WO2012029952A1 - 炭化ケイ素単結晶の製造方法、炭化ケイ素単結晶、及び炭化ケイ素単結晶基板 - Google Patents

炭化ケイ素単結晶の製造方法、炭化ケイ素単結晶、及び炭化ケイ素単結晶基板 Download PDF

Info

Publication number
WO2012029952A1
WO2012029952A1 PCT/JP2011/070046 JP2011070046W WO2012029952A1 WO 2012029952 A1 WO2012029952 A1 WO 2012029952A1 JP 2011070046 W JP2011070046 W JP 2011070046W WO 2012029952 A1 WO2012029952 A1 WO 2012029952A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
single crystal
carbide single
transition metal
atom
Prior art date
Application number
PCT/JP2011/070046
Other languages
English (en)
French (fr)
Inventor
宮本 太郎
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US13/820,622 priority Critical patent/US20130153836A1/en
Priority to JP2012531975A priority patent/JPWO2012029952A1/ja
Priority to EP11821966.6A priority patent/EP2612958A4/en
Publication of WO2012029952A1 publication Critical patent/WO2012029952A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a method for producing a silicon carbide single crystal using a sublimation method, a silicon carbide single crystal produced by this production method, and a silicon carbide single crystal substrate obtained by processing this silicon carbide single crystal.
  • a technique for producing a silicon carbide single crystal as a substrate material for a high-frequency semiconductor device has been disclosed.
  • a high resistance characteristic (semi-insulating characteristic) of 10 5 ⁇ ⁇ cm or more can be realized by reducing the donor concentration and the acceptor concentration, which are impurity concentrations contained in the silicon carbide single crystal (for example, , See Patent Document 1).
  • Patent Document 1 increases the resistance by controlling the number of intrinsic point defects that act to compensate for the difference in quantity between the donor and the acceptor. Control of the number of intrinsic point defects is technically difficult, and no effective method has been established for quantification techniques. Furthermore, it is necessary to manage an impurity element that can be a shallow level donor or acceptor at a very low concentration. For this reason, there existed a problem that the cost concerning management of a raw material and a member, the man-hour required for introduction of a true point defect, etc. did not meet the yield.
  • the present invention provides a silicon carbide single crystal manufacturing method for manufacturing a silicon carbide single crystal having high resistance characteristics that can be manufactured without increasing costs and work man-hours, and a silicon carbide single crystal manufactured by this manufacturing method.
  • An object is to provide a crystal and a silicon carbide single crystal substrate obtained by processing the silicon carbide single crystal.
  • the present invention has the following features. Using a manufacturing apparatus having a graphite member formed of graphite, a raw material containing silicon carbide is disposed on the graphite member, the raw material is heated and sublimated in an atmospheric gas, and the silicon carbide single crystal is formed on a seed crystal.
  • a method for producing a silicon carbide single crystal in which a raw material is produced by mixing a metal material containing a transition metal atom with a silicon carbide source containing silicon carbide; In a 100 kPa inert gas atmosphere, a purification treatment step that is maintained under a temperature condition of 2000 ° C. or higher, the raw material is disposed on the graphite member after the purification treatment step, the raw material is heated and sublimated, and a seed crystal And a step of growing a silicon carbide single crystal.
  • the nitrogen concentration in the first half of crystal growth can be brought close to the boron concentration by reducing the nitrogen concentration of the graphite member by the purification treatment step.
  • the region where the boron concentration and the nitrogen concentration are substantially equal, that is, the region having the semi-insulating characteristics can be expanded.
  • the silicon carbide powder is mixed with a metal material containing at least one of titanium, vanadium, niobium, tantalum, and tungsten as a transition metal atom, or a metal material containing these.
  • a metal material containing at least one of titanium, vanadium, niobium, tantalum, and tungsten as a transition metal atom, or a metal material containing these.
  • the silicon carbide source may be a silicon carbide polycrystal produced by a chemical vapor deposition method.
  • the donor atom is at least one of nitrogen, phosphorus, and arsenic
  • the acceptor atom is at least one of boron and aluminum
  • the transition metal atom is It can be at least one of titanium, vanadium, niobium, tantalum, and tungsten.
  • the transition metal atom may be a combination of vanadium and niobium.
  • a silicon carbide single crystal obtained by heating and sublimating a raw material containing silicon carbide in an atmosphere gas to grow a silicon carbide single crystal on a seed crystal, including a transition metal atom, a donor atom concentration, and an acceptor atom
  • the absolute value of the difference from the concentration of is 1.0 ⁇ 10 17 atoms / cm 3 or less
  • the concentration of the transition metal atom in the silicon carbide single crystal is 1.0 ⁇ 10 16 atoms / cm 3 or more
  • the gist is that it is 5.0 ⁇ 10 18 atoms / cm 3 or less.
  • the gist of the present invention is that it is a silicon carbide single crystal substrate obtained by processing the silicon carbide single crystal described above.
  • FIG. 1 is a graph showing the relationship between the impurity concentration / resistivity and the growth height of the single crystal
  • FIG. 1 (a) shows the relationship between the impurity concentration and the growth height
  • FIG. 1 (b) shows the resistivity.
  • FIG. 2 is a cross-sectional view for explaining the outline of the silicon carbide single crystal manufacturing apparatus according to the embodiment of the present invention.
  • FIG. 3 is a flowchart for explaining a method for producing a silicon carbide single crystal according to an embodiment of the present invention.
  • FIG. 4A to FIG. 4C are diagrams showing measurement results of the resistance value of the sample wafer.
  • Embodiments of a silicon carbide single crystal, a silicon carbide single crystal manufacturing apparatus, and a silicon carbide single crystal manufacturing method according to the present invention will be described with reference to the drawings. Specifically, (1) description of the relationship between silicon carbide single crystal growth and dopant concentration, (2) description of silicon carbide single crystal manufacturing apparatus, (3) silicon carbide single crystal manufacturing method, (4) action Effects, (5) Other embodiments will be described.
  • FIG. 1 is a graph showing the relationship between the impurity concentration / resistivity and the growth height of a single crystal. Specifically, FIG. 1A shows the relationship between impurity concentration and growth height, and FIG. 1B shows the relationship between resistivity and growth height.
  • those that affect electrical resistance include boron, which is a shallow level acceptor, and nitrogen, which is a shallow level donor. Boron is contained in raw materials and graphite members such as crucibles and is difficult to remove during crystal growth. Therefore, as shown in FIG. 1A, the boron concentration is substantially constant regardless of the crystal growth height.
  • nitrogen is contained in raw materials, graphite members such as crucibles, and atmospheric gases.
  • the nitrogen concentration in the grown crystal decreases as the crystal grows, and finally falls below the boron concentration.
  • FIG. 1B the resistivity of the grown crystal increases as the crystal grows, and a region in which the boron concentration and the nitrogen concentration are approximately equal to each other (FIG. 1A ) Shows semi-insulating properties, and then decreases with decreasing nitrogen concentration. Therefore, in order to improve the yield as a semi-insulating wafer, it is necessary to expand the region where the boron concentration and the nitrogen concentration are approximately equal.
  • FIG. 2 is a cross-sectional view for explaining the outline of the silicon carbide single crystal manufacturing apparatus according to the embodiment of the present invention.
  • the silicon carbide single crystal manufacturing apparatus 1 includes a graphite crucible 10 (hereinafter abbreviated as a crucible 10 as appropriate), a quartz tube 20 that covers at least a side surface of the graphite crucible 10, And an induction heating coil 30 disposed on the outer peripheral side.
  • a graphite crucible 10 hereinafter abbreviated as a crucible 10 as appropriate
  • quartz tube 20 that covers at least a side surface of the graphite crucible 10
  • an induction heating coil 30 disposed on the outer peripheral side.
  • the graphite crucible 10 includes a reaction vessel main body 11 and a lid 12.
  • the graphite crucible 10 is fixed inside the quartz tube 20 by a support rod 40.
  • the bottom 11a of the reaction vessel main body 11 accommodates a sublimation raw material 50 that is a powder containing silicon carbide.
  • Both ends of the quartz tube 20 are sealed by a chamber 21 made of stainless steel.
  • an argon gas inlet 22 through which argon gas (Ar gas) flows and a discharge port 23 through which the gas inside the quartz tube 20 is discharged are formed.
  • the lid 12 closes the upper opening 11b of the reaction vessel main body 11 and is detachably provided on the inner peripheral surface of the upper end portion of the reaction vessel main body 11 by screwing.
  • a seed crystal 60 containing silicon carbide is attached to the back side of the lid 12.
  • the support means for the seed crystal 60 may be a mechanical connection such as screwing or a bonding with an adhesive.
  • the sublimation raw material 50 is a powdered silicon carbide raw material containing silicon carbide.
  • the sublimation raw material 50 is sublimated to become a sublimation gas G.
  • the sublimation raw material 50 is recrystallized and grown on the seed crystal 60, whereby a silicon carbide single crystal is formed.
  • the induction heating coil 30 has a height position corresponding to the first induction heating coil 31 disposed at a height position corresponding to the bottom portion 11 a of the reaction vessel main body 11 and the seed crystal 60 supported on the back surface of the lid body 12. And the second induction heating coil 32 disposed in the.
  • the sublimation raw material 50 accommodated in the bottom 11 a of the reaction vessel main body 11 is made to correspond to the height position of the first induction heating coil 31.
  • the seed crystal 60 supported by the lid 12 can be arranged in correspondence with the height position of the second induction heating coil 32.
  • a silicon carbide source containing silicon carbide is prepared.
  • the silicon carbide source a pulverized silicon carbide polycrystal produced by a chemical vapor deposition method described in JP-A-2008-120617 can be used.
  • a transition metal atom having a higher vapor pressure than silicon carbide hereinafter appropriately referred to as a high vapor pressure transition metal atom
  • a metal material so as to include at least one transition metal atom hereinafter appropriately referred to as a low vapor pressure transition metal atom.
  • a metal material containing vanadium as a high vapor pressure transition metal atom and a metal material containing niobium as a low vapor pressure transition metal atom are added to the silicon carbide powder.
  • Examples of the high vapor pressure transition metal atom include titanium and vanadium.
  • Examples of the low vapor pressure transition metal atom include niobium, tantalum, and tungsten.
  • Transition metal atoms are mixed with silicon carbide powder at a rate of 0.001 to 0.1 atoms%, for example.
  • a purification treatment step S2 for the graphite member such as the crucible 10 is performed. Since the crucible 10 and the heat insulating material are graphite members containing a large amount of nitrogen, the nitrogen contained in the graphite members is reduced by the purification treatment step S2.
  • the graphite member contains about several hundred ppm of nitrogen. These nitrogen atoms are not in the pores but exist in a state where they are trapped between graphite layers or substituted with carbon atoms. In order to reduce this nitrogen, the graphite member before crystal growth is purified.
  • the crucible 10 and the heat insulating material are held in an inert gas atmosphere such as argon gas.
  • an inert gas atmosphere such as argon gas.
  • the pressure is 100 kPa or less
  • the temperature is 2000 ° C. or more, and maintained for 5 hours or more. A sufficient nitrogen reduction effect can be obtained even under pressure conditions close to atmospheric pressure.
  • a seed crystal 60 made of a silicon carbide single crystal is attached to the back surface of the lid 12 constituting the crucible 10 that has undergone the purification treatment step S2. Further, a powdery sublimation raw material 50 made of silicon carbide is accommodated in the reaction vessel main body 11, and the lid 12 is attached to the reaction vessel main body 11.
  • a sublimation / growth step S4 is performed.
  • the crucible 10 is heated to a temperature at which the sublimation raw material 50 sublimes (for example, about 2500 ° C.).
  • the sublimation / growth process constitutes a heating process.
  • the sublimation raw material 50 is sublimated to generate sublimation gas G, and a single crystal grows from the surface of the seed crystal 60.
  • the absolute value of the difference between the concentration of the donor atom and the concentration of the acceptor atom in the silicon carbide single crystal containing the transition metal atom is 1.0 ⁇ 10 17 atoms / cm 3 or less
  • silicon carbide A silicon carbide single crystal having a transition metal atom concentration in the single crystal of 1.0 ⁇ 10 16 atoms / cm 3 or more and 5.0 ⁇ 10 18 atoms / cm 3 or less can be produced.
  • a silicon carbide single crystal having a resistivity of 1.0 ⁇ 10 8 ⁇ ⁇ cm or more can be produced.
  • the donor atom is at least one of nitrogen, phosphorus, and arsenic
  • the acceptor atom is at least one of boron and aluminum
  • the transition metal atom is titanium, vanadium, niobium, tantalum, tungsten.
  • a silicon carbide single crystal that is at least one of the above can be produced.
  • a silicon carbide single crystal containing at least one high vapor pressure transition metal atom and at least one low vapor pressure transition metal atom can be produced.
  • the silicon carbide single crystal manufactured by the above-described manufacturing method may be processed to obtain a silicon carbide single crystal substrate.
  • a silicon carbide single crystal is grown by heating and sublimating a raw material containing silicon carbide in an atmospheric gas to grow a single crystal on the seed crystal 60.
  • the absolute value of the difference between the donor concentration and the acceptor concentration can be 1.0 ⁇ 10 17 atoms / cm 3 or less.
  • the nitrogen concentration can be brought close to the boron concentration in the first half of the crystal growth by performing the purification treatment step S2, and the boron concentration and the nitrogen concentration are substantially equal.
  • the range of values can be expanded.
  • a pulverized silicon carbide polycrystal produced by chemical vapor deposition described in JP-A-2008-120617 may be used. preferable.
  • the silicon carbide polycrystal produced by this method has a lower nitrogen concentration than silicon carbide produced by other methods, in the first half of crystal growth, the nitrogen concentration can be easily brought close to the boron concentration. It is possible to enlarge a region where the density is almost equal.
  • a metal material containing at least one of titanium, vanadium, niobium, tantalum, and tungsten as a transition metal atom, or a mixture of metal materials containing these is added to the silicon carbide powder.
  • the doping amount can be stabilized over the entire crystal growth reaction. Thereby, it is possible to compensate for the concentration difference between the nitrogen atom and the boron atom that act as donor atoms or acceptor atoms.
  • a silicon carbide single crystal having a resistivity of not less than 1.0 ⁇ 10 8 ⁇ ⁇ cm can be produced with a high yield. Therefore, cost and work man-hours can be suppressed.
  • a silicon carbide single crystal having a resistivity of not less than 1.0 ⁇ 10 8 ⁇ ⁇ cm is suitable as a substrate material for a high-frequency semiconductor device.
  • the high vapor pressure transition metal atoms are more easily evaporated than silicon carbide. For this reason, in the first half of crystal growth, the high vapor pressure transition metal atoms are heavily doped into the silicon carbide single crystal. Therefore, the resistance value of the silicon carbide single crystal manufactured in the first half of crystal growth can be improved.
  • the doping amount of the high vapor pressure transition metal atoms tends to decrease in the second half of the crystal growth.
  • Low vapor pressure transition metal atoms are stably doped throughout crystal growth. Therefore, in the latter half of the growth, the low vapor pressure transition metal atoms are more doped than the high vapor pressure transition metal atoms. Thereby, the low vapor pressure transition metal atom can compensate for the decrease in the doping amount of the high vapor pressure transition metal atom. For this reason, the fall of the resistivity of a silicon carbide single crystal based on the fall of the dope amount of a high vapor pressure transition metal atom can be suppressed.
  • concentration difference between atoms and boron atoms can be further compensated. That is, a silicon carbide single crystal having a resistivity of not less than 1.0 ⁇ 10 8 ⁇ ⁇ cm can be further manufactured with a high yield.
  • the silicon carbide source is preferably a powder and is not limited to the silicon carbide polycrystal produced by the chemical vapor deposition method described in JP-A-2008-120617.
  • the purification treatment step S1 can be performed using a crystal growth apparatus or a general vacuum heating apparatus. If a vacuum heating apparatus having a large chamber is used, a large number of graphite members can be purified at once.
  • Example 1 A plurality of sample wafers were manufactured under different conditions, and the resistance values were measured.
  • the sample of Example 1 used a raw material powder having a low nitrogen concentration produced by chemical vapor deposition as a silicon carbide raw material.
  • the process which refines a graphite crucible etc. was performed.
  • the graphite crucible was held at 90 Pa and 2300 ° C. for 10 hours in an argon gas atmosphere.
  • Example 1 0.02 atoms% of commercially available vanadium carbide and 0.05 atoms% of commercially available niobium metal were added to this raw material powder and mixed uniformly with a powder mixer.
  • the silicon carbide raw material powder thus obtained was set in a graphite crucible and crystal growth was performed.
  • the SIMS Secondary-Ion-Mass-Spectroscopy
  • analysis of the wafer cut out from the different position of the obtained single crystal ingot was performed.
  • resistance value of the sample wafer obtained by cutting was measured.
  • the cut-out positions were h0... Directly above the seed crystal (ie, the growth early position), h1...
  • the crystal growth end ie, growth end position).
  • Comparative Example 1 “with purification treatment” and “without addition of transition metal element”. In Comparative Example 2, “no purification treatment” and “addition of transition metal elements (vanadium carbide and niobium metal)” were used. Table 1 shows the concentration of the dopant to be added and the concentration of the transition metal element.
  • Example 1 the concentration of vanadium in the sample wafer cut out at h0 is 2.0 ⁇ 10 17 atoms / cm 3 , and the concentration of vanadium in the sample wafer cut out at h1 is 2.8 ⁇ 10 14. atoms / cm 3 .
  • the niobium concentration in the h0 sample wafer was 1.5 ⁇ 10 16 atoms / cm 3
  • the niobium concentration in the h1 sample wafer was 1.9 ⁇ 10 16 atoms / cm 3 .
  • the concentration of niobium metal was about 1.0 ⁇ 10 16 atoms / cm 3 throughout the crystal growth.
  • the transition metal concentration can be stabilized from the first half of 1.0 ⁇ 10 16 to the first half of 1.0 ⁇ 10 17 throughout the growth.
  • the resistance value of the sample wafer cut out from any position was 1.0 ⁇ 10 8 ⁇ cm or more.
  • Comparative Example 1 As shown in FIG. 5B, there was no solid that had a resistance value of 1.0 ⁇ 10 8 ⁇ or more over the entire wafer surface in any sample wafer cut out from any position. From this, it was found that it is difficult to produce a wafer having a resistance value of 1.0 ⁇ 10 8 ⁇ or more over the entire surface when only the “purification treatment” is performed and no transition metal is doped.
  • the present invention it is possible to provide a silicon carbide single crystal having high resistance characteristics and a single crystal substrate obtained by processing this silicon carbide single crystal, which can be manufactured without increasing costs and work man-hours. Moreover, the manufacturing method which can manufacture the silicon carbide single crystal which has a high resistance characteristic without increasing cost or an operation man-hour can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 炭化ケイ素単結晶の製造方法では、粉体作製工程S1において、炭化ケイ素源である炭化ケイ素粉体に対して、遷移金属原子として、バナジウム、ニオブ、タングステンの少なくともいずれか1つを含む金属材料を、炭化ケイ素粉体に混合し、昇華用原料50を作製する。純化処理工程S2において純化された黒鉛坩堝10に昇華用原料50を配置し、昇華・成長工程S3が行われる。昇華・成長工程S3では、昇華された原料が種結晶上で成長して得られた炭化ケイ素の単結晶中のドナー濃度とアクセプター濃度とが等しくなるときの単結晶の成長高さに達した時点で、不活性雰囲気ガスに対して0.5~100ppmの窒素ガスを導入する。

Description

炭化ケイ素単結晶の製造方法、炭化ケイ素単結晶、及び炭化ケイ素単結晶基板
 本発明は、昇華法を用いた炭化ケイ素単結晶の製造方法、この製造方法によって製造される炭化ケイ素単結晶、及びこの炭化ケイ素単結晶を加工して得られる炭化ケイ素単結晶基板に関する。
 従来、高周波半導体デバイス用の基板材料としての炭化ケイ素単結晶を製造する技術が開示されている。この方法では、炭化ケイ素単結晶内に含まれる不純物濃度であるドナー濃度とアクセプター濃度を低減させることによって、10Ω・cm以上の高い抵抗特性(半絶縁特性)を実現することができる(例えば、特許文献1参照)。
特表2005-508821号公報
 しかしながら、特許文献1に開示された技術は、ドナーとアクセプターの数量差を補償するように作用する真性点欠陥の数量をコントロールすることによって高抵抗化を図るものである。真性点欠陥数のコントロールは、技術的に困難であり、また、定量化技術についても有効な手法が確立されていない。更には、浅い準位のドナー若しくはアクセプターとなり得る不純物元素を非常に低い濃度で管理する必要がある。このため、原料材料や部材の管理にかかるコスト、真正点欠陥導入に要する工数などが歩留まりに見合わないという問題があった。
 そこで、本発明は、コストや作業工数を増大させることなく製造することができる高い抵抗特性を有する炭化ケイ素単結晶を製造する炭化ケイ素単結晶の製造方法、この製造方法によって製造される炭化ケイ素単結晶、及びこの炭化ケイ素単結晶を加工して得られる炭化ケイ素単結晶基板を提供することを目的とする。
 上述した課題を解決するため、本発明は、以下の特徴を有する。黒鉛で形成された黒鉛部材を有する製造装置を用いて、前記黒鉛部材に炭化ケイ素を含む原料を配置し、雰囲気ガス中において、前記原料を加熱昇華させ、種結晶上に前記炭化ケイ素の単結晶を成長させる炭化ケイ素単結晶の製造方法であって、前記炭化ケイ素を含む炭化ケイ素源に対して遷移金属原子を含む金属材料を混合して前記原料を作製する工程と、前記黒鉛部材を100Pa~100kPaの不活性ガス雰囲気中、2000℃以上の温度条件下に保持する純化処理工程と、前記純化処理工程の後の前記黒鉛部材に前記原料を配置し、前記原料を加熱昇華させ、種結晶上に炭化ケイ素単結晶を成長させる工程とを有することを要旨とする。
 本発明によれば、純化処理工程により黒鉛部材の窒素濃度を低下させることにより、結晶成長の前半における窒素濃度をホウ素濃度に近づけることができる。これにより、ホウ素濃度と窒素濃度がほぼ同等の値になる領域、すなわち半絶縁特性を有する領域を拡大することができる。
 また、本発明によれば、炭化ケイ素粉体に対して、遷移金属原子として、チタン、バナジウム、ニオブ、タンタル、タングステンの少なくともいずれか1つを含む金属材料、またはこれらを含む金属材料を混合したものを添加することにより、結晶の成長反応の全般に亘って、ドープ量を安定化させることができる。これにより、ドナー原子又はアクセプター原子として働く窒素原子とホウ素原子の濃度差を補償できる。
 上述した本発明の特徴では、前記炭化ケイ素源は、化学気相成長法によって製造された炭化ケイ素多結晶体であってもよい。
 上述した本発明の特徴では、前記ドナー原子は、窒素、リン、砒素の少なくともいずれか1つであり、前記アクセプター原子は、ホウ素、アルミニウムの少なくともいずれか1つであり、前記遷移金属原子は、チタン、バナジウム、ニオブ、タンタル、タングステンの少なくともいずれか1つとすることができる。また、前記遷移金属原子は、バナジウム及びニオブの組み合わせであってもよい。
 上述した課題を解決するため、本発明は、以下の特徴を有する。雰囲気ガス中で、炭化ケイ素を含む原料を加熱昇華させ種結晶上に炭化ケイ素単結晶を成長させて得られる炭化ケイ素単結晶であって、遷移金属原子を含み、ドナー原子の濃度と、アクセプター原子の濃度との差の絶対値が1.0×1017atoms/cm以下であり、前記炭化ケイ素単結晶中の前記遷移金属原子の濃度が、1.0×1016atoms/cm以上、5.0×1018atoms/cm以下であることを要旨とする。
 また、本発明の特徴は、上述した炭化ケイ素単結晶を加工して得られる炭化ケイ素単結晶基板であることを要旨とする。
図1は、不純物濃度・抵抗率と単結晶の成長高さとの関係を示したグラフであり、図1(a)は不純物濃度と成長高さとの関係を示し、図1(b)は抵抗率と成長高さとの関係を示している。 図2は、本発明の実施形態に係る炭化ケイ素単結晶の製造装置の概略を説明する断面図である。 図3は、本発明の実施形態に係る炭化ケイ素単結晶の製造方法を説明する流れ図である。 図4(a)乃至図4(c)は、サンプルウェハの抵抗値の測定結果を示す図である。
 本発明に係る炭化ケイ素単結晶、炭化ケイ素単結晶の製造装置、及び炭化ケイ素単結晶の製造方法の実施形態について、図面を参照しながら説明する。具体的には、(1)炭化ケイ素単結晶の成長とドーパント濃度の関係の説明、(2)炭化ケイ素単結晶の製造装置の説明、(3)炭化ケイ素単結晶の製造方法、(4)作用・効果、(5)その他の実施形態、について説明する。
 なお、以下の図面の記載において、同一または類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なのものであり、各寸法の比率などは現実のものとは異なることを留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれる。
 (1)炭化ケイ素単結晶の成長とドーパント濃度の関係の説明
 まず、炭化ケイ素単結晶の成長とドーパント濃度の関係について説明する。図1は、不純物濃度・抵抗率と単結晶の成長高さとの関係を示したグラフである。具体的には、図1(a)は、不純物濃度と成長高さとの関係を示し、図1(b)は抵抗率と成長高さとの関係を示している。
 炭化ケイ素単結晶に含まれる不純物の中で電気抵抗に影響を及ぼすものとして、浅い準位のアクセプターであるホウ素と、浅い準位のドナーである窒素と、が挙げられる。ホウ素は、原料や坩堝等の黒鉛部材に含まれ、結晶成長中に除去することが困難である。このため、図1(a)に示すように、結晶成長高さに関わらずホウ素濃度は略一定となる。
 一方、窒素は、原料、坩堝等の黒鉛部材および雰囲気ガス等に含まれる。成長結晶中の窒素濃度は、結晶成長に伴って低下し、最終的にはホウ素濃度以下になる。これに伴い、成長結晶の抵抗率は、図1(b)に示すように、結晶成長に伴って増加していき、ホウ素濃度と窒素濃度とがほぼ同等の値になる領域(図1(a)の斜線部分)において半絶縁性を示し、その後は窒素濃度の低下に伴って低下する。従って、半絶縁性のウエハとして歩留まりを向上させるには、ホウ素濃度と窒素濃度がほぼ同等の値になる領域を拡大することが必要になる。
 (2)炭化ケイ素単結晶の製造装置の説明
 次に、実施形態として示す炭化ケイ素単結晶を製造する製造装置について説明する。図2は、本発明の実施形態に係る炭化ケイ素単結晶の製造装置の概略を説明する断面図である。
 図2に示すように、炭化ケイ素単結晶の製造装置1は、黒鉛製坩堝10(以下、適宜坩堝10と略す)と、黒鉛製坩堝10の少なくとも側面を覆う石英管20と、石英管20の外周側に配置された誘導加熱コイル30とを有する。
 黒鉛製坩堝10は、反応容器本体11および蓋体12からなる。黒鉛製坩堝10は、支持棒40により石英管20の内部に固定される。反応容器本体11の底部11aには、炭化ケイ素を含む粉体である昇華用原料50が収容される。石英管20の両端はステンレス製のチャンバー21によって密封されている。チャンバー21の一部には、アルゴンガス(Arガス)を流入させるアルゴンガス用流入口22と、石英管20内部のガスを排出する排出口23とが形成されている。
 蓋体12は、反応容器本体11の上部開口11bを塞ぐとともに、反応容器本体11の上端部の内周面に螺合により着脱自在に設けられる。蓋体12の裏面側には、炭化ケイ素を含む種結晶60が取り付けられている。この種結晶60の支持手段は、ネジ止め等の機械的結合でも良く、接着剤による接合でも良い。
 昇華用原料50は、炭化ケイ素を含む粉体の炭化ケイ素原料である。黒鉛製坩堝10の内部が所定の温度条件及び圧力条件になると、昇華用原料50は、昇華して昇華ガスGとなる。昇華用原料50が、種結晶60上に再結晶して成長することにより、炭化ケイ素単結晶が形成される。
 誘導加熱コイル30は、反応容器本体11の底部11aに対応する高さ位置に配設された第1誘導加熱コイル31と、蓋体12の裏面に支持された種結晶60に対応する高さ位置に配設された第2誘導加熱コイル32とからなる。前記支持棒40を移動させて黒鉛製坩堝10の高さ位置を変えることにより、第1誘導加熱コイル31の高さ位置に、反応容器本体11の底部11aに収容された昇華用原料50を対応させて配置させると共に、第2誘導加熱コイル32の高さ位置に、蓋体12に支持された種結晶60を対応させて配置させることができる。
 (3)炭化ケイ素単結晶の製造方法
 実施形態に係る炭化ケイ素単結晶の製造方法を図3を用いて説明する。図3に示すように、実施形態に係る炭化ケイ素単結晶の製造方法では、炭化ケイ素からなる粉体状の昇華用原料50を作製する粉体作製工程S1を行う。
 粉体作製工程S1では、炭化ケイ素を含む炭化ケイ素源を用意する。実施形態では、炭化ケイ素源として、特開2008-120617号公報に記載された化学気相成長法により製造された炭化ケイ素多結晶体を粉砕したものを使用することができる。
 この炭化ケイ素粉体に対して、遷移金属原子として、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、タングステン(W)の少なくともいずれか1つを含む金属材料、またはこれらを含む金属材料を混合したものを添加し、混合する。温度2000℃~2350℃及び圧力100Pa~10kPaの条件下において、炭化ケイ素よりも蒸気圧が高い遷移金属原子(以下、高蒸気圧遷移金属原子と適宜称する)と、炭化ケイ素よりも蒸気圧が低い遷移金属原子(以下、低蒸気圧遷移金属原子と適宜称する)とをそれぞれ少なくとも1つ含むように、金属材料を添加することが好ましい。具体的には、例えば、高蒸気圧遷移金属原子としてバナジウムを含む金属材料と、低蒸気圧遷移金属原子としてニオブを含む金属材料とを炭化珪素粉体に添加する。
 高蒸気圧遷移金属原子としては、例えば、チタン、バナジウムが挙げられる。低蒸気圧遷移金属原子としては、例えば、ニオブ、タンタル、タングステンが挙げられる。
 遷移金属原子は、炭化ケイ素粉体に対して、例えば、0.001~0.1atoms%の割合で混合される。
 また、坩堝10などの黒鉛部材の純化処理工程S2を行う。坩堝10や断熱材は、窒素が多く含まれる黒鉛部材であるため、純化処理工程S2によって黒鉛部材中に含まれる窒素を低減させる。
 一般的に、黒鉛部材には、数百ppm程度の窒素が含まれる。これらの窒素は気孔中ではなく、黒鉛層間にトラップされた状態か、または、炭素原子と置換された状態で存在している。この窒素を低減するために、結晶を成長させる前の黒鉛部材を純化する。
 具体的には、坩堝10および断熱材をアルゴンガス等の不活性ガス雰囲気中に保持する。このとき、圧力を100kPa以下、温度を2000℃以上とし、5時間以上保持することが好ましい。なお、大気圧に近い圧力条件下においても、十分な窒素低減効果が得られる。
 次に、配置工程S3を行う。純化処理工程S2を経た坩堝10を構成する蓋体12の裏面に炭化ケイ素単結晶からなる種結晶60を取り付ける。また、反応容器本体11内に炭化ケイ素からなる粉体状の昇華用原料50を収容し、蓋体12を反応容器本体11に取り付ける。
 次に、昇華・成長工程S4を行う。昇華・成長工程S4では、昇華用原料50が昇華する温度(例えば、2500℃程度)にまで坩堝10を加熱する。昇華・成長工程は、加熱工程を構成している。昇華用原料50が昇華して昇華ガスGが発生し、種結晶60の表面上から単結晶が成長する。
 以上の工程により、遷移金属原子を含み、炭化ケイ素単結晶中のドナー原子の濃度と、アクセプター原子の濃度との差の絶対値が1.0×1017atoms/cm以下であり、炭化ケイ素単結晶中の遷移金属原子の濃度が、1.0×1016atoms/cm以上、5.0×1018atoms/cm以下である炭化ケイ素単結晶を製造することができる。また、抵抗率が1.0×10Ω・cm以上である炭化ケイ素単結晶を製造することができる。また、ドナー原子は、窒素、リン、砒素の少なくともいずれか1つであり、アクセプター原子は、ホウ素、アルミニウムの少なくともいずれか1つであり、遷移金属原子は、チタン、バナジウム、ニオブ、タンタル、タングステンの少なくともいずれか1つである炭化ケイ素単結晶を製造することができる。また、高蒸気圧遷移金属原子と低蒸気圧遷移金属原子とをそれぞれ少なくとも1つ含む炭化ケイ素単結晶を製造することができる。
 上述の製造方法により製造された炭化ケイ素単結晶を加工して炭化ケイ素単結晶基板を得てもよい。
 (4)作用・効果
 このように純化処理された製造装置1を用いて、雰囲気ガス中で炭化ケイ素を含む原料を加熱昇華させ種結晶60上に単結晶を成長させることにより、炭化ケイ素単結晶中のドナー濃度とアクセプター濃度との差の絶対値が1.0×1017atoms/cm以下にできる。
 また、実施形態に係る炭化ケイ素単結晶の製造方法では、純化処理工程S2を行うことにより、結晶成長の前半において、窒素濃度をホウ素濃度に近づけることができ、ホウ素濃度と窒素濃度がほぼ同等の値になる領域を拡大することができる。
 実施形態では、粉体作製工程S1において、炭化ケイ素源として、特開2008-120617号公報に記載された化学気相成長法により製造された炭化ケイ素多結晶体を粉砕したものを使用することが好ましい。
 この方法により作製された炭化ケイ素多結晶体は、他の方法によって製造された炭化ケイ素に比べて窒素濃度が低いため、結晶成長の前半において、窒素濃度をホウ素濃度に近づけ易く、ホウ素濃度と窒素濃度がほぼ同等の値になる領域を拡大することができる。
 実施形態では、炭化ケイ素粉体に対して、遷移金属原子として、チタン、バナジウム、ニオブ、タンタル、タングステンの少なくともいずれか1つを含む金属材料、またはこれらを含む金属材料を混合したものを添加することにより、結晶の成長反応の全般に亘って、ドープ量を安定化させることができる。これにより、ドナー原子又はアクセプター原子として働く窒素原子とホウ素原子の濃度差を補償することができる。
 これにより、抵抗率1.0×10Ω・cm以上の抵抗値を有する炭化ケイ素単結晶を高い歩留まりで製造できる。よって、コストや作業工数を抑えることができる。また、抵抗率1.0×10Ω・cm以上の抵抗値を有する炭化ケイ素単結晶は、高周波半導体デバイス用の基板材料に好適である。
 温度2000℃~2350℃及び圧力100Pa~10kPaの条件下において、高蒸気圧遷移金属原子と、低蒸気圧遷移金属原子とをそれぞれ少なくとも1つ含むように、金属材料を添加し、混合することが好ましい。昇華・成長工程S4において、高蒸気圧遷移金属原子は、炭化ケイ素よりも蒸発しやすい。このため、結晶成長の前半において、高蒸気圧遷移金属原子は、炭化ケイ素単結晶に多くドープされる。従って、結晶成長の前半に製造された炭化ケイ素単結晶の抵抗値を向上させることができる。
 一方、結晶成長の前半において、高蒸気圧遷移金属原子は、多くドープされるため、結晶成長の後半において、高蒸気圧遷移金属原子のドープ量は、減少しやすい。低蒸気圧遷移金属原子は、結晶成長全般に亘って、安定してドープされる。従って、成長後半において、低蒸気圧遷移金属原子は、高蒸気圧遷移金属原子よりも多くドープされる。これにより、低蒸気圧遷移金属原子は、高蒸気圧遷移金属原子のドープ量の低下を補うことができる。このため、高蒸気圧遷移金属原子のドープ量の低下に基づく、炭化ケイ素単結晶の抵抗率の低下を抑制することができる。
 これらの結果、高蒸気圧遷移金属原子と低蒸気圧遷移金属原子とをそれぞれ少なくとも1つ含むように、金属材料を添加することによって、結晶成長全般に亘って、ドナー原子又はアクセプター原子として働く窒素原子とホウ素原子の濃度差をさらに補償することができる。すなわち、抵抗率1.0×10Ω・cm以上の抵抗値を有する炭化ケイ素単結晶を高い歩留まりでさらに製造できる。
 (5)その他の実施形態
 上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例が明らかとなる。例えば、本発明の実施形態は、次のように変更することができる。
 炭化ケイ素源は、粉体であることが好ましく、特開2008-120617号公報に記載された化学気相成長法により製造された炭化ケイ素多結晶体に限定されない。
 純化処理工程S1は、結晶成長用の装置や一般的な真空加熱装置を用いても可能である。大型のチャンバーを備えた真空加熱装置を用いれば、一度に多数の黒鉛部材の純化処理が可能である。
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 異なる条件で複数のサンプルウェハを作製し、抵抗値を測定した。実施例1のサンプルは、炭化ケイ素原料として、化学気相成長法により製造された窒素濃度が低い原料粉を使用した。実施例1では、黒鉛製坩堝などを純化する処理を行った。純化処理では、黒鉛製坩堝をアルゴンガス雰囲気中において、90Pa、2300℃の条件下で10時間保持した。
 実施例1では、この原料粉体に対して、市販の炭化バナジウムを0.02atoms%、及び市販のニオブ金属を0.05atoms%添加し、粉体混合機で均一に混合した。
 このようにして得られた炭化ケイ素原料粉を黒鉛製坩堝にセットし、結晶成長を行った。得られた単結晶インゴットの異なる位置から切り出したウェハのSIMS(Secondary Ion Mass Spectroscopy)分析を行った。また、切り出して得られたサンプルウェハの抵抗値を測定した。なお、切り出し位置は、h0…種結晶の直上(すなわち、成長序盤位置)、h1…結晶成長末端部(すなわち、成長終盤位置)とした。
 比較例1では、「純化処理あり」、「遷移金属元素の添加無し」とした。比較例2では、「純化処理なし」、「遷移金属元素(炭化バナジウム及びニオブ金属)の添加あり」とした。添加するドーパントの濃度と遷移金属元素の濃度を表1に示す。
 また、各サンプルウェハの抵抗値の測定結果を図4(a)乃至図4(c)に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1において、h0で切り出されたサンプルウェハにおけるバナジウムの濃度は、2.0×1017atoms/cmであり、h1で切り出されたサンプルウェハにおけるバナジウムの濃度は、2.8×1014atoms/cmであった。また、h0のサンプルウェハにおけるニオブの濃度は、1.5×1016atoms/cmであり、h1のサンプルウェハにおけるニオブの濃度は、1.9×1016atoms/cmであった。
 すなわち、炭化バナジウムは、成長後半よりも成長前半において、より多くドープされ、結晶成長の進行とともにドープ量が減少する傾向があることが判った。一方、ニオブ金属は、結晶成長全般に亘って、1.0×1016atoms/cm程度の濃度であった。このように炭化バナジウムとニオブ金属とを組み合わせて添加することにより、成長全般に亘って、遷移金属濃度を1.0×1016前半~1.0×1017前半に安定化できることがわかった。図5(a)に示すように、実施例1では、どの位置から切り出したサンプルウェハの抵抗値も1.0×10Ωcm以上であった。
 比較例1では、図5(b)に示すように、どの位置から切り出したサンプルウェハにおいても抵抗値がウェハ全面において1.0×10Ω以上になる固体は無かった。このことから、「純化処理」のみで遷移金属のドープが無い場合には、抵抗値が全面において、1.0×10Ω以上のウェハを作製することは困難であることが判った。
 比較例2のサンプルウェハの切り出し位置と抵抗値との関係を図5(c)に示す。図5(c)に示す結果から、遷移金属原子を添加しても、純化処理を行わなければ、成長前半における窒素濃度が過剰になるため、成長前半において、抵抗値が1.0×10Ωcm以上のウェハを作製することは困難であることが判った。成長が進行するに連れて、反応系における窒素濃度が減少するため、抵抗値が1.0×10Ωcm以上になるが、歩留まりが悪い。
 以上の実施例より、黒鉛部材の純化処理工程を行うと共に、炭化バナジウム(VC)とニオブ金属(Nb)を同時に添加することにより、成長全般に亘って、ドープ量を安定化させることができ、その結果、全面に亘って抵抗値が1.0×10Ω以上のウェハを高い歩留まりで生成可能になった。
 なお、日本国特許出願第2010-196977号(2010年9月2日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明によれば、コストや作業工数を増大させることなく製造可能な、高い抵抗特性を有する炭化ケイ素単結晶、及びこの炭化ケイ素単結晶を加工して得られる単結晶基板を提供できる。また、コストや作業工数を増大させることなく高い抵抗特性を有する炭化ケイ素単結晶を製造できる製造方法を提供できる。

Claims (9)

  1.  黒鉛で形成された黒鉛部材を有する製造装置を用いて、前記黒鉛部材に炭化ケイ素を含む原料を配置し、雰囲気ガス中において、前記原料を加熱昇華させ、種結晶上に前記炭化ケイ素の単結晶を成長させる炭化ケイ素単結晶の製造方法であって、
     前記炭化ケイ素を含む炭化ケイ素源に対して遷移金属原子を含む金属材料を混合して前記原料を作製する工程と、
     前記黒鉛部材を100Pa~100kPaの不活性ガス雰囲気中、2000℃以上の温度条件下に保持する純化処理工程と、
     前記純化処理工程の後の前記黒鉛部材に前記原料を配置し、前記原料を加熱昇華させ、種結晶上に炭化ケイ素単結晶を成長させる工程と、を有する炭化ケイ素単結晶の製造方法。
  2.  前記炭化ケイ素源は、化学気相成長法によって製造された炭化ケイ素多結晶体である請求項1に記載の炭化ケイ素単結晶の製造方法。
  3.  前記ドナー原子は、窒素、リン、砒素の少なくともいずれか1つであり、
     前記アクセプター原子は、ホウ素、アルミニウムの少なくともいずれか1つであり、
     前記遷移金属原子は、チタン、バナジウム、ニオブ、タンタル、タングステンの少なくともいずれか1つである請求項1または2に記載の炭化ケイ素単結晶の製造方法。
  4.  雰囲気ガス中で、炭化ケイ素を含む原料を加熱昇華させ種結晶上に炭化ケイ素単結晶を成長させて得られる炭化ケイ素単結晶であって、
     遷移金属原子を含み、
     前記炭化ケイ素単結晶中のドナー原子の濃度と、アクセプター原子の濃度との差の絶対値が1.0×1017atoms/cm以下であり、
     前記炭化ケイ素単結晶中の前記遷移金属原子の濃度が、
     1.0×1016atoms/cm以上、5.0×1018atoms/cm以下である炭化ケイ素単結晶。
  5.  抵抗率が1.0×10Ω・cm以上である請求項4に記載の炭化ケイ素単結晶。
  6.  前記ドナー原子は、窒素、リン、砒素の少なくともいずれか1つであり、
     前記アクセプター原子は、ホウ素、アルミニウムの少なくともいずれか1つであり、
     前記遷移金属原子は、チタン、バナジウム、ニオブ、タンタル、タングステンの少なくともいずれか1つである請求項4または5に記載の炭化ケイ素単結晶。
  7.  温度2000℃~2350℃及び圧力100Pa~10kPaの条件下において、炭化ケイ素よりも蒸気圧が高い遷移金属原子と、炭化ケイ素よりも蒸気圧が低い遷移金属原子とをそれぞれ少なくとも1つ含む請求項4又は5に記載の炭化ケイ素単結晶。
  8.  前記遷移金属原子がバナジウム及びニオブの組み合わせである請求項4又は5に記載の炭化ケイ素単結晶。
  9.  請求項4乃至8のいずれか1項に記載の炭化ケイ素単結晶を加工して得られる炭化ケイ素単結晶基板。
PCT/JP2011/070046 2010-09-02 2011-09-02 炭化ケイ素単結晶の製造方法、炭化ケイ素単結晶、及び炭化ケイ素単結晶基板 WO2012029952A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/820,622 US20130153836A1 (en) 2010-09-02 2011-09-02 Method of producing silicon carbide single crystal, silicon carbide single crystal, and silicon carbide single crystal substrate
JP2012531975A JPWO2012029952A1 (ja) 2010-09-02 2011-09-02 炭化ケイ素単結晶の製造方法、炭化ケイ素単結晶、及び炭化ケイ素単結晶基板
EP11821966.6A EP2612958A4 (en) 2010-09-02 2011-09-02 METHOD FOR PRODUCING A SILICON CARBIDE INK CRYSTAL, SILICON CARBIDE INK CRYSTAL AND SILICON CARBIDE MONTERRY SUBSTRATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010196977 2010-09-02
JP2010-196977 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012029952A1 true WO2012029952A1 (ja) 2012-03-08

Family

ID=45773026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070046 WO2012029952A1 (ja) 2010-09-02 2011-09-02 炭化ケイ素単結晶の製造方法、炭化ケイ素単結晶、及び炭化ケイ素単結晶基板

Country Status (4)

Country Link
US (1) US20130153836A1 (ja)
EP (1) EP2612958A4 (ja)
JP (1) JPWO2012029952A1 (ja)
WO (1) WO2012029952A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160060514A1 (en) * 2012-09-04 2016-03-03 El-Seed Corporation SiC FLUORESCENT MATERIAL AND METHOD FOR MANUFACTURING THE SAME, AND LIGHT EMITTING ELEMENT
WO2019244834A1 (ja) * 2018-06-19 2019-12-26 株式会社デンソー 炭化珪素単結晶およびその製造方法
JP2021091566A (ja) * 2019-12-09 2021-06-17 昭和電工株式会社 SiC基板及びSiC単結晶の製造方法
CN113990938A (zh) * 2020-07-27 2022-01-28 环球晶圆股份有限公司 碳化硅晶片及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364428B (zh) * 2012-05-24 2017-09-05 Ⅱ-Ⅵ公司 钒补偿的NU型和PI型SI SiC单晶及其晶体生长方法
DE102014217956B4 (de) * 2014-09-09 2018-05-09 Sicrystal Ag Herstellungsverfahren für einen Vanadium-dotierten SiC-Volumeneinkristall und Vanadium-dotiertes SiC-Substrat
US11987902B2 (en) * 2020-07-27 2024-05-21 Globalwafers Co., Ltd. Manufacturing method of silicon carbide wafer and semiconductor structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041710A (ja) * 2003-07-23 2005-02-17 Nippon Steel Corp 炭化珪素単結晶、炭化珪素単結晶ウェハ及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE520968C2 (sv) * 2001-10-29 2003-09-16 Okmetic Oyj Högresistiv monokristallin kiselkarbid och metod för dess framställning
US6881680B2 (en) * 2002-06-14 2005-04-19 Toyo Tanso Co., Ltd. Low nitrogen concentration carbonaceous material and manufacturing method thereof
EP1782454A4 (en) * 2004-07-07 2009-04-29 Ii Vi Inc LOW DOPED SEMI-INSULATING SILICON CARBIDE CRYSTALS AND METHOD
EP1852527B1 (en) * 2004-12-27 2015-04-01 Nippon Steel & Sumitomo Metal Corporation Silicon carbide single crystal and silicon carbide single crystal wafer
CN102560671B (zh) * 2010-12-31 2015-05-27 中国科学院物理研究所 半绝缘碳化硅单晶

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041710A (ja) * 2003-07-23 2005-02-17 Nippon Steel Corp 炭化珪素単結晶、炭化珪素単結晶ウェハ及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160060514A1 (en) * 2012-09-04 2016-03-03 El-Seed Corporation SiC FLUORESCENT MATERIAL AND METHOD FOR MANUFACTURING THE SAME, AND LIGHT EMITTING ELEMENT
WO2019244834A1 (ja) * 2018-06-19 2019-12-26 株式会社デンソー 炭化珪素単結晶およびその製造方法
JP2019218229A (ja) * 2018-06-19 2019-12-26 株式会社デンソー 炭化珪素単結晶およびその製造方法
CN112334607A (zh) * 2018-06-19 2021-02-05 株式会社电装 碳化硅单晶及其制造方法
JP7024622B2 (ja) 2018-06-19 2022-02-24 株式会社デンソー 炭化珪素単結晶およびその製造方法
CN112334607B (zh) * 2018-06-19 2022-09-16 株式会社电装 碳化硅单晶及其制造方法
JP2021091566A (ja) * 2019-12-09 2021-06-17 昭和電工株式会社 SiC基板及びSiC単結晶の製造方法
JP7528432B2 (ja) 2019-12-09 2024-08-06 株式会社レゾナック SiC基板及びSiC単結晶の製造方法
CN113990938A (zh) * 2020-07-27 2022-01-28 环球晶圆股份有限公司 碳化硅晶片及其制备方法

Also Published As

Publication number Publication date
EP2612958A1 (en) 2013-07-10
JPWO2012029952A1 (ja) 2013-10-31
US20130153836A1 (en) 2013-06-20
EP2612958A4 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
US11761117B2 (en) SiC single crystal sublimation growth apparatus
WO2012029952A1 (ja) 炭化ケイ素単結晶の製造方法、炭化ケイ素単結晶、及び炭化ケイ素単結晶基板
US8642154B2 (en) Silicon carbide crystal ingot, silicon carbide crystal wafer, and method for fabricating silicon carbide crystal ingot
US8512471B2 (en) Halosilane assisted PVT growth of SiC
KR100951019B1 (ko) 단결정 실리콘 카바이드 잉곳 및 단결정 실리콘 카바이드 웨이퍼
JP4987707B2 (ja) 低ドーピング半絶縁性SiC結晶と方法
US11624124B2 (en) Silicon carbide substrate and method of growing SiC single crystal boules
JP2016056088A (ja) バナジウムでドープしたSiC塊状単結晶の製造方法及びバナジウムでドープしたSiC基板
EP0954623B1 (en) Silicon carbide monocrystal growth
US6261363B1 (en) Technique for growing silicon carbide monocrystals
US6562131B2 (en) Method for growing single crystal silicon carbide
JP2005041710A (ja) 炭化珪素単結晶、炭化珪素単結晶ウェハ及びその製造方法
JP6335716B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP4505202B2 (ja) 炭化珪素単結晶の製造方法および製造装置
JP2011093771A (ja) 炭化ケイ素単結晶、炭化ケイ素単結晶基板、および炭化ケイ素単結晶の製造方法
JPH061698A (ja) 炭化珪素バルク単結晶の製造方法
KR100821360B1 (ko) 탄화규소 단결정, 탄화규소 단결정 웨이퍼 및 그것의 제조 방법
US20160284545A1 (en) System and method for producing polycrystalline group iii nitride articles and use thereof in production of single crystal group iii nitride articles
KR20230085267A (ko) SiC 단결정 성장 방법 및 SiC 단결정
JP2011144075A (ja) 炭化ケイ素単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012531975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13820622

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011821966

Country of ref document: EP