WO2012034451A1 - 混凝土缸的活塞润滑系统 - Google Patents

混凝土缸的活塞润滑系统 Download PDF

Info

Publication number
WO2012034451A1
WO2012034451A1 PCT/CN2011/077146 CN2011077146W WO2012034451A1 WO 2012034451 A1 WO2012034451 A1 WO 2012034451A1 CN 2011077146 W CN2011077146 W CN 2011077146W WO 2012034451 A1 WO2012034451 A1 WO 2012034451A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
concrete
lubrication
oil
cylinder
Prior art date
Application number
PCT/CN2011/077146
Other languages
English (en)
French (fr)
Inventor
李沛林
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Publication of WO2012034451A1 publication Critical patent/WO2012034451A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems
    • F16N7/385Central lubrication systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • F04B9/107Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting liquid motor, e.g. actuated in the other direction by gravity or a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N27/00Proportioning devices
    • F16N27/02Gating equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • F01M2001/083Lubricating systems characterised by the provision therein of lubricant jetting means for lubricating cylinders

Definitions

  • the present invention relates to a piston lubrication system and, in particular, to a piston lubrication system for a concrete cylinder. Background technique
  • Concrete pumps and concrete pump trucks are widely used for concrete conveying work in large concrete projects such as high-rise buildings, high-speed buildings, and overpasses, mainly by reciprocating concrete pistons in concrete cylinders to transport concrete.
  • the lubrication method of the piston of the concrete cylinder (the "concrete conveying cylinder") (ie “concrete piston”) is basically divided into manual lubrication and automatic lubrication.
  • Manual lubrication is the application of lubrication points on concrete cylinders or concrete pistons to manually inject or smear concrete cylinders or concrete pistons.
  • Manual lubrication is labor intensive, and the lubricant is applied unevenly. If it is not lubricated in time, it will cause premature wear of the piston.
  • Automatic lubrication has the advantages of low labor intensity, uniform application of lubricating oil, and simple maintenance, so its application is increasingly widespread.
  • the automatic lubrication system of the piston of the concrete cylinder comprises a hydraulic pump ⁇ , two main cylinders 2', two concrete cylinders 3', two cylinders respectively located in the two main cylinders 2' a piston 4', two concrete pistons 5' located in the two concrete cylinders 3', and two piston rods 6', the two cylinder pistons 4' and the two concrete pistons 5' respectively passing
  • the two piston rods 6' are connected, for example, the rodless chambers of the two master cylinders 2' are connected to the hydraulic pump, and the rod chambers of the two master cylinders 2 are connected to each other;
  • the system further includes a lubricating oil distributor 7', a dispensing pump 8', a reversing valve 9' and an oscillating cylinder 10', the oil inlet of the reversing valve 9' being in communication with the dispensing pump 8', the reversing
  • the two working ports of the valve 9' are respectively communicate
  • the lubricating oil distributor 7' is injected with the lubricating oil only when the concrete piston 5' is located at a position corresponding to the lubrication hole 31'. It is possible to apply the lubricating oil correctly to the concrete piston 5', and if the injection is too early or too late, the lubricating oil cannot be applied to the concrete piston 5', resulting in poor lubrication and waste of lubricating oil.
  • the lubricating hole 31' is usually placed near the end of the concrete cylinder 3', that is, designed to be lubricated at the moment when the piston rod 6' reaches the end of the stroke.
  • the oil distributor 7' injects lubricating oil.
  • a proximity switch 1A is provided in the above-described automatic lubrication system for detecting the position of the piston rod 6'.
  • a metal member may be provided at a certain position of the piston rod 6', along with the piston rod 6 When the metal member moves to the detection range of the proximity switch 1 ⁇ , the proximity switch 1 ⁇ can detect the metal member.
  • the hydraulic pump is controlled to reverse the movement so that the piston rod 6' moves in the reverse direction, while controlling the reversing of the reversing valve 9', thereby causing the lubricating oil to be divided.
  • the adapter 7' injects lubricating oil.
  • the response time of the two is not uniform; and under different working conditions, the piston rod can be changed with the change of hydraulic oil pressure and flow rate.
  • the technical problem to be solved by the present invention is to provide a piston lubrication system for a concrete cylinder, which can accurately apply lubricating oil to a piston of a concrete cylinder, thereby achieving a good lubrication effect. And reduce the waste of lubricating oil.
  • the present invention provides a piston lubrication system for a concrete cylinder, the lubrication system including a hydraulic pump, a main oil cylinder, a concrete cylinder, a cylinder piston located in the main cylinder, and a concrete located in the concrete cylinder a piston, and a piston rod, the cylinder piston being connected to the concrete piston through the piston rod, one of a rod chamber and a rodless chamber of the main cylinder being connected to the hydraulic pump, wherein
  • the lubrication system further includes a hydraulic lubrication device, the piston rod is formed with a piston rod passage, the concrete piston is formed with a lubrication passage, and the oil inlet end of the piston rod passage and the rod chamber of the main cylinder or none a rod cavity is connected, an oil outlet end of the piston rod passage is in communication with an oil inlet of the hydraulic lubricating device, and an oil outlet of the hydraulic lubricating device is in communication with an oil inlet end of the lubrication passage, the
  • the main cylinder, the concrete cylinder, the cylinder piston, the concrete piston and the hydraulic lubricating device are respectively two; wherein, the rodless chambers of the two main cylinders are connected to the hydraulic pump, and at the same time The rod chambers of the main cylinder are in communication with each other; or, the rod chambers of the two main cylinders are connected to the hydraulic pump, and the rodless chambers of the two main cylinders are in communication with each other.
  • the hydraulic lubricating device is a single-line lubricating oil distributor, and each of the concrete pistons is formed with a plurality of the lubricating passages, and a plurality of oil outlets of the single-line lubricating oil distributor and corresponding ones The oil inlet ends of the lubrication passages are in communication.
  • the hydraulic lubricating device is a two-wire lubricating oil distributor, two piston rod passages are formed on each of the piston rods, and two lubricating passages are formed on each of the concrete pistons.
  • the oil inlet ends of the two piston rod passages are respectively communicated with the rod chamber and the rodless chamber of the main oil cylinder, and the oil outlet ends of the two piston rod passages respectively and the two-wire lubrication
  • the two oil inlets of the oil distributor are connected, and the two oil outlets of the two-wire lubricating oil distributor are respectively connected with the oil inlet ends of the corresponding lubricating passages.
  • an oil discharge end of at least one of the lubrication passages is in communication with a plurality of the lubrication holes. Further, the hydraulic lubricating device is fixed to the piston rod or to the piston rod On the moving parts.
  • the component that moves with the piston rod includes the cylinder piston and the concrete piston.
  • the lubrication system further includes a reversing valve, an outlet of the hydraulic pump is in communication with an oil inlet of the reversing valve, and two working ports of the reversing valve are respectively associated with the two main cylinders One of the rod cavity and the rodless cavity is connected.
  • the hydraulic oil pressure in the rod chamber or the rodless chamber in the main cylinder is used as the power source of the hydraulic lubricating device, and the oil outlet of the hydraulic lubricating device is directly connected to the peripheral wall of the concrete piston.
  • the formed lubrication holes are connected so that regardless of the position of the concrete piston, regardless of the pressure and flow rate of the hydraulic oil in the concrete cylinder, the lubricating oil injected by the hydraulic lubricating device can always be applied to the peripheral wall of the concrete piston. Therefore, the lubrication system can accurately apply lubricating oil to the concrete piston, thereby achieving good lubrication and reducing waste of lubricating oil.
  • FIG. 1 is a schematic view of a piston lubrication system of a concrete cylinder in the prior art
  • FIG. 2 is a schematic view of a piston lubrication system of a concrete cylinder according to an embodiment of the present invention
  • Figure 3 is a schematic diagram of a single-line lubricating oil dispenser
  • Figure 4 is a schematic illustration of a piston lubrication system for a concrete cylinder in accordance with another embodiment of the present invention.
  • Figure 5 is a schematic diagram of a two-wire lubricating oil dispenser; 6 is a piston lubrication system of a concrete cylinder according to still another embodiment of the present invention.
  • the present invention provides a piston lubrication system for a concrete cylinder, which includes a hydraulic pump 1, a main cylinder 2, a concrete cylinder 3, a cylinder piston 4 located in the main cylinder 2, a concrete piston 5 located in the concrete cylinder 3, and a piston rod 6, the cylinder piston 4 being connected to the concrete piston 5 via the piston rod 6, the rod chamber and the rodless chamber of the main cylinder 2
  • One of the two (shown as a rodless cavity as shown in FIGS. 2 and 4) is connected to the hydraulic pump 1, wherein the lubrication system further includes a hydraulic lubricating device, and the piston rod 6 is formed with a piston rod passage 61.
  • the concrete piston 5 is formed with a lubrication passage 51, and the piston rod passage
  • the oil inlet end of the piston rod 61 is in communication with the rod chamber or the rodless chamber of the main oil cylinder 2, and the oil outlet end of the piston rod passage 61 communicates with the oil inlet port of the hydraulic lubricating device, and the hydraulic lubricating device
  • the oil outlet communicates with the oil inlet end of the lubrication passage 51, and the oil discharge end of the lubrication passage 51 communicates with the lubrication hole 52 formed on the peripheral wall of the concrete piston 5.
  • the hydraulic oil pressure in the rod chamber or the rodless chamber in the main cylinder 2 is utilized as the power source of the hydraulic lubricating device, and the oil outlet of the hydraulic lubricating device is directly connected to the concrete piston 5
  • the lubrication holes 52 formed in the peripheral wall are in communication, so that no matter where the concrete piston 5 is located, regardless of the pressure and flow rate of the hydraulic oil in the concrete cylinder 3, the lubricating oil injected by the hydraulic lubricating device can always be applied to the concrete piston 5 On the wall of the week. Therefore, the lubricating system can accurately apply lubricating oil to the concrete piston 5, thereby achieving good lubrication and reducing waste of lubricating oil.
  • the number of the above-described main cylinder 2, concrete cylinder 3, cylinder piston 4, concrete piston 5, and hydraulic lubricating device may be set as needed.
  • the main cylinder 2 and the concrete cylinder 3 are provided.
  • the cylinder piston 4, the concrete piston 5 and the hydraulic lubricating device are respectively two; wherein, the rodless chambers of the two main cylinders 2 are connected to the hydraulic pump 1, and the two main cylinders 2 have rods The chambers are connected to each other; or, the rod chambers of the two master cylinders 2 are connected to the hydraulic pump 1, and the rodless chambers of the two master cylinders 2 are in communication with each other.
  • the piston lubrication system of the concrete cylinder comprises a hydraulic pump 1, two main oil cylinders 2, two concrete cylinders 3, two cylinder pistons 4 respectively located in the two main cylinders 2, respectively Two concrete pistons 5 located in the two concrete cylinders 3, and two piston rods 6, which are connected to the two concrete pistons 5 via the two piston rods 6, respectively.
  • One of the rod chamber and the rodless chamber of the two main cylinders 2 (shown as a rodless chamber as shown in FIGS. 2 and 4) is connected to the hydraulic pump 1, and the two main cylinders 2 are The other of the rod chamber and the rodless chamber (shown as a rod chamber as shown in FIGS.
  • the lubrication system further includes two hydraulic lubricating devices, each of the piston rods 6 A piston rod passage 61 is formed thereon, and each of the concrete pistons 5 is formed with a lubrication passage 51, and an oil inlet end of the piston rod passage 61 Connected with the rod chamber or the rodless chamber of the main cylinder 2, the oil outlet end of the piston rod passage 61 communicates with the oil inlet of the hydraulic lubricating device, and the oil outlet of the hydraulic lubricating device
  • the oil inlet end of the lubrication passage 51 communicates, and the oil discharge end of the lubrication passage 51 communicates with the lubrication hole 52 formed on the peripheral wall of the concrete piston 5.
  • the piston lubrication system of the concrete cylinder may include only one or may include more of the corresponding main cylinder 2, concrete cylinder 3, cylinder piston 4, concrete piston 5, and hydraulic lubrication device.
  • the lubricating oil dispenser can be any suitable lubricating oil dispenser, such as a single-line lubricating oil distributor 71, a two-wire lubricating oil distributor 72, and various other suitable forms of lubricating oil distributors or dispensing pumps.
  • Figure 3 shows a schematic diagram of a single-line lubricating oil distributor 71.
  • the single-line lubricating oil distributor 71 generally has an oil inlet port II, a plurality of oil outlets R11, R12, R13, R14, R15, R16 and a plurality of spools XII, X12, X13.
  • the hydraulic oil enters the right chamber of the spool X12 from the spool XII, pushes the spool X12 to the left, and squeezes the hydraulic oil in the left chamber of the spool X12 from the outlet R11;
  • the hydraulic oil enters the right chamber of the valve core X13 from the spool XII, X12, pushes the valve core X13 to the left, and squeezes the hydraulic oil in the left chamber of the valve core X13 from the oil outlet R12;
  • the pressure oil enters the right chamber of the valve core X11 through the spools X11, X12, X13, pushes the valve core XII to the left, and squeezes the hydraulic oil in the left chamber of the valve core XII from the oil outlet R13.
  • valve core XII After the valve core XII is moved to the left position, the valve cores X12, X13, and X11 are sequentially shifted to the right, and the oil in the right chamber of the spools X12, X13, and X11 is extruded from R15, R16, and R14, respectively. . That is to say, after a certain pressure of hydraulic oil enters from the oil inlet port II of the single-line lubricating oil distributor 71, the hydraulic oil is sequentially extruded from the respective oil outlets R11, R12, R13, R14, R15, and R16, thereby sequentially Lubricate each lubrication point.
  • FIG. 5 shows a schematic of a two-wire lubricating oil distributor 72.
  • the two-wire lubricating oil distributor 72 generally has two oil inlet ports 121, 122 and two oil outlets R21, R22, and X2 in Fig. 5 is a valve core, and H is a fuel supply piston.
  • H is a fuel supply piston.
  • the oil is discharged through the oil outlet R22; correspondingly, when the pressure of the oil inlet port 122 is higher than the pressure of the oil inlet port 121, when the valve core X2 is pushed to the right position, the hydraulic oil enters from the oil inlet port 122, The oil supply piston H is pushed to the left, and the hydraulic oil in the left chamber is discharged through the oil outlet R21.
  • Gp in the two-wire type lubricating oil distributor 72, the hydraulic oil is intermittently discharged from the oil outlet R21 or R22 as the pressure of the oil inlet ports 121, 122 changes to perform lubrication.
  • a single-line lubricating oil distributor 71 is employed in the embodiment shown in Figure 2, and a two-wire lubricating oil distributor 72 is employed in another embodiment as shown in Figure 4, which will be described below.
  • a single-line lubricating oil distributor 71 is employed in the embodiment shown in Figure 2
  • a two-wire lubricating oil distributor 72 is employed in another embodiment as shown in Figure 4, which will be described below.
  • the hydraulic lubricating device is a single-line lubricating oil distributor 71, and each of the concrete pistons 5 is formed with a plurality of the lubricating passages 51, and the single-line lubricating oil distributor 71 has a plurality of The oil outlets R11, R12, R13, R14, R15, R16 (not shown in Fig. 2) communicate with the oil inlet end of the corresponding lubrication passage 51. It should be noted that although only two lubrication passages 51 are shown in Fig. 2, actually, the number of lubrication passages 51 corresponds to the number of outlets of the single-line lubricating oil distributor 71. As described above, the oil inlet port II (not shown in Fig.
  • the single-line lubricating oil distributor 71 communicates with the oil discharge end of the piston rod passage 61.
  • the single-line lubricating oil distributor 71 continuously discharges the hydraulic oil from the lubrication holes 52 formed in the peripheral wall of the concrete piston 5 to lubricate the peripheral wall of the concrete piston 5.
  • the hydraulic lubricating device is a two-wire lubricating oil distributor 72, and each of the piston rods 6 is formed with two piston rod passages 61 formed on each of the concrete pistons 5.
  • the rod chamber of the main cylinder 2 is connected to the rodless chamber, and the oil outlet ends of the two piston rod passages 61 are respectively connected to the two oil inlets 121 and 122 of the two-wire lubricating oil distributor 72 ( Connected in Fig. 4, the two oil outlets R21, R22 (not shown in Fig.
  • the oil distributor 72 also discharges hydraulic oil to lubricate the peripheral wall of the concrete piston 5.
  • the oil discharge end of at least one of the lubrication passages 51 may communicate with a plurality of the lubrication holes 52.
  • the oil discharge end of the lubrication passage 51 may have a branch to communicate with more lubrication holes 52.
  • more lubrication holes 52 can be more densely disposed on the peripheral wall of the concrete piston 5, thereby more uniformly applying lubricating oil to the peripheral wall of the concrete piston 5 for better lubrication.
  • the hydraulic lubricating device is fixed to the concrete piston 5, and the oil outlet end of the piston rod passage 61 and the oil inlet port of the hydraulic lubricating device are connected by the oil pipe 20.
  • the hydrodynamic lubrication device can also be attached to the cylinder piston 4, the piston rod 6 or other components that move with the piston rod 6.
  • the hydraulic lubricating device can be fixed to the connecting shaft.
  • the oil pipe 20 can be connected between the oil outlet end of the piston rod passage 61 and the oil inlet of the hydraulic lubricating device, the oil outlet of the hydraulic lubricating device and the oil inlet end of the lubrication passage 51. It can be connected directly (ie a board connection) or by other suitable connection methods.
  • the hydraulic pump 1 may be double To the pump, the two outlets of the hydraulic pump 1 are in communication with one of the rod chamber and the rodless chamber of the two main cylinders 2, respectively.
  • the hydraulic pump 1 can also be a one-way pump, in which case the outlet of the hydraulic pump 1 is in communication with one of the rod chamber and the rodless chamber of the two main cylinders 2 via a reversing valve. For example, as shown in FIG.
  • the lubrication system may further include a reversing valve 9, the outlet of the hydraulic pump 1 is in communication with the oil inlet P of the reversing valve 9, and the two operations of the reversing valve 9
  • the ports A, B are in communication with one of the rod chamber and the rodless chamber of the two main cylinders 2, respectively.
  • T in the figure indicates the oil return port of the reversing valve 9, and the oil return port T is connected to the oil tank.
  • the reversing valve 9 may be an electromagnetic reversing valve, so that when the piston rod 6 reaches the end of the stroke (or to other required positions), the reversing valve 9 is controlled to commutate by an electric signal, so that The piston rod 6 moves in the opposite direction.
  • the reversing valve 9 can also adopt a hydraulically controlled reversing valve to control the reversing of the reversing valve 9 by a hydraulic signal.
  • reference numeral 11 denotes a proximity switch for detecting the position of the piston rod 6 when the piston rod 6 reaches the end of the stroke (or other required In position, the proximity switch 11 issues a commutation signal, controlling the hydraulic pump 5 to reverse, causing the piston rod 6 to move in the opposite direction.
  • the proximity switch can be replaced with other suitable means.
  • a logic valve can be used to issue a hydraulic signal to cause the hydraulic pump 5 to reverse.
  • the commutation signal from the proximity switch 11 controls the commutation valve 9 to reverse, thereby causing the piston rod 6 to move in the reverse direction. More specific ways or structures for controlling the commutation of the piston rod 6 are well known in the art and will not be described again.
  • the hydraulic pump 5 is in communication with the rodless chambers of the two master cylinders 2, and the rod chambers of the two master cylinders 2 (e.g., via tubing) are interconnected. .
  • the hydraulic pump 5 can also communicate with the rod chambers of the two main cylinders 2, and the rodless chambers of the two main cylinders 2 communicate with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reciprocating Pumps (AREA)

Description

混凝土缸的活塞润滑系统
技术领域
本发明涉及一种活塞润滑系统, 具体地, 涉及一种混凝土缸的活塞润 滑系统。 背景技术
混凝土泵和混凝土泵车广泛用于高楼、 高速、 立交桥等大型混凝土工 程的混凝土输送工作, 主要通过使混凝土活塞在混凝土缸内往复运动来输 送混凝土。
混凝土缸 (即 "混凝土输送缸") 的活塞 (即 "混凝土活塞") 的润滑 方式基本上分为手动润滑和自动润滑两种方式。 手动润滑是指在混凝土缸 或混凝土活塞上设润滑点, 手动地对混凝土缸或混凝土活塞进行注油或涂 沬润滑油。 手动润滑的劳动强度较大, 润滑油施加不均匀, 如果不及时进 行润滑还会造成活塞过早磨损。 自动润滑具有劳动强度低、 润滑油施加均 匀、 维护简单等优点, 因此其应用日益广泛。
例如, 如图 1所示, 混凝土缸的活塞的自动润滑系统包括液压泵 Γ、 两个主油缸 2'、 两个混凝土缸 3'、 分别位于所述两个主油缸 2'内的两个油 缸活塞 4'、 分别位于所述两个混凝土缸 3'内的两个混凝土活塞 5'、 以及两 个活塞杆 6', 所述两个油缸活塞 4'与所述两个混凝土活塞 5'分别通过所述 两个活塞杆 6'相连接, 所述两个主油缸 2'的例如无杆腔与所述液压泵 Γ连 接, 所述两个主油缸 2 的例如有杆腔相互连通; 该自动润滑系统还包括润 滑油分配器 7'、 分配泵 8'、 换向阀 9'和摆动油缸 10', 所述换向阀 9'的进 油口与所述分配泵 8'连通, 所述换向阀 9'的两个工作油口分别与所述润滑 油分配器 7'的两个进油口连通, 所述润滑油分配器 7'的两个出油口分别与 所述两个混凝土缸 3'的润滑孔 3Γ连通, 所述摆动油缸 10'的两个工作油口 分别连通至所述换向阀 9'的两个工作油口与所述润滑油分配器 7'的两个进 油口之间的管路上。
在上述自动润滑系统中, 由于混凝土缸 3'的润滑孔 3Γ的位置固定, 只 有在混凝土活塞 5'位于与润滑孔 31 '相应的位置上时使润滑油分配器 7'喷注 润滑油, 才能够使得润滑油正确地施加到混凝土活塞 5'上, 喷注得过早或 过晚都会使得润滑油无法施加到混凝土活塞 5'上, 从而导致润滑效果不好 并且还会造成润滑油的浪费。 为了能够相对容易地控制润滑油分配器 7'的 喷油时间, 通常将润滑孔 31 '设置在混凝土缸 3'的末端附近, 即设计为在活 塞杆 6'到达行程末端换向的瞬间使得润滑油分配器 7'喷注润滑油。 例如, 如图 1所示,在上述自动润滑系统中设置接近开关 1Γ,用于检测活塞杆 6' 的位置, 例如, 可以在活塞杆 6' 的某个位置设置金属件, 随着活塞杆 6' 的运动, 该金属件运动到接近开关 1Γ 的检测范围时, 该接近开关 1Γ 就 可以检测到该金属件。通常, 当接近开关 1Γ检测到活塞杆 6'到达行程末端 的位置时, 控制液压泵 Γ换向以使得活塞杆 6'反向运动, 同时控制换向阀 9'换向, 从而使得润滑油分配器 7'喷注润滑油。 然而, 由于活塞杆 6'和润 滑油分配器 7'的动作都需要响应时间, 两者的响应时间并不一致; 而且在 不同的工况下, 随着液压油压力、 流量的变化都会导致活塞杆 6'的换向时 间和润滑油分配器 7'的喷油时间发生变化; 此外, 活塞杆 6'的行程也随着 液压油的压力、 流量的变化而变化, 有时甚至无法达到其行程末端。 上述 原因都会导致润滑油无法准确地施加到混凝土活塞 5'上, 从而导致润滑效 果不好并且还会造成润滑油的浪费。 发明内容
本发明所要解决的技术问题是提供一种混凝土缸的活塞润滑系统, 该 润滑系统能够准确地在混凝土缸的活塞上施加润滑油, 从而润滑效果好而 且减少了润滑油的浪费。
为解决上述技术问题, 本发明提供了一种混凝土缸的活塞润滑系统, 该润滑系统包括液压泵、 主油缸、 混凝土缸、 位于所述主油缸内的油缸活 塞、 位于所述混凝土缸内的混凝土活塞、 以及活塞杆, 所述油缸活塞与所 述混凝土活塞通过所述活塞杆相连接, 所述主油缸的有杆腔和无杆腔中的 一者与所述液压泵连接, 其中, 所述润滑系统还包括液动润滑装置, 所述 活塞杆上形成有活塞杆通道, 所述混凝土活塞上形成有润滑通道, 所述活 塞杆通道的进油端与所述主油缸的有杆腔或无杆腔连通, 所述活塞杆通道 的出油端与所述液动润滑装置的进油口连通, 所述液动润滑装置的出油口 与所述润滑通道的进油端连通, 所述润滑通道的出油端与所述混凝土活塞 的周壁上形成的润滑孔连通。
进一步地, 所述主油缸、 混凝土缸、 油缸活塞、 混凝土活塞和液动润 滑装置分别为两个; 其中, 两个所述主油缸的无杆腔与所述液压泵连接, 同时两个所述主油缸的有杆腔相互连通; 或者, 两个所述主油缸的有杆腔 与所述液压泵连接, 同时两个所述主油缸的无杆腔相互连通。
进一步地, 所述液动润滑装置为单线式润滑油分配器, 每个所述混凝 土活塞上形成有多个所述润滑通道, 所述单线式润滑油分配器的多个出油 口与相应的所述润滑通道的进油端连通。
进一步地, 所述液动润滑装置为双线式润滑油分配器, 每个所述活塞 杆上形成有两个所述活塞杆通道, 每个所述混凝土活塞上形成有两个所述 润滑通道, 所述两个所述活塞杆通道的进油端分别与所述主油缸的有杆腔 和无杆腔连通, 该两个所述活塞杆通道的出油端分别与所述双线式润滑油 分配器的两个进油口连通, 所述双线式润滑油分配器的两个出油口分别与 相应的所述润滑通道的进油端连通。
进一步地, 至少一个所述润滑通道的出油端与多个所述润滑孔连通。 进一步地, 所述液动润滑装置固定在所述活塞杆或者与所述活塞杆一 起运动的部件上。
进一步地, 所述与所述活塞杆一起运动的部件包括所述油缸活塞和所 述混凝土活塞。
进一步地, 该润滑系统还包括换向阀, 所述液压泵的出口与所述换向 阀的进油口连通, 所述换向阀的两个工作油口分别与所述两个主油缸的有 杆腔和无杆腔中的一者连通。
通过本发明的上述技术方案, 利用主油缸中的有杆腔或无杆腔中的液 压油压力作为液动润滑装置的动力源, 并且液动润滑装置的出油口直接与 混凝土活塞的周壁上形成的润滑孔连通, 从而无论混凝土活塞位于什么位 置, 无论混凝土缸中液压油的压力、 流量如何变化, 液动润滑装置喷注的 润滑油始终都能够施加到混凝土活塞的周壁上。 因此该润滑系统能够准确 地在混凝土活塞上施加润滑油, 从而润滑效果好而且减少了润滑油的浪费。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说 明。 附图说明
附图是用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的具体实施方式一起用于解释本发明, 但并不构成对本发明的限 制。 在附图中:
图 1是现有技术中的混凝土缸的活塞润滑系统的示意图;
图 2是根据本发明的一种实施方式的混凝土缸的活塞润滑系统的示意 图;
图 3是一种单线式润滑油分配器的原理图;
图 4是根据本发明的另一种实施方式的混凝土缸的活塞润滑系统的示 意图;
图 5是一种双线式润滑油分配器的原理图; 图 6是根据本发明的还另一种实施方式的混凝土缸的活塞润滑系统的
附图标记说明
1 液压泵; 2 主油缸;
3 混凝土缸; 4 油缸活塞;
5 混凝土活塞; 6 活塞杆;
61 活塞杆通道; 51 润滑通道;
52 润滑孔; 71 单线式润滑油分配器;
72 双线式润滑油分配器; 9 换向阀;
20 油管; 11 接近开关;
II、 121、 122 进油口;
Rll、 R12、 R13、 R14、 R15、 R16、 R21、 R22 出油口;
XII、 X12、 X13、 X2 阀芯; H 供油活塞。 具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是, 此处所描述的具体实施方式仅用于说明和解释本发明, 并不用于限制本发 明。
如图 2至图 5所示, 本发明提供了一种混凝土缸的活塞润滑系统, 该 润滑系统包括液压泵 1、 主油缸 2、 混凝土缸 3、 位于所述主油缸 2内的油 缸活塞 4、 位于所述混凝土缸 3内的混凝土活塞 5、 以及活塞杆 6, 所述油 缸活塞 4与所述混凝土活塞 5通过所述活塞杆 6相连接, 所述主油缸 2的 有杆腔和无杆腔中的一者 (如图 2和图 4所示为无杆腔) 与所述液压泵 1 连接, 其中, 所述润滑系统还包括液动润滑装置, 所述活塞杆 6上形成有 活塞杆通道 61, 所述混凝土活塞 5上形成有润滑通道 51, 所述活塞杆通道 61的进油端与所述主油缸 2的有杆腔或无杆腔连通,所述活塞杆通道 61的 出油端与所述液动润滑装置的进油口连通, 所述液动润滑装置的出油口与 所述润滑通道 51的进油端连通, 所述润滑通道 51的出油端与所述混凝土 活塞 5的周壁上形成的润滑孔 52连通。
通过本发明的上述技术方案, 利用主油缸 2 中的有杆腔或无杆腔中的 液压油压力作为液动润滑装置的动力源, 并且液动润滑装置的出油口直接 与混凝土活塞 5的周壁上形成的润滑孔 52连通, 从而无论混凝土活塞 5位 于什么位置, 无论混凝土缸 3 中液压油的压力、 流量如何变化, 液动润滑 装置喷注的润滑油始终都能够施加到混凝土活塞 5 的周壁上。 因此该润滑 系统能够准确地在混凝土活塞 5上施加润滑油, 从而润滑效果好而且减少 了润滑油的浪费。
可以根据需要设置上述主油缸 2、 混凝土缸 3、 油缸活塞 4、 混凝土活 塞 5和液动润滑装置的个数, 通常地, 如图 2至图 5所示, 所述主油缸 2、 混凝土缸 3、油缸活塞 4、混凝土活塞 5和液动润滑装置分别为两个; 其中, 两个所述主油缸 2的无杆腔与所述液压泵 1连接, 同时两个所述主油缸 2 的有杆腔相互连通; 或者, 两个所述主油缸 2的有杆腔与所述液压泵 1连 接, 同时两个所述主油缸 2的无杆腔相互连通。
更具体地说, 本发明提供的混凝土缸的活塞润滑系统包括液压泵 1、两 个主油缸 2、 两个混凝土缸 3、 分别位于所述两个主油缸 2内的两个油缸活 塞 4、 分别位于所述两个混凝土缸 3内的两个混凝土活塞 5、 以及两个活塞 杆 6,所述两个油缸活塞 4与所述两个混凝土活塞 5分别通过所述两个活塞 杆 6相连接, 所述两个主油缸 2的有杆腔和无杆腔中的一者(如图 2和图 4 所示为无杆腔) 与所述液压泵 1连接, 所述两个主油缸 2的有杆腔和无杆 腔中的另一者 (如图 2和图 4所示为有杆腔) 相互连通, 其中, 所述润滑 系统还包括两个液动润滑装置,每个所述活塞杆 6上形成有活塞杆通道 61, 每个所述混凝土活塞 5上形成有润滑通道 51,所述活塞杆通道 61的进油端 与所述主油缸 2的有杆腔或无杆腔连通, 所述活塞杆通道 61的出油端与所 述液动润滑装置的进油口连通, 所述液动润滑装置的出油口与所述润滑通 道 51的进油端连通, 所述润滑通道 51的出油端与所述混凝土活塞 5的周 壁上形成的润滑孔 52连通。
下面以上述包括两个所述主油缸 2、 混凝土缸 3、 油缸活塞 4、 混凝土 活塞 5和液动润滑装置的混凝土缸的活塞润滑系统的各种优选实施方式进 行更详细地说明, 但是显然, 本发明提供的混凝土缸的活塞润滑系统可以 仅包括一个或者可以包括更多个相应的所述主油缸 2、 混凝土缸 3、 油缸活 塞 4、 混凝土活塞 5和液动润滑装置。
所述润滑油分配器可以为各种适当的润滑油分配器, 例如单线式润滑 油分配器 71、双线式润滑油分配器 72和其它各种适当形式的润滑油分配器 或分配泵。
例如, 图 3所示为一种单线式润滑油分配器 71的原理图。 单线式润滑 油分配器 71通常具有一个进油口 II、 多个出油口 Rll、 R12、 R13、 R14、 R15、 R16和多个阀芯 XII、 X12、 X13。 在图 3所示的状态下, 液压油从 阀芯 XII进入阀芯 X12的右腔,推动阀芯 X12左移,将阀芯 X12的左腔中 的液压油从出油口 R11挤出; 当阀芯 X12左移到位后, 液压油从阀芯 XII、 X12进入阀芯 X13的右腔, 推动阀芯 X13左移, 将阀芯 X13的左腔中的液 压油从出油口 R12挤出;阀芯 X13左移到位后,压力油通过阀芯 X11、X12、 X13进入阀芯 Xll的右腔, 推动阀芯 XII左移, 将阀芯 XII的左腔中的液 压油从出油口 R13挤出; 阀芯 XII左移到位后, 同理, 阀芯 X12、 X13、 Xll依次右移, 分别将阀芯 X12、 X13、 Xll的右腔的油从 R15、 R16、 R14 挤出, 如此循环不已。 也就是说, 一定压力的液压油从单线式润滑油分配 器 71的进油口 II进入后, 液压油会依次从各个出油口 Rll、 R12、 R13、 R14、 R15、 R16挤出, 从而依次对各个润滑点进行润滑。 当然, 单线式润 滑油分配器 71还可以具有更多个阀芯, 相应地具有更多个出油口。 例如, 图 5所示为一种双线式润滑油分配器 72的原理图。 双线式润滑 油分配器 72通常具有两个进油口 121、 122和两个出油口 R21、 R22, 图 5 中的 X2为阀芯, H为供油活塞。 当进油口 121的压力比进油口 122的压力 高时, 如图 5所示的状态, 液压油从进油口 121进入, 推动供油活塞 H向 右运动, 将其右腔中的液压油通过出油口 R22排出; 相应地, 当进油口 122 的压力比进油口 121的压力高时, 此时推动阀芯 X2换向至右位, 则液压油 从进油口 122进入, 推动供油活塞 H向左运动, 将其左腔中的液压油通过 出油口 R21排出。 gp, 在双线式润滑油分配器 72中, 随着进油口 121、 122 的压力的变化而间歇性地从出油口 R21或 R22排出液压油进行润滑。
关于单线式润滑油分配器 71和双线式润滑油分配器 72的更具体的结 构为本领域所公知, 在此不再赘述。
在如图 2所示的实施方式中采用单线式润滑油分配器 71, 在如图 4所 示的另一种实施方式中采用双线式润滑油分配器 72, 下面将对这两种实施 方式分别进行更详细的说明。
如图 2所示, 所述液动润滑装置为单线式润滑油分配器 71, 每个所述 混凝土活塞 5上形成有多个所述润滑通道 51, 所述单线式润滑油分配器 71 的多个出油口 Rll、 R12、 R13、 R14、 R15、 R16 (图 2中未显示) 与相应 的所述润滑通道 51的进油端连通。 需要说明的是, 虽然图 2中仅显示了两 个润滑通道 51, 但是实际上, 润滑通道 51 的个数与单线式润滑油分配器 71的出油口的个数相对应。如上文所述, 单线式润滑油分配器 71的进油口 II (图 2中未显示) 与活塞杆通道 61的出油端连通。 从而, 随着混凝土活 塞 5的运转, 单线式润滑油分配器 71连续地从混凝土活塞 5的周壁上形成 的润滑孔 52排出液压油, 以对混凝土活塞 5的周壁进行润滑。
如图 4所示, 所述液动润滑装置为双线式润滑油分配器 72, 每个所述 活塞杆 6上形成有两个所述活塞杆通道 61, 每个所述混凝土活塞 5上形成 有至少两个所述润滑通道 51,所述两个所述活塞杆通道 61的进油端分别与 所述主油缸 2的有杆腔和无杆腔连通, 该两个所述活塞杆通道 61的出油端 分别与所述双线式润滑油分配器 72的两个进油口 121、 122 (图 4中未显示) 连通, 所述双线式润滑油分配器 72的两个出油口 R21、 R22 (图 4中未显 示) 分别与相应的所述润滑通道 51的进油端连通。 从而, 通常例如在活塞 杆 6换向时, 主油缸 2的有杆腔和无杆腔中的液压油压力出现压差, 使得 液压油从双线式润滑油分配器 72的其中一个出油口 R21或 R22中排出,通 过混凝土活塞 5的周壁上形成的润滑孔 52排出液压油, 以对混凝土活塞 5 的周壁进行润滑。 当然, 在活塞杆 6运动过程中 (并不限于换向时), 如果 由于工况等而使得主油缸 2 的有杆腔和无杆腔中的液压油压力出现压差, 则双线式润滑油分配器 72也会排出液压油而对混凝土活塞 5的周壁进行润 滑。
优选地,至少一个所述润滑通道 51的出油端可以与多个所述润滑孔 52 连通。 gP, 润滑通道 51 的出油端可以具有分支, 从而与更多个润滑孔 52 连通。 从而, 混凝土活塞 5的周壁上可以更密集地设置更多个润滑孔 52, 从而将润滑油更均匀地施加在混凝土活塞 5 的周壁上, 以实现更好的润滑 效果。
在图 2和图 4中, 所述液动润滑装置固定在混凝土活塞 5上, 活塞杆 通道 61的出油端与液动润滑装置的进油口之间通过油管 20连接。 但是, 液动润滑装置也可以固定在油缸活塞 4、活塞杆 6上或者其它与活塞杆 6— 起运动的部件上。 例如, 当活塞杆 6与油缸活塞 4之间或者活塞杆 6与混 凝土活塞 5之间通过连接轴等部件连接时, 则液动润滑装置也可以固定在 该连接轴上。此外,活塞杆通道 61的出油端与液动润滑装置的进油口之间、 液动润滑装置的出油口与润滑通道 51 的进油端之间, 既可以通过油管 20 进行连接, 也可以直接地连接 (即板式连接), 或者采用其它适当的连接方 式。
在本发明提供的混凝土缸的活塞润滑系统中, 所述液压泵 1 可以为双 向泵, 液压泵 1的两个出口分别与两个主油缸 2的有杆腔和无杆腔中的一 者连通。 所述液压泵 1也可以为单向泵, 在该情况下, 液压泵 1的出口通 过换向阀与两个主油缸 2的有杆腔和无杆腔中的一者连通。 例如如图 6所 示, 所述润滑系统还可以包括换向阀 9, 所述液压泵 1的出口与所述换向阀 9的进油口 P连通, 所述换向阀 9的两个工作油口 A, B分别与所述两个主 油缸 2的有杆腔和无杆腔中的一者连通。图中的 T表示换向阀 9的回油口, 该回油口 T接回油箱。 如图 6所示, 所述换向阀 9可以为电磁换向阀, 从 而当活塞杆 6到达行程末端时 (或者到达其它需要的位置), 通过电信号控 制换向阀 9换向, 以使得活塞杆 6反向运动。 当然, 所述换向阀 9也可以 采用液控换向阀, 从而通过液压信号来控制换向阀 9换向。
可以采用本领域公知的各种方式来控制活塞杆 6换向。 例如在如图 2 和图 4所示的实施方式中, 附图标记 11表示接近开关, 该接近开关 11用 于检测活塞杆 6的位置, 当活塞杆 6到达行程末端时 (或者到达其它需要 的位置时), 接近开关 11发出换向信号, 控制液压泵 5换向, 使得活塞杆 6 反向运动。 当然, 接近开关可以用其它适当的装置来替代, 例如可以采用 逻辑阀发出液压信号来使得液压泵 5换向。 而且, 例如在如图 6所示的实 施方式中, 接近开关 11发出的换向信号控制换向阀 9换向, 从而使得活塞 杆 6反向运动。 有关控制活塞杆 6换向的更具体的方式或结构为本领域所 公知, 在此不再赘述。
需要说明的是, 在上述具体实施方式中所描述的各个具体技术特征, 可以通过任何合适的方式进行任意组合, 其同样落入本发明所公开的范围 之内。 另外, 本发明的各种不同的实施方式之间也可以进行任意组合, 只 要其不违背本发明的思想, 其同样应当视为本发明所公开的内容。
以上结合附图详细描述了本发明的优选实施方式, 但是, 本发明并不 限于上述实施方式中的具体细节, 在本发明的技术构思范围内, 可以对本 发明的技术方案进行多种简单变型, 这些简单变型均属于本发明的保护范 围。 例如, 在图 4、 图 5和图 6所示的实施方式中, 液压泵 5都与两个主油 缸 2的无杆腔连通, 两个主油缸 2的有杆腔 (例如通过油管) 相互连通。 但是, 液压泵 5也可以与两个主油缸 2的有杆腔连通, 而两个主油缸 2的 无杆腔则相互连通。

Claims

权利要求
1、 一种混凝土缸的活塞润滑系统, 该润滑系统包括液压泵 (1)、 主油 缸 (2)、 混凝土缸 (3)、 位于所述主油缸 (2) 内的油缸活塞 (4)、 位于所 述混凝土缸(3)内的混凝土活塞(5)、 以及活塞杆(6), 所述油缸活塞(4) 与所述混凝土活塞 (5) 通过所述活塞杆 (6) 相连, 所述主油缸 (2) 的有 杆腔和无杆腔中的一者与所述液压泵 (1) 连接, 其特征在于,
所述润滑系统还包括液动润滑装置, 所述活塞杆 (6)上形成有活塞杆 通道 (61), 所述混凝土活塞 (5) 上形成有润滑通道 (51), 所述活塞杆通 道 (61) 的进油端与所述主油缸 (2) 的有杆腔或无杆腔连通, 所述活塞杆 通道 (61) 的出油端与所述液动润滑装置的进油口连通, 所述液动润滑装 置的出油口与所述润滑通道 (51) 的进油端连通, 所述润滑通道 (51) 的 出油端与所述混凝土活塞 (5) 的周壁上形成的润滑孔 (52) 连通。
2、 根据权利要求 1所述的混凝土缸的活塞润滑系统, 其特征在于, 所 述主油缸 (2)、 混凝土缸 (3)、 油缸活塞 (4)、 混凝土活塞 (5) 和液动润 滑装置分别为两个;其中,两个所述主油缸(2)的无杆腔与所述液压泵(1) 连接, 同时两个所述主油缸 (2) 的有杆腔相互连通; 或者, 两个所述主油 缸 (2) 的有杆腔与所述液压泵 (1) 连接, 同时两个所述主油缸 (2) 的无 杆腔相互连通。
3、根据权利要求 1或 2所述的混凝土缸的活塞润滑系统,其特征在于, 所述液动润滑装置为单线式润滑油分配器 (71), 每个所述混凝土活塞 (5) 上形成有多个所述润滑通道 (51), 所述单线式润滑油分配器 (71) 的多个 出油口与相应的所述润滑通道 (51) 的进油端连通。
4、根据权利要求 1或 2所述的混凝土缸的活塞润滑系统,其特征在于, 所述液动润滑装置为双线式润滑油分配器 (72), 每个所述活塞杆 (6) 上 形成有两个所述活塞杆通道 (61 ), 每个所述混凝土活塞 (5 ) 上形成有两 个所述润滑通道 (51 ), 所述两个所述活塞杆通道 (61 ) 的进油端分别与所 述主油缸 (2) 的有杆腔和无杆腔连通, 该两个所述活塞杆通道 (61 ) 的出 油端分别与所述双线式润滑油分配器 (72) 的两个进油口连通, 所述双线 式润滑油分配器 (72) 的两个出油口分别与相应的所述润滑通道 (51 ) 的 进油端连通。
5、根据权利要求 1或 2所述的混凝土缸的活塞润滑系统,其特征在于, 至少一个所述润滑通道 (51 ) 的出油端与多个所述润滑孔 (52) 连通。
6、 根据权利要求 1所述的混凝土缸的活塞润滑系统, 其特征在于, 所 述液动润滑装置固定在所述活塞杆 (6) 或者与所述活塞杆 (6) —起运动 的部件上。
7、 根据权利要求 6所述的混凝土缸的活塞润滑系统, 其特征在于, 所 述与所述活塞杆 (6) —起运动的部件包括所述油缸活塞 (4) 和所述混凝 土活塞 (5 )。
8、 根据权利要求 1所述的混凝土缸的活塞润滑系统, 其特征在于, 该 润滑系统还包括换向阀 (9 ), 所述液压泵 (1 ) 的出口与所述换向阀 (9 ) 的进油口 (P) 连通, 所述换向阀 (9) 的两个工作油口 (A, B ) 分别与所 述两个主油缸 (2) 的有杆腔和无杆腔中的一者连通。
PCT/CN2011/077146 2010-09-19 2011-07-14 混凝土缸的活塞润滑系统 WO2012034451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010288958.7 2010-09-19
CN 201010288958 CN102042217B (zh) 2010-09-19 2010-09-19 混凝土缸的活塞润滑系统

Publications (1)

Publication Number Publication Date
WO2012034451A1 true WO2012034451A1 (zh) 2012-03-22

Family

ID=43908659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077146 WO2012034451A1 (zh) 2010-09-19 2011-07-14 混凝土缸的活塞润滑系统

Country Status (2)

Country Link
CN (1) CN102042217B (zh)
WO (1) WO2012034451A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042217B (zh) * 2010-09-19 2013-03-13 中联重科股份有限公司 混凝土缸的活塞润滑系统
CN102287367B (zh) * 2011-07-30 2014-05-28 郑国璋 一种超高压柱塞泵柱塞的密封润滑结构
CN102330651B (zh) * 2011-10-13 2014-12-10 三一汽车制造有限公司 稠浆泵及其泵送系统
CN102434524A (zh) * 2011-11-25 2012-05-02 谢建华 往复柱塞增力油缸
CN103161710A (zh) * 2011-12-16 2013-06-19 北汽福田汽车股份有限公司 管道输送装置
CN103967772B (zh) * 2014-05-26 2016-06-22 三一汽车制造有限公司 一种混凝土泵及其砼活塞润滑系统
CN105443373B (zh) * 2014-08-21 2018-01-09 中联重科股份有限公司 混凝土缸的活塞润滑系统及其控制方法、装置及泵送设备
CN104265622B (zh) * 2014-09-28 2016-08-17 山推楚天工程机械有限公司 一种用于混凝土泵电控式砼活塞内润滑系统
CN104295487A (zh) * 2014-09-28 2015-01-21 山推楚天工程机械有限公司 一种用于混凝土泵液控式砼活塞内润滑系统
CN105299419B (zh) * 2015-11-26 2018-05-08 湖南五新隧道智能装备股份有限公司 一种润滑系统及混凝土喷浆车
CN108591798A (zh) * 2018-07-16 2018-09-28 辽宁工程技术大学 一种单源多路分布式自动润滑系统
CN112628331A (zh) * 2020-12-13 2021-04-09 上海台创信息技术有限公司 一种根据振动强度自调节润滑的减振器
CN112747239B (zh) * 2021-01-06 2022-03-01 中国铁建重工集团股份有限公司 一种自动润滑系统
CN117889334B (zh) * 2024-03-14 2024-05-17 三一重型装备有限公司 一种润滑系统及液压支架

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2264967A1 (en) * 1974-03-19 1975-10-17 Moiroux Auguste Lubrication device for a free piston engine - has pneumatic cylinder controlling oil pumping piston
CN2252891Y (zh) * 1996-04-19 1997-04-23 金良安 自增压自润滑自冷却式全作功冲程内燃机
CN2485452Y (zh) * 2001-04-18 2002-04-10 三一重工股份有限公司 混凝土泵输送缸润滑装置
CN2557724Y (zh) * 2002-05-31 2003-06-25 山东鸿达建工集团有限公司 一种混凝土输送泵砼输送缸
KR20040033548A (ko) * 2002-10-15 2004-04-28 대우종합기계 주식회사 윤활유 이송용 유로가 형성된 유압실린더의 피스톤 로드
US20080017164A1 (en) * 2006-07-21 2008-01-24 Advanced Propulsion Technologies, Inc. Piston-pin bearing lubrication system and method for a two sroke internal combustion engine
WO2009053005A1 (de) * 2007-10-18 2009-04-30 Schwing Gmbh Betonpumpe mit kolbenschmierung
CN102042217A (zh) * 2010-09-19 2011-05-04 长沙中联重工科技发展股份有限公司 混凝土缸的活塞润滑系统
CN201818491U (zh) * 2010-09-19 2011-05-04 长沙中联重工科技发展股份有限公司 混凝土缸的活塞润滑系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2264967A1 (en) * 1974-03-19 1975-10-17 Moiroux Auguste Lubrication device for a free piston engine - has pneumatic cylinder controlling oil pumping piston
CN2252891Y (zh) * 1996-04-19 1997-04-23 金良安 自增压自润滑自冷却式全作功冲程内燃机
CN2485452Y (zh) * 2001-04-18 2002-04-10 三一重工股份有限公司 混凝土泵输送缸润滑装置
CN2557724Y (zh) * 2002-05-31 2003-06-25 山东鸿达建工集团有限公司 一种混凝土输送泵砼输送缸
KR20040033548A (ko) * 2002-10-15 2004-04-28 대우종합기계 주식회사 윤활유 이송용 유로가 형성된 유압실린더의 피스톤 로드
US20080017164A1 (en) * 2006-07-21 2008-01-24 Advanced Propulsion Technologies, Inc. Piston-pin bearing lubrication system and method for a two sroke internal combustion engine
WO2009053005A1 (de) * 2007-10-18 2009-04-30 Schwing Gmbh Betonpumpe mit kolbenschmierung
CN102042217A (zh) * 2010-09-19 2011-05-04 长沙中联重工科技发展股份有限公司 混凝土缸的活塞润滑系统
CN201818491U (zh) * 2010-09-19 2011-05-04 长沙中联重工科技发展股份有限公司 混凝土缸的活塞润滑系统

Also Published As

Publication number Publication date
CN102042217A (zh) 2011-05-04
CN102042217B (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2012034451A1 (zh) 混凝土缸的活塞润滑系统
JP6226837B2 (ja) 大型低速2ストロークディーゼル機関用のシリンダ潤滑デバイスおよびシリンダ潤滑システムの運転方法
WO2014000378A1 (zh) 混凝土泵送设备、串联油缸的行程控制装置及方法
WO2014000389A1 (zh) 粘稠物料双缸泵的泵送行程控制方法及粘稠物料泵送设备
WO2013037198A1 (zh) 一种柱塞水泵及其液控系统
CN102734263A (zh) 工程机械及其泵送机构、泵送液压补油系统
CN201277157Y (zh) 油缸直驱式泥浆泵
US20090220358A1 (en) Unequal length alternating hydraulic cylinder drive system for continuous material output flow with equal material output pressure
CN103671316B (zh) 泵送液压系统及泵送设备
WO2006100979A1 (ja) ショットポンプ及び可変速型二液計量混合装置
CN103343741B (zh) 双缸泵送装置液压油置换控制方法、双缸泵送装置及设备
CN204042397U (zh) 多出口容积式干油分配器
WO2012034419A1 (zh) 混凝土输送泵润滑系统及混凝土泵送设备
CN102937074B (zh) 连续供料系统及其控制方法、登高平台消防车
CN203641145U (zh) 一种可实现输送系统双退活塞的液压阀组
DK177785B1 (en) Cylinder Lubrication Device
CN201818491U (zh) 混凝土缸的活塞润滑系统
CN104500466B (zh) 同步注浆泵连续注浆液压控制系统
CN105987032B (zh) 一种泵送设备的液压控制系统、泵送设备及其控制方法
CN201106596Y (zh) 带有先导式顺序阀的液压缸
CN209904864U (zh) 农业机械用四轮四转向液压驱动系统
WO2011075979A1 (zh) 一种工程机械及其多路同步润滑装置
CN2714866Y (zh) 一种内循环锁模油缸
CN216866994U (zh) 混凝土泵砼活塞润滑系统及混凝土泵送设备
KR100274055B1 (ko) 콘크리트 펌프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824521

Country of ref document: EP

Kind code of ref document: A1