568E+02, A12=-0.11847E+03
第4面
 K=-0.35182E+01, A4=-0.11057E+01, A6=-0.37753E+01, A8=0.99112E+01, A10=-0.30478E+02, A12=0.35018E+02
第5面
 K=-0.72278E+00, A4=-0.54089E+00, A6=0.11597E+01, A8=-0.34437E+01, A10=-0.34891E+00, A12=0.89693E+01
第6面
 K=-0.25475E+02, A4=-0.38260E+00, A6=0.20088E+00, A8=0.27864E-01, A10=-0.21075E-01, A12=-0.16208E-01, A14=0.51512E-02
第7面
 K=-0.84565E+01, A4=-0.26546E+00, A6=0.14823E+00, A8=-0.74425E-01, A10=0.20883E-01, A12=0.31141E-02, A14=-0.25540E-02
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      2.563
 2      4      3.666
 3      6      -5.245
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.396
(2)f1/f2=0.699
(3)Pair12/P=-2.004
(4)f1/f23=0.246
(5)Pair23/P=2.420
(6)d1/f=0.208
(7)d3/f=0.217
(8)d5/f=0.133
(9)ν3=23
 図3は実施例2の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。
図4A、B、Cは実施例2の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
[実施例3]
 撮像レンズの全体諸元を以下に示す。
 f=2.26mm
 fB=0.05mm
 F=2.8
 2Y=3.8mm
 ENTP=0.49mm
 EXTP=-1.84mm
 H1=0.05mm
 H2=-2.21mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  0.961     0.56    1.5447    56     0.62
 2(*)  2.819     0.02                 0.33
 3(絞り)   ∞      0.30                 0.32
 4(*)  -0.886     0.47    1.5447    56     0.43
 5(*)  -0.787     0.36                 0.67
 6(*)  1.768     0.33    1.6320    23     1.24
 7(*)  1.173     0.51                 1.39
 8      ∞      0.40    1.5168   64.2     2.00
 9      ∞                        2.00
 非球面係数を以下に示す。
第1面
 K=0.48844E-01, A4=0.71794E-01, A6=-0.30912E+00, A8=0.11515E+01, A10=-0.73800E+00, A12=-0.39416E+01, A14=0.38054E+01
第2面
 K=0.14838E+02, A4=0.26471E+00, A6=-0.89175E+01, A8=0.73271E+02, A10=-0.22638E+03, A12=-0.11847E+03
第4面
 K=-0.56234E+01, A4=-0.16233E+01, A6=-0.39806E+01, A8=0.10791E+02, A10=-0.50281E+02, A12=0.35018E+02
第5面
 K=-0.52233E+00, A4=-0.74521E+00, A6=0.20798E+01, A8=-0.61805E+01, A10=0.66326E+00, A12=0.16169E+02
第6面
 K=-0.50000E+02, A4=-0.51341E+00, A6=0.28563E+00, A8=0.31468E-01, A10=-0.33088E-01, A12=-0.21782E-01, A14=0.10685E-01
第7面
 K=-0.13789E+02, A4=-0.31519E+00, A6=0.15666E+00, A8=-0.69376E-01, A10=0.15868E-01, A12=0.94274E-03, A14=-0.77165E-03
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      2.420
 2      4      4.850
 3      6      -6.985
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.309
(2)f1/f2=0.499
(3)Pair12/P=-1.911
(4)f1/f23=0.168
(5)Pair23/P=2.168
(6)d1/f=0.247
(7)d3/f=0.207
(8)d5/f=0.144
(9)ν3=23
 図5は実施例3の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。
図6A、B、Cは実施例3の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
[実施例4]
 撮像レンズの全体諸元を以下に示す。
 f=2.42mm
 fB=0.05mm
 F=2.8
 2Y=3.8mm
 ENTP=0.54mm
 EXTP=-1.99mm
 H1=0.10mm
 H2=-2.37mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  1.037     0.57    1.5305    56     0.67
 2(*)  3.994     0.05                 0.41
 3(絞り)   ∞      0.43                 0.35
 4(*)  -0.958     0.61    1.5305    56     0.50
 5(*)  -0.810     0.10                 0.80
 6(*)  1.698     0.43    1.5830    30     1.29
 7(*)  0.972     0.58                 1.48
 8      ∞      0.40    1.5168   64.2     2.00
 9      ∞                        2.00
 非球面係数を以下に示す。
第1面
 K=-0.14708E+00, A4=-0.17872E-01, A6=0.15523E+00, A8=-0.30828E+00, A10=-0.62282E+00, A12=0.21971E+01, A14=-0.23864E+01
第2面
 K=0.26157E+02, A4=-0.14788E+00, A6=0.32494E+00, A8=-0.84093E+01, A10=0.42083E+02, A12=-0.71597E+02
第4面
 K=-0.47839E+00, A4=-0.29799E+00, A6=-0.44025E+01, A8=0.14540E+02, A10=-0.54005E+02, A12=0.21665E+02
第5面
 K=-0.71960E+00, A4=-0.58707E+00, A6=0.13875E+01, A8=-0.17423E+01, A10=-0.27244E+01, A12=0.51656E+01
第6面
 K=-0.43666E+02, A4=-0.35117E+00, A6=0.14541E+00, A8=0.36511E-01, A10=-0.47584E-02, A12=-0.20306E-01, A14=0.63588E-02
第7面
 K=-0.58221E+01, A4=-0.28540E+00, A6=0.14332E+00, A8=-0.63012E-01, A10=0.96838E-02, A12=0.21333E-02, A14=-0.43770E-03
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      2.475
 2      4      4.062
 3      6      -4.994
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.446
(2)f1/f2=0.609
(3)Pair12/P=-1.745
(4)f1/f23=0.116
(5)Pair23/P=2.357
(6)d1/f=0.237
(7)d3/f=0.254
(8)d5/f=0.179
(9)ν3=30
 図7は実施例4の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。
図8A、B、Cは実施例4の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
[実施例5]
 撮像レンズの全体諸元を以下に示す。
 f=2.40mm
 fB=0.06mm
 F=2.8
 2Y=3.8mm
 ENTP=0.53mm
 EXTP=-2.00mm
 H1=0.13mm
 H2=-2.34mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  1.085     0.57    1.5305    56     0.68
 2(*)  5.472     0.05                 0.42
 3(絞り)   ∞      0.45                 0.35
 4(*)  -0.935     0.61    1.5305    56     0.50
 5(*)  -0.810     0.10                 0.80
 6(*)  1.579     0.42    1.5830    30     1.30
 7(*)  0.934     0.57                 1.48
 8      ∞      0.40    1.5168    64.2    2.00
 9      ∞                        2.00
 非球面係数を以下に示す。
第1面
 K=-0.23246E+00, A4=-0.22597E-01, A6=0.53905E-01, A8=-0.16875E+00, A10=-0.73377E+00, A12=0.15826E+01, A14=-0.17406E+01
第2面
 K=0.74193E+01, A4=-0.15873E+00, A6=-0.87711E-01, A8=-0.53384E+01, A10=0.35129E+02, A12=-0.71597E+02
第4面
 K=-0.64498E+00, A4=-0.26143E+00, A6=-0.46019E+01, A8=0.12862E+02, A10=-0.54393E+02, A12=0.21666E+02
第5面
 K=-0.70259E+00, A4=-0.60312E+00, A6=0.15623E+01, A8=-0.21131E+01, A10=-0.29097E+01, A12=0.56566E+01
第6面
 K=-0.50000E+02, A4=-0.36528E+00, A6=0.16551E+00, A8=0.36020E-01, A10=-0.74333E-02, A12=-0.21055E-01, A14=0.67896E-02
第7面
 K=-0.73663E+01, A4=-0.27737E+00, A6=0.14561E+00, A8=-0.61581E-01, A10=0.94469E-02, A12=0.18967E-02, A14=-0.39631E-03
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      2.442
 2      4      4.220
 3      6      -5.171
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.432
(2)f1/f2=0.579
(3)Pair12/P=-1.658
(4)f1/f23=0.107
(5)Pair23/P=2.399
(6)d1/f=0.237
(7)d3/f=0.256
(8)d5/f=0.177
(9)ν3=30
 図9は実施例5の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。
図10A、B、Cは実施例5の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
[実施例6]
 撮像レンズの全体諸元を以下に示す。
 f=2.46mm
 fB=0.10mm
 F=2.8
 2Y=3.8mm
 ENTP=0.41mm
 EXTP=-2.20mm
 H1=0.25mm
 H2=-2.35mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  1.289     0.46    1.5305    56     0.65
 2(*)  12.880     0.05                 0.46
 3(絞り)   ∞      0.53                 0.38
 4(*)  -0.810     0.50    1.5305    56     0.55
 5(*)  -0.721     0.12                 0.77
 6(*)  1.341     0.38    1.5830    30     1.22
 7(*)  0.860     0.74                 1.40
 8      ∞      0.40    1.5168   64.2     2.00
 9      ∞                        2.00
 非球面係数を以下に示す。
第1面
 K=-0.62565E+00, A4=0.22974E-01, A6=-0.34077E+00, A8=0.83717E+00, A10=-0.28413E+01, A12=0.43129E+01, A14=-0.30317E+01
第2面
 K=-0.13165E+02, A4=-0.29878E+00, A6=0.21144E+01, A8=-0.17960E+02, A10=0.61411E+02, A12=-0.71618E+02
第4面
 K=-0.80670E+00, A4=-0.11672E+00, A6=-0.45307E+01, A8=0.11553E+02, A10=-0.14660E+02, A12=0.22583E+02
第5面
 K=-0.80487E+00, A4=-0.60087E+00, A6=0.18035E+01, A8=-0.32933E+01, A10=-0.28596E+01, A12=0.11679E+02, A14=0.74684E+01, A16=-0.17438E+02
第6面
 K=-0.24601E+02, A4=-0.37201E+00, A6=0.24905E+00, A8=-0.22023E-01, A10=-0.28699E-01, A12=-0.87129E-02, A14=0.15837E-01, A16=-0.39142E-02
第7面
 K=-0.70116E+01, A4=-0.27489E+00, A6=0.15741E+00, A8=-0.77602E-01, A10=0.18750E-01, A12=0.29566E-02, A14=-0.36631E-02, A16=0.83444E-03
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      2.663
 2      4      4.169
 3      6      -5.823
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.389
(2)f1/f2=0.639
(3)Pair12/P=-1.748
(4)f1/f23=0.200
(5)Pair23/P=2.782
(6)d1/f=0.189
(7)d3/f=0.206
(8)d5/f=0.156
(9)ν3=30
 図11は実施例6の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。図12A、B、Cは実施例6の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
[実施例7]
 撮像レンズの全体諸元を以下に示す。
 f=2.45mm
 fB=0.05mm
 F=2.8
 2Y=3.8mm
 ENTP=0.41mm
 EXTP=-2.26mm
 H1=0.27mm
 H2=-2.40mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  1.206     0.46    1.5305    56     0.64
 2(*)  7.331     0.05                 0.45
 3(絞り)   ∞      0.51                 0.38
 4(*)  -0.848     0.53    1.5305    56     0.54
 5(*)  -0.751     0.10                 0.78
 6(*)  1.417     0.40    1.5830    30     1.23
 7(*)  0.915     0.79                 1.41
 8      ∞      0.40    1.5168   64.2     2.00
 9      ∞                        2.00
 非球面係数を以下に示す。
第1面
 K=-0.54416E+00, A4=0.23223E-01, A6=-0.97263E-01, A8=-0.21172E+00, A10=-0.74881E+00, A12=0.38846E+01, A14=-0.53008E+01
第2面
 K=0.50000E+02, A4=-0.29447E+00, A6=0.23446E+01, A8=-0.20568E+02, A10=0.69326E+02, A12=-0.71618E+02
第4面
 K=-0.90856E+00, A4=-0.98201E-01, A6=-0.50314E+01, A8=0.14896E+02, A10=-0.25111E+02, A12=0.22583E+02
第5面
 K=-0.71914E+00, A4=-0.54546E+00, A6=0.16300E+01, A8=-0.27881E+01, A10=-0.25985E+01, A12=0.94326E+01, A14=0.57157E+01, A16=-0.12881E+02
第6面
 K=-0.25542E+02, A4=-0.34856E+00, A6=0.20849E+00, A8=-0.31470E-02, A10=-0.19103E-01, A12=-0.12750E-01, A14=0.11847E-01, A16=-0.23443E-02
第7面
 K=-0.68891E+01, A4=-0.26555E+00, A6=0.14481E+00, A8=-0.67610E-01, A10=0.14547E-01, A12=0.24790E-02, A14=-0.21818E-02, A16=0.41862E-03
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      2.652
 2      4      4.252
 3      6      -6.265
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.364
(2)f1/f2=0.624
(3)Pair12/P=-1.769
(4)f1/f23=0.218
(5)Pair23/P=2.661
(6)d1/f=0.187
(7)d3/f=0.219
(8)d5/f=0.162
(9)ν3=30
 図13は実施例7の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。図14A、B、Cは実施例7の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
[実施例8]
 撮像レンズの全体諸元を以下に示す。
 f=2.41mm
 fB=0.05mm
 F=2.8
 2Y=3.8mm
 ENTP=0.50mm
 EXTP=-2.06mm
 H1=0.15mm
 H2=-2.36mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  1.099     0.54    1.5305    56     0.67
 2(*)  7.147     0.05                 0.44
 3(絞り)   ∞      0.43                 0.36
 4(*)  -0.836     0.60    1.5305    56     0.49
 5(*)  -0.812     0.10                 0.78
 6(*)  1.492     0.45    1.5830    30     1.26
 7(*)  0.962     0.63                 1.46
 8      ∞      0.40    1.5168   64.2     2.00
 9      ∞                        2.00
 非球面係数を以下に示す。
第1面
 K=-0.24089E+00, A4=-0.42000E-02, A6=-0.87218E-01, A8=-0.19324E+00, A10=-0.69700E+00, A12=0.12226E+01, A14=-0.14562E+01
第2面
 K=-0.49485E+02, A4=-0.24765E+00, A6=0.36275E+00, A8=-0.90643E+01, A10=0.45270E+02, A12=-0.71597E+02
第4面
 K=-0.10664E+01, A4=-0.62667E-01, A6=-0.76689E+01, A8=0.24185E+02, A10=-0.85204E+02, A12=0.21729E+02
第5面
 K=-0.73708E+00, A4=-0.58196E+00, A6=0.14245E+01, A8=-0.22796E+01, A10=-0.25846E+01, A12=0.60833E+01
第6面
 K=-0.50000E+02, A4=-0.37197E+00, A6=0.17796E+00, A8=0.30840E-01, A10=-0.83528E-02, A12=-0.20689E-01, A14=0.68780E-02
第7面
 K=-0.97558E+01, A4=-0.26339E+00, A6=0.14211E+00, A8=-0.60401E-01, A10=0.88379E-02, A12=0.21280E-02, A14=-0.49782E-03
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      2.375
 2      4      5.501
 3      6      -6.747
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.347
(2)f1/f2=0.432
(3)Pair12/P=-1.765
(4)f1/f23=0.072
(5)Pair23/P=2.456
(6)d1/f=0.225
(7)d3/f=0.250
(8)d5/f=0.186
(9)ν3=30
 図15は実施例8の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。図16A、B、Cは実施例8の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
[実施例9]
 撮像レンズの全体諸元を以下に示す。
 f=2.45mm
 fB=0.05mm
 F=2.8
 2Y=3.8mm
 ENTP=0.47mm
 EXTP=-2.2mm
 H1=0.26mm
 H2=-2.39mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  1.060     0.51    1.5305    56     0.65
 2(*)  4.204     0.05                 0.42
 3(絞り)   ∞      0.40                 0.36
 4(*)  -0.831     0.56    1.5305    56     0.49
 5(*)  -0.788     0.17                 0.76
 6(*)  1.699     0.41    1.5830    30     1.23
 7(*)  1.146     0.73                 1.41
 8      ∞      0.40    1.5168   64.2     2.00
 9      ∞                        2.00
 非球面係数を以下に示す。
第1面
 K=-0.24857E+00, A4=0.52032E-01, A6=-0.12883E+00, A8=0.53868E-01, A10=-0.26339E+00, A12=0.48905E+00, A14=-0.21997E+01
第2面
 K=0.50000E+02, A4=-0.33027E+00, A6=0.14832E+01, A8=-0.16364E+02, A10=0.57253E+02, A12=-0.71201E+02
第4面
 K=-0.38497E+00, A4=-0.21925E+00, A6=-0.57597E+01, A8=0.19371E+02, A10=-0.52486E+02, A12=0.22586E+02
第5面
 K=-0.63343E+00, A4=-0.60596E+00, A6=0.16790E+01, A8=-0.28090E+01, A10=-0.29664E+01, A12=0.89990E+01, A14=0.63833E+01, A16=-0.11663E+02
第6面
 K=-0.45581E+02, A4=-0.33339E+00, A6=0.19756E+00, A8=-0.12012E-01, A10=-0.11528E-01, A12=-0.11892E-01, A14=0.10527E-01, A16=-0.21503E-02
第7面
 K=-0.91637E+01, A4=-0.25481E+00, A6=0.13176E+00, A8=-0.61480E-01, A10=0.14127E-01, A12=0.17427E-02, A14=-0.24788E-02, A16=0.62752E-03
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      2.529
 2      4      5.239
 3      6      -8.347
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.283
(2)f1/f2=0.483
(3)Pair12/P=-1.959
(4)f1/f23=0.183
(5)Pair23/P=2.390
(6)d1/f=0.209
(7)d3/f=0.228
(8)d5/f=0.169
(9)ν3=30
 図17は実施例9の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。図18A、B、Cは実施例9の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
[実施例10]
 撮像レンズの全体諸元を以下に示す。
 f=2.45mm
 fB=0.05mm
 F=2.8
 2Y=3.8mm
 ENTP=0.43mm
 EXTP=-2.24mm
 H1=0.25mm
 H2=-2.41mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  1.172     0.47    1.5305    56     0.64
 2(*)  6.581     0.05                 0.44
 3(絞り)   ∞      0.51                 0.38
 4(*)  -0.806     0.49    1.5305    56     0.54
 5(*)  -0.788     0.10                 0.77
 6(*)  1.604     0.48    1.5830    30     0.26
 7(*)  1.143     0.74                 1.45
 8      ∞      0.40    1.5168   64.2     2.00
 9      ∞                        2.00
 非球面係数を以下に示す。
第1面
 K=-0.43113E+00, A4=0.32381E-01, A6=-0.13033E+00, A8=-0.12156E-01, A10=-0.60494E+00, A12=0.23474E+01, A14=-0.35029E+01
第2面
 K=0.49990E+02, A4=-0.24937E+00, A6=0.20236E+01, A8=-0.18847E+02, A10=0.64797E+02, A12=-0.68324E+02
第4面
 K=-0.86792E+00, A4=-0.60049E-01, A6=-0.47020E+01, A8=0.12597E+02, A10=-0.21786E+02, A12=0.23459E+02
第5面
 K=-0.58616E+00, A4=-0.48630E+00, A6=0.14951E+01, A8=-0.28676E+01, A10=-0.20155E+01, A12=0.11231E+02, A14=0.35871E+00, A16=-0.96649E+01
第6面
 K=-0.23998E+02, A4=-0.25339E+00, A6=0.14636E+00, A8=0.48618E-02, A10=-0.11134E-01, A12=-0.14505E-01, A14=0.10215E-01, A16=-0.18238E-02
第7面
 K=-0.68357E+01, A4=-0.23593E+00, A6=0.13410E+00, A8=-0.61161E-01, A10=0.12364E-01, A12=0.16622E-02, A14=-0.88844E-03, A16=0.50820E-04
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      2.609
 2      4      6.313
 3      6     -11.021
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.226
(2)f1/f2=0.413
(3)Pair12/P=-1.884
(4)f1/f23=0.194
(5)Pair23/P=2.482
(6)d1/f=0.194
(7)d3/f=0.202
(8)d5/f=0.195
(9)ν3=30
 図19は実施例10の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。図20A、B、Cは実施例10の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
[実施例11]
 撮像レンズの全体諸元を以下に示す。
 f=1.81mm
 fB=0.05mm
 F=2.8
 2Y=3mm
 ENTP=0.33mm
 EXTP=-1.57mm
 H1=0.12mm
 H2=-1.76mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  0.800     0.39    1.5447    56     0.47
 2(*)  2.657     0.02                 0.28
 3(絞り)   ∞      0.29                 0.27
 4(*)  -0.751     0.48    1.5447    56     0.37
 5(*)  -0.631     0.18                 0.59
 6(*)  1.296     0.30    1.6320    23     0.95
 7(*)  0.794     0.41                 1.16
 8      ∞      0.40    1.5168   64.2     1.55
 9      ∞                        1.55
 非球面係数を以下に示す。
第1面
 K=0.50624E-01, A4=0.16140E+00, A6=-0.12987E+01, A8=0.81971E+01, A10=-0.11568E+02, A12=-0.79249E+02, A14=0.18423E+03
第2面
 K=0.27609E+02, A4=0.24224E+00, A6=-0.14906E+02, A8=0.16140E+03, A10=-0.61808E+03, A12=-0.13792E+04
第4面
 K=-0.53764E+01, A4=-0.23297E+01, A6=-0.12432E+02, A8=0.64232E+02, A10=-0.34073E+03, A12=0.40767E+03
第5面
 K=-0.68896E+00, A4=-0.11893E+01, A6=0.42515E+01, A8=-0.14599E+02, A10=0.41393E+00, A12=0.58783E+02
第6面
 K=-0.28846E+02, A4=-0.81122E+00, A6=0.69385E+00, A8=0.16882E+00, A10=-0.21989E+00, A12=-0.22012E+00, A14=0.10335E+00
第7面
 K=-0.75115E+01, A4=-0.51717E+00, A6=0.47650E+00, A8=-0.37294E+00, A10=0.14919E+00, A12=0.34438E-01, A14=-0.40873E-01
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      1.956
 2      4      3.022
 3      6      -4.212
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.398
(2)f1/f2=0.647
(3)Pair12/P=-1.770
(4)f1/f23=0.201
(5)Pair23/P=2.314
(6)d1/f=0.215
(7)d3/f=0.263
(8)d5/f=0.165
(9)ν3=23
 図21は実施例11の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。図22A、B、Cは実施例11の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
[実施例12]
 撮像レンズの全体諸元を以下に示す。
 f=1.87mm
 fB=0.04mm
 F=2.8
 2Y=3mm
 ENTP=0.38mm
 EXTP=-1.59mm
 H1=0.11mm
 H2=-1.82mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)    D(mm)    Nd    νd    有効半径(mm)
 1(*)  0.901     0.45    1.5447   5 6     0.51
 2(*)  3.563     0.02                 0.29
 3(絞り)   ∞      0.30                 0.28
 4(*)  -0.824     0.50    1.5447    56     0.39
 5(*)  -0.705     0.13                 0.60
 6(*)  1.448     0.42    1.6320    23     0.90
 7(*)  0.904     0.40                 1.17
 8      ∞      0.40    1.5168   64.2     1.55
 9      ∞                        1.55
 非球面係数を以下に示す。
第1面
 K=-0.10394E-01, A4=0.15118E+00, A6=-0.13121E+01, A8=0.79872E+01, A10=-0.18868E+02, A12=-0.94095E+01, A14=0.53730E+02
第2面
 K=0.50000E+02, A4=0.31655E+00, A6=-0.16421E+02, A8=0.18682E+03, A10=-0.70024E+03, A12=-0.13792E+04
第4面
 K=-0.99080E+01, A4=-0.27180E+01, A6=-0.48675E+01, A8=0.23637E+02, A10=-0.16484E+03, A12=0.40767E+03
第5面
 K=-0.49400E+00, A4=-0.15898E+01, A6=0.59970E+01, A8=-0.19573E+02, A10=0.15931E+02, A12=0.26489E+02
第6面
 K=-0.33599E+02, A4=-0.88704E+00, A6=0.86393E+00, A8=0.18337E+00, A10=-0.46032E+00, A12=-0.96367E-01, A14=0.97275E-01
第7面
 K=-0.62558E+01, A4=-0.48831E+00, A6=0.45103E+00, A8=-0.32778E+00, A10=0.12204E+00, A12=0.12625E-01, A14=-0.19446E-01
 撮像レンズの単レンズデータを以下に示す。
レンズ     始面     焦点距離(mm)
 1      1      2.089
 2      4      3.629
 3      6      -5.450
 条件式(1)~(9)に対応する値を以下に示す。
(1)f12/f3=-0.337
(2)f1/f2=0.576
(3)Pair12/P=-1.579
(4)f1/f23=0.230
(5)Pair23/P=2.172
(6)d1/f=0.239
(7)d3/f=0.265
(8)d5/f=0.227
(9)ν3=23
 図23は実施例12の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、Sは開口絞りを示す。また、Fは光学的ローパスフィルター、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板である。図24A、B、Cは実施例12の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
 なお、以上の各実施例において、固体撮像素子の撮像面に入射する光束の主光線入射角については、撮像面の周辺部において必ずしも充分に小さい設計にはなっていない。しかし、最近の技術では、固体撮像素子の色フィルタやオンチップマイクロレンズアレイの配列の見直しによって、シェーディングを軽減することがでるようになってきた。具体的には、撮像素子の撮像面の画素ピッチに対し、色フィルタやオンチップマイクロレンズアレイの配列のピッチをわずかに小さく設定する。それにより、撮像面の周辺部にいくほど各画素に対し色フィルタやオンチップマイクロレンズアレイが撮像レンズ光軸側へシフトし、斜入射の光束を効率的に各画素の受光部に導くことができる。これにより固体撮像素子で発生するシェーディングを小さく抑えることができる。各実施例は、以上の点が緩和された分について、より小型化を目指した設計例となっている。
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。例えば、実質的に屈折力を持たないダミーレンズを更に付与した場合でも本発明の適用範囲内である。
 L1 第1レンズ
 L2 第2レンズ
 L3 第3レンズ
 S 開口絞り
 F 平行平板

Claims (6)

  1.  固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、
     物体側から順に、
     正の屈折力を有し物体側に凸面を向けたメニスカス形状の第1レンズと、
     開口絞りと、
     正の屈折力を有し像側に凸面を向けたメニスカス形状の第2レンズと、
     負の屈折力を有し像側に凹面を向けた第3レンズとから構成され、
     以下の条件式を満足することを特徴とする撮像レンズ。
     -0.45<f12/f3<-0.2
     0.41<f1/f2<0.73
     -2.15<Pair12/P<-1.45
     但し、
     f12:前記第1レンズと前記第2レンズとの合成焦点距離
     f3:前記第3レンズの焦点距離
     f1:前記第1レンズの焦点距離
     f2:前記第2レンズの焦点距離
     P:撮像レンズ全系の屈折力
     Pair12:前記第1レンズの像側面と前記第2レンズの物体側面とにより形成されるいわゆる空気レンズの屈折力であり、以下の条件式で求める。
     Pair12=(1-N1)/R2+(N2-1)/R3-{((1-N1)・(N2-1))/(R2・R3)}・D2
     但し、
     N1:前記第1レンズのd線に対する屈折率
     N2:前記第2レンズのd線に対する屈折率
     R2:前記第1レンズの像側面の曲率半径
     R3:前記第2レンズの物体側面の曲率半径
     D2:前記第1レンズと前記第2レンズの軸上の空気間隔
  2.  以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
     0.06<f1/f23<0.3
     但し、
     f1:前記第1レンズの焦点距離
     f23:前記第2レンズと前記第3レンズとの合成焦点距離
  3.  以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
     2.1<Pair23/P<2.8
     但し、
     P:撮像レンズ全系の屈折力
     Pair23:前記第2レンズの像側面と前記第3レンズの物体側面とにより形成されるいわゆる空気レンズの屈折力であり、以下の条件式で求める。
     Pair23=(1-N2)/R4+(N3-1)/R5-{((1-N2)・(N3-1))/(R4・R5)}・D4
     但し、
     N2:前記第2レンズのd線に対する屈折率
     N3:前記第3レンズのd線に対する屈折率
     R4:前記第2レンズの像側面の曲率半径
     R5:前記第3レンズの物体側面の曲率半径
     D4:前記第2レンズと前記第3レンズの軸上の空気間隔
  4.  以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
     0.18<D1/f<0.3
     0.18<D3/f<0.3
     0.12<D5/f<0.25
     但し、
     D1:前記第1レンズの軸上厚
     D3:前記第2レンズの軸上厚
     D5:前記第3レンズの軸上厚
     f:撮像レンズ全系の焦点距離
  5.  前記第3レンズは、物体側面と像側面とが非球面に形成され、光軸近傍では負の屈折力を有すると共に周辺部では正の屈折力を有し、以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
     15<νd3<35
     但し、
     νd3:前記第3レンズのアッベ数
  6.  実質的に屈折力を持たないレンズを更に有することを特徴とする請求項1~5のいずれか1項に記載の撮像レンズ。
PCT/JP2011/004847 2010-09-17 2011-08-31 撮像レンズ WO2012035708A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012533840A JP5630505B2 (ja) 2010-09-17 2011-08-31 撮像レンズ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-208969 2010-09-17
JP2010208969 2010-09-17

Publications (1)

Publication Number Publication Date
WO2012035708A1 true WO2012035708A1 (ja) 2012-03-22

Family

ID=45831203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004847 WO2012035708A1 (ja) 2010-09-17 2011-08-31 撮像レンズ

Country Status (2)

Country Link
JP (1) JP5630505B2 (ja)
WO (1) WO2012035708A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104238089A (zh) * 2014-09-12 2014-12-24 东莞市旭业光电科技有限公司 一种光学镜头组件
US9341815B1 (en) 2015-01-07 2016-05-17 Largan Precision Co., Ltd. Optical imaging system, image capturing unit and electronic device
CN105739063A (zh) * 2016-04-13 2016-07-06 中山市众盈光学有限公司 一种手机成像镜头
CN109828346A (zh) * 2018-12-26 2019-05-31 浙江舜宇光学有限公司 光学成像镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203822A (ja) * 2007-01-24 2008-09-04 Konica Minolta Opto Inc 撮像レンズ及び撮像装置並びに携帯端末
JP2008209721A (ja) * 2007-02-27 2008-09-11 Enplas Corp 撮像レンズおよびこれを備えた撮像装置
JP2008275831A (ja) * 2007-04-27 2008-11-13 Seiko Precision Inc 撮像レンズ
JP2008275832A (ja) * 2007-04-27 2008-11-13 Seiko Precision Inc 撮像レンズ
JP2009223251A (ja) * 2008-03-19 2009-10-01 Olympus Corp 撮像装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870907B2 (ja) * 2002-07-30 2007-01-24 コニカミノルタオプト株式会社 撮像レンズ
JP4235007B2 (ja) * 2003-02-21 2009-03-04 京セラ株式会社 撮像レンズ
JP4722087B2 (ja) * 2007-06-20 2011-07-13 日本電産コパル株式会社 撮影レンズ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203822A (ja) * 2007-01-24 2008-09-04 Konica Minolta Opto Inc 撮像レンズ及び撮像装置並びに携帯端末
JP2008209721A (ja) * 2007-02-27 2008-09-11 Enplas Corp 撮像レンズおよびこれを備えた撮像装置
JP2008275831A (ja) * 2007-04-27 2008-11-13 Seiko Precision Inc 撮像レンズ
JP2008275832A (ja) * 2007-04-27 2008-11-13 Seiko Precision Inc 撮像レンズ
JP2009223251A (ja) * 2008-03-19 2009-10-01 Olympus Corp 撮像装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104238089A (zh) * 2014-09-12 2014-12-24 东莞市旭业光电科技有限公司 一种光学镜头组件
US9341815B1 (en) 2015-01-07 2016-05-17 Largan Precision Co., Ltd. Optical imaging system, image capturing unit and electronic device
CN105739063A (zh) * 2016-04-13 2016-07-06 中山市众盈光学有限公司 一种手机成像镜头
CN109828346A (zh) * 2018-12-26 2019-05-31 浙江舜宇光学有限公司 光学成像镜头
CN109828346B (zh) * 2018-12-26 2024-04-02 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
JPWO2012035708A1 (ja) 2014-01-20
JP5630505B2 (ja) 2014-11-26

Similar Documents

Publication Publication Date Title
JP4947423B2 (ja) 撮像レンズ
US8743482B1 (en) Optical imaging lens assembly
JP6105317B2 (ja) 広角撮像レンズ
JP5975386B2 (ja) 撮像レンズ
US8736980B2 (en) Imaging lens assembly
JP6133068B2 (ja) 撮像レンズ
JP5095662B2 (ja) 固体撮像素子用撮像レンズ
JP6128673B2 (ja) 撮像レンズ
JP4858648B2 (ja) 撮像レンズ、撮像装置及び携帯端末
JP5750698B2 (ja) 撮像レンズ
US9335512B2 (en) Image capturing lens and image capturing apparatus provided with the image capturing lens
JP5839038B2 (ja) 撮像レンズ及び撮像装置
JP5985904B2 (ja) 撮像レンズ
WO2011129319A1 (ja) 撮像レンズ
US9030760B2 (en) Imaging lens assembly
JP2013250330A (ja) 撮像レンズ
US9019630B2 (en) Lens assembly of optical imaging system
WO2011092983A1 (ja) 撮像レンズ
JP2013092584A (ja) 撮像レンズ、撮像装置及び携帯端末
JP2014160158A (ja) 撮像レンズ、撮像装置及び携帯端末
TWI465763B (zh) Camera lens, camera optics and digital machines
WO2014119402A1 (ja) 撮像装置および電子機器
JP2015084066A (ja) 撮像レンズ、撮像装置及び携帯端末
JP5630505B2 (ja) 撮像レンズ
WO2011052370A1 (ja) 撮像レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824728

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533840

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824728

Country of ref document: EP

Kind code of ref document: A1