WO2012033059A1 - 太陽電池モジュールの製造方法、太陽電池セルの接続装置、太陽電池モジュール - Google Patents

太陽電池モジュールの製造方法、太陽電池セルの接続装置、太陽電池モジュール Download PDF

Info

Publication number
WO2012033059A1
WO2012033059A1 PCT/JP2011/070184 JP2011070184W WO2012033059A1 WO 2012033059 A1 WO2012033059 A1 WO 2012033059A1 JP 2011070184 W JP2011070184 W JP 2011070184W WO 2012033059 A1 WO2012033059 A1 WO 2012033059A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar battery
head
pressing
solar cell
conductive adhesive
Prior art date
Application number
PCT/JP2011/070184
Other languages
English (en)
French (fr)
Inventor
貴啓 藤井
須賀 保博
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to US13/638,503 priority Critical patent/US20130048047A1/en
Priority to EP11823534.0A priority patent/EP2615646A1/en
Publication of WO2012033059A1 publication Critical patent/WO2012033059A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • Y10T29/53209Terminal or connector
    • Y10T29/53213Assembled to wire-type conductor

Definitions

  • the present invention relates to a solar cell connection device that connects a plurality of solar cells by tab wires, a solar cell module manufacturing method that uses this connection device, and a solar cell module.
  • Solar cells are attracting attention as a new environment-friendly energy source because they can directly convert sunlight, which is a clean and inexhaustible energy source, into electricity.
  • the output per solar cell is about several watts, so it is not used for each solar cell, but output by connecting a plurality of solar cells in series. Is used as a solar cell module whose power is increased to 100 W or more.
  • a string 103 is formed in which a plurality of adjacent solar cells 101 are connected by tab wires 102 made of solder-coated ribbon-like copper foil.
  • a matrix 104 in which a plurality of strings 103 are arranged is provided.
  • the matrix 104 is sandwiched between sheets of sealing adhesive 105 and laminated together with a front protective cover 106 provided on the light receiving surface side and a back sheet 107 provided on the back surface side.
  • a metal frame 108 such as aluminum is attached to the periphery.
  • the connection between the solar battery cell 101 and the tab wire 102 includes a bus bar electrode formed by screen printing of silver paste on the light receiving surface of the solar battery cell 101, an Ag electrode formed at the back connection part of the solar battery cell 101, and a tab
  • the wire 102 is connected by soldering (Patent Document 1). Note that an Al electrode is formed in a region other than the back surface connection portion of the solar battery cell 101.
  • soldering is performed at a high temperature of about 260 ° C., it is caused by warpage of the solar battery cell 101, internal stress generated at the connection between the tab wire 102 and the front surface electrode and the back surface electrode, and residual flux. There is a concern that the connection reliability between the front and back electrodes of the solar battery cell 101 and the tab wire 102 is lowered.
  • a conductive adhesive film 110 that can be connected by thermocompression bonding at a relatively low temperature is used to connect the front and back electrodes of the solar battery cell 101 and the tab wire 102 (Patent Document). 2).
  • the conductive adhesive film 110 is a film in which spherical or scale-like conductive particles having an average particle size of the order of several ⁇ m are dispersed in a thermosetting binder resin composition, and is thermocompression bonded between two conductors.
  • thermosetting binder resin composition thermosetting binder resin composition
  • the back electrode 111 of one solar battery cell 101a On the bus bar electrode 112 formed on the surface of the other solar battery cell 101b adjacent to the connection part 111a and the other solar battery cell 101a, one tab wire 102 is interposed via the uncured conductive adhesive film 110. One end of each is temporarily crimped. Further, the tab wire 102 is similarly formed between the connection portion 111a of the back surface electrode 111 of the other solar battery cell 101b and the bus bar electrode 112 formed on the surface of the solar battery cell 101c following the solar battery cell 101b. One end of each is temporarily crimped. In this manner, adjacent solar cells 101 are connected by the tab wire 102.
  • thermo-compression-bonding means 113 such as a head.
  • the thermocompression bonding means 113 applies a predetermined pressure (for example, about 0.5 to 3 MPa) to the connecting portions 111a of the bus bar electrodes 112 and the back electrode 111 for each tab wire 102 temporarily attached to the front and back surfaces of the solar battery cell 101a. It is heated to a predetermined temperature (for example, about 180 ° C.) while pressing. Due to the heat generated by the thermocompression bonding means 113, the conductive adhesive film 110 undergoes a thermosetting reaction. As a result, in one solar battery cell 101 a, the end of each tab wire 102 is a surface electrode via the conductive adhesive film 110. The bus bar electrode 112 and the back electrode 111 formed on the connecting portion 111a are bonded to each other.
  • a predetermined pressure for example, about 0.5 to 3 MPa
  • thermocompression bonding means 113 heat from the thermocompression bonding means 113 is transmitted to the other adjacent solar battery cell 101b through the tab wire 102, and the uncured conductive adhesive film 110 disposed in this solar battery cell 101b is cured. It will progress. That is, in the final press-bonding step of the tab wire 102 to one solar cell 101a before the conductive adhesive film 110 is heated and pressed against the other solar cell 101b, it is temporarily press-bonded to the other solar cell 101b. The thermosetting reaction of the conductive adhesive film 110 is preceded, and even if the tab wire 102 is hot-pressed against the other solar battery cell 101b, the adhesive strength to the other solar battery cell 101b is lowered. There was a fear.
  • this invention prevents the strength reduction of the conductive adhesive film of the other photovoltaic cell connected by the said tab wire in the adhesion process of the tab wire by the conductive adhesive film with respect to one solar cell, and is high. It aims at providing the manufacturing method of the solar cell module which can ensure connection reliability, the connection apparatus of a photovoltaic cell, and a solar cell module.
  • a method for manufacturing a solar cell module according to the present invention is such that a surface electrode of one solar cell and a back electrode of another solar cell are formed of a thermosetting conductive adhesive film.
  • the tab wire is disposed on the surface electrode and the back electrode via the conductive adhesive film.
  • the first bonding portion of the tab wire disposed on one of the electrodes via the uncured conductive adhesive film is heat-pressed by a first pressing head having a heating pressing mechanism.
  • a second pressure head having a heat dissipation mechanism is used to attach the second adhesive portion of the tab wire disposed on the other electrode through the heat-pressing step and the uncured conductive adhesive film. And a pressing dissipating process.
  • the solar cell connection device includes a support mechanism for supporting a plurality of solar cells in parallel, and an uncured thermosetting conductive adhesive on the front electrode or back electrode of one solar cell.
  • a first pressing head having a heating and pressing mechanism that heats and presses one end side of a tab wire temporarily attached via a film, and a surface electrode or a back electrode of another solar cell adjacent to the one solar cell.
  • a second pressing head having a heat dissipation mechanism that presses the other end of the tab wire temporarily pasted through an uncured thermosetting conductive adhesive film to dissipate heat.
  • the solar cell module according to the present invention is manufactured using the above manufacturing method.
  • the second pressing head presses the tab wire disposed in another solar battery cell adjacent to the solar battery cell pressed by the first pressing head, so that it is adjacent to the solar battery cell. It is possible to prevent the heat from the first pressing head from being transmitted to the conductive adhesive film disposed in the solar battery cell, and to prevent the curing reaction from proceeding.
  • FIG. 1 is an exploded perspective view showing a solar cell module.
  • FIG. 2 is a cross-sectional view showing a connection state of solar cells.
  • FIG. 3 is a diagram showing an outline of an apparatus for attaching a conductive adhesive film to a solar battery cell.
  • FIG. 4 is a side view showing a connection device for temporarily crimping a tab wire to a solar battery cell.
  • FIG. 5 is a side view showing a connection device for permanently crimping a tab wire to a solar battery cell.
  • FIG. 6 is a side view showing another heat radiating head according to the present invention.
  • FIG. 7 is a side view showing still another heat dissipation head according to the present invention.
  • FIG. 8 is a side view which shows the evaluation sample with which it uses for the Example concerning this invention.
  • FIG. 9 is a diagram illustrating a process of crimping a tab wire to a conventional solar battery cell.
  • a solar cell module 1 manufactured by a manufacturing method according to the present invention has a string 4 in which a plurality of solar cells 2 are connected in series by tab wires 3 serving as interconnectors.
  • a matrix 5 in which a plurality of strings 4 are arranged is provided.
  • the solar cell module 1 is laminated together with the front cover 7 provided on the light receiving surface side and the back sheet 8 provided on the back surface side, with the matrix 5 sandwiched between the sealing adhesive sheets 6.
  • a metal frame 9 such as aluminum is attached to the periphery.
  • sealing adhesive for example, a translucent sealing material such as ethylene vinyl acetate resin (EVA) is used.
  • EVA ethylene vinyl acetate resin
  • surface cover 7 for example, a light-transmitting material such as glass or light-transmitting plastic is used.
  • back sheet 8 a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
  • each solar battery cell 2 of the solar battery module has a photoelectric conversion element 10 made of a silicon substrate.
  • the photoelectric conversion element 10 is provided with a bus bar electrode 11 serving as a surface electrode on the light receiving surface side and a finger electrode 12 that is a collecting electrode formed in a direction substantially orthogonal to the bus bar electrode 11.
  • the photoelectric conversion element 10 is provided with an Al back electrode 13 made of aluminum on the back side opposite to the light receiving surface.
  • the photovoltaic cell 2 is electrically connected to the bus bar electrode 11 on the front surface and the Al back electrode 13 of the adjacent photovoltaic cell 2 by the tab wire 3, thereby constituting the strings 4 connected in series. To do.
  • the tab wire 3 is connected to the bus bar electrode 11 and the Al back electrode 13 by the conductive adhesive film 15.
  • the tab wire 3 can use the tab wire used in the conventional solar cell module.
  • the tab wire 3 is formed by using, for example, a ribbon-like copper foil having a thickness of 50 to 300 ⁇ m and performing gold plating, silver plating, tin plating, solder plating, or the like as necessary.
  • the bus bar electrode 11 is formed by applying Ag paste and heating.
  • the bus bar electrode 11 formed on the light receiving surface of the solar battery cell 2 is formed in a line shape with a width of 1 mm, for example, in order to reduce the area that blocks incident light and suppress shadow loss.
  • the number of bus bar electrodes 11 is appropriately set in consideration of the size and resistance of the solar battery cell 2.
  • the finger electrode 12 is formed over almost the entire light receiving surface of the solar battery cell 2 so as to intersect the bus bar electrode 11 by the same method as the bus bar electrode 11.
  • the finger electrodes 12 are formed with lines having a width of about 100 ⁇ m, for example, at a predetermined interval, for example, every 2 mm.
  • the Al back electrode 13 has an aluminum electrode formed on the entire back surface of the solar cell 2 by, for example, screen printing or sputtering.
  • the conductive adhesive film 15 is a thermosetting adhesive, and is cured in a state where the conductive particles are crushed by being thermocompression-bonded by a heating and pressing head 22 to be described later, and the tab wire 3 and the bus bar electrode 11 or the like.
  • the connection part 13a of the Al back electrode 13 is connected.
  • the conductive adhesive film 15 has a composition in which conductive particles are contained in an organic resin binder, and the organic resin binder is composed of a film forming material, a liquid curing component, a silane coupling agent, a curing agent, and the like.
  • the film forming material any organic resin having film forming ability such as phenoxy resin and solid epoxy resin can be used as appropriate.
  • the liquid curing component a thermosetting compound such as a liquid epoxy resin or liquid acrylate can be appropriately used.
  • a curing agent when a liquid epoxy resin is used an amine-based curing agent, imidazoles, sulfonium salts, onium salts and the like can be preferably used.
  • a thermal radical generator such as an organic peroxide can be preferably used.
  • the solar cell module 1 is configured by connecting a plurality of solar cells 2 in series by tab wires 3 serving as interconnectors. Specifically, the solar cell module 1 connects the one end 3a side of one tab wire 3 to the bus bar electrode 11 formed on the light receiving surface of one solar cell 2a, and the back surface of another adjacent solar cell 2b. It is formed by connecting the other end 3b side of the tab wire 3 to the connection portion 13a of the Al back electrode 13 formed in the above.
  • the tab wire 3 is connected to the bus bar electrode 11 and the Al back electrode 13 by the conductive adhesive film 15 that is attached in advance to the bus bar electrode 11 and the Al back electrode 13.
  • the temporary bonding head 17 is on the bus bar electrode 11 of the solar battery cell 2 and the Al back electrode. This is performed by temporarily pasting the uncured conductive adhesive film 15 on the 13 connecting portions 13a.
  • the sticking device 16 includes a pair of supply reels 18 that supply the conductive adhesive film 15 and the conductive adhesive film 15 at predetermined positions on both surfaces of the solar battery cell 2.
  • a temporary attachment head 17 for temporary attachment is provided.
  • the sticking device 16 is provided with a temporary sticking head 17 and a supply reel 18 on the upper side and the lower side of the support member of the solar battery cell 2 (not shown).
  • the supply reel 18 is wound with a conductive adhesive film 15 supported on a support such as PET.
  • the conductive adhesive film 15 is guided to a position facing the front or back surface of the solar battery cell 2 supported by the support member through a capstan roller and a pinch roller together with the support, and the solar battery cell by the temporary attachment head 17. 2 is temporarily pasted on the bus bar electrode 11 or on the connection part 13 a of the Al back electrode 13.
  • the temporary pasting head 17 is provided so as to be movable up and down at a position facing the front or back surface of the solar battery cell 2 supported by the support member. And when the photovoltaic cell 2 is mounted on a support member and the conductive adhesive film 15 runs on the bus bar electrode 11 and the connection part 13a of the Al back electrode 13, the conductive adhesive is applied from above the support. The film 15 is heated and pressed on the front and back surfaces of the solar battery cell 2. At this time, the temporary attachment head 17 generates adhesive force by heating at a temperature at which fluidity is generated in the organic resin binder of the conductive adhesive film 15 but main curing does not occur, thereby temporarily attaching to the solar battery cell 2. To do.
  • the support that supports the conductive adhesive film 15 is peeled off when the conductive adhesive film 15 is temporarily attached, and is transported and discarded via a capstan roller and a pinch roller.
  • Step of connecting solar cells 2 Next, a plurality of solar cells 2 are arranged on the solar cell connection device 20, and the tab wire 3 is temporarily crimped onto the conductive adhesive film 15 by the temporary crimping head 25. At this time, as shown in FIGS. 2 and 4, one end 3 a of the tab wire 3 is formed on the bus bar electrode 11 formed on the surface of the preceding one solar battery cell 2 a via an uncured conductive adhesive film 15. Is temporarily pressure-bonded, and the other end 3a of the tab wire 3 is temporarily pressure-bonded to the connection portion 13a of the Al back surface electrode 13 of another subsequent solar battery cell 2b via the uncured conductive adhesive film 15.
  • uncured conductive material is formed on the bus bar electrode 11 formed on the surface of the other solar battery cell 2b and the connection part 13a of the Al back electrode 13 of the solar battery cell 2c following the solar battery cell 2b.
  • One end 3 a and the other end 3 b of the tab wire 3 are temporarily pressure-bonded via the adhesive adhesive film 15. In this way, adjacent solar cells 2 are connected in series with the tab wire 3.
  • the plurality of tab wires 3 that connect the plurality of solar cells 2a, 2b, 2c,... In series are heated and pressed by the heating press head 22 in order, the conductive adhesive film 15 is cured, and the tab wires 3 are A main pressure bonding is performed on the solar battery cell 2.
  • the heat radiation head 23 is provisionally pressure-bonded to another solar battery cell 2 adjacent to the solar battery cell 2 pressed by the heat press head 22 in conjunction with the heat press head 22.
  • connection device 20 of the solar battery cell 2 includes a tab 21 via a conductive adhesive film 15 on a support mechanism 21 that supports a plurality of solar cells 2 in parallel, and a connection portion 13 a of the bus bar electrode 11 and the Al back electrode 13 of each solar cell 2.
  • a heating and pressing head 22 that heats and presses the wire 3 and a radiation head that presses and heats the tab wire 3 that is temporarily press-bonded to the adjacent solar cell 2 after the solar cell 2 that is pressed by the heating and pressing head 22.
  • the connection device 20 is provided with a pair of heating and pressing heads 22 and a heat-dissipating head 23 above and below the support mechanism 21.
  • connection device 20 has a bus bar electrode 11 and an Al back electrode 13 of each solar battery cell 2 on the upstream side in the transport direction of the solar battery cell 2 indicated by the arrow A direction in FIG.
  • a temporary crimping head 25 for temporarily crimping the tab wire 3 via the conductive adhesive film 15 is provided at the connecting portion 13a.
  • the support mechanism 21 conveys and supports the solar cells 2 to positions where the pair of upper and lower heating and pressing heads 22 and the heat radiation heads 23 face each other.
  • the belt runs on a plurality of rollers. By doing so, it is comprised by the belt conveyor which conveys the photovoltaic cell 2.
  • FIG. The support mechanism 21 arranges a plurality of solar cells 2 to be connected in series, and conveys each solar cell 2 to a position facing a temporary press-bonding head 25, a heating and pressing head 22, and a heat dissipation head 23 described later.
  • the support mechanism 21 is provided with support means (not shown) at a position where the solar battery cell 2 faces the temporary press-bonding head 25, the heating and pressing head 22, and the heat dissipation head 23, and stabilizes and holds the solar battery cell 2, Positioning with the heads 21, 22, and 25 may be attempted, and variation in pressing force may be suppressed.
  • the heating and pressing head 22 has a pressing surface 22a for pressing the tab wire 3 and a head body 22b in which a heater is built.
  • the heating and pressing head 3 presses the pressing surface 22a heated to a predetermined temperature at which the organic resin binder of the conductive adhesive film 15 is cured, against the tab wire 3 at a predetermined pressure and time, whereby an anisotropic conductive film. 15 is cured in a state where the conductive particles are crushed.
  • the heat radiation head 23 is provided adjacent to the heating and pressing head 22 on the upstream side of the heating and pressing head 22 in the transport direction of the solar cells 2. Further, the heat radiating head 23 has a head body 23b on which a pressing surface 23a for pressing the tab wire 3 is formed. The heat radiating head 23 absorbs and dissipates the heat transmitted from the heating and pressing head 22 to the tab wire 3, and thereby the uncured conductive adhesive film 15 temporarily attached before entering the main pressure bonding step. In addition, the curing reaction of the organic resin binder is prevented from proceeding.
  • the head main body 23b is formed of a material having high thermal conductivity, and can efficiently absorb and dissipate the heat of the tab wire 3. Further, the head body 23b may incorporate a cooling mechanism, and may be formed of a material having low thermal conductivity so as to maintain the cooling effect.
  • the temporary crimping head 25 heats and presses the tab wire 3 at a temperature at which the curing reaction of the conductive adhesive film 15 does not proceed, so that the tab wire 3 is placed on the bus bar electrode 11 and the Al back electrode 13 before the final crimping step. Are temporarily crimped onto the connecting portion 13a.
  • the temporary crimping head 25 includes a pressing surface 25a that presses the tab wire 3 and a head body 25b in which a heater is built. All of the heating and pressing head 22, the heat radiation head 23, and the provisional pressure bonding head 25 are driven by a head driving mechanism (not shown).
  • the head driving mechanism is provided in each of the heads 22, 23, and 25, or a first head driving mechanism that drives the heating and pressing head 22 and the heat dissipation head 23 in synchronization with each other, and a second head that drives the temporary pressure bonding head 25. Head drive mechanism.
  • the head driving mechanism drives the pair of heating and pressing heads 22, the heat radiation head 23, and the provisional pressure bonding head 25 provided respectively on the upper side and the lower side across the support mechanism 21 to drive the solar cells 2 in synchronization with each other. It is supported so that it can be moved up and down so as to be close to and away from both sides. Then, the head driving mechanism drives each head body 22b, 23b, 25b so as to press the tab wire 3 with a predetermined pressure for a predetermined time.
  • the head driving mechanism controls the driving of the heaters built in the head main bodies 22b and 25b of the heating and pressing head 22 and the temporary pressure bonding head 25.
  • the head driving mechanism drives the heaters in the head main bodies 22b and 25b to heat them to a predetermined temperature when the tab wire 3 is temporarily crimped or permanently crimped.
  • the solar battery cell 2 is manufactured.
  • the solar battery cell 2 is formed by laminating a single crystal silicon photoelectric conversion element, a crystalline silicon solar battery module using a polycrystalline photoelectric conversion element, a cell made of amorphous silicon and a cell made of microcrystalline silicon or amorphous silicon germanium.
  • Various photoelectric conversion elements 10 such as thin-film silicon solar cells using the photoelectric conversion elements can be used.
  • the finger electrode 12 and the bus bar electrode 11 are formed on the surface to be the light receiving surface of the photoelectric conversion element 10 by applying and baking Ag paste, and the connecting portion 13a of the tab wire 3 is formed on the back surface by Al screen printing or the like. An Al back electrode 13 having the same is formed.
  • the conductive adhesive film 15 is attached to the bus bar electrode 11 on the front surface and the connection portion 13 a on the back surface, and the tab wire 3 is temporarily pressure-bonded on the conductive adhesive film 15.
  • each solar battery cell 2 is placed on the attachment device 16 of the conductive adhesive film 15, and the uncured conductive adhesive fed out from the supply reel 18.
  • the film 15 is temporarily attached on the bus bar electrode 11 of the solar battery cell 2 and the connection part 13 a of the Al back electrode 13 by the temporary attachment head 17.
  • the temporary pasting head 17 is heated at a temperature (for example, 40 to 60 ° C.) at which the fluidity is generated in the conductive adhesive film 15 but main curing does not occur for a predetermined time (for example, 1 to 5 seconds). Then, it is temporarily attached to the solar battery cell 2.
  • Each solar battery cell 2 to which the conductive adhesive film 15 is temporarily attached is arranged on the support mechanism 21 of the connection device 20 in the order of series connection, and the bus bar electrode 11 and the Al back electrode through the conductive adhesive film 15.
  • the tab wire 3 is temporarily crimped to the 13 connecting portions 13a.
  • the tab wire 3 is disposed on the bus bar electrode 11 formed on the surface of the preceding solar cell 2a with one end 3a and the other end 3b of the subsequent solar cell 2b.
  • the tab wire 3 is pressed against the pressing surface 25a by a pair of temporary press-bonding heads 25 provided above and below the support mechanism 21 being moved up and down in synchronization.
  • the temporary crimping head 25 presses the tab wire 3 by the pressing surface 25a of the head main body 25b heated to a temperature at which the curing reaction of the conductive adhesive film 15 does not proceed. Therefore, the conductive adhesive film 15 temporarily fixes the tab wire 3 on the bus bar electrode 11 and the connection part 13a of the Al back electrode 13 when the binder resin exhibits fluidity and exerts an adhesive force.
  • the plurality of solar cells 2 to which the tab wires 3 are temporarily fixed are transported and supported immediately below the heating and pressing head 22 and the heat dissipation head 23, and are tabbed by the heating and pressing head 22 and the heat dissipation head 23. 3 is pressed.
  • the plurality of solar cells 2 are arranged so that the preceding solar cells 2a are moved up and down in synchronization with a pair of heating and pressing heads 22 provided above and below the support mechanism 21. It is pressed against the pressing surface 22a with a predetermined pressure.
  • the heating and pressing head 22 is heated to a predetermined temperature at which the head main body 22a is cured by the conductive adhesive film 15. Therefore, in the conductive adhesive film 15, the binder resin is thermally cured, and the tab wire 3 and the connection portion 13 a of the bus bar electrode 11 or the Al back electrode 13 are electrically and mechanically connected.
  • the plurality of solar battery cells 2 are moved up and down in synchronization with a pair of heat radiation heads 22 provided above and below the support mechanism 21 in the solar battery cell 2b following the preceding solar battery cell 2a.
  • the tab wire 3 is pressed against the pressing surface 23a. Since the heat dissipating head 23 is formed of a material having a high thermal conductivity, the head main body 23b is pressed by the heating and pressing head 22 at one end 3a of the tab wire 3 that is temporarily press-bonded to the preceding solar battery cell 2a. The heat transmitted to the other end 3b can be efficiently absorbed and dissipated.
  • the conductive adhesive film 15 is heated via the tab wire 3 continuous with the preceding solar battery cell 2a, and the curing reaction proceeds. And the connection reliability at the other end 3b of the tab wire 3 can be maintained.
  • the heat radiating head 23 is raised and lowered by the head driving mechanism in accordance with the raising and lowering operation of the heating and pressing head 22.
  • the heat radiating head 23 is connected to the heating and pressing head 22 by a connector (not shown) and is moved up and down integrally. Therefore, the heat radiating head 23 presses the other end 3b of the tab wire 3 at the same time as the heating and pressing head 22 presses the one end 3a of the tab wire 3, and the heating and pressing head 22 moves away from the one end 3a of the tab wire 3.
  • the tab wire 3 is separated from the other end 3b.
  • the heat dissipation head 23 presses the other end 3 b of the tab wire 3. Curing of the uncured conductive adhesive film 15 can be prevented.
  • the heat radiating head 23 presses the other end 3b of the tab wire 3 before the heat pressing head 22 presses the one end 3a of the tab wire 3 by the head driving mechanism, and the heating press head 22 moves to the tab wire 3a.
  • the tab wire 3 may be operated so as to be separated from the other end 3b.
  • connection device 20 conveys the solar battery cell 2 that has been pressed against the heat dissipation head 23 by the support mechanism 21 directly below the heat pressing head 22, and further conveys the subsequent solar battery cell 2 directly below the heat dissipation head 23. To do.
  • connection device 20 conveys the solar cells 2 one by one directly below the heat radiation head 23 and the heating and pressing head 22, and sequentially connects the tab wires 3 to the connection portions 13a of the bus bar electrode 11 and the Al back electrode 13. While adhering, adjacent solar cells 2 are connected in series.
  • the tab wire 3 and the electrodes 11 and 13 may be connected by applying a paste-like conductive adhesive.
  • the solar battery cell 2 does not necessarily need to be provided with the bus bar electrode 11.
  • the current of the finger electrode 12 is collected by the tab wire 3 that intersects the finger electrode 12.
  • the temporary bonding of the conductive adhesive film 15 and the temporary crimping of the tab wire 3 are performed by temporarily crimping the film in which the conductive adhesive film is laminated on one surface of the tab wire 3 to the bus bar electrode 11 and the connection portion 13a. May be.
  • This film can be wound in a reel shape and temporarily pressed onto the solar battery cell 2 by the sticking device 16.
  • the heat radiating head 23 may be provided with a heat sink 30 on the head main body 23b.
  • the connection device 20 can enhance and maintain the effect of absorption and dissipation of heat transmitted to the other end of the tab wire 3 by the heat radiating head 23.
  • the heat radiating head 23 may be provided with an elastic body 31 on the pressing surface 23a of the head main body 23b.
  • the connecting device 20 absorbs unevenness of the tab wire 3 by providing an elastic body 31 such as rubber having a high thermal conductivity, and the contact area between the pressing surface 23a and the other end 3b of the tab wire 3 increases. As a result, the heat transferred to the other end 3b of the tab wire 3 is reliably absorbed and dissipated, and the uncured conductive adhesive film 15 can be prevented from being cured.
  • the radiating head 23 provided with the heat sink 30 in the head body 23b performs heat dissipation of the tab wire 3 temporarily press-bonded to the subsequent solar battery cell 2. It was.
  • the heat sink 30 is provided on the head body 23b and the elastic body 31 is provided on the pressing surface 23a. The tab wire 3 thus crimped was radiated.
  • Example 3 the heat radiation of the tab wire 3 temporarily bonded to the subsequent solar battery cell 2 is performed by the heat dissipation head 23 not provided with the heat sink 30 and the elastic body 31 during the main pressure bonding process of the preceding solar battery cell 2. It was. In the comparative example, the main bonding of the tab wire 3 temporarily bonded to the subsequent solar battery cell 2 was performed using only the heating and pressing head 22 without the heat radiation head 23.
  • the 6-inch polycrystalline Si cell was used as the solar cell as the material of the evaluation sample used in each example and comparative example.
  • a tab wire a copper wire having a size of 2 mm width ⁇ 0.15 mm thickness and coated with solder was used.
  • the size of the conductive adhesive film was 2 mm ⁇ 150 mm.
  • the pressure bonding conditions by the heat pressing head 22 were set to 180 ° C. for 15 seconds and 2 MPa.
  • the heat radiating head 23 was driven in synchronism with the heating and pressing head 22 and was brought into and out of contact with the tab wire 3 simultaneously with the heating and pressing head 22.
  • the evaluation sample forms a string in which two solar cells 2a and 2b are connected by a tab wire 3 as shown in FIG.
  • Two evaluation samples are prepared for each example and comparative example, and after one is subjected to main pressure bonding by the heating and pressing head 22 only for the solar battery cell 2a, each part of the solar battery cell 2b (left end L, center C, The reaction rate at the right end R) is measured, and after the main pressure bonding is performed by the heating and pressing head 22 in the order of the solar battery cell 2a and the solar battery cell 2b, each part of the solar battery cell 2b (left end L, center C, The adhesive strength at the right end R) was measured, and the curing reaction rate and connection reliability were evaluated.
  • a curing reaction rate of 80% or more is required.
  • the curing reaction rate is obtained by performing IR measurement on the sample before the curing reaction and after the curing reaction, obtaining the ratio of the peak intensity of the epoxy group of the obtained chart as the ratio of the remaining epoxy group, and subtracting this from 1. Was determined as the curing reaction rate.
  • connection resistance of the tab wire 3 connected to the solar battery cell 2b is measured, ⁇ less than 40 m ⁇ , ⁇ from 40 m ⁇ to less than 45 m ⁇ , ⁇ from 45 m ⁇ to less than 50 m ⁇ , and x from 50 m ⁇ to tab.
  • an environmental test 500 hours in a high-temperature and high-humidity environment where the temperature is 80 ° C. and the humidity is 80%
  • the measurement was performed.
  • connection method form A is that the solar battery cell 2b is pressed by the heat radiation head 23 in the main press-bonding step of the solar battery cell 2a, and then conveyed directly below the heating press head 22 and finally press-bonded. This is a connection form.
  • connection method form B the solar battery cell 2b is not pressed by the heat-dissipating head 23 in the main press-bonding step of the solar battery cell 2a, and is then transported directly under the heating and pressing head 22 and finally press-bonded. It is a connection form.
  • the adhesive strength at the right end R is 3 (N / mm 2 ) in Example 3.
  • the adhesive strength of the example was higher than the adhesive strength of the comparative example.
  • connection reliability evaluation through an environmental test, the difference between the example and the comparative example appears remarkably, and the curing reaction of the conductive adhesive film is performed before the main pressure bonding step by being pressed by the heat dissipation head 23. It can be seen that all of the embodiments in which the problem is suppressed have high connection reliability.
  • Example 2 since the heat dissipation head 23 including the elastic body 31 is used in addition to the heatsink 30, sufficient heat dissipation is performed, and the right end of the solar battery cell 2b before thermocompression bonding. Also in R, the reaction rate was less than 5%. That is, according to the heat radiation head 23 according to Example 2, the most excellent heat radiation effect was exhibited, and the connection reliability after the main pressure bonding was also good.

Abstract

 一の電池セルへの導電性接着フィルムによるタブ線の接着工程において、当該タブ線によって接続される他の電池セルの導電性接着フィルムの接続強度低下を防ぐ。一の太陽電池セル(2)の表面電極(11)と他の太陽電池セル(2)の裏面電極(13)とが、熱硬化型の導電性接着フィルム(15)を介して表面電極(11)及び裏面電極(13)に接着されたタブ線(3)によって接続される太陽電池モジュールの製造方法において、表面電極(11)及び裏面電極(13)上に導電性接着フィルム(15)及びタブ線(3)を配置する配置工程と、一方の電極上に配置されたタブ線(3)の第1の接着部(3a)を、加熱押圧機構を有する第1の押圧ヘッド(22)によって熱加圧する工程と、他方の電極上に配置されたタブ線(3)の第2の接着部(3b)を、放熱機構を有する第2の押圧ヘッド(23)によって放熱する工程とを有する。

Description

太陽電池モジュールの製造方法、太陽電池セルの接続装置、太陽電池モジュール
 本発明は、タブ線により複数の太陽電池セルを接続する太陽電池セルの接続装置、この接続装置を用いて太陽電池モジュールを製造する太陽電池モジュールの製造方法、及び太陽電池モジュールに関する。
 本出願は、日本国において2010年9月7日に出願された日本特許出願番号特願2010-199968を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 太陽電池は、クリーンで無尽蔵なエネルギー源である太陽光を直接電気に変換できることから、環境に優しい新しいエネルギー源として注目されている。太陽電池を電力源として用いる場合、太陽電池セル1個あたりの出力は数W程度であることから、太陽電池セル毎に用いるのではなく、複数枚の太陽電池セルを直列に接続することで出力を100W以上に高めた太陽電池モジュールとして用いている。
 例えば、図1に示すように、結晶シリコン系太陽電池モジュール100では、複数の隣接する太陽電池セル101同士が、半田コートされたリボン状銅箔からなるタブ線102により接続されたストリングス103を形成し、このストリングス103を複数配列したマトリクス104を備える。そして、太陽電池モジュール100は、このマトリクス104が封止接着剤のシート105で挟まれ、受光面側に設けられた表面保護カバー106及び裏面側に設けられたバックシート107とともに一括してラミネートされ、最後に、周囲にアルミニウムなどの金属フレーム108が取り付けられることにより形成される。
 太陽電池セル101とタブ線102との接続は、太陽電池セル101の受光面に銀ペーストのスクリーン印刷により形成されたバスバー電極及び太陽電池セル101の裏面接続部に形成されたAg電極と、タブ線102とが半田処理により接続されている(特許文献1)。なお、太陽電池セル101の裏面接続部以外の領域はAl電極が形成されている。
 しかし、半田付けでは約260℃と高温による接続処理が行われるため、太陽電池セル101の反りや、タブ線102と表面電極及び裏面電極との接続部に生じる内部応力、さらにフラックスの残渣等により、太陽電池セル101の表面電極及び裏面電極とタブ線102との間の接続信頼性が低下することが懸念される。
 そこで、従来、太陽電池セル101の表面電極及び裏面電極とタブ線102との接続に、比較的低い温度での熱圧着処理による接続が可能な導電性接着フィルム110が使用されている(特許文献2)。導電性接着フィルム110は、平均粒径が数μmオーダーの球状または鱗片状の導電性粒子を熱硬化型バインダー樹脂組成物に分散してフィルム化したもので、2つの導体間で加熱圧着されることにより導電性粒子で導体間の電気的導通がとられ、バインダ樹脂にて導体間の機械的接続が保持される。
特開2004-356349号公報 特開2008-135654号公報
 このような結晶シリコン系太陽電池モジュール100の太陽電池セル101とタブ線102とを導電性接着フィルム110を用いて接続する場合、図9に示すように、一の太陽電池セル101aの裏面電極111の接続部111a上及び当該一の太陽電池セル101aと隣接する他の太陽電池セル101bの表面に形成されたバスバー電極112上に、未硬化の導電性接着フィルム110を介して一つのタブ線102の各一端を仮圧着する。また、当該他の太陽電池セル101bの裏面電極111の接続部111aと、この太陽電池セル101bの後に続く太陽電池セル101cの表面に形成されたバスバー電極112との間も、同様にタブ線102の各一端を仮圧着する。このように、隣接する太陽電池セル101同士をタブ線102で連結していく。
 続いて、タブ線102によって連結された複数の太陽電池セル101a、101b・・・を搬送し、先行する太陽電池セル101aの裏面電極111の接続部111a及びバスバー電極112を、上下一対の熱圧着ヘッド等の熱圧着手段113と対向させる。
 熱圧着手段113は、太陽電池セル101aの表裏面に仮貼りされた各タブ線102をバスバー電極112及び裏面電極111の接続部111a側へ、所定の圧力(例えば約0.5~3MPa)をかけて押圧しつつ所定の温度(例えば180℃程度)まで加熱される。この熱圧着手段113による発熱によって、導電性接着フィルム110は熱硬化反応を起こし、これにより、一の太陽電池セル101aは、導電性接着フィルム110を介して各タブ線102の端部が表面電極に形成されたバスバー電極112及び裏面電極111の接続部111a上に接着される。
 しかし、かかる工法によると、熱圧着手段113による熱がタブ線102を通じて隣接する他の太陽電池セル101bに伝わり、この太陽電池セル101bに配置されている未硬化の導電性接着フィルム110の硬化が進行してしまう。すなわち、他の太陽電池セル101bに対して導電性接着フィルム110を加熱押圧する前の、一の太陽電池セル101aに対するタブ線102の本圧着工程において、他の太陽電池セル101bに仮圧着されている導電性接着フィルム110の熱硬化反応が先行してしまい、いざ他の太陽電池セル101bに対してタブ線102を熱加圧しても、他の太陽電池セル101bに対する接着強度が低下してしまうおそれがあった。
 そこで、本発明は、一の太陽電池セルに対して導電性接着フィルムによるタブ線の接着工程において、当該タブ線によって接続される他の太陽電池セルの導電性接着フィルムの強度低下を防ぎ、高い接続信頼性を確保できる太陽電池モジュールの製造方法、太陽電池セルの接続装置及び太陽電池モジュールを提供することを目的とする。
 上述した課題を解決するために、本発明にかかる太陽電池モジュールの製造方法は、一の太陽電池セルの表面電極と他の太陽電池セルの裏面電極とが、熱硬化型の導電性接着フィルムを介して上記表面電極及び上記裏面電極に接着されたタブ線によって接続される太陽電池モジュールの製造方法において、上記タブ線を、上記導電性接着フィルムを介して上記表面電極及び上記裏面電極上に配置する配置工程と、未硬化の上記導電性接着フィルムを介して一方の上記電極上に配置された上記タブ線の第1の接着部を、加熱押圧機構を有する第1の押圧ヘッドによって熱加圧する熱加圧工程と、未硬化の上記導電性接着フィルムを介して他方の上記電極上に配置された上記タブ線の第2の接着部を、放熱機構を有する第2の押圧ヘッドによって押圧する放熱工程とを有する。
 また、本発明にかかる太陽電池セルの接続装置は、複数の太陽電池セルを並列して支持する支持機構と、一の太陽電池セルの表面電極又は裏面電極に未硬化の熱硬化型導電性接着フィルムを介して仮貼りされたタブ線の一端側を加熱押圧する加熱押圧機構を有する第1の押圧ヘッドと、上記一の太陽電池セルに隣接する他の太陽電池セルの表面電極又は裏面電極に未硬化の熱硬化型導電性接着フィルムを介して仮貼りされた上記タブ線の他端側を押圧し、熱を放散させる放熱機構を有する第2の押圧ヘッドとを備える。
 また、本発明にかかる太陽電池モジュールは、上記製造方法を用いて製造されたものである。
 本発明によれば、第1の押圧ヘッドに押圧されている太陽電池セルの後に隣接する他の太陽電池セルに配置されているタブ線を第2の押圧ヘッドが押圧することにより、当該後に隣接する太陽電池セルに配置されている導電性接着フィルムに第1の押圧ヘッドによる熱が伝達されることを防ぎ、硬化反応の進行を防止することができる。
図1は、太陽電池モジュールを示す分解斜視図である。 図2は、太陽電池セルの接続状態を示す断面図である。 図3は、太陽電池セルに導電性接着フィルムを貼着する装置の概略を示す図である。 図4は、太陽電池セルにタブ線を仮圧着する接続装置を示す側面図である。 図5は、太陽電池セルにタブ線を本圧着する接続装置を示す側面図である。 図6は、本発明にかかる他の放熱ヘッドを示す側面図である。 図7は、本発明にかかるさらに他の放熱ヘッドを示す側面図である。 図8は、本発明にかかる実施例に供する評価サンプルを示す側面図である。 図9は、従来の太陽電池セルにタブ線を圧着する工程を説明する図である。
 以下、本発明が適用された太陽電池モジュールの製造方法、太陽電池セルの接続装置及び太陽電池モジュールについて、図面を参照しながら詳細に説明する。
 [太陽電池モジュール1]
 本発明にかかる製造方法によって製造される太陽電池モジュール1は、図1に示すように、複数の太陽電池セル2がインターコネクタとなるタブ線3によって直列に接続されたストリングス4を有し、このストリングス4を複数配列したマトリクス5を備える。そして、太陽電池モジュール1は、このマトリクス5が封止接着剤のシート6で挟まれ、受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートされ、最後に、周囲にアルミニウムなどの金属フレーム9が取り付けられることにより形成される。
 封止接着剤としては、例えばエチレンビニルアセテート樹脂(EVA)等の透光性封止材が用いられる。また、表面カバー7としては、例えば、ガラスや透光性プラスチック等の透光性の材料が用いられる。また、バックシート8としては、ガラスやアルミニウム箔を樹脂フィルムで挟持した積層体等が用いられる。
 [太陽電池セル2]
 太陽電池モジュールの各太陽電池セル2は、図2に示すように、シリコン基板からなる光電変換素子10を有する。光電変換素子10は、受光面側に表面電極となるバスバー電極11と、バスバー電極11とほぼ直交する方向に形成された集電極であるフィンガー電極12が設けられている。また、光電変換素子10は、受光面と反対の裏面側に、アルミニウムからなるAl裏面電極13が設けられている。
 そして、太陽電池セル2は、タブ線3によって、表面のバスバー電極11と、隣接する太陽電池セル2のAl裏面電極13とが電気的に接続され、これにより直列に接続されたストリングス4を構成する。タブ線3とバスバー電極11及びAl裏面電極13との接続は、導電性接着フィルム15によって行う。
 タブ線3は、従来の太陽電池モジュールで使用されているタブ線を利用することができる。タブ線3は、例えば、50~300μm厚のリボン状銅箔を使用し、必要に応じて金メッキ、銀メッキ、スズメッキ、ハンダメッキ等を施すことにより形成される。
 バスバー電極11は、Agペーストを塗布し、加熱することにより形成される。太陽電池セル2の受光面に形成されるバスバー電極11は、入射光を遮る面積を小さくし、シャドーロスを抑えるために、例えば1mm幅でライン状に形成されている。バスバー電極11の数は、太陽電池セル2のサイズや抵抗を考慮して適宜設定される。
 フィンガー電極12は、バスバー電極11と同様の方法により、バスバー電極11と交差するように、太陽電池セル2の受光面のほぼ全面に亘って形成されている。また、フィンガー電極12は、例えば約100μm程度の幅を有するラインが、所定間隔、例えば2mmおきに形成されている。
 Al裏面電極13は、図3に示すように、アルミニウムからなる電極が例えばスクリーン印刷やスパッタ等により太陽電池セル2の裏面全面に形成される。
 導電性接着フィルム15は、熱硬化型接着剤であり、後述する加熱押圧ヘッド22により熱圧着されることにより、導電性粒子が押し潰された状態で硬化し、タブ線3とバスバー電極11やAl裏面電極13の接続部13aとを接続させる。
 具体的に、導電性接着フィルム15は、有機樹脂バインダーに導電性粒子が含有された組成であり、有機樹脂バインダーは膜形成材料、液状硬化成分、シランカップリング剤、硬化剤等から構成される。膜形成材料としては、フェノキシ樹脂、固形エポキシ樹脂等、膜形成能を有する有機樹脂であれば適宜使用することができる。液状硬化成分は、液状エポキシ樹脂、液状アクリレートなど熱硬化性を有する化合物を適宜使用することができる。液状エポキシ樹脂を使用した場合における硬化剤としては、アミン系硬化剤、イミダゾール類、スルホニウム塩、オニウム塩等を好ましく使用することができる。液状アクリレートを使用した場合における硬化剤としては、有機過酸化物などの熱ラジカル発生剤を好ましく使用することができる。更に無機フィラー、各種添加剤を用いてもよい。
 太陽電池モジュール1は、複数の太陽電池セル2がインターコネクタとなるタブ線3によって直列に接続されて構成される。具体的に、太陽電池モジュール1は、一の太陽電池セル2aの受光面に形成されたバスバー電極11に一のタブ線3の一端3a側を接続し、隣接する他の太陽電池セル2bの裏面に形成されたAl裏面電極13の接続部13aに当該タブ線3の他端3b側を接続することにより形成される。
 [導電性接着フィルム15の仮貼り工程]
 上述したように、タブ線3とバスバー電極11及びAl裏面電極13との接続は、バスバー電極11及びAl裏面電極13に予め貼着された導電性接着フィルム15によって行う。導電性接着フィルム15の貼着工程は、導電性接着フィルム15の貼着装置16に各太陽電池セル2を載置し、仮貼りヘッド17によって太陽電池セル2のバスバー電極11上及びAl裏面電極13の接続部13a上に未硬化の導電性接着フィルム15を仮貼りすることにより行う。
 具体的に、この貼着装置16は、図3に示すように、導電性接着フィルム15を供給する一対の供給リール18と、導電性接着フィルム15を太陽電池セル2の両面の所定の位置に仮貼りする仮貼りヘッド17とを備える。貼着装置16は、図示しない太陽電池セル2の支持部材の上側及び下側に、それぞれ仮貼りヘッド17及び供給リール18が設けられている。
 供給リール18は、PET等の支持体に支持された導電性接着フィルム15が巻回されている。導電性接着フィルム15は、支持体とともにキャプスタンローラ及びピンチローラを介して、支持部材に支持された太陽電池セル2の表面又は裏面と対峙する位置にガイドされ、仮貼りヘッド17によって太陽電池セル2のバスバー電極11上、あるいはAl裏面電極13の接続部13a上に仮貼りされる。
 仮貼りヘッド17は、支持部材に支持された太陽電池セル2の表面又は裏面と対峙する位置に昇降自在に設けられている。そして、太陽電池セル2が支持部材に載置されるとともに、バスバー電極11上、及びAl裏面電極13の接続部13a上に導電性接着フィルム15が走行されると、支持体上から導電性接着フィルム15を太陽電池セル2表面及び裏面に加熱押圧する。このとき、仮貼りヘッド17は、導電性接着フィルム15の有機樹脂バインダーに流動性が生じるが本硬化は生じない程度の温度で加熱することで、接着力を発生させ太陽電池セル2に仮貼りする。
 なお、導電性接着フィルム15を支持する支持体は、導電性接着フィルム15が仮貼りされる際に剥離され、キャプスタンローラ及びピンチローラを介して搬送、廃棄される。
 [太陽電池セル2の接続工程]
 次いで、太陽電池セルの接続装置20に複数の太陽電池セル2を並べ、仮圧着ヘッド25によってタブ線3を導電性接着フィルム15上に仮圧着する。このとき、図2及び図4に示すように、先行する一の太陽電池セル2aの表面に形成されたバスバー電極11上に、未硬化の導電性接着フィルム15を介してタブ線3の一端3aを仮圧着し、後に続く他の太陽電池セル2bのAl裏面電極13の接続部13aに、未硬化の導電性接着フィルム15を介して当該タブ線3の他端3aを仮圧着する。同様に、当該他の太陽電池セル2bの表面に形成されたバスバー電極11上と、この太陽電池セル2bの後に続く太陽電池セル2cのAl裏面電極13の接続部13aとに、未硬化の導電性接着フィルム15を介してタブ線3の一端3a及び他端3bを仮圧着する。このように、隣接する太陽電池セル2同士をタブ線3で直列に連結していく。
 次いで、複数の太陽電池セル2a、2b、2c・・・を直列に連結する複数のタブ線3を順に加熱押圧ヘッド22によって熱加圧し、導電性接着フィルム15を硬化させ、タブ線3を各太陽電池セル2に本圧着する。このとき、本実施の形態においては、放熱ヘッド23が、加熱押圧ヘッド22に連動して、加熱押圧ヘッド22に押圧されている太陽電池セル2の後に隣接する他の太陽電池セル2に仮圧着されているタブ線3を押圧することにより、この後に隣接する太陽電池セル2に仮貼りされている導電性接着フィルム15に加熱押圧ヘッド22による熱が伝達されることを防ぎ、硬化反応の進行を防止する。
 以下、かかる太陽電池セル2の接続装置20について説明する。接続装置20は、複数の太陽電池セル2を並列して支持する支持機構21と、各太陽電池セル2のバスバー電極11及びAl裏面電極13の接続部13aに導電性接着フィルム15を介してタブ線3を加熱押圧する加熱押圧ヘッド22と、加熱押圧ヘッド22に押圧されている太陽電池セル2の後に隣接する太陽電池セル2に仮圧着されているタブ線3を押圧して放熱させる放熱ヘッド23とを備える。接続装置20は、支持機構21を挟んだ上下に、各一対の加熱押圧ヘッド22及び放熱ヘッド23が設けられている。また、接続装置20は、加熱押圧ヘッド22及び放熱ヘッド23よりも太陽電池セル2の図4中矢印A方向で示す搬送方向上流側に、各太陽電池セル2のバスバー電極11及びAl裏面電極13の接続部13aに導電性接着フィルム15を介してタブ線3を仮圧着させる仮圧着ヘッド25が設けられている。
 支持機構21は、各上下一対の加熱押圧ヘッド22同士及び放熱ヘッド23同士が対向する位置に太陽電池セル2を搬送、支持するものであり、本実施の形態では複数のローラ上をベルトが走行することにより太陽電池セル2を搬送するベルトコンベヤにより構成されている。支持機構21は、直列接続を図る複数の太陽電池セル2を並べて、後述する仮圧着ヘッド25、加熱押圧ヘッド22及び放熱ヘッド23と対向する位置に各太陽電池セル2を搬送する。なお、支持機構21は、太陽電池セル2が仮圧着ヘッド25、加熱押圧ヘッド22及び放熱ヘッド23と対向する位置に図示しない支持手段を設け、太陽電池セル2を安定化させて保持し、各ヘッド21,22,25との位置決めを図り、また押圧力のバラツキを抑えるようにしてもよい。
 加熱押圧ヘッド22は、タブ線3を押圧する押圧面22aと、ヒーターが内蔵されたヘッド本体22bとを有する。加熱押圧ヘッド3は、導電性接着フィルム15の有機樹脂バインダーが硬化する所定の温度に加熱された押圧面22aを所定の圧力、時間で、タブ線3に押し当てることにより、異方性導電フィルム15が、導電性粒子が押し潰された状態で硬化する。
 放熱ヘッド23は、加熱押圧ヘッド22より太陽電池セル2の搬送方向上流側に、加熱押圧ヘッド22と隣接して設けられている。また、放熱ヘッド23は、タブ線3を押圧する押圧面23aが形成されたヘッド本体23bを有する。放熱ヘッド23は、加熱押圧ヘッド22からタブ線3に伝達された熱を吸収し、放散させるものであり、これにより仮貼りされている未硬化の導電性接着フィルム15が本圧着工程に入る前に、有機樹脂バインダーの硬化反応が進行することを防止する。
 ヘッド本体23bは、熱伝導率の高い材料によって形成され、効率よくタブ線3の熱を吸収、放散させることができる。また、ヘッド本体23bは、冷却機構を内蔵させるとともに、熱伝導率の低い材料で形成することにより、冷却効果を維持させるようにしてもよい。
 仮圧着ヘッド25は、導電性接着フィルム15の硬化反応が進行しない程度の温度でタブ線3を加熱押圧することにより、本圧着工程の前にタブ線3をバスバー電極11上及びAl裏面電極13の接続部13a上に仮圧着させるものである。仮圧着ヘッド25は、タブ線3を押圧する押圧面25aと、ヒーターが内蔵されたヘッド本体25bとを備える。
 これら加熱押圧ヘッド22、放熱ヘッド23及び仮圧着ヘッド25は、いずれも図示しないヘッド駆動機構によって駆動される。ヘッド駆動機構は、各ヘッド22,23,25にそれぞれ設けられ、あるいは、加熱押圧ヘッド22及び放熱ヘッド23を同期して駆動する第1のヘッド駆動機構と、仮圧着ヘッド25を駆動する第2のヘッド駆動機構とを備える。
 ヘッド駆動機構は、支持機構21を挟んだ上側及び下側にそれぞれ設けられた一対の加熱押圧ヘッド22、放熱ヘッド23及び仮圧着ヘッド25を、上下同期して駆動することにより、太陽電池セル2の両面に近接離間するように昇降自在に支持する。そして、ヘッド駆動機構は、各ヘッド本体22b,23b,25bを、所定時間、所定の圧力でタブ線3を押圧するように駆動する。
 また、ヘッド駆動機構は、加熱押圧ヘッド22及び仮圧着ヘッド25の各ヘッド本体22b,25bに内蔵されたヒーターの駆動を制御する。そして、ヘッド駆動機構は、タブ線3の仮圧着時や本圧着時には、各ヘッド本体22b,25b内のヒーターを駆動して所定温度に加熱する。
 [タブ線4による接続工程]
 次いで、かかる接続装置20を用いた太陽電池モジュール1の製造工程について説明する。先ず、太陽電池セル2を製造する。太陽電池セル2は、単結晶型シリコン光電変換素子、多結晶型光電変換素子を用いる結晶シリコン系太陽電池モジュールや、アモルファスシリコンからなるセルと微結晶シリコンやアモルファスシリコンゲルマニウムからなるセルとを積層させた光電変換素子を用いた薄膜シリコン系太陽電池など、各種光電変換素子10を用いることができる。
 太陽電池セル2は、光電変換素子10の受光面となる表面にAgペーストの塗布、焼成によってフィンガー電極12及びバスバー電極11を形成し、裏面にAlスクリーン印刷等によってタブ線3の接続部13aを有するAl裏面電極13を形成する。
 次いで、光電変換素子10は、表面のバスバー電極11及び裏面の接続部13aに導電性接着フィルム15が貼着され、この導電性接着フィルム15上にタブ線3が仮圧着される。
 上述したように、導電性接着フィルム15の貼着工程は、導電性接着フィルム15の貼着装置16に各太陽電池セル2を載置し、供給リール18より繰り出された未硬化の導電性接着フィルム15を、仮貼りヘッド17によって太陽電池セル2のバスバー電極11上及びAl裏面電極13の接続部13a上に仮貼りすることにより行う。このとき、仮貼りヘッド17は、導電性接着フィルム15に流動性が生じるが本硬化は生じない程度の温度(例えば40~60℃)で、所定時間(例えば1~5秒)加熱することで、太陽電池セル2に仮貼りする。
 導電性接着フィルム15が仮貼りされた各太陽電池セル2は、直列接続される順に接続装置20の支持機構21上に配置され、導電性接着フィルム15を介してバスバー電極11上及びAl裏面電極13の接続部13aにタブ線3が仮圧着される。このとき、図2に示すように、タブ線3は、一端3aが先行する太陽電池セル2aの表面に形成されたバスバー電極11上に配設され、他端3bが後に続く太陽電池セル2bの裏面に形成されたAl裏面電極13の接続部13aに配設される。
 そして、図4に示すように、タブ線3は、支持機構21の上方及び下方に設けられた一対の仮圧着ヘッド25が同期して昇降されることによって、押圧面25aに押圧される。このとき、仮圧着ヘッド25は、導電性接着フィルム15の硬化反応が進行しない程度の温度に加熱されたヘッド本体25bの押圧面25aによってタブ線3を押圧する。したがって、導電性接着フィルム15は、バインダー樹脂が流動性を示し、接着力を奏することにより、バスバー電極11上及びAl裏面電極13の接続部13aにタブ線3を仮固定する。
 タブ線3が仮固定された複数の太陽電池セル2は、図5に示すように、加熱押圧ヘッド22及び放熱ヘッド23の直下に搬送、支持され、加熱押圧ヘッド22及び放熱ヘッド23によってタブ線3が押圧される。
 このとき、複数の太陽電池セル2は、先行する太陽電池セル2aが、支持機構21の上方及び下方に設けられた一対の加熱押圧ヘッド22が同期して昇降されることによって、タブ線3が押圧面22aに所定の圧力で押圧される。加熱押圧ヘッド22は、ヘッド本体22aが導電性接着フィルム15が硬化する所定の温度に加熱される。したがって、導電性接着フィルム15は、バインダー樹脂が熱硬化し、タブ線3とバスバー電極11又はAl裏面電極13の接続部13aとを電気的、機械的に接続する。
 また、複数の太陽電池セル2は、先行する太陽電池セル2aに続く太陽電池セル2bが、支持機構21の上方及び下方に設けられた一対の放熱ヘッド22が同期して昇降されることによって、タブ線3が押圧面23aに押圧される。放熱ヘッド23は、ヘッド本体23bが熱伝導率の高い材料によって形成されているため、先行する太陽電池セル2aに仮圧着されたタブ線3の一端3aが加熱押圧ヘッド22によって押圧されることにより、他端3bに伝達された熱を効率よく吸収、放散させることができる。したがって、放熱ヘッド23は、加熱押圧ヘッド22に熱加圧される前に、先行する太陽電池セル2aと連続するタブ線3を介して導電性接着フィルム15が加熱されて硬化反応が進行することを防止し、タブ線3の他端3bにおける接続信頼性を維持することができる。
 ここで、ヘッド駆動機構によって、放熱ヘッド23は、加熱押圧ヘッド22の昇降動作に応じて昇降される。例えば、放熱ヘッド23は、図示しない連結子によって加熱押圧ヘッド22と接続され、一体に昇降される。したがって、放熱ヘッド23は、加熱押圧ヘッド22がタブ線3の一端3aを押圧するのと同時に当該タブ線3の他端3bを押圧し、加熱押圧ヘッド22がタブ線3の一端3aから離間すると、同時に当該タブ線3の他端3bから離間する。これにより、タブ線3の一端3aが加熱押圧ヘッド22に加熱、押圧されている間は、放熱ヘッド23が当該タブ線3の他端3bを押圧していることから、タブ線3を介して未硬化の導電性接着フィルム15が硬化されることを防止することができる。
 また、ヘッド駆動機構によって、放熱ヘッド23は、加熱押圧ヘッド22がタブ線3の一端3aを押圧する前に当該タブ線3の他端3bを押圧し、加熱押圧ヘッド22が当該タブ線3aの一端3aから離間した後に当該タブ線3の他端3bから離間するように操作されてもよい。これにより、タブ線3の一端3aが加熱押圧ヘッド22に加熱、押圧されている間とその前後も含めて、放熱ヘッド23が当該タブ線3の他端3bを押圧していることから、タブ線3の一端3aに加えられる熱が他端3bに伝達することを確実に防止し、タブ線3を介して未硬化の導電性接着フィルム15が硬化されることを確実に防止することができる。
 接続装置20は、加熱押圧ヘッド22によって先行する太陽電池セル2にタブ線3が本圧着されると、ヘッド駆動機構によって一対の加熱押圧ヘッド22がタブ線3より離間し、また後に続く太陽電池セル2のタブ線3より一対の放熱ヘッド23が離間する。次いで、接続装置20は、支持機構21によって放熱ヘッド23に押圧されていた太陽電池セル2を加熱押圧ヘッド22の直下に搬送するとともに、さらに後に続く太陽電池セル2を放熱ヘッド23の直下に搬送する。
 このように、接続装置20は、太陽電池セル2を一枚ずつ放熱ヘッド23と加熱押圧ヘッド22の直下に搬送し、順次、タブ線3をバスバー電極11及びAl裏面電極13の接続部13aに接着すると共に、隣接する太陽電池セル2同士を直列に接続していく。
 なお、本願発明は、導電性接着フィルム15を用いる以外にも、ペースト状の導電性接着剤を塗布することによりタブ線3と各電極11,13とを接続させてもよい。
 また、太陽電池セル2は、バスバー電極11を必ずしも設ける必要はない。この場合、太陽電池セル2は、フィンガー電極12の電流が、フィンガー電極12と交差するタブ線3によって集められる。
 また、この導電性接着フィルム15の仮貼り及びタブ線3の仮圧着は、タブ線3の一面に導電性接着フィルムを積層させたフィルムをバスバー電極11及び接続部13aに仮圧着することによっておこなってもよい。このフィルムは、リール形状に巻回し、貼着装置16によって太陽電池セル2に仮圧着することができる。
 また、放熱ヘッド23は、図6に示すように、ヘッド本体23bにヒートシンク30を設けてもよい。接続装置20は、ヒートシンク30を設けることにより、放熱ヘッド23によるタブ線3の他端に伝達された熱の吸収、放散の効果を高め、かつ維持することができる。
 また、放熱ヘッド23は、図7に示すように、ヘッド本体23bの押圧面23aに弾性体31を設けてもよい。接続装置20は、熱伝導率の高いゴムなどの弾性体31を設けることにより、タブ線3の凹凸を吸収し、押圧面23aとタブ線3の他端3bとの接触面積が増加するとともに、より密着することとなり、タブ線3の他端3bに伝達された熱を確実に吸収、放散させ、未硬化の導電性接着フィルム15が硬化することを防止することができる。
 次いで、本発明にかかる実施例について説明する。実施例1は、先行する太陽電池セル2の本圧着工程の際、ヘッド本体23bにヒートシンク30を設けた放熱ヘッド23により、後に続く太陽電池セル2に仮圧着されたタブ線3の放熱を行った。実施例2は、先行する太陽電池セル2の本圧着工程の際、ヘッド本体23bにヒートシンク30を設けると共に押圧面23aに弾性体31を設けた放熱ヘッド23により、後に続く太陽電池セル2に仮圧着されたタブ線3の放熱を行った。実施例3は、先行する太陽電池セル2の本圧着工程の際、ヒートシンク30及び弾性体31を設けない放熱ヘッド23により、後に続く太陽電池セル2に仮圧着されたタブ線3の放熱を行った。比較例では、放熱ヘッド23を備えず、加熱押圧ヘッド22のみで、後に続く太陽電池セル2に仮圧着されたタブ線3の本圧着を行った。
 各実施例、比較例に供する評価サンプルの材料は、太陽電池セルとして、6インチ多結晶Siセルを用いた。また、タブ線として、2mm幅×0.15mm厚みのサイズで、はんだが被覆された銅線を用いた。導電性接着フィルムのサイズは、2mm×150mmとした。
 また、加熱押圧ヘッド22による圧着条件は、180℃で15秒、2MPaとした。放熱ヘッド23は、加熱押圧ヘッド22と同期して駆動し、加熱押圧ヘッド22と同時にタブ線3に対して離接させた。
 評価サンプルは、図8に示すように、2枚の太陽電池セル2a、2bがタブ線3により連結されたストリングを形成する。評価サンプルは、各実施例、比較例毎に2つ用意し、1つは太陽電池セル2aのみ加熱押圧ヘッド22による本圧着を行った後、太陽電池セル2bの各部(左端L、中央C、右端R)の反応率を測定し、もう1つは太陽電池セル2a、太陽電池セル2bの順に加熱押圧ヘッド22による本圧着を行った後、太陽電池セル2bの各部(左端L、中央C、右端R)の接着強度を測定すると共に硬化反応率及び接続信頼性評価を行った。
 導電性接着フィルムが安定した接続性能を発揮するには、80%以上の硬化反応率が必要とされる。硬化反応率は、硬化反応前、及び硬化反応後のサンプルに対してIR測定を行い、得られたチャートのエポキシ基のピーク強度の比を残存するエポキシ基の割合として求め、これを1から差し引いたものを硬化反応率として求めた。
 接続信頼性評価は、太陽電池セル2bに接続されたタブ線3の接続抵抗を計測し、40mΩ未満を◎、40mΩ以上45mΩ未満を○、45mΩ以上50mΩ未満を△、50mΩ以上を×とし、タブ線3の接続直後(初期)と、環境試験(気温80℃湿度80%の高温高湿環境に500時間)後に計測、評価した。
 測定結果を表1に示す。なお、表1中、接続方法の形態Aは、太陽電池セル2bが、太陽電池セル2aの本圧着工程において放熱ヘッド23によって押圧され、その後、加熱押圧ヘッド22の直下に搬送され、本圧着される接続形態である。また、接続方法の形態Bは、太陽電池セル2bが、太陽電池セル2aの本圧着工程において放熱ヘッド23によって押圧されることなく、その後、加熱押圧ヘッド22の直下に搬送され、本圧着される接続形態である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、太陽電池セル2aの本圧着後、太陽電池セル2bの本圧着前における、太陽電池セル2bの各部の反応率をみると、加熱押圧ヘッド22に熱加圧されているタブ線3の一端に最も近い右端Rの反応率が、実施例3で20%にとどまるのに対して、比較例では35%であり、実施例では導電性接着フィルムの硬化反応が進行していないが、放熱ヘッド23を設けていない比較例では硬化反応が進行していることが分かる。
 また、太陽電池セル2a、太陽電池セル2bの本圧着後における太陽電池セル2bの接着強度をみると、右端Rの接着強度が、実施例3で3(N/mm)有するのに対して比較例では2(N/mm)となり、中央Cにおいても実施例の接着強度が比較例の接着強度よりも高かった。
 さらに、接続信頼性評価においては、環境試験を経ることにより、実施例と比較例の差が顕著に表れ、放熱ヘッド23に押圧されることで本圧着工程の前に導電性接着フィルムの硬化反応が抑えられている実施例においては、いずれも高い接続信頼性を備えることが分かる。
 実施例の各サンプルをみると、実施例2では、ヒートシンク30に加え、弾性体31を備えた放熱ヘッド23を用いているため、十分な放熱がなされ、熱圧着前の太陽電池セル2bの右端Rにおいても反応率が5%未満であった。すなわち、実施例2に係る放熱ヘッド23によれば、最も優れた放熱効果を示し、本圧着後の接続信頼性も良好であった。
1 太陽電池モジュール、2 太陽電池セル、3 タブ線、3a 一端、3b 他端、10 光電変換素子、11 バスバー電極、12 フィンガー電極、13 Al裏面電極、13a 接続部、15 導電性接着フィルム、16 貼着装置、17 仮貼りヘッド、18 供給リール、20 接続装置、21 支持機構、22 加熱押圧ヘッド、22a 押圧面、22b ヘッド本体、23 放熱ヘッド、23a 押圧面、23b ヘッド本体、25 仮圧着ヘッド、25a 押圧面、25b ヘッド本体、30 ヒートシンク、31  弾性体

Claims (9)

  1.  一の太陽電池セルの表面電極と他の太陽電池セルの裏面電極とが、熱硬化型の導電性接着フィルムを介して上記表面電極及び上記裏面電極に接着されたタブ線によって接続される太陽電池モジュールの製造方法において、
     上記タブ線を、上記導電性接着フィルムを介して上記表面電極及び上記裏面電極上に配置する配置工程と、
     未硬化の上記導電性接着フィルムを介して一方の上記電極上に配置された上記タブ線の第1の接着部を、加熱押圧機構を有する第1の押圧ヘッドによって熱加圧する熱加圧工程と、
     未硬化の上記導電性接着フィルムを介して他方の上記電極上に配置された上記タブ線の第2の接着部を、放熱機構を有する第2の押圧ヘッドによって押圧する放熱工程とを有する太陽電池モジュールの製造方法。
  2.  上記熱加圧工程と上記放熱工程とは互いに連動し、かつ隣接して支持されている上記一の太陽電池セル及び上記他の太陽電池セルに対して行う請求項1記載の太陽電池モジュールの製造方法。
  3.  上記第2の押圧ヘッドは、上記第1の押圧ヘッドが上記第1の接着部を熱加圧している間、上記第2の接着部を押圧している請求項2記載の太陽電池モジュールの製造方法。
  4.  上記第1の押圧ヘッドと上記第2の押圧ヘッドとは連結子により連結されている請求項3記載の太陽電池モジュールの製造方法。
  5.  上記第2の押圧ヘッドは、上記第1の押圧ヘッドが上記第1の接着部を押圧する前に上記第2の接着部を押圧し、上記第1の押圧ヘッドが上記第1の接着部から離間した後に上記第2の接着部から離間する請求項3記載の太陽電池モジュールの製造方法。
  6.  上記第2の押圧ヘッドは、ヒートシンクが設けられている請求項1~5のいずれか1項に記載の太陽電池モジュールの製造方法。
  7.  上記第2の押圧ヘッドは、上記第2の接着部を押圧する押圧面に弾性体が設けられている請求項1に記載の太陽電池モジュールの製造方法。
  8.  複数の太陽電池セルを並列して支持する支持機構と、
     一の太陽電池セルの表面電極又は裏面電極に未硬化の熱硬化型導電性接着フィルムを介して仮貼りされたタブ線の一端側を加熱押圧する加熱押圧機構を有する第1の押圧ヘッドと、
     上記一の太陽電池セルに隣接する他の太陽電池セルの表面電極又は裏面電極に未硬化の熱硬化型導電性接着フィルムを介して仮貼りされた上記タブ線の他端側を押圧し、熱を放散させる放熱機構を有する第2の押圧ヘッドとを備える太陽電池セルの接続装置。
  9.  請求項1~7のいずれか1項に記載の方法を用いて製造された太陽電池モジュール。
PCT/JP2011/070184 2010-09-07 2011-09-05 太陽電池モジュールの製造方法、太陽電池セルの接続装置、太陽電池モジュール WO2012033059A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/638,503 US20130048047A1 (en) 2010-09-07 2011-09-05 Process for manufacture of solar battery module, solar battery cell connection device, and solar battery module
EP11823534.0A EP2615646A1 (en) 2010-09-07 2011-09-05 Process for manufacture of solar battery module, solar battery cell connection device, and solar battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010199968A JP5604236B2 (ja) 2010-09-07 2010-09-07 太陽電池モジュールの製造方法、太陽電池セルの接続装置、太陽電池モジュール
JP2010-199968 2010-09-07

Publications (1)

Publication Number Publication Date
WO2012033059A1 true WO2012033059A1 (ja) 2012-03-15

Family

ID=45810658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070184 WO2012033059A1 (ja) 2010-09-07 2011-09-05 太陽電池モジュールの製造方法、太陽電池セルの接続装置、太陽電池モジュール

Country Status (4)

Country Link
US (1) US20130048047A1 (ja)
EP (1) EP2615646A1 (ja)
JP (1) JP5604236B2 (ja)
WO (1) WO2012033059A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120260981A1 (en) * 2011-04-14 2012-10-18 Hitachi Chemical Company, Ltd. Paste composition for electrode, photovoltaic cell element, and photovoltaic cell
WO2013136999A1 (ja) * 2012-03-16 2013-09-19 デクセリアルズ株式会社 太陽電池モジュールの製造方法、太陽電池の出力測定方法、及び太陽電池の出力測定治具
JP2013197182A (ja) * 2012-03-16 2013-09-30 Dexerials Corp 太陽電池モジュールの製造方法
US20140048306A1 (en) * 2012-08-14 2014-02-20 Au Optronics Corporation Apparatus for Patterning Ribbon, String Tabbing Method and Solar Cell Module Using the Same
US9224517B2 (en) 2011-04-07 2015-12-29 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
EP2993210A1 (en) 2014-09-03 2016-03-09 Specialized Technology Resources Espana, S.A. Encapsulating film for a photovoltaic module
US9390829B2 (en) 2010-01-25 2016-07-12 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110180138A1 (en) * 2010-01-25 2011-07-28 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
US20110180139A1 (en) * 2010-01-25 2011-07-28 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP5719573B2 (ja) * 2010-11-25 2015-05-20 芝浦メカトロニクス株式会社 半導体セルのリード線接続装置及び接続方法
US8636198B1 (en) 2012-09-28 2014-01-28 Sunpower Corporation Methods and structures for forming and improving solder joint thickness and planarity control features for solar cells
WO2014139099A1 (en) * 2013-03-13 2014-09-18 China Sunergy (Nanjing) Co., Ltd. Soldering system
JP2016039198A (ja) * 2014-08-06 2016-03-22 セイコーエプソン株式会社 太陽電池、電子機器および太陽電池の製造方法
US10541344B2 (en) 2015-01-06 2020-01-21 Gcl System Integration Technology (Hong Kong) Limited Texturing ribbons for photovoltaic module production
US10290761B2 (en) * 2015-10-12 2019-05-14 Lg Electronics Inc. Apparatus and method for attaching interconnector of solar cell panel
US9966487B2 (en) * 2015-12-14 2018-05-08 Solarcity Corporation Strain relief apparatus for solar modules
US10411152B2 (en) 2016-06-27 2019-09-10 Merlin Solar Technologies, Inc. Solar cell bonding
KR101823605B1 (ko) * 2016-12-02 2018-03-14 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
WO2020052748A1 (en) * 2018-09-12 2020-03-19 Applied Materials Italia S.R.L. Apparatus for processing a solar cell arrangement including a plurality of overlapping solar cell pieces, heating device for heating the same, method for processing the same
CN109713025A (zh) * 2019-02-12 2019-05-03 北京京东方技术开发有限公司 显示面板及其制备方法、显示装置
JPWO2020189418A1 (ja) * 2019-03-15 2020-09-24
FR3140207A1 (fr) * 2022-09-22 2024-03-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de collage d’un élément d’interconnexion sur une cellule photovoltaïque et dispositif associé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356349A (ja) 2003-05-28 2004-12-16 Kyocera Corp 太陽電池モジュールの製造方法
WO2005096396A1 (ja) * 2004-03-31 2005-10-13 Sanyo Electric Co., Ltd 太陽電池の製造方法
JP2008135654A (ja) 2006-11-29 2008-06-12 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010225749A (ja) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd 太陽電池モジュールの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205137A (ja) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd 太陽電池及び太陽電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356349A (ja) 2003-05-28 2004-12-16 Kyocera Corp 太陽電池モジュールの製造方法
WO2005096396A1 (ja) * 2004-03-31 2005-10-13 Sanyo Electric Co., Ltd 太陽電池の製造方法
JP2008135654A (ja) 2006-11-29 2008-06-12 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010225749A (ja) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd 太陽電池モジュールの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390829B2 (en) 2010-01-25 2016-07-12 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
US9224517B2 (en) 2011-04-07 2015-12-29 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
US20120260981A1 (en) * 2011-04-14 2012-10-18 Hitachi Chemical Company, Ltd. Paste composition for electrode, photovoltaic cell element, and photovoltaic cell
WO2013136999A1 (ja) * 2012-03-16 2013-09-19 デクセリアルズ株式会社 太陽電池モジュールの製造方法、太陽電池の出力測定方法、及び太陽電池の出力測定治具
JP2013197182A (ja) * 2012-03-16 2013-09-30 Dexerials Corp 太陽電池モジュールの製造方法
US20140048306A1 (en) * 2012-08-14 2014-02-20 Au Optronics Corporation Apparatus for Patterning Ribbon, String Tabbing Method and Solar Cell Module Using the Same
EP2993210A1 (en) 2014-09-03 2016-03-09 Specialized Technology Resources Espana, S.A. Encapsulating film for a photovoltaic module

Also Published As

Publication number Publication date
JP5604236B2 (ja) 2014-10-08
EP2615646A1 (en) 2013-07-17
JP2012059822A (ja) 2012-03-22
US20130048047A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5604236B2 (ja) 太陽電池モジュールの製造方法、太陽電池セルの接続装置、太陽電池モジュール
JP5377019B2 (ja) 太陽電池モジュールの製造方法
KR101465924B1 (ko) 태양 전지 모듈의 제조 방법 및 태양 전지 모듈
TWI467787B (zh) 太陽電池模組及其製造方法
JP2013080982A (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール製造装置
JP5877604B2 (ja) 太陽電池モジュールの製造方法、太陽電池モジュール及びタブ線の接続方法
WO2012005318A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
EP2634818A1 (en) Method for producing solar cell module
JP6567103B2 (ja) 薄膜系太陽電池モジュール、及び薄膜系太陽電池モジュールの製造方法
KR101441264B1 (ko) 태양전지 모듈, 태양전지 모듈의 제조 방법, 태양전지 셀 및 탭선의 접속 방법
JP5892584B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
US20150364623A1 (en) Solar cell module production method
TW201121072A (en) Method for manufacturing electronic component, electronic component and conductive film
WO2015008646A1 (ja) 導電性接着テープ及び導電性接着テープの接続方法、並びに太陽電池モジュール及びその製造方法
JP5185898B2 (ja) 太陽電池用タブ線の貼付装置及びその貼付方法
WO2014002229A1 (ja) 太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置
TWI620337B (zh) 太陽電池模組的製造方法
JP2011132295A (ja) 接着フィルムの貼付方法および太陽電池モジュールの製造方法
JP2017055112A (ja) 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法
CN212571014U (zh) 一种背接触电池组件生产系统
WO2017043518A1 (ja) 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法
JP2013237761A (ja) 接着剤付きタブ線の製造方法、太陽電池モジュールの製造方法、接着剤付きタブ線の製造装置
JP6705517B2 (ja) 太陽電池モジュールの製造方法
JP2013243415A (ja) 太陽電池モジュールの製造方法
WO2013140616A1 (ja) 太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13638503

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011823534

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE