WO2012031448A1 - 生物质燃料内循环流化床锅炉 - Google Patents

生物质燃料内循环流化床锅炉 Download PDF

Info

Publication number
WO2012031448A1
WO2012031448A1 PCT/CN2011/000889 CN2011000889W WO2012031448A1 WO 2012031448 A1 WO2012031448 A1 WO 2012031448A1 CN 2011000889 W CN2011000889 W CN 2011000889W WO 2012031448 A1 WO2012031448 A1 WO 2012031448A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
chamber
main combustion
mechanical
burnout
Prior art date
Application number
PCT/CN2011/000889
Other languages
English (en)
French (fr)
Inventor
杨志军
Original Assignee
山东希尔生物质能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东希尔生物质能源有限公司 filed Critical 山东希尔生物质能源有限公司
Priority to US13/394,151 priority Critical patent/US9091432B2/en
Publication of WO2012031448A1 publication Critical patent/WO2012031448A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/007Fluidised bed combustion apparatus comprising a rotating bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/12Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated exclusively within the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/20Inlets for fluidisation air, e.g. grids; Bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection

Definitions

  • Biomass fuel internal circulating fluidized bed boiler TECHNICAL FIELD - The present invention belongs to the field of renewable energy conversion technology, and relates to an inner circulation mechanical fluidized bed angle tube boiler which is efficient, energy-saving and emission-reducing biomass fuel combustion.
  • the object of the present invention is to provide a novel bio-fuel boiler which can automatically control, has high combustion intensity, high burn-up rate, high thermal efficiency, low overall volume and low height, can work stably for a long period of time, and can only burn biomass fuel.
  • the present invention adopts mechanical fluidization technology, furnace folding technology, internal circulation technology, high temperature according to the high volatile matter, high temperature cracking, easy formation of gray shell and low melting point of biomass fuel.
  • the pre-dusting technology is used to design the overall design of the boiler.
  • a novel biomass fuel inner circulation mechanical fluidized bed angle tube type intelligent boiler including a main combustion chamber and a main combustion chamber Inner tube circulator, main combustion chamber mechanical fluidizer, secondary combustion chamber, secondary combustion chamber shaped separator, secondary combustion chamber mechanical fluidization machine, burnout chamber, high temperature multi-tube cyclone, convection heat exchange tube bundle, main points
  • the main combustion chamber adopts a square membrane water wall and a lower circular base to form a special furnace.
  • the main combustion chamber mechanical fluidization machine is installed at the bottom of the base.
  • the main combustion chamber mechanical fluidization machine fluidized fin adopts a hollow wind protection structure.
  • a directional hood is installed on the airflow machine of the combustion chamber, and a venturi inner circulator is installed at the four corners of the base.
  • biomass fuel into the main combustion chamber at a high temperature environmental effects Rapid pyrolysis combustion, the fuel is rapidly rotating in the action of mechanical fluidized fins, directional hoods and venturi nozzles.
  • the primary air is provided by directional hoods, wind protection fluidized fins and venturi tubes, and wind protection fluidization
  • the wing can quickly break the burning of the gray shell of the fuel to speed up the burning rate and prevent the gray shell from binding to form slagging.
  • the large carbon particles are circulated by the cyclone to the corner of the furnace wall and circulated by the venturi tube. After the catching port is captured, it returns to the bottom of the combustion chamber to continue combustion.
  • the small carbon particles and hot flue gas after a large carbon particle combustion are discharged into the auxiliary combustion chamber through the main combustion chamber outlet.
  • the auxiliary combustion chamber is composed of a secondary combustion chamber shaped separator and a secondary combustion chamber mechanical fluidization machine, and the secondary combustion chamber shaped separator is composed of a sub-combustion chamber square membrane water wall and a sub-combustion chamber above the lower circular shaped base and the secondary combustion.
  • the chamber is formed by a shaped cigarette outlet, and the mechanical fluidization machine of the auxiliary combustion chamber is installed at the bottom of the auxiliary combustion chamber.
  • the hot flue gas entering from the outlet of the main combustion chamber is separated by the hetero-type separator of the auxiliary combustion chamber, and the small carbon particles are deposited on the bottom to continue the flow.
  • secondary air is provided by mechanical fluidized wind protection fluidized fins
  • wind protection fluidized fins mechanical fluidization of small carbon particles can make secondary air and fuel fully mix to improve combustion intensity and effectively prevent gray shell adhesion
  • the slag, the hot flue gas after burning the second small carbon particles and a small amount of micro carbon particles are discharged into the burnout chamber from the secondary combustion chamber by the secondary combustion chamber for three burnouts.
  • the burn-out chamber is composed of a membrane type water-cooled wall covered with a refractory crucible, and a refractory baffle plate is installed in the middle, and the flue gas is disturbed to accelerate the third burning rate, and the high-temperature multi-tube cyclone is installed at the rear of the burnout chamber.
  • the inlet of the high-temperature multi-tube cyclone dust collector is connected with the burn-out chamber, and the outlet of the high-temperature multi-tube cyclone dust collector is connected with the convection heat exchange tube bundle, and the hot flue gas containing the minute carbon particles entering from the auxiliary combustion chamber is performed in the burn-out chamber.
  • the turbulent baffle plate disturbs the flue gas and strengthens the contact between the air and the fuel. It also accelerates the three-burning rate.
  • the hot flue gas after the three-burning burns first enters the high-temperature cyclone dust collector for dust removal and convection.
  • the heat exchange tube bundle is discharged from the boiler outlet after heat exchange.
  • the invention adopts mechanical fluidization, venturi inner circulation combustion mode, and cross section heat load up to
  • the main combustion chamber, the secondary combustion chamber and the burnout chamber which are arranged in order from the front to the rear of the boiler, can be designed to be in a fluidized and suspended combustion state in three furnaces by the internal structure design, which effectively reduces the height of the fluidized bed boiler.
  • the height of the furnace can be controlled at about 2 meters.
  • the pyrolysis of the main combustion chamber and the primary circulating fluidized combustion of the coarse carbon particles, the secondary carbonized combustion of the secondary combustion chamber, the secondary fluidized combustion and the three-segment complete combustion of the burnout chamber constitute the precise segmented combustion system of the boiler, fuel combustion The rate can reach more than 99%.
  • the temperature of the main combustion chamber can be controlled at about 900 ° C by adjusting the amount of radiant heat exchange on the membrane water wall, the temperature of the secondary combustion chamber is about 800 ° C, and the temperature of the burnout chamber is about 600 ° C. , effectively reducing NOx emissions.
  • a high temperature multi-tube cyclone installed at the rear of the burnout chamber removes approximately 90% of the smoke ash.
  • the utility model can effectively reduce the pollution of the convection heat exchange tube bundle by the ash, and improve the overall heat exchange efficiency and the long-term stable working performance of the boiler.
  • Figure 1 is a right front view of the boiler of the present invention. In the figure, a partial cut is made in the main combustion chamber, the sub-combustion chamber and the burnout chamber. In order to facilitate the display of the internal structure, the front fascia of the boiler, the access door on the hood, the inspection door under the hood, the outer insulation layer of the boiler and the outer casing are removed.
  • FIG. 2 is a right top plan view of the boiler of the present invention. This diagram is primarily intended to show the underlying contoured base and mechanical fluidizer structure inside the combustion chamber. The outer insulation layer and the outer casing of the boiler are removed for the purpose of demonstrating the internal structure.
  • FIG. 3 is a rear elevational view of the boiler of the present invention.
  • the boiler rear sealing plate, the inspection door, the smoke outlet interface, the air inlet interface, the outer insulation layer of the boiler and the outer casing are removed.
  • Figure 4 is a top plan cross-sectional view of the main combustion chamber of the boiler of the present invention.
  • Figure 5 is a top plan cross-sectional view of the secondary combustion chamber of the boiler of the present invention.
  • Figure 6 is a right side elevational view of the mechanical fluidizer of the main combustion chamber of the boiler of the present invention.
  • Figure 7 is a right side elevational view of the mechanical fluidizer of the secondary combustion chamber of the boiler of the present invention.
  • main combustion chamber 2. sub-combustion chamber, 3. burnout chamber, 4. main combustion chamber mechanical fluidizer, 5. sub-combustion machine mechanical fluidizer, 6. main combustion chamber venturi inner looper Capture port, 7. secondary combustion chamber shaped separator, 8. burnout chamber refractory baffle, 9. burnout chamber outlet, 10. angle tube drop tube, 11. main combustion chamber observation hole, 12. Sub-combustion chamber observation hole, 13. burnout chamber observation hole, 14. convective heat exchange tube bundle transfer chamber on the inspection port, 15. convective heat transfer tube bundle to change the smoke chamber under the inspection port, 16. Spiral ash remover, 17. Boiler Outer frame, 18. upper drum, 19. fuel inlet, 20. main combustion chamber outlet, 21. secondary combustion chamber shaped outlet pipe, 22.
  • main combustion chamber venturi inner circulator inlet 23. Burnout chamber membrane water wall, 24. burnout chamber refractory partition wall, 25. sub-combustion machine mechanical fluidization machine wind protection fluidized wing, 26. main combustion chamber mechanical fluidization machine wind protection fluidization wing, 27.
  • convective heat exchange tube bundle refractory ⁇ partition plate 40. lower circular shaped base above the main combustion chamber, 41. main combustion chamber square membrane water wall, 42. main combustion chamber venturi inner circulator, 43. Square diaphragm water wall of the combustion chamber, 44. Wear-resistant high temperature enthalpy of the mechanical fluidization machine of the sub-combustion chamber, 45. Lower circular shaped base above the secondary combustion chamber, 46. Mechanical fluidizer of the main combustion chamber, 47. Main Combustion chamber mechanical fluidization machine directional hood, 48. main combustion chamber mechanical fluidizer motor, 49. main combustion chamber mechanical fluidization machine reducer, 50. main combustion chamber mechanical fluidization machine installation pin, 51. main combustion chamber machinery Fluidized machine reducer mounting flange, 52.
  • Main combustion chamber mechanical fluidization machine wind protection fluidized fin air inlet 53.
  • Sub-combustion machine mechanical fluidization machine air distribution plate 54.
  • Sub-combustion machine mechanical fluidization machine installation pin 55.
  • Sub-combustion machine mechanical fluidizer reducer 56.
  • Sub-combustion machine mechanical fluidizer motor 57.
  • Sub-combustion chamber Mechanical fluidizer reducer mounting flange 58.
  • Sub-combustion machine mechanical fluidization machine wind protection fluidized fin air inlet detailed description:
  • the present invention includes a main combustion chamber (1), a secondary combustion chamber (2), a burnout chamber (3), and a high temperature multi-tube cyclone.
  • Main combustion chamber mechanical fluidization machine reducer (49), main combustion chamber mechanical fluidization machine installation pin (50), main combustion chamber mechanical fluidization machine reducer installation flange (51) and main combustion chamber machinery
  • the fluidizing machine protects the fluidized fin air inlet (52), and the main combustion chamber mechanical fluidizer (4) is connected to the main combustion chamber (1) by a mounting pin (50); the main combustion chamber (1) and the auxiliary combustion chamber (2) Directly communicating with the main combustion chamber outlet (20) of the upper portion of the membrane water wall partitioning the main combustion chamber (1) and the sub-combustion chamber (2); the secondary combustion chamber (2) from top to bottom
  • the chamber shaped cigarette outlet pipe (21) is composed of a round pipe portion, an elbow portion and a circularly variable square pipe portion, and the pipe portion is vertically installed at an upper central position of the sub-combustion chamber (2)
  • the convection heat exchange tube bundle (38) is installed on the left side of the boiler, and the convective heat exchange tube bundle (38) is separated into upper and lower parts by the convective heat exchange tube bundle refractory baffle plate (39).
  • the lower part is the second smoke path, and the first smoke path is connected with the high temperature multi-tube cyclone dust outlet (31), the second The smoke path is connected to the boiler outlet (35), and the first smoke path and the second smoke path are connected by the change chamber;
  • the angle tube type drop pipe (10) has the upper drum (18) and the left header (32), The right header (33), the upper header (28), and the lower header (34) are integrated to form the overall frame of the boiler.
  • the boiler operation process and operation steps are as follows: Firstly, the fuel is accurately and quantitatively isolated from the quantitative feed auger and the air locker, and then sent from the fuel tank through the fuel feed port (19) into the main combustion chamber (1), and at the same time Combustion chamber mechanical fluidizer (4) and sub-combustion machine mechanical fluidizer (5).
  • the quantitative feed auger When a certain amount of fuel is fed, the quantitative feed auger, the appropriate amount of the blower fan and the induced draft fan are turned off and the ignition device is turned on for ignition.
  • the ignition device may be a fuel igniter, a gas igniter or an electric igniter.
  • the fuel in the main combustion chamber (1) basically enters the carbon combustion, the ignition is turned off, the induced draft fan and the blower are turned on, and the quantitative feeding auger is turned on, and the ignition is completed. The entire ignition process takes about 5-8 minutes.
  • the quantitative feed auger is adjusted according to the load demand to determine the fuel input amount, and the blower and the induced draft fan are adjusted according to the fuel input amount to determine the correct air intake amount.
  • the boiler is in operation.
  • the fuel entering from the fuel feed port (19) is rapidly pyrolyzed by the high temperature environment of the main combustion chamber (1), and the mechanical fluidization of the main combustion chamber protects the fluidized fins (26) and mechanical fluidization of the main combustion chamber.
  • the directional hood (47) and the ventilator vent (27) of the main combustion chamber circulate the fuel in rapid rotation.
  • the primary air is directional hood (47) and the main combustion chamber mechanical fluidization machine.
  • the fluidized machine wind protection fluidized fin (26) and the main combustion chamber venturi inner circulator spout (27) provide, the main combustion chamber mechanical fluidization machine wind protection fluidization fin (26) can quickly break the burning gray shell Accelerate the burning rate and prevent the ash shell from sticking to form slagging.
  • the large carbon particles are smashed to the corner of the furnace wall by the cyclone and are captured by the venturi inner circulator catching port (6) of the main combustion chamber and then returned to the combustion.
  • the bottom of the chamber continues to burn.
  • the small carbon particles and hot flue gas after the combustion of the large carbon particles are discharged into the auxiliary combustion chamber (2) through the main combustion chamber outlet (20) to continue combustion.
  • the main combustion chamber (1) mainly completes the cracking of biomass fuel and the combustion process of large carbon particles.
  • the reasonable arrangement of the membrane type water wall radiation heating surface can ensure that the combustion temperature of the main combustion chamber (1) is around 90 CTC, thereby greatly reducing NOx. Emissions and effective assurance of no slagging during combustion.
  • the hot flue gas entering the sub-combustion chamber (2) from the main combustion chamber outlet (20) is separated by the auxiliary separator of the auxiliary combustion chamber, and small carbon particles are deposited on the bottom to continue the fluidized combustion, and the secondary air is mechanically flowed from the auxiliary combustion chamber.
  • Chemical wind protection fluidized fin (25) provided, sub-combustion machine mechanical fluidization wind protection fluidization fin (25) mechanical fluidization of fuel can make secondary air and fuel fully mixed to improve combustion intensity and effectively prevent gray shell Adhesive connection slag, reasonable arrangement of membrane water wall radiation heating surface and refractory enamel insulation layer can ensure the combustion temperature of the secondary combustion chamber (2) is about 800 °C.
  • the hot flue gas and a small amount of minute carbon particles after the secondary combustion are discharged into the burnout chamber (3) from the sub-combustion chamber shaped flue pipe (21).
  • the burnt hot flue gas is removed by the high-temperature multi-tube cyclone (29) and the convective heat exchange tube bundle ( 38) After heat exchange, exit the boiler through the boiler outlet (35).
  • the high temperature multi-tube cyclone (29) is separated by soot ash remover (16).
  • the boiler of the invention is formed by the angle tube type down pipe (10) to form the boiler frame, and the circulation circuit can be adjusted according to the application to meet the requirements of the steam boiler, the hot water boiler, the vacuum boiler or the heat carrier boiler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

生物质燃料内循环流化床锅炉 所属技术领域- 本发明属于一种可再生能源转换技术领域, 涉及一种高效节能减排燃烧 生物质燃料的内循环机械流化床角管锅炉。
背景技术:
生物质能源应用技术近几年在我国政府的大力推动下得到了迅速发展。
其中特别是生物质能源固化直燃技术及应用发展尤为迅猛。 但我国目前生物 质能源固化直燃技术及应用水平尚低, 与国外先进直燃技术及设备相比差距 较大。 特别是直燃设备主要还是将燃煤的链条炉排锅炉稍经改造使用。 这一 类的锅炉燃烧效率低, 燃烧强度低, 容易结渣, 自动化程度低, 特别是批准 书
安装后用户很容易在利益的驱动下继续燃用煤炭造成环境污染。 而循环流化 床锅炉虽能获得较好燃烧效果但炉体过高不能实现小型化, 无法在中小燃煤 锅炉房安装替代中小燃煤锅炉, 不能满足大规模生物质能源供热、 发电对锅 炉提出的热效率高、 锅炉体积小、 燃烧强度高、 燃尽率高、 自动化程度高、 长期工作稳定性好、 只能燃用生物质燃料等技术要求。
发明内容:
本发明的目的是提供一种能自动控制、 燃烧强度高、 燃尽率高、 热效率 高、 整体体积小高度低、 能长期稳定工作、 只能燃用生物质燃料的新型生物 质燃料专用锅炉。
为了实现上述目的, 本发明依据生物质燃料所具有的挥发份高、 高温裂 解快、 易形成灰壳和灰熔点低的燃烧特性, 采用了机械流化技术、 炉膛折叠 技术、 内循环技术、 高温前置除尘技术进行锅炉整体设计, 本发明解决其技 术问题所采用的技术方案是: 一种新型生物质燃料内循环机械流化床角管式 智能锅炉, 包括有主燃烧室、 主燃烧室文丘里管内循环器、 主燃烧室机械流 化机、 副燃烧室、 副燃烧室异型分离器、 副燃烧室机械流化机、 燃尽室、 高 温多管旋风除尘器、 对流换热管束, 其要点是主燃烧室采用方形膜式水冷壁 和上方下圆形底座构成异型炉膛, 在底座底部安装了主燃烧室机械流化机, 主燃烧室机械流化机流化翅采用中空风保护结构, 主燃烧室机械流化机布风 板上安装了定向风帽, 在底座四角安装了文丘里管内循环器, 燃烧时生物质 燃料由进料口进入主燃烧室, 生物质燃料进入主燃烧室后在高温环境作用下 迅速热解燃烧, 在机械流化翅、 定向风帽和文丘里管喷口的共同作用下燃料 呈快速旋转状燃烧, 一次风由定向风帽、 风保护流化翅和文丘里管提供, 风 保护流化翅能迅速将燃烧燃料的灰壳打碎加快了燃烧速率并防止了灰壳粘结 形成结渣, 燃料热解燃烧后大的碳粒在旋风的作用下甩到了炉壁四角被文丘 里管内循环器捕捉口捕捉后返回燃烧室底部继续燃烧, 一次大碳粒燃烧后的 小碳粒和热烟气经主燃烧室出烟口排入副燃烧室。
所述的副燃烧室由副燃烧室异型分离器和副燃烧室机械流化机构成, 副 燃烧室异型分离器由副燃烧室方形膜式水冷壁和副燃烧室上方下圆异形底座 及副燃烧室异型出烟管构成, 副燃烧室机械流化机安装在副燃烧室底部, 从 主燃烧室出烟口进入的热烟气经副燃烧室异型分离器分离后小碳粒沉积于底 部继续流化燃烧, 二次风由机械流化机风保护流化翅提供, 风保护流化翅对 小碳粒进行机械流化可使二次风与燃料充分混合提高燃烧强度及有效防止灰 壳粘连结渣, 二次小碳粒燃烧后的热烟气和少许微型碳粒由副燃烧室异型出 烟管排入燃尽室进行三次燃尽燃烧。
所述的燃尽室由膜式水冷壁内覆耐火砼组成, 中间安装有耐火砼折流 板, 对烟气进行扰动加快三次燃烧速率, 高温多管旋风除尘器安装在燃尽室 后部, 高温多管旋风除尘器进烟口与燃尽室连接, 高温多管旋风除尘器出烟 口与对流换热管束连接, 由副燃烧室进入的含有微小碳粒的热烟气在燃尽室 进行最后三次燃尽燃烧, 耐火砼折流板对烟气的扰动加强了空气与燃料的接 触也加快了三次燃烧速率, 三次燃烧燃尽后的热烟气先进入高温旋风除尘器 进行除尘再经对流换热管束换热后由锅炉出烟口排出。
本发明采用机械流化、 文丘里管内循环燃烧方式、 截面热负载可达
6MW/m2。 锅炉自前向后依次设置的主燃烧室、 副燃烧室和燃尽室通过内部 不同结构的设计可使燃料在三个炉膛始终处于流化、 悬浮燃烧状态, 有效地 降低了流化床锅炉的高度, 炉膛高度可控制在 2米左右。 主燃烧室的热解和 粗碳粒一次循环流化燃烧、 副燃烧室的细碳粒分离二次流化燃烧和燃尽室的 三次悬浮完全燃烧构成了锅炉的精确分段燃烧系统, 燃料燃尽率可达 99%以 上。 尤其是可通过在膜式水冷壁敷设耐火砼调整辐射换热量控制主燃烧室的 温度在 900°C左右、 副燃烧室的温度在 800°C左右、 燃尽室的温度在 600°C左 右,有效的减少了 NOx的排放量。在燃尽室后部安装的高温多管旋风除尘器 可将约 90%的烟气灰分清除。 可有效减少灰分对对流换热管束的污染, 提高 了锅炉整体换热效率和长期稳定工作性能。
附图说明: 下面结合附图对本发明进一步说明。
图 1是本发明锅炉的右前视图。 图中在主燃烧室、副燃烧室和燃尽室部 位做了局部剖开。为便于展示内部结构去除了锅炉前饰板、转烟室上检修门、 转烟室下检修门、 锅炉外保温层和外包装壳。
图 2是本发明锅炉的右俯视图。此图主要是为了展示燃烧室内部上方下 圆异型底座和机械流化机结构。 为便于展示内部结构去除了锅炉外保温层和 外包装壳。
图 3是本发明锅炉的后视图。 为便于展示内部结构去除了锅炉后封板、 检修门、 出烟接口、 进风接口、 锅炉外保温层和外包装壳。
图 4是本发明锅炉主燃烧室右俯视剖开图。
图 5是本发明锅炉副燃烧室右俯视剖开图。
图 6是本发明锅炉的主燃烧室机械流化机右视图。
图 7是本发明锅炉的副燃烧室机械流化机右视图。
图中 1.主燃烧室、 2.副燃烧室、 3.燃尽室、 4.主燃烧室机械流化机、 5. 副燃烧室机械流化机、 6.主燃烧室文丘里管内循环器捕捉口、 7.副燃烧室异型 分离器、 8.燃尽室耐火砼折流板、 9.燃尽室出烟口、 10.角管式下降管、 11.主 燃烧室观察孔、 12.副燃烧室观察孔、 13.燃尽室观察孔、 14.对流换热管束转 烟室上检修口、 15.对流换热管束转烟室下检修口、 16.螺旋除灰机、 17.锅炉 外框、 18.上锅筒、 19.燃料进料口、 20.主燃烧室出烟口、 21.副燃烧室异形出 烟管、 22.主燃烧室文丘里管内循环器进风口、 23.燃尽室膜式水冷壁、 24.燃 尽室耐火砼隔墙、 25.副燃烧室机械流化机风保护流化翅、 26.主燃烧室机械流 化机风保护流化翅、 27.主燃烧室文丘里管内循环器喷口、 28.上集箱、 29.高 温多管旋风除尘器、 30.高温多管旋风除尘器进烟口、 31.高温多管旋风除尘器 出烟口、 32.左集箱、 33.右集箱、 34.下集箱、 35.锅炉出烟口、 36.对流换热管 束第一烟程检修口、 37.锅炉进风口、 38.对流换热管束、 39.对流换热管束耐 火砼隔板、 40.主燃烧室上方下圆异形底座、 41.主燃烧室方形膜式水冷壁、 42. 主燃烧室文丘里管内循环器、 43.副燃烧室方形膜式水冷壁、 44. 副燃烧室机 械流化机耐磨高温砼层、 45. 副燃烧室上方下圆异形底座、 46.主燃烧室机械 流化机布风板、 47.主燃烧室机械流化机定向风帽、 48. 主燃烧室机械流化机 电机、 49. 主燃烧室机械流化机减速机、 50. 主燃烧室机械流化机安装销、 51. 主燃烧室机械流化机减速机安装法兰、 52. 主燃烧室机械流化机风保护流化 翅进风口、 53.副燃烧室机械流化机布风板、 54. 副燃烧室机械流化机安装销、 55.副燃烧室机械流化机减速机、 56.副燃烧室机械流化机电机、 57. 副燃烧室 机械流化机减速机安装法兰、 58. 副燃烧室机械流化机风保护流化翅进风口。 具体实施方式:
参照图 1、 图 2、 图 3、 图 4、 图 5、 图 6, 图 7, 本发明包括主燃烧室(1 )、 副燃烧室(2)、燃尽室(3)、高温多管旋风除尘器(29)、对流换热管束(38), 主燃烧室 (1 ) 从上至下依次由主燃烧室出烟口 (20 )、 主燃烧室方形膜式水 冷壁 (41 )、 主燃烧室上方下圆异形底座 (40)、 主燃烧室文丘里管内循环器 (42) 和主燃烧室机械流化机 (4) 组成; 主燃烧室文丘里管内循环器 (42) 由主燃烧室文丘里管内循环器捕捉口 (6)、 主燃烧室文丘里管内循环器进风 口 (22) 和主燃烧室文丘里管内循环器喷口 (27 ) 构成; 主燃烧室机械流化 机 (4) 由主燃烧室机械流化机布风板 (46)、 主燃烧室机械流化机定向风帽
(47 )、 主燃烧室机械流化机风保护流化翅 (26)、 主燃烧室机械流化机电机
(48)、主燃烧室机械流化机减速机(49)、主燃烧室机械流化机安装销(50)、 主燃烧室机械流化机减速机安装法兰 (51 ) 和主燃烧室机械流化机风保护流 化翅进风口 (52) 组成, 主燃烧室机械流化机 (4) 与主燃烧室 (1 ) 由安装 销 (50) 连接; 主燃烧室(1 ) 与副燃烧室 (2) 由在分割主燃烧室(1 ) 与副 燃烧室(2 ) 的膜式水冷壁上部开口的主燃烧室出烟口 (20)直接连通; 副燃 烧室 (2) 从上至下依次由副燃烧室异形出烟管 (21 )、 副燃烧室方形膜式水 冷壁 (43)、 副燃烧室上方下圆异形底座 (45 ) 和副燃烧室机械流化机 (5) 组成; 副燃烧室异形出烟管 (21 ) 由圆管部分、 弯头部分和圆变方形管部分 组成, 圆管部分垂直安装在副燃烧室(2)上部中央位置, 方形管口与间隔副 燃烧室 (2 ) 和燃尽室 (3 ) 的副燃烧室方形膜式水冷壁 (43 ) 连接, 并在水 冷壁开口形成副燃烧室出烟口; 副燃烧室上方下圆异形底座 (45) 安装于副 燃烧室 (2 ) 下部; 副燃烧室机械流化机 (5) 安装于副燃烧室上方下圆异形 底座 (45) 底部, 并通过副燃烧室机械流化机安装销 (54) 与副燃烧室上方 下圆异形底座(45)连接; 燃尽室(3) 由燃尽室膜式水冷壁(23 )和燃尽室 耐火砼隔墙(24) 围成, 燃尽室耐火砼折流板(8 ) 安装于燃尽室(3) 中部, 燃尽室出烟口 (9) 安装于燃尽室耐火砼折流板 (8 ) 下面; 高温多管旋风除 尘器(29) 安装于燃尽室(3)后部, 高温多管旋风除尘器进烟口 (30)经燃 尽室出烟口 (9) 与燃尽室 (3 ) 连通, 高温多管旋风除尘器出烟口 (31 ) 与 对流换热管束 (38) 连通, 高温多管旋风除尘器 (29 ) 出尘口与螺旋除灰机
( 16) 连接; 对流换热管束 (38) 安装在锅炉左侧面, 中间由对流换热管束 耐火砼隔板(39 )将对流换热管束(38)隔成上下两部分, 上部为第一烟程, 下部为第二烟程, 第一烟程与高温多管旋风除尘器出烟口 (31 ) 连通, 第二 烟程与锅炉出烟口 (35) 连通, 第一烟程与第二烟程由转烟室连通; 角管式 下降管 (10) 将上锅筒 (18)、 左集箱 (32 )、 右集箱 (33)、 上集箱 (28)、 下集箱 (34) 连成一体构成了锅炉整体框架。
锅炉运行过程及操作步骤是: 首先将燃料由定量喂料绞龙和闭风器精确 定量和风隔离后从燃料仓经燃料进料口 (19) 输送进主燃烧室 (1 ), 同时幵 启主燃烧室机械流化机(4)和副燃烧室机械流化机(5)。 当送入一定燃料后 关闭定量喂料绞龙、 适量幵启鼓风机和引风机并开启点火装置进行点火。 点 火装置可采用燃油点火机、燃气点火机或电点火机。 当主燃烧室(1 ) 中燃料 基本进入碳燃烧时关闭点火机, 调大引风机和鼓风机并开启定量喂料绞龙, 点火完成。 整个点火过程约 5-8分钟。
点火完成后根据负载需求调整定量喂料绞龙确定燃料输入量并根据燃 料输入量调整鼓风机和引风机确定正确进风量。 此时锅炉进入运行状态。 由 燃料进料口(19)进入的燃料在主燃烧室(1 )高温环境作用下迅速热解燃烧, 在主燃烧室机械流化机风保护流化翅 (26)、 主燃烧室机械流化机定向风帽 (47) 和主燃烧室文丘里管内循环器喷口 (27) 的共同作用下燃料呈快速旋 转状燃烧, 一次风由主燃烧室机械流化机定向风帽(47)、主燃烧室机械流化 机风保护流化翅 (26) 和主燃烧室文丘里管内循环器喷口 (27) 提供, 主燃 烧室机械流化机风保护流化翅 (26) 能迅速将燃烧的灰壳打碎加快燃烧速率 并防止灰壳粘结形成结渣, 燃料热解燃烧后大的碳粒在旋风的作用下甩到了 炉壁四角被主燃烧室文丘里管内循环器捕捉口(6)捕捉后返回燃烧室底部继 续燃烧, 一次大碳粒燃烧后的小碳粒和热烟气经主燃烧室出烟口 (20) 排入 副燃烧室 (2) 继续燃烧。 主燃烧室 (1 ) 主要完成生物质燃料的裂解和大碳 粒燃烧过程, 合理布置的膜式水冷壁辐射受热面可保证主燃烧室(1 )燃烧温 度在 90CTC左右, 从而大大减少了 NOx的排放量和有效保证了燃烧过程中不 结渣。
从主燃烧室出烟口 (20) 进入副燃烧室 (2) 的热烟气经副燃烧室异型 分离器分离后小碳粒沉积于底部继续流化燃烧, 二次风由副燃烧室机械流化 机风保护流化翅 (25 ) 提供, 副燃烧室机械流化机风保护流化翅 (25 ) 对燃 料进行机械流化可使二次风与燃料充分混合提高燃烧强度及有效防止灰壳粘 连结渣, 合理布置的膜式水冷壁辐射受热面及耐火砼保温层可保证副燃烧室 (2)燃烧温度在 800°C左右。 二次燃烧后的热烟气和少许微小碳粒由副燃烧 室异型出烟管 (21 ) 排入燃尽室 (3 )。
从副燃烧室 (2) 进入燃尽室 (3 ) 的含有微小碳粒的热烟气在燃尽室进 行最后三次燃尽燃烧。耐火砼折流板(8)对烟气的扰动加强了空气与燃料的 接触也加快了三次燃烧速率, 燃尽的热烟气经高温多管旋风除尘器 (29) 除 尘和对流换热管束 (38) 换热后经锅炉出烟口 (35 ) 排出锅炉。 高温多管旋 风除尘器 (29) 分离出的烟尘由螺旋除灰机 (16) 排出。
锅炉停炉只需关闭定量喂料绞龙不向主燃烧室 (1 ) 输送燃料即可。 约 2 - 3分钟后主燃烧室(1 ) 即没有明火。 保持鼓风机、 引风机运行一段时间使 主燃烧室 (1 ) 温度下降到燃烧温度以下即可全部关闭锅炉。
本发明锅炉由角管式下降管 (10) 将各集箱连成一体形成锅炉骨架, 可 根据用途不同调整循环回路使锅炉满足蒸汽锅炉、 热水锅炉、 真空锅炉或热 载体锅炉的要求。
以上所有操作均可编程由程序自动控制运行。

Claims

权 利 要 求 书
1、 一种生物质燃料内循环机械流化床角管式智能锅炉,包括有主燃烧室、 副燃烧室、 燃尽室、机械流化机、 文丘里管内循环器、 高温多管旋风除尘器、 对流换热管束, 其特征是主燃烧室由方形全密封膜式水冷壁和上方下圆异形 底座组成异形炉膛, 上方下圆异形底座四角安装有文丘里管内循环器, 异形 炉膛的底部设有机械流化机, 炉膛顶部后面设有出烟口直接与后部副燃烧室 连通。
2、 根据权利要求 1 所述的生物质燃料内循环机械流化床角管式智能锅 炉, 其特征是: 机械流化机由布风板、 电机、 减速机、 减速机安装法兰、 风 保护流化翅和风保护流化翅进风口组成, 布风板上安装有定向风帽或敷设耐 火耐磨砼。
3、 根据权利要求 1 所述的生物质燃料内循环机械流化床角管式智能锅 炉, 其特征是: 文丘里管内循环器由上方下圆异形底座、 文丘里管 ]循环器 捕捉口、 进风口、 喷口组成, 文丘里管内循环器采用顺向四角布置。
4、 根据权利要求 1 所述的生物质燃料内循环机械流化床角管式智能锅 炉, 其特征是: 主燃烧室后设有异形旋风分离副燃烧室, 副燃烧室由方形全 密封膜式水冷壁和上方下圆异形底座组成, 底部设有机械流化机, 上部设有 异型出烟管, 异型出烟管由圆管部分、 弯头部分和圆变方形管部分构成, 圆 管部分垂直安装于副燃烧室上部中央, 方形管口与副燃烧室后部膜式水冷壁 连接, 膜式水冷壁设有开口使副燃烧室经异型出烟管与燃尽室连通。
5、 根据权利要求 1 所述的生物质燃料内循环机械流化床角管式智能锅 炉, 其特征是: 副燃烧室后部设有燃尽室, 燃尽室由表面覆有耐火砼的方形 全密封膜式水冷壁构成, 中间安装有耐火砼浇注的折流板, 高温多管旋风除 尘器安装在燃尽室后部, 进口与燃尽室连接, 出口与对流换热管束连接。
PCT/CN2011/000889 2010-09-08 2011-05-24 生物质燃料内循环流化床锅炉 WO2012031448A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/394,151 US9091432B2 (en) 2010-09-08 2011-05-24 Biomass fuel internal circulation mechanical fluidized-bed corner tube intelligent boiler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010275701.8 2010-09-08
CN2010102757018A CN101900327B (zh) 2010-09-08 2010-09-08 生物质燃料内循环机械流化床角管式锅炉

Publications (1)

Publication Number Publication Date
WO2012031448A1 true WO2012031448A1 (zh) 2012-03-15

Family

ID=43226103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000889 WO2012031448A1 (zh) 2010-09-08 2011-05-24 生物质燃料内循环流化床锅炉

Country Status (3)

Country Link
US (1) US9091432B2 (zh)
CN (1) CN101900327B (zh)
WO (1) WO2012031448A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479273A (zh) * 2018-06-11 2018-09-04 兰州大学 除尘设备及除尘系统
CN112128969A (zh) * 2020-09-30 2020-12-25 青海迎芳节能产品科技开发有限公司 一种工业节能环保炉

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900327B (zh) * 2010-09-08 2011-06-22 山东希尔生物质能源有限公司 生物质燃料内循环机械流化床角管式锅炉
CN102095254B (zh) * 2011-02-17 2013-04-24 山东圣威新能源有限公司 低造价环保节能减排流化床有机热载体锅炉
CN102434997A (zh) * 2011-11-20 2012-05-02 杨志军 生物质颗粒燃料直燃式溴化锂冷热水机组
CN103574595A (zh) * 2012-07-18 2014-02-12 孙斌 一种循环流化床锅炉风帽的安装方法
CN107726367A (zh) * 2017-10-31 2018-02-23 清华大学 一种生物质颗粒燃料采暖炊事两用炉
CN108253445B (zh) * 2018-02-23 2024-04-05 辽宁众缘节能锅炉有限公司 一种捆状秸秆锅炉的控制系统
CN109945485A (zh) * 2019-03-25 2019-06-28 河北省隆盛生物质能源开发有限责任公司 一种生物质型炭燃烧炉
CN109899813B (zh) * 2019-04-23 2023-12-29 湖南申东热工智能装备有限公司 一种生物质锅炉的通风炉排结构
CN110160038B (zh) * 2019-06-06 2024-08-27 海伦市利民节能锅炉制造有限公司 一种生物质成型燃料半气化燃烧承压锅炉
CN110836364A (zh) * 2019-12-16 2020-02-25 杭州锅炉集团股份有限公司 循环流化床锅炉炉膛分段式燃烧系统
CN111765452B (zh) * 2020-07-12 2022-12-06 襄阳诚智电力设计有限公司 一种基于生物质能发电的震动式环保型燃烧设备
CN113883498B (zh) * 2021-09-14 2023-10-10 临沂誉龙环保节能设备有限公司 一种节能锅炉
CN114576630B (zh) * 2021-12-14 2023-03-03 淮安市第二人民医院 基于智能控制的医疗废物处理装置
CN115789646B (zh) * 2022-12-12 2023-11-28 中国建筑第二工程局有限公司 一种可变角度的垃圾焚烧炉装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188871A (zh) * 1997-11-19 1998-07-29 黄世汉 循环双流化床锅炉
CN1305074A (zh) * 2001-02-28 2001-07-25 清华大学 一种变截面型循环流化床燃烧设备
KR20010076672A (ko) * 2000-01-27 2001-08-16 정효현 열회수설비를 이용한 슬러지 유동층 소각장치 및 그 방법
CN101251250A (zh) * 2008-04-17 2008-08-27 无锡太湖锅炉有限公司 双炉膛结构的循环流化床锅炉
JP2009138107A (ja) * 2007-12-06 2009-06-25 Gunma Univ 内部循環型流動床式低温接触ガス化炉装置とそれを用いた家畜排せつ物のガス化分解処理方法
CN201476024U (zh) * 2009-06-12 2010-05-19 福建省环境工程有限公司 一种特种废物流化床焚烧炉的燃烬室装置
CN101900327A (zh) * 2010-09-08 2010-12-01 山东希尔生物质能源有限公司 生物质燃料内循环机械流化床角管式锅炉

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911284A (en) * 1955-06-01 1959-11-03 Combustion Eng Method of burning waste liquors
US2869519A (en) * 1955-09-07 1959-01-20 Combustion Eng Method of operating a waistline vapor generator
US3785304A (en) * 1972-03-13 1974-01-15 K Stookey Method and apparatus for the thermal reduction of rubber or plastic material
US3916619A (en) * 1972-10-30 1975-11-04 Hitachi Ltd Burning method for gas turbine combustor and a construction thereof
DE2504414C2 (de) * 1975-02-03 1985-08-08 Deutsche Babcock Ag, 4200 Oberhausen Einrichtung zum Vermindern des NO↓x↓-Gehaltes
US4060041A (en) * 1975-06-30 1977-11-29 Energy Products Of Idaho Low pollution incineration of solid waste
US4253425A (en) * 1979-01-31 1981-03-03 Foster Wheeler Energy Corporation Internal dust recirculation system for a fluidized bed heat exchanger
US4285328A (en) * 1979-02-28 1981-08-25 Fritz William J Agricultural waste burning heater and heating method
US4301771A (en) * 1980-07-02 1981-11-24 Dorr-Oliver Incorporated Fluidized bed heat exchanger with water cooled air distributor and dust hopper
US4400150A (en) * 1980-10-20 1983-08-23 Stone-Platt Fluidfire Limited Fluidized bed combustor distributor plate assembly
US4724776A (en) * 1982-08-03 1988-02-16 Sam Foresto Burning apparatus with means for heating and cleaning polluted products of combustion
US4442796A (en) * 1982-12-08 1984-04-17 Electrodyne Research Corporation Migrating fluidized bed combustion system for a steam generator
US4517903A (en) * 1983-06-01 1985-05-21 Hunter Enterprises Orillia Limited Solid fuel furnace
US4627365A (en) * 1985-09-23 1986-12-09 Tseng Kuo Yuan Mobile garbage incinerator
US4823712A (en) * 1985-12-18 1989-04-25 Wormser Engineering, Inc. Multifuel bubbling bed fluidized bed combustor system
SE462445B (sv) * 1989-02-10 1990-06-25 Abb Stal Ab Kraftanlaeggning med foerbraenning av ett braensle i en fluidiserad baedd
US5181481A (en) * 1991-03-25 1993-01-26 Foster Wheeler Energy Corporation Fluidized bed combustion system and method having multiple furnace sections
JPH0545423U (ja) * 1991-10-28 1993-06-18 株式会社ナカオ 焼却炉
US5299532A (en) * 1992-11-13 1994-04-05 Foster Wheeler Energy Corporation Fluidized bed combustion system and method having multiple furnace and recycle sections
IT1313272B1 (it) * 1999-07-29 2002-07-17 Rgr Ambiente Reattori Gassific Procedimento e dispositivo per la pirolisi e gassificazione di rifiuti
CN2487738Y (zh) * 2001-06-29 2002-04-24 辽宁省能源研究所 隔板式内循环流化床气化炉
CN1221641C (zh) * 2004-08-16 2005-10-05 中国科学院广州能源研究所 一种非对称结构的内循环生物质流化床气化炉
US20090053800A1 (en) * 2007-08-22 2009-02-26 Julie Friend Biomass Treatment Apparatus
US8707875B2 (en) * 2009-05-18 2014-04-29 Covanta Energy Corporation Gasification combustion system
RU2385438C1 (ru) * 2009-01-15 2010-03-27 Олег Савельевич Кочетов Система утилизации мокрых углеродсодержащих отходов

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188871A (zh) * 1997-11-19 1998-07-29 黄世汉 循环双流化床锅炉
KR20010076672A (ko) * 2000-01-27 2001-08-16 정효현 열회수설비를 이용한 슬러지 유동층 소각장치 및 그 방법
CN1305074A (zh) * 2001-02-28 2001-07-25 清华大学 一种变截面型循环流化床燃烧设备
JP2009138107A (ja) * 2007-12-06 2009-06-25 Gunma Univ 内部循環型流動床式低温接触ガス化炉装置とそれを用いた家畜排せつ物のガス化分解処理方法
CN101251250A (zh) * 2008-04-17 2008-08-27 无锡太湖锅炉有限公司 双炉膛结构的循环流化床锅炉
CN201476024U (zh) * 2009-06-12 2010-05-19 福建省环境工程有限公司 一种特种废物流化床焚烧炉的燃烬室装置
CN101900327A (zh) * 2010-09-08 2010-12-01 山东希尔生物质能源有限公司 生物质燃料内循环机械流化床角管式锅炉

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479273A (zh) * 2018-06-11 2018-09-04 兰州大学 除尘设备及除尘系统
CN112128969A (zh) * 2020-09-30 2020-12-25 青海迎芳节能产品科技开发有限公司 一种工业节能环保炉

Also Published As

Publication number Publication date
US20120272874A1 (en) 2012-11-01
US9091432B2 (en) 2015-07-28
CN101900327A (zh) 2010-12-01
CN101900327B (zh) 2011-06-22

Similar Documents

Publication Publication Date Title
WO2012031448A1 (zh) 生物质燃料内循环流化床锅炉
CN202109645U (zh) 往复炉排生物质颗粒半气化热水锅炉
CN202032620U (zh) 一种节能气化燃烧炉灶
CN205579531U (zh) 一种环保锅炉
CN204880674U (zh) 生物质旋风气化锅炉
CN103939947A (zh) 一种生物质炉具
CN201581059U (zh) 洁净燃气输出式环保型燃煤气化炉
CN102261739A (zh) 生质能热风炉
CN202757256U (zh) 一种生物质燃料脉动燃烧式热风加热装置
WO2022227327A1 (zh) 一种霄家用取暖炉及使用方法
CN106287820A (zh) 动力送风节能取暖炉
CN203642160U (zh) 一种燃烧药渣的蒸汽锅炉
CN106016253B (zh) 一种上旋风燃烧的方法及装置
CN206682953U (zh) 一种垃圾焚烧炉炉墙冷却风系统
CN107477865B (zh) 一种热风炉
CN205860470U (zh) 一种可拆卸蓄热炉芯及包含该炉芯的炉体
CN205860473U (zh) 一种双旋风燃烧热水炉
CN111720815A (zh) 一体式生物质气化低氮贫氧燃烧锅炉
CN206113004U (zh) 动力送风节能取暖炉
CN205842741U (zh) 一种节能煤炭炉
CN204438097U (zh) 一种带涡流燃烧室的机械炉排式生物质颗粒锅炉
CN2672483Y (zh) 涡旋式民用无压采暖锅炉
CN203785001U (zh) 一种生物质炉具
CN107435950A (zh) 一种节能环保的燃煤炊事热风采暖炉及炊事采暖方法和用途
CN102865600B (zh) 固体燃料民用炊事采暖炉

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13394151

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11822971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11822971

Country of ref document: EP

Kind code of ref document: A1