WO2012033228A1 - 鋼管柱構造物及びその製造方法 - Google Patents

鋼管柱構造物及びその製造方法 Download PDF

Info

Publication number
WO2012033228A1
WO2012033228A1 PCT/JP2011/071063 JP2011071063W WO2012033228A1 WO 2012033228 A1 WO2012033228 A1 WO 2012033228A1 JP 2011071063 W JP2011071063 W JP 2011071063W WO 2012033228 A1 WO2012033228 A1 WO 2012033228A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
column structure
pipe column
plate thickness
thickness
Prior art date
Application number
PCT/JP2011/071063
Other languages
English (en)
French (fr)
Inventor
村上 琢哉
加藤 真志
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201180043565.2A priority Critical patent/CN103097626B/zh
Priority to EP11823695.9A priority patent/EP2615226B1/en
Priority to KR1020137005855A priority patent/KR101536959B1/ko
Priority to DK11823695.9T priority patent/DK2615226T3/en
Publication of WO2012033228A1 publication Critical patent/WO2012033228A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/14Towers; Anchors ; Connection of cables to bridge parts; Saddle supports
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/003Access covers or locks therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a steel pipe column structure such as a steel chimney, a bridge main tower, a tower for wind power generation, an offshore structure, and an architectural structure, and a manufacturing method thereof.
  • Examples of the steel pipe column structure include a steel chimney, a wind power generation tower, an offshore wind power generation foundation, and the like.
  • Such steel pipe pillar structures are roughly classified into those having a uniform steel pipe diameter and those having a taper in the height direction to gradually reduce the steel pipe diameter.
  • the plate thickness of the steel pipe is generally the same or gradually reduced in the height direction, but the plate thickness in the circumferential direction is the same (see Non-Patent Document 1).
  • the steel pipe column structure has a large diameter and thick steel pipe. Therefore, in the manufacturing method of such a steel pipe column structure 50, a circular steel pipe 53 as shown in FIG. 16 (b) is manufactured from a rolled steel sheet 51 as shown in FIG. 16 (a) by sheet winding. The height of the manufactured round steel pipe 53 is 3 to 5 m which is the width of the rolled steel sheet. As shown in FIG. 16 (c), the steel pipes are stacked one after the other and joined together by welding, bolts, etc.
  • the column structure 50 is manufactured.
  • the circular steel pipe 53 is manufactured by bending the rolled steel sheet 51 with a curvature in the rolling direction (L direction).
  • the circular steel pipe 53 may not be manufactured with a single rolled steel sheet.
  • the rolled steel sheet 51 is connected to form a long plate, and then this is formed into an annular shape. It is produced by wrapping around.
  • an opening 57 for a person to enter and exit may be provided at the base portion of the steel pipe column structure 55. Since the portion where the opening 57 is provided has a cross-sectional defect, the proof stress is reduced, and thus, for example, a reinforcing member as shown in FIGS. 18A and 18B is attached.
  • the opening 57 is reinforced by fitting a doubling plate 59 as shown in FIG. 18A or a thick material 61 as shown in FIG. It has been shown to be done by welding.
  • a steel pipe column structure having the same thickness in the circumferential direction has equivalent rigidity in the circumferential direction (by orientation). That is, the resistance force of the steel pipe column structure is the same regardless of the orientation.
  • the external force generally varies depending on the direction. For example, when the external force is wind power, a prevailing wind direction always exists, so the magnitude of the external force varies depending on the direction, and therefore the magnitude of the acting force varies depending on the direction. Even when the external force is a tidal current, the direction of the tidal current has a dominant direction, and the magnitude of the force acting in the same manner as in the case of wind power differs depending on the direction.
  • the ratio of the resistance force and the acting force is regarded as a safety factor
  • the resistance force is determined by multiplying the acting force by a certain safety factor
  • the structure is designed so that the resistance force can be exhibited.
  • the resistance is determined by the steel pipe diameter and plate thickness.
  • the diameter of the steel pipe may be determined by other factors such as manufacturing / construction and usability. Therefore, at the design stage, only the plate thickness is often determined in relation to the resistance force.
  • the direction of the maximum external force is used as the acting force, and the safety factor is multiplied by this to determine the necessary resistance force as the maximum resistance force of the structure, and the thickness based on the maximum resistance force is determined.
  • the resisting force is excessive compared to the acting force. That is, the safety factor, which is the ratio between the resistance force and the acting force, differs depending on the orientation, the safety factor of the orientation that is the maximum resistance force is minimum, and the safety factor is increased in other orientations.
  • the safety factor needs to be leveled by direction.
  • the current situation is that this is not the case, and that was the problem of steel pipe column structures.
  • the steel pipe column structure may have an opening 57 for a person to enter and exit in the vicinity of the base.
  • it is necessary to reinforce because the portion of the opening 57 becomes a cross-sectional defect.
  • fatigue due to the tower shaking acting during operation of the wind turbine is severe, and therefore, measures are taken to increase the plate thickness of the reinforcing member and reduce the generated stress.
  • measures such as using cast steel for the reinforcing member or welding a reinforcing steel plate may require man-hours and the quality of the welded portion.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a steel pipe column structure that can be rationally designed, such as having a safety factor leveled by orientation, and a method for manufacturing the same. And Another object of the present invention is to provide a steel pipe column structure that does not require reinforcement by welding or the like even when an opening is provided in the vicinity of the base, and a method for manufacturing the same.
  • the inventor considered to make a steel pipe column structure in which the plate thickness changes in the circumferential direction in at least a part of the height direction of the steel pipe column structure.
  • an excellent external force often acts in one direction or in a range with a predetermined width. Therefore, the inventor considered that the thickness of the portion corresponding to the outstanding external force should be increased and the resistance force of the steel pipe should be changed according to the acting force by the external force for each direction.
  • the plate thickness may be reduced for the acting force for each direction in a different direction.
  • FIG. 14 is an explanatory diagram for explaining the relationship between the external force and the resistance force when the plate thickness is changed in the circumferential direction of the steel pipe.
  • the differential thickness steel plate 65 is in the rolling direction using the differential thickness steel plate 65 which is a rolled steel plate including a portion whose thickness is changed in the rolling direction (L direction) as shown in FIG.
  • a circular steel pipe 67 as shown in FIG. 14B is formed by winding in the L direction.
  • the circular steel pipe has a thin plate in the left and right regions (colored regions in the drawing), and the upper and lower regions in the drawing are thick.
  • the external force acts in the vertical direction in the drawing of the steel pipe, and the steel pipe column structure swings in the direction of the arrow in the drawing.
  • the external force is large in the north-south (SN) direction and small in the east-west (EW) direction.
  • the resistance force (cross-sectional rigidity) of the steel pipe column structure is large in the north-south (SN) direction and small in the east-west (EW) direction, indicating that it has a reasonable shape.
  • a rolled steel plate 69 having the same thickness (see FIG. 15A) is wound in the L direction to produce a circular steel pipe 71 having the same thickness in the circumferential direction, and a plurality of these are stacked. It is joined.
  • the external force is large in the north-south (SN) direction and small in the east-west (EW) direction as shown in FIG. 15C, but the resistance force (cross-sectional rigidity) is It turns out that it is equal in all directions and is a useless design.
  • the cross-sectional rigidity can be changed for each direction, and the resistance force can be changed for each direction according to the external force.
  • the safety factor resistance force / action force
  • the present invention has been made based on such knowledge, and specifically comprises the following constitution.
  • the circular steel pipe occupying the majority has been described as the prior art.
  • the present invention is not limited to the circular steel pipe, and can also be applied to a square steel pipe.
  • an LP steel plate or a tapered plate may be formed into a square shape by a press bend.
  • a cross-sectional shape of the square steel pipe not only a square (rectangular) cross section but also a polygonal cross section such as a hexagon and an octagon may be used. That is, it is applicable also to the polygonal steel pipe pillar which has a polygonal cross section.
  • the plate thickness of the steel plate corresponding to each side may be changed for each side. Therefore, it is also possible to produce a polygonal steel pipe column by arranging flat plates having different thicknesses so as to form a polygon in the circumferential direction and welding the arranged adjacent flat plates in the axial direction of the polygonal steel pipe.
  • the steel pipe column structure according to the present invention is formed of a steel pipe, and the thickness of the steel pipe in the cross section perpendicular to the axial direction of the steel pipe column structure varies in the circumferential direction in at least a partial range in the height direction. It is characterized by doing.
  • the boundary where the plate thickness changes is made continuous by a tapered surface.
  • the thick and thin regions are alternately formed in the circumferential direction of the steel pipe, and there are a plurality of thick and thin regions, respectively. It is characterized by being formed.
  • the regions having a large plate thickness and the regions having a small plate thickness are formed in line-symmetric positions, respectively.
  • the region where the plate thickness changes is formed only in a partial region in the height direction. It is.
  • the region where the plate thickness changes is provided over the same region in the circumferential direction, and the rate of change in the lower plate thickness. Is set to be larger than the rate of change of the upper plate thickness.
  • an opening is formed in a part of the peripheral surface of the steel pipe column structure, and the opening is formed in a thick part. It is characterized by being.
  • a method for manufacturing a steel pipe column structure according to the present invention is a method for manufacturing a steel pipe column structure according to any one of (1) to (8) above, wherein one or a plurality of LP steel plates are joined. It is characterized by comprising a circular steel pipe manufacturing process in which a circular steel pipe is manufactured by forming a rounded steel pipe and a circular steel pipe joining process in which the manufactured circular steel pipes are stacked and joined.
  • the LP steel plate is a thick steel plate including a portion in which the plate thickness is linearly changed in the rolling direction of the steel plate, and is also referred to as Longitudinal Profiled Steel Plate.
  • the plate thickness of the steel pipe in the cross section orthogonal to the axial direction of the steel pipe column structure is changed in the circumferential direction, so that the safety factor (resistance force of the steel pipe / (acting force of external force)) for each orientation is obtained.
  • a rational structure that can be leveled can be realized.
  • the amount of steel used can be reduced, so that an inexpensive steel pipe column structure can be provided.
  • by increasing the thickness of the opening of the steel pipe column base it is not necessary to newly attach a reinforcing member by welding or the like, so that man-hours are not required and the quality of the welded portion does not become a problem.
  • FIG. 1 is an explanatory diagram of a steel pipe column structure according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view of the operation of the steel pipe column structure shown in FIG. Drawing 3 is an explanatory view of the circular steel pipe which constitutes the steel pipe pillar structure concerning one embodiment of the present invention.
  • FIG. 4 is an explanatory view of a steel pipe column structure according to another embodiment of the present invention.
  • 5 is a cross-sectional view taken along the line AA in FIG. 6 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 7 is an explanatory diagram of Embodiment 1 of the present invention.
  • 8 is a cross-sectional view taken along the line XX in FIG. FIG.
  • FIG. 9 is an explanatory diagram of Embodiment 2 of the present invention.
  • FIG. 10 is a cross-sectional view taken along the line AA in FIG. 11 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 12 is an explanatory diagram of a method for manufacturing the steel pipe column structure according to the second embodiment.
  • FIG. 13 is a graph of experimental results illustrating the effects of the second embodiment.
  • FIG. 14 is an explanatory diagram of a means for solving the problem.
  • FIG. 15 is an explanatory diagram of a means for solving the problem, and is an explanatory diagram of a conventional example as a comparison of the present invention.
  • FIG. 16 is an explanatory view of a conventional steel pipe column structure.
  • FIG. 17 is an explanatory view of a conventional steel pipe column structure having an opening in the vicinity of the base
  • FIG. 17 (a) is a front view
  • FIG. 17 (b) is an arrow in FIG. 17 (a).
  • It is view AA sectional drawing.
  • FIG. 18 is an explanatory diagram of the reinforcing structure of the opening in FIG.
  • FIG. 19 is an explanatory diagram of a steel pipe column structure according to another aspect of the embodiment of the present invention.
  • 20 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 21 is an explanatory diagram of a steel pipe column structure according to another aspect of the embodiment of the present invention.
  • 22 is a cross-sectional view taken along the line AA in FIG. FIG.
  • FIG. 23 is an explanatory diagram of a steel pipe column structure according to another aspect of the embodiment of the present invention.
  • FIG. 24 is an explanatory diagram of a steel pipe column structure according to another aspect of the embodiment of the present invention.
  • 25 is a cross-sectional view taken along the line AA in FIG.
  • the present embodiment will be described with reference to FIGS.
  • the steel pipe column structure 1 according to the present embodiment is formed by joining a plurality of circular steel pipes, and is a circular steel pipe plate in a cross section perpendicular to the axial direction of the circular steel pipe in at least a partial range in the height direction.
  • the thickness changes in the circumferential direction. This will be specifically described below.
  • the steel pipe column structure 1 is formed by stacking 18 circular steel pipes in the height direction on the foundation 3 and joining the circular ends by butt welding.
  • the part shown with the broken line in a figure is a welding part, and is the 1st circular steel pipe 1a, the 2nd circular steel pipe 1b ..., and the 18th circular steel pipe 1r in order from the bottom.
  • the taper of the steel pipe diameter is not shown in the height direction of each circular steel pipe.
  • the steel pipe pillar structure 1 of this Embodiment attaches a windmill to the upper part. Wind power has a dominant direction, and in FIG. 2, the direction is from the top to the bottom in the figure.
  • FIG. 2A which is an AA cross section of FIG. 1
  • FIG. 2B which is an BB cross section
  • FIG. 2C which is a CC cross section
  • a predetermined range above and below the circular steel pipe in the figure is formed thick.
  • the reason why the upper and lower predetermined ranges in the figure are made thicker is to increase the fatigue strength due to repetitive loads by thickening the direction in which the swaying by the wind force is dominant.
  • FIGS. 2 (a) and 2 (b) in the site of the AA cross section (18th circular steel pipe 1r) and in the site of the BB cross section (11th circular steel pipe 1k), The thickness of each circular steel pipe in the figure is symmetrical with respect to the line.
  • the thickness of the thick-walled portion is larger in the (11th circular steel pipe 1k) shown in the cross section along the line BB than in the 18th circular steel pipe 1r shown in the cross section along the line AA. Yes. This is because the lower part is more fatigued by shaking, so that the fatigue strength is further increased.
  • the region where the plate thickness changes is provided at the same position in the height direction (predetermined upper and lower regions in the figure), and the rate of change in the lower plate thickness is set large.
  • the pipe axis direction orthogonal cross section of each circular steel pipe is the same at any of the upper and lower portions. Therefore, even if the wall thickness changes in the circumferential direction, it is clearly distinguished from a ribbed steel pipe, for example.
  • FIG.2 (c) also in the site
  • the thick portion and the thin portion are tapered surfaces so as not to provide a step at the portion where the plate thickness changes.
  • the portion of the tapered surface is surrounded by a dashed ellipse.
  • the inclination angle of the tapered surface may be as long as the stress concentration is small, but it is usually preferable that the inclination is gentle with a gradient of 1/5 or less (the length is 5 mm or more with respect to a plate thickness of 1 mm).
  • an inclination angle is about 10 mm / m at maximum and becomes a gradient of 1/100 or less as a gradient, a special problem does not arise.
  • the left and right regions E1 and E2 of about 70 ° are regions where the plate thickness is thin, and the upper and lower regions excluding this are regions where the plate thickness is thick.
  • the eleventh circular steel pipe 1k has a line-symmetric cross section with respect to the auxiliary line AA and the auxiliary line BB in FIG.
  • thick and thin regions are alternately formed in the circumferential direction of the steel pipe, and two thick and thin regions are formed.
  • board thickness is thin are each formed in the position of line symmetry.
  • ⁇ Manufacturing method> An example of the manufacturing method of the steel pipe column structure 1 is shown below. Manufacture multiple round steel pipes (18 in this example) whose thickness changes in the circumferential direction by bending the difference thickness steel plate (thick steel plate including the part whose thickness is changed in the rolling direction of the steel plate) in the rolling direction. To do. Next, the circular steel pipes are stacked and the connecting portions are joined by butt welding.
  • the plate thickness of the circular steel pipe in the cross section orthogonal to the axial direction of the steel pipe column structure 1 is changed in the circumferential direction. Therefore, a rational structure that can level the safety factor (the resistance force of the steel pipe / the acting force of the external force) for each direction can be achieved. As a result, the amount of steel used can be reduced, so that an inexpensive steel pipe column structure 1 can be provided.
  • said embodiment was a tower for installing a wind power installation, the location where plate
  • board thickness was set so that it might respond
  • board thickness is just to make it set the location which changes plate
  • the fatigue of the tower and submarine foundation piles may be a problem due to the shaking generated during windmill operation.
  • the thick portion may be formed so as to be line symmetric with respect to the direction of shaking.
  • the cross section may be designed with the thickness of the direction in which the shaking is dominant, and the thickness may be reduced for the non-dominant direction.
  • FIG. 20 is a cross-sectional view taken along line AA in FIGS. 19 and 19.
  • the steel pipe pillar 73 shown in FIGS. 19 and 20 is installed in the sea affected by the ocean current, and in the circumferential direction in the part installed in the ocean, the plate thickness in the direction to resist the ocean current is increased.
  • the direction in which the greatest force of the ocean current acts is the direction from the top to the bottom in the figure, and the steel pipe column 73 is thick on the bottom side in the figure. Since the ocean current has a substantially constant direction and size over a long period of time, the plate thickness to be increased is set in consideration of the maximum value of the variation in the ocean current direction, the amount of repeated variation, and the number of repetitions. Yes.
  • FIG. 22 is a cross-sectional view taken along the line AA in FIGS.
  • the underwater structure 75 shown in FIGS. 21 and 22 is installed in the sea affected by tidal currents, and includes three steel pipe columns 77.
  • the three steel pipe columns 77 have the same structure.
  • the steel pipe columns 77 are set so that the plate thickness differs in the circumferential direction and the surfaces facing in the radial direction have the same plate thickness. This is because the plate thickness in the tidal direction is increased so as to increase the bending rigidity in the tidal direction because each steel pipe column 77 resists the flow caused by the tidal current.
  • the plate thickness is increased in accordance with the direction of resistance to the flow caused by the tidal current. Specifically, as shown in FIG. 22, the direction from the top to the bottom in the figure is the direction of the tidal current at a certain time t. However, this changes periodically, and at another time point t ′, the direction is from the bottom to the top in the figure. Therefore, the steel pipe column is set to have a thick wall at the top and bottom in the figure.
  • the location where the differential thickness in the height direction of the steel pipe column structure 1 is provided is as in this embodiment.
  • the steel pipe column structure 1 can be provided in all height directions.
  • the present invention is applied to a part in the height direction, and the circumferential thickness difference is applied to the circular steel pipe of only the part. Or a thickness difference may be provided on a part of the surface of the square steel pipe of only that portion.
  • the portion of the circular steel pipe where the plate thickness changes is made continuous through the tapered surface.
  • a step is formed at the portion where the plate thickness changes. Is not excluded.
  • the steel pipe column structure has been described as an example using a circular steel pipe having a circular cross section, but the pipe forming method may be a square steel pipe column.
  • the cross-sectional shape of the square steel pipe may be not only a square (rectangular) cross section but also a polygonal cross section such as a hexagonal shape and an octagonal shape.
  • the plate thickness changes in the circumferential direction so that there are portions where the plate thickness is large and small in the circumferential direction.
  • a method for manufacturing such a square steel pipe there is a method in which an LP steel plate or a tapered plate is formed by a press bend so that the cross section becomes a polygon.
  • FIG. 23 shows an example of forming an octagonal square steel pipe using an LP steel plate (FIG. 23A).
  • Each side ah in FIG. 23 corresponds to side ah in FIG.
  • the opposing sides a and e of the octagonal cross section are thin sides, and the opposing sides c and g are thick sides.
  • the sides b, d, f, and h between the thick side and the thin side are tapered sides. If the thick side is regarded as a thick region and the thin side is regarded as a thin region, the example shown in FIG. It is formed in a symmetrical position.
  • the thin sides a and e are regarded as thin regions
  • the thick sides and tapered sides (b ⁇ c ⁇ d) and (f ⁇ g ⁇ h) are regarded as thick regions.
  • the thick plate regions and the thin plate regions are formed in line-symmetric positions,” respectively.
  • flat steel materials constituting each side may be arranged in a square shape in the circumferential direction and the steel materials may be welded.
  • the steel pipe since the steel pipe is not wound in the circumferential direction, one length of the steel pipe constituting the finished steel pipe column structure is increased.
  • An example of a rectangular steel pipe column structure 79 having an octagonal cross section is shown in FIG.
  • the example shown in FIG. 24 and FIG. 25 is formed by arranging and welding flat steel members constituting each side so as to form an octagon in the circumferential direction, and corresponds to the left and right opposing sides in FIG.
  • the thicknesses of the surfaces to be processed are the same, and these thicknesses are thinner than other portions.
  • the plate thickness will change at the joining location, but the weld end is cut off partly to create a groove and welded. There are no steps.
  • FIG. 24 and FIG. 25 in the case where flat steel materials are arranged and welded so as to form a polygon in the circumferential direction, compared to the case where the same flat plate is formed in an annular shape.
  • the length of one steel pipe constituting the column structure is increased.
  • the length of the first square steel pipe 79a, the second square steel pipe 79b, and the third square steel pipe 79c constituting the square steel pipe column structure 79 shown in FIGS. 24 and 25 is the circular cross section shown in FIG. It is longer than the 1st circular steel pipe 1a etc. which comprise the steel pipe pillar structure 1 of this.
  • the steel pipe pillar structure 10 has an opening 13 in a part of the steel pipe constituting the steel pipe pillar structure 10, and the opening 13 is formed at a thick part. It is a feature.
  • Specific examples of the steel pipe column structure 10 having the opening 13 include a steel chimney, a tower for wind power generation, an underwater foundation pile for wind power generation, and the like.
  • the example shown in FIGS. 4 to 6 is a case where the diameter of the steel pipe is 6 m ( ⁇ 6000), and the opening 13 having a width of 1 m and a height of 2 m is provided.
  • the steel pipe column structure 10 of the present embodiment is formed by stacking a plurality of circular steel pipes so that the circular end portions thereof are in contact with each other and butt welding the contact portions in the same manner as in the first embodiment. Moreover, as shown in FIG. 4, the steel pipe column structure 10 of this Embodiment has the opening part 13 in the site
  • a circular steel pipe having a thick region where the opening 13 is formed will be specifically described by taking the second circular steel pipe 10b shown in FIG. 5 as an example.
  • the second circular steel pipe 10b includes a standard plate thickness region 21, a thick region 23, and a tapered surface region 25 that connects the standard plate thickness region 21 and the thick portion.
  • Is about the half of the circumference (L direction length 18.84-3-1.5-1.5 12.84 m) is the standard plate thickness region 21.
  • the standard thickness region 21 has a thickness of 40 mm
  • the thick region 23 has a thickness of 50 mm
  • the tapered surface region 25 has an inclination of 5 mm / m.
  • the third circular steel pipe 10c from the bottom has a standard thickness (4 mm) without changing in the circumferential direction. ing.
  • the 3rd circular steel pipe 10c it is a steel pipe pipe-formed using the usual rolled steel plate which is not a difference thickness steel plate as usual.
  • the manufacturing method of the steel pipe column structure 10 is the same as that of Embodiment 1, and a circular steel pipe whose thickness changes in the circumferential direction is manufactured by bending the differential thickness steel sheet in the rolling direction. Circular steel pipes are joined by butt welding at their circular ends. What is necessary is just to form the opening part 13 after joining a circular steel pipe.
  • the plate thickness changing portion and the plate thickness constant portion of the LP steel plate can be manufactured by controlling during rolling. Normally, it is possible to make a pipe with a single rolled plate. However, with the increase in the size of the tower, the diameter of the steel pipe may exceed 6 m and may be close to 10 m.
  • a length of about 30 m is required when manufacturing with one rolled thick plate.
  • handling during production also deteriorates. Therefore, in such a case, it is preferable to make a pipe after connecting two thick plates having a length of about 15 m.
  • both are LP steel plates, only one side may be LP steel plates.
  • the thickness of that portion is increased in advance at the pipe making stage to improve the buckling strength. Has been made. Therefore, a reinforcing member is unnecessary, and a welding operation accompanying the reinforcement is also unnecessary. Furthermore, although there are concerns about quality and fatigue cracks when there are welds, in this embodiment there are no reinforcing welds in the vicinity of the openings 13, so there are quality problems and fatigue cracks. There is no problem.
  • the steel pipe column structure 10 has been described as an example using a circular steel pipe having a circular cross section, but the pipe making method may be a square steel pipe column. In this case, the manufacturing method and the like are the same as those described in the first embodiment.
  • Example 1 corresponding to the first embodiment will be described with reference to FIGS. 7 and 8, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals.
  • the steel pipe column structure 1 of Example 1 is a circular shape manufactured using a differential thickness steel plate by applying the present invention as an alternative to the conventional steel pipe column structure 1 having a circular cross section with a steel pipe diameter of 4000 mm and a plate thickness of 30 mm.
  • the cross section of each circular steel pipe is changed in the circumferential direction.
  • FIG. 8 which is a cross-sectional view taken along the line XX in FIG.
  • the steel pipe column structure 1 of Example 1 uses a differential thickness steel plate, and a 70 ° section in the circumferential direction has a plate thickness of 22 mm. It has a cross section with a taper between them.
  • the cross section of the steel pipe column structure is a line symmetric cross section with respect to the auxiliary line AA and the auxiliary line BB.
  • the plate thickness in the BB direction is reduced from 30 mm to 22 mm.
  • the cross-sectional second moment is 80%
  • Example 2 corresponding to the second embodiment will be described with reference to FIGS. 9 to 11, the same parts as those shown in FIGS. 4 and 5 are denoted by the same reference numerals.
  • the steel pipe column structure 10 of Example 2 is provided with an opening 13 (1 m width ⁇ 2 m height) at the base of a steel pipe column having a diameter of 5 m ( ⁇ 5000) and a plate thickness of 40 mm.
  • the present invention is applied so that the vicinity of the opening 13 is made thicker by using a differential thickness steel plate at the portion where the opening 13 is provided. .
  • Example 2 the thickness of the thick area 23 which is the area of the opening 13 and the surrounding area 1 m is increased by 8 mm from the thickness of 40 mm which is the thickness of the standard thickness area 21 to 48 mm.
  • the boundary with the meat region 23 is a tapered surface region 25 rubbed with a taper of 8 mm / m.
  • the portions other than the opening 13 are standard plate thicknesses and there is no change in plate thickness.
  • the steel pipe column structure 10 of Example 2 is manufactured as follows.
  • a plurality of circular steel pipes are manufactured by bending the ring into a ring and welding the ends.
  • a steel pipe column structure 10 is manufactured by stacking and joining the circular steel pipes in the height direction.
  • the first circular steel pipe 10a and the second circular steel pipe 10b in the portion where the opening 13 is provided are made of a rolled steel plate as an LP steel plate, and the thickness of the total 3 m region of about 1 m of the opening 13 and 1 m around the opening 13 is 48 mm.
  • the plate thickness is 40 mm.
  • the third circular steel pipe 10c has no change in plate thickness in the circumferential direction.
  • the thickness is increased by using the differential thickness steel plate 27.
  • the buckling strength is improved, so that no reinforcing member is required.
  • FIG. 13 is a graph showing the result of buckling analysis performed on Example 2.
  • the vertical axis represents the base resistance moment (KN mm)
  • the horizontal axis represents the horizontal displacement (mm)
  • a conventional example in which a reinforcing member is provided in the opening 13 (circle mark on the graph column).
  • Each of the comparative example ( ⁇ mark in a figure) which does not provide reinforcement, and Example 2 ( ⁇ mark in a figure) using LP steel plate is shown.
  • the proof stress is reduced from the stage where the horizontal displacement is small. Further, in the conventional example in which the opening 13 is provided for reinforcement, the proof stress does not decrease up to a certain level of horizontal displacement, but the proof strength decreases after the stage where there is horizontal displacement. On the other hand, in Example 2, it turns out that yield strength hardly falls even if horizontal displacement becomes large.

Abstract

合理的な設計ができる鋼管柱構造物及びその製造方法を提供することを目的とする。また、基部付近に開口部を有する場合にも溶接等による補強の必要のない鋼管柱構造物及びその製造方法を提供することを目的としている。本発明に係る鋼管柱構造物1は、第1円形鋼管1a~第18円形鋼管1rによって形成され、高さ方向の少なくとも一部の範囲において、鋼管柱構造物の軸方向に直交する断面における円形鋼管の板厚が周方向で変化することを特徴とする。

Description

鋼管柱構造物及びその製造方法
 本発明は、鋼製煙突、橋梁主塔、風力発電用タワー、海洋構造物、建築系構造物などの鋼管柱構造物及びその製造方法に関する。
 鋼管柱構造物の例としては、例えば、鋼製煙突、風力発電タワー、洋上風力発電基礎などが挙げられる。
 このような鋼管柱構造物は、高さ方向の鋼管径に着目すると、鋼管径が一様なもの、高さ方向にテーパーをつけて鋼管径を徐々に小さくするものに大別される。
 鋼管の板厚については、通常は高さ方向で同じか徐々に薄くなっているのが一般的であるが、周方向の板厚は同じである(非特許文献1参照)。
 鋼管柱構造物は、これを構成する鋼管が大径で厚肉となる。そこで、このような鋼管柱構造物50の製造方法は、図16(a)に示すような圧延鋼板51から板巻きによって図16(b)に示すような円形鋼管53を製作する。製作された円形鋼管53の高さは、圧延鋼板の幅である3~5mであり、それを図16(c)に示すように、上方に順次積み重ねて溶接、ボルト等で接合することにより鋼管柱構造物50が製造される。
 円形鋼管53の製作は、圧延方向(L方向)に曲率をつけて圧延鋼板51を曲げて行われる。
 鋼管径が10m規模のような大径の場合には、圧延鋼板1枚では円形鋼管53を製作できない場合もあり、その場合は、圧延鋼板51をつないで長い板にした後に、これを円環状に巻いて製作される。
 鋼管柱構造物の中には、図17に示すように、鋼管柱構造物55の基部に、人が出入りするための開口部57が設けられる場合もある。開口部57が設けられた部位は断面欠損となるため、耐力が低下するので、例えば図18の(a)(b)に示すような補強部材が取り付けられる。
 非特許文献2、3によれば、開口部57の補強は、図18(a)に示すようなダブリングプレート59や、図18(b)に示すような厚肉材61を開口部57にはめ込んで溶接することにより行うことが示されている。
塔状鋼構造設計指針・同解説(1980年)、日本建築学会 風力発電設備支持物構造設計 指針・同解説〈2007年版〉、土木学会 構造工学シリーズ17、2007年9月、土木学会
 従来例のように、周方向の板厚が同じ鋼管柱構造物では、周方向で(方位別には)同等の剛性を有している。すなわち、鋼管柱構造物の抵抗力は方位によらず同じである。
 他方、外力は一般に方位により変動する。例えば、外力が風力の場合、必ず卓越風向が存在するため、外力の大きさは方位によって異なり、それ故、作用する力の大きさは方位によって異なる。
 また、外力が潮流である場合でも潮流の方向は卓越する方向があるため、風力の場合と同様に作用する力の大きさは方位によって異なる。
 通常の設計では、抵抗力と作用力の比を安全率と考えて、作用力に対してある安全率を乗じて抵抗力を決め、その抵抗力が発揮できるように構造物が設計される。
 鋼管柱の設計の場合には、抵抗力は鋼管径と板厚によって決まる。しかし、鋼管径は製作・施工、使用性など他の要因で決まることがある。そのため、設計段階では板厚のみを抵抗力との関係で決定することが多い。
 設計では、最大外力となる方位を作用力とし、それに安全率を乗じて必要な抵抗力を構造物の最大抵抗力として、その最大抵抗力に基づいた板厚を決定する。
 上記の方法では、最大抵抗力となる方位以外では作用力が小さいため、作用力に比べて抵抗力が過大となる。すなわち、抵抗力と作用力の比である安全率が方位別に異なり、最大抵抗力となる方位の安全率が最小となり、他の方位では安全率は大きくなる。
 しかし、合理的な設計を行うのであれば、安全率は方位別にも平準化されることが必要である。しかし、そのようになっていないのが現状であり、その点が鋼管柱構造物の課題であった。
 また、鋼管柱構造物では、前述したように、基部近傍に人が出入りするための開口部57を有する場合もある。この場合、開口部57の部分が断面欠損となることから補強を行う必要があった。
 特に、風力発電用タワーなどでは風車の運転時に作用するタワーの揺れによる疲労が厳しく、そのために補強部材の板厚を増して発生応力を低減する措置もとられる。
 しかし、補強部材に鋳鋼を用いたり、補強用の鋼板を溶接したりする対策では、工数がかかることや、溶接部の品質が問題となることがあった。
 本発明は、上述の課題を解決するためになされたものであり、方位別に平準化された安全率を有する等の合理的な設計ができる鋼管柱構造物及びその製造方法を提供することを目的とする。
 また、基部付近に開口部を有する場合にも溶接等による補強の必要のない鋼管柱構造物及びその製造方法を提供することを目的としている。
 発明者は、前記課題を解決するために、鋼管柱構造物の高さ方向の少なくとも一部において周方向で板厚が変化する鋼管柱構造物とすることを考えた。
 通常、卓越する外力は一方向、あるいは所定の幅をもった範囲の方位で作用する場合が多い。
 そこで、発明者は、卓越する外力に対応する部分について板厚を厚くして、鋼管の抵抗力を、方位別の外力による作用力に応じて変化させればよいと考えた。もっとも、板厚を厚くするのではなく、外力の最大となる方位について板厚を定めた場合には、それと異なる方位には方位毎の作用力について板厚を薄くするようにしてもよい。
 図14は、鋼管の周方向で板厚を変化させた場合における外力と抵抗力の関係を説明する説明図である。この例では、図14(a)に示すような圧延方向(L方向)で板厚を変化させた部分を含む圧延鋼板である差厚鋼板65を用いて、差厚鋼板65を圧延方向であるL方向に巻いて図14(b)に示すような円形鋼管67を形成したものである。円形鋼管は、図14(b)に示すように、図中左右の領域(図中で色を付けた領域)の板厚が薄く、図中上下の領域が厚肉になっている。外力は鋼管の図中上下方向に作用し、鋼管柱構造物が図中の矢印の方向に揺れる場合を想定している。 この場合、図14(c)に示すように、外力は南北(SN)方向が大きく、東西(EW)方向が小さい。これに対応して、鋼管柱構造物の抵抗力(断面剛性)も南北(SN)方向が大きく、東西(EW)方向が小さくなっており、合理的な形状であることが分かる。
 これに対して、従来例は、厚さの同じ圧延鋼板69(図15(a)参照)を、L方向に巻いて周方向で厚さが同じ円形鋼管71を製作し、これを複数積み上げて接合したものである。図15(c)に示されるように、外力は図15(c)に示したのと同様に、南北(SN)方向が大きく、東西(EW)方向が小さいが、抵抗力(断面剛性)は全方位で等しくなっており、無駄な設計になっていることが分かる。
 以上のように、円形鋼管の板厚を周方向で変化させることにより、断面剛性を方位別に変えることができ、抵抗力を外力に応じて方位別に変えることができる。これによって、方位別の安全率(抵抗力/作用力)の平準化を図ることができる。
 本発明はかかる知見に基づいてなされたものであり、具体的には以下の構成からなるものである。
 上記の例では、従来技術として大多数を占める円形鋼管を取り上げて説明したが、本発明は円形鋼管に限られるものではなく、角形鋼管においても適用可能である。角形鋼管の場合には、LP鋼板あるいはテーパープレートをプレスベンドにより角形に成形すればよい。
 なお、角形鋼管の断面形状としては、四角形(矩形)断面だけでなく、六角形、八角形などの多角形断面であってもよい。つまり、多角形断面を有する多角形鋼管柱にも適用可能である。
 多角形鋼管において、その断面における周方向で板厚を変化させる場合には、各辺にあたる部分の鋼板の板厚を各辺ごとに変化させてもよい。そのため、板厚の異なる平板を周方向に多角形を形成するように配置して、配置した隣り合う平板同士を多角形鋼管の軸方向に溶接して多角形鋼管柱を製作することもできる。
(1)本発明に係る鋼管柱構造物は、鋼管によって形成され、高さ方向の少なくとも一部の範囲において、鋼管柱構造物の軸方向に直交する断面における鋼管の板厚が周方向で変化することを特徴とするものである。
(2)また、上記(1)に記載のものにおいて、差厚鋼板を円環状に形成してなる円形鋼管を、高さ方向に積み重ねて接合してなることを特徴とするものである。
(3)また、上記(1)又は(2)に記載のものにおいて、前記板厚が変化する境界部をテーパ面によって連続するようにしたことを特徴とするものである。
(4)また、上記(1)乃至(3)のいずれかに記載のものにおいて、板厚が厚い領域と薄い領域とが鋼管周方向で交互に形成され、厚い部位と薄い部位がそれぞれ複数箇所形成されていることを特徴とするものである。
(5)また、上記(4)に記載のものにおいて、板厚が厚い領域同士及び板厚が薄い領域同士がそれぞれ線対称の位置に形成されていることを特徴とするものである。
(6)また、上記(1)乃至(5)のいずれかに記載のものにおいて、板厚が変化する領域が、高さ方向の一部の領域のみに形成されていることを特徴とするものである。
(7)また、上記(1)乃至(6)のいずれかに記載のものにおいて、板厚が変化する領域が周方向の同じ領域で上下に亘って設けられると共に、下部の板厚の変化率が上部の板厚の変化率よりも大きく設定されていることを特徴とするものである。
(8)また、上記(1)乃至(7)のいずれかに記載のものにおいて、鋼管柱構造物の周面の一部に開口部を有し、該開口部が板厚の厚い部位に形成されていることを特徴とするものである。
(9)本発明の鋼管柱構造物の製造方法は、上記(1)乃至(8)のいずれかに記載の鋼管柱構造物の製造方法であって、LP鋼板を1枚、あるいは複数枚接合したものを円環状に形成して円形鋼管を製作する円形鋼管製作工程と、製作された円形鋼管を積み重ねて接合する円形鋼管接合工程を備えたことを特徴とするものである。
 ここで、LP鋼板とは、鋼板の圧延方向に直線的に板厚を変化させた部分を含む厚鋼板であり、Longitudinally Profiled Steel Plateとも称する。
 本発明においては、鋼管柱構造物の軸方向に直交する断面における鋼管の板厚が周方向で変化するようにしたので、方位別に安全率(鋼管の抵抗力/(外力の作用力))を平準化できる合理的な構造が実現できる。これによって、鋼材使用量も少なくできるので、安価な鋼管柱構造物が提供できる。
 また、鋼管柱基部の開口部を厚肉化することにより、補強部材を新たに溶接等によって取り付ける必要がなく、工数がかからず、溶接部の品質も問題にならない。
図1は、本発明の一実施の形態に係る鋼管柱構造物の説明図である。 図2は、図1に示した鋼管柱構造物の作用の説明図である。 図3は、本発明の一実施の形態に係る鋼管柱構造物を構成する円形鋼管の説明図である。 図4は、本発明の他の実施の形態に係る鋼管柱構造物の説明図である。 図5は、図4の矢視A−A断面図である。 図6は、図4の矢視B−B断面図である。 図7は、本発明の実施例1の説明図である。 図8は、図7の矢視X−X断面図である。 図9は、本発明の実施例2の説明図である。 図10は、図9の矢視A−A断面図である。 図11は、図9の矢視B−B断面図である。 図12は、実施例2に係る鋼管柱構造物の製造方法の説明図である。 図13は、実施例2の効果を説明する実験結果のグラフである。 図14は、課題を解決するための手段の説明図である。 図15は、課題を解決するための手段の説明図であり、本発明の比較としての従来例の説明図である。 図16は、従来例の鋼管柱構造物の説明図である。 図17は、従来例の鋼管柱構造物であって、基部近傍に開口部を有するものの説明図であり、図17(a)が正面図、図17(b)が図17(a)の矢視A−A断面図である。 図18は、図17の開口部の補強構造の説明図である。 図19は、本発明の一実施の形態の他の態様に係る鋼管柱構造物の説明図である。 図20は、図19の矢視A−A断面図である。 図21は、本発明の一実施の形態の他の態様に係る鋼管柱構造物の説明図である。 図22は、図21の矢視A−A断面図である。 図23は、本発明の一実施の形態の他の態様に係る鋼管柱構造物の説明図である。 図24は、本発明の一実施の形態の他の態様に係る鋼管柱構造物の説明図である。 図25は、図24の矢視A−A断面図である。
[実施の形態1]
 本実施の形態を図1、図2に基づいて説明する。
 本実施の形態に係る鋼管柱構造物1は、複数の円形鋼管を接合することによって形成され、高さ方向の少なくとも一部の範囲において、円形鋼管の軸方向に直交する断面における円形鋼管の板厚が周方向で変化する。
 以下具体的に説明する。
 鋼管柱構造物1の例として、本実施の形態では、上部に風車設備が設置されるタワーを例に挙げている。鋼管柱構造物1は、18個の円形鋼管を、基礎3の上に高さ方向に積み重ね、円形端部を突合せ溶接にて接合して形成している。図中の破線で示す部位が溶接部であり、下から順に第1円形鋼管1a、第2円形鋼管1b・・・、第18円形鋼管1rとなっている。なお、簡略化のために、各円形鋼管における高さ方向には、鋼管径のテーパは図示していない。
 本実施の形態の鋼管柱構造物1は、上部に風車を取り付けるものである。風力には卓越方向があり、図2において、図中上から下向きの方向である。
 図1の矢視A−A断面である図2(a)、矢視B−B断面である図2(b)、矢視C−C断面である図2(c)に示すように、各円形鋼管の図中上下の所定範囲が厚肉に形成されている。
 図中の上下の所定範囲を厚肉にしたのは、風力による揺れが卓越する方向を厚肉化して、繰り返し荷重による疲労強度を増すためである。
 なお、図2(a)、図2(b)に示すように、矢視A−A断面の部位(第18円形鋼管1r)及び矢視B−B断面の部位(第11円形鋼管1k)では、各円形鋼管における図中上下の肉厚は、線対称になっている。但し、矢視A−A断面で示される(第18円形鋼管1r)よりも矢視B−B断面で示される(第11円形鋼管1k)の方が、厚肉部の厚みがより厚くなっている。これは、下部の方が揺れによる疲労が大きいことから、疲労強度をより強くするためである。
 このように、本実施の形態では、板厚が変化する領域が高さ方向で同じ位置(図中の上下所定の領域)に設けられており、かつ、下部の板厚の変化率が大きく設定されている。
 なお、各円形鋼管の管軸方向直交断面は、上下のいずれの箇所でも同一である。したがって、円周方向で肉厚が変化するとしても、例えばリブ付き鋼管のようなものとは明確に区別される。
 また、図2(c)に示すように、矢視C−C断面の部位(第1円形鋼管1a)においても、図中に示す上下を厚肉にしているが、図中下側の領域の方が上側の領域よりもさらに厚肉に形成されている。これは、鋼管柱構造物1の基部付近では、揺れによる疲労に対する対策に加えて最大外力による座屈に対する対策として、最大外力により圧縮力が働く方位(図中下側)の耐力を増すためにより厚肉化したものである。
 なお、板厚の変化する部位に段差があると応力集中が生じることが考えられる。そこで、本実施の形態においては、第11円形鋼管1kの断面図である図3に示すように、板厚が変化する部位では、段差を設けないように、厚肉部と薄肉部がテーパ面によって連続するように形成している。図3において、テーパ面の部位は、破線の楕円で囲んでいる。テーパ面の傾斜角度は、応力集中が少なければ良いが、通常は1/5以下の勾配(板厚1mmに対して長さが5mm以上)の緩やかさにするのが好ましい。
 なお、鋼管を差厚鋼板によって形成する場合には、傾斜角度は最大で10mm/m程度であり、勾配にして1/100以下の勾配となるため、特段の問題は生じない。
 図3では、左右の約70°の領域E1、E2が板厚が薄い領域であり、これを除いた上下の領域が板厚が厚い領域である。なお、第11円形鋼管1kは、図3における、補助線A−A及び補助線B−Bに対して、それぞれ線対称の断面になっている。
 本実施の形態の例では、板厚が厚い領域と薄い領域が鋼管周方向で交互に形成され、厚い領域と薄い領域がそれぞれ2箇所形成されている。そして、板厚が厚い領域同士及び板厚が薄い領域同士が、それぞれ線対称の位置に形成されている。
<製造方法>
 鋼管柱構造物1の製造方法の一例を、以下に示す。
 差厚鋼板(鋼板の圧延方向に板厚を変化させた部分を含む厚鋼板)を圧延方向に曲げることにより、円周方向に板厚が変化する円形鋼管を複数(本例では18個)製造する。
 次に、各円形鋼管を積み重ねて、連結部を突合せ溶接にて接合する。
 本実施の形態の鋼管柱構造物1においては、鋼管柱構造物1の軸方向に直交する断面における円形鋼管の板厚が周方向で変化するようにした。そのため、方位別に安全率(鋼管の抵抗力/外力の作用力)を平準化できる合理的な構造ができる。
 これによって、鋼材使用量も少なくできるので、安価な鋼管柱構造物1を提供することができる。
 従来では、全方位に同様に板厚を増やした鋼管柱構造物しか存在しなかった。しかし、方位別に外力を考えて周方向に板厚を変化させることで、鋼材使用量を減らした合理的な構造が可能となる。疲労がクリティカルになる場合には、疲労性能は発生応力の3乗に比例することが知られており、板厚を部分的に1mm増やすだけでも方位別の疲労性能は大きく変化する。そのため、差厚量は数mm程度でも充分な効果がある。
 なお、上記の実施の形態は、風力設備を設置するためのタワーであったため、風力の向きに対応するように板厚の変化する箇所を設定した。このように、板厚を変化させる箇所は、鋼管柱構造物に作用する応力に応じて適切な箇所に設定するようにすればよい。
 例えば、一般の柱状鋼管物において、基部の座屈が問題となる場合には、最大外力が作用する方位の逆側(すなわち、作用力で圧縮力が作用する側)の板厚を厚くするようにすればよい。
 また、洋上風力発電タワーや風力発電用海中基礎のパイル(モノパイル、トリパイルなど)では、風車運転時に生じる揺れによりタワー、海中基礎のパイルの疲労が問題となる場合も生じる。この場合には、揺れが卓越する方位の板厚を増やすことにより、発生応力を低減する必要がある。そのため、揺れの方向に対して線対称になるように厚肉部を形成するようにすればよい。あるいは、揺れが卓越する方位の板厚で断面を設計し、非卓越方位については板厚を減じるようにしてもよい。これらによっても合理的な設計が可能となる。
 海中部に設置する鋼管柱の例が、図19及び図19における矢視A−A断面図である図20に示されている。
 図19、図20に示される鋼管柱73は、海流の影響を受ける海中に設置するものであり、海中部に設置される部位における周方向において、海流に抵抗する方向の板厚が大きくなっている。図20においては、海流の最も大きな力が作用する方向が図中上から下に向かう方向であり、鋼管柱73は図中下側を厚肉にしている。
 海流は長期間にわたってほぼ一定の方向と大きさを有していることから、海流の方向の変動の極大値、繰り返し変動量の大きさと繰り返し回数を考慮して、厚くする板厚を設定している。
 海中に設置する海中部構造物の例が、図21及び図21における矢視A−A断面図である図22に示されている。
 図21、図22に示される海中部構造物75は、潮流の影響を受ける海中に設置するものであり、3本の鋼管柱77を備えてなるものである。
 3本の鋼管柱77は同様の構造である。各鋼管柱77は、図22に示すように、周方向に板厚が異なり、径方向で対向する面が同じ板厚となるように設定されている。これは、各鋼管柱77が潮流に起因する流れに抵抗するために、潮流の方向の曲げ剛性を高くするように、潮流の方向の板厚を大きくしたものである。潮流は、潮汐に伴う海水の水平運動であり周期的に変化するため、上記の潮流に起因する流れに抵抗する方向に応じて板厚を大きくしている。具体的には、図22に示すように、図中上から下に向かう方向は、或る時点tにおける潮流の方向である。しかし、これは周期的に変化し、別の時点t´においては、図中下から上に向かう方向になる。そのため、鋼管柱は図中上下部分を肉厚に設定している。
 鋼管柱77における潮流に抵抗する方向の板厚を厚くするということは、逆に言えば、潮流に抵抗する必要のない部位は板厚を厚くしなくてよい。これにより、合理的な設計が可能となる。
 なお、複雑な地形などのように様々な要因によって流れが様々な方向に変化するような場合でも、その方向に応じて必要な板厚に設定すればよい。
 座屈、疲労の双方の場合において、方位別の安全率を平滑化することが目的であれば、鋼管柱構造物1の高さ方向における差厚を設ける箇所に関しては、本実施の形態のように、鋼管柱構造物1の高さ方向全てに設けることができる。
 一方、座屈、疲労以外にも自重に耐える必要性や最小板厚の制限をも考慮すると、高さ方向の一部分に本発明を適用して、当該部分のみの円形鋼管に周方向の差厚を設けたり、当該部分のみの角形鋼管の一部の面に差厚を設けたりするようにしてもよい。
 なお、上記の実施の形態1では、円形鋼管における板厚が変化する部位をテーパ面を介して連続させるようにしたが、本発明では、板厚が変化する部位に段部が形成されるものを排除しているわけではない。
 上記の実施の形態においては、鋼管柱構造物の例として断面が円形の円形鋼管を用いたものを例に挙げて説明したが、造管方法を角形鋼管柱としてもよい。角形鋼管の断面形状としては、四角形(矩形)断面だけでなく、六角形、八角形などの多角形断面であってもよい。角形鋼管の場合も円形鋼管の場合と同様に、周方向で板厚が大きい箇所と小さい箇所があるように周方向に板厚が変化している。このような角形鋼管の製造方法は、LP鋼板あるいはテーパープレートをプレスベンドにより断面が多角形になるように成形する方法がある。
 図23はLP鋼板(図23(a))を用いて八角形の角型鋼管を成形する例である。図23における各辺a~hが、それぞれ図23(b)の辺a~hに対応している。
 図23(b)に示されるように、八角形断面の対向する辺a、eが薄肉の辺であり、対向する辺c、gが厚肉の辺となっている。そして、厚肉の辺と薄肉の辺の間にある辺b、d、f、hがテーパ状の辺となっている。厚肉の辺を板厚の厚い領域とし、薄肉の辺を板厚が薄い領域としてとらえれば、図23に示される例も、「板厚が厚い領域同士及び板厚が薄い領域同士がそれぞれ線対称の位置に形成されている」ということになる。
 また、薄肉の辺a、eを板厚が薄い領域、厚肉の辺とテーパ状の辺を含む(b・c・d)、(f・g・h)を板厚が厚い領域ととらえても、図23に示される例は、「板厚が厚い領域同士及び板厚が薄い領域同士がそれぞれ線対称の位置に形成されている」ということになる。
 また、他の方法として、各辺を構成する平板状の鋼材を周方向に角形に並べて各鋼材を溶接するようにしてもよい。この場合には、鋼管を周方向で巻かないために、出来上がる鋼管柱構造物を構成する鋼管の一つの長さが長くなる。
 図24の矢視A−A断面図である図25に、八角形断面を有する角形鋼管柱構造物79の一例が示されている。図24、図25に示した例は、各辺を構成する平板状の鋼材を周方向に8角形を形成するように並べて溶接して形成したものであり、図25における左右対向する辺に相当する面の板厚が同じであり、これらの板厚が他の部位よりも肉薄になっている。このように板厚の異なる平板を溶接にて接合する場合には、接合箇所において板厚が変わることになるが、溶接端部は一部を切り落として開先を作って溶接するため、溶接部に段ができることはない。
 なお、図24、図25に示すように、平板状の鋼材を周方向に多角形を形成するように並べて溶接して形成する場合は、同じ平板を円環状にして形成する場合に比較して、柱構造物を構成する一つの鋼管の長さが長くなる。具体的には、図24、図25に示す角形鋼管柱構造物79を構成する第1角形鋼管79a、第2角形鋼管79b、第3角形鋼管79cの長さが、図1に示した円形断面の鋼管柱構造物1を構成する第1円形鋼管1a等よりも長くなっている。
[実施の形態2]
 本実施の形態を図4~図6に基づいて説明する。
 本実施の形態に係る鋼管柱構造物10は、鋼管柱構造物10を構成する鋼管の一部に開口部13を有し、該開口部13が板厚の厚い部位に形成されていることを特徴とするものである。
 開口部13を有する鋼管柱構造物10の具体例としては、鋼製煙突、風力発電用タワー、風力発電用海中基礎パイル等がある。
 図4~図6に示す例は、鋼管の直径が6m(φ6000)で、幅1m、高さ2mの開口部13が設けられている場合である。
 本実施の形態の鋼管柱構造物10は、実施の形態1と同様に複数の円形鋼管を、その円形端部を当接させるように積み重ね、当接部を突き合わせ溶接して形成されている。また、本実施の形態の鋼管柱構造物10は、図4に示すように、最下部の第1円形鋼管10aと、下から2番目の第2円形鋼管10bの両方に亘る部位に開口部13が形成されている。
 最下部の第1円形鋼管10aと、その上の第2円形鋼管10bは、図4の矢視A−A断面図である図5に示すように、開口部13に相当する領域が肉厚に形成されている。
 開口部13が形成される領域を厚肉にした円形鋼管を、図5に示す第2円形鋼管10bを例に挙げて具体的に説明する。第2円形鋼管10bは、標準板厚領域21と、厚肉領域23と、標準板厚領域21と厚肉部を繋ぐテーパ面領域25とを備えている。
 第2円形鋼管10bは、例えば幅(C方向)3m×長さ(L方向)約18.8m(6m×3.14=18.84m)のLP鋼板を、L方向を円周方向に曲げて製作する。
 開口部13の約1mとその周辺の1mの合計3mの領域が厚肉領域23で、厚肉領域23の両側の1.5mの部分が5mm/mのテーパ面領域25となり、それ以外の部分が円周の半分となる約(L方向長さ18.84−3−1.5−1.5=12.84m)が標準板厚領域21となっている。
 標準板厚領域21の板厚は40mm、厚肉領域23の板厚は50mm、テーパ面領域25の傾斜は5mm/mである。
 下から3番目の第3円形鋼管10cは、図4の矢視B−B断面図である図6に示すように、板厚が周方向で変化せずに標準の板厚(4mm)となっている。
 第3円形鋼管10cについては、従来通りの差厚鋼板でない通常の圧延鋼板を用いて造管された鋼管である。
<製造方法>
 鋼管柱構造物10の製造方法は、実施の形態1と同様であり、差厚鋼板を圧延方向に曲げることにより、円周方向に板厚が変化する円形鋼管を製造する。円形鋼管を、その円形端部を突き合わせ溶接により接合する。開口部13は、円形鋼管を接合した後で形成すればよい。
 LP鋼板の板厚変化部、板厚一定部は圧延時の制御により製作可能である。通常は1枚の圧延厚板で造管可能である。
 しかし、タワーの大型化に伴い、鋼管径が6mを超えて、10mに近い場合もあり、その場合は、1枚の圧延厚板で製作する場合には30m程度の長さが必要となるが、鋼板製造に加えて、製作時のハンドリングも悪くなる。そこで、このような場合には、15m程度の長さの厚板を2枚つないだ上で造管した方が好ましい。その場合、2枚ともLP鋼板の場合、片側だけがLP鋼板の場合もある。
 本実施の形態の鋼管柱構造物10においては、開口部13の断面欠損による座屈耐力を防止するために、その部分の板厚をあらかじめ造管段階で厚肉化して座屈耐力の向上がなされている。そのため、補強部材が不要であり、補強に伴う溶接作業も不要になる。さらに、溶接部が存在すると品質、疲労き裂の問題も懸念されるが、本実施の形態では開口部13近傍に補強用の溶接部が存在しないことから、品質の問題や、疲労き裂の問題もない。
 上記の実施の形態2においては、鋼管柱構造物10の例として断面が円形の円形鋼管を用いたものを例に挙げて説明したが、造管方法を角形鋼管柱としてもよい。この場合において、その製造方法等は、実施の形態1で説明した内容と同様である。
 上記実施の形態1に対応する実施例1を、図7、図8に基づいて説明する。なお、図7、図8において図1~図3と同一部分には同一の符号を付してある。
 実施例1の鋼管柱構造物1は、鋼管径4000mm、板厚30mmの円形断面を持つ従来の鋼管柱構造物1に代わるものとして、本発明を適用して差厚鋼板を用いて製作した円形鋼管を高さ方向に25個接合することで、各円形鋼管の断面が周方向で変化するようにしたものである。
 実施例1の鋼管柱構造物1は、図7の矢視X−X断面図である図8に示すように、差厚鋼板を用いて、周方向に70°区間を板厚22mmにして、その間をテーパで擦り付けた断面を有している。図8において、鋼管柱構造物の断面は、補助線A−A、補助線B−Bに対して、それぞれ線対称の断面となっている。
 卓越風向による揺れの方向(図中A−A方向)の繰り返し回数に対して、卓越風向と直角風向による揺れの繰り返し回数(図中B−B方向)が40%であることから、B−B方向の揺れに対してはA−A方向の40%の疲労寿命で充分である。そこで、B−B方向の板厚を30mmから22mmに薄くしたものである。
 B−B方向の板厚を薄くすることによって、図8における鉛直方向(A−A方向)に力が作用する場合の剛性(断面二次モーメント)はほとんど変えずに、水平方向(B−B方向)に力が作用する剛性(断面二次モーメント)を減じることができ、水平方向(B−B方向)の断面二次モーメントは約80%となっている。
 梁理論では、発生応力σ=(M/I)・y(M:曲げモーメント、I:断面二次モーメント、y:縁端部までの距離(円管の場合、鋼管外法半径))であるから、板厚の変化により断面二次モーメントのみが変化し、発生応力が変わる。断面二次モーメントが80%であれば、発生応力は1/0.8=1.25倍となる。疲労寿命は発生応力の3乗に反比例することから、板厚を薄くした方向の疲労寿命は1/(1.25×1.25×1.25)=0.51倍となる。要求される疲労寿命が40%以上であれば、この断面でも充分に性能を満足することがわかる。
 上記実施の形態2に対応する実施例2を、図9~図11に基づいて説明する。なお、図9~図11において図4、図5に示したものと同一部分には同一の符号を付してある。
 実施例2の鋼管柱構造物10は、直径5m(φ5000)、板厚40mmの鋼管柱の基部に開口部13(1m幅×2m高さ)が設けられているものであって、開口部13の補強部材を設けていた従来例に代わるものとして、本発明を適用して開口部13が設けられる部位に差厚鋼板を用いて開口部13の近傍が厚肉になるようにしたものである。
 実施例2では、開口部13とその周囲1mの領域である厚肉領域23の板厚を、標準板厚領域21の板厚である40mmより8mm増やして48mmとし、標準板厚領域21と厚肉領域23との境界を8mm/mのテーパで擦り付けたテーパ面領域25としている。開口部13以外の部分は標準板厚で板厚の変化がない。
 実施例2の鋼管柱構造物10は以下のようにして製造する。
 圧延鋼板は幅(C方向)3m×長さ(L方向)約15.7m(5m×3.14=15.7m)とし、図12に示すように、1枚の差厚鋼板27におけるL方向を環状に曲げて端部を溶接することにより円形鋼管を複数製作する。この円形鋼管を高さ方向に重ねて接合することにより鋼管柱構造物10が製作される。
 開口部13が設けられる部位の第1円形鋼管10a、第2円形鋼管10bは、圧延鋼板をLP鋼板とし、開口部13の約1mとその周辺の1mの計3mの領域の板厚が48mm、その両側の1mの領域が2mm/mのテーパとなり、それ以外の領域である円周の半分となる約10.7m(L方向長さ15.7−3−1−1=10.7m)が40mmの板厚になっている。
 第3円形鋼管10cは、周方向に板厚の変化のないものである。
 従来の構造であれば、開口部13を設けた後に、厚肉鋳造部材、補強部材を入れる必要があるが、本実施例では、差厚鋼板27を用いたことにより板厚が増厚されることによって座屈耐力の向上がなされているため、補強部材は不要となる。
 実施例2について、座屈解析を実施した結果を示すグラフが図13である。図13のグラフは、縦軸が基部抵抗モーメント(KNmm)、横軸が水平変位(mm)であり、開口部13に補強部材を設けた従来例(グラフ柱の○印)、開口部13に補強を設けていない比較例(図中の△印)、LP鋼板を用いた実施例2(図中の●印)のそれぞれを示している。
 図13のグラフから分かるように、開口部13を設けて補強をしない比較例では、水平変位が小さい段階から耐力が低下している。また、開口部13を設けて補強をした従来例では、ある程度の水平変位までは耐力が低下しないが、水平変位がある段階以降では耐力が低下する。これらに対して、実施例2では、水平変位が大きくなっても耐力が殆ど低下しないことがわかる。
  1 鋼管柱構造物
  3 基礎
 1a 第1円形鋼管
 1b 第2円形鋼管
 1k 第11円形鋼管
 1r 第18円形鋼管
 10 鋼管柱構造物
 13 開口部
10a 第1円形鋼管
10b 第2円形鋼管
10c 第3円形鋼管
 21 標準板厚領域
 23 厚肉領域
 25 テーパ面領域
 50 鋼管柱構造物
 51 圧延鋼板
 53 円形鋼管
 55 鋼管柱構造物
 57 開口部
 59 ダブリングプレート
 61 厚肉材
 65 差厚鋼板
 67 円形鋼管
 69 圧延鋼板
 71 円形鋼管
 73 鋼管柱
 75 海中構造物
 77 鋼管柱
 79 角形鋼管柱構造物
 79a 第1角形鋼管
 79b 第2角形鋼管
 79c 第3角形鋼管

Claims (9)

  1.  鋼管によって形成され、高さ方向の少なくとも一部の範囲において、鋼管柱構造物の軸方向に直交する断面における鋼管の板厚が周方向で変化することを特徴とする鋼管柱構造物。
  2.  差厚鋼板を円環状に形成してなる円形鋼管を、高さ方向に積み重ねて接合してなることを特徴とする請求項1記載の鋼管柱構造物。
  3.  前記板厚が変化する境界部をテーパ面によって連続するようにしたことを特徴とする請求項1又は2記載の鋼管柱構造物。
  4.  板厚が厚い領域と薄い領域とが鋼管周方向で交互に形成され、厚い部位と薄い部位がそれぞれ複数箇所形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の鋼管柱構造物。
  5.  板厚が厚い領域同士及び板厚が薄い領域同士がそれぞれ線対称の位置に形成されていることを特徴とする請求項4記載の鋼管柱構造物。
  6.  板厚が変化する領域が、高さ方向の一部の領域のみに形成されていることを特徴とする請求項1乃至5のいずれか一項に記載の鋼管柱構造物。
  7.  板厚が変化する領域が周方向の同じ領域で上下に亘って設けられると共に、下部の板厚の変化率が上部の板厚の変化率よりも大きく設定されていることを特徴とする請求項1乃至6のいずれか一項に記載の鋼管柱構造物。
  8.  鋼管柱構造物の周面の一部に開口部を有し、該開口部が板厚の厚い部位に形成されていることを特徴とする請求項1乃至7のいずれか一項に記載の鋼管柱構造物。
  9. 請求項1乃至8のいずれかに記載の鋼管柱構造物の製造方法であって、LP鋼板を1枚、あるいは複数枚接合したものを円環状に形成して円形鋼管を製作する円形鋼管製作工程と、製作された円形鋼管を積み重ねて接合する円形鋼管接合工程を備えたことを特徴とする鋼管柱構造物の製造方法。
PCT/JP2011/071063 2010-09-09 2011-09-08 鋼管柱構造物及びその製造方法 WO2012033228A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180043565.2A CN103097626B (zh) 2010-09-09 2011-09-08 钢管柱结构物及其制造方法
EP11823695.9A EP2615226B1 (en) 2010-09-09 2011-09-08 Steel pipe column structure and method for producing same
KR1020137005855A KR101536959B1 (ko) 2010-09-09 2011-09-08 강관주 구조물 및 그의 제조 방법
DK11823695.9T DK2615226T3 (en) 2010-09-09 2011-09-08 Steel pipe column structure and method for making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010202112 2010-09-09
JP2010-202112 2010-09-09

Publications (1)

Publication Number Publication Date
WO2012033228A1 true WO2012033228A1 (ja) 2012-03-15

Family

ID=45810814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071063 WO2012033228A1 (ja) 2010-09-09 2011-09-08 鋼管柱構造物及びその製造方法

Country Status (7)

Country Link
EP (1) EP2615226B1 (ja)
JP (1) JP5146580B2 (ja)
KR (1) KR101536959B1 (ja)
CN (1) CN103097626B (ja)
DK (1) DK2615226T3 (ja)
MY (1) MY164689A (ja)
WO (1) WO2012033228A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695910A (zh) * 2019-10-22 2021-04-23 上海核工程研究设计院有限公司 一种用于核岛结构的自锁装配式防屈曲支撑

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551519B1 (en) * 2011-07-27 2015-08-26 Siemens Aktiengesellschaft Optimisation of a wind turbine
DE102012207179A1 (de) 2012-04-30 2013-10-31 Evonik Industries Ag Verschleißindikatorsystem für Offshore-Korrosionsschutz-Umhüllungssysteme
JP6126795B2 (ja) * 2012-05-15 2017-05-10 株式会社横河住金ブリッジ 大型鋼管を用いた緊急避難施設
CN103291551B (zh) * 2013-06-06 2016-01-27 江苏新誉重工科技有限公司 一种整体偏航式海上漂浮风电场
ES2534261B1 (es) * 2013-10-18 2016-02-19 Gamesa Innovation & Technology, S.L. Hueco reforzado para torre de aerogenerador
CN104372892B (zh) * 2014-11-18 2016-09-28 中建钢构有限公司 多腔体组合巨柱及其制作方法
CN104866673B (zh) * 2015-05-28 2017-07-11 大连理工大学 一种轴压加筋柱壳的开口补强方法
CN105625187A (zh) * 2015-12-31 2016-06-01 浙江舜杰建筑集团股份有限公司 一种用于大截面斜柱的混凝土的施工方法
DE102016205447A1 (de) 2016-04-01 2017-10-05 Innogy Se Tragstruktur für eine Windenergieanlage
EP3372986A1 (en) 2017-03-08 2018-09-12 Ørsted Wind Power A/S Monitoring steel support structures for offshore wind turbines
DE102019120175A1 (de) * 2019-07-25 2021-01-28 Wobben Properties Gmbh Verfahren zum Erzeugen eines Turmsegments und Turmsegment
EP3825550B1 (de) * 2019-11-21 2023-08-23 Wobben Properties GmbH Turmsegment und herstellungsverfahren
CN111778856A (zh) * 2020-06-12 2020-10-16 中铁大桥局第七工程有限公司 一种主塔钢筋的施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154518U (ja) * 1983-04-01 1984-10-17 新日本製鐵株式会社 不等厚冷間成形形鋼
JPH06229067A (ja) * 1993-02-01 1994-08-16 Sekisui Chem Co Ltd 角形鋼柱の補強構造
JPH09317085A (ja) * 1996-05-24 1997-12-09 Dai Ichi High Frequency Co Ltd 局部異形化金属管及びその製造方法
JPH11122764A (ja) * 1997-10-17 1999-04-30 Nippon Light Metal Co Ltd 電力供給線用電柱
JP2005180239A (ja) * 2003-12-17 2005-07-07 Ishikawajima Harima Heavy Ind Co Ltd 洋上風力発電装置の基礎
JP2011115829A (ja) * 2009-12-04 2011-06-16 Nippon Steel Corp 耐疲労特性に優れた大型溶接鋼管とその高能率製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312162A (en) * 1979-08-15 1982-01-26 Jonas Medney Reinforced pole
JPS60104437U (ja) * 1983-12-21 1985-07-16 株式会社クボタ 地すべり防止用抑止杭
JPH0631068Y2 (ja) * 1987-11-27 1994-08-22 昭和アルミニウム株式会社 組立式カーポート
JPH09125599A (ja) * 1995-10-30 1997-05-13 Kubota Corp 鋼管柱体
JP2002165343A (ja) * 2000-11-22 2002-06-07 Sumikei-Nikkei Engineering Co Ltd 電力供給線用電柱
FR2817893B1 (fr) * 2000-12-12 2003-10-24 Tubalco Mat tubulaire renforce
US7228672B2 (en) * 2002-04-19 2007-06-12 Powertrusion International, Inc. Fiber architecture for a composite pole
JP2004027740A (ja) * 2002-06-28 2004-01-29 Nakajima Steel Pipe Co Ltd 柱材用鋼管の継手構造
CN100582479C (zh) * 2002-10-01 2010-01-20 通用电气公司 风力涡轮塔用的成套组合件
DE10323693B3 (de) * 2003-05-22 2004-09-09 Muhr Und Bender Kg Blechelemente aus flexibel gewalztem Bandmaterial
JP2005264535A (ja) * 2004-03-18 2005-09-29 Jfe Steel Kk 厚肉部を有する円形鋼管柱およびその製造方法
CA2586647C (en) * 2004-11-10 2011-09-06 Vestas Wind Systems A/S A tower part for a wind turbine, an aperture cover system, a method for manufacturing a tower part and uses hereof
JP4677811B2 (ja) * 2005-03-30 2011-04-27 Jfeスチール株式会社 差厚鋼板の圧延方法
KR100910172B1 (ko) * 2009-01-02 2009-07-30 두성중공업 주식회사 두께가 상이한 강판으로 웨브와 플랜지를 구성한 용접빔

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154518U (ja) * 1983-04-01 1984-10-17 新日本製鐵株式会社 不等厚冷間成形形鋼
JPH06229067A (ja) * 1993-02-01 1994-08-16 Sekisui Chem Co Ltd 角形鋼柱の補強構造
JPH09317085A (ja) * 1996-05-24 1997-12-09 Dai Ichi High Frequency Co Ltd 局部異形化金属管及びその製造方法
JPH11122764A (ja) * 1997-10-17 1999-04-30 Nippon Light Metal Co Ltd 電力供給線用電柱
JP2005180239A (ja) * 2003-12-17 2005-07-07 Ishikawajima Harima Heavy Ind Co Ltd 洋上風力発電装置の基礎
JP2011115829A (ja) * 2009-12-04 2011-06-16 Nippon Steel Corp 耐疲労特性に優れた大型溶接鋼管とその高能率製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUIDELINES FOR DESIGN OF WIND TURBINE SUPPORT STRUCTURES AND FOUNDATIONS, 2007
See also references of EP2615226A4
STRUCTURAL ENGINEERING SERIES 17, September 2007 (2007-09-01)
TOWER STEEL: "Construction Design Guide and Manual", 1980, ARCHITECTURAL INSTITUTE OF JAPAN

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695910A (zh) * 2019-10-22 2021-04-23 上海核工程研究设计院有限公司 一种用于核岛结构的自锁装配式防屈曲支撑

Also Published As

Publication number Publication date
CN103097626B (zh) 2016-03-16
KR20130055658A (ko) 2013-05-28
JP2012077601A (ja) 2012-04-19
EP2615226A1 (en) 2013-07-17
DK2615226T3 (en) 2017-12-18
MY164689A (en) 2018-01-30
KR101536959B1 (ko) 2015-07-15
JP5146580B2 (ja) 2013-02-20
EP2615226A4 (en) 2016-08-03
CN103097626A (zh) 2013-05-08
EP2615226B1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP5146580B2 (ja) 鋼管柱構造物及びその製造方法
EP1947328B1 (en) Joining device for hybrid wind turbine towers
JP4708365B2 (ja) 風力タービン用タワー、風力タービン用タワーに使用する予備製作された金属壁部品および風力タービン用タワーの構築方法
EP2877642B1 (en) Node structures for lattice frames
JP7132559B2 (ja) アルミニウム管-コンファインドコンクリート-鋼管を組み合わせた組立式ジャケットによる海洋プラットフォーム及び製造方法
EP2672012A1 (en) Connecting structure for connecting steel pipe pile and steel outer pipe
US20070245680A1 (en) Methods and apparatus for assembling wind turbine towers
DK2828436T3 (en) Offshore foundation for wind energy systems with arcuate bent nodes
KR102545978B1 (ko) 해상 풍차용 재킷 구조물 및 해상 풍차용 재킷 구조물의 용접 방법
CN113529779A (zh) 海上风电单柱变截面钢混负压筒基础及施工方法
DK2574772T3 (en) The wind turbine tower
JP6857968B2 (ja) 梁補強金具
EP4276005B1 (en) Floating-type foundation structure of steel tube-supported prestressed concrete
US20220332395A1 (en) A floating metal platform
KR20240042434A (ko) 부유식 풍력 터빈 플랫폼
JP6160043B2 (ja) 鋼管柱構造物及びその製造方法
JP2011058163A (ja) 鋼管コンクリート複合杭及び該鋼管コンクリート複合杭の継手構造
JP2013159970A (ja) 不等厚鋼管及び不等厚鋼管を用いた構造体
EP3246493A1 (en) A method for construction of a mast for a windmill
JP2018076112A (ja) 構築途中の円筒タンクの耐風補強方法
CN220247775U (zh) 具有减自重降风阻功能的电力杆塔
CN216041286U (zh) 海上风电单柱变截面钢混负压筒基础
CN215252271U (zh) 结合不锈钢和页岩陶粒混凝土的装配式桥墩
JP7284863B1 (ja) 洋上風車用ジャケット構造物及び洋上風車用ジャケット構造物の溶接方法
JP7367724B2 (ja) 円筒形構造物の補強構造およびこれを備える補強円筒形構造物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043565.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823695

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011823695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011823695

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137005855

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE