WO2012033210A1 - 伸びフランジ性に優れた高強度冷延鋼板およびその製造方法 - Google Patents

伸びフランジ性に優れた高強度冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2012033210A1
WO2012033210A1 PCT/JP2011/070665 JP2011070665W WO2012033210A1 WO 2012033210 A1 WO2012033210 A1 WO 2012033210A1 JP 2011070665 W JP2011070665 W JP 2011070665W WO 2012033210 A1 WO2012033210 A1 WO 2012033210A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
phase
temperature
less
stage
Prior art date
Application number
PCT/JP2011/070665
Other languages
English (en)
French (fr)
Inventor
英尚 川邉
将憲 西澤
瀬戸 一洋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP11823683.5A priority Critical patent/EP2615191B1/en
Priority to KR1020137005549A priority patent/KR101515730B1/ko
Priority to CN201180042942.0A priority patent/CN103080357B/zh
Priority to US13/819,877 priority patent/US20130160907A1/en
Publication of WO2012033210A1 publication Critical patent/WO2012033210A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet suitable for use in automobile parts and the like that are press-formed into a complicated shape, and particularly relates to improvement of stretch flangeability.
  • high-strength steel plate refers to a steel plate having a high strength of tensile strength: 590 MPa or more.
  • the “steel plate” here includes a steel plate and a steel strip.
  • Patent Document 1 describes “a method for producing a high-strength cold-rolled steel sheet having excellent stretch flangeability”.
  • the technique described in Patent Document 1 includes C: 0.04% or more and less than 0.20%, Si: 1.50% or less, Mn: 0.50 to 2.00%, P: 0.10% or less, S: 0.005% or less, Cr: 2.00% or less, or further including one or more of Ca, Ti, Nb, REM, and Ni, and a cold steel plate composed of the remaining Fe and inevitable impurities After rolling, annealing is performed in a two-phase region, and cooling is performed so as to stay at a temperature between 650 ° C.
  • Patent Document 2 describes “a composite structure steel plate excellent in elongation and stretch flangeability”.
  • the steel sheet described in Patent Document 2 contains, by mass%, C: 0.02 to 0.12%, Si + Al: 0.5 to 2.0%, and Mn: 1.0 to 2.0%.
  • the second phase structure which is composed of 80% or more of polygonal ferrite, 1 to 7% of retained austenite, the balance of bainite and / or martensite, and martensite and retained austenite, has an aspect ratio Has a composite structure in which the number of aggregated second phase structures having an average particle size of 0.5 ⁇ m or more is 15 or less in 750 ⁇ m 2 .
  • elongation at room temperature and stretch flangeability are improved by shape control of the second phase structure.
  • Patent Document 1 a large amount of Cr that adversely affects chemical conversion treatment is essential, and the C content is also high, leaving problems in chemical conversion treatment and spot weldability.
  • Patent Document 2 contains a large amount of Si and Al that reduce chemical conversion property and spot weldability, and has a problem that chemical conversion property and spot weldability are low.
  • Patent Document 3 describes “a method for producing a high-strength steel sheet excellent in elongation and stretch flangeability”.
  • the technique described in Patent Document 3 is as follows: C: 0.05 to 0.3%, Si: 0.01 to 3%, Mn: 0.5 to 3.0%, Al: 0.01 to 0.1 And a composition containing one or more selected from Ti, Nb, V, and Zr in a total of 0.01 to 1% and a total space factor of martensite and / or bainite is 90%
  • a steel plate having a prior austenite grain diameter of 20 ⁇ m or less in equivalent circle diameter is used as a raw steel plate, and after heating and holding in a temperature range of (Ac 3 points ⁇ 100 ° C.) to Ac 3 points for 1 to 2400 seconds, It is cooled to an Ms point or less at an average cooling rate of 10 ° C./second or more, and subsequently reheated and maintained in a temperature range of 300 to 550 ° C.
  • Patent Document 3 has a problem that it contains a large amount of Si, has a high C content, and has reduced chemical conversion properties and spot weldability.
  • the technique described in Patent Document 3 requires a heating and reheating step after cooling, and there is a concern that the manufacturing cost will increase.
  • increasing the strength of a steel plate often involves adding a large amount of alloy elements such as C and Si.
  • it is also required to adjust the C amount and Si amount to appropriate ranges in order to ensure the chemical conversion processability and spot weldability required for automobile bodies. ing.
  • Patent Document 4 describes “a method for producing a high-strength cold-rolled steel sheet having excellent chemical conversion properties and stretch flangeability”.
  • a steel slab having a composition different in surface layer part and other interiors is hot-rolled, then cold-rolled and heated to 800 ° C. or higher in a continuous annealing line, and then 30 ° C.
  • This is a method for producing a high-strength cold-rolled steel sheet that is cooled to 350 to 500 ° C. at a cooling rate of at least / sec and is maintained in the temperature range for at least 40 seconds.
  • the components of the surface layer are: C: 0.20% or less, Si: 0.04% or less, Mn: 0.1 to 3.0%, P: 0.025% or less, S: 0.005% or less, Al : 0.01 to 0.1%, or further including one or more of Ca, REM, and Zr, the balance being Fe and inevitable impurities, the other internal components are C: 0.04 ⁇ 0.20%, Si: 0.5-2.0%, Mn: 0.5-3.0%, and C, Si, Mn satisfies a specific relational expression, P: 0.025% or less, S: 0.005% or less, Al: 0.01 to 0.1%, or one or more of Ca, REM, and Zr, and the balance Fe and unavoidable impurities.
  • Patent Document 5 describes “a method for producing a high-strength steel sheet excellent in workability”.
  • the technique described in Patent Document 5 is as follows: C: 0.03-0.13%, Si: 0.02-0.8%, Mn: 1.0-2.5%, Al: 0.01-0 0.1%, N: 0.01% or less, Ti: 0.004 to 0.1% and / or Nb: 0.004 to 0.07% in a cold rolled steel sheet having an average heating rate of 5 After heating to a temperature range above the Ac3 transformation point at °C / s and holding for 10 to 300 seconds in the temperature range, from the temperature range to a temperature range of 400 to 600 °C with an average cooling rate of 2 °C / s or more This is a method for producing a high-strength steel sheet, which is cooled, held in the temperature range for 40 to 400 seconds, and then subjected to an annealing step for cooling to obtain a high-strength steel sheet.
  • the area% is ferrite: 50 to 86%, bainite: 10 to 30%, martensite: 4 to 20%, and the bainite area ratio is larger than the martensite area ratio.
  • the average particle size of the ferrite as the parent phase is 2.0 to 5.0 ⁇ m
  • the second phase has a structure having bainite and martensite, and is excellent in TS-El balance and TS- ⁇ balance. It is said that a high-strength steel sheet of 590 to 780 MPa class that is excellent in properties can be obtained.
  • Patent Document 6 describes “a method for producing a high-strength cold-rolled steel sheet excellent in the balance between elongation and stretch flangeability”.
  • C 0.05 to 0.30%, Si: 3.0% or less, Mn: 0.1 to 5.0%, Al: 0.001 to 0.10% Nb: 0.02 to 0.40%, Ti: 0.01 to 0.20%, V: 0.01 to 0.20%, or one or more of (Nb / 96 + Ti / 51 + V / 48) Finishing rolling end temperature: 900 ° C. or higher, cooling time to 550 ° C .: (finishing end temperature ⁇ 550 ° C.) / 20 s or less, coiling temperature: 500 ° C.
  • cold rolling rate 20-80% cold rolling, 600 ° C. to Ac1 temperature range satisfying specific relationship Heating up to a temperature in the range of (8 ⁇ Ac1 + 2 ⁇ Ac3) / 10 to 1000 ° C. at a rate of temperature increase, 3600 s or less at that temperature
  • After holding rapidly cool to a temperature below the Ms point at a cooling rate of 50 ° C./s or gradually cool to a temperature of up to 600 ° C. and then cool to a temperature below the Ms point at a cooling rate of 50 ° C./s or less.
  • the soft phase contains ferrite in an area ratio of 10 to 80%, further includes residual austenite, martensite, and a mixed structure thereof in an area ratio of less than 5%, and the balance is tempered martensite and / or It has a structure composed of a hard phase composed of tempered bainite, and has an excellent balance between elongation and stretch flangeability by reducing the amount of strain in ferrite as much as possible and enhancing the deformability of the hard phase.
  • a high-strength cold-rolled steel sheet having a tensile strength of 780 MPa or more is obtained.
  • Patent Document 7 describes “a method for producing a cold-rolled steel sheet” having good elongation and bendability while having a high tensile strength of 780 MPa or more and a thick plate thickness of 2.0 mm or more.
  • the technique described in Patent Document 7 includes C: 0.08 to 0.20%, Si: 1.0% or less, Mn: 1.8 to 3.0%, sol.
  • a hot rolled steel sheet having a composition containing Al: 0.005 to 0.5%, N: 0.01% or less, and Ti: 0.02 to 0.2% is subjected to cold rolling with a reduction ratio of 30 to 60%.
  • the cold-rolled steel sheet is retained within a temperature range of Ac3 to (Ac3 + 50 ° C.) for 240 seconds, cooled to a temperature range of 680 to 750 ° C. at an average cooling rate of 1 to 10 ° C./second, This is a method for producing a cold-rolled steel sheet that is cooled to 400 ° C. or lower at an average cooling rate of 20 to 50 ° C./second.
  • the volume ratio was 10% or more of ferrite, 20 to 70% of bainite, 3 to 20% of retained austenite, and 0 to 20% of martensite, and the average particle diameter was 10 ⁇ m or less for ferrite, 10 ⁇ m or less for bainite, While having a structure of 3 ⁇ m or less at the site, a high tensile strength TS of 780 MPa or more and a thick plate thickness of 2.0 mm or more, TS ⁇ E1 is 14000 MPa ⁇ % or more and the minimum bending radius is 1. It is supposed to be a cold-rolled steel sheet having excellent bending characteristics of 5 t or less.
  • Patent Document 4 it is required to use a steel slab whose composition is changed between the surface layer and the other inside, and a special cladding technique or the like is used to make such a steel slab. There is a problem that the manufacturing cost increases. Further, the technique described in Patent Document 5 has a problem that the bainite fraction is low and excellent bending characteristics cannot be secured stably. Moreover, since the temperature rising rate at the time of annealing is high, there is also a problem that the stability of the structure is lacking. Further, the technique described in Patent Document 6 is directed to a steel sheet having a high Si content, has a high C content, and has left problems in chemical conversion property and weldability.
  • the present invention advantageously solves the problems of the prior art, does not use a special cladding technique, and does not contain a large amount of an alloying element such as C or Si. It aims at providing a rolled steel plate and its manufacturing method.
  • it does not contain Si, Cr which adversely affects chemical conversion property, does not contain a large amount of C, Si, Al which adversely affects spot weldability, and is an expensive alloy element, Ni, It is a component system that does not contain Cu, Mo, or the like, and aims to improve stretch flangeability while maintaining high strength of tensile strength: 590 MPa or more.
  • excellent in stretch flangeability means the product of tensile strength TS and elongation El, strength-elongation balance TS ⁇ El of 16000 MPa% or more, product of tensile strength TS and hole expansion ratio ⁇ , The case where the strength-hole expansion rate balance TS ⁇ ⁇ satisfies 40000 MPa% or more is assumed.
  • the present inventors diligently studied the influence of the metal structure on stretch flangeability.
  • the heating and cooling conditions during annealing of cold-rolled sheets are devised, and the content of alloy elements such as C and Si is low by strictly adjusting the structural fraction of ferrite, bainite, martensite, and retained austenite. It was found that even in the component system, a cold-rolled steel sheet having excellent stretch flangeability can be produced while maintaining a high strength of tensile strength: 590 MPa or more.
  • heating should be performed in two stages and cooling should be performed in two stages, particularly in the latter half compared to the first half. It has been found that it is important that the cooling time is slow and the latter cooling time is 0.2 to 0.8 of the total cooling time.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
  • a high-strength cold-rolled steel sheet having excellent stretch flangeability.
  • the steel material is mass% and C: 0.050 to 0.00. 090%, Si: 0.05% or less, Mn: 1.5 to 2.0%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.1%, N : 0.01% or less, Ti: 0.005 to 0.050%, Nb: 0.020 to 0.080%, a steel material having a composition composed of the remaining Fe and unavoidable impurities, the annealing step, The maximum temperature reached: 800 to 900 ° C., a process having two stages of heating and two stages of cooling, and the two stages of heating are performed from 50 ° C.
  • the first stage of heating is performed up to the first stage heating temperature in the temperature range of (maximum temperature -50 ° C) to (maximum temperature -10 ° C).
  • Heat and a second stage heating in which the temperature rise time from the temperature range to the maximum temperature reached is 30 to 150 s.
  • the two-stage cooling is performed from the maximum temperature to an average cooling rate: 10 to Cooling at the first stage cooling at the first stage cooling rate of 40 ° C./s, followed by 400 to 500 ° C. at the average cooling rate: (0.2 to 0.8) ⁇ first stage cooling rate.
  • a method for producing a high-strength cold-rolled steel sheet excellent in stretch flangeability characterized by retaining for 100 to 1000 seconds in a temperature range of 400 ° C to 500 ° C after completion of cooling of the stage.
  • the tensile strength TS high strength of 590 MPa or more, excellent elongation satisfying the strength-elongation balance TS ⁇ El of 16000 MPa% or more and the strength-hole expansion rate balance TS ⁇ ⁇ of 40000 MPa% or more.
  • a high-strength cold-rolled steel sheet that has flangeability and is suitable for automobile parts that are press-molded into a complicated shape can be manufactured stably and inexpensively, and has a remarkable industrial effect.
  • C 0.050 to 0.090%
  • C is an element that increases the strength of the steel by solid solution or precipitation as carbide in the steel, and forms a bainite phase and a martensite phase that are low-temperature transformation phases through an increase in hardenability. This contributes to an increase in the strength of the steel sheet by strengthening the structure.
  • it is necessary to contain 0.050% or more.
  • the content exceeds 0.090%, the spot weldability is adversely affected, and the martensite phase is excessively hardened, so that stretch flangeability is deteriorated.
  • C is limited to the range of 0.050 to 0.090%. It is preferably 0.060 to 0.080%.
  • Si 0.05% or less
  • Si When Si is contained in a large amount, it hardens and the workability decreases. Moreover, when Si is contained in a large amount, a Si oxide is generated particularly during annealing, which adversely affects chemical conversion treatment properties. For this reason, Si is desirably reduced as much as possible as an impurity in the present invention, and is limited to 0.05% or less.
  • Mn 1.5 to 2.0%
  • Mn is an element that contributes to increasing the strength of the steel through solid solution to increase the strength of the steel and improve the hardenability. Such an effect becomes remarkable when the content is 1.5% or more.
  • excessive content exceeding 2.0% improves hardenability and increases the amount of low-temperature transformation phase, so that the steel sheet is excessively hardened to ensure a desired ferrite phase fraction. Becomes difficult, and press formability decreases. For this reason, Mn was limited to the range of 1.5 to 2.0%. Note that the content is preferably 1.6 to 1.9%.
  • P 0.030% or less P segregates at the grain boundary and has an adverse effect of reducing ductility and toughness. Moreover, P reduces spot weldability. For this reason, it is desirable to reduce P as much as possible. However, excessive reduction increases the refining time for dephosphorization, lowers the production efficiency, and increases the manufacturing cost. Is preferred. Further, if the content exceeds 0.030%, the spot weldability is significantly reduced. For this reason, P was limited to 0.030% or less. In addition, Preferably it is 0.001% or more and less than 0.020%.
  • S 0.0050% or less S is present in steel as inclusions and hardly contributes to the strength. It also forms coarse MnS and has ductility, in particular, the origin of cracking during stretch flange molding, and stretch flangeability. In order to reduce, it is preferable to reduce as much as possible. However, excessive reduction increases the desulfurization time in the steel making process, lowers the production efficiency, and causes an increase in production cost, so 0.0001% or more is preferable. If the content exceeds 0.0050%, the stretch flangeability is remarkably lowered, so S is limited to 0.0050% or less. Preferably, the content is 0.0001 to 0.0030%.
  • Al 0.005 to 0.1%
  • Al is an element that acts as a deoxidizer, and in order to obtain this effect sufficiently, it needs to be contained in an amount of 0.005% or more.
  • the content exceeds 0.1%, weldability such as flash butt welding is deteriorated, the effect of Al addition is saturated, and the production cost increases due to the addition of a large amount. For this reason, Al was limited to the range of 0.005 to 0.1%.
  • the content is preferably 0.02 to 0.06%.
  • N 0.01% or less N is an impurity in the present invention, but it may reduce aging resistance as solute N, and is preferably reduced as much as possible, but excessive reduction increases the refining time, In order to increase the manufacturing cost, it is preferable that the amount is about 0.0020% or more from the viewpoint of economy. On the other hand, if the content exceeds 0.01%, the tendency of occurrence of slab cracks, slab internal defects, etc. is increased, and surface defects may occur. For this reason, N was limited to 0.01% or less. In addition, Preferably it is 0.0050% or less.
  • Ti 0.005 to 0.050%
  • Ti is an element that forms carbonitride and has the effect of suppressing the coarsening of austenite grains during slab heating, etc., and contributes effectively to the refinement and homogenization of hot rolled sheet structure and steel sheet structure after annealing. To do. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.050%, precipitates are excessively generated in the ferrite phase, and the ductility of the ferrite phase is lowered. Moreover, the further excessive content of Ti hardens a hot-rolled sheet too much, and increases the rolling load at the time of hot rolling or cold rolling. For this reason, Ti was limited to the range of 0.005 to 0.050%. Note that the content is preferably 0.010 to 0.0040%.
  • Nb 0.020 to 0.080%
  • Nb is an element that contributes to increasing the strength of the steel sheet by forming a solid solution in the steel and by solid solution strengthening or by forming a carbonitride and by precipitation strengthening. To obtain such an effect, Nb is 0.020% or more. Containing is required.
  • excessive content exceeding 0.080% excessively produces precipitates in the ferrite phase, lowers the ductility of the ferrite phase, and excessively hardens the hot-rolled sheet, during hot rolling or cold. Increase the rolling load during rolling. For this reason, Nb was limited to a range of 0.020 to 0.08%. Note that the content is preferably 0.030 to 0.050%.
  • Ti contributes to the refinement and homogenization of the hot-rolled sheet structure and the steel sheet structure after annealing by suppressing the coarsening of the austenite grains, while Nb is dissolved in the steel and solidified. It contributes to increasing the strength of the steel sheet by melt strengthening or by forming carbonitride and by precipitation strengthening.
  • Ti and Nb having such an action are combined and contained.
  • the Nb content is greater than the Ti content in the present invention.
  • Nb / Ti is 1.5 or more.
  • Nb / Ti is preferably 1.8 or more and 5.0 or less.
  • Nb and Ti are partly redissolved in the heating stage of hot rolling, but are precipitated as Ti-based carbonitrides or Nb-based carbonitrides in the subsequent rough rolling, finish rolling, and further winding stages.
  • Ti-based carbonitrides are deposited at a high temperature, while Nb-based carbonitrides are deposited at a lower temperature than Ti-based carbonitrides. For this reason, Ti carbonitrides have a long residence time at high temperatures, and tend to grow and become coarse.
  • Nb-based carbonitrides are finer and have a relatively dense distribution because the precipitation temperature is lower than that of Ti-based carbonitrides.
  • Fine carbonitride has a pinning effect on crystal grains, and during annealing, recovery of cold-rolled structure, recrystallization, and grain growth are delayed, resulting in a uniform fine structure in the steel sheet finally obtained. can do.
  • Ti and Nb in combination, such a uniform fine structure can be obtained, and the bending characteristics of the steel sheet are remarkably improved.
  • Ca 0.0001 to 0.0050%
  • Ca is an element that contributes effectively to the shape control of inclusions.
  • MnS that is expanded in the cold rolling process and becomes plate-like inclusions into CaS that is a spherical inclusion, before the annealing process.
  • the form of inclusions is controlled to improve ductility and stretch flangeability.
  • Such an effect is recognized when the content is 0.0001% or more.
  • the content exceeds 0.0050%, the effect is saturated and an effect commensurate with the content cannot be expected.
  • Ca is preferably limited to a range of 0.0001 to 0.0050%. More preferably, the content is 0.0005 to 0.0020%.
  • the balance other than the components described above consists of Fe and inevitable impurities.
  • the cold-rolled steel sheet of the present invention is composed of 50% to 77% ferrite phase, 20% to 50% bainite phase, 2% to 10% martensite phase, and 1% to 5% residual austenite phase.
  • the ferrite phase is soft and contributes to the ductility (elongation) of the cold-rolled steel sheet.
  • the volume fraction of the ferrite phase needs to be 50% or more.
  • the desired high strength TS: 590 MPa or more
  • the volume fraction of the ferrite phase is limited to a range of 50 to 77%.
  • Preferably it is 50 to 65%, More preferably, it is 50 to 60%.
  • the crystal grain size of the ferrite phase is too large, the low-temperature transformation phase is localized, causing non-uniform deformation, and it becomes difficult to ensure excellent formability.
  • the average crystal grain size of the ferrite phase is preferably in the range of 1 to 10 ⁇ m.
  • Bainite phase 20-50%
  • the bainite phase is one of the low-temperature transformation phases, and in order to ensure a desired high strength, the present invention needs to contain 20% or more.
  • the content exceeds 50%, the steel sheet becomes excessively hard and formability decreases.
  • the volume fraction of the bainite phase was limited to a range of 20 to 50%.
  • the content is preferably 30 to 50%, more preferably more than 30% and 50% or less, and still more preferably 35 to 45%.
  • the average crystal grain size of the bainite phase exceeds 10 ⁇ m, the structure becomes a non-uniform structure, and non-uniform deformation occurs during molding, making it difficult to ensure excellent formability.
  • the average crystal grain size of the bainite phase is preferably in the range of 1 to 10 ⁇ m.
  • the ratio between the bainite phase and the martensite phase is also important.
  • the bainite phase is softer than the martensite phase, the strength difference (hardness difference) from the ferrite phase is smaller than that of the martensite phase, and the entire steel sheet is uniformly deformed during forming, so in particular from the viewpoint of improving stretch flangeability.
  • the site phase More advantageous than the site phase.
  • the low-temperature transformation phase is mainly composed of a bainite phase, and the martensite phase is contained in a small amount. Thereby, it is possible to ensure excellent moldability such as stretch flangeability while ensuring desired high strength.
  • the low temperature transformation phase in this invention means a bainite phase and a martensite phase.
  • the bainite phase contributes effectively to the improvement of bending workability.
  • the bending strain can be uniformly deformed without locally concentrating.
  • strain concentrates on the interface of the phase and cracks occur. This is because when a predetermined amount of the bainite phase having intermediate hardness exists, the strain is not locally concentrated during bending and the strain is dispersed, so that uniform deformation can be performed.
  • Martensite phase 2-10%
  • the martensite phase is hard as a low-temperature transformation phase and greatly contributes to an increase in the strength of the steel sheet.
  • many voids are generated at the interface between the martensite phase and the ferrite phase due to the hardness difference between the martensite phase and the ferrite phase.
  • the crack extends and leads to cracking.
  • the presence of a large amount of martensite phase reduces stretch flangeability.
  • the volume fraction of the martensite phase exceeds 10%, the strength becomes too high, the ductility is remarkably reduced, and the interface between the martensite phase and the ferrite phase increases, ensuring excellent stretch flangeability. It becomes difficult.
  • the volume fraction of the martensite phase is less than 2%, the dispersion in the structure becomes coarse and the influence on the stretch flangeability is reduced, but a desired high strength cannot be secured stably.
  • the volume fraction of the martensite phase was limited to a range of 2 to 10%. Preferably, it is 4 to 8%.
  • the average crystal grain size of the martensite phase is preferably in the range of 0.5 to 5.0 ⁇ m.
  • the average grain size of the martensite phase is less than 0.5 ⁇ m, the hard martensite phase is finely dispersed in the soft ferrite phase, resulting in uneven deformation due to a large hardness difference. It is difficult to ensure the moldability.
  • the average grain size of the martensite phase is larger than 5.0 ⁇ m, the martensite phase is unevenly distributed and the structure becomes non-uniform, so that the deformation becomes non-uniform and excellent moldability can be secured. It becomes difficult.
  • the average crystal grain size of the martensite phase is preferably limited to a range of 0.5 to 5.0 ⁇ m.
  • Residual austenite phase 1-5%
  • the residual austenite phase contributes to the improvement of ductility (uniform elongation) through strain-induced transformation during molding.
  • C is concentrated and hard, and the hardness difference from the ferrite phase is large. For this reason, the presence of the retained austenite phase becomes a factor that reduces stretch flangeability.
  • the residual austenite phase exceeds 5%, a large number of voids are generated at the interface between the residual austenite phase and the ferrite phase during punching shearing due to the hardness difference from the ferrite phase. The voids are connected to form cracks, which are further extended to crack.
  • the volume fraction of the retained austenite phase is less than 1%, the dispersion in the structure becomes coarse, so that the influence on stretch flangeability is reduced, but the improvement in ductility is small.
  • the volume fraction of the retained austenite phase was limited to a range of 1 to 5%.
  • the content is preferably 1 to 3%.
  • the remainder other than the above-mentioned phase is a cementite phase that is inevitably generated. If the cementite phase inevitably produced is less than 3% in volume fraction, the effect of the present invention is not affected.
  • the average crystal grain size of ferrite phase, bainite phase, martensite phase, etc. is observed with 5 or more fields of view with an optical microscope (magnification: 200 to 1000 times), and after identifying the structure, a cutting method or image based on JIS method. What is necessary is just to calculate by analysis.
  • the steel material having the above composition is sequentially subjected to a hot rolling process, a cold rolling process, an annealing process, or a temper rolling process to obtain a cold rolled steel sheet.
  • the manufacturing method of the steel material is not particularly limited.
  • the molten steel having the above composition is melted by a conventional melting method such as a converter method or an electric furnace method, and is slabed by a conventional casting method such as a continuous casting method. It is preferable to use a steel material such as
  • the steel material casting method is desirably an intermittent casting method in order to prevent macro segregation of components, but there is no problem with the ingot casting method or the thin slab casting method.
  • the obtained steel material is then subjected to a hot rolling process, but the heating for hot rolling is performed by cooling to room temperature and then reheating, without cooling to room temperature.
  • Energy-saving processes such as direct feed rolling and direct rolling, in which the material is charged into the heating furnace as it is or after a slight heat retention is performed, can be applied without any problem.
  • the hot rolling process the steel material having the above-described composition is heated or subjected to normal hot rolling consisting of rough rolling and finish rolling without heating, to obtain a hot-rolled sheet having a predetermined size and shape, and then wound up. It is preferable to set it as a process. In the present invention, it is only necessary to obtain a hot-rolled sheet having a predetermined size and shape, and it is not particularly necessary to limit the conditions for hot rolling, but the following conditions are preferable.
  • the heating temperature of the steel material is preferably 1150 ° C. or higher. If heating temperature is less than 1150 degreeC, the rolling load of hot rolling will become large.
  • the upper limit of the heating temperature is not particularly limited, but is preferably set to 1300 ° C. or less from the viewpoint of crystal grain coarsening, scale loss due to oxidation, and the like.
  • the heated steel material is roughly rolled into a sheet bar having a predetermined size and shape. However, the condition of the rough rolling is not particularly limited as long as it can be a sheet bar having a predetermined size and shape.
  • the finish rolling end temperature in finish rolling is preferably 880 ° C. or higher.
  • the finish rolling finishing temperature in finish rolling shall be 880 degreeC or more.
  • the upper limit of finishing rolling finish temperature is not particularly limited, but if it becomes too high, there is a problem that the crystal grains become coarse and the workability of the cold-rolled sheet is lowered. It is preferable.
  • the obtained hot rolled sheet is then wound into a coil.
  • the cooling rate until winding is not particularly limited, and a cooling rate higher than air cooling is sufficient.
  • the coiling temperature is preferably 450 to 650 ° C.
  • the hot-rolled sheet becomes hard, the cold rolling load increases, and it becomes difficult to ensure the cold rolling reduction ratio.
  • it exceeds 650 ° C. the cooling rate after winding varies in the longitudinal direction and width direction in the coil, the structure becomes non-uniform, and shape defects after cold rolling tend to occur.
  • the hot-rolled sheet is then pickled and then cold-rolled.
  • the cold rolling step it is preferable to subject the hot rolled sheet to cold rolling at a predetermined cold rolling reduction ratio to obtain a cold rolled sheet for ordinary cold rolling.
  • the conditions of the cold rolling process need not be particularly limited, but the cold rolling reduction ratio is preferably determined by the thickness of the hot rolled sheet and the product sheet. Usually, if the cold rolling reduction ratio is 30% or more, there is no particular problem in workability and sheet thickness accuracy. On the other hand, if the cold rolling reduction ratio exceeds 70%, the load on the cold rolling mill becomes too large, and operation becomes difficult.
  • the cold-rolled sheet is then subjected to an annealing process.
  • the annealing process in the present invention is a process having two-stage heating and two-stage cooling.
  • the maximum temperature reached in heating is 800 to 900 ° C., and then two-stage cooling is performed.
  • the maximum temperature is less than 800 ° C.
  • the amount of ⁇ ⁇ ⁇ transformation during heating is small, and therefore, the structure when reaching the maximum temperature becomes a ferrite + austenite two-phase structure with a large amount of ferrite, and is finally obtained.
  • the steel sheet has an excessively high structure fraction of the ferrite phase, and the desired high strength cannot be ensured.
  • the highest temperature exceeds 900 ° C.
  • the crystal grain size of the ferrite phase and low-temperature transformation phase that are generated tends to be coarse, and the stretch flangeability decreases. For this reason, the maximum temperature reached was limited to a temperature in the range of 800 to 900 ° C.
  • the two-stage heating consists of a first stage heating followed by a second stage heating.
  • the heating process is important in adjusting the structural fraction of the ferrite phase and the bainite phase.
  • the average temperature of the cold-rolled sheet is increased from at least 50 ° C. to the first stage heating attainment temperature in the temperature range from (maximum reached temperature ⁇ 50 ° C.) to (maximum achieved temperature ⁇ 10 ° C.).
  • Speed A heating treatment at 0.5 to 5.0 ° C./s.
  • the heating conditions up to 50 ° C. are not particularly limited, and may be appropriately performed according to a conventional method.
  • the heating rate in the first stage heating is less than 0.5 ° C./s, the heating rate is too slow and coarsening of the austenite grains proceeds. Therefore, ⁇ ⁇ ⁇ due to the coarsening of the austenite grains during cooling. The transformation is delayed, the structural fraction of the ferrite phase to be formed is reduced, and it is hardened to deteriorate the workability.
  • the rate of temperature increase in the first stage heating exceeds 5.0 ° C./s, the austenite grains to be produced become finer, and the finally obtained ferrite phase has a high structural fraction. Ensuring strength is difficult. For this reason, the rate of temperature increase in the first stage heating is limited to the range of 0.5 to 5.0 ° C./s on average. It is preferably 1.5 to 3.5 ° C./s.
  • the first stage heating temperature is less than (maximum temperature -50 ° C.)
  • the second stage heating up to the maximum temperature becomes rapid heating, and a desired tissue fraction can be stably secured. It becomes difficult.
  • the temperature reached in the first stage exceeds the maximum temperature ( ⁇ 10 ° C.)
  • the second stage heating up to the maximum temperature is gradually heated, and the residence time in the high temperature range becomes longer. The crystal grains become too coarse and workability is reduced. For this reason, the first stage heating ultimate temperature was limited to a temperature range of (maximum ultimate temperature ⁇ 50 ° C.) to (maximum ultimate temperature ⁇ 10 ° C.).
  • the second stage heating is a process of heating so that the temperature rise time from the first stage heating reaching temperature to the maximum reaching temperature is 30 to 150 s. If the heating time from the first stage heating temperature to the highest temperature was less than 30 s, the heating to the highest temperature became too rapid, the ⁇ ⁇ ⁇ transformation was delayed, and finally the highest temperature was reached. At this time, the structure fraction of the ferrite phase becomes high, and a desired high strength cannot be secured. In addition, the diffusion of alloy elements such as C and Mn becomes insufficient, resulting in a non-uniform structure and workability is reduced. On the other hand, if the length is longer than 150 s, the crystal grain size becomes coarse and the workability tends to be lowered. For this reason, the temperature raising time for the second stage heating is adjusted to a range of 30 to 150 s.
  • Cooling is performed immediately after the second stage heating is completed.
  • the cooling after heating is a two-stage cooling. Cooling is important in order to adjust the structural fraction of the soft ferrite phase and the hard bainite phase, and to combine high strength with a tensile strength of TS: 590 MPa or more and excellent workability. For this reason, it is necessary to strictly adjust the cooling pattern, that is, the cooling rate and the cooling time so that the desired metal structure can be secured.
  • the two-stage cooling consists of a first-stage cooling followed by a second-stage cooling that is slower than the first-stage cooling. The first stage cooling and the second stage cooling are important for adjusting the structure fraction of the ferrite phase and the bainite phase.
  • the first-stage cooling is performed by cooling from the highest temperature at an average cooling rate of 10 to 40 ° C./s (first-stage cooling rate).
  • first-stage cooling rate When the first stage cooling rate is less than 10 ° C./s, the soft ferrite phase has a high structural fraction, and it becomes difficult to ensure a desired high strength.
  • the first stage cooling rate is rapid cooling exceeding 40 ° C./s, the amount of ferrite phase generated is reduced, the steel sheet becomes hard and workability is lowered.
  • the second stage cooling immediately follows the first stage cooling, and immediately depends on the first stage cooling rate (0.2 to 0.8) ⁇ (first stage cooling rate) second stage cooling. It is set as the process which cools to the 2nd stage cooling stop temperature of 400-500 degreeC with a cooling rate. If the second stage cooling rate is less than 0.2 ⁇ (first stage cooling rate), the cooling is too slow and the formation of a soft ferrite phase is promoted, the bainite phase structure fraction is lowered, and the desired high strength is achieved. It cannot be secured.
  • the second stage cooling rate was limited to the range of 0.2 to 0.8 ⁇ (first stage cooling rate).
  • the cooling time of the first stage cooling and the second stage cooling is distributed.
  • the cooling time for the second stage cooling is set to a cooling time of 0.2 to 0.8 of the total cooling time, which is the sum of the cooling times for the first stage cooling and the second stage cooling. That is, the second stage cooling time is (0.2 to 0.8) ⁇ total cooling time. If the cooling time of the second stage cooling is less than 0.2 of the total cooling time, the cooling time at the first stage cooling rate becomes longer, the amount of ferrite phase generated decreases, and the structure fraction of the bainite phase increases. Thus, the steel plate becomes hard and the desired stretch flangeability cannot be secured.
  • the cooling time of the second stage cooling is limited to 0.2 to 0.8 of the total cooling time.
  • the cooling stop temperature in the second stage cooling is less than 400 ° C.
  • the structure is mainly composed of a hard martensite phase
  • the steel sheet becomes excessively hard, and the stretch flangeability deteriorates.
  • the cooling stop temperature of the second stage cooling exceeds 500 ° C.
  • the structure fraction of the ferrite phase decreases
  • the steel plate becomes hard, and a pearlite phase is generated, and excellent workability. It will be difficult to ensure.
  • the cooling stop temperature of the second stage cooling is limited to the range of 400 to 500 ° C.
  • the residence time after stopping the cooling is important for adjusting the structure fraction of the bainite phase. If the residence time is less than 100 s, the transformation from austenite to bainite is insufficient, and the untransformed austenite is transformed into the martensite phase. Therefore, the structural fraction of the martensite phase is increased, and the steel sheet is hardened and has workability. descend. On the other hand, when the residence time is longer than 1000 s, the structure fraction of the bainite phase increases, and it becomes difficult to ensure desired excellent workability. For this reason, the residence time after stopping the cooling is limited to 100 to 1000 s. Although cooling is continued after the above-mentioned residence, the conditions are not particularly limited and may be appropriately determined according to the production equipment.
  • the cold-rolled annealed plate may be further subjected to a temper rolling step for the purpose of shape correction and surface roughness adjustment.
  • a temper rolling step for the purpose of shape correction and surface roughness adjustment.
  • Excessive temper rolling rolls crystal grains to form a rolled structure, so that the ductility is lowered and the workability is lowered. Therefore, the temper rolling process has an elongation of 0.05 to 0.5. % Temper rolling is preferable.
  • Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (steel material) by a continuous casting method. These steel materials (slabs) were used as starting materials, heated to 1200 ° C, and then subjected to hot rolling at a finish rolling finish temperature of 900 ° C and a coiling temperature of 600 ° C to form hot rolled sheets. . Next, the hot-rolled sheet is subjected to hydrochloric acid pickling and then cold-rolled to form a cold-rolled sheet, followed by two-stage heating and two-stage cooling under the conditions shown in Table 2.
  • An annealing process for annealing was performed to obtain a cold-rolled annealed sheet having a thickness of 1.4 mm. From the obtained cold-rolled steel plate (cold-rolled annealed plate), test pieces were collected and subjected to a structure observation test, a tensile test, a hole expansion test, and a bending test.
  • the test method was as follows.
  • Microstructure observation test Samples for microstructural observation were collected from the obtained cold-rolled steel sheet, the cross section in the rolling direction was polished, corroded (Nital solution), and the optical microscope ( The number of fields: 5 or more fields were observed and imaged with a scanning electron microscope (magnification: 3000 times). While identifying the structure
  • the average crystal grain size of the ferrite phase was determined by a cutting method in accordance with the method defined in JIS G 0552. Moreover, it carried out similarly about the bainite phase and the martensite phase.
  • All of the examples of the present invention have excellent tensile strength TS: high strength of 590 MPa or more, strength-elongation balance TS ⁇ El of 16000 MPa% or more, and strength-hole expansion ratio balance TS ⁇ ⁇ of 40000 MPa% or more. It is a high-strength cold-rolled steel sheet having excellent bendability that can withstand severe bending as well as stretch flangeability.
  • the strength is insufficient, the elongation El is low, or TS ⁇ El is less than 16000 MPa%, and the stretch flangeability is deteriorated.
  • the hole expansion rate is low, and TS ⁇ ⁇ is less than 40000 MPa%.
  • the comparative examples (steel plates No. 8 and No. 9) whose composition falls outside the scope of the present invention have few ferrite phases, cannot secure a desired structure, have low elongation El, and have low stretch flangeability and bending workability. .
  • Comparative example (steel plate No. 10) where the rate of temperature rise in the annealing process is slow and deviates from the scope of the present invention comparative example (steel plate No. 13) having a high maximum temperature and deviates from the scope of the present invention, temperature rise time of the second stage heating
  • a comparative example (steel plate No. 15) that deviates from the scope of the present invention for a long time a comparative example (steel plate No. 17) that has a fast cooling rate for the first stage cooling, and a large cooling rate for cooling the second stage.
  • Comparative example (steel plate No. 19) that deviates from the scope of the invention comparative example (steel plate No.
  • the comparative examples (steel plate No. 23) and the comparative examples (steel plates No. 24 and No. 25) whose residence time deviates from the scope of the present invention have low ferrite phase structure fractions, and stretch flangeability is reduced. .
  • the comparative example (steel plate No. 25) in which the residence time is out of the range of the present invention has a structure fraction of the bainite phase that is out of the range of the present invention, and the stretch flangeability is deteriorated.
  • the comparative example (steel plate No. 11) where the temperature rising rate in the annealing process is fast and deviates from the range of the present invention the comparative example (steel plate No. 12) whose maximum ultimate temperature is low and deviates from the range of the present invention, Comparative example (steel plate No. 14) that is short in time and out of the scope of the present invention, comparative example (steel plate No. 16) in which the cooling rate of the first stage cooling is slow and out of the scope of the present invention, and cooling speed in the second stage is slow.

Abstract

 本発明は、mass%で、C:0.050~0.090%、Si:0.05%以下、Mn:1.5~2.0%、P:0.030%以下、S:0.0050%以下、Al:0.005~0.1%、N:0.01%以下、Ti:0.005~0.050%、Nb:0.020~0.080%を含み、残部Feおよび不可避的不純物からなる組成と、体積%で、50~77%のフェライト相と、20~50%のベイナイト相と、2~10%のマルテンサイト相と、1~5%の残留オーステナイト相からなる組織と、を有し、引張強さTS:590MPa以上の高強度と、強度-伸びバランスTS×Elが16000MPa%以上、強度-穴拡げ率バランスTS×λが40000MPa%以上を満足する、伸びフランジ性に優れた高強度冷延鋼板及びその製造方法を提供するものである。

Description

伸びフランジ性に優れた高強度冷延鋼板およびその製造方法
 本発明は、複雑な形状にプレス成形される自動車部品などに用いて好適な、高強度冷延鋼板に係り、とくに伸びフランジ性の向上に関する。ここでいう「高強度鋼板」とは、引張強さ:590MPa以上の高強度を有する鋼板をいうものとする。また、ここでいう「鋼板」には、鋼板、鋼帯を含むものとする。
 近年、地球環境の保全という観点から自動車の燃費向上が要求され、自動車車体の軽量化が進められている。また、乗員の安全性確保という観点から自動車の衝突安全性向上が要求されている。このような要求に鑑みて、自動車車体への高強度鋼板の適用が拡大している。
 しかし、使用する鋼板の高強度化にともない、プレス成形性が低下する。とくに伸びフランジ性が大きく低下する傾向にある。このため、プレス成形性、とくに伸びフランジ性に優れた高強度鋼板が要求されている。
 このような要求に対し、例えば特許文献1には、「伸びフランジ性にすぐれる高強度冷延鋼板の製造方法」が記載されている。特許文献1に記載された技術は、C:0.04%以上0.20%未満、Si:1.50%以下、Mn:0.50~2.00%、P:0.10%以下、S:0.005%以下、Cr:2.00%以下を含み、あるいはさらにCa、Ti、Nb、REM、Niのうちの1種以上を含み、残部Feおよび不可避的不純物からなる鋼板を冷間圧延した後、焼鈍を2相域で行い、650℃とパーライト変態が停止する温度Tとの間の温度に10秒以上滞在させるように冷却し、Tから450℃までの滞在時間を5秒以下とするように冷却する伸びフランジ性にすぐれる高強度冷延鋼板の製造方法である。特許文献1に記載された技術では、異常組織の発生を抑えることにより、優れた伸びフランジ性を有する鋼板が製造できるとしている。
 また、特許文献2には、「伸びおよび伸びフランジ性に優れる複合組織鋼板」が記載されている。特許文献2に記載された鋼板は、質量%で、C:0.02~0.12%、Si+Al:0.5~2.0%、Mn:1.0~2.0%を含有する組成と、組織占積率で、ポリゴナルフェライトが80%以上、残留オーステナイトが1~7%、残部がベイナイトおよび/またはマルテンサイトからなり、マルテンサイトおよび残留オーステナイトである第2相組織が、アスペクト比が1:3以下で平均粒径が0.5μm以上である塊状の第2相組織が750μm中に15個以下である複合組織とを有する。特許文献2に記載された技術では、第2相組織の形態制御により、室温での伸びおよび伸びフランジ性が向上するとしている。
 しかし、特許文献1に記載された技術では、化成処理性に悪影響を及ぼすCrを多量に必須含有するとしており、また、C含有量も高く、化成処理性、スポット溶接性に問題を残している。また、特許文献2に記載された技術では、化成処理性、スポット溶接性を低下させるSi、Alを多量に含有しており、化成処理性、スポット溶接性が低いという問題がある。
 また、特許文献3には、「伸びおよび伸びフランジ性に優れた高強度鋼板の製造方法」が記載されている。特許文献3に記載された技術は、C:0.05~0.3%、Si:0.01~3%、Mn:0.5~3.0%、Al:0.01~0.1%を含み、Ti,Nb,V,Zrのうちから選ばれる1種または2種以上を合計で0.01~1%含む組成と、マルテンサイトおよび/またはベイナイトの合計の占積率が90%以上で、旧オーステナイト粒径が円相当直径で20μm以下である鋼板を素材鋼板として、(Ac点−100℃)~Ac点の温度範囲に1~2400秒の時間、加熱保持した後、10℃/秒以上の平均冷却速度でMs点以下まで冷却し、引続き300~550℃の温度範囲に60~1200秒の時間再加熱保持することを特徴とする、引張強度が590MPa以上で伸びおよび伸びフランジ性に優れた高強度鋼板の製造方法である。特許文献3に記載された技術によれば、5~30%のフェライト相と50~95%のマルテンサイト相を含み、フェライト相の平均粒径が円相当直径で3μm以下、マルテンサイト相の平均粒径が円相当直径が6ミクロン以下である組織の鋼板が製造できるとしている。フェライト相とマルテンサイト相の占積率および平均粒径を適切に制御することにより、伸びおよび伸びフランジ性が向上するとしている。
 しかし、特許文献3に記載された技術では、Siを多量に含有しており、またC含有量も高く、化成処理性、スポット溶接性が低下しているという問題がある。また、特許文献3に記載された技術では、冷却後に昇温再加熱工程を必要としており、製造コストが高騰する懸念がある。
 このように、鋼板の高強度化には、C,Si等の合金元素の多量添加を伴う場合が多く、このような場合にはプレス成形性の低下とともに、化成処理性やスポット溶接性の低下を伴う。そこで、伸びフランジ性などのプレス成形性の向上とともに、自動車車体用として要求される化成処理性、スポット溶接性を確保するために、とくにC量およびSi量を適正範囲に調整することも要求されている。
 このような要求に対し、例えば特許文献4には、「化成処理性と伸びフランジ性の優れた高強度冷延鋼板の製造方法」が記載されている。特許文献4に記載された技術は、表層部とその他の内部とを異なる組成とする鋼スラブを、熱間圧延し、その後冷延して連続焼鈍ラインで、800℃以上に加熱後、30℃/秒以上の冷却速度で350~500℃まで冷却し、該温度域で40秒以上保持する高強度冷延鋼板の製造方法である。表層部の成分は、C:0.20%以下、Si:0.04%以下、Mn:0.1~3.0%、P:0.025%以下、S:0.005%以下、Al:0.01~0.1%を含み、あるいはさらにCa、REM、Zrのうちの1種以上を含み、残部Feおよび不可避的不純物からなり、その他の内部の成分は、C:0.04~0.20%、Si:0.5~2.0%、Mn:0.5~3.0%、かつC,Si,Mnが特定の関係式を満足し、P:0.025%以下、S:0.005%以下、Al:0.01~0.1%を含み、あるいはさらにCa、REM、Zrのうちの1種以上を含み、残部Feおよび不可避的不純物からなるとしている。
 また、特許文献5には、「加工性に優れた高強度鋼板の製造方法」が記載されている。特許文献5に記載された技術は、C:0.03~0.13%、Si:0.02~0.8%、Mn:1.0~2.5%、Al:0.01~0.1%、N:0.01%以下、Ti:0.004~0.1%および/またはNb:0.004~0.07%を含む組成を有する冷延鋼板に、平均昇温速度5℃/s以上でAc3変態点以上の温度域まで加熱し、該温度域で10~300秒保持した後、当該温度域から2℃/s以上の平均冷却速度で400~600℃の温度域まで冷却し、該温度域で40~400秒の範囲内で保持したのち冷却する焼鈍工程を施し、高強度鋼板を得る高強度鋼板の製造方法である。特許文献5に記載された技術によれば、面積%で、フェライト:50~86%、ベイナイト:10~30%、マルテンサイト:4~20%であり、ベイナイト面積率がマルテンサイト面積率より多く、さらに母相であるフェライトの平均粒径が2.0~5.0μmで、第2相として、ベイナイトとマルテンサイトを有する組織を有し、TS−Elバランス、TS−λバランスに優れ、加工性に優れた、590~780MPa級の高強度鋼板が得られるとしている。
 また、特許文献6には、「伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板の製造方法」が記載されている。特許文献6に記載された技術では、C:0.05~0.30%、Si:3.0%以下、Mn:0.1~5.0%、Al:0.001~0.10%を含み、Nb:0.02~0.40%、Ti:0.01~0.20%、V:0.01~0.20%の1種または2種以上を、(Nb/96+Ti/51+V/48)×48が0.01~0.20%を満足するように含む鋼材を、仕上げ圧延終了温度:900℃以上、550℃までの冷却時間:(仕上げ圧延終了温度−550℃)/20 s以下、巻取温度:500℃以下とする熱間圧延を施した後、冷間圧延率:20~80%とする冷間圧延を施し、600℃~Ac1の温度域を特定関係を満足する昇温速度で、(8×Ac1+2×Ac3)/10 ~1000℃の範囲の温度まで加熱し、該温度で3600s以下保持したのち、Ms点以下の温度まで50℃/s以上の冷却速度で急冷するか、600℃までの温度まで徐冷したのち、Ms点以下の温度まで50℃/s以下の冷却速度で冷却する焼鈍を施し、さらに焼戻する。これにより、軟質相として面積率で10~80%のフェライトを含み、さらに残留オーステナイト、マルテンサイト、およびそれらの混合組織を面積率で5%未満として含み、残部が、焼戻マルテンサイトおよび/または焼戻ベイナイトからなる硬質相からなる組織を有し、フェライト中の歪量を極力少なくし、硬質相の変形能を高めることができる組織とすることにより、伸びと伸びフランジ性のバランスに優れた、引張強さ780MPa以上の高強度冷延鋼板が得られるとしている。
 また、特許文献7には、780MPa以上の高い引張強さと2.0mm以上の厚い板厚を有しながら良好な伸びおよび曲げ性を有する「冷延鋼板の製造方法」が記載されている。特許文献7に記載された技術は、C:0.08~0.20%、Si:1.0%以下、Mn:1.8~3.0%、sol.Al:0.005~0.5%、N:0.01%以下、Ti:0.02~0.2%を含む組成の熱延鋼板に、圧下率30~60%の冷間圧延を施し冷延鋼板とし、該冷延鋼板を、Ac3~(Ac3+50℃)の温度域に240秒間以内滞留させ、1~10℃/秒の平均冷却速度で680~750℃の温度域まで冷却し、さらに20~50℃/秒の平均冷却速度で400℃以下まで冷却する冷延鋼板の製造方法である。これにより、体積率で、フェライト10%以上、ベイナイト20~70%、残留オーステナイト3~20%およびマルテンサイト0~20%からなり、平均粒径が、フェライトで10μm以下、ベイナイトで10μm以下、マルテンサイトで3μm以下である組織を有し、780MPa以上の高い引張強さTSと2.0mm以上の厚い板厚を有しながら、TS×Elが14000MPa・%以上で、かつ最小曲げ半径が1.5t以下の優れた曲げ特性を有する冷延鋼板となるとしている。
特開平09−41040号公報 特開2006−176807号公報 特開2008−297609号公報 特開平05−78752号公報 特開2010−65316号公報 特開2010−255091号公報 特開2010−59452号公報
 しかしながら、特許文献4に記載された技術では、表層とそれ以外の内部とで組成を変えた鋼スラブを用いることが要求され、このような鋼スラブとするために特殊なクラッド技術等を駆使する必要があり、製造コストの高騰を招くという問題がある。
 また、特許文献5に記載された技術では、ベイナイト分率が低く優れた曲げ特性を安定して確保できないという問題を残していた。また、焼鈍時の昇温速度が速いため、組織の安定性に欠けるという問題もある。
 また、特許文献6に記載された技術では、Si含有量が高い組成の鋼板を指向しており、しかもC含有量が高く、化成処理性、溶接性に問題を残していた。さらに特許文献6に記載された技術では、昇温再加熱工程を必要とし、製造工程が複雑になり、製造コストが高騰するという懸念がある。
 また、特許文献7に記載された技術では、C,Mn,Ti含有量が高く、溶接性が低下するという問題がある。また、Mn含有量が高いため、伸びフランジ性に悪影響を及ぼすMnバンドが残存し、さらに介在物の球状化が不十分であるため、伸びフランジ性が低下するという問題を残している。
 本発明は、かかる従来技術の問題を有利に解決し、特殊なクラッド技術を用いることもなく、また、C,Si等の合金元素を多量含有することなく、伸びフランジ性に優れた高強度冷延鋼板およびその製造方法を提供することを目的とする。本発明では、化成処理性に悪影響を及ぼすSi、Crを含有することなく、また、スポット溶接性に悪影響を及ぼすC、Si、Alを多量含有することなく、また高価な合金元素であるNi、Cu、Mo等を含有することのない成分系で、引張強さ:590MPa以上の高強度を維持しつつ、伸びフランジ性の向上を目的とする。
 なお、ここでいう「伸びフランジ性に優れた」とは、引張強さTSと伸びElの積、強度−伸びバランスTS×Elが16000MPa%以上、引張強さTSと穴拡げ率λの積、強度−穴拡げ率バランスTS×λが40000MPa%以上を満足する場合をいうものとする。
 本発明者らは、上記した目的を達成するため、伸びフランジ性に及ぼす金属組織の影響について鋭意研究した。その結果、冷延板の焼鈍時の加熱・冷却条件を工夫し、フェライト、ベイナイト、マルテンサイト、残留オーステナイトの組織分率を厳密に調整することにより、C、Si等の合金元素含有量が少ない成分系でも、引張強さ:590MPa以上の高強度を維持しつつ、優れた伸びフランジ性を有する冷延鋼板を製造できることを見出した。所望の組織分率を有する組織を確保するためには、とくに、冷延板の焼鈍時に、加熱を2段階加熱、冷却を二段階冷却とすること、とくに後半の冷却を前半の冷却に比べて緩冷とし、かつ後半の冷却時間を総冷却時間の0.2~0.8とすることが肝要であることを見出した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)mass%で、C:0.050~0.090%、Si:0.05%以下、Mn:1.5~2.0%、P:0.030%以下、S:0.0050%以下、Al:0.005~0.1%、N:0.01%以下、Ti:0.005~0.050%、Nb:0.020~0.080%を含み、残部Feおよび不可避的不純物からなる組成と、体積%で、50~77%のフェライト相と、20~50%のベイナイト相と、2~10%のマルテンサイト相と、1~5%の残留オーステナイト相からなる組織と、を有することを特徴とする伸びフランジ性に優れた高強度冷延鋼板。
(2)(1)において、前記組成に加えてさらに、mass%で、Ca:0.0001~0.0050%を含有することを特徴とする高強度冷延鋼板。
(3)鋼素材に、熱延工程と、冷延工程と、焼鈍工程と、を順次施して、冷延鋼板とするにあたり、前記鋼素材を、mass%で、C:0.050~0.090%、Si:0.05%以下、Mn:1.5~2.0%、P:0.030%以下、S:0.0050%以下、Al:0.005~0.1%、N:0.01%以下、Ti:0.005~0.050%、Nb:0.020~0.080%を含み、残部Feおよび不可避的不純物からなる組成の鋼素材とし、前記焼鈍工程を、最高到達温度:800~900℃とし二段階の加熱と二段階の冷却とを有する工程とし、前記二段階の加熱が、50℃から平均昇温速度:0.5~5.0℃/sで、(最高到達温度−50℃)~(最高到達温度−10℃)の温度域の第一段の加熱到達温度まで加熱する第一段の加熱と、該温度域から前記最高到達温度までの昇温時間を30~150sとする第二段の加熱とからなり、前記二段階の冷却が、前記最高到達温度から、平均冷却速度:10~40℃/sの第一段冷却速度で冷却する第一段の冷却と、引続き、平均冷却速度:(0.2~0.8)×第一段冷却速度の冷却速度で、400~500℃の温度域の冷却停止温度まで、第一段の冷却と第二段の冷却の総冷却時間の0.2~0.8の冷却時間で冷却する第二段の冷却とからなり、前記第二段の冷却終了後、400℃~500℃の温度域で100~1000s滞留させること、を特徴とする伸びフランジ性に優れた高強度冷延鋼板の製造方法。
(4)(3)において、前記鋼素材が前記組成に加えてさらに、mass%で、Ca:0.0001~0.0050%を含有することを特徴とする高強度冷延鋼板の製造方法。
 本発明によれば、引張強さTS:590MPa以上の高強度と、強度−伸びバランスTS×Elが16000MPa%以上、強度−穴拡げ率バランスTS×λが40000MPa%以上を満足する、優れた伸びフランジ性とを有し、複雑な形状にプレス成形される自動車部品用として好適な、高強度冷延鋼板を安定して、しかも安価に製造でき、産業上格段の効果を奏する。
 まず、本発明冷延鋼板の組成限定理由について説明する。以下、とくに断わらない限りmass%は、単に%で記す。
 C:0.050~0.090%
 Cは、鋼中に固溶してあるいは炭化物として析出して、鋼の強度を増加させる元素であり、また、焼入れ性の増加を介して、低温変態相であるベイナイト相やマルテンサイト相を形成しやすくし、組織強化により、鋼板の強度増加に寄与する。このような作用を利用して、引張強さTS590MPa以上を確保するためには、0.050%以上の含有を必要とする。一方、0.090%を超える含有は、スポット溶接性に悪影響を及ぼすとともに、マルテンサイト相が過度に硬質化するため、伸びフランジ性を低下させる。このようなことから、Cは0.050~0.090%の範囲に限定した。なお好ましくは0.060~0.080%である。
 Si:0.05%以下
 Siは、多量に含有すると硬質化し、加工性が低下する。また、Siを多量に含有すると、とくに焼鈍時にSi酸化物を生成し、化成処理性を阻害するなどの悪影響を及ぼす。このようなことから、Siは、本発明では不純物として、できるだけ低減することが望ましく、0.05%以下に限定した。
 Mn:1.5~2.0%
 Mnは、固溶して鋼の強度を増加させるとともに、焼入れ性の向上を通じて鋼の強度増加に寄与する元素である。このような作用は、1.5%以上の含有で顕著となる。一方、2.0%を超える過度の含有は、焼入れ性が向上して低温変態相の生成量が増加しすぎるため、鋼板の過度の硬質化が進み、所望のフェライト相分率を確保することが難しくなり、プレス成形性が低下する。このため、Mnは1.5~2.0%の範囲に限定した。なお、好ましくは1.6~1.9%である。
 P:0.030%以下
 Pは、粒界に偏析して、延性や靭性を低下させる悪影響を及ぼす。また、Pは、スポット溶接性を低下させる。このため、Pはできるだけ低減することが望ましいが、過度の低減は脱リンのための精錬時間が長くなり、生産能率が低下し、製造コストの高騰を招くため、0.001%以上とすることが好ましい。また、0.030%を超える含有は、スポット溶接性の著しい低下を招く。このため、Pは0.030%以下に限定した。なお、好ましくは0.001%以上0.020%未満である。
 S:0.0050%以下
 Sは、鋼中ではほとんどが介在物として存在し強度にほとんど寄与しないばかりか、粗大なMnSを形成し、延性、とくに伸びフランジ成形時に割れの起点となり伸びフランジ性を低下させるため、できるだけ低減することが好ましい。しかし、過度の低減は製鋼工程での脱硫時間が長くなり、生産能率が低下し、製造コストの高騰を招くため、0.0001%以上とすることが好ましい。0.0050%を超えて含有すると、伸びフランジ性が顕著に低下するため、Sは0.0050%以下に限定した。なお、好ましくは、0.0001~0.0030%である。
 Al:0.005~0.1%
 Alは、脱酸剤として作用する元素であり、この効果を十分に得るためには0.005%以上の含有を必要とする。一方、0.1%を超えて含有すると、フラッシュバット溶接などの溶接性を低下させるとともに、Al添加効果が飽和し、多量添加のため製造コストが高騰する。このため、Alは0.005~0.1%の範囲に限定した。なお、好ましくは0.02~0.06%である。
 N:0.01%以下
 Nは、本発明では不純物であるが、固溶Nとして耐時効性を低下させることもあり、できるだけ低減することが好ましいが、過度の低減は精錬時間が長くなり、製造コストの高騰を招くため、経済性の観点からは0.0020%程度以上とすることが好ましい。一方、0.01%を超える含有は、スラブ割れ、スラブ内部欠陥等の発生傾向が強まり、表面疵が発生する恐れがある。このため、Nは0.01%以下に限定した。なお、好ましくは0.0050%以下である。
 Ti:0.005~0.050%
 Tiは、炭窒化物を形成し、スラブ加熱時等のオーステナイト粒の粗大化を抑制する作用を有する元素であり、熱延板組織、焼鈍後の鋼板組織の微細化、均一化に有効に寄与する。このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.050%を超える含有は、析出物がフェライト相中に過度に生成し、フェライト相の延性を低下させる。またTiの更なる過度の含有は、熱延板を過度に硬化させ、熱間圧延時や冷間圧延時の圧延負荷を増大させる。このため、Tiは0.005~0.050%の範囲に限定した。なお、好ましくは0.010~0.0040%である。
 Nb:0.020~0.080%
 Nbは、鋼中に固溶し固溶強化により、あるいは炭窒化物を形成し析出強化により鋼板の強度増加に寄与する元素であり、このような効果を得るためには0.020%以上の含有を必要とする。一方、0.080%を超える過度の含有は、析出物がフェライト相中に過度に生成し、フェライト相の延性を低下させるとともに、熱延板を過度に硬化させ、熱間圧延時や冷間圧延時の圧延負荷を増大させる。このため、Nbは0.020~0.08%の範囲に限定した。なお、好ましくは0.030~0.050%である。
 このように、Tiは、オーステナイト粒の粗大化を抑制することにより、熱延板組織、焼鈍後の鋼板組織の微細化、均一化に寄与し、一方、Nbは、鋼中に固溶し固溶強化により、あるいは炭窒化物を形成し析出強化により鋼板の強度増加に寄与する。本発明では、このような作用を有するTiとNbとを複合して含有させる。なお、複合して含有するに当たり、本発明では、Nbの含有量をTiの含有量より多くすることが好ましい。
 TiとNbを複合して含有するに際し、Nb含有量をTi含有量より多くすることにより、Ti単独、あるいはTiとNbの複合含有ではあるがNb含有量をTi含有量より少なくした場合に比べ、結晶粒が均一、微細な組織が得られる。このため、曲げ特性が向上する。このような効果は、(Nb含有量)と(Ti含有量)との比、Nb/Ti、を1.5以上とすることにより顕著となる。なお、Nb/Tiは、好ましくは1.8以上、5.0以下である。
 Nb、Tiは、熱間圧延の加熱段階で一部再溶解するが、その後の粗圧延、仕上げ圧延、さらに巻取り段階で、Ti系炭窒化物として、あるいはNb系炭窒化物として析出する。Ti系炭窒化物は高温で、一方、Nb系炭窒化物は、Ti系炭窒化物より低い温度で析出する。そのため、Ti系炭窒化物は高温で滞留する時間が長く、粒成長して粗大化する傾向となる。一方、Nb系炭窒化物は、析出温度がTi系炭窒化物より低温であるため、微細であり、比較的緻密な分布となる。微細な炭窒化物は、結晶粒のピン止め効果を有し、焼鈍時に、冷延組織の回復、再結晶、粒成長を遅滞させて、最終的に得られる鋼板の組織を均一微細な組織とすることができる。TiとNbを複合含有させることにより、このような均一微細な組織とすることができ、鋼板の曲げ特性が顕著に向上する。
 上記した成分が基本の成分であるが、本発明では、必要に応じて、基本の成分に加えてさらに、Ca:0.0001~0.0050%を含有してもよい。
 Ca:0.0001~0.0050%
 Caは、介在物の形態制御に有効に寄与する元素であり、例えば冷間圧延工程にて展伸し板状介在物となるMnSを球状介在物であるCaSへと、焼鈍工程の前までに介在物の形態を制御して、延性、伸びフランジ性を向上させる。このような効果は0.0001%以上の含有で認められるが、0.0050%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できなくなる。このため、含有する場合には、Caは0.0001~0.0050%の範囲に限定することが好ましい。なお、より好ましくは0.0005~0.0020%である。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。
 つぎに、本発明冷延鋼板の組織限定理由について説明する。
 本発明冷延鋼板は、体積%で、50~77%のフェライト相と、20~50%のベイナイト相と、2~10%のマルテンサイト相と、1~5%の残留オーステナイト相からなる組織を有する。
 フェライト相:50~77%
 フェライト相は、軟質であり冷延鋼板の延性(伸び)に寄与する。このような効果を得るためには、フェライト相の体積分率を50%以上とする必要がある。一方、77%を超える多量な含有は、所望の高強度(TS:590MPa以上)を確保できなくなる。このため、フェライト相の体積分率は50~77%の範囲に限定した。なお、好ましくは50~65%であり、より好ましくは50~60%である。また、フェライト相の結晶粒径が大きすぎると、低温変態相が局在し、不均一変形の原因となり、優れた成形性を確保することが困難となる。一方、フェライト相の結晶粒径が細かくなると、低温変態相とフェライトとが隣接し、フェライト相の変形が阻害され、優れた成形性を確保できにくくなる。そのため、フェライト相の平均結晶粒径は1~10μmの範囲とすることが好ましい。
 ベイナイト相:20~50%
 ベイナイト相は、低温変態相の一つであり、所望の高強度を確保するために、本発明では20%以上の含有を必要とする。一方、50%を超える過度の含有は、鋼板が過度に硬質化し成形性が低下する。このため、ベイナイト相の体積分率は20~50%の範囲に限定した。なお、好ましくは30~50%、より好ましくは30%超50%以下、さらに好ましくは35~45%である。また、ベイナイト相の平均結晶粒径が10μmを超えて大きくなると、組織が不均一組織となり、成形時に不均一な変形を生じ、優れた成形性を確保することが困難となる。一方、ベイナイト相の平均結晶粒径が1μm未満と細かくなると、加工時の変形能に及ぼすベイナイト相の寄与が大きくなり、フェライト相の変形が阻害され、優れた成形性を確保できにくくなる。そのため、ベイナイト相の平均結晶粒径は1~10μmの範囲とすることが好ましい。
 なお、ベイナイト相とマルテンサイト相との比率も重要となる。ベイナイト相は、マルテンサイト相より軟質で、フェライト相との強度差(硬度差)がマルテンサイト相より小さく、成形時に鋼板全体が均一に変形するため、とくに伸びフランジ性の向上という観点からはマルテンサイト相より有利となる。このため、本発明では、低温変態相は、ベイナイト相を主体とし、マルテンサイト相は少量の含有に留める。これにより、所望の高強度を確保しつつ、伸びフランジ性等の優れた成形性を確保できる。なお、本発明における低温変態相は、ベイナイト相、マルテンサイト相を意味する。
 また、ベイナイト相は、曲げ加工性の向上にも有効に寄与する。フェライト相に加えて、所定量のベイナイト相を分散させて存在させる組織とすることにより、曲げ歪が局所的に集中することなく、均一に変形させることができるようになる。このためには、ベイナイト相を20%以上、好ましくは30%を超えて分散させることが好ましい。というのは、ベイナイト相が20%未満、あるいは30%以下と少ない場合には、軟質なフェライト相と硬質マルテンサイト相および残留オーステナイト相の組織分率が多くなり、曲げ成形時に、軟質相と硬質相の界面に歪が集中し、割れが発生する場合がある。中間的な硬さを有するベイナイト相が所定量存在することにより、曲げ成形時に局所的に歪が集中することがなく、歪が分散するため、均一な変形ができるようになるからである。
 マルテンサイト相:2~10%
 マルテンサイト相は、低温変態相として硬質であり、鋼板の強度増加に大きく寄与する。しかし、打抜剪断加工時に、マルテンサイト相とフェライト相の硬度差に起因してマルテンサイト相とフェライト相との界面でボイドが多数発生し、プレス成形過程においてそれらのボイドが連結し、亀裂になりさらにその亀裂が伸展し割れに至る。このため、多量のマルテンサイト相の存在は、伸びフランジ性を低下させることになる。マルテンサイト相の体積分率が10%を超えて大きくなると、強度が高くなりすぎ、延性が著しく低下するとともに、マルテンサイト相とフェライト相との界面が増加し、優れた伸びフランジ性の確保が難しくなる。一方、マルテンサイト相の体積分率が2%未満と少なくなると、組織中の分散が粗くなるため伸びフランジ性への影響は少なくなるが、所望の高強度を安定して確保できなくなる。このようなことから、マルテンサイト相の体積分率は、2~10%の範囲に限定した。なお、好ましくは4~8%である。
 なお、マルテンサイト相の平均結晶粒径は0.5~5.0μmの範囲とすることが好ましい。マルテンサイト相の平均結晶粒径が0.5μm未満では、軟質なフェライト相中に硬質なマルテンサイト相が微細分散した組織となるため、大きな硬度差に起因して、変形が不均一となり、優れた成形性を確保することが難しくなる。また、マルテンサイト相の平均結晶粒径が5.0μmを超えて粗大となると、マルテンサイト相が偏在し組織が不均一となるため、変形が不均一となり、優れた成形性を確保することが難しくなる。このため、マルテンサイト相の平均結晶粒径は0.5~5.0μmの範囲に限定することが好ましい。
 残留オーステナイト相:1~5%
 残留オーステナイト相は、成形加工時に歪誘起変態を介し延性(均一伸び)の向上に寄与する。しかし、残留オーステナイト相には、Cが濃化し硬質となっており、フェライト相との硬度差が大きくなっている。このため、残留オーステナイト相の存在は伸びフランジ性を低下させる要因となる。残留オーステナイト相が5%を超えて多くなると、フェライト相との硬度差に起因して、打抜剪断加工時に、残留オーステナイト相とフェライト相との界面でボイドが多数発生し、プレス成形過程においてそれらのボイドが連結し、亀裂となりさらにその亀裂が伸展し割れに至る。一方、残留オーステナイト相の体積分率が1%未満と少なくなると、組織中の分散が粗くなるため、伸びフランジ性への影響は少なくなるが、延性の向上が少ない。このようなことから、残留オーステナイト相の体積分率は1~5%の範囲に限定した。なお、好ましくは1~3%である。
 上記した相以外の残部は、不可避的に生成されるセメンタイト相である。不可避的に生成されるセメンタイト相は、体積分率で3%未満であれば、本発明の効果に影響はない。
 なお、フェライト相、ベイナイト相、マルテンサイト相等の平均結晶粒径は、光学顕微鏡(倍率:200~1000倍)で5視野以上観察し、組織を同定したのち、JIS法に準拠した切断法や画像解析により算出すればよい。
 つぎに、本発明冷延鋼板の好ましい製造方法について説明する。
 上記した組成の鋼素材に、熱延工程と、冷延工程と、焼鈍工程と、あるいはさらに調質圧延工程と、を順次施して、冷延鋼板とする。
 鋼素材の製造方法はとくに限定する必要はなく、上記した組成の溶鋼を、転炉法、電炉法等の常用の溶製方法で溶製し、連続鋳造法等の、常用の鋳造方法でスラブ等の鋼素材とすることが好ましい。鋼素材の鋳造方法は、成分のマクロな偏析を防止すべく違続鋳造法とすることが望ましいが、造塊法、薄スラブ鋳造法によってもなんら問題はない。
 得られた鋼素材はついで、熱延工程を施されるが、熱間圧延のための加熱は、いったん室温まで冷却し、その後再加熱する方法に加えて、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいはわずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
 熱延工程は、上記した組成の鋼素材を、加熱しあるいは加熱することなく、粗圧延,仕上圧延からなる、常用の熱間圧延を施し、所定の寸法形状の熱延板とし、ついで巻き取る工程とすることが好ましい。本発明では、所定の寸法形状の熱延板とすることができればよく、とくに熱間圧延の条件を限定する必要はないが、下記の条件とすることが好ましい。
 鋼素材の加熱温度は1150℃以上とすることが好ましい。加熱温度が1150℃未満では、熱間圧延の圧延負荷が大きくなる。なお、加熱温度の上限はとくに限定する必要はないが、結晶粒粗大化、酸化によるスケールロス等の観点から1300℃以下とすることが好ましい。加熱された鋼素材は、粗圧延され所定寸法形状のシートバーとされるが、粗圧延の条件については、所定寸法形状のシートバーとすることができればよく、とくに限定する必要はない。ついで、シートバーに、仕上圧延を施し熱延板とする。仕上圧延における仕上圧延終了温度は880℃以上とすることが好ましい。仕上圧延終了温度が880℃未満では、結晶粒が展伸し、冷延鋼板の加工性が低下する。このため、本発明の鋼組成範囲であれば、仕上圧延における仕上圧延終了温度は880℃以上とすることが好ましい。一方、仕上圧延終了温度の上限はとくに限定する必要はないが、高くなりすぎると、結晶粒が粗大化し、冷延板の加工性が低下するという問題があるため、概ね950℃程度以下とすることが好ましい。得られた熱延板は、ついでコイル状に巻き取られる。巻取りまでの冷却速度は、特に規定する必要はなく、空冷以上の冷却速度があれば十分である。なお、必要に応じて、強制冷却、例えば50℃/s以上の急冷を行ってもよい。また、巻取温度は450~650℃とすることが好ましい。巻取温度が450℃未満では熱延板が硬質化し、冷間圧延負荷が増大し、冷延圧下率の確保が困難となる。一方、650℃を超えると、巻取後の冷却速度がコイル内の長手方向、幅方向でばらつきを生じ、組織が不均一となり、冷間圧延後の形状不良を生じやすい。
 熱延板はついで、酸洗処理を施されたのち、冷延工程を施される。冷延工程では、熱延板に、所定の冷延圧下率で冷間圧延を施し冷延板とする、常用の冷間圧延を施すことが好ましい。本発明では、冷延工程の条件はとくに限定する必要はないが、冷延圧下率は、熱延板と製品板の板厚によって決定することが好ましい。通常、冷延圧下率:30%以上であれば、加工性、板厚精度においてとくに問題はない。一方、冷延圧下率が70%を超えると、冷間圧延機への負荷が大きくなりすぎて、操業が困難となる。
 冷延板はついで、焼鈍工程を施される。本発明における焼鈍工程は、二段階の加熱と、二段階の冷却とを有する工程とする。加熱における最高到達温度は800~900℃とし、その後、二段階の冷却を行う。
 最高到達温度が800℃未満では、加熱時のα→γ変態量が少なく、したがって、最高到達温度に到達した際の組織がフェライトが多いフェライト+オーステナイト二相組織となるため、最終的に得られる鋼板組織がフェライト相の組織分率が多くなりすぎて、所望の高強度を確保できなくなる。一方、最高到達温度が900℃を超えると、オーステナイト(γ)単相となり、γ結晶粒が粗大化するため、その後の冷却に際し生成するフェライト相の組織分率が少なくなり加工性が低下するとともに、生成するフェライト相や低温変態相の結晶粒径が粗大となりやすく、伸びフランジ性が低下する。このようなことから、最高到達温度は800~900℃の範囲の温度に限定した。
 二段階の加熱は、第一段の加熱と、それに引続く第二段の加熱とからなる。加熱過程は、フェライト相やベイナイト相の組織分率を調整するうえで重要となる。第一段の加熱は、冷延板を、少なくとも50℃から(最高到達温度−50℃)~(最高到達温度−10℃)の温度域の第一段の加熱到達温度までを、平均昇温速度:0.5~5.0℃/sで、加熱する処理とする。なお、50℃までの加熱条件はとくに限定する必要はなく、常法に従い適宜行えばよい。第一段の加熱における昇温速度が0.5℃/s未満では、昇温速度が遅すぎてオーステナイト粒の粗大化が進行するため、冷却時にオーステナイト粒の粗大化に起因してγ→α変態が遅延し、生成するフェライト相の組織分率が減少し、硬質化して加工性が低下する。一方、第一段の加熱における昇温速度が5.0℃/sを超えて速くなると、生成するオーステナイト粒が微細化し、最終的に得られるフェライト相の組織分率が高くなり、所望の高強度の確保が難しくなる。このため、第一段の加熱における昇温速度は、平均で0.5~5.0℃/sの範囲に限定した。なお、好ましくは1.5~3.5℃/sである。
 また、第一段の加熱到達温度が、(最高到達温度−50℃)未満では、最高到達温度までの第二段の加熱が急速加熱となり、所望の組織分率を安定して確保することが困難となる。一方、第一段の加熱到達温度が、(最高到達温度−10℃)を超えて高くなると、最高到達温度までの第二段の加熱が徐加熱となり、高温域での滞留時間が長くなって結晶粒が粗大化しすぎ、加工性が低下する。このようなことから、第一段の加熱到達温度は、(最高到達温度−50℃)~(最高到達温度−10℃)の温度域の温度に限定した。
 第二段の加熱は、第一段の加熱到達温度から最高到達温度までの昇温時間が30~150sとなるように加熱する処理とする。第一段の加熱到達温度から最高到達温度までの昇温時間が30s未満では、最高到達温度までの加熱が急速になりすぎて、α→γ変態が遅れ、最終的に最高到達温度に到達した際にフェライト相の組織分率が高くなり、所望の高強度が確保できなくなる。また、C、Mn等の合金元素の拡散が不十分となり、その結果、不均一な組織となり、加工性が低下する。一方、150sを超えて長くなると結晶粒径が粗大化し、加工性が低下しやすい。このようなことから、第二段の加熱の昇温時間は30~150sの範囲に調整することとした。
 第二段の加熱が終了したのち、直ちに冷却を行う。
 加熱後の冷却は、二段階の冷却とする。冷却は、軟質なフェライト相と硬質なベイナイト相の組織分率を調整し、引張強さTS:590MPa以上の高強度と優れた加工性を兼備させるために重要である。このため、冷却は、所望の金属組織を確保することができるように、冷却パターン、すなわち冷却速度、冷却時間を厳密に調整する必要がある。二段階の冷却は、第一段の冷却とそれに続く、第一段の冷却より緩冷の第二段の冷却とからなる。第一段の冷却と第二段の冷却はフェライト相とベイナイト相の組織分率を調整するために重要となる。
 第一段の冷却は、最高到達温度から、平均冷却速度:10~40℃/sの冷却速度(第一段冷却速度)で、冷却する処理とする。第一段冷却速度が10℃/s未満では、軟質なフェライト相の組織分率が高くなり、所望の高強度を確保することが難しくなる。一方、第一段冷却速度が40℃/sを超える急速な冷却となると、フェライト相の生成量が少なくなり、鋼板は硬質化して加工性が低下する。
 また、第二段の冷却は、第一段の冷却に引続き、直ちに、第一段冷却速度に依存して、(0.2~0.8)×(第一段冷却速度)の第二段冷却速度で、400~500℃の第二段冷却停止温度まで冷却する処理とする。
 第二段冷却速度が0.2×(第一段冷却速度)未満では、冷却が遅すぎて軟質なフェライト相の生成が促進され、ベイナイト相の組織分率が低くなり、所望の高強度を確保できなくなる。一方、0.8×(第一段冷却速度)を超えると、冷却が速すぎてベイナイト変態開始から終了までに滞留する時間が短くなり、ベイナイト相の組織分率が低くなり、所望の高強度を確保できなくなる。このため、第二段冷却速度を0.2~0.8×(第一段冷却速度)の範囲に限定した。本発明では、所望のフェライト相とベイナイト相の分率を確保するため、第一段の冷却と第二段の冷却の冷却時間を配分する。
 すなわち、第二段の冷却の冷却時間は、第一段の冷却と第二段の冷却の冷却時間の合計である総冷却時間の0.2~0.8の冷却時間とする。すなわち、第二段の冷却時間は(0.2~0.8)×総冷却時間とする。第二段の冷却の冷却時間が総冷却時間の0.2未満では、第一段冷却速度での冷却時間が長くなり、フェライト相の生成量が減少し、ベイナイト相の組織分率が多くなりすぎて、鋼板は硬質化し所望の伸びフランジ性を確保できなくなる。一方、総冷却時間の0.8を超えて長くなると、第二段の冷却の冷却時間が長くなりすぎて、フェライト変態開始から終了までの経過時間が長く、フェライト相の生成量が多くなり、所望の高強度を確保できなくなる。このため、第二段の冷却の冷却時間を総冷却時間の0.2~0.8に限定した。
 また、第二段冷却における冷却停止温度が400℃未満では、硬質なマルテンサイト相主体の組織となり、鋼板は過度に硬質化し、伸びフランジ性が低下する。一方、第二段冷却の冷却停止温度が500℃を超えると、ベイナイト相主体の組織となりフェライト相の組織分率が低下して、鋼板は硬質化し、またパーライト相が生成し、優れた加工性の確保が困難となる。このため、第二段冷却の冷却停止温度は400~500℃の範囲に限定した。
 冷却を終了した後、すなわち第二段の冷却を停止したのち、本発明では、400~500℃の領域で、100~1000s間滞留させる。冷却停止後の滞留時間の調整は、ベイナイト相の組織分率を調整するために重要である。滞留時間が100s未満では、オーステナイトからベイナイトへの変態が不十分であり、未変態オーステナイトがマルテンサイト相へ変態するため、マルテンサイト相の組織分率が増加し、鋼板は硬質化して加工性が低下する。一方、滞留時間が1000sを超えて長時間となると、ベイナイト相の組織分率が増加し、所望の優れた加工性を確保することが難しくなる。このため、冷却停止後の滞留時間は100~1000sに限定した。上記した滞留後、引き続き冷却を行うが、その条件は特に限定する必要はなく、製造設備等に応じて適宜行えばよい。
 焼鈍工程後、冷延焼鈍板に、形状矯正や表面粗さ調整を目的とした、調質圧延工程をさらに施しても良い。過度の調質圧延は、結晶粒を展伸させて、圧延加工組織とするため、延性が低下し、加工性が低下するため、調質圧延工程は、伸び率:0.05~0.5%の調質圧延を施す工程とすることが好ましい。
 以下に、実施例に基づきさらに、本発明について詳細に説明する。
 表1に示す組成の溶鋼を、転炉で溶製し、連続鋳造法でスラブ(鋼素材)とした。これら鋼素材(スラブ)を出発素材とし、1200℃に加熱したのち、仕上圧延終了温度:900℃、巻取温度:600℃とする熱間圧延を施し熱延板とする熱延工程を施した。ついで、該熱延板に塩酸酸洗を施したのち、冷間圧延を施し冷延板とする冷延工程と、それに引続き、表2に示す条件の二段階の加熱、二段階の冷却を有する焼鈍処理を施す焼鈍工程を施し、板厚:1.4mmの冷延焼鈍板を得た。
 得られた冷延鋼板(冷延焼鈍板)から、試験片を採取し、組織観察試験、引張試験、穴拡げ試験、曲げ試験を実施した。試験方法は次のとおりとした。
 (1)組織観察試験
 得られた冷延鋼板から組織観察用試験片を採取し、圧延方向断面を研磨し、腐食(ナイタール液)して、板厚の1/4の位置について、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(倍率:3000倍)で視野数:5視野以上を観察し、撮像した。得られた組織写真から、組織の同定を行うとともに、各相の粒径、組織分率(体積%)を求めた。
 フェライト相の平均結晶粒径は、JIS G 0552に規定された方法に準拠して切断法で求めた。また、ベイナイト相、マルテンサイト相についても同様に行った。
 また、倍率:1000倍の組織写真を用いて、画像解析装置で任意に設定した組織写真上の100×100mmの正方形領域内に存在する各相の占有面積を求め、各相の組織分率(体積%)に換算した。オーステナイト相からの低温変態相であるベイナイト相、マルテンサイト相の区別は、倍率:3000倍の組織写真を用いて、フェライト相以外の低温変態相において、炭化物が観察される相をベイナイト相とし、炭化物が観察されず平滑な相として観察されたものをマルテンサイト相あるいは残留オーステナイト相とした。なお、残留オーステナイト量はX線回折により求めた。そして、フェライト相、ベイナイト相、残留オーステナイト相以外の残りをマルテンサイト相の組織分率とした。
 (2)引張試験
 得られた冷延鋼板から、圧延方向と直角方向が引張方向となるように、JIS Z 2201の規定に準拠してJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を行い、引張特性(降伏強さYS、引張強さTS、伸びEl)を求めた。
 (3)穴拡げ試験
 得られた冷延鋼板から試験片(大きさ:100×100mm)を採取し、日本鉄鋼連盟規格 JFST1001の規定に基づき、穴拡げ試験を実施した。試験片に初期直径d:10mmφの穴を打抜き、該穴に頂角:60°の円錐ポンチを挿入し上昇させて、該穴を押し広げ、亀裂が板厚を貫通したところで、円錐ポンチの上昇を停止し、亀裂貫通後の打抜き穴の径dを測定し、穴拡げ率λ(%)を求めた。穴拡げ率λは、次式で算出した。
 λ(%)={(d−d)/d}×100
 なお、同一鋼板について、試験は3回行い、その平均値を該鋼板の穴拡げ率λとした。
 (4)曲げ試験
 得られた冷延鋼板から曲げ試験片(大きさ:40×50mm)を採取し、先端曲げ半径R=1.0mmで90°V曲げを実施し、曲げ頂点での割れの有無を目視観察し、曲げ性を評価した。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-T000004
 本発明例はいずれも、引張強さTS:590MPa以上の高強度と、かつ強度−伸びバランスTS×Elが16000MPa%以上、強度−穴拡げ率バランスTS×λが40000MPa%以上を満足する、優れた伸びフランジ性とを有するとともに、厳しい曲げにも耐えられる優れた曲げ性を有する高強度冷延鋼板となっている。一方、本発明の範囲を外れる比較例は、強度が不足しているか、伸びElが低いか、TS×Elが16000MPa%未満となって、伸びフランジ性が低下している。また、引張強さTS:590MPa以上を満足する比較例では、穴拡げ率が低く、TS×λが40000MPa%未満となっている。
 組成が本発明範囲を外れる比較例(鋼板No.8、No.9)は、フェライト相が少なく所望の組織を確保できず、伸びElが低く、伸びフランジ性、曲げ加工性が低下している。
 焼鈍工程における昇温速度が遅く本発明範囲を外れる比較例(鋼板No.10)、最高到達温度が高く本発明範囲を外れる比較例(鋼板No.13)、第二段加熱の昇温時間が長く本発明範囲を外れる比較例(鋼板No.15)、第一段の冷却の冷却速度が速く本発明範囲を外れる比較例(鋼板No.17)、第二段の冷却の冷却速度が大きく本発明範囲を外れる比較例(鋼板No.19)、第二段の冷却の冷却時間が短く本発明範囲を外れる比較例(鋼板No.20)、第二段冷却停止温度が高く本発明範囲を外れる比較例(鋼板No.23)、滞留時間が本発明範囲を外れる比較例(鋼板No.24,No.25)、はいずれもフェライト相の組織分率が少なく、伸びフランジ性が低下している。また、滞留時間が長く本発明範囲を外れる比較例(鋼板No.25)は、ベイナイト相の組織分率が本発明の範囲を外れ、伸びフランジ性が低下している。
 また、焼鈍工程における昇温速度が速く本発明範囲を外れる比較例(鋼板No.11)、最高到達温度が低く本発明範囲を外れる比較例(鋼板No.12)、第二段加熱の昇温時間が短く本発明範囲を外れる比較例(鋼板No.14)、第一段の冷却の冷却速度が遅く本発明範囲を外れる比較例(鋼板No.16)、第二段の冷却速度が遅く本発明範囲を外れる比較例(鋼板No.18)、第二段の冷却の冷却時間が長く本発明範囲を外れる比較例(鋼板No.21)、はいずれもフェライト相の組織分率が多すぎて、ベイナイト相、あるいはマルテンサイト相の組織分率が少なく、所望の高強度を確保できていない。第二段冷却停止温度が低く本発明範囲を外れる比較例(鋼板No.22)はマルテンサイト相の組織分率が本発明の範囲を外れ、伸びフランジ性が低下している。

Claims (4)

  1. mass%で、
    C:0.050~0.090%、     Si:0.05%以下、
    Mn:1.5~2.0%、         P:0.030%以下、
    S:0.0050%以下、        Al:0.005~0.1%、
    N:0.01%以下、          Ti:0.005~0.050%、
    Nb:0.020~0.080%
    を含み、残部Feおよび不可避的不純物からなる組成と、体積%で、50~77%のフェライト相と、20~50%のベイナイト相と、2~10%のマルテンサイト相と、1~5%の残留オーステナイト相からなる組織と、を有することを特徴とする伸びフランジ性に優れた高強度冷延鋼板。
  2. 前記組成に加えてさらに、mass%で、Ca:0.0001~0.0050%を含有することを特徴とする請求項1に記載の高強度冷延鋼板。
  3. 鋼素材に、熱延工程と、冷延工程と、焼鈍工程と、を順次施して、冷延鋼板とするにあたり、前記鋼素材を、mass%で、
    C:0.050~0.090%、     Si:0.05%以下、
    Mn:1.5~2.0%、         P:0.030%以下、
    S:0.0050%以下、        Al:0.005~0.1%、
    N:0.01%以下、          Ti:0.005~0.050%、
    Nb:0.020~0.080%
    を含み、残部Feおよび不可避的不純物からなる組成の鋼素材とし、
    前記焼鈍工程を、最高到達温度:800~900℃とし二段階の加熱と二段階の冷却とを有する工程とし、前記二段階の加熱が、50℃から平均昇温速度:0.5~5.0℃/sで、(最高到達温度−50℃)~(最高到達温度−10℃)の温度域の第一段の加熱到達温度まで加熱する第一段の加熱と、該温度域から前記最高到達温度までの昇温時間を30~150sとする第二段の加熱とからなり、前記二段階の冷却が、前記最高到達温度から、平均冷却速度:10~40℃/sの第一段冷却速度で冷却する第一段の冷却と、引続き、平均冷却速度:(0.2~0.8)×第一段冷却速度の冷却速度で、400~500℃の温度域の冷却停止温度まで、第一段の冷却と第二段の冷却の総冷却時間の0.2~0.8の冷却時間で冷却する第二段の冷却とからなり、前記第二段の冷却終了後、400℃~500℃の温度域で100~1000s滞留させること、を特徴とする伸びフランジ性に優れた高強度冷延鋼板の製造方法。
  4. 前記鋼素材が、前記組成に加えてさらに、mass%で、Ca:0.0001~0.0050%を含有することを特徴とする請求項3に記載の高強度冷延鋼板の製造方法。
PCT/JP2011/070665 2010-09-06 2011-09-05 伸びフランジ性に優れた高強度冷延鋼板およびその製造方法 WO2012033210A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11823683.5A EP2615191B1 (en) 2010-09-06 2011-09-05 High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
KR1020137005549A KR101515730B1 (ko) 2010-09-06 2011-09-05 신장 플랜지성이 우수한 고강도 냉연 강판 및 그 제조 방법
CN201180042942.0A CN103080357B (zh) 2010-09-06 2011-09-05 延伸凸缘性优良的高强度冷轧钢板及其制造方法
US13/819,877 US20130160907A1 (en) 2010-09-06 2011-09-05 High strength cold rolled steel sheet having excellent stretch flangeability and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010199040 2010-09-06
JP2010-199040 2010-09-06
JP2011179329A JP5126399B2 (ja) 2010-09-06 2011-08-19 伸びフランジ性に優れた高強度冷延鋼板およびその製造方法
JP2011-179329 2011-08-19

Publications (1)

Publication Number Publication Date
WO2012033210A1 true WO2012033210A1 (ja) 2012-03-15

Family

ID=45810804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070665 WO2012033210A1 (ja) 2010-09-06 2011-09-05 伸びフランジ性に優れた高強度冷延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US20130160907A1 (ja)
EP (1) EP2615191B1 (ja)
JP (1) JP5126399B2 (ja)
KR (1) KR101515730B1 (ja)
CN (1) CN103080357B (ja)
TW (1) TWI429761B (ja)
WO (1) WO2012033210A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169869A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
CN115698365A (zh) * 2020-07-20 2023-02-03 安赛乐米塔尔公司 经热处理的冷轧钢板及其制造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657800B1 (ko) 2014-12-18 2016-09-20 주식회사 포스코 신장플랜지성이 우수한 고강도 냉연강판 및 그 제조방법
MX2017009743A (es) * 2015-01-28 2017-11-08 Jfe Steel Corp Lamina de acero laminada en frio de alta resistencia, lamina de acero recubierta de alta resistencia y metodos para producir estas laminas.
EP3330396B1 (en) * 2015-07-29 2020-05-06 JFE Steel Corporation Cold rolled steel sheet, plated steel sheet and methods for producing same
JP6304456B2 (ja) * 2016-03-31 2018-04-04 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6798556B2 (ja) * 2016-09-13 2020-12-09 日本製鉄株式会社 鋼板
WO2018189950A1 (ja) * 2017-04-14 2018-10-18 Jfeスチール株式会社 鋼板およびその製造方法
CN109202028B (zh) * 2018-09-10 2020-03-10 武汉科技大学 一种高延伸凸缘钢板及其制备方法
WO2020250009A1 (en) * 2019-06-12 2020-12-17 Arcelormittal A cold rolled martensitic steel and a method of martensitic steel thereof
CN110629115A (zh) * 2019-10-21 2019-12-31 山东钢铁集团日照有限公司 不同屈服强度级别经济型冷轧cp800钢及其生产方法
WO2021079754A1 (ja) * 2019-10-23 2021-04-29 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR102321285B1 (ko) * 2019-12-18 2021-11-03 주식회사 포스코 가공성이 우수한 고강도 강판 및 그 제조방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578752A (ja) 1991-09-20 1993-03-30 Nippon Steel Corp 化成処理性と伸びフランジ性の優れた高強度冷延鋼板の製造方法
JPH0941040A (ja) 1995-08-04 1997-02-10 Kobe Steel Ltd 伸びフランジ性にすぐれる高強度冷延鋼板の製造方法
JP2005281854A (ja) * 2004-03-01 2005-10-13 Nippon Steel Corp 穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板およびその製造方法
JP2006176807A (ja) 2004-12-21 2006-07-06 Kobe Steel Ltd 伸びおよび伸びフランジ性に優れる複合組織鋼板
JP2008056993A (ja) * 2006-08-31 2008-03-13 Nippon Steel Corp 伸び、耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2008297609A (ja) 2007-05-31 2008-12-11 Kobe Steel Ltd 伸びおよび伸びフランジ性に優れた高強度鋼板およびその製造方法
JP2009030159A (ja) * 2007-07-04 2009-02-12 Nippon Steel Corp プレス成形性の良好な高強度高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びに、それらの製造方法
JP2010059452A (ja) 2008-09-02 2010-03-18 Sumitomo Metal Ind Ltd 冷延鋼板およびその製造方法
JP2010065316A (ja) 2008-08-12 2010-03-25 Kobe Steel Ltd 加工性に優れた高強度鋼板
JP2010126747A (ja) * 2008-11-26 2010-06-10 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010255091A (ja) 2009-04-03 2010-11-11 Kobe Steel Ltd 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949694B1 (ko) * 2002-03-29 2010-03-29 제이에프이 스틸 가부시키가이샤 초미세입자 조직을 갖는 냉연강판 및 그 제조방법
EP1767659A1 (fr) * 2005-09-21 2007-03-28 ARCELOR France Procédé de fabrication d'une pièce en acier de microstructure multi-phasée
CN101270436B (zh) * 2007-03-23 2010-12-15 宝山钢铁股份有限公司 一种热轧多相钢板及其制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578752A (ja) 1991-09-20 1993-03-30 Nippon Steel Corp 化成処理性と伸びフランジ性の優れた高強度冷延鋼板の製造方法
JPH0941040A (ja) 1995-08-04 1997-02-10 Kobe Steel Ltd 伸びフランジ性にすぐれる高強度冷延鋼板の製造方法
JP2005281854A (ja) * 2004-03-01 2005-10-13 Nippon Steel Corp 穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板およびその製造方法
JP2006176807A (ja) 2004-12-21 2006-07-06 Kobe Steel Ltd 伸びおよび伸びフランジ性に優れる複合組織鋼板
JP2008056993A (ja) * 2006-08-31 2008-03-13 Nippon Steel Corp 伸び、耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2008297609A (ja) 2007-05-31 2008-12-11 Kobe Steel Ltd 伸びおよび伸びフランジ性に優れた高強度鋼板およびその製造方法
JP2009030159A (ja) * 2007-07-04 2009-02-12 Nippon Steel Corp プレス成形性の良好な高強度高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びに、それらの製造方法
JP2010065316A (ja) 2008-08-12 2010-03-25 Kobe Steel Ltd 加工性に優れた高強度鋼板
JP2010059452A (ja) 2008-09-02 2010-03-18 Sumitomo Metal Ind Ltd 冷延鋼板およびその製造方法
JP2010126747A (ja) * 2008-11-26 2010-06-10 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010255091A (ja) 2009-04-03 2010-11-11 Kobe Steel Ltd 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615191A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169869A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6278162B1 (ja) * 2016-03-31 2018-02-14 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US11254995B2 (en) 2016-03-31 2022-02-22 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full hard cold-rolled steel sheet, method for producing steel sheet, and method for producing coated steel sheet
CN115698365A (zh) * 2020-07-20 2023-02-03 安赛乐米塔尔公司 经热处理的冷轧钢板及其制造方法
CN115698365B (zh) * 2020-07-20 2024-03-26 安赛乐米塔尔公司 经热处理的冷轧钢板及其制造方法

Also Published As

Publication number Publication date
JP2012077377A (ja) 2012-04-19
KR20130058044A (ko) 2013-06-03
CN103080357B (zh) 2015-03-25
JP5126399B2 (ja) 2013-01-23
EP2615191A4 (en) 2014-05-21
US20130160907A1 (en) 2013-06-27
CN103080357A (zh) 2013-05-01
KR101515730B1 (ko) 2015-04-27
TWI429761B (zh) 2014-03-11
EP2615191A1 (en) 2013-07-17
TW201219579A (en) 2012-05-16
EP2615191B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5126399B2 (ja) 伸びフランジ性に優れた高強度冷延鋼板およびその製造方法
JP5348268B2 (ja) 成形性に優れる高強度冷延鋼板およびその製造方法
JP5040197B2 (ja) 加工性に優れ、かつ熱処理後の強度靭性に優れた熱延薄鋼板およびその製造方法
JP6210175B2 (ja) 高強度冷延鋼板およびその製造方法
JP5609945B2 (ja) 高強度冷延鋼板およびその製造方法
JP5862051B2 (ja) 加工性に優れる高強度冷延鋼板ならびにその製造方法
JP5487984B2 (ja) 曲げ性に優れた高強度冷延鋼板およびその製造方法
WO2011126154A1 (ja) 温間加工性に優れた高強度鋼板およびその製造方法
JP5321605B2 (ja) 延性に優れる高強度冷延鋼板およびその製造方法
JP6047983B2 (ja) 伸びおよび伸びフランジ性に優れる高強度冷延鋼板の製造方法
JP5521444B2 (ja) 加工性に優れた高強度冷延鋼板およびその製造方法
JP5862052B2 (ja) 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法
CN111406124B (zh) 高强度冷轧钢板及其制造方法
JP2001226741A (ja) 伸びフランジ加工性に優れた高強度冷延鋼板およびその製造方法
WO2015198582A1 (ja) 高強度鋼板
JP2001220647A (ja) 加工性に優れた高強度冷延鋼板およびその製造方法
JP6098537B2 (ja) 高強度冷延鋼板およびその製造方法
JP4848722B2 (ja) 加工性に優れた超高強度冷延鋼板の製造方法
JP5434375B2 (ja) 加工性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP6628018B1 (ja) 熱延鋼板
WO2013084477A1 (ja) 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
CN111315907B (zh) 钢板
KR20230087773A (ko) 강도 및 연성이 우수한 강판 및 그 제조방법
KR20230091218A (ko) 우수한 성형성과 높은 항복비를 갖는 고강도 강판 및 그 제조방법
WO2013160938A1 (ja) 延性に優れる高強度冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042942.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011823683

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13819877

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137005549

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE