WO2012030018A1 - 주경간 긴장수단을 이용한 일부 및 전부 타정식 사장교와 그 시공 방법 - Google Patents

주경간 긴장수단을 이용한 일부 및 전부 타정식 사장교와 그 시공 방법 Download PDF

Info

Publication number
WO2012030018A1
WO2012030018A1 PCT/KR2010/007232 KR2010007232W WO2012030018A1 WO 2012030018 A1 WO2012030018 A1 WO 2012030018A1 KR 2010007232 W KR2010007232 W KR 2010007232W WO 2012030018 A1 WO2012030018 A1 WO 2012030018A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
span
cable
deck
tension
Prior art date
Application number
PCT/KR2010/007232
Other languages
English (en)
French (fr)
Inventor
노정휘
이상훈
박종헌
유 후세인 나임
멧카터
제이 짐싱 닐스
Original Assignee
지에스건설 주식회사
오베아룹코리아(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스건설 주식회사, 오베아룹코리아(주) filed Critical 지에스건설 주식회사
Priority to US13/820,147 priority Critical patent/US8695142B2/en
Publication of WO2012030018A1 publication Critical patent/WO2012030018A1/ko

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • E01D21/10Cantilevered erection
    • E01D21/105Balanced cantilevered erection
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • E01D11/04Cable-stayed bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges

Definitions

  • the present invention relates to a part and all of the compression type cable-stayed bridge and the construction method using the main span tension means, more specifically the magnitude of the maximum compressive stress acting on the cross section of the deck segment between the main span using the main span tension means It is possible to reduce the cross-sectional area of the deck segment between the main spans, and thus to some and all of the tableted cable-stayed bridges and their construction methods, which can be economically constructed with cable-stayed bridges.
  • a cable-stayed bridge is a bridge that supports the main span by using cables installed in a direction inclined from juram. Since the cable-stayed bridge can lengthen the main span, it is recently installed in rivers and seas with wide widths.
  • the cable-stayed bridge is installed on both sides of the pylons sequentially to make a main span and side spans, and the deck segments between the main span and the side spans are connected to each other using a cable. Be sure to
  • the compressive force acts in the horizontal direction on the deck segments on both sides connected to each other.
  • the maximum compressive stress acting on the deck segment 2 increases in proportion to the length L between the main spans, that is, the distance between the main towers 3.
  • FIG. 2 is a graph showing the relationship between the maximum compressive force and the main span length L, and is made under the assumption that the cross-sectional area of the deck segment 2 between the main spans is constant. That is, it can be seen that, for example, when the length L of the main span is 1000 m, the maximum compression force of 160 MPa becomes 500 MPa when the length L of the main span becomes 2000 pi.
  • the deck segment (2) In order to cope with this increase in compressive forces, the deck segment (2) must use high strength steel or increase its cross-sectional area.
  • ⁇ M> The method of using high strength steel in the above method can cope with an increase in compressive force to a certain extent, but when the length (L) of the main span is close to 2000m, only the high strength steel is applied to the compressive stress acting. There was a problem of not being able to resist enough.
  • the compressive forces acting may cause local seating of the steel constituting the deck segment (2), and to prevent this, reinforcement (eg longitudinal and transverse directions) inside the deck segment (2) made of steel Ribs, etc.) are closely arranged so that the dead load due to the deck segment (2) increases, so that the cable (1) and the pylon (3) are also designed for the deck segment (2) with increased dead dead. There was a problem that the size is also bound to grow.
  • the maximum compressive stress is generated in the place (M) where the main column (3) is located, as shown in Figure 1, because the compression force is gradually reduced in the vicinity of the main column (3) installed to prevent local buckling
  • the required range (B) is also relatively widened, and there is a problem in that the work of the deck segment (2) is complicated by the installation of the reinforcement.
  • Table 1 below shows FIG. 3 and the ground anchored suspension bridge.
  • the amount of steel required to make the Bridge and the Self Anchored Cable-stayed Bridge is compared by the length of the main span (L).
  • the cable-stayed bridge is called 'Cable-stayed Bridge', and in this specification, it is referred to as 'Self Anchored Cable-stayed Bridge' for comparison with the present invention, 'Partially and Fully Earth-anchored Cable-stayed Bridge'.
  • the cost of steel required for cable of cable-stayed bridge is higher than that of steel required for cable of suspension bridge, and the main span and main tower of suspension bridge Consider that the cost of the river is generally higher than the cost of the main span of the cable-stayed bridge and the cost of the tower.
  • FIG. 4 is a method proposed by Professor Ghnsing in 2006. .
  • the other end of (6) extends from the pylon to the main span so that the central deck segments (4) located at the center of the main span are connected.
  • tension tension (T) is generated in the central deck segments (4) by the tension cable (6), and thus in the section (L2) excluding the tension deck segments (4)
  • Compression deck segments installed in connection with the tension deck segments (4) can be seen that the compression stress (C) is generated by the cable, but the excessive compressive stress does not occur as before, thus reducing the cross-sectional area of the deck segments
  • an economical cable-stayed bridge can be constructed.
  • the first and second main towers 3 and 3 ' are spaced apart by a predetermined distance L, and the crabs 1,2 anchorages 5 and 5' are installed. Install.
  • the first anchorage 113 is a reinforced concrete structure installed on the ground (G) of the position spaced apart toward the outer side span around the first main tower (3).
  • system 2 anchorage (5 ') is also the outer side span around the second main column (112).
  • Reinforced concrete structure is installed on the ground (G) of the location spaced apart.
  • Ropeway (7) is installed and the tension cable (6) is installed using the temporary ropeway (7).
  • a moving device 8 traveling along the temporary ropeway 7, for example, is used, and the tension cable 6 is stored using the moving device 8. , 2 After moving to the augmentation of the main tower (3) (3 '), and hinged to both sides of the connecting member (9) mounted on the lower part of the moving device (8) to be detachable.
  • the tension cable 6 connected by the connecting member 9 separated from the moving device 8 can be connected while being struck downward.
  • both ends of the tension cable 6 are fixed to the first and second anchorages 5 and 5 ', respectively.
  • deck segments 22 and 23 are installed on both sides of the deck deck segment 21 in FIG. 8 by using a moving device, not shown. .
  • the deck segment 22 installed on one side of the deck segment 21 is a tension cable
  • deck segments 40 are provided on both sides of the first and second main towers 30 and 3 ', respectively.
  • the deck segments 40 on both sides of the first pylon 3 are connected to each other by the compression cable 50 and act toward the first pylon 3 by the horizontal component force generated by the compression cable 50. Receive a compressive force (C).
  • the deck segments 40 on both sides of the second pylon 3 ' are connected to each other by a compression cable 50, but the horizontal component force generated by the compression cable 50 is reduced. Is subjected to a compressive force (C) acting toward the second column (3 ').
  • this cable-stayed bridge construction method has the advantage of generating tensile tension (T) in the main span to reduce the compressive stress (C) applied to the entire officer, but the construction method is somewhat complicated, The disadvantage was that it was not easy to adjust the tensile tension (T) that occurred.
  • FIG. 9 is installed in order to prevent the deck segment from vibrating and displaced up, down, left, and right due to the wind during construction of the cable-stayed bridge, that is, to constrain the position of the deck segment during construction.
  • Windproof cable 60 is shown.
  • a block is installed in a lower part of a deck segment, a cable is connected to the block, and a top is connected to the deck segment.
  • the present invention is designed to solve the above problems.
  • An object of the present invention is to provide a cable-stayed bridge construction method for reducing the magnitude of the maximum compressive stress generated in the deck segment
  • the cable-stayed bridge As described above, in the existing cable-stayed bridge, the maximum compressive stress occurs where the pylon is located, and the maximum compressive stress increases as the length of the main span increases. Accordingly, as the length of the main span increases, the cross section of the deck segment of the main span needs to be larger or higher strength steel must be used to reinforce the cross section of the deck segment between the main span. There is no economic feasibility of the cable-stayed bridge.
  • the cable-stayed bridge according to the present invention is constructed to be a cable-stayed bridge that can reduce the maximum compressive stress generated in the deck segment where the pylon is located by causing the tensile force to occur in the deck segment of the central section of the main span. It provides a way.
  • the cable-stayed bridge construction method relates to a method of construction of a certain cable-stayed cable-stayed bridge using the main span-tension means.
  • the side span deck segment and the first span span deck segment extending from the first main tower and the second main span toward the center of the side span and the main span are connected by a compression cable connected to the first main tower and the second main tower.
  • the one main span deck segment is arranged so as to be spaced apart in the axial direction without being connected to each other in the main span;
  • a tension member including a stranded wire is mounted between the first and second fixing devices so that the first and second main span deck segments disposed spaced apart in the axial direction from the main span are connected to each other in the axial direction. Tensioning and anchoring the tension member in a state such that a tension force is applied to the low U and second main span deck segments.
  • the cable-stayed bridge construction method according to the second embodiment of the present invention relates to a totally tableted cable-stayed bridge construction method using the main span lengthening means.
  • (A) Install the first and second main towers spaced apart at predetermined intervals in the axial direction, respectively. Installing a first anchorage toward the shaft span around the first pylon, and installing a second anchorage toward the side span with the second pylon as the center;
  • the first and second main span deck segments may be installed continuously from the low U and the second main span to be connected to each other at the center of the main span, and the connection may be provided to each of the first and second main span deck segments. Installing an elongated member between the installed 11 fixing device and the 12 fixing device, wherein the tension member is fixed after tension between the first fixing device and the second fixing device; And
  • the first and second anchorages and the tension cables act on the main span deck segment stones to further reduce the magnitude of the maximum compressive force generated around the flood. .
  • first embodiment and the second embodiment of the present invention are to be connected to the main span deck segments in the axial direction by the first and second fixing device and the tension member to be constrained to each other, to expect the role of the conventional wind-resistant cable.
  • the tension member When the tension member is actuated by tension and fixation of the tension member, the tension force can be reduced while effectively controlling the magnitude of the maximum compressive stress generated around the flood.
  • First and second main towers spaced apart from each other at predetermined intervals in the axial direction;
  • a first anchorage and a girder anchorage each of which is installed toward the side spans around the first pylon and the second juram; It is installed to extend toward the side span and the main span center from the first main tower and the second main tower, and are spaced apart in the axial direction without being connected to each other in the main span, connected by a compression cable connected to the first main tower and the second main tower.
  • Tension members are applied to the first and second main span deck segments by the tension members.
  • the cable-stayed bridge according to Embodiment 2 of the present invention is
  • a first anchorage and a bottom anchorage provided toward a side span around the first and second main towers;
  • First and second main span deck segments extending from the first anchorage and the second anchorage to the main span via the first and second main towers and continuously installed from the first and second main towers to the center of the main span in sequence.
  • a tension cable connected to each of the tension cables to apply tensile stress to the deck segments between the first and second circumferences;
  • the first and second circumferential deck segments are installed on the first and second main span deck segments so that the first and second circumferential deck segments are continuously installed to be connected to each other at the center of the main span.
  • a tension member installed between the first fixing device and the second fixing device, the tension member being fixed after being tensioned between the first fixing device and the second fixing device;
  • the cross sectional area of the deck segments between the main spans can be more effectively reduced by reducing the maximum compression force acting on the cross sections of the main span deck segments between the pylons.
  • the ultra-long-stayed cable-stayed bridge will be economical compared to other types of bridges.
  • the first and second fixing devices and the tension members according to the first and second embodiments of the present invention constrain vibrations, etc., caused by wind, etc., which are installed by hanging between cables. Function), which is easy to manufacture and install as compared to the conventional windproof cable installation method, and also does not interfere with the traffic of ships.
  • the tension member of the present invention can effectively control the magnitude of the tension force introduced in the main span because it can be controlled by the hydraulic jack, such as easy to carry. Can be controlled to enable precise deck segment design.
  • 1 is a view showing the front view of the cable-stayed bridge according to the prior art and the shape of the acting compression force
  • FIG. 3 is a front view of a conventional general suspension bridge and cable-stayed bridge
  • 1 and 11 and 12 is a construction flow chart and force action diagram of some tableting cable-stayed bridge according to the first embodiment of the present invention.
  • FIG. 13, FIG. 14 and FIG. 15 are construction flowcharts and male action diagrams of some tableted cable-stayed bridges according to the second embodiment of the present invention.
  • 16A and 16B are examples of installation examples of the fixing device and the tension member of the present invention.
  • 17 is a graph showing the steel consumption of the deck segment according to the present invention and the conventional deck segment.
  • the tension member is tensioned and fixed in the state in which the first and second circumferential deck segments spaced apart from each other in the axial direction are connected to each other in the axial direction so that tensile force is applied to the first and second circumferential deck segments. It is provided by some tableting cable-stayed bridge construction method using the main span-tension means characterized in that it comprises a step.
  • the cable-stayed bridge (100) is installed as an ultra-long bridge.
  • the cable-stayed bridge according to the present invention is basically constructed as some tableted cable-stayed bridges in the same manner as in FIGS. 10 to 13.
  • the reason for the construction in this way is that the predetermined interval in the main span as shown in FIG.
  • the U main tower 111 and the second main tower 112 are spaced apart by a predetermined distance L, and the first and second anchorages 113 and 114 are installed. .
  • the first deck support anchorage 113 may be referred to as a reinforced concrete structure that is installed on the ground of the position, for example, spaced apart from the outer side interval centering around the first main tower 111, various forms could be.
  • the first anchorage 113 may be installed in the water and the forming position thereof is the side span side from the first main column. Otherwise not limited.
  • the second anchorage 114 also has an outer side span around the second pylon 112.
  • the second anchorage 114 may be installed in water, and the forming position thereof is not limited as long as it is also an outer side span side from the second main column.
  • the first side span deck segment 120 and the first main span deck segment 130 extending from the crab 1 main tower 111 and the crab 2 main tower 112 toward the middle of the side span and the main span are first installed.
  • the first main span deck segment 130 is installed so as to be spaced apart in the axial direction without being connected to each other in the main span. do.
  • the side span and main span deck segments 120 and 130 are installed by hanging the cables on the first and second jugs, so that compressive forces are generated as in the prior art.
  • the cable is referred to as a compression cable in the sense of connecting to the first and second main towers.
  • the compression cable 300 is installed to extend from the first and second 12 anchorages 111 and 112 to the main span via the first and second main towers 111 and 112. It is connected to each of the second and third main span deck segment (140K150) further connected to the first main span deck segment (130) connected by.
  • the compressive forces generated in the first side span deck segment 120 and the first main span deck segment 130 are accumulated by the compressive stress generated in the second and third main span deck segments 140K150.
  • the present invention is to cancel this compression force by installing the tension member 430 to be described later.
  • the present invention is to install the first fixing device 410 and the second fixing device 420 in the second and third main span deck segments (140, 150), respectively.
  • the first fixing device 410 and the second fixing device 420 include a fixing unit and a hydraulic jack for fixing the PC strands after tension, for example, the device itself is usually purchased, such as PC steel strands for bridges, etc. You can use what's possible.
  • the deck segment is usually made of steel and the first fixing device 410 and the second Fixing device 420 is preferably installed on the upper surface of the deck segment, it is preferable to ensure the workability of the tension and the fixing of the tension member in the future.
  • such a fixing device may be installed in a position where the deck segment is not disturbed or interfered in connecting the deck segment installed remotely after lifting the deck segment in the main span, for example, using a barge.
  • first and second circumferential deck segments spaced apart from each other in the axial direction by mounting a tension member 430 including a strand between the first and second fixing devices 410K420.
  • the elongated long member 430 is tensioned and fixed in a state in which they are connected to each other in the axial direction so that tensile stress is applied to the first and second main span deck segments.
  • the tension member 430 may use a steel bar, but the steel bar is not easy to handle, it is preferable to use a strand, and both ends are fixed after the tension in the first and second fixing device (410K420) It also becomes special.
  • one tension member 430 is shown between the pair of second and third main span deck segments 140K150, but the number of installations and the amount of the installation are variable, and according to the fixing device. The location is of course variable.
  • 16A and 16B show examples of the installation form of the tension member 430.
  • the first and second fixing devices 410K420 are respectively installed in the second and third main span deck segments W0K150, and the first and second fixing devices 410X420 are provided. You can check if the tension member 430 is installed between,
  • an additional second and third major span deck segments H '140' and 150 ' are installed between the second and third major span deck segments 140K150. It can be seen that the third main span deck segment 140 '(150,) is further provided with a tension member (430,).
  • the tension member 430,430 'of the present invention is characterized in that the deck segments between the second and three-week spans
  • one or two or more installed depending on the number of installation of the 140, 150, 140 ', 150' can be installed according to the multiple installation method.
  • a variety of methods can be used to arrange the tension members in the fixing devices in spaced positions.
  • a bracket such as a bracket is installed between the fixing devices, a temporary temporary cable is connected between the supporters, a trolley capable of burning a tension member is installed on the temporary temporary cable, and the temporary temporary platform is installed. Across the cable The tension member may be mounted on the fixing device by moving to.
  • the tension member 430 plays two roles in the present invention.
  • the tension member 430 is installed between the first and second fixing devices 410K420 to connect the second and third main span deck segments 140K150 to each other and to the deck segments connected by cables. It is possible to prevent the vibration caused by the wind acting.
  • the tension member 430 is settled between the first and second fixing device 410, 420 after the tension by the hydraulic jack, such that the tension in the second and third main span deck segment (140X150) is generated. This is to offset the compressive force generated by the tension cable 300 and it can be seen that it is possible to more easily control the magnitude of the tensile force introduced because it is due to the hydraulic jack.
  • the fixing device and the tension member of the present invention can be seen to act to introduce a tensile force in the deck segment installed in the main span.
  • connection of the main span deck segment and the introduction of the tension force by the fixing device tension member can be repeated until the main span deck segment is installed in the main span.
  • the final fourth major span segment 160 is installed between the shop 2 and the third major span deck segment 140X150.
  • a compression cable 200 is further installed at the cradle 1 111 and the giant 12 pylon 112 to further install the side segment deck segment 170 in the side span to finalize the deck segment installed in the cable-stayed bridge. Will be installed.
  • the first and second fixing device (410K420) and the tension member 430 is finally removed so that the deck segment connection installation can be completed in the cable-stayed bridge as shown in FIG.
  • the second, third, and fourth main deck deck segments 140, 150, and 160 installed at predetermined intervals of the main bridge pass through the first juke 111 and the second pylon 112. Since the tension cable 300 is pulled toward the first and second pillars 110 and 120, the tensile stress T is generated.
  • first main span deck segment 130 is connected to each other by a compression cable (200) installed in the first main tower 111 and the crab 2 main tower 112 generates a compression force (C).
  • a compression cable (200) installed in the first main tower 111 and the crab 2 main tower 112 generates a compression force (C).
  • C a compression force
  • tensile stress occurs in the deck segments (140, 150, 160) in the central portion of the main span, and in the side and first main span deck segments (120, 140, 130) on both sides of the first and second main towers (110K120). ), It can be seen that compressive force is generated.
  • 'C' represents a compressive force
  • 'T' represents a tensile force
  • the ultra-pile cable-stayed bridge can be economical compared to other types of bridges.
  • the fixing device and the tension member serve as a conventional wind-resistant cable as the deck segments between the main diameters are connected to each other and restrained.
  • a cable having a higher strength-to-density ratio may be used in a tensile cable or a compression cable than a steel cable.
  • tension and compression cables made of carbon fiber have a weight per force unit of about one quarter of that of steel cables and high strength structural steel.
  • FIG. 17 schematically shows the amount of steel required to make some of the tableted cable-stayed bridges and the amount of steel required to make conventional cable-stayed bridges, along the length of the span (main span and side span). Figure showing.
  • the solid line is for the cable-stayed bridge according to the present invention
  • the dotted line is a conventional cable-stayed bridge.
  • the x-axis (horizontal axis) represents the distance in meters from the center of the bridge.
  • the cable-stayed bridge 100K10 needs the most steel at the place where the pylons are located (_700m, 700m), because the maximum compressive force is generated where the pylons are located.
  • the cable-stayed bridge according to the present invention is significantly smaller than the cable-stayed cable-bearing bridge required because the maximum compression force is smaller than that of the conventional cable-stayed bridge.
  • the cable-stayed bridge of the present invention according to the above-described embodiment U has some compression equations, tensile tension is generated only in a predetermined section of the deck segment installed in the main span, whereas the second embodiment of the present invention has a deck segment installed in the main span. It can be said that the tensile stress is generated throughout.
  • the construction example of the tableting cable-stayed bridge is as follows.
  • the first and second main towers 111 and 112 are spaced apart at predetermined intervals in the axial direction, respectively, and the first angle toward the outer side span with respect to the first main tower 111.
  • the carriage 113 is installed, and the second anchorage 114 is installed toward the outer side span with the second main wheel 112 as the center of gravity.
  • the first anchorage 113 may be referred to as a reinforced concrete structure which is installed toward the outer side span, for example, on the ground at a spaced apart position with the first main tower 111 as the core, and may have various shapes.
  • the crab 1 anchorage 113 may be installed in the water vapor, and the forming position thereof is not otherwise limited as long as the outer side span side from the first main column.
  • the second anchorage 114 may also be referred to as a reinforced concrete structure which is installed on the ground at a spaced apart position spaced apart toward the outer side span with the second main tower 112 as the core, and may have various shapes.
  • the crab 2 anchorage 114 may be installed in water, and the forming position thereof is not limited otherwise if it is the side span side from the crab 2 main tower.
  • first main span deck segment 130 extends continuously from the first and second main towers toward the main span center and is connected to the first and second anchorages 113 and 114. It is connected by the tension cable 300 but it can be seen that the compressive stress occurs because it is connected to the first and second main tower.
  • the cable-stayed bridge according to the second embodiment is installed such that the first main span deck segment 130 is continuously installed from the first main tower 111 and the second main tower 112 and connected to each other at the center of the main span.
  • the tension member 430, 430 ' is provided between the first fixing device 410, 410' and the second fixing device 420, 420 'installed in each of the first main span deck segments 130.
  • 430 and 430 ′ may be settled after tension between the first fixing device V and the second fixing device 420 and 420 ′.
  • first fixing device 410 and the second fixing device 420 are installed in the first main span deck segment 130, respectively.
  • the first fixing device 410 and the second fixing device 420 also include a fixing device and a hydraulic jack for fixing the PC strand after tension, for example, and the device itself is usually used as a PC strand for bridges. You can use what is available for purchase.
  • the deck segment is usually made of steel, and the first fixing device 410 and the second fixing device 420 are preferably installed on the upper surface of the deck segment, so that the workability of the tension member and the tension of the tension member may be improved. It is desirable to be able to secure.
  • a tension member 430 including a stranded wire is mounted to be spaced apart from the main span in the axial direction.
  • the tension member 430 is tensioned and fixed in a state in which they are connected to each other in the axial direction so that tensile stress is applied to the deck segments between the U and system 2 main spans.
  • the tension member 430 may use a steel bar, but the steel bar is not easy to handle, so it is preferable to use a strand, and both ends of the first and second fixing devices 410X420 are tensioned. To settle down.
  • one tension member 430 is shown between the pair of second and third main span deck segments 140K150, but the number of installations and the amount of installation are variable, and according to the fixing device. The location is of course variable.
  • the second U-span deck segment 130 according to the present invention includes an additional second.
  • the deck segments (140,150, 160) between the 3,4 main spans are installed.
  • the third and fourth fixing units (410 ', 420') are provided. It can be seen that the tension member 430 'is additionally installed.
  • the tension members 430, 430 of the present invention are also the second and third interval span deck segment. It can be seen that one or two or more depending on the number of installation of the 140K150 can be installed according to the multiple installation method installed.
  • the tension members 430 and 430 ' also play two roles in the present invention.
  • the tension member (430, 430 ') is installed between the first and the second 1/2 fixing device (410K420) to serve to connect the second and third main span deck segments (140, 150) to each other by the cable It is to be able to prevent the vibration due to the wind or the like acting on the deck segment connected by.
  • the tension members 430 and 430 ' are fixed to the second and third main span deck segments 140K150 by being fixed between the first and second fixing devices 410 and 420 after being tensioned by a hydraulic jack or the like.
  • Tensile stress is to be generated, which is to offset the compressive stress generated by the tension cable 300, and because of the hydraulic jack is to make it easier to control the size of the tensile stress introduced.
  • the fixing device and the tension member of the present invention serves to introduce additional tensile force in the deck segment installed in the main span.
  • the side span segment 170 is installed toward the side span from the system 1 main tower 111 and the crab 2 main tower 112.
  • main span segments 130, 140, 150, and 160 to which tensile forces are applied are installed in the main span, and the side span segments 170 are suspended from the main tower by cables.
  • the alternate 500 is installed on the first anchorage and the second anchorage column, respectively, between the first and second pillars.
  • the compressive force by the first and second anchorages 113 and 114 and the tension cable 300 are all canceled by the fixing devices and the tension members.
  • Tensile forces are applied to the deck segments, so it can be seen that it is possible to further reduce the maximum compression force generated around the pylon as a whole.
  • first main span deck by tension cable 300 via second pylon 112 Segment 130 may allow compression forces to be generated.
  • 'T' denotes a tensile force
  • the ultra-pile cable-stayed bridge can be economical compared to other types of bridges.
  • the main span deck segment which is also installed at the center of the main span, can be seen that the tensile stress can be introduced by the tension cable, the fixing device, and the tension member, so that the magnitude of the tensile stress introduced can be easily controlled. It can be seen that.
  • the fixing device and the tension member serve as a conventional wind-resistant cable as the deck segments between the main diameters are connected to each other and restrained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

사장교의 주경간에 설치되는 데크 세그먼트에 긴장장치와 긴장부재를 포함하는 긴장수단을 이용하여 종래 내풍케이블의 역할과 인장응력 도입이 동시에 가능하도록 함으로써 주경간의 데크 세그먼트의 단면에 작용하는 최대 압축응력의 크기를 줄임으로써 주경간의 데크 세그먼트의 단면적을 줄일 수 있고, 이에 따라 경제적으로 사장교가 개시되어 주경간에 있어 발생하는 압축응력 전부 또는 일부를 상기 긴장부재에 의한 인장응력으로 상쇄시킬 수 있게 된다.

Description

【명세서】
【발명의 명칭】
주경간 긴장수단을 이용한 일부 및 전부 타정식 사장교와 그 시공 방법 【기술분야】
<1> 본 발명은 주경간 긴장수단을 이용한 일부 및 전부 타정식 사장교와 그 시공 공법에 관한 것으로써, 더욱 구체적으로는 주경간 긴장수단을 이용하여 주경간의 데크 세그먼트의 단면에 작용하는 최대 압축응력의 크기를 즐임으로써 주경간의 데 크 세그먼트의 단면적을 줄일 수 있고, 이에 따라 경제적으로 사장교를 시공할、수 있는 주경간 긴장수단을 이용한 일부 및 전부 타정식 사장교와 그 시공 방법에 관 한 것이다.
【배경기술】
<2> 일반적으로, 사장교는 주람에서 경사진 방향으로 설치된 케이블을 이용하여 주경간을 지지하는 교량이다. 사장교는 주경간의 길이를 길게 할 수 있기 때문에 최근에는 넓은 폭을 가지는 강이나 바다에도 시공되고 있다.
<3> 사장교는 주탑의 양측에 데크 세그먼트 (Deck Segment)를 각각 순차적으로 설 치하여 주경간 (Main Span)과 측경간 (Side Span)을 만들되, 케이블을 이용하여 상기 주경간과 측경간의 데크 세그먼트가 서로 연결되도록 한다.
<4> 이에 따라, 서로 연결된 양측의 데크 세그먼트에는 수평 방향으로 압축웅력 이 작용하게 된다.
<5> 즉, 도 1과 같이 케이블 (1)이 주탑 (3) 양 측방 (주경간, 측경간)의 데크 세그 먼트 (2)를 서로 연결하기 때문에 케이블 (1)이 작용하는 힘 중에서 수평방향 분력 (F2)은 데크 세그먼트 (2)에 압축웅력으로써 작용하고 수직방향 분력 (F1)은 상측으 로 작용하게 된다.
<6> 상기 압축웅력은 주탑 (3)이 설치된 곳 (M)에서 최대로 되고 주경간 (Main
Span)의 중앙 지점 (C)에서 제로가 된다. 이는 주탑으로부터 데크 세그먼트 (2)의 설 치가 시작됨에 따라 작용하는 압축응력이 데크 세그먼트 (2)에 누적되어 증가되기 때문이다.
<7> 이에 상기 데크 세그먼트 (2)에 작용하는 최대 압축응력은 주경간의 길이 (L) 즉, 주탑 (3) 사이의 거리에 비례하여 커진다.
<8> 도 2는 상기 최대 압축웅력과 주경간 길이 (L) 사이의 관계를 보여주는 그래 프로서, 주경간의 데크 세그먼트 (2)의 단면적이 일정하다는 가정 (assumption)하에 만들어진 것이다. <9> 즉, 예컨대 주경간의 길이 (L)가 1000m인 경우에 160MPa이던 최대 압축웅력이 주경간의 길이 (L)가 2000πι가 되면 500MPa이 됨을 알 수 있다.
<ιο> 이에 이러한 압축웅력의 증가에 대응하기 위해서 데크 세그먼트 (2)는 고강도 강 (Higher Strength Steel)을 사용하거나 단면적을 증가시켜야 한다.
<M> 이에 상기 방법 증에서 고강도 강을 사용하는 방법은 압축웅력의 증가에 어 느 정도까지는 대응할 수 있으나 주경간의 길이 (L)가 2000m에 가까워지면 고강도 강만을 사용하는 것으로는 작용하는 압축웅력에 층분히 저항하지 못한다는 문제점 이 있었다.
<|2> 나아가 작용하는 압축웅력으로 인해 데크 세그먼트 (2)를 이루는 강의 국부좌 글이 발생할 수 있고, 이를 방지하기 위해 강재로 제작되는 데크 세그먼트 (2) 내측 에 보강재 (예컨대 종방향 및 횡방향 리브 등)가 촘촘히 배치되는데 이에 따라 데크 세그먼트 (2)에 의한 사하중 (Dead Load)이 증가하기 때문에 케이블 (1)과 주탑 (3)도 증가된 사하증을 가진 데크 세그먼트 (2)에 맞추어 설계하다면 보면 그 크기도 커질 수밖에 없다는 문제점이 있었다.
<13> 또한 최대 압축응력은 주탑 (3)이 있는 곳 (M)에서 발생되는데, 도 1과 같이, 주탑 (3) 부근에서 압축웅력의 크기가 서서히 감소하기 때문에 국부좌굴 방지를 위 한 보강재 설치가 요구되는 범위 (B)도 상대적으로 넓어져 져 보강재 설치에 따른 데크 세그먼트 (2) 작업공종이 복잡해진다는 문제점도 있었다.
<14> 한편, 아래의 [표 1]은 도 3과 갈이 현수교 (Earth Anchored Suspension
Bridge)와 사장교 (Self Anchored Cable-stayed Bridge)를 만들기 위해서 소요되는 강 (steel)의 양을 주경간의 길이 (L) 별로 비교한 것이다.
<|5> (일반적으로 사장교는 'Cable-stayed Bridge' 로 불리는데, 본 명세서에서 는 본 발명인 'Partially and Fully Earth-anchored Cable-stayed Bridge' 와의 비교를 위해서 'Self Anchored Cable-stayed Bridge' 라고 표현하기로 하며, [표 1]을 검토할 때 사장교의 케이블에 소요되는 강 (steel)의 단가가 현수교의 케이블 에 소요되는 강 (steel)의 단가보다 비싸다는 것과, 현수교의 주경간과 주탑에 소요 되는 강의 단가가 사장교의 주경간과 주탑에 소요되는 강의 단가보다 일반적으로 비싸다는 것을 고려해야 한다.)
<16> 이때 [표 1]에 나타난 바와 같이, 주경간의 길이 (L)가 1500m-2000m 사이인 어떤 지점에서 사장교는 현수교에 비하여 경제적으로 매력적이지 못하다는 것을 알 수 있다.
<17> 이것은 주경간의 길이 (L)가 길어짐에 따라 주경간의 데크 세그먼트에 작용하 는 압축웅력이 커지고, 이에 따라 주경간의 데크 세그먼트의 단면적이 커져야 하기 때문에 이에 따라 소요되는 자재 (강)의 양도 많아지기 때문이다.
<18> 【표 1】
Figure imgf000005_0001
<I9> 이에 최근 큰 폭의 강이나 바다를 가로지르는 장대교량이 많이 건설되고 있 는 바, 장대교량으로써 시공되는 사장교에서 주경간의 길이가 길어지더라도 주경간 의 데크 세그먼트의 단면에 작용하는 압축웅력의 크기를 줄일 수 있다면 이는 사장 교를 경제적으로 시공하기 위해 반드시 필요한 사항임을 알 수 있다.
<20> 이에 경제적인 사장교 시공 즉, 데크 세그먼트의 단면에 작용하는 압축응력 의 크기를 즐일 수 있는 방법에 대한 여러 연구가 진행된 바 있는데 도 4는 이러한 연구에 있어 2006년 Ghnsing교수에 의하여 제시된 방법이다.
<2i> 즉, 2개의 주람 (3)을 시공하고, 각 주탑의 측경간 쪽으로 설치된 앵커리지
(5)와 주탑 상단 사이에 인장케이블 (6)을 일단부를 연결시키고, 상기 인장케이블
(6)의 타 단부를 주탑으로부터 주경간 쪽으로 연장하여 주경간 증앙부위에 위치한 중앙부 데크 세그먼트 (4)들을 연결되도록 하는 것이다.
<22> 이에 상기 인장케이블 (6)에 의하여 상기 중앙부 데크 세그먼트 (4)들에는 인 장웅력 (T)이 발생하게 됨을 알 수 있으며, 이에 상기 인장 데크 세그먼트 (4)들을 제외한 구간 (L2)에 인장 데크 세그먼트 (4)들과 연결시켜 설치되는 압축 데크 세그 먼트들은 케이블에 의하여 압축웅력 (C)이 발생되기는 하지만 종전과 같이 과도한 압축응력이 발생하지 않음을 알 수 있어 결국 데크 세그먼트들의 단면적을 줄여 경 제적인 사장교 시공이 가능함을 알 수 있다.
<23> 이때, 상기 인장케이블 (6)과 중앙부 데크 세그먼트 (4)들을 설치하는 공종을 살펴보면 다음과 같다.
<24> 먼저, 도 5와 같이, 제 1 주탑 (3)과 제 2 주탑 (3')을 소정 거리 (L)만큼 이격시 켜서 설치하고, 게 1,2 앵커리지 (5)(5')를 설치한다.
<25> 이때, 상기 제 1 앵커리지 (113)는 제 1 주탑 (3)을 중심으로 외측 측경간쪽으로 이격된 위치의 지반 (G)에 설치되는 철근콘크리트 구조물이다.
<26> 또한 상기 계 2 앵커리지 (5' )도 제 2 주탑 (112)을 중심으로 외측 측경간쪽으 로 이격된 위치의 지반 (G)에 설치되는 철근콘크리트 구조물이다.
<27> 이어서, 제 1,2 주탑 (3)(3')을 연결하는 임시 로프웨이 (Temporary
Ropeway)(7)를 설치하고, 임시 로프웨이 (7)를 이용하여 인장케이블 (6)을 설치한다. <28> 이에 상기 인장케이블 (6)을 설치하기 위해서 예컨대 임시 로프웨이 (7)를 따 라 주행하는 이동장치 (8)를 이용하는데, 이동장치 (8)를 이용하여 인장케이블 (6)을 저 U,2 주탑 (3)(3')의 증앙으로 이동시킨 후, 이동장치 (8)의 하부에 탈착이 가능하 도록 장착된 연결부재 (9) 양측에 힌지 결합시킨다.
<29> 이에 도 6과 같이 상기 이동장치 (8)로부터 분리된 연결부재 (9)에 의하여 연 결된 인장케이블 (6)이 하방으로 쳐지면서 연결될 수 있게 된다.
<30> 한편, 인장케이블 (6)의 양쪽 끝단은 제 1,2 앵커리지 (5) (5' )에 각각 고정시키 게 된다.
<3i> 인장케이블 (6)을 연결부재 (9)의 양측에 힌지 결합한 후, 도 7과 같이 이동장 치 (8)를 이용하여 데크 세그먼트 (Deck Segment )(21)를 주경간의 중앙으로 이동시켜 연결부재 (9)에 결합된 인장케이블 (6)이 데크 세그먼트 (Deck Segment)(21)에 연결되 도록 하여 연결부재 (9)를 제거하고,
<32> 상기 데크 세그먼트 (21)를 설치한 후에는, 도 8과 갈이 데크 세그먼트 (21)의 양측에 각각 데크 세그먼트 (22)(23)를 미 도시된 이동장치를 이용하여 설치하게 된 다.
<33> 이때 데크 세그먼트 (21)의 일측에 설치되는 데크 세그먼트 (22)는 인장케이블
(6)에 의해서 제 1 앵커리지 (5)에 연결되고, 데크 세그먼트 (21)의 타측에 설치되는 데크 세그먼트 (23)는 인장케이블 (6)에 의해서 계 2 앵커리지 (5ᅳ)에 연결된다. 따라 서, 데크 세그먼트 (21)(22)(23)는 인장케이블 (6)에 의해서 양쪽으로 잡아 당겨지기 때문에 도 9와 같이 인장웅력 (T)이 작용하게 됨을 알 수 있다.
<34> 한편, 도 9와 같이 제 1,2 주탑 (30)(3')의 양측으로 각각 데크 세그먼트 (40) 를 설치한다.
<35> 제 1 주탑 (3) 양측의 데크 세그먼트 (40)는 압축케이블 (50)에 의해서 서로 연 결되되, 압축케이블 (50)이 발생시키는 수평방향 분력에 의해서 제 1 주탑 (3) 쪽으로 작용하는 압축웅력 (C)을 받는다.
<36> 제 1 주탑 (3)에서와 마찬가지로, 제 2 주탑 (3') 양측의 데크 세그먼트 (40)는 압축케이블 (50)에 의해서 서로 연결되되, 압축케이블 (50)이 발생시키는 수평방향 분력에 의해서 제 2주탑 (3') 쪽으로 작용하는 압축웅력 (C)을 받는다.
<37> 이에 제 1 주탑 (3) 양측으로 데크 세그먼트 (21, 22, 23)를 다른 데크 세그먼트 (40)와 서로 연결 시공하고, 제 2 주탑 (3') 양측으로 상기 데크 세그먼트 (21,22,23) 를 다른 데크 세그먼트 (40)와 서로 연결 시공하는 것에 의해서 최종 사장교 (10)가 완성될 수 있다.
<38> 결국, 이러한 사장교 시공방법은 주경간에 인장웅력 (T)을 발생시켜 전체 사 장교에 작용하는 압축웅력 (C)를 감소시킬 수 있다는 장점이 있지만, 시공방법이 다 소 복잡하고, 주경간에 발생하는 인장웅력 (T)을 조정하기가 쉽지 않다는 단점이 지 적될 수 있었다.
<39> 또한, 도 9에는 사장교 시공 중 바람에 의하여 데크 세그먼트가 상,하,좌,우 로 진동 및 변위가 발생하는 현상을 방지하기 위하여 즉, 데크 세그먼트의 위치를 시공중 구속시켜 주기 위하여 설치된 내풍케이블 (60)이 도시되어 있는데,
<40> 통상 데크 세그먼트 하부 수증 등에 블록을 설치하고, 블록에 케이블을 연결 한 뒤, 상단을 데크 세그먼트에 연결하는 방식 등을 이용하고 있다.
<4i> 하지만 이러한 내풍케이블 (60)을 설치하기 위해서는 수중에서 블록을 침강시 키는 등 시공성이 좋지 않고, 이러한 내풍케이블 (60)이 수상에서의 선박운행에 방 해가 되는 등 안전사고의 위험성이 있지만, 사장교의 특성상 이러한 내풍케이블 (60)의 설치는 피할 수 없는 경우가 많아 이를 대체할 수 있는 방법에 대한 기술개 발의 필요성이 있었다.
【발명의 상세한 설명】
【기술적 과제】
<42> 본 발명은 상기 문제점들을 해결하기 위해 고안된 것으로써
<43> 본 발명의 목적은 데크 세그먼트에 발생되는 최대 압축응력의 크기를 감소시 키기 위한 사장교 시공방법에 있어서,
<44> 특히 중앙경간에 설치되는 데크 세그먼트에 인장웅력을 보다 효율적으로 발 생시키면서 제어가 용이하며, 종래 내풍케이블의 효과도 가질 수 있도록 함으로써 시공성 및 작업성을 확보할 수 있는 사장교 시공방법을 제공을 목적으로 한다. 【기술적 해결방법】
<45> 전술한 바와 같이, 기존의 사장교는 주탑이 있는 곳에서 최대 압축응력이 발 생하고 상기 최대 압축응력은 주경간의 길이가 길어질수록 커진다. 이에 따라 주경 간의 길이가 길어질수록 주경간의 데크 세그먼트의 단면을 보강하기 위해서 주경간 의 데크 세그먼트의 단면이 커지거나 고강도 강 (higher strength steel)이 사용되 어야 하기 때문에 주경간의 길이가 1200m~2000m를 넘는 경우에는 사장교의 경제성 이 떨어진다. <46> 이러한 문제점을 해결하기 위해서 본 발명에 따른 사장교는 주경간의 증앙부 의 데크 세그먼트에 인장웅력이 발생하도록 함으로써 주탑이 있는 곳의 데크 세그 먼트에서 발생하는 상기 최대 압축응력을 줄일 수 있는 사장교 시공방법을 제공하 게 된다.
<47> 이를 위해 본 발명의 실시예 1에 의한 사장교 시공방법은 주경간 긴장수단을 이용한 일부 타정식 사장교시공방법에 대한 것으로써, 상기 주경간 긴장수단을 이 용한 일부 타정식 사장교시공방법은
<48> 주경간 데크 세그먼트에 인장응력이 인가되도록 함으로써 주탑 주위에 위치 한 데크 세그먼트에서 발생하는 최대 압축웅력을 즐일 수 있는 사장교 시공방법에 있어서,
<49> (a) 교축방향으로 소정 간격으로 이격된 제 1주탑과 제 2 주탑을 각각 설치하 고, 제 1 주탑을 증심으로 측경간쪽으로 제 1 앵커리지를 설치하고, 제 2 주탑을 증심 으로 측경간쪽으로 제 2 앵커리지를 설치하는 단계 ;
<50> (b) 상기 제 1 주탑과 제 2 주람으로부터 측경간 및 주경간 중앙쪽으로 연장 설치되는 게 1 측경간 데크 세그먼트 및 제 1 주경간 데크 세그먼트를 제 1 주탑과 제 2 주탑에 연결된 압축케이블에 의하여 연결 설치하되, 상기 게 1 주경간 데크 세그 먼트가 주경간에서 서로 연결되지 않은 상태로 교축방향으로 이격 배치되도록 하는 단계;
<5i> (c) 상기 제 1 및 제 2 앵커리지로부터 제 1주탑과 제 2주탑을 경유하여 주경간 쪽으로 연장되어 설치된 인장케이블을 상기 압축케이블에 의하여 연결된 게 1 주경 간 데크 세그먼트에 추가 연결된 제 2 및 게 3 주경간 데크 세그먼트 각각에 연결하 는 단계 ;
<52> (d) 상기 제 2 및 제 3주경간 데크 세그먼트에 각각 제 1정착장치와 제 2정착 장치를 설치하는 단계;
<53> (e) 상기 제 1 및 제 2정착장치 사이에 강연선을 포함하는 긴장부재를 장착하 여 주경간에서 교축방향으로 이격 배치된 제 1 및 제 2주경간 데크 세그먼트들을 교 축방향으로 서로 연결되도록 한 상태에서 상기 긴장부재를 긴장 및 정착시켜 저 U 및 제 2 주경간 데크 세그먼트에 인장웅력이 인가되도록 하는 단계를 포함한다.
<54> 또한 바람직하게는 본 발명의 실시예 2에 의한 사장교 시공방법은 주경간 긴 장수단을 이용한 전부 타정식 사장교시공방법에 대한 것으로써, 상기 주경간 긴장 수단을 이용한 전부 타정식 사장교시공방법은
<55> (a) 교축방향으로 소정 간격으로 이격된 제 1 주탑과 제 2주탑을 각각 설치하 고, 제 1 주탑을 중심으로 축경간쪽으로 제 1 앵커리지를 설치하고, 제 2 주탑을 증심 으로 측경간쪽으로 제 2 앵커리지를 설치하는 단계;
<56> (b) 상기 제 1 앵커리지와 제 2 앵커리지로부터 제 1 주탑과 제 2주탑을 경유하 여 주경간 쪽으로 인장케이블을 연장시키되 상기 인장케이블을 제 1 주탑과 제 2 주 탑으로부터 주경간 중앙부로 차례대로 연속 설치되는 제 1 및 제 2 주경간 데크 세그 먼트 각각에 연결시켜 주경간 데크 세그먼트들에 인장웅력이 인가되도록 하는 단 계;
<57> (c) 상기 제 1 및 제 2 주경간 데크 세그먼트는 저 U 주람과 제 2 주람으로부터 연속 설치되어 주경간 중앙부에서 서로 연결되도특 설치하되, 상기 연결은 제 1 및 거 12 주경간 데크 세그먼트 각각에 설치된 거 11 정착장치와 거 12 정착장치 사이에 긴 장부재를 설치하여 이루어지도록 하고 상기 긴장부재는 상기 제 1 정착장치와 제 2 정착장치 사이에 긴장 후 정착되도록 하는 단계; 및
<58> (d) 상기 제 1 주탑과 제 2주탑으로부터 측경간쪽으로 측경간 세그먼트를 설치 하는 단계;를 포함한다.
<59> 이러한 실시예 1,2는 모두 제 1,2 앵커리지 및 인장케이블에 의해서 주경간 데크 세그먼트돌에는 인장웅력이 작용하게 되므로 전체적으로 주람 주위에 발생하 는 최대 압축웅력의 크기를 더 감소시킬 수 있게 된다.
<60> 또한 본 발명의 상기 실시예 1 및 실시예 2는 상기 제 1,2 정착장치 및 긴장 부재에 의해서 주경간 데크 세그먼트를 서로 교축방향으로 연결되어 구속되도록 하 여, 종래 내풍케이블의 역할을 기대할 수 있게 되며, 상기 긴장부재의 긴장 및 정 착에 의하여 인장웅력이 작용하게 되어 주람 주위에 발생하는 최대 압축응력의 크 기를 효과적으로 제어하면서 감소시킬 수 있게 된다.
<61> 또한 바람직하게는 본 발명 실시예 1에 의한 사장교는
<62> 교축방향으로 소정 간격으로 이격되어 설치된 제 1 주탑과 제 2 주탑; 상기 제
1 주탑과 제 2 주람을 중심으로 각각 측경간쪽으로 설치된 제 1 앵커리와 거 12 앵커리 지; 상기 제 1 주탑과 제 2 주탑으로부터 측경간 및 주경간 증앙쪽으로 연장 되도록 설치되되 주경간에서 서로 연결되지 않은 상태로 교축방향으로 이격 배치되며, 상 기 제 1 주람과 제 2 주탑에 연결된 압축케이블에 의하여 연결 설치된 제 1 및 제 2 주 경간 데크 세그먼트; 상기 주경간에서 교축방향으로 이격 배치된 제 1 주경간 데크 세그먼트와 제 2 주경간 데크 세그먼트에 각각 설치된 제 1정착장치와 제 2정착장 치; 및 상기 제 1 및 제 2정착장치 사이에 장착되어 제 1 주경간 데크 세그먼트와 제
2 주경간 데크 세그먼트를 연결시킨 상태에서 긴장 후 정착된 강연선을 포함하는 긴장부재;를 포함하여 상기 긴장부재에 의하여 제 1 및 제 2 주경간 데크 세그먼트에 인장웅력이 인가되도록 한다.
<63> 또한 바람직하게는 본 발명 실시예 2에 의한 사장교는
<64> 교축방향으로 소정 간격으로 이격되어 설치된 제 1 주탑과 게 2주람;
<65> 상기 제 1 주탑과 제 2주탑을 중심으로 측경간쪽으로 설치된 제 1 앵커리지와 저】 2 앵커리지 ;
<66> 상기 제 1 앵커리지와 제 2 앵커리지로부터 제 1 주탑과 제 2 주탑을 경유하여 주경간 쪽으로 연장되어 제 1 주탑과 제 2 주탑으로부터 주경간 중앙부로 차례대로 연속 설치되는 제 1 및 제 2 주경간 데크 세그먼트 각각에 연결되어 상기 제 1,2주경 간 데크 세그먼트에 인장응력이 인가되도록 하는 인장케이블;
<67> 상기 제 1 및 제 2주경간 데크 세그먼트는 제 1 주탑과 저 12 주탑으로부터 연속 설치되어 주경간 중앙부에서 서로 연결되도록 설치하는 것으로써 상기 제 1 및 제 2 주경간 데크 세그먼트 각각에 설치된 제 1 정착장치와 제 2 정착장치 사이에 설치되 어 제 1 정착장치와 제 2 정착장치 사이에 긴장 후 정착되는 긴장부재; 및
<68> 상기 제 1 주탑과 제 2주탐으로부터 측경간쪽으로 설치된 측경간 세그먼트;를 포함한다.
【유리한 효과】
<69> 본 발명에 따른 일부 타정식 사장교 및, 그 시공 공법은 다음과 같은 호과를 가진다.
<70> 첫째, 주탑 사이의 주경간 데크 세그먼트의 단면에 작용하는 최대 압축웅력 의 크기를 줄임으로써 주경간의 데크 세그먼트의 단면적을 보다 효과적으로 줄일 수 있다.
<71> 둘째, 주경간 데크 세그먼트의 단면적을 즐임으로써 구조강의 소요량을 줄일 수 있기 때문에 경제성을 확보할 수 있다. 따라서 초장대 사장교가 다른 형태의 교 량에 비하여 경제성을 가질 수 있도록 하게 된다.
<72> 셋째, 본 발명의 실시예 1 및 실시예 2에 의한 제 1,2 정착장치 및 긴장부재 는 주탑들 사이에 케이블에 의하여 매달려 설치됨에 따른 바람 등의 영향에 의한 진동 등을 구속 (내풍 기능)시켜주는 역할을 할 수 있어 종래 내풍케이블 설치방식 과 대비하여 제작 및 설치가 용이할 뿐만 아니라 선박등의 통행에 방해가 되지 않 는 장점이 발생하게 된다.
<73> 넷째, 본 발명의 긴장부재는 도입되는 긴장력의 크기를 운반이 용이한 유압 잭 등으로 제어할 수 있기 때문에 주경간에 작용하는 인장웅력의 크기를 효과적으 로 제어할 수 있어 정밀한 데크 세그먼트의 설계가 가능하게 된다.
【도면의 간단한 설명】
<74> 도 1은 종래 기술에 따른 사장교의 정면도 및 작용하는 압축웅력의 형태를 보여주는 웅력도,
<75> 도 2는 사장교에서 주경간의 길이 (L)와 주경간의 데크 세그먼트에 발생하는 최대 압축웅력의 관계를 보여주는 그래프,
<76> 도 3은 종래 일반적인 현수교와 사장교의 정면도
<77> 도 4는 종래 일부 타정식 사장교의 핵심 시공도,
<78> 도 5, 도 6, 도 7, 도 8 및 도 9는 종래 일부 타정식 사장교의 앵커리지 시 공순서도,
<79> 도 1으 도 11 및 도 12는 본 발명의 실시예 1에 의한 일부 타정식 사장교의 시공순서도 및 웅력작용도이다.
<80> 도 13, 도 14 및 도 15는 본 발명의 실시예 2에 의한 일부 타정식 사장교의 시공순서도 및 웅력작용도이다.
<81> 도 16a 및 도 16b는 본 발명의 정착장치 및 긴장부재의 설치예들에 대한 사 시도,
<82> 도 17는 본 발명에 의한 데크 세그먼트와 종래 데크 세그먼트의 강 소모량에 대한 그래프이다.
【발명의 실시를 위한 최선의 형태】
<83> 본 발명의 최선의 형태는
<84> (a) 교축방향으로 소정 간격으로 이격된 제 1 주탑과 제 2주탑을 각각 설치하 고, 게 1 주탑을 증심으로 측경간쪽으로 게 1 앵커리지를 설치하고, 제 2 주탑을 중심 으로 측경간쪽으로 제 2 앵커리지를 설치하는 단계 ; (b) 상기 제 1 주탑과 제 2 주탑 으로부터 측경간 및 주경간 중앙쪽으로 연장 설치되는 제 1 측경간 데크 세그먼트 및 제 1 주경간 데크 세그먼트를 제 1 주탑과 제 2 주탑에 연결된 압축케이블에 의하 여 연결 설치하되, 상기 제 1 주경간 데크 세그먼트가 주경간에서 서로 연결되지 않 은 상태로 교축방향으로 이격 배치되도록 하는 단계; (c) 상기 게 1 및 제 2 앵커리 지로부터 계 1 주탑과 제 2주람을 경유하여 주경간쪽으로 연장되어 설치된 인장케이 블을 상기 압축케이블에 의하여 연결된 제 1 주경간 데크 세그먼트에 추가 연결된 제 2 및 제 3 주경간 데크 세그먼트 각각에 연결하는 단계; (d) 상기 제 2 및 제 3 주 경간 데크 세그먼트에 각각 제 1정착장치와 제 2정착장치를 설치하는 단계; 및 (e) 상기 제 1 및 제 2정착장치 사이에 강연선을 포함하는 긴장부재를 장착하여 주경간 에서 교축방향으로 이격 배치된 제 1 및 제 2주경간 데크 세그먼트들을 교축방향으로 서로 연결되도록 한 상태에서 상기 긴장부재를 긴장 및 정착시켜 제 1 및 제 2 주경 간 데크 세그먼트에 인장웅력이 인가되도톡 하는 단계를 포함하는 것을 특징으로 하는 주경간 긴장수단을 이용한 일부 타정식 사장교 시공방법으로 제공된다.
【발명의 실시를 위한 형태】
<85> 이하, 첨부된 도면들을 참조로 본 발명에 대해서 상세히 설명하기로 한다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하 여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라 서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 실시예들에 불 과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점 에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이 해하여야 한다.
<86> 아래에서는 본 발명의 바람직한 실시예 1,2에 따른 일부 타정식 사장교의 시 공과정을 순차적으로 설명하기로 한다. 상기 시공과정을 설명하면서 사장교도 함께 설명하기로 한다.
<87> <본 발명의 실시예 1에 따른 사장교 및 그 시공방법>
<88> 본 발명에 있어 사장교 (100)는 초 장대 교량으로 설치되는데 1200~2000m 정 도를 기준으로 보면 된다.
<89> 본 발명에 의한 사장교는 기본적으로 도 10 내지 도 13과 같은 방식으로 일 부 타정식 사장교로 시공된다.
<90> 이러한 방식으로 시공하는 이유는 결국 도 4와 같이 주경간에 있어 소정구간
(중앙부)의 데크플레이트들에 인장웅력이 발생할 수 있도톡 함으로써 사장교 전체 에 있어 최대 압축웅력의 크기를 감소시키기 위함이다.
< 1> 이에 이러한 일부 타정식 사장교의 시공 예를 살펴보면 다음과 같다.
<92> 먼저, 도 10와 같이, 저 U주탑 (111)과 제 2주탑 (112)을 소정 거리 (L)만큼 이 격시켜서 설치하고, 제 1,2 앵커리지 (113)(114)를 설치한다.
<93> 이때, 상기 제 1 데크 지지용 앵커리지 (113)는 제 1 주탑 (111)을 중심으로 외 측 측경간쪽으로 예컨대 이격된 위치의 지반 등에 설치되는 철근콘크리트 구조물이 라 할 수 있으며, 다양한 형태가 될 수 있을 것이다. 또한 수중에 상기 제 1 앵커리 지 (113)가 설치될 수 있으며 그 형성위치는 제 1 주탑으로부터 외측 측경간쪽이라면 달리 제한되지 않는다.
<94> 또한 상기 제 2 앵커리지 (114)도 제 2 주탑 (112)을 중심으로 외측 측경간쪽으
로 이격된 위치의 지반 등에 설치되는 철근콘크리트 구조물이라 할 수 있으며, 다 양한 형태가 될 수 있을 것이다. 역시 수중에 상기 제 2 앵커리지 (114)가 설치될 수 있으며 그 형성위치 역시 제 2 주탑으로부터 외측 측경간 쪽이라면 달리 제한되지 않는다.
<95> 다음으로 상기 게 1 주탑 (111)과 게 2 주탑 (112)으로부터 측경간 및 주경간 중 앙쪽으로 연장 설치되는 제 1 측경간 데크 세그먼트 (120) 및 제 1 주경간 데크 세그 먼트 (130)를 제 1 주람 (111)과 제 2 주탑 (112)에 연결된 압축케이블 (200)에 의하여 연결 설치하되, 상기 제 1 주경간 데크 세그먼트 (130)가 주경간에서 서로 연결되지 않은 상태로 교축방향으로 이격 배치되도록 설치하게 된다.
<96> 결국 이러한 측경간 및 주경간 데크 세그먼트 (120, 130)는 제 1,2주람에 케이 블에 의하여 매달려 설치됨으로써 종래와 같이 압축웅력이 발생하게 되며 본 발명 에서는 이러한 압축웅력이 발생되는 데크 세그먼트를 제 1,2 주탑에 연결한다는 의 미에서 상기 케이블을 압축케이블이라 지칭한다.
< 7> 다음으로는 상기 제 1 및 거 12 앵커리지 (111)(112)로부터 제 1 주탑 (111)과 제 2 주탑 (112)을 경유하여 주경간쪽으로 연장되어 설치된 인장케이블 (300)을 압축케이 블에 의하여 연결된 제 1 주경간 데크 세그먼트 (130)에 추가 연결된 제 2 및 제 3 주 경간 데크 세그먼트 (140K150)각각에 연결하게 된다.
<98> 이에. 제 1 주경간 데크 세그먼트 (130)에 연결된 상태에서 게 2 및 제 3 주경간 데크 세그먼트 (140K150)는 제 1,2 앵커리지 (113ᅳ 114)에 연결된 인장케이블 (300)에 의하여 연결되어 있으므로 압축웅력이 발생하게 됨을 알 수 있다.
<99> 이에 상기 제 2 및 제 3 주경간 데크 세그먼트 (140K150)에 발생하는 압축응력 에 의하여 게 1 측경간 데크 세그먼트 (120) 및 제 1 주경간 데크 세그먼트 (130)에 발 생하는 압축웅력이 누적됨을 알 수 있다. 이에 본 발명은 후술되는 긴장부재 (430) 를 설치함으로서 이러한 압축웅력을 상쇄시키게 된다.
<ιοο> 나아가 본 발명은 상기 제 2 및 제 3 주경간 데크 세그먼트 (140) (150)에 각각 제 1정착장치 (410)와 제 2정착장치 (420)를 설치하게 된다.
<ιοι> 이러한 제 1정착장치 (410)와 제 2정착장치 (420)는 예컨대 PC강연선을 긴장 후 정착시키는 정착구 및 유압잭을 포함하는 것으로써, 장치 자체는 교량용 PC 강 연선 등과 같이 통상적으로 구입 가능한 것을 사용하면 된다.
<102> 데크 세그먼트는 통상 강재로 제작된 것인데 상기 제 1정착장치 (410)와 제 2 정착장치 (420)는 바람직하게는 데크 세그먼트 상면에 설치함으로써 추후 긴장부재 의 긴장 및 정착의 작업성을 확보할 수 있도록 함이 바람직하다.
<103> 물론, 이러한 정착장치는 데크 세그먼트를 주경간에서 예컨대 바지선을 이용 하여 인양한 후 먼서 설치된 데크 세그먼트의 연결시킴에 있어 방해 또는 간섭이 되지 않은 위치에 설치되도록 함은 당연하다.
<104> 다음으로는 상기 계 1 및 제 2정착장치 (410K420) 사이에 강연선을 포함하는 긴장부재 (430)를 장착하여 주경간에서 교축방향으로 이격 배치된 제 1 및 거 12주경간 데크 세그먼트들 (140K150)을 교축방향으로 서로 연결되도록 한 상태에서 상기 긴 장부재 (430)를 긴장 및 정착시켜 제 1 및 제 2 주경간 데크 세그먼트에 인장응력이 인가되도록 하게 된다.
<105> 이때 상기 긴장부재 (430)는 강봉을 사용할 수도 있지만, 강봉은 취급이 용이 하지 않으므로 강연선을 사용하는 것이 바람직하며, 양 단부가 제 1 및 제 2정착장 치 (410K420)에 긴장 후 정착되도특 하게 된다.
<106> 도 10에는 한 쌍의 제 2 및 제 3 주경간 데크 세그먼트 (140K150) 사이에 1개 의 긴장부재 (430)가 도시되어 있지만, 그 설치개수 및 설치량은 변동가능하며, 정 착장치에 따른 위치도 당연히 변동가능하다.
<107> 도 16a 및 도 16b는 이러한 긴장부재 (430)의 설치형태의 예들을 도시한 것이 다.
<)08> 즉, 도 16a에 의하면, 제 2 및 제 3 주경간 데크 세그먼트 (W0K150)에 각각 제 1 및 제 2정착장치 (410K420)가 설치되어 있고, 이러한 제 1 및 제 2정착장치 (410X420) 사이에 긴장부재 (430)가 설치된 경우를 확인할 수 있으며,
<109> 또한 도 16b에 의하면 제 2 및 제 3 주경간 데크 세그먼트 (140K150) 사이에 추가 제 2 및 제 3 주경간 데 H 세그먼트 (140')(150')가 설치되어 있으며 이러한 추 가로 설치된 제 2 및 제 3 주경간 데크 세그먼트 (140' )(150,) 다시 긴장부재 (430,)가 더 설치되어 있음을 알 수 있다.
<ιιο> 즉, 본 발명의 긴장부재 (430,430' )는 제 2 및 게 3 주경간 데크 세그먼트들
(140)(150)(140')(150')의 설치개수에 따라 1개 또는 2개 이상 설치된 다중 설치방 식에 따라 설치될 수 있음을 알 수 있다.
<ιιι> 서로 이격된 위치에 있는 정착장치들에 긴장부재를 배치하는 방법은 다양한 방법이 사용될 수 있다. 예컨대 정착장치들 사이에 브라켓과 같는 지지구를 가설하 고, 상기 지지구 사이에 임시가설케이블을 연결한 뒤, 상기 임시가설케이블에 긴장 부재를 태울 수 있는 대차를 설치하고, 상기 대차를 임시가설케이블을 통해 건너편 으로 이동시켜 긴장부재를 정착장치에 장착시킬 수 있을 것이다.
이에 긴장부재 (430)는 본 발명에 있어 2가지 역할을 하게 된다.
첫째, 종래 내풍케이블의 역할이다. 즉, 상기 긴장부재 (430)는 계 1 및 제 2 정착장치 (410K420) 사이에 설치되어 제 2 및 제 3 주경간 데크 세그먼트 (140K150) 를 서로 연결시켜 주는 역할을 함으로써 케이블에 의해 연결되는 데크 세그먼트에 작용하는 바람 등에 의한 진동 등을 방지할 수 있도록 하게 된다.
이에 종래 도 4와 같이 설치되는 내풍케이블 (60)과 대비하여 설치작업이 간 단해지고 특히 연육교로 설치되는 사장교에 있어 수중에 블록에 의한 내풍케이블에 대비하여 선박등의 운행에 방해가 되지 않도록 함을 알 수 있다.
둘째, 긴장부재 (430)는 유압잭 등에 의하여 긴장 후 제 1 및 제 2정착장치 (410)(420) 사이에 정착됨으로써 제 2 및 제 3 주경간 데크 세그먼트 (140X150)에 인 장웅력이 발생되도록 하게 되며, 이는 인장케이블 (300)에 의하여 발생되는 압축웅 력을 상쇄시키게 되며 유압잭에 의한 것이므로 도입되는 인장웅력의 크기를 보다 용이하게 제어할 수 있도록 함을 알 수 있다.
이에 본 발명의 정착장치 및 긴장부재는 주경간에 설치되는 데크 세그먼트에 있어 인장웅력을 도입시키는 작용을 하게 됨을 알 수 있다.
이와 같은 정착장치 긴장부재에 의한 주경간 데크 세그먼트의 연결 및 인장 웅력의 도입은 주경간 데크 세그먼트가 주경간에서 모두 설치될 때가지 반복할 수 있음을 도 16a 및 도 16b에서 확인할 수 있다.
이에 도 11에 의하면 최종 제 4 주경간 세그먼트 (160)가 게 2 및 제 3 주경간 데크 세그먼트 (140X150) 사이에 설치됨을 알 수 있다.
다음으로는 도 11과 같이 게 1 주람 (111)과 거 12 주탑 (112)에 압축케이블 (200) 을 더 설치하여 측경간에 측경간 데그 세그먼트 (170)를 더 설치함으로써 사장교에 설치되는 데크 세그먼트를 최종 설치하게 된다.
물론 상기 제 1 및 제 2정착장치 (410K420)와 긴장부재 (430)는 최종 제거되어 도 12와 같이 사장교에 데크 세그먼트 연결 설치가 완료될 수 있도록 하게 된다. 이에 도 12와 같이 본 발명에 의한 사장교에서는 주경간의 소정구간에 설치 되는 제 2,3,4 주경간 데크 세그먼트 (140,150,160)는 제 1 주람 (111)과 제 2 주탑 (112)를 경유하는 인장케이블 (300)에 의해서 제 1,2 주탑 (110) (120)쪽으로 잡아당겨 지기 때문에 인장응력 (T)이 발생한다.
한편, 제 1 주경간 데크 세그먼트 (130)는 제 1 주탑 (111)과 게 2 주탑 (112)에 설치되는 압축케이블 (200)에 의해서 서로 연결되어 압축웅력 (C)이 발생한다. <i23> 결국 주경간의 중앙부분의 데크 세그먼트 (140, 150, 160)에는 인장응력이 발 생하고 제 1,2 주탑 (110K120)의 양측의 측경간 및 제 1 주경간 데크 세그먼트에는 (120, 140, 130)에는 압축웅력이 발생하게 됨을 알 수 있다.
<124> 도면에서 'C'는 압축웅력을 나타내고, 'T'는 인장웅력을 나타낸다.
<125> 이로써, 본 발명은
<|26> 첫째, 주탑 (111X112) 사이의 주경간의 데크 세그먼트의 단면에 작용하는 최 대 압축웅력의 도 4와 대비하여 그 크기를 줄임으로써 주경간의 데크 세그먼트의 단면적을 보다 효과적으로 줄일 수 있게 됨을 알 수 있으며,
<127> 둘째 , 주경간의 데크 세그먼트의 단면적을 줄임으로써 구조강의 소요량을 줄 일 수 있기 때문에 경제성을 확보할 수 있다. 따라서, 초장대 사장교가 다른 형태 의 교량에 비하여 경제성을 가질 수 있도록 하게 됨을 알 수 있다.
<128> 셋째, 주경간 중앙부에 설치되는 주경간 데크 세그먼트 일부는 인장케이블과 정착장치 및 긴장부재에 의하여 인장웅력이 도입되도록 할 수 있음을 알 수 있어 도입되는 인장응력의 크기 등을 용이하게 제어할 수 있게 됨을 알 수 있다.
<129> 넷째, 상기 정착장치 및 긴장부재는 주경간의 데크 세그먼트를 서로 연결시 켜 구속시켜 줌에 따라 종래 내풍 케이블의 역할을 하게 됨을 알 수 있다.
<130> 이에 정량적인 실험에 의하면 측경간의 길이가 합당한 경우 (대략 , 측경간의 길이가 주경간 길이 (L)의 비가 1:2 또는 1:2.5인 경우)에는 최대 압축응력이 기존 의 사장교에 비하여 개략 절반이상 줄어든다.
<131> 이때, 무게 증가를 더 줄이기 위해서는 인장케이블 또는 압축케이블에 있어 강케이블 (steel cable) 보다 더 큰 강도 /밀도 비 (a higher strength-to-density ratio)를 가지는 케이블을 사용할 수 있다.
<132> 예컨대 탄소 섬유 (carbon fibre)로 만들어진 인장 및 압축케이블은 단위 힘 당 무게비 (weight per force unit)가 강케이블에 비해서 약 1/4이고 고강도 구조강
(high strength structural steel)에 비해 약 1/10이다.
<133> 이에 탄소섬유 케이블을 사용하는 것은 무게증가를 줄이기 위해서 적절할 뿐 만 아니라, 케이블이 데크 세그먼트의 내부에 배치되기 때문에 잘 보호될 수 있고 검사 및 재배치에 편리하다는 장점이 있다.
<134> 도 17은 상기 일부 타정식 사장교를 만들기 위해서 소요되는 강 (steel)의 양 과 종래 사장교를 만들기 위해서 소요되는 강 (steel)의 양을 경간 (주경간 및 측경 간)의 길이에 따라 개략적으로 보여주는 도면이다.
<135> 도면에서 실선은 본 발명에 의한 사장교에 대한 것이고 점선은 종래 사장교 에 대한 것이며 X축 (가로축)은 교량 중앙부로부터의 거리 (m)를 나타낸다.
<136> 도 17과 같이, 사장교 (100K10)는 주탑이 있는 곳 (_700m, 700m)에서 가장 많 은 강 (steel)이 필요한데, 이것은 주탑이 있는 곳에서 최대 압축웅력이 발생하기 때문이다.
<137> 그런데, 본 발명에 의한 사장교는 종래 사장교에 비하여 최대 압축웅력이 작 기 때문에 필요한 강의 양도 사장교에 비하여 현저하게 작음을 알 수 있다.
<!38> <본 발명의 실시예 2에 따른 사장교 및 그 시공방법>
<139> 먼저, 앞서 살펴본 실시여 U에 따른 본 발명의 사장교는 일부 타정식으로써 주경간에 설치되는 데크 세그먼트 일부 소정구간에만 인장웅력이 발생하게 되지만 이와 대비되는 실시예 2는 주경간에 설치되는 데크 세그먼트 전체에 인장응력이 발 생되도록 하는 방식이라 할 수 있다.
<140> 이에 이러한 전부 타정식 사장교의 시공 예를 살펴보면 다음과 같다.
<|41> 먼저 도 13와 같이 교축방향으로 소정 간격으로 이격된 제 1 주탑 (111)과 제 2 주탑 (112)을 각각 설치하고, 제 1 주탑 (111)을 중심으로 외측 측경간쪽으로 제 1 앵 커리지 (113)를 설치하고, 제 2 주람 (112)을 증심으로 외측 측경간쪽으로 제 2 앵커리 지 (114)를 설치하게 된다.
<142> 역시 상기 제 1 앵커리지 (113)는 제 1 주탑 (111)을 증심으로 외측 측경간쪽으 로 예컨대 이격된 위치의 지반 등에 설치되는 철근콘크리트 구조물이라 할 수 있으 며, 다양한 형태가 될 수 있고, 수증에 상기 게 1 앵커리지 (113)가 설치될 수 있으 며 그 형성위치는 제 1 주탑으로부터 외측 측경간쪽이라면 달리 제한되지 않는다. <143> 또한 상기 제 2 앵커리지 (114)도 제 2 주탑 (112)을 증심으로 외측 측경간쪽으 로 이격된 이격된 위치의 지반 등에 설치되는 철근콘크리트 구조물이라 할 수 있으 며, 다양한 형태가 될 수 있고, 수중에 상기 게 2 앵커리지 (114)가 설치될 수 있으 며 그 형성위치 역시 게 2 주탑으로부터 외측 측경간 쪽이라면 달리 제한되지 않는 다.
<144> 다음으로는 상기 저 U 앵커리지 (113)와 제 2 앵커리지 (114)로부터 제 1 주탑
(111)과 저 12 주탑 (112)을 경유하여 주경간 쪽으로 인장케이블 (300)을 연장시키되 상기 인장케이블 (300)을 제 1 주탑 (111)과 게 2 주탑 (112)으로부터 주경간 중앙부로 차례대로 연속 설치되는 제 1 주경간 데크 세그먼트 (130) 각각에 연결시켜 주경간 데크 세그먼트 (130)에 인장웅력이 인가되도록 하게 된다.
<)45> 즉, 제 1 주경간 데크 세그먼트 (130)는 제 1,2 주탑으로부터 주경간 증앙쪽으 로 연속하여 연장 설치되고 있음을 알 수 있으며, 제 1,2 앵커리지 (113, 114)에 연결 된 인장케이블 (300)에 의하여 연결되어 있으나 제 1,2주탑에 연결된 상태이므로 압 축응력이 발생하게 됨을 알 수 있다.
<146> 결국 실시예 2에 의한 사장교는 상기 제 1 주경간 데크 세그먼트 (130)는 제 1 주탑 (111)과 제 2 주탑 (112)으로부터 연속 설치되어 주경간 중앙부에서 서로 연결되 도록 설치하되, 상기 연결은 제 1 주경간 데크 세그먼트 (130) 각각에 설치된 제 1 정 착장치 (410, 410')와 제 2 정착장치 (420,420' ) 사이에 긴장부재 (430,430' )를 설치하 여 이루어지도록 하고 상기 긴장부재 (430, 430 ')는 상기 계 1 정착장치 V와 제 2 정착 장치 (420,420') 사이에 긴장 후 정착되도록 함을 알 수 있다.
<147> 이를 좀더 구체적으로 살펴보면 상기 제 1 주경간 데크 세그먼트 (130)에 각각 제 1정착장치 (410)와 제 2정착장치 (420)를 설치하게 된다.
<148> 이러한 제 1정착장치 (410)와 제 2정착장치 (420)는 역시 예컨대, PC강연선을 긴장 후 정착시키는 정착구 및 유압잭을 포함하는 것으로써, 장치 자체는 교량용 PC 강연선 등과 같이 통상적으로 구입 가능한 것을 사용하면 된다.
<149> 역시 데크 세그먼트는 통상 강재로 제작된 것인데 상기 제 1정착장치 (410)와 제 2정착장치 (420)는 바람직하게는 데크 세그먼트 상면에 설치함으로써 추후 긴장 부재의 긴장 및 정착의 작업성을 확보할 수 있도록 함이 바람직하다.
<150> 다음으로는 상기 제 1 및 제 2정착장치 (410)(420) 사이에 강연선을 포함하는 긴장부재 (430)를 장착하여 주경간에서 교축방향으로 이격 배치된 게 1 주경간 데크 세그먼트들 (130)을 교축방향으로 서로 연결되도록 한 상태에서 상기 긴장부재 (430) 를 긴장 및 정착시켜 거 U 및 계 2 주경간 데크 세그먼트에 인장응력이 인가되도록 하게 된다.
<151> 먼저, 상기 긴장부재 (430)는 강봉을 사용할 수도 있지만, 강봉은 취급이 용 이하지 않으므로 강연선을 사용하는 것이 바람직하며 , 양 단부가 제 1 및 제 2정착 장치 (410X420)에 긴장 후 정착되도록 하게 된다.
<152> 도 13에는 한 쌍의 제 2 및 제 3 주경간 데크 세그먼트 (140K150) 사이에 1개 의 긴장부재 (430)가 도시되어 있지만, 그 설치개수 및 설치량은 변동가능하며, 정 착장치에 따른 위치도 당연히 변동가능하다.
<153> 즉 도 14와 같이 본 발명의 저 U 주경간 데크 세그먼트 (130)에는 추가 제 2
,3,4 주경간 데크세그먼트 (140,150, 160)가 설치되고 있음을 알 수 있으며, 제 2와 제 3 데크 세그먼트 (140, 150)에 추가로 제 3, 4 정착장치 (410' ,420' )가 설치되고 긴장 부재 (430')가 추가 설치되고 있임을 알 수 있다.
<154> 즉, 본 발명의 긴장부재 (430,430,)는 역시 제 2 및 제 3주경간 데크 세그먼트 들 (140K150)의 설치개수에 따라 1개 또는 2개 이상 설치된 다중 설치방식에 따라 설치될 수 있음을 알 수 있다.
<155> 역시 서로 이격된 위치에 있는 정착장치들에 긴장부재를 배치하는 방법은 다 양한 방법이 사용될 수 있다.
<!56> 이러한 긴장부재 (430,430')는 본 발명에 있어 역시 2가지 역할을 하게 된다.
<157> 첫째, 종래 내풍케이블의 역할이다. 즉, 상기 긴장부재 (430, 430')는 제 1 및 거 1 2정착장치 (410K420) 사이에 설치되어 제 2 및 계 3 주경간 데크 세그먼트 (140)(150)를 서로 연결시켜 주는 역할을 함으로써 케이블에 의해 연결되는 데크 세그먼트에 작용하는 바람 등에 의한 진동 등을 방지할 수 있도록 하게 된다.
<158> 이에 종래 도 4와 같이 설치되는 내풍케이블 (60)과 대비하여 설치작업이 간 단해지고 특히 연육교로 설치되는 사장교에 있어 수중에 블록에 의한 내풍케이블에 대비하여 선박등의 운행에 방해가 되지 않도록 함을 알 수 있다.
<159> 둘째, 역시 긴장부재 (430, 430')는 유압잭 등에 의하여 긴장 후, 제 1 및 제 2 정착장치 (410)(420) 사이에 정착됨으로써 제 2 및 제 3 주경간 데크 세그먼트 (140K150)에 인장웅력이 발생되도록 하게 되며, 이는 인장케이블 (300)에 의하여 발생되는 압축응력을 상쇄시켜 주게 되며 유압잭에 의한 것이므로 도입되는 인장웅 력의 크기를 보다 용이하게 제어할 수 있도록 한 것이다.
<160> 이에 본 발명의 정착장치 및 긴장부재는 주경간에 설치되는 데크 세그먼트에 있어 인장웅력을 추가 도입시키는 작용을 하게 됨을 알 수 있다.
<161> 다음으로 상기 계 1 주탑 (111)과 게 2주탑 (112)으로부터 측경간쪽으로 측경간 세그먼트 (170)를 설치하게 된다.
<162> 즉, 도 14와 같이 본 발명에 있어 주경간에는 모두 인장웅력이 인가되는 주 경간 세그먼트 (130, 140, 150, 160)가 설치되고, 상기 측경간 세그먼트 (170)는 케이블 에 의하여 주탑에 매달려 설치되는 것이 아니라, 제 1 앵커리지와 게 2 앵커리지 주 위에 설치된 교대 (500)에 제 1'주탑과 제 2 주탑 사이에 각각 설치되도록 한다.
<163> 이러한 실시예 2는 도 15와 같이 모두 제 1,2 앵커리지 (113ᅳ 114) 및 인장케이 블 (300)에 의한 압축웅력이 정착장치들 및 긴장부재들에 의하여 모두 상쇄되고 남 아 주경간 데크 세그먼트들에는 인장웅력이 작용하게 되므로 전체적으로 주탑 주위 에 발생하는 최대 압축웅력의 크기를 더 감소시킬 수 있게 됨을 알 수 있다.
<164> 물론 긴장부재에 의하여 도입되는 인장응력의 크기를 조절하여 주경간의 소 정구간에 설치되는 계 2,3,4 주경간 데크 세그먼트 (140, 150, 160)는 인장웅력이 계 1 주탑 (111)과 제 2 주탑 (112)를 경유하는 인장케이블 (300)에 의한 제 1 주경간 데크 세그먼트 (130)는 압축웅력이 발생될 수 있도록 할 수도 있을 것이다.
<165> 역시 도면에서 'T'는 인장웅력을 나타낸다.
<166> 이로써, 실시예 2에 의한 본 발명은
<167> 첫째, 주탑 (111K112) 사이의 주경간의 데크 세그먼트의 단면에 작용하는 최 대 압축웅력은 제로가 되고 인장응력만이 작용할 수 있도록 할 수 있음을 알 수 있 어, 인장웅력에 유리한 강으로 데크 세그먼트의 제작에 매우 유리함을 알 수 있다.
<168> 둘째, 이로써 역시 주경간의 데크 세그먼트의 단면적을 줄임으로써 구조강의 소요량을 줄일 수 있기 때문에 경제성을 확보할 수 있다. 따라서, 초장대 사장교가 다른 형태의 교량에 비하여 경제성을 가질 수 있도록 하게 됨을 알 수 있다.
<169> 셋째, 역시 주경간 중앙부에 설치되는 주경간 데크 세그먼트는 인장케이블과 정착장치 및 긴장부재에 의하여 인장웅력이 도입되도록 할 수 있음을 알 수 있어 도입되는 인장응력의 크기 등을 용이하게 제어할 수 있게 됨을 알 수 있다.
<170> 넷째, 역시 상기 정착장치 및 긴장부재는 주경간의 데크 세그먼트를 서로 연 결시켜 구속시켜 줌에 따라 종래 내풍 케이블의 역할을 하게 됨을 알 수 있다.

Claims

【청구의 범위】
【청구항 1】
(a) 교축방향으로 소정 간격으로 이 격된 제 1 주탑과 제 2 주탑^ 각각 설치하 고, 제 1 주탑을 중심으로 측경간쪽으로 제 1 앵커리지를 설치하고, 제 2 주탑을 중심 으로 측경간쪽으로 제 2 앵커 리지를 설치하는 단계 ;
(b) 상기 계 1 주탑과 제 2 주탑으로부터 측경간 및 주경간 중앙쪽으로 연장 설치되는 제 1 측경간 데크 세그먼트 및 제 1 주경간 데크 세그먼트를 제 1 주탑과 제 2 주탑에 연결된 압축케이블에 의하여 연결 설치하되 , 상기 제 1 주경간 데크 세그 먼트가 주경간에서 서로 연결되지 않은 상태로 교축방향으로 이격 배치되도록 하는 단계 ;
(c) 상기 제 1 및 제 2 앵커 리지로부터 제 1 주탑과 제 2주탑을 경유하여 주경간 쪽으로 연장되어 설치된 인장케이블을 상기 압축케이블에 의하여 연결된 제 1 주경 간 데크 세그먼트에 추가 연결된 제 2 및 계 3 주경간 데크 세그먼트 각각에 연결하 는 단계 ;
(d) 상기 제 2 및 제 3 주경간 데크 세그먼트에 각각 제 1정착장치와 제 2정착 장치를 설치하는 단계 ;
(e) 상기 제 1 및 제 2정착장치 사이에 강연선을 포함하는 긴장부재를 장착하여 주 경간에서 교축방향으로 이 격 배치된 제 1 및 제 2주경간 데크 세그먼트들을 교축방향 으로 서로 연결되도록 한 상태에서 상기 긴장부재를 긴장 및 정착시켜 제 1 및 제 2 주경간 데크 세그먼트에 인장웅력이 인가되도록 하는 단계를 포함하는 것을 특징으 로 하는 주경간 긴장수단을 이용한 일부 타정식 사장교 시공방법 .
【청구항 2]
제 1항에 있어서 , 상기 제 1정착장치와 제 2정착장치는 제 2 및 제 3 주경간 데 크 세그먼트 상면에 설치되도록 하되 , 제 2 및 제 3 주경간 데크 세그먼트 사이에 적 어도 한쌍이 마주보도록 설치되도록 하고 ,
상기 제 2 및 제 3 주경 간 데크 세그먼트는 적어도 한쌍 이상 연속으로 연결되도톡 하여 정착장치 및 긴장부재가 교축방향으로 다중 설치될 수 있도록 하는 것을 특징 으로 하는 주경간 긴장수단을 이용한 일부 타정식 사장교 시공방법 .
【청구항 3】
(a) 교축방향으로 소정 간격으로 이 격된 제 1 주탑과 제 2 주탑을 각각 설치하 고 , 제 1 주탑을 중심으로 측경간쪽으로 제 1 앵커 리지를 설치하고 , 게 2 주탑을 중심 으로 측경간쪽으로 제 2 앵커리지를 설치하는 단계 ; (b) 상기 제 1 앵커 리지와 제 2 앵커 리지로부터 제 1 주탑과 제 2 주탑을 경유하 여 주경간 쪽으로 인장케이블을 연장시 키되 상기 인장케이블을 제 1 주탑과 제 2 주 탑으로부터 주경간 중앙부로 차례대로 연속 설치되는 제 1 및 제 2 주경간 데크 세그 먼트 각각에 연결시켜 주경간 데크 세그먼트들에 인장웅력 이 인가되도록 하는 단 계 ;
(c) 상기 제 1 및 제 2 주경간 데크 세그먼트는 제 1 주탑과 제 2 주탑으로부터 연속 설치되어 주경간 중앙부에서 서로 연결되도록 설치하되 , 상기 연결은 제 1 및 제 2 주경간 데크 세그먼트 각각에 설치된 제 1 정착장치와 제 2 장착장치 사이에 긴 장부재를 설치하여 이루어지도록 하고 상기 긴장부재는 상기 제 1 정착장치와 제 2 정착장치 사이에 긴장 후 정착되도록 하는 단계 ; 및
(d) 상기 제 1 주탑과 제 2주탑으로부터 측경간쪽으로 측경간 세그먼트를 설치하는 단계 ;를 포함하는 것을 특징으로 하는 주경간 긴장수단을 이용한 전부 타정식 사장 교 시공방법 .
【청구항 4】
제 3항에 있어서 , 상기 제 1정착장치와 제 2정착장치는 제 2 및 제 3 주경간 데 크 세그먼트 상면에 설치되도록 하되, 게 2 및 제 3 주경간 데크 세그먼트 사이에 적 어도 한쌍이 마주보도록 설치되도록 하고 ,
상기 제 2 및 제 3 주경간 데크 세그먼트는 적어도 한쌍 이상 연속으로 연결되도록 하여 정착장치 및 긴장부재가 교축방향으로 다중 설치될 수 있도록 하는 것을 특징 으로 하는 주경 간 긴장수단을 이용한 전부 타정식 사장교 시공방법 . '
【청구함 5】
교축방향으로 소정 간격으로 이격되어 설치된 제 1 주탑과 제 2 주탑; 상기 제
1 주탑과 게 2 주탑을 중심으로 각각 측경간쪽으로 설치된 제 1 앵커리와 제 2 앵커 리 지 ; 상기 제 1 주탑과 제 2 주탑으로부터 측경간 및 주경간 중앙쪽으로 연장 되도록 설치되되 주경간에서 서로 연결되지 않은 상태로 교축방향으로 이격 배치되며, 상 기 제 1 주탑과 제 2 주탑에 연결된 압축케이블에 의하여 연결 설치된 게 1 및 제 2 주 경간 데크 세그먼트 ; 상기 주경간에서 교축방향으로 이격 배치된 계 1 주경간 데크 세그먼트와 제 2 주경간 데크 세그먼트에 각각 설치된 제 1정착장치와 제 2정착장 치 ; 및 상기 제 1 및 제 2정착장치 사이에 장착되어 제 1 주경간 데크 세그먼트와 제
2 주경간 데크 세그먼트를 연결시킨 상태에서 긴장 후 정착된 강연선을 포함하는 긴장부재 ;를 포함하여 상기 긴장부재에 의하여 제 1 및 제 2 주경간 데크 세그먼트에 인장응력이 인가되도록 하는 것을 특징으로 하는 경간 긴장수단을 이용한 일부 타 정식 사장교 .
【청구항 6]
거 15항에 있어서 , 상기 제 1정착장치와 제 2정착장치는 제 2 및 제 3 주경간 데 크 세그먼트 상면에 설치되도톡 하되, 제 2 및 제 3 주경간 데크 세그먼트 사이에 적 어도 한쌍이 마주보도록 설치되도록 하고, 상기 제 2 및 제 3 주경간 데크 세그먼트 는 적어도 한쌍 이상 연속으로 연결되도록 하여 정착장치 및 긴장부재가 교축방향 으로 다중 설치 될 수 있도록 하는 것을 특징으로 하는 경간 긴장수단을 이용한 일 부 타정식 사장교 .
【청구항 7】
교축방향으로 소정 간격으로 이격되어 설치된 제 1 주탑과 제 2 주탑;
상기 제 1 주탑과 제 2주탑을 중심으로 측경간쪽으로 설치된 제 1 앵커 리지와 제 2 앵커 리지 ;
상기 제 1 앵커 리지와 제 2 앵커 리지로부터 제 1 주탑과 제 2 주탑을 경유하여 주경간 쪽으로 연장되어 제 1 주탑과 제 2 주탑으로부터 주경간 중앙부로 차례대로 연속 설치되는 제 1 및 제 2 주경간 데크 세그먼트 각각에 연결되어 상게 제 1,2주경 간 데크 세그먼트에 인장웅력 이 인가되도록 하는 인장케이블 ;
상기 제 1 및 제 2 주경간 데크 세그먼트는 제 1 주탑과 제 2 주탑으로부터 연속 설치되어 주경간 중앙부에서 서로 연결되도록 설치하는 것으로써 상기 제 1 및 제 2 주경간 데크 세그먼트 각각에 설치된 제 1 정착장치와 제 2 정착장치 사이에 설치되 어 제 1 정착장치와 제 2 정착장치 사이에 긴장 후 정착되는 긴장부재 ; 및
상기 제 1 주탑과 계 2주탑으로부터 측경간쪽으로 설치된 측경간 세그먼트 ;를 포함하 는 것을 특징으로 하는 경간 긴장수단을 이용한 전부 타정식 사장교 .
【청구항 8】
제 7항에 있어서, 상기 제 1정착장치와 제 2정착장치는 제 2 및 제 3 주경간 데 크 세그먼트 상면에 설치되도록 하되, 제 2 및 계 3 주경간 데크 세그먼트 사이에 적 어도 한쌍이 마주보도록 설치되도록 하고 , 상기 제 2 및 제 3 주경간 데크 세그먼트 는 적어도 한쌍 이상 연속으로 연결되도록 하여 정착장치 및 긴장부재가 교축방향 으로 다중 설치될 수 있도록 하는 것을 특징으로 하는 경간 긴장수단을 이용한 전 부 타정식 사장교 .
PCT/KR2010/007232 2010-09-02 2010-10-21 주경간 긴장수단을 이용한 일부 및 전부 타정식 사장교와 그 시공 방법 WO2012030018A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/820,147 US8695142B2 (en) 2010-09-02 2010-10-21 Partially and fully earth-anchored cable-stayed bridges using main-span prestressing unit and method of constructing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100086197A KR101171039B1 (ko) 2010-09-02 2010-09-02 주경간 긴장수단을 이용한 일부 및 전부 타정식 사장교와 그 시공 방법
KR10-2010-0086197 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012030018A1 true WO2012030018A1 (ko) 2012-03-08

Family

ID=45773072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007232 WO2012030018A1 (ko) 2010-09-02 2010-10-21 주경간 긴장수단을 이용한 일부 및 전부 타정식 사장교와 그 시공 방법

Country Status (3)

Country Link
US (1) US8695142B2 (ko)
KR (1) KR101171039B1 (ko)
WO (1) WO2012030018A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104452573A (zh) * 2014-12-12 2015-03-25 中交公路规划设计院有限公司 斜拉桥结构及斜拉桥施工方法
CN104631343A (zh) * 2015-02-15 2015-05-20 河海大学 自走行菱形销结桁架式挂篮结构及挂篮走行和施工方法
CN105256720A (zh) * 2015-09-17 2016-01-20 中铁大桥科学研究院有限公司 部分地锚平衡索斜拉桥
CN113356064A (zh) * 2021-06-11 2021-09-07 中交二公局第二工程有限公司 一种三塔斜拉桥中跨无合龙段顶推合龙施工方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352956B1 (ko) * 2012-05-04 2014-01-27 지에스건설 주식회사 다경간 인장형 사장교 시공 방법
JP5572668B2 (ja) * 2012-06-01 2014-08-13 株式会社Ihiインフラシステム 斜ケーブルの取り替え方法及び斜ケーブル取り替え用仮ハンガー
KR101373169B1 (ko) 2012-11-29 2014-03-13 지에스건설 주식회사 하이브리드 데크세그먼트를 이용한 단경간 인장형 사장교 시공방법
CN104612033B (zh) * 2014-12-16 2016-06-15 中铁第四勘察设计院集团有限公司 一种设置有多功能大悬臂箱梁的斜拉桥
CN104674668B (zh) * 2015-01-19 2016-06-29 中铁大桥局集团有限公司 一种通过缆索吊装施工主梁节段的方法
ITUB20151943A1 (it) * 2015-07-06 2017-01-06 Usha Martin Italia S R L Sistema per la mobilita’ pedonale.
CN106758767B (zh) * 2016-11-25 2018-10-30 中铁大桥局集团有限公司 一种悬索桥分段式猫道及其施工方法
JP6956037B2 (ja) * 2018-03-26 2021-10-27 三井住友建設株式会社 ラーメン構造を有するコンクリート橋の橋桁を架設する方法及びその方法に使用可能な仮閉合構造
CN108505428B (zh) * 2018-05-23 2023-12-19 中铁第四勘察设计院集团有限公司 一种大夹角小半径多塔曲线斜拉桥
CN113322812B (zh) * 2021-04-30 2024-05-03 中国铁路南宁局集团有限公司南宁铁路工程建设指挥部 临时单斜撑桥塔的施工方法
CN113338162B (zh) * 2021-04-30 2024-02-27 广西北投交通养护科技集团有限公司 多斜撑支撑桥塔的施工方法
CN114808755A (zh) * 2022-05-30 2022-07-29 中铁大桥局第七工程有限公司 一种连续钢箱梁转体结构及施工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171619A (ja) * 1991-12-25 1993-07-09 Hitachi Zosen Corp 斜張橋ケーブルの架設方法
JP2003507605A (ja) * 1999-08-24 2003-02-25 フレシネ アンテルナショナル (エステーユーペー) 斜張橋の建設方法
KR20060098239A (ko) * 2005-03-11 2006-09-18 학교법인연세대학교 온도 프리스트레싱 공법에 의한 일부타정식 사장교의시공방법
US20070124876A1 (en) * 2005-12-01 2007-06-07 Tao Jian R Self-anchored suspension bridge

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339627A (en) 1976-09-24 1978-04-11 Sasebo Heavy Ind Skew bridge that generate no axial force
FR2629111B1 (fr) * 1988-03-25 1990-11-30 Muller Jean Tablier pour pont de grande longueur
FR2661434B1 (fr) 1990-04-25 1992-12-11 Scetauroute Pont comprenant un tablier et au moins deux pylones, et son procede de construction.
US5060332A (en) 1990-06-21 1991-10-29 H. J. G. Mclean Limited Cable stayed bridge construction
US5896609A (en) * 1997-11-21 1999-04-27 Lin; Wei-Hwang Safety method of construction a prestressed cable-stay bridge
FR2780127B1 (fr) * 1998-06-19 2000-09-08 Freyssinet Int Stup Procede et dispositif d'accrochage d'un element transmetteur de charge sur un cable, et pont suspendu comportant de tels dispositifs
US6292967B1 (en) * 1999-09-14 2001-09-25 Construction Technology Laboratories, Inc. TMD-damped stay cable and method and TMD
FR2798408B1 (fr) * 1999-09-15 2002-01-18 Freyssinet Int Stup Cable a fils paralleles pour structure d'ouvrage de construction, ancrage d'un tel cable, et procede d'ancrage
US6785925B1 (en) * 2002-04-15 2004-09-07 Curtis L. Donaldson Bridge system
US6728987B1 (en) * 2002-04-23 2004-05-04 Ch2M Hill, Inc. Method of adjusting the vertical profile of a cable supported bridge
EP1767699A4 (en) * 2004-06-09 2008-09-17 Inc Administrative Agency Publ SUSPENDED BRIDGE AT HAUBANS USING COMBINED BEAMS TO A HOUSING AND TWO HOUSINGS
EP1802813A4 (en) * 2004-09-25 2013-03-20 Univ Ajou Ind Coop Foundation PRECONTRAINT CAVERNEUX CONCRETE BEAM (HPC) AND METHOD FOR CONSTRUCTING A BRIDGE WITH PRECONTRATED SPINNED CAWN CONCRETE BEAM (S-HPC)
US8572787B2 (en) * 2012-01-10 2013-11-05 David S. Toguchi Aligned support bridge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171619A (ja) * 1991-12-25 1993-07-09 Hitachi Zosen Corp 斜張橋ケーブルの架設方法
JP2003507605A (ja) * 1999-08-24 2003-02-25 フレシネ アンテルナショナル (エステーユーペー) 斜張橋の建設方法
KR20060098239A (ko) * 2005-03-11 2006-09-18 학교법인연세대학교 온도 프리스트레싱 공법에 의한 일부타정식 사장교의시공방법
US20070124876A1 (en) * 2005-12-01 2007-06-07 Tao Jian R Self-anchored suspension bridge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104452573A (zh) * 2014-12-12 2015-03-25 中交公路规划设计院有限公司 斜拉桥结构及斜拉桥施工方法
CN104631343A (zh) * 2015-02-15 2015-05-20 河海大学 自走行菱形销结桁架式挂篮结构及挂篮走行和施工方法
CN104631343B (zh) * 2015-02-15 2016-08-24 河海大学 自走行菱形销结桁架式挂篮结构及挂篮走行和施工方法
CN105256720A (zh) * 2015-09-17 2016-01-20 中铁大桥科学研究院有限公司 部分地锚平衡索斜拉桥
CN113356064A (zh) * 2021-06-11 2021-09-07 中交二公局第二工程有限公司 一种三塔斜拉桥中跨无合龙段顶推合龙施工方法

Also Published As

Publication number Publication date
KR20120023907A (ko) 2012-03-14
US20130160224A1 (en) 2013-06-27
US8695142B2 (en) 2014-04-15
KR101171039B1 (ko) 2012-08-06

Similar Documents

Publication Publication Date Title
WO2012030018A1 (ko) 주경간 긴장수단을 이용한 일부 및 전부 타정식 사장교와 그 시공 방법
KR100969005B1 (ko) 가설케이블을 이용한 무장력 사재케이블 상태의 사장교 시공방법 및 이를 위한 가설케이블
CN102839607B (zh) 现浇大跨径砼拱桥悬拼钢拱架的施工方法
CN104005338B (zh) 一种大跨斜拉桥塔梁三向临时固结结构
CN111335142A (zh) 自锚式斜拉系杆拱桥
CN203270457U (zh) 一种主动加固砼系杆拱桥的吊杆锚固构造
CN103290784B (zh) 拱梁结合桥吊装施工方法
KR101354641B1 (ko) 긴장재와 측방 정착블록을 이용한 일부 타정식 사장교 시공 방법
CN103938552A (zh) 大跨度钢桁拱桥自平衡悬拼施工方法及主墩限位支座
CN107190627A (zh) 部分地锚式悬索桥及其施工方法
CN106522112A (zh) 斜拉桥边跨梁段架设系统及其方法
CN102277836B (zh) 倾斜式混凝土塔座的施工方法
JPH04228707A (ja) デッキ及び少なくとも2つのタワーを有した橋並びに該橋の建設方法
CN106884371B (zh) 一种变截面梁与悬索组合桥梁结构体系
KR101161644B1 (ko) 힌지 연결부를 이용한 일부 타정식 사장교 및 그 시공 공법
CN103835238B (zh) 一种高墩斜拉桥0号块无支架施工方法及施工中的结构
CN203866711U (zh) 一种大跨斜拉桥塔梁三向临时固结结构
CN211815595U (zh) 用于索塔的下塔柱拉压结构
CN203741729U (zh) 一种用于桥梁顶推施工的预应力支撑系统
CN104775365B (zh) 一种斜拉桥施工方法
CN205171343U (zh) 组合梁自锚式悬索桥
KR101352956B1 (ko) 다경간 인장형 사장교 시공 방법
CN109972531B (zh) 一种用于提高贝雷梁临时支架跨度的体外预应力装置
CN209619862U (zh) 一种适用于环境限制大的吊索拱桥拱肋安装支撑架
CN105220609A (zh) 组合梁自锚式悬索桥及其施工工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856764

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13820147

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856764

Country of ref document: EP

Kind code of ref document: A1