WO2012033010A1 - 発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法 - Google Patents

発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法 Download PDF

Info

Publication number
WO2012033010A1
WO2012033010A1 PCT/JP2011/070000 JP2011070000W WO2012033010A1 WO 2012033010 A1 WO2012033010 A1 WO 2012033010A1 JP 2011070000 W JP2011070000 W JP 2011070000W WO 2012033010 A1 WO2012033010 A1 WO 2012033010A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
exhaust gas
gas bypass
supercharger
power plant
Prior art date
Application number
PCT/JP2011/070000
Other languages
English (en)
French (fr)
Inventor
芳弘 市来
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11823485.5A priority Critical patent/EP2615264B1/en
Priority to KR1020127033256A priority patent/KR101422990B1/ko
Priority to CN201180031441.2A priority patent/CN103109047B/zh
Priority to DK11823485.5T priority patent/DK2615264T3/en
Publication of WO2012033010A1 publication Critical patent/WO2012033010A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/02Driving of auxiliaries from propulsion power plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J2003/001Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam
    • B63J2003/002Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam by using electric power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Definitions

  • the present invention relates to a power plant equipment, a ship equipped with the power plant equipment, and a method for operating the power plant equipment.
  • An exhaust gas economizer that generates steam by exhaust gas from a diesel engine is known as an exhaust heat recovery device for a diesel engine.
  • Patent Document 1 a part of the effective exhaust gas having high energy before passing through the turbocharger of the diesel engine is extracted, and the exhaust gas passing through the turbocharger upstream of the exhaust gas economizer Systems are known in which a bleed gas bypass pipe to be mixed is used.
  • the system described in this document is an exhaust gas temperature riser for exhaust gas economizers, and controls the control valve of the extraction gas bypass pipe so that the outlet steam pressure of the steam separator of the exhaust gas economizer becomes a predetermined pressure. It is supposed to be.
  • Patent Document 1 generates saturated steam with an exhaust gas economizer, and is not specified in the same document, but is used as utility steam for surrounding equipment, and fuel for diesel engines. It can be understood that it is intended to be used as a heat source for heating the resulting heavy oil. Therefore, there is no knowledge how to control the extraction gas bypass valve when generating superheated steam with an exhaust gas economizer and generating power with a steam turbine.
  • the system of patent document 1 is made into exhaust gas temperature rising equipment, and it aims at controlling the outlet steam pressure of a brackish water separator to a fixed pressure.
  • the amount of superheated steam that is required varies depending on the power demand of the system that supplies the generated power. That is, if the steam pressure is controlled to be constant as in Patent Document 1, it cannot cope with the changing power demand of the system.
  • the exhaust gas bypass valve is fully opened to increase the amount of steam and temperature generated by the exhaust gas economizer during power generation, and the extraction gas bypass valve is fully closed because there is no need to increase the steam amount and steam temperature during non-power generation. Control to do is conceivable.
  • the extraction gas bypass valve is fully opened, if the amount of power generated by the steam turbine exceeds the power demand of the system, the pressure of the steam generated by the exhaust gas economizer rises and surplus steam is generated It will be. In this case, in order to avoid an excessive increase in pressure, it is necessary to open the steam dump valve so as to bypass the steam turbine and dump (discard) surplus steam to the condenser side.
  • the present invention has been made in view of such circumstances, and has power plant equipment capable of optimizing the fuel consumption of a diesel engine while having high responsiveness to fluctuations in power demand of the system, and the power plant equipment A method for operating a ship equipped with a power plant and a power plant is provided.
  • a power plant facility includes a diesel engine, a supercharger that is driven by exhaust gas from the diesel engine and compresses combustion air supplied to the diesel engine, and the diesel engine.
  • An extraction gas bypass path provided so that a part of the exhaust gas of the exhaust gas bypasses the supercharger, an extraction gas bypass valve provided in the extraction gas bypass path for adjusting the bypass amount of the exhaust gas, and the supercharger
  • a steam generator that recovers exhaust heat from the exhaust gas that has passed through the supercharger and the extraction gas bypass path to generate steam
  • a steam turbine that is driven by the steam generated in the steam generator, and Power is generated by the driving force obtained from the steam turbine
  • a generator that supplies the generated power to the system is supplied from the steam generator to the steam turbine.
  • a control unit for adjusting the opening of the extraction gas bypass valve e.g., a control unit for adjusting the opening of the extraction gas bypass valve.
  • the pressure of superheated steam supplied from the steam generator to the steam turbine is a floating pressure that depends on the steam consumption of the steam turbine.
  • the steam consumption of the steam turbine depends on the power generation amount of the generator that generates power by the steam turbine, that is, the power demand of the system. Therefore, the pressure of superheated steam supplied from the steam generator to the steam turbine depends on the power demand of the system. Therefore, in the present invention, the opening degree of the extraction gas bypass valve is adjusted according to the pressure of the superheated steam, and the amount of exhaust gas that bypasses the supercharger by the extraction gas bypass path is adjusted according to the power demand of the system. It was.
  • strain can be produced
  • the pressure of superheated steam is used instead of the saturated steam of the steam generator, and the latest steam pressure supplied to the steam turbine is used. The responsiveness to the power demand of the system can be improved.
  • the control unit decreases the opening of the extraction gas bypass valve in the closing direction. If the pressure of the superheated steam tends to decrease from the second predetermined value, the opening degree of the extraction gas bypass valve may be adjusted in the opening direction.
  • the opening degree of the extraction gas bypass valve is adjusted in the closing direction so as to reduce the excess steam.
  • the steam consumption of the steam turbine increases and the superheated steam generated by the steam generator tends to be insufficient.
  • the opening degree of the extraction gas bypass valve is adjusted in the opening direction to increase the superheated steam.
  • control unit fully closes the extraction gas bypass valve, and when the pressure of the superheated steam exceeds a third predetermined value, the steam
  • the steam dump valve may be configured to open so as to allow the superheated steam to flow to the condenser side while bypassing the turbine.
  • the diesel engine is a diesel main engine that drives a propeller for propulsion of a ship, and the generator supplies electric power to an inboard system. May be.
  • the output of the diesel main engine will be approximately constant.
  • the power consumed in the inboard system fluctuates according to the inboard demand.
  • the opening of the extraction gas bypass valve is adjusted according to the pressure of the superheated steam, the demand power of the inboard system fluctuates after the output of the diesel main engine is made substantially constant in this way Even so, an appropriate amount of steam can be generated, and the fuel efficiency of the diesel main engine can be optimized.
  • a second aspect of the present invention is a ship equipped with the above-described power plant equipment.
  • the operation method of the power plant equipment includes a diesel engine, a supercharger that is driven by exhaust gas from the diesel engine, and compresses combustion air supplied to the diesel engine, An extraction gas bypass path provided so that a part of the exhaust gas from the diesel engine bypasses the supercharger; an extraction gas bypass valve provided in the extraction gas bypass path for adjusting an exhaust gas bypass amount; A steam generator that recovers exhaust heat from the supercharger or the exhaust gas that has passed through the supercharger and the extraction gas bypass path to generate steam, and a steam turbine that is driven by the steam generated by the steam generator And a generator for generating electric power using the driving force obtained from the steam turbine and supplying the generated electric power to the system. , Depending on the pressure of the superheated steam supplied to the steam turbine from the steam generator, and adjusts the opening degree of the extraction gas bypass valve.
  • the pressure of superheated steam supplied from the steam generator to the steam turbine is a floating pressure that depends on the steam consumption of the steam turbine.
  • the steam consumption of the steam turbine depends on the power generation amount of the generator that generates power by the steam turbine, that is, the power demand of the system. Therefore, the pressure of superheated steam supplied from the steam generator to the steam turbine depends on the power demand of the system. Accordingly, the present invention adjusts the opening degree of the extraction gas bypass valve according to the pressure of the superheated steam, and adjusts the amount of exhaust gas that bypasses the supercharger through the extraction gas bypass path according to the power demand of the system. It was.
  • the present invention uses the pressure of superheated steam rather than the saturated steam of the steam generator as an index for opening adjustment of the extraction gas bypass valve, and uses the latest steam pressure supplied to the steam turbine. The responsiveness to the power demand of the system can be improved.
  • the opening of the extraction gas bypass valve is adjusted according to the pressure of the superheated steam, and unnecessary extraction gas bypass is not performed, the fuel efficiency of the diesel engine can be optimized.
  • the superheated steam pressure is used as an index for adjusting the opening degree of the extraction gas bypass valve, the responsiveness to the power demand of the system can be enhanced.
  • a power plant facility installed on a ship includes a diesel main engine (diesel engine) 1 and an exhaust gas economizer (steam generator) that generates steam from high-temperature exhaust gas discharged from the diesel main engine 1. 3, a steam turbine 5 driven by steam generated in the exhaust gas economizer 3, and a generator 7 driven by the steam turbine 5.
  • diesel main engine diesel engine
  • exhaust gas economizer steam generator
  • the diesel main engine 1 drives a propeller 11 for ship propulsion.
  • the compressed air supplied to the diesel main engine 1 is guided from a supercharger 2 driven by exhaust gas from the diesel main engine 1.
  • the supercharger 2 has a turbine 14 and a compressor 15 provided on the same axis.
  • the turbine 14 is rotationally driven by the exhaust gas discharged from the diesel main engine 1.
  • the compressor 15 provided on the same axis rotates to compress the air.
  • a downstream side of the turbine 14 is connected to an exhaust gas economizer 3 described later by an exhaust gas pipe 12.
  • the extraction gas bypass pipe (extraction gas bypass system) 8 is provided so that a part of the exhaust gas of the diesel main engine 1 is extracted and bypasses the supercharger 2.
  • the extraction gas bypass pipe 8 has an upstream end connected to the upstream side of the turbine 14 of the supercharger 2 and a downstream end connected to the exhaust gas pipe 12 on the downstream side of the turbine 14 of the supercharger 2.
  • the extraction gas bypass pipe 8 is provided with an extraction gas bypass valve 9.
  • the degree of opening of the extraction gas bypass valve 9 is controlled by the control unit 10. Specifically, the opening degree of the extraction gas bypass valve 9 is controlled according to the output value of the pressure sensor 16 that detects the pressure of superheated steam supplied from the exhaust gas economizer 3 to the steam turbine 5.
  • the exhaust gas economizer 3 has a superheater 17 and an evaporator 18 in its flue.
  • the superheater 17 and the evaporator 18 are heat transfer tubes installed in parallel in order from the bottom to the top (from the upstream side to the downstream side of the exhaust gas flow) in the exhaust gas economizer 3.
  • High-temperature exhaust gas flows in the flue of the exhaust gas economizer 3 and is released to the atmosphere through a chimney (not shown) connected to the downstream side thereof.
  • Saturated steam is guided to the superheater 17 from the upper part of the brackish water separator 20. Water is led to the evaporator 18 from the lower part of the brackish water separator 20.
  • brackish water separator 20 water and steam are separately stored in the vertical direction.
  • Water is supplied to the brackish water separator 20 from the condenser 22 via the condensate pump 23.
  • Water in the brackish water separator 20 is guided to the evaporator 18 by a boiler water circulation pump 25.
  • the brackish water separator 20 is supplied with wet steam containing moisture from the evaporator 18 and separated into water and steam.
  • the separated saturated steam is guided to the superheater 17 to be superheated steam.
  • the superheated steam generated by the superheater 17 is guided to the steam turbine 5 through the superheated steam supply pipe 26.
  • the superheated steam supply pipe 26 is provided with the pressure sensor 16 described above.
  • the installation position of the pressure sensor 16 for detecting the superheated steam pressure may be a position where the pressure of the superheated steam generated by the exhaust gas economizer 3 can be detected.
  • a steam stop valve 27 serving as an on-off valve is provided on the upstream side of the steam turbine 5.
  • the steam stop valve 27 When the steam turbine 5 is operated, the steam stop valve 27 is fully opened, and when the steam turbine 5 is not operated, the steam stop valve 27 is fully closed.
  • the steam turbine 5 is rotationally driven by superheated steam guided through the steam stop valve 27, and this rotational output is transmitted to the generator 7.
  • the steam that has finished its work in the steam turbine 5 is guided to the condenser 22 to be condensed and liquefied.
  • the liquefied condensate is guided to the brackish water separator 20 by the condensate pump 23.
  • a steam dump path 29 provided so as to bypass the steam turbine 5 is provided between the condenser 22 and the outlet of the superheater 17 of the exhaust gas economizer 3.
  • the steam dump path 29 is provided with a steam dump valve 30 that is fully opened when the superheated steam pressure obtained by the pressure sensor 16 exceeds a predetermined value, and when the superheated steam pressure is less than the predetermined value. Is controlled to be fully closed.
  • the generator 7 is driven by the rotational output transmitted from the steam turbine 5 to generate power.
  • the electrical output of the generator 7 is guided to the inboard power system 34 via the output wire 32 and the breaker 33.
  • the diesel main engine 1 starts operation, the compressed air compressed by the supercharger 2 is supplied to the diesel main engine 1, and combustion is performed in a cylinder together with fuel (not shown).
  • the exhaust gas after combustion in the diesel main engine 1 is guided to the exhaust gas economizer 3 through the exhaust gas pipe 12 through the turbine 14 of the supercharger 2.
  • the exhaust gas exchanges heat with the superheater 17 and the evaporator 18 when passing through the exhaust gas ecomizer 3.
  • the water in the evaporator 18 becomes wet steam by exchanging heat with the exhaust gas.
  • the wet steam is guided to the superheater 17 of the exhaust gas economizer 3 after being guided to the brackish water separator 20 and moisture is separated.
  • the steam in the superheater 17 becomes superheated steam by exchanging heat with the exhaust gas.
  • the superheated steam is guided to the superheated steam supply pipe 26.
  • the superheated steam guided to the superheated steam supply pipe 26 is supplied to the steam turbine 5 through the steam stop valve 27.
  • the steam turbine 5 is rotationally driven by the introduced steam, and this rotational output is transmitted to the generator 7.
  • power is generated by the rotational output obtained from the steam turbine 5, and the generated output is supplied to the inboard power system 34 via the output electric wire 32 and the breaker 33.
  • the amount of steam and the steam temperature generated in the exhaust gas economizer 3 can be increased.
  • the opening degree control of the extraction gas bypass valve 9 is controlled. 10 to do.
  • the superheated steam pressure exceeds the second predetermined value P2 it is sufficient that the assist by the extraction gas bypass is not performed, and the extraction gas bypass valve 9 is fully closed.
  • the dump valve opening set pressure is reached, and the steam dump valve 30 is fully opened.
  • the superheated steam pressure is a floating pressure determined by the balance between the amount of steam generated by the exhaust gas economizer 3 and the amount of steam consumed by the steam turbine 5. Therefore, the control unit 10 adjusts the opening degree of the exhaust gas bypass valve 9 as follows according to the superheated steam pressure.
  • the steam consumption of the steam turbine 5 is reduced, and the superheated steam generated by the exhaust gas economizer 3 tends to be surplus. That is, when the demand power of the inboard system 34 is relatively reduced, it is preferable to reduce the steam generation amount of the exhaust gas economizer 3 by reducing the opening degree of the extraction gas bypass valve 9.
  • the opening degree of the extraction gas bypass valve 9 is gradually decreased so as to be in the closing direction.
  • the power demand of the inboard system 34 increases relatively, the steam consumption of the steam turbine 5 increases, and the superheated steam generated by the exhaust gas economizer 3 tends to be insufficient. That is, when the power demand of the inboard system 34 is relatively increased, it is preferable to increase the steam generation amount of the exhaust gas economizer 3 by increasing the opening degree of the extraction gas bypass valve 9. Therefore, when the superheated steam pressure tends to decrease, the opening degree of the extraction gas bypass valve 9 is gradually increased so as to be in the opening direction.
  • the opening of the extraction gas bypass valve 9 is adjusted according to the superheated steam pressure from the exhaust gas economizer 3, and the amount of exhaust gas that bypasses the supercharger 2 by the extraction gas bypass pipe 8 depends on the power demand of the inboard system 34. It was decided to adjust. Thereby, since the superheated steam according to the power demand of the inboard system 34 can be produced
  • the pressure of the superheated steam after passing through the superheater 17 instead of the saturated steam at the outlet of the brackish water separator 20 is used, and the latest gas supplied to the steam turbine 5 is used. Since the steam pressure is used, the responsiveness to the power demand of the inboard system 34 can be improved.
  • this embodiment demonstrated as an example that the power plant equipment was installed in the ship, this invention is not limited to this, Even if it is the power plant equipment installed on the land good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Abstract

 系統の需要電力の変動に対して高い応答性を有するとともに、ディーゼル機関の燃費を最適化させることができる発電プラント設備を提供する。ディーゼル主機(1)と、過給機(2)と、ディーゼル主機(1)からの排ガスの一部が過給機(2)をバイパスするように設けられた抽ガスバイパス管(8)と、抽ガスバイパス管(8)に設けられ、排ガスのバイパス量を調整する抽ガスバイパス弁(9)と、排ガスから排熱を回収して蒸気を生成する排ガスエコノマイザ(3)と、排ガスエコノマイザ(3)にて生成された蒸気によって駆動される蒸気タービン(5)と、蒸気タービン(5)から得た駆動力によって発電し、船内系統(34)へと発電した電力を供給する発電機(7)と、排ガスエコノマイザ(3)から蒸気タービン(5)へと供給される過熱蒸気の圧力に応じて、抽ガスバイパス弁(9)の開度を調整する制御部(10)とを備えている。

Description

発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法
 本発明は、発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法に関する。
 ディーゼル機関の排熱回収装置として、ディーゼル機関の排ガスによって蒸気を発生させる排ガスエコノマイザが知られている。
 また、下記特許文献1に示すように、ディーゼル機関の過給機を通過する前の高エネルギーを持った有効排ガスの一部を抽気し、排ガスエコノマイザの上流側で過給機を通過した排ガスと混合させる抽ガスバイパス管が用いられるシステムが知られている。同文献に記載されたシステムは、排ガスエコノマイザ用の排ガス昇温設備とされており、排ガスエコノマイザの汽水分離器の出口蒸気圧力が所定の圧力となるように、抽ガスバイパス管のコントロール弁を制御するようになっている。
 一方、さらに排熱回収による効果を上げるために、排ガスエコノマイザによって過熱蒸気を生成し、この過熱蒸気によって蒸気タービンを駆動することで発電を行わせるシステムも検討されている。
特開昭61-232319号公報(図1及び図3)
 しかし、特許文献1に記載されたシステムは、排ガスエコノマイザにて飽和蒸気を生成するものであり、同文献には明記されていないが、周囲設備のユーティリティ蒸気としての利用や、ディーゼル機関の燃料となる重油を加熱するための熱源として用いることを目的としているものと理解できる。したがって、排ガスエコノマイザにて過熱蒸気を生成し、蒸気タービンによる発電を行う際にどのように抽ガスバイパス弁を制御するべきかという知見が一切ない。
 また、特許文献1のシステムは、排ガス昇温設備とされており、汽水分離器の出口蒸気圧力を一定の圧力に制御することを目的としている。
 しかし、排ガスエコノマイザにて生成された過熱蒸気によって蒸気タービンを駆動して発電するシステムでは、発電した電力を供給する系統の電力需要に応じて必要とされる過熱蒸気量が変動する。すなわち、特許文献1のように蒸気圧力を一定に制御するのでは、変化する系統の需要電力に対応することができない。
 例えば、発電時には排ガスエコノマイザにて生成する蒸気量および蒸気温度を増加させるために排ガスバイパス弁を全開とし、非発電時には蒸気量および蒸気温度を増加させる必要がないので抽ガスバイパス弁を全閉とする制御が考えられる。しかし、抽ガスバイパス弁が全開とされた場合に、蒸気タービンによって発電した電力量が系統の需要電力を上回った場合、排ガスエコノマイザにて生成した蒸気の圧力が上昇して余剰の蒸気が発生することになる。この場合、圧力の過上昇を避けるため、蒸気タービンをバイパスさせるように蒸気ダンプ弁を開いて余剰蒸気を復水器側へとダンプする(捨てる)必要が生じる。これでは、排ガスエコノマイザにて排熱回収した蒸気を捨てることになるので、エネルギーの有効活用とはならない。また、過給機の上流側から排ガスを必要以上に抽気すると、過給機の仕事を減少させることになり、結果として、過給機からの圧縮空気量が低下し、ディーゼル機関の燃費が悪化することになる。
 本発明は、このような事情に鑑みてなされたものであって、系統の需要電力の変動に対して高い応答性を有するとともに、ディーゼル機関の燃費を最適化させることができる発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法を提供する。
 上記課題を解決するために、本発明の発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法は以下の手段を採用する。
 本発明の第一の態様にかかる発電プラント設備は、ディーゼル機関と、該ディーゼル機関からの排ガスによって駆動され、該ディーゼル機関へと供給する燃焼用空気を圧縮する過給機と、前記ディーゼル機関からの排ガスの一部が前記過給機をバイパスするように設けられた抽ガスバイパス経路と、該抽ガスバイパス経路に設けられ、排ガスのバイパス量を調整する抽ガスバイパス弁と、前記過給機または前記過給機および前記抽ガスバイパス経路を通過した排ガスから排熱を回収して蒸気を生成する蒸気発生装置と、該蒸気発生装置にて生成された蒸気によって駆動される蒸気タービンと、該蒸気タービンから得た駆動力によって発電し、系統へと発電した電力を供給する発電機と、前記蒸気発生装置から前記蒸気タービンへと供給される過熱蒸気の圧力に応じて、前記抽ガスバイパス弁の開度を調整する制御部とを備えていることを特徴とする。
 蒸気発生装置から蒸気タービンへと供給される過熱蒸気の圧力は、蒸気タービンの蒸気消費量に依存するフローティング圧力とされる。一方、蒸気タービンの蒸気消費量は、蒸気タービンによって発電する発電機の発電量、すなわち系統の需要電力に依存する。したがって、蒸気発生装置から蒸気タービンへと供給される過熱蒸気の圧力は、系統の需要電力に依存することになる。そこで、本発明では、過熱蒸気の圧力に応じて抽ガスバイパス弁の開度を調整することとし、抽ガスバイパス経路によって過給機をバイパスする排ガス量を系統の需要電力に応じて調整することとした。これにより、系統の需要電力に応じた過熱蒸気を蒸気発生装置にて生成することができるので、過剰に過熱蒸気を生成することを回避できる。したがって、無駄な抽ガスバイパスを行うことがないので、ディーゼル機関の燃費を最適化させることができる。
 また、本発明では、抽ガスバイパス弁の開度調整の指標として、蒸気発生装置の飽和蒸気ではなく過熱蒸気の圧力を用い、蒸気タービンへと供給される直近の蒸気圧力を用いることとしたので、系統の需要電力に対する応答性を高めることができる。
 上記本発明の第一の態様に係る発電プラント設備では、前記制御部は、前記過熱蒸気の圧力が第一所定値から増加傾向にある場合は前記抽ガスバイパス弁の開度を閉方向へと調整し、前記過熱蒸気の圧力が第二所定値から減少傾向にある場合は前記抽ガスバイパス弁の開度を開方向へと調整する構成であってもよい。
 系統の需要電力が相対的に小さい場合は、蒸気タービンの蒸気消費量が小さくなり、蒸気発生装置にて生成される過熱蒸気が余剰傾向となる。この場合には、過熱蒸気の圧力は増加傾向にあるので、余剰蒸気を減少させるべく抽ガスバイパス弁の開度を閉方向へと調整する。
 一方、系統の需要電力が相対的に大きい場合は、蒸気タービンの蒸気消費量が大きくなり、蒸気発生装置にて生成される過熱蒸気が不足傾向となる。この場合には、過熱蒸気の圧力は減少傾向にあるので、過熱蒸気を増加させるべく抽ガスバイパス弁の開度を開方向へと調整する。
 上記本発明の第一の態様に係る発電プラント設備では、前記制御部は、前記抽ガスバイパス弁を全閉とし、かつ前記過熱蒸気の圧力が第三所定値を超えた場合には、前記蒸気タービンをバイパスして復水器側へと過熱蒸気を流すように蒸気ダンプ弁を開とする構成であってもよい。
 抽ガスバイパス弁を全閉としても、系統の需要電力が極めて小さい場合には、余剰蒸気が増えて過熱蒸気の圧力が過剰に上昇する恐れがある。このような場合には、蒸気タービンをバイパスして復水器側へと過熱蒸気を流すように蒸気ダンプ弁を開とすることとした。これにより、蒸気の過剰な圧力上昇を回避して、各種機器の保護を図ることができる。
 上記本発明の第一の態様に係る発電プラント設備では、前記ディーゼル機関は、船舶の推進用のプロペラを駆動するディーゼル主機とされ、前記発電機は、船内系統へと電力を供給する構成であってもよい。
 船舶が外洋にて定速航行する場合、ディーゼル主機の出力は略一定とされる。しかし、船内系統にて消費される電力は船内需要に応じて変動する。本発明では、抽ガスバイパス弁の開度を過熱蒸気の圧力に応じて調整することとしているので、このようにディーゼル主機の出力が略一定とされた上で船内系統の需要電力が変動する場合であっても、適切な蒸気発生量とすることができ、ディーゼル主機の燃費を最適化することができる。
 本発明の第二の態様は、上述の発電プラント設備を備えた船舶である。
 上述の発電プラント設備を備えているので、燃費の良い船舶を提供することができる。
 本発明の第三の態様に係る発電プラント設備の運転方法は、ディーゼル機関と、該ディーゼル機関からの排ガスによって駆動され、該ディーゼル機関へと供給する燃焼用空気を圧縮する過給機と、前記ディーゼル機関からの排ガスの一部が前記過給機をバイパスするように設けられた抽ガスバイパス経路と、該抽ガスバイパス経路に設けられ、排ガスのバイパス量を調整する抽ガスバイパス弁と、前記過給機または前記過給機および前記抽ガスバイパス経路を通過した排ガスから排熱を回収して蒸気を生成する蒸気発生装置と、該蒸気発生装置にて生成された蒸気によって駆動される蒸気タービンと、該蒸気タービンから得た駆動力によって発電し、系統へと発電した電力を供給する発電機と、を備えた発電プラント設備の運転方法において、前記蒸気発生装置から前記蒸気タービンへと供給される過熱蒸気の圧力に応じて、前記抽ガスバイパス弁の開度を調整することを特徴とする。
 蒸気発生装置から蒸気タービンへと供給される過熱蒸気の圧力は、蒸気タービンの蒸気消費量に依存するフローティング圧力とされる。一方、蒸気タービンの蒸気消費量は、蒸気タービンによって発電する発電機の発電量、すなわち系統の需要電力に依存する。したがって、蒸気発生装置から蒸気タービンへと供給される過熱蒸気の圧力は、系統の需要電力に依存することになる。そこで、本発明は、過熱蒸気の圧力に応じて抽ガスバイパス弁の開度を調整することとし、抽ガスバイパス経路によって過給機をバイパスする排ガス量を系統の需要電力に応じて調整することとした。これにより、系統の需要電力に応じた過熱蒸気を蒸気発生装置にて生成することができるので、過剰に過熱蒸気を生成することを回避できる。したがって、無駄な抽ガスバイパスを行うことがないので、ディーゼル機関の燃費を最適化させることができる。
 また、本発明は、抽ガスバイパス弁の開度調整の指標として、蒸気発生装置の飽和蒸気ではなく過熱蒸気の圧力を用い、蒸気タービンへと供給される直近の蒸気圧力を用いることとしたので、系統の需要電力に対する応答性を高めることができる。
 過熱蒸気の圧力に応じて抽ガスバイパス弁の開度を調整することとし、無駄な抽ガスバイパスを行うことがないので、ディーゼル機関の燃費を最適化させることができる。
 また、抽ガスバイパス弁の開度調整の指標として過熱蒸気の圧力を用いることとしたので、系統の需要電力に対する応答性を高めることができる。
本発明の発電プラント設備を示した概略構成図である。 図1の抽ガスバイパス弁の動作を示したグラフである。
 以下に、本発明の発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法にかかる一実施形態について、図面を参照して説明する。
 図1に示されているように、船舶に設置された発電プラント設備は、ディーゼル主機(ディーゼル機関)1と、ディーゼル主機1が排出する高温の排ガスによって蒸気を生成する排ガスエコノマイザ(蒸気発生装置)3と、排ガスエコノマイザ3にて発生した蒸気によって駆動される蒸気タービン5と、蒸気タービン5によって駆動される発電機7とを備えている。
 ディーゼル主機1は、船舶推進用のプロペラ11を駆動する。ディーゼル主機1へ供給される圧縮空気は、ディーゼル主機1の排ガスによって駆動される過給器2から導かれる。
 過給器2は、同軸上に設けられたタービン14と圧縮機15とを有している。タービン14は、ディーゼル主機1から排出された排ガスによって回転駆動されるようになっている。タービン14が駆動されると、同軸上に設けられた圧縮機15が回転して空気を圧縮する。
 タービン14の下流側は、排ガス管12によって後述する排ガスエコノマイザ3に接続されている。
 ディーゼル主機1の排ガスの一部が抽ガスされて過給機2をバイパスするように、抽ガスバイパス管(抽ガスバイパス系統)8が設けられている。抽ガスバイパス管8は、その上流端が過給機2のタービン14の上流側に接続され、その下流端が過給機2のタービン14の下流側の排ガス管12に接続されている。抽ガスバイパス管8には、抽ガスバイパス弁9が設けられている。抽ガスバイパス弁9は、制御部10によってその開度が制御されるようになっている。具体的には、排ガスエコノマイザ3から蒸気タービン5へと供給される過熱蒸気の圧力を検出する圧力センサ16の出力値に応じて抽ガスバイパス弁9の開度が制御される。
 排ガスエコノマイザ3は、その煙道内に過熱器17と蒸発器18とを有している。過熱器17と蒸発器18とは、排ガスエコノマイザ3内を下から上(排ガス流れの上流側から下流側)に向かって順番に平行に据え付けられた伝熱管とされている。排ガスエコノマイザ3の煙道内には、高温の排ガスが流れ、その下流側に接続された煙突(図示せず)を経て大気に放出される。過熱器17には、汽水分離器20の上部から飽和蒸気が導かれる。蒸発器18には、汽水分離器20の下部から水が導かれる。
 汽水分離器20内は、水と蒸気が上下にそれぞれ分離して収容されている。汽水分離器20には、復水器22から復水ポンプ23を介して水が供給される。汽水分離器20内の水は、ボイラ水循環ポンプ25によって蒸発器18に導かれる。汽水分離器20には、蒸発器18からの水分を含んだ湿り蒸気が導かれ水と蒸気とに分離される。分離された飽和蒸気は、過熱器17に導かれ過熱蒸気とされる。過熱器17にて生成された過熱蒸気は、過熱蒸気供給管26を介して蒸気タービン5へと導かれる。この過熱蒸気供給管26には、上述した圧力センサ16が設けられる。なお、過熱蒸気圧力を検出する圧力センサ16の設置位置は、排ガスエコノマイザ3にて生成された過熱蒸気の圧力を検出できる位置であれば良い。
 蒸気タービン5の上流側には、開閉弁とされた蒸気止め弁27が設けられている。蒸気タービン5を運用する場合には、蒸気止め弁27が全開とされ、蒸気タービン5を運用しない場合には蒸気止め弁27が全閉とされる。
 蒸気タービン5は、蒸気止め弁27を介して導かれた過熱蒸気によって回転駆動され、この回転出力が発電機7へと伝達される。
 蒸気タービン5にて仕事を終えた蒸気は、復水器22へと導かれ、凝縮液化される。液化された復水は、復水ポンプ23によって汽水分離器20へと導かれる。
 復水器22と、排ガスエコノマイザ3の過熱器17出口との間には、蒸気タービン5をバイパスするように設けられた蒸気ダンプ経路29が設けられている。この蒸気ダンプ経路29には蒸気ダンプ弁30が設けられており、圧力センサ16にて得られた過熱蒸気圧力が所定値以上になった場合に全開となり、過熱蒸気圧力が所定値未満の場合には全閉となるように制御される。
 発電機7は、蒸気タービン5から伝達された回転出力によって駆動されて発電する。発電機7の電気出力は、出力電線32及び遮断機33を介して船内電力系統34へと導かれる。
 次に、上述した発電プラント設備の運転方法について説明する。
 ディーゼル主機1が運転を開始すると、過給機2にて圧縮された圧縮空気がディーゼル主機1へと供給され、図示しない燃料とともに筒内にて燃焼が行われる。ディーゼル主機1にて燃焼が行われた後の排ガスは、過給機2のタービン14を経て排ガス管12を通り排ガスエコノマイザ3へと導かれる。排ガスは、排ガスエコマイザ3内を通過する際に過熱器17及び蒸発器18と熱交換をする。蒸発器18内の水は、排ガスと熱交換することによって湿り蒸気となる。この湿り蒸気は、汽水分離器20に導かれて水分が分離された後、排ガスエコノマイザ3の過熱器17に導かれる。過熱器17内の蒸気は、排ガスと熱交換することによって過熱蒸気となる。
 過熱蒸気は、過熱蒸気供給管26に導かれる。過熱蒸気供給管26に導かれた過熱蒸気は、蒸気止め弁27を経て蒸気タービン5に供給される。蒸気タービン5は、導かれた蒸気によって回転駆動され、この回転出力が発電機7へと伝達される。発電機7では、蒸気タービン5から得られた回転出力によって発電し、その発電出力を出力電線32及び遮断機33を介して船内電力系統34へと供給する。
 次に、図2を用いて、抽ガスバイパス弁9の動作について説明する。
 ディーゼル主機1の運転開始時は、ディーゼル主機1が所定の負荷に達しておらずディーゼル主機1から排出される排ガスが蒸気タービン5による発電を行う圧力に達していないので、抽ガスバイパス弁9は全閉の状態である。その後ディーゼル主機1がある一定の負荷に達すると抽ガスバイパス弁9を全開状態にする。
 抽ガスバイパス弁9が開くと、過給機2を通過する前の高エネルギーを持った排ガスの一部が抽気され、抽ガスバイパス管8を通り排ガスエコノマイザ3の上流側で過給機2を通過した排ガスと混合される。これにより、排ガスエコノマイザ3にて発生する蒸気量および蒸気温度を増加させることができる。
 図2に示すように、圧力センサ16にて得られる排ガスエコノマイザ3の過熱蒸気圧力が第一所定値P1以上第二所定値P2以下の間で、抽ガスバイパス弁9の開度制御を制御部10によって行う。
 また、過熱蒸気圧力が第二所定値P2を超えた場合には、抽ガスバイパスによるアシストを行わなくても十分であるとし、抽ガスバイパス弁9を全閉とする。
 さらに、過熱蒸気圧力が第二所定値P2を超えて第三所定値P3になると、ダンプ弁開セット圧力となり、蒸気ダンプ弁30が全開とされる。これにより、排ガスエコノマイザ3からの過熱蒸気の一部を復水器22へと流し、過熱蒸気圧力の過上昇を防止する。
 本実施形態の発電プラント設備では、過熱蒸気圧力は、排ガスエコノマイザ3の蒸気発生量と蒸気タービン5の蒸気消費量とのバランスによって決定されるフローティング圧力となっている。そこで、制御部10は、過熱蒸気圧力に応じて排ガスバイパス弁9の開度を以下のように調整する。
 船内系統34の需要電力が相対的に減少すると、蒸気タービン5の蒸気消費量が小さくなり、排ガスエコノマイザ3にて生成される過熱蒸気が余剰傾向となる。すなわち、船内系統34の需要電力が相対的に減少した場合には、抽ガスバイパス弁9の開度を減少させて排ガスエコノマイザ3の蒸気発生量を抑制した方が好ましい。そこで、過熱蒸気圧力が増加傾向になると、抽ガスバイパス弁9の開度を閉方向となるように漸次減少させる。
 一方、船内系統34の需要電力が相対的に増加すると、蒸気タービン5の蒸気消費量が大きくなり、排ガスエコノマイザ3にて生成される過熱蒸気が不足傾向となる。すなわち、船内系統34の需要電力が相対的に増加した場合には、抽ガスバイパス弁9の開度を増加させて排ガスエコノマイザ3の蒸気発生量を増大させた方が好ましい。そこで、過熱蒸気圧力が減少傾向になると、抽ガスバイパス弁9の開度を開方向となるように漸次増大させる。
 以上の通り、本実施形態の発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法によれば、以下の効果を奏する。
 排ガスエコノマイザ3からの過熱蒸気圧力に応じて抽ガスバイパス弁9の開度を調整することとし、抽ガスバイパス管8によって過給機2をバイパスする排ガス量を船内系統34の需要電力に応じて調整することとした。これにより、船内系統34の需要電力に応じた過熱蒸気を排ガスエコノマイザ3にて生成することができるので、過剰に過熱蒸気を生成することを回避できる。したがって、無駄な抽ガスバイパスを行うことがないので、ディーゼル主機1の燃費を最適化させることができる。
 また、抽ガスバイパス弁9の開度調整の指標として、汽水分離器20出口の飽和蒸気ではなく過熱器17を通過した後の過熱蒸気の圧力を用い、蒸気タービン5へと供給される直近の蒸気圧力を用いることとしたので、船内系統34の需要電力に対する応答性を高めることができる。
 なお、本実施形態では、発電プラント設備は、船舶に設置されていることを例として説明したが、本発明はこれに限定されるものではなく、陸上に設置された発電プラント設備であっても良い。
1 ディーゼル主機(ディーゼル機関)
2 過給機
3 排ガスエコノマイザ(蒸気発生装置)
5 蒸気タービン
7 発電機
8 抽ガスバイパス管(抽ガスバイパス系統)
9 抽ガスバイパス弁
10 制御部
16 圧力センサ
30 蒸気ダンプ弁
34 船内系統

Claims (6)

  1.  ディーゼル機関と、
     該ディーゼル機関からの排ガスによって駆動され、該ディーゼル機関へと供給する燃焼用空気を圧縮する過給機と、
     前記ディーゼル機関からの排ガスの一部が前記過給機をバイパスするように設けられた抽ガスバイパス経路と、
     該抽ガスバイパス経路に設けられ、排ガスのバイパス量を調整する抽ガスバイパス弁と、
     前記過給機または前記過給機および前記抽ガスバイパス経路を通過した排ガスから排熱を回収して蒸気を生成する蒸気発生装置と、
     該蒸気発生装置にて生成された蒸気によって駆動される蒸気タービンと、
     該蒸気タービンから得た駆動力によって発電し、系統へと発電した電力を供給する発電機と、
     前記蒸気発生装置から前記蒸気タービンへと供給される過熱蒸気の圧力に応じて、前記抽ガスバイパス弁の開度を調整する制御部と、
     を備えていることを特徴とする発電プラント設備。
  2.  前記制御部は、前記過熱蒸気の圧力が第一所定値から増加傾向にある場合は前記抽ガスバイパス弁の開度を閉方向へと調整し、前記過熱蒸気の圧力が第二所定値から減少傾向にある場合は前記抽ガスバイパス弁の開度を開方向へと調整することを特徴とする請求項1に記載の発電プラント設備。
  3.  前記制御部は、前記抽ガスバイパス弁を全閉とし、かつ前記過熱蒸気の圧力が第三所定値を超えた場合には、前記蒸気タービンをバイパスして復水器側へと過熱蒸気を流すように蒸気ダンプ弁を開とすることを特徴とする請求項1又は2に記載の発電プラント設備。
  4.  前記ディーゼル機関は、船舶の推進用のプロペラを駆動するディーゼル主機とされ、
     前記発電機は、船内系統へと電力を供給することを特徴とする請求項1から3のいずれかに記載の発電プラント設備。
  5.  請求項4に記載された発電プラント設備を備えたことを特徴とする船舶。
  6.  ディーゼル機関と、
     該ディーゼル機関からの排ガスによって駆動され、該ディーゼル機関へと供給する燃焼用空気を圧縮する過給機と、
     前記ディーゼル機関からの排ガスの一部が前記過給機をバイパスするように設けられた抽ガスバイパス経路と、
     該抽ガスバイパス経路に設けられ、排ガスのバイパス量を調整する抽ガスバイパス弁と、
     前記過給機または前記過給機および前記抽ガスバイパス経路を通過した排ガスから排熱を回収して蒸気を生成する蒸気発生装置と、
     該蒸気発生装置にて生成された蒸気によって駆動される蒸気タービンと、
     該蒸気タービンから得た駆動力によって発電し、系統へと発電した電力を供給する発電機と、
     を備えた発電プラント設備の運転方法において、
     前記蒸気発生装置から前記蒸気タービンへと供給される過熱蒸気の圧力に応じて、前記抽ガスバイパス弁の開度を調整することを特徴とする発電プラント設備の運転方法。
PCT/JP2011/070000 2010-09-06 2011-09-02 発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法 WO2012033010A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11823485.5A EP2615264B1 (en) 2010-09-06 2011-09-02 Power plant equipment, ship including the same, and method for operating power plant equipment
KR1020127033256A KR101422990B1 (ko) 2010-09-06 2011-09-02 발전 플랜트 설비 및 이것을 구비한 선박 그리고 발전 플랜트 설비의 운전 방법
CN201180031441.2A CN103109047B (zh) 2010-09-06 2011-09-02 发电设备、具备该设备的船舶及发电设备的运转方法
DK11823485.5T DK2615264T3 (en) 2010-09-06 2011-09-02 Power plant equipment, ship including the same, and method for driving the power plant equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-199364 2010-09-06
JP2010199364A JP5374465B2 (ja) 2010-09-06 2010-09-06 発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法

Publications (1)

Publication Number Publication Date
WO2012033010A1 true WO2012033010A1 (ja) 2012-03-15

Family

ID=45810611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070000 WO2012033010A1 (ja) 2010-09-06 2011-09-02 発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法

Country Status (6)

Country Link
EP (1) EP2615264B1 (ja)
JP (1) JP5374465B2 (ja)
KR (1) KR101422990B1 (ja)
CN (1) CN103109047B (ja)
DK (1) DK2615264T3 (ja)
WO (1) WO2012033010A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060760A3 (en) * 2012-10-17 2015-06-11 Norgren Limited A waste heat recovery system comprising a bypass valve

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5185910B2 (ja) * 2009-10-16 2013-04-17 三菱重工業株式会社 ミラーサイクルエンジン
JP6122300B2 (ja) * 2013-01-18 2017-04-26 川崎重工業株式会社 エンジンシステム及び船舶
JP6060029B2 (ja) * 2013-04-22 2017-01-11 株式会社神戸製鋼所 回転機駆動システム
JP6060040B2 (ja) * 2013-06-07 2017-01-11 株式会社神戸製鋼所 排熱回収装置および排熱回収装置の運転制御方法
KR101480236B1 (ko) 2013-07-05 2015-01-12 이종준 해안발전시스템
CN103925025B (zh) * 2014-04-18 2015-12-09 哈尔滨工程大学 一种船舶柴油机废气余热回收装置
JP6389794B2 (ja) * 2015-04-09 2018-09-12 株式会社神戸製鋼所 熱エネルギー回収装置
CN104806333A (zh) * 2015-04-30 2015-07-29 天津大学 船用动力机余热发电综合利用方法
KR102190949B1 (ko) * 2015-12-24 2020-12-15 한국조선해양 주식회사 선박
KR102200361B1 (ko) * 2015-12-24 2021-01-08 한국조선해양 주식회사 선박
KR102190937B1 (ko) * 2015-12-24 2020-12-15 한국조선해양 주식회사 선박
JP6723791B2 (ja) * 2016-03-31 2020-07-15 三菱重工マリンマシナリ株式会社 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収装置の制御方法
JP2017178189A (ja) * 2016-03-31 2017-10-05 株式会社大晃産業 船舶の熱源供給システム
CN105827018B (zh) * 2016-05-06 2018-08-21 上海恩艾思电气有限公司 一种船用高压电站控制系统
EP3656835A1 (en) 2016-10-18 2020-05-27 Mawetal LLC Polished turbine fuel
CN114292666A (zh) 2016-10-18 2022-04-08 马威特尔有限责任公司 一种燃料以及减少排放的工艺过程
CN113355133A (zh) 2016-10-18 2021-09-07 马威特尔有限责任公司 轻致密油和高硫燃油的燃料成分
CN108194192B (zh) * 2017-12-28 2020-02-21 上海中船三井造船柴油机有限公司 基于柴油机废气旁通装置的废气锅炉能量控制方法
CA3138179A1 (en) * 2019-04-29 2020-11-05 Nextwatts, Inc. Building emission processing and/or sequestration systems and methods
CN111946431B (zh) * 2020-08-05 2021-12-17 武汉理工大学 利用柴油发电机余热的船舶热电联产优化控制系统及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689503U (ja) * 1979-12-11 1981-07-17
JPS5749005A (en) * 1980-09-08 1982-03-20 Mitsubishi Heavy Ind Ltd Marine electric power generation set
JPS60212621A (ja) * 1984-04-09 1985-10-24 Ishikawajima Harima Heavy Ind Co Ltd 内燃機関の過給装置
JPS61232319A (ja) 1985-04-05 1986-10-16 Hitachi Zosen Corp 排ガスエコノマイザ用排ガス昇温設備の自動制御装置
JPS61179304U (ja) * 1985-04-30 1986-11-08
JPS6298704U (ja) * 1985-12-11 1987-06-23
JPS6382020U (ja) * 1986-11-18 1988-05-30

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312049A (ja) * 1992-05-12 1993-11-22 Mitsubishi Motors Corp ターボチャージャーによる過給の制御方法
JP2005054750A (ja) * 2003-08-07 2005-03-03 Mitsubishi Automob Eng Co Ltd ターボ過給エンジン
DE102006043835A1 (de) * 2006-09-19 2008-03-27 Bayerische Motoren Werke Ag Wärmetauscheranordnung
CN101187329A (zh) * 2006-11-17 2008-05-28 林耀章 利用内燃机废热能转换以产生新能量的装置
DE102007050259B4 (de) * 2007-10-22 2011-06-09 Ford Global Technologies, LLC, Dearborn Aufgeladene Brennkraftmaschine mit integriertem Abgaskrümmer und Flüssigkeitskühlung
JP5173776B2 (ja) * 2008-12-15 2013-04-03 三菱重工業株式会社 排気エネルギー回収装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689503U (ja) * 1979-12-11 1981-07-17
JPS5749005A (en) * 1980-09-08 1982-03-20 Mitsubishi Heavy Ind Ltd Marine electric power generation set
JPS60212621A (ja) * 1984-04-09 1985-10-24 Ishikawajima Harima Heavy Ind Co Ltd 内燃機関の過給装置
JPS61232319A (ja) 1985-04-05 1986-10-16 Hitachi Zosen Corp 排ガスエコノマイザ用排ガス昇温設備の自動制御装置
JPS61179304U (ja) * 1985-04-30 1986-11-08
JPS6298704U (ja) * 1985-12-11 1987-06-23
JPS6382020U (ja) * 1986-11-18 1988-05-30

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615264A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060760A3 (en) * 2012-10-17 2015-06-11 Norgren Limited A waste heat recovery system comprising a bypass valve
EP2993317A1 (en) * 2012-10-17 2016-03-09 Norgren Limited Bypass valve
US9964229B2 (en) 2012-10-17 2018-05-08 Norgren Limited Bypass valve

Also Published As

Publication number Publication date
JP5374465B2 (ja) 2013-12-25
EP2615264A4 (en) 2015-07-01
DK2615264T3 (en) 2016-08-29
CN103109047B (zh) 2015-03-11
KR20130029781A (ko) 2013-03-25
EP2615264A1 (en) 2013-07-17
EP2615264B1 (en) 2016-07-27
KR101422990B1 (ko) 2014-07-23
JP2012057501A (ja) 2012-03-22
CN103109047A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5374465B2 (ja) 発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法
JP5496006B2 (ja) 発電プラント設備およびその運転方法
KR101124026B1 (ko) 선박의 동작 방법, 및 낭비 열을 복구하는 추진 시스템을 가진 선박
JP5571151B2 (ja) 船舶推進装置、船舶、及び船舶推進方法
KR101232393B1 (ko) 터빈 발전기의 제어 방법 및 장치
JP5138643B2 (ja) タービン発電機、タービン発電機の制御方法、制御装置、および該タービン発電機を備えた船舶
JP2011027053A5 (ja)
KR20180018816A (ko) 배열 회수 장치, 내연 기관 시스템과 선박 및 배열 회수 방법
JP5563052B2 (ja) 排熱回収システム及び排熱回収方法
KR101613227B1 (ko) 선박의 폐열을 이용한 전력 생산 장치 및 방법
CN108779687B (zh) 废热回收装置、内燃机系统及船舶、以及废热回收装置的控制方法
JP2019094802A (ja) 舶用機関の排熱回収システム、及び、舶用機関の排熱回収システムの制御方法
EP2460983B1 (en) Steam-driven power plant
JP6090898B2 (ja) 内燃機関システムおよびこれを備えた船舶ならびに内燃機関システムの制御方法
JP5675932B2 (ja) 発電方法、タービン発電機、タービン発電機の制御方法、制御装置、および該タービン発電機を備えた船舶
WO2011158926A1 (ja) 発電プラント設備およびその運転方法
JP6590650B2 (ja) コンバインドサイクルプラント及びその制御装置、運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031441.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127033256

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011823485

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011823485

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE