WO2012029947A1 - 回転炉床炉の排ガスダクト装置及びその運転方法 - Google Patents

回転炉床炉の排ガスダクト装置及びその運転方法 Download PDF

Info

Publication number
WO2012029947A1
WO2012029947A1 PCT/JP2011/070032 JP2011070032W WO2012029947A1 WO 2012029947 A1 WO2012029947 A1 WO 2012029947A1 JP 2011070032 W JP2011070032 W JP 2011070032W WO 2012029947 A1 WO2012029947 A1 WO 2012029947A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
duct
rotary hearth
hearth furnace
gas duct
Prior art date
Application number
PCT/JP2011/070032
Other languages
English (en)
French (fr)
Inventor
修 津下
耕司 徳田
範昭 水谷
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN2011800420106A priority Critical patent/CN103080681A/zh
Priority to CA2809121A priority patent/CA2809121A1/en
Priority to AU2011296931A priority patent/AU2011296931A1/en
Priority to US13/820,174 priority patent/US9310133B2/en
Priority to RU2013114443/02A priority patent/RU2013114443A/ru
Publication of WO2012029947A1 publication Critical patent/WO2012029947A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • F27D17/002Details of the installations, e.g. fume conduits or seals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/16Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a circular or arcuate path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an exhaust gas duct device for a rotary hearth furnace and an operation method thereof. More specifically, the present invention treats exhaust gas generated in a rotary hearth furnace that heats a raw material containing a carbonaceous reducing material and an iron oxide-containing material to produce reduced iron or granular metallic iron, It is related with the exhaust-gas duct apparatus provided in the intermediate part of the duct which leads to, and its operating method.
  • a rotary hearth furnace including an outer peripheral wall, an inner peripheral wall, and an annular rotary hearth disposed between these walls.
  • the rotary hearth is generally composed of an annular hearth frame, a hearth heat insulating material disposed on the hearth frame, and a refractory disposed on the hearth heat insulating material.
  • a rotary hearth furnace having such a structure is used for heat treatment of metals such as steel billets or combustion treatment of combustible waste. Recently, reduced iron is converted from iron oxide using the rotary hearth furnace. The method of manufacturing has attracted attention. An example of the reduced iron manufacturing process using such a rotary hearth furnace will be described with reference to FIG. 6 showing an outline of the equipment configuration of the rotary hearth furnace.
  • pellets or briquettes are produced by mixing and granulating an iron oxide (iron ore, steelmaking dust, etc.) and a carbonaceous reducing agent (coal, coke, etc.).
  • the pellets or briquettes are heated to a temperature range in which combustible volatile matter generated from the pellets or briquettes does not ignite, so that the adhering moisture is removed to become dry pellets or dry briquettes.
  • the dried pellets or dried briquettes (reduced iron raw material 24) are supplied into the rotary hearth furnace 26 using an appropriate charging device 23, and a pellet or briquette layer is formed on the rotary hearth 21.
  • This pellet or briquette layer rotates in the direction of the black arrow, is radiatively heated and reduced by the combustion of the combustion burner 27 installed in the upper part of the furnace, and advances metallization.
  • the metalized reduced iron 25 is cooled by the cooler 28, exhibits mechanical strength that can withstand handling during and after discharge, and is discharged out of the furnace by the discharge device 22.
  • dry pellets or dry briquettes (reduced iron raw material 24) are charged, and the above process is repeated to produce reduced iron (see, for example, Patent Document 1).
  • the exhaust gas generated in the furnace is connected to the ceiling of the exhaust gas discharge area from the exhaust gas discharge area provided on the circumference of the rotary hearth furnace. Is drawn to the exhaust duct.
  • the exhaust gas attracted to the exhaust duct is treated by an exhaust gas treatment facility provided in the middle or downstream of the exhaust duct and then discharged out of the system.
  • exhaust ducts are clogged or corroded, or refractories are damaged as various volatile impurities are generated in the reduction or melting process of the reduced iron raw material.
  • Patent Document 2 a method for preventing the exhaust gas suction duct from being blocked and lining refractories from being damaged has been proposed (see Patent Document 2).
  • the exhaust gas temperature in the exhaust gas suction duct is increased by supplying at least one of inert gas, water in the water state, and air to the exhaust gas at 1100 ° C. or higher discharged from the rotary hearth furnace. 900 to 1100 ° C.
  • a process for producing high-purity granular metallic iron has been developed.
  • a raw material containing a carbonaceous reducing material and an iron oxide-containing substance is heated in a reduction melting furnace such as a rotary hearth furnace, and after solid reduction of the iron oxide in the raw material, the resulting metallic iron is further heated. And then agglomerate while separating from the slab component.
  • the process for producing this granular metallic iron has problems such as an increase in the amount of exhaust gas and an increase in exhaust gas temperature. That is, as the amount of exhaust gas increases, the capacity of the exhaust gas duct device, exhaust gas processing device, etc. of the flow increases, so that not only the facility cost increases, but also the running cost associated with the problem of dust accumulation increases. Further, if the exhaust gas temperature rises, the heat resistance of the downstream equipment is more demanded, so that the equipment cost and running cost further increase.
  • An object of the present invention is to collect dust while avoiding problems associated with an increase in the amount of exhaust gas and an increase in exhaust gas temperature, and is capable of long-term stable operation with good thermal efficiency, containing a carbonaceous reducing material and iron oxide
  • an exhaust gas duct apparatus for a rotary hearth furnace is a rotary hearth for producing reduced iron or granular metal iron by heating a raw material containing a carbonaceous reducing material and an iron oxide-containing substance.
  • An exhaust gas duct device for a furnace wherein the exhaust gas duct of the rotary hearth furnace cools the exhaust gas discharged from the rotary hearth furnace and solidifies the metal salt in the exhaust gas, immediately after cooling
  • the cooling unit cools the exhaust gas discharged from the rotary hearth furnace to a temperature of 1000 to 1200 ° C., and the second cooling further cools the exhaust gas after the collision to a temperature of 450 to 900 ° C. Part.
  • it has.
  • the first cooling unit includes a water cooling duct.
  • the water cooling duct is disposed horizontally just before the first collision part.
  • a water cooling structure is not provided in the upper part of the water cooling duct.
  • the water-cooled duct has a lining refractory structure, and the lining refractory structure in the lower part of the water-cooled duct to which dust easily adheres is configured to have an inner surface temperature of 600 ° C. or less.
  • the second cooling unit directly injects fluid into the exhaust gas duct.
  • the direction change duct includes a first riser directed substantially vertically upward, the first collision portion includes the first riser inner wall surface, and at least a first riser inner wall surface on which exhaust gas immediately after the water cooling duct collides Preferably, it is coated with a wear-resistant refractory.
  • the direction change duct includes a horizontal duct disposed substantially horizontally at a lowermost part of the inverted J-shaped duct that is connected to the top of the first riser and descends, and the second collision part is disposed in the horizontal duct.
  • a dust collecting tank disposed, wherein the second cooling unit is disposed in at least one of the first riser and the inverted J-shaped duct, and the exhaust gas cooled by the second cooling unit is It is preferable to collide with the second collision part.
  • the exhaust gas colliding with the second collision part is raised through the second riser, and an air preheater is interposed in the descending duct following the second riser.
  • the cooling temperature of the cooling section for cooling the exhaust gas is changed according to the type of the metal salt in the exhaust gas.
  • the second cooling unit directly supplies one or more of inert gas, water in a water state, and air to the exhaust gas. It is preferable to cool the exhaust gas.
  • the metal salt contained in the exhaust gas is solidified and collected in two stages, thereby improving the solidification and collection efficiency of the metal salt, The problem of adhesion and accumulation in the exhaust gas duct is minimized, and long-term stable operation of the exhaust gas duct device becomes possible.
  • the cooling unit further cools the exhaust gas discharged from the rotary hearth furnace to a temperature of 1000 to 1200 ° C., and the exhaust gas after the collision is further 450 And a second cooling section that cools to a temperature of ⁇ 900 ° C., so that the high melting point metal salt and the low melting point metal salt contained in the exhaust gas can be effectively solidified into two stages of cooling temperatures. is there.
  • the collision part is disposed in a first collision part disposed in an exhaust gas duct immediately after the first cooling part and in an exhaust gas duct following the second cooling part. Since the second collision portion is disposed, the metal salt contained in the exhaust gas can be solidified more effectively.
  • the first cooling part includes a water-cooled duct, it is possible to minimize the duct size, to suppress the cost of equipment such as ducts and refractories, and easy maintenance. Become.
  • the water cooling duct is horizontally disposed immediately before the first collision portion, the water cooling duct is combined with the first collision portion and included in the exhaust gas.
  • the refractory metal salt can be solidified reliably.
  • the water cooling structure at the upper part of the water cooling duct where dust does not easily adhere can be omitted, and the equipment cost can be reduced.
  • the water-cooled duct has a lining refractory structure, and the inner refractory structure in the lower part of the water-cooled duct where dust easily adheres has an inner surface temperature of 600 ° C. Since it is comprised so that it may become the following, a high melting-point salt can be solidified completely.
  • the second cooling section can directly cool the exhaust gas by directly injecting the fluid into the exhaust gas duct, the cooling efficiency is good.
  • the direction change duct includes a first riser that extends substantially vertically upward, the first collision portion includes the first riser inner wall surface, and at least immediately after the water cooling duct. Since the inner wall surface of the first riser on which the exhaust gas collides is covered with the wear-resistant refractory, the wear of the refractory due to the dust contained in the exhaust gas can be suppressed as much as possible.
  • the direction changing duct includes a horizontal duct arranged substantially horizontally at the lowest part of the inverted J-shaped duct that is connected to the top of the first riser and descends,
  • the second collision part is a dust collection tank disposed in the horizontal duct, and the second cooling part is disposed in at least one of the first riser and the inverted J-shaped duct,
  • the exhaust gas cooled by the second cooling unit collides with the second collision unit.
  • the low-melting point metal salt which cannot be solidified by the first cooling unit and solid-gas separation by the first collision unit, is solidified and solid-gas separated and can be recovered as dust.
  • the exhaust gas that has collided with the second collision part is raised through the second riser, and an air preheater is interposed in the descending duct following the second riser.
  • the dust is sufficiently removed by the two-stage collision by the first collision part and the second collision part. Therefore, the temperature of the preheated air can be increased, and as a result, the fuel of the combustion burner can be reduced and the exhaust gas treatment device can be made compact.
  • the cooling temperature of the cooling unit for cooling the exhaust gas is changed depending on the type of the metal salt in the exhaust gas.
  • the solidification of the salt can be carried out effectively and reliably.
  • the second cooling unit is one or more of inert gas, water in a steam-water state, and air. Since the exhaust gas is cooled by being directly supplied to the exhaust gas, the low melting point metal salt contained in the exhaust gas can be more effectively solidified.
  • FIG. 3 is an enlarged sectional view showing an arrow AA in FIG. 2 in an enlarged manner.
  • FIG. 4 is a schematic vertical sectional view showing an exhaust gas duct device following the arrow B in FIG. 3.
  • FIG. 4 is a schematic diagram which shows the outline of the exhaust gas duct apparatus of the rotary hearth furnace which concerns on the comparative example of this invention.
  • FIG. 1 is a perspective view showing the appearance of a rotary hearth furnace body according to an embodiment of the present invention
  • FIG. 2 is a plan view of the rotary hearth furnace body of FIG. 1
  • FIG. 3 is an arrow A view of FIG.
  • FIG. 4 is a schematic vertical sectional view showing the exhaust gas duct device following the arrow B in FIG.
  • the rotary hearth furnace 1 includes an outer peripheral wall 2, an inner peripheral wall 3 provided inside the outer peripheral wall 2, a ceiling portion 4 that covers a space between the outer peripheral wall 2 and the inner peripheral wall 3 from above, and the outer peripheral wall 2.
  • the outer peripheral wall 2, the inner peripheral wall 3, and the ceiling portion 4 are mainly composed of a heat insulating material.
  • the rotary hearth 5 is driven to rotate on the circumference while passing between the outer peripheral wall 2 and the inner peripheral wall 3 by a driving device (not shown).
  • the rotary hearth 5 includes an annular furnace frame 5a, and a hearth insulation and a refractory 5b disposed on the furnace frame 5a.
  • a raw material hereinafter referred to as reduced iron or raw material for granular metal iron
  • the reduced iron or granular metal iron raw material 6 is subjected to heat treatment and reduction treatment or reduction melting treatment in the furnace as the rotary hearth 5 rotates. By these treatments, reduced iron or granular metallic iron is produced.
  • An exhaust gas discharge chamber 7 is provided in the ceiling portion 4 of the rotary hearth furnace 1.
  • the exhaust gas discharge chamber 7 constitutes a part of the circumferential direction of the ceiling portion 4 (that is, the rotation direction of the rotary hearth 5).
  • the exhaust gas discharge chamber 7 protrudes upward from the other part of the ceiling part 4 and has a lower surface that is one step higher than the lower surface of the other part of the ceiling part 4.
  • An exhaust gas duct 8 for leading the exhaust gas discharged from the rotary hearth furnace 1 to the exhaust gas duct device described below is connected horizontally to the exhaust gas discharge chamber 7 so as to communicate with the exhaust gas discharge chamber 7. ing.
  • An exhaust gas duct device 11 for a rotary hearth furnace follows the exhaust gas duct 8 and is intermediate to exhaust gas treatment facilities such as a cooler, a dust collector and an exhaust fan which are not shown in FIG. It is a device provided in the duct part.
  • the exhaust gas discharged from the rotary hearth furnace 1 is rapidly cooled, and the exhaust gas collides immediately after cooling with the cooling unit 12 that solidifies the metal salt in the exhaust gas, A collision part 13 for dropping the solidified metal salt and a direction changing duct 14 for guiding the exhaust gas after the collision in a direction other than the falling direction of the metal salt are arranged.
  • the cooling unit 12 includes a water cooling duct (first cooling unit) 12-1 and spray nozzles (second cooling units) 12-2a and 12-2b.
  • the water cooling duct 12-1 solidifies the refractory metal salt by cooling the exhaust gas having a temperature of 1200 ° C. or higher discharged from the rotary hearth furnace 1 to 1000 to 1200 ° C.
  • the spray nozzles 12-2a and 12-2b further solidify the low melting point metal salt by further cooling the temperature of the exhaust gas after the collision to 450 to 900 ° C.
  • Metal salt produced in the process of reducing the granular metallic iron raw material and contained in the exhaust gas for example, Na 2 SO 4 , K 2 SO 4 , Na 3 Fe (SO 4 ) 3 , K 3 Fe (SO 4 )
  • the melting point of 3 etc. ranges from 450 to 1200 ° C. Therefore, since it is impossible to solidify many metal salts by one-stage cooling, in this embodiment, the exhaust gas from the rotary hearth furnace 1 is cooled in two stages as described above.
  • first riser inner wall surface (first collision portion) 13-1 disposed in an exhaust gas duct immediately after the water cooling duct 12-1, a spray nozzle 12-2a, 12-2b, and a second dust collection tank (second collision part) 13-2 disposed in the exhaust gas duct.
  • the direction change duct 14 includes a first riser (first direction change duct) 9a for changing the direction of the exhaust gas colliding with the first riser inner wall surface 13-1 substantially vertically upward, and the second dust collecting tank.
  • a horizontal duct (second direction changing duct) 9b for changing the direction of the exhaust gas colliding with 13-2 in the horizontal direction.
  • the water cooling duct 12-1 has a water cooling jacket 8a and is disposed horizontally just before the first riser inner wall surface 13-1.
  • the water cooling duct 12-1 may not have a water cooling structure, and only the lower part of the duct may have the water cooling jacket 8a.
  • the first riser inner wall surface 13-1 is disposed immediately after the water cooling duct 12-1, and the exhaust gas in the water cooling duct 12-1 collides with the first riser inner wall surface 13-1 to cause the first riser inner wall surface 13-1.
  • the direction is changed substantially vertically upward along the inner surface of the riser 9a.
  • the exhaust gas that has been separated into solid and gas rises up the first riser 9a.
  • the solidified refractory metal salt falls as dust and is collected in the first dust collection tank 16. Then, by periodically or continuously discharging the dust collected in the first dust collection tank 16, the problem of metal salt adhesion and deposition in the exhaust duct is minimized, and the exhaust gas duct device 11. In addition, long-term stable operation of the exhaust gas treatment facility becomes possible.
  • first direction change duct 9a is not necessarily a duct (first riser 9a) that is directed substantially vertically upward, but in a direction oblique to the paper surface of FIG. 4 or a direction substantially orthogonal to the paper surface of FIG. A duct may be used.
  • first direction changing duct 9a preferably changes direction by at least 70 degrees with respect to the horizontal flow direction of the exhaust gas immediately after the water cooling duct 12-1.
  • an inverted J-shaped duct 10a is disposed in the direction of reversing and descending, connected to the top of the first riser 9a.
  • the first riser 9a is provided with a spray nozzle 12-2a
  • the inverted J-shaped duct 10a is provided with a spray nozzle 12-2b.
  • a second dust collecting tank 13-2 is disposed at the lowermost part of the inverted J-shaped duct 10a.
  • the second dust collection tank 13-2 serves as the second collision part.
  • the exhaust gas is cooled as it rises by the first riser 9a and descends by the subsequent inverted J-shaped duct 10a, and the cooled exhaust gas enters the second dust collection tank (second collision part) 13-2. collide.
  • the second dust collection tank 13-2 is disposed in a horizontal duct 9b that changes the direction of the exhaust gas after the collision, and collects the solidified low-temperature metal salt.
  • the low-melting-point metal salt that cannot be solidified by the first cooling unit 12-1 and solid-gas separation by the first collision unit 13-1 is solidified and solid-gas separated. In this manner, the low melting point metal salt can be collected and recovered in the second dust collection tank 13-2.
  • the inner walls of the water-cooled duct 12-1, the first riser 9a, and the inverted J-shaped duct 10a are covered with a refractory 15, and the water-cooled duct 12-1, the first riser 9a, and the J-shaped duct 10a Damage due to heat is prevented.
  • the water-cooled duct 12-1 has an inner surface temperature of 600 at the lower part of the refractory 15 where the dust easily adheres. It is configured in consideration of the type and thickness of the refractory so that the temperature is not higher than ° C., preferably not higher than 500 ° C.
  • the horizontal duct 9b has a second riser 10b for guiding the exhaust gas collided with the second dust collecting tank 13-2 upward, and the exhaust gas is directed downward after the second riser 10b.
  • a descending duct 10c that is lowered to a horizontal exhaust duct 10d is connected to a subsequent exhaust gas treatment facility.
  • An air preheater 17 is interposed in the descending duct 10c.
  • At least one of the water cooling duct 12-1, the first riser 9a, the J-shaped duct 10a, and the second riser 10b is provided with an air release valve (not shown).
  • this air release valve should be installed at the highest position of the exhaust gas duct, such as the top of the first riser 9a and the top between the second riser 10b and the descending duct 10c. Is more preferable.
  • the exhaust gas discharged from the rotary hearth furnace 1 is introduced into the water cooling duct 12-1 disposed horizontally through the exhaust gas duct 8.
  • the water cooling duct 12-1 By rapidly cooling the exhaust gas to the first cooling temperature by the water cooling duct 12-1, a part of the refractory metal salt in the exhaust gas is solidified, and the exhaust gas immediately after cooling is straightened, so that the inner wall surface of the first riser Collide with 13-1. Thereby, the solidified refractory metal salt falls and is collected in the first dust collecting tank 16.
  • the exhaust gas after the collision changes its direction and rises substantially vertically upward along the first riser 9a, and is cooled by the fluid ejected from the spray nozzle 12-2a. Thereafter, the exhaust gas further reverses through the top of the first riser 9a, descends through the inverted J-shaped duct 10a, and is again cooled by the fluid jetted from the spray nozzle 12-2b. It is cooled to a further lower second cooling temperature. Thereby, the low melting-point metal salt in exhaust gas solidifies.
  • the first cooling temperature and the second cooling temperature at which the exhaust gas is cooled by the water cooling duct 12-1 and the spray nozzles 12-2a and 12-2b are changed depending on the type of the metal salt in the exhaust gas. It is important that it is possible.
  • the first cooling temperature may be in the range of 1000 to 1200 ° C.
  • the second cooling temperature may be in the range of 450 to 900 ° C.
  • cooling by the spray nozzles 12-2a and 12-2b can be performed by using a fluid obtained by combining one or more of inert gas, water in air and air, or a combination of two or more directly into the exhaust gas. It is preferable to carry out by supplying directly.
  • the spray nozzles 12-2a and 12-2b may be disposed in either the first riser 9a or the inverted J-shaped duct 10a.
  • the cooled exhaust gas descends along the inverted J-shaped duct 10a and collides with the second dust collection tank 13-2, so that the low melting point metal salt in the exhaust gas is in the second dust collection tank 13-. 2 is collected.
  • the exhaust gas after the collision is changed in the horizontal direction along the horizontal duct 9b, further rises substantially vertically upward along the first riser 10b, reaches the top, and further descends substantially vertically downward by the descending duct 10c. Head for.
  • the dust collected in the first dust collection tank 16 and the second dust collection tank 13-2 is discharged continuously or periodically according to the collection efficiency and the tank capacity.
  • a dust discharge method continuous discharge by a scraper type discharge device can be applied.
  • the exhaust gas temperature is high, it is easier and more reliable to discharge by a water seal type that can be discharged as a slurry rather than a mechanical type.
  • the exhaust gas exchanges heat with the air C introduced into the air preheater 17 by the air preheater 17 interposed in the descending duct 10c.
  • the heat-exchanged preheated air C ′ is used as combustion air for a combustion burner that heats the rotary hearth furnace 1.
  • the exhaust gas is further cooled by a cooler (not shown) through the horizontal duct 10d, collected by a dust collector, and discharged to the atmosphere through an exhaust fan.
  • FIG. 5 is a schematic diagram showing an outline of an exhaust gas duct device for a rotary hearth furnace body according to a comparative example of the present invention.
  • This exhaust gas duct device 11a is connected to an exhaust gas duct 8 that communicates with the exhaust gas discharge chamber 7 of the rotary hearth furnace 1, and a V-shaped duct 18 that sucks the exhaust gas in an inverted V shape, and as the exhaust gas descends.
  • a cooler 19 for cooling the exhaust gas and a preheater 20 are provided.
  • the preheater 20 preheats air by an air preheater 17 that exchanges heat with the exhaust gas after cooling. Further, although not shown, a dust collector that collects dust and an exhaust fan that sucks exhaust gas after dust collection and releases it to the atmosphere are provided.
  • the continuous operation was performed using the exhaust gas duct device 11a of the rotary hearth furnace 1 having such a configuration.
  • exhaust gas at 1300 ° C. discharged from the rotary hearth furnace 1 is sucked into the V-shaped duct 18 and introduced into the cooler 19 to be cooled. Thereafter, the cooled exhaust gas exchanges heat with the air C in the preheater 20, passes through a dust collector, and is discharged to the atmosphere by an exhaust fan.
  • the exhaust gas temperature measured at the outlet of the cooler 19 was 726 ° C. Then, 23 days after the start of continuous operation, the preheater 20 was blocked, so the exhaust gas duct device 11a was stopped. The heat recovery efficiency after 23 days of continuous operation in the preheater 20 was reduced by 37.9% compared to immediately after the start of operation.
  • the amount of dust converted to unit time was as shown in Table 1.
  • the exhaust gas temperature at the outlet of the cooler 19 is 726 ° C. due to the cooling of the exhaust gas in the cooler 19.
  • the temperature of the child is sufficient for solidifying the high melting point metal salt, but since it is one-stage cooling, the temperature does not drop any further, and it can be said that the solidification of the low melting point metal salt in the exhaust gas is insufficient.
  • the amount of dust inside the exhaust gas duct device 11a is relatively small at the top of the V-shaped duct 18, as shown in Table 1, although no dust collecting device is provided.
  • the configuration of the exhaust gas duct device of the rotary hearth furnace used as an example is the same as the configuration of the exhaust gas duct device 11 according to the embodiment of the present invention described with reference to FIG. Moreover, the continuous operation which concerns on the Example using the exhaust gas duct apparatus of a rotary hearth furnace was performed similarly to the operating method of the exhaust gas duct apparatus 11 which concerns on embodiment of this invention demonstrated using FIG.
  • exhaust gas begins to rise along the first riser 9a after colliding with the first riser inner wall surface 13-1.
  • the exhaust gas temperature at this position was 1081 ° C.
  • the exhaust gas starts to move along the horizontal duct 9b after descending in the inverted J-shaped duct and colliding with the second dust collecting tank liquid level 13-2.
  • the exhaust gas temperature at this position was 685 ° C.
  • the exhaust gas duct device 11 was able to operate continuously for 180 days without closing the inside of the duct after the start of operation. In addition, the heat recovery efficiency after 180 days of continuous operation in the air preheater 17 could be suppressed to a decrease of 4.8% even immediately after the start of operation. After the operation was stopped, the dust accumulation in the exhaust gas duct device 11 was inspected, and the amount of dust converted into unit time was as shown in Table 2.
  • the refractory metal salt in the exhaust gas is solidified by the first cooling part by the water cooling duct 12-1, and then the spray nozzles 12-2a, 12
  • the low-melting point metal salt in the exhaust gas is solidified by the second-stage cooling section by -2b, and effective solidification in two stages is possible. Therefore, as shown in Table 2, the amount of dust collected in the first dust collection tank 16 and the second dust collection tank 13-2 is very large.
  • the dust collected in the dust collection tanks 16 and 13-2 is continuously or periodically discharged, the exhaust gas passage area in the exhaust gas duct device 11 is not blocked.
  • the air preheater 17 is interposed in the descending duct 10c where the exhaust gas descends, the dust easily falls down together with the exhaust gas. Accordingly, the amount of dust staying on or adhering to the upper portion of the air preheater 17 was as small as 0.5 kg / h. Also, in the other ducts in the exhaust gas duct device 11, the dust that stayed or adhered was very small amount.
  • the cooling unit that cools the exhaust gas discharged from the rotary hearth furnace and solidifies the metal salt in the exhaust gas
  • the exhaust gas cooling temperature at the time of cooling by the cooling unit can be changed depending on the type of the metal salt in the exhaust gas.
  • the second cooling unit cools the exhaust gas by directly supplying a combination of any one or more of inert gas, water in the air state, and air.
  • the melting point metal salt can be more effectively solidified.
  • rotary hearth furnace 2 outer peripheral wall 3: inner peripheral wall 4: ceiling part 5: rotary hearth 5a: furnace body frame 5b: hearth insulation and refractory 6: raw material for granular metal iron 7: exhaust gas discharge chamber 8 : Exhaust gas duct 8a: Water cooling jacket 9a: First riser (first direction change duct) 9b: Horizontal duct (second direction change duct) 10a: inverted J-shaped duct 10b: second riser 10c: descending duct 10d: horizontal duct 11, 11a: exhaust gas duct device 12: cooling section 12-1: water cooling duct (first cooling section) 12-2a, 12-2b: Spray nozzle (second cooling unit) 13: Colliding part 13-1: Inner wall surface of the first riser (first colliding part) 13-2: Second dust collection tank (second collision part) 14: Direction change duct 15: Refractory material 15a: Wear-resistant refractory material 16: First dust collection tank 17: Air preheater 18: V-shaped duct 19: Cooler 20:

Abstract

 本発明の目的は、排ガス量の増加や排ガス温度の上昇に伴う問題を回避しつつダストを捕集可能であると共に、熱効率の良い長期の安定稼動が可能な、炭素質還元材と酸化鉄含有物質を含む原料を加熱して還元鉄または粒状金属鉄を製造する回転炉床炉の排ガスダクト装置及びその運転方法を提供することである。本発明に係る、回転炉床炉の排ガスダクト装置11において、前記回転炉床炉の排ガスダクト8には、前記回転炉床炉から排出される排ガスを冷却して排ガス中の金属塩を固化させる冷却部12と、冷却直後に前記排ガスを衝突させて固化された前記金属塩を落下させる衝突部13と、衝突後の排ガスを前記金属塩の落下方向以外の方向に導く方向転換ダクト14が、これらの順に2段配置されている。

Description

回転炉床炉の排ガスダクト装置及びその運転方法
 本発明は、回転炉床炉の排ガスダクト装置及びその運転方法に関する。より詳しくは、本発明は、炭素質還元材と酸化鉄含有物質を含む原料を加熱して還元鉄または粒状金属鉄を製造する回転炉床炉内で発生した排ガスを処理するため、集塵設備に至るダクト中間部に設けられた排ガスダクト装置及びその運転方法に関する。
 従来、外周壁、内周壁、及びこれらの壁の間に配置された円環状の回転炉床を備える回転炉床炉が知られている。前記回転炉床は、一般に、円環状の炉体フレーム、前記炉体フレーム上に配置された炉床断熱材、及びこの炉床断熱材上に配置された耐火物により構成される。
 この様な構造を有する回転炉床炉は、鋼材ビレット等金属の加熱処理あるいは可燃性廃棄物の燃焼処理等に用いられるが、近年、前記回転炉床炉を用いて鉄酸化物から還元鉄を製造する方法が注目されている。このような回転炉床炉による還元鉄製造プロセスの一例を、前記回転炉床炉の設備構成の概略を示す図6を参照しながら説明する。
 先ず、鉄酸化物(鉄鉱石、製鋼ダスト等)及び炭素質還元剤(石炭、コークス等)が混合されて造粒されることにより、ペレットまたはブリケット(塊成物)が製造される。このペレットまたはブリケットは、これらペレットまたはブリケット内から発生する可燃性揮発分が発火しない程度の温度域に加熱されることにより、付着水分が除去されて乾燥ペレットまたは乾燥ブリケットとなる。
 そして、この乾燥ペレットまたは乾燥ブリケット(還元鉄原料24)が、適当な装入装置23を用いて回転炉床炉26中に供給され、回転炉床21上にペレットまたはブリケット層を形成する。このペレットまたはブリケット層は、黒矢印方向に回転しながら、炉内上方に設置した燃焼バーナ27の燃焼により輻射加熱されて還元し、金属化を進める。次いで、金属化した還元鉄25は、冷却器28により冷却され、排出時および排出後のハンドリングに耐える機械的強度を発現させてから排出装置22により炉外に排出される。金属化した還元鉄25を排出後、直ちに乾燥ペレットまたは乾燥ブリケット(還元鉄原料24)が装入され、上記のプロセスを繰り返して還元鉄が製造される(例えば、特許文献1参照)。
 この様な還元鉄の製造に用いられる回転炉床炉において、炉内で発生した排ガスは、回転炉床炉の円周上に設けられた排ガス排出領域から、この排ガス排出領域の天井部に接続された排気ダクトに誘引される。排気ダクトに誘引された排ガスは、前記排気ダクトの途中や後流に設けられた排ガス処理設備によって処理された後、系外に排出される。しかし、還元鉄原料の還元または溶融過程における種々の揮発不純物発生に伴って、排気ダクトの閉塞や腐食、または耐火物の損傷が発生することが知られている。
 そこで、この様な従来例に係る排ガス処理装置の操業方法として、排ガス吸引ダクトの閉塞や内張耐火物の損傷を防止する方法が提案されている(特許文献2参照)。この方法では、回転炉床炉から排出される1100℃以上の排ガスに、不活性ガス、気水状態の水、空気の何れか1種以上を供給することにより、排ガス吸引ダクト内の排ガス温度が900~1100℃となっている。
 更に近年、高純度の粒状金属鉄を製造するプロセスが開発されている。このプロセスでは、炭素質還元材と酸化鉄含有物質を含む原料が回転炉床炉等の還元溶融炉内で加熱され、この原料中の酸化鉄を固体還元した後、生成する金属鉄を更に加熱して溶融させると共に、スラブ成分と分離させながら凝集させる。
 しかしながら、この粒状金属鉄を製造するプロセスにおいては、排ガス量の増加や排ガス温度の上昇という問題点がある。つまり、排ガス量が増加すると下、流の排ガスダクト装置や排ガス処理装置等の設備容量が大きくなるため、設備コストが増大するだけでなく、当然ダスト溜まりの問題に伴うランニングコストも増大する。また、排ガス温度が上昇すれば、下流の設備の耐熱性がより要求されるため、更に設備コストとランニングコストが増大することになる。
日本国特開2001-181720号公報 日本国特許第4427267号公報
 本発明の目的は、排ガス量の増加や排ガス温度の上昇に伴う問題を回避しつつダストを捕集可能であると共に、熱効率の良い長期の安定稼動が可能な、炭素質還元材と酸化鉄含有物質とを含む原料を加熱して還元鉄または粒状金属鉄を製造する回転炉床炉の排ガスダクト装置及びその運転方法を提供することである。
 上記目的を達成するために、本発明に係る回転炉床炉の排ガスダクト装置は、炭素質還元材と酸化鉄含有物質を含む原料を加熱して還元鉄または粒状金属鉄を製造する回転炉床炉の排ガスダクト装置であって、前記回転炉床炉の排ガスダクトには、前記回転炉床炉から排出される排ガスを冷却して、前記排ガス中の金属塩を固化させる冷却部と、冷却直後の前記排ガスを衝突させて、固化された前記金属塩を落下させる衝突部と、衝突後の前記排ガスを前記金属塩の落下方向以外の方向に導く方向転換ダクトと、が前記した順で二段配置されることを特徴とする。
 前記冷却部が、前記回転炉床炉から排出される排ガスを1000~1200℃の温度に冷却する第1冷却部と、衝突後の前記排ガスを更に450~900℃の温度に冷却する第2冷却部と、を有すると好ましい。
 前記衝突部が、前記第1冷却部の直後の排ガスダクト内に配設された第1衝突部と、前記第2冷却部に後続する排ガスダクト内に配設された第2衝突部と、を有すると好ましい。
 前記第1冷却部が、水冷ダクトを含むと好ましい。
 前記水冷ダクトが、前記第1衝突部の直前に水平に配置されると好ましい。
 前記水冷ダクトの上部に水冷構造が設けられないと好ましい。
 前記水冷ダクトが内張耐火物構造を有し、ダストの付着し易い前記水冷ダクトの下部における前記内張耐火物構造は、内表面温度が600℃以下となるように構成されると好ましい。
 前記第2冷却部が、前記排ガスダクト内に流体を直接噴射すると好ましい。
 前記方向転換ダクトが、略垂直上方に向かう第1ライザーを含み、前記第1衝突部が、前記第1ライザー内壁面を含み、少なくとも前記水冷ダクトの直後の排ガスが衝突する第1ライザー内壁面が、耐摩耗性耐火物により被覆されると好ましい。
 前記方向転換ダクトが、前記第1ライザー頂部に接続して下降する逆J字状ダクトの最下部に、略水平に配置された水平ダクトを含み、前記第2衝突部が、前記水平ダクト内に配設されたダスト捕集槽であり、前記第2冷却部が、前記第1ライザー及び前記逆J字状ダクトの少なくともいずれかに配設され、前記第2冷却部により冷却された前記排ガスが、前記第2衝突部に衝突すると好ましい。
 前記第2衝突部に衝突した排ガスが第2ライザーを介して上昇され、前記第2ライザーに後続する下降ダクト内に空気予熱器が介設されると好ましい。
 本発明に係る回転炉床炉の排ガスダクト装置の運転方法においては、前記排ガスを冷却する前記冷却部の冷却温度を、前記排ガス中の前記金属塩の種類によって変える。
 本発明に係る回転炉床炉の排ガスダクト装置の運転方法においては、前記第2冷却部が、不活性ガス、気水状態の水、空気のうちの何れか1種以上を前記排ガスに直接供給することにより前記排ガスを冷却すると好ましい。
 本発明に係る回転炉床炉の排ガスダクト装置によれば、排ガス中に含まれる金属塩が二段階で固化されて捕集されることにより、前記金属塩の固化と捕集効率が向上し、排ガスダクト内での付着や堆積の問題が極小化され、排ガスダクト装置の長期的な安定稼動が可能となる。
 また、本発明の好ましい態様によれば、前記冷却部が、前記回転炉床炉から排出される排ガスを1000~1200℃の温度に冷却する第1冷却部と、衝突後の前記排ガスを更に450~900℃の温度に冷却する第2冷却部と、を有するので、排ガス中に含まれる高融点金属塩及び低融点金属塩の固化が、二段階の冷却温度に分けて効果的に実施可能である。
 更に、本発明の好ましい態様によれば、前記衝突部が、前記第1冷却部の直後の排ガスダクト内に配設された第1衝突部と、前記第2冷却部に後続する排ガスダクト内に配設された第2衝突部と、を有するので、排ガス中に含まれる前記金属塩の固化が更に効果的に実施可能である。
 一方、本発明の好ましい態様によれば、前記第1冷却部が水冷ダクトを含むので、ダクトサイズを極小化することが可能となり、ダクトや耐火物等の設備コストが抑止でき、メンテナンスも容易になる。
 また、本発明の好ましい態様によれば、前記水冷ダクトが、前記第1衝突部の直前に水平に配置されるので、前記水冷ダクトが前記第1衝突部と組み合わされて、排ガス中に含まれる前記高融点金属塩の固化を確実に行える。
 更に、本発明の好ましい態様によれば、前記水冷ダクトの上部に水冷構造が設けられないので、ダストの付着し難い水冷ダクト上部の水冷構造が省略でき、設備コストの低減が可能となる。
 また更に、本発明の好ましい態様によれば、前記水冷ダクトが内張耐火物構造を有し、ダストの付着し易い前記水冷ダクトの下部における前記内張耐火物構造は、内表面温度が600℃以下となるように構成されるので、高融点塩を完全に固化させることができる。
 本発明の好ましい態様によれば、前記第2冷却部が、前記排ガスダクト内に流体を直接噴射することによって、排ガスを直接冷却できるため、冷却効率が良い。
 また、本発明の好ましい態様によれば、前記方向転換ダクトが、略垂直上方に向かう第1ライザーを含み、前記第1衝突部が、前記第1ライザー内壁面を含み、少なくとも前記水冷ダクトの直後の排ガスが衝突する第1ライザー内壁面が、耐摩耗性耐火物により被覆されるので、排ガス中に含まれるダストによる前記耐火物の摩耗を極力抑えることができる。
 そして、本発明の好ましい態様によれば、前記方向転換ダクトが、前記第1ライザー頂部に接続して下降する逆J字状ダクトの最下部に、略水平に配置された水平ダクトを含み、前記第2衝突部が、前記水平ダクト内に配設されたダスト捕集槽であり、前記第2冷却部が、前記第1ライザー及び前記逆J字状ダクトの少なくともいずれかに配設され、前記第2冷却部により冷却された前記排ガスが、前記第2衝突部に衝突する。これにより、前記第1冷却部による固化及び前記第1衝突部による固気分離が不可能であった低融点金属塩が、固化されると共に固気分離し、ダストとして回収可能となる。
 更に、本発明の好ましい態様によれば、前記第2衝突部に衝突した排ガスが第2ライザーを介して上昇され、前記第2ライザーに後続する下降ダクト内に空気予熱器が介設されるので、前記第1衝突部及び第2衝突部による2段の衝突によってダストが充分に除去されている。したがって、予熱空気の温度の上昇が図れる結果、燃焼バーナの燃料低減と排ガス処理装置のコンパクト化が可能となる。
 一方、本発明の回転炉床炉の排ガスダクト装置の運転方法の一態様によれば、前記排ガスを冷却する前記冷却部の冷却温度を、前記排ガス中の前記金属塩の種類によって変えるので、金属塩の固化を効果的かつ確実に実施できる。
 また、本発明の回転炉床炉の排ガスダクト装置の運転方法の一態様によれば、前記第2冷却部が、不活性ガス、気水状態の水、空気のうちの何れか1種以上を前記排ガスに直接供給することにより前記排ガスを冷却するので、排ガス中に含まれる低融点金属塩を更に効果的に固化させることができる。
本発明の実施の形態に係る回転炉床炉本体の外観を示す斜視図である。 図1の回転炉床炉本体を平面視した平面図である。 図2の矢視A-Aを拡大して示す立断面図である。 図3の矢印Bに後続する排ガスダクト装置を示す模式的立断面図である。 本発明の比較例に係る回転炉床炉の排ガスダクト装置の概略を示す模式図である。 従来例に係る回転炉床炉の設備構成の概略を示す平面図である。
 先ず、本発明の実施の形態に係る回転炉床炉の排ガスダクト装置について、粒状金属鉄を製造する回転炉床炉の排ガスダクト装置を態様例として、図1~図4を参照しながら説明する。
 図1は本発明の実施の形態に係る回転炉床炉本体の外観を示す斜視図、図2は図1の回転炉床炉本体を平面視した平面図、図3は図2の矢視A-Aを拡大して示す立断面図、図4は図3の矢印Bに後続する排ガスダクト装置を示す模式的立断面図である。
 この回転炉床炉1は、外周壁2と、その内側に設けられる内周壁3と、これら外周壁2と内周壁3との間の空間を上方から覆う天井部4と、前記外周壁2と内周壁3との間に配置される円環状の回転炉床5と、を備える。前記外周壁2、前記内周壁3、及び前記天井部4は主として断熱材により構成されている。
 前記回転炉床5は、図示されない駆動装置によって、外周壁2と内周壁3との間を通りながら、円周上を回転するように駆動される。この回転炉床5は、円環状の炉体フレーム5aと、この炉体フレーム5a上に配設された炉床断熱材や耐火物5bと、で構成される。そして、この回転炉床5上には、図示されない装入口から装入された、炭素質還元材と酸化鉄含有物質を含む原料(以下、還元鉄または粒状金属鉄用原料と称す)6が位置している。この還元鉄または粒状金属鉄用原料6は、回転炉床5の回転に伴って炉内で加熱処理及び還元処理または還元溶融処理される。これらの処理により、還元鉄または粒状金属鉄が製造される。
 この回転炉床炉1の天井部4には、排ガス排出室7が設けられている。この排ガス排出室7は、この天井部4の周方向(即ち、回転炉床5の回転方向)の一部を構成する。この排ガス排出室7は、前記天井部4の他の部分よりも上向きに突出していて、前記天井部4の他の部分の下面よりも一段高い下面を有している。そして、回転炉床炉1から排出される排ガスを、以下に述べる排ガスダクト装置まで導出するための排ガスダクト8が、排ガス排出室7に連通するように前記排ガス排出室7に水平向きに接続されている。
 本発明の実施の形態に係る回転炉床炉の排ガスダクト装置11は、前記排ガスダクト8に後続すると共に、図4に図示されない冷却器、集塵機及び排気ファン等の排ガス処理設備に至るまでの中間ダクト部に設けられた装置である。
 そして、この排ガスダクト装置11には、前記回転炉床炉1から排出される排ガスを急冷して、この排ガス中の金属塩を固化させる冷却部12と、冷却直後に前記排ガスを衝突させて、固化された前記金属塩を落下させる衝突部13と、衝突後の排ガスを前記金属塩の落下方向以外に導く方向転換ダクト14と、が配設されている。
 前記冷却部12は、水冷ダクト(第1冷却部)12-1と、スプレイノズル(第2冷却部)12-2aおよび12-2bと、からなる。水冷ダクト12-1は、前記回転炉床炉1から排出される1200℃以上の排ガスを1000~1200℃に冷却することにより高融点金属塩を固化させる。スプレイノズル12-2aおよび12-2bは、衝突後の前記排ガスの温度を更に450~900℃に冷却することにより低融点金属塩を固化させる。
 粒状金属鉄原料を還元処理する過程で生成し、前記排ガス中に含まれる金属塩(例えば、NaSO,KSO,NaFe(SO),KFe(SO)等)の融点は、450~1200℃の広範囲にわたる。したがって、一段階の冷却で多くの金属塩を固化することは不可能であるため、本実施形態では、前述したように、回転炉床炉1からの排出ガスを二段階に分けて冷却する。
 また、前記衝突部13については、詳細は後述するが、前記水冷ダクト12-1の直後の排ガスダクト内に配設された第1ライザー内壁面(第1衝突部)13-1と、スプレイノズル12-2a,12-2bに後続する排ガスダクト内に配設された第2ダスト捕集槽(第2衝突部)13-2と、からなる。更に、前記方向転換ダクト14は、前記第1ライザー内壁面13-1に衝突した排ガスを略垂直上方に方向転換させる第1ライザー(第1方向転換ダクト)9aと、前記第2ダスト捕集槽13-2に衝突した排ガスを水平方向に方向転換させる水平ダクト(第2方向転換ダクト)9bと、からなる。
 水冷ダクト12-1は水冷ジャケット8aを有し、第1ライザー内壁面13-1直前に水平に配置される。しかしながら、水冷ダクト12-1の上部にはダストが付着し難いため、水冷ダクト12-1は水冷構造を有していなくても良く、ダクトの下部のみが水冷ジャケット8aを有するものでも良い。一方、第1ライザー内壁面13-1は、この水冷ダクト12-1直後に配設されており、水冷ダクト12-1内の排ガスが第1ライザー内壁面13-1に衝突して、第1ライザー9a内面に沿って略垂直上方に方向転換するようになっている。このような排ガスダクト装置11によって、回転炉床炉1から排出される排ガスに含まれる種々の金属塩のうち、1000~1200℃の融点を有する金属塩が効果的に固化されてダストとなる。これにより、排ガスとの固気分離が効率的に行なわれる。
 固気分離された排ガスは第1ライザー9aを上昇していく。一方、固化された高融点金属塩はダストとして落下し、第1ダスト捕集槽16に捕集される。そして、この第1ダスト捕集槽16に捕集されたダストを定期的または連続的に排出することによって、排気ダクト内での金属塩の付着や堆積の問題が極小化され、排ガスダクト装置11や前記排ガス処理設備の長期的な安定稼動が可能となる。
 尚、第1方向転換ダクト9aは、必ずしも略垂直上方に向かうダクト(第1ライザー9a)でなくとも、図4紙面に対して斜交する方向、または図4紙面に対して略直交する方向のダクトでも良い。但し、前記第1方向転換ダクト9aは、水冷ダクト12-1直後の排ガスの水平流方向に対して、少なくとも70度以上方向転換することが好ましい。
 更に、前記第1ライザー9aの頂部に接続して、反転下降する方向に逆J字状ダクト10aが配設されている。第1ライザー9aにはスプレイノズル12-2aが配設され,逆J字状ダクト10aにはスプレイノズル12-2bが配設されている。また、更に、この逆J字状ダクト10aの最下部には、第2ダスト捕集槽13-2が配設されている。この第2ダスト捕集槽13-2が、前記第2衝突部としての役目を果たしている。
 そして、第1ライザー9aによる上昇、及び後続の逆J字状ダクト10aによる下降に伴って排ガスが冷却され、冷却された排ガスは、第2ダスト捕集槽(第2衝突部)13-2に衝突する。第2ダスト捕集槽13-2は、衝突後の前記排ガスを方向転換させる水平ダクト9b内に配設されており、固化された低温金属塩を捕集する。その結果、第1冷却部12-1による固化及び第1衝突部13-1による固気分離が不可能であった低融点金属塩が、固化されると共に固気分離される。このようにして、低融点金属塩を第2ダスト捕集槽13-2に捕集し、回収することが可能となる。
 一方、水冷ダクト12-1、第1ライザー9a及び逆J字状ダクト10aのダクト内壁は耐火物15により被覆されており、水冷ダクト12-1、第1ライザー9a、及びJ字状ダクト10aの熱による損傷が防止されるようになっている。これらの排気ダクト、すなわち水冷ダクト12-1、第1ライザー9a、及びJ字状ダクト10aのうち、水冷ダクト12-1は、ダストの付着し易いダクト下部の耐火物15の内表面温度が600℃以下、好ましくは500℃以下となるように、耐火物の種類と厚さを勘案して構成されている。また、少なくとも前記水冷ダクト12-1直後の排ガスが衝突する第1ライザー内壁面13-1は、耐摩耗性耐火物15aにより被覆されているので、排ガス中に含まれるダストによって前記耐火物15aの摩耗を極力抑えることができる。
 更に、前記水平ダクト9bには、第2ダスト捕集槽13-2に衝突された排ガスを上方向に導くための第2ライザー10bと、この第2ライザー10bに後続して前記排ガスを下方向に下降させる下降ダクト10cと、後続の排ガス処理設備に連結するための水平ダクト10dと、が接続されている。前記下降ダクト10c内には、空気予熱器17が介設されている。これにより、下降ダクト10c内の空気予熱器17にダストを堆積させることなく排ガスが下降するので、ダストによる閉塞のない空気予熱が可能となる。その結果、予熱空気C’の温度を上げることができ、熱回収効率も高く維持可能となる。更に、予熱空気C’の温度の上昇が図れる結果、回転炉床炉1の燃焼バーナの燃料低減と排ガス処理装置のコンパクト化が可能となる。
 尚、水冷ダクト12-1、第1ライザー9a、J字状ダクト10a及び第2ライザー10bのうち、少なくとも一つ以上には、図示されない大気開放弁を設置されることが好ましい。これにより、図示されない前記排気ファンが突然故障したとしても、回転炉床炉1から排出される排ガスを大気放出できる。排ガスダクト内のドラフトを考慮すれば、この大気開放弁は、第1ライザー9aの頂部や、第2ライザー10bと下降ダクト10cとの間の頂部等、排ガスダクトの最も高い位置に設置されることが更に好ましい。
 次に、本発明の回転炉床炉の排ガスダクト装置の運転方法に係る実施の形態を、以下、図3,4を参照しながら排ガスの流れに沿って説明する。
 先ず、回転炉床炉1から排出される排ガスが、排ガスダクト8を介して水平配置された水冷ダクト12-1に導入される。この水冷ダクト12-1によって排ガスを第1の冷却温度に急冷することにより、排ガス中の一部の高融点金属塩を固化させると共に、冷却直後の前記排ガスを直進させて、第1ライザー内壁面13-1に衝突させる。これにより、固化された前記高融点金属塩が落下して、第1ダスト捕集槽16に捕集される。
 一方、衝突後の排ガスは、方向転換して第1ライザー9aに沿って略垂直上方へ上昇しつつ、スプレイノズル12-2aから噴射された流体により冷却される。その後、排ガスは、更に第1ライザー9aの頂部を経て反転し、逆J字状ダクト10aを介して下降しつつ、再度、スプレイノズル12-2bから噴射された流体によって、前記第1の冷却温度より更に低温の第2の冷却温度にまで冷却される。これにより、排ガス中の低融点金属塩が固化する。
 ここで、前記水冷ダクト12-1及びスプレイノズル12-2a,12-2bにより排ガスが冷却される前記第1の冷却温度及び第2の冷却温度は、排ガス中の前記金属塩の種類によってそれぞれ変更可能であることが重要である。例えば、前記第1の冷却温度は1000~1200℃、前記第2の冷却温度は450~900℃の範囲であるのが良い。また、前記スプレイノズル12-2a,12-2bによる冷却は、不活性ガス、気水状態の水、空気のうちの何れか1種、または2種以上が組み合わされた流体を、直接排ガス中に直接供給することにより行われることが好ましい。尚、前記スプレイノズル12-2a,12-2bは、第1ライザー9aと逆J字状ダクト10aの何れか一方に配設されても良い。
 次いで、冷却された排ガスは、逆J字状ダクト10aに沿って下降し、第2ダスト捕集槽13-2に衝突して、排ガス中の低融点金属塩が第2ダスト捕集槽13-2に捕集される。一方、衝突後の排ガスは、水平ダクト9bに沿って水平方向に方向転換し、更に、第1ライザー10bに沿って略垂直上方へ上昇して頂部に至り、更に下降ダクト10cにより略垂直下方向に向かう。前記第1ダスト捕集槽16や第2ダスト捕集槽13-2に捕集されたダストは、捕集効率と槽容量に応じて連続的または定期的に排出される。ダストの排出方法としては、スクレーパ式排出装置による連続排出を適用できる。しかしながら、排ガス温度が高い場合は、機械式よりむしろ、スラリーとして排出可能な水封式による排出の方が容易で確実である。
 そして、排ガスは、下降ダクト10c内に介設された空気予熱器17によって、この空気予熱器17に投入された空気Cと熱交換する。熱交換された予熱空気C’は、回転炉床炉1を加熱する燃焼バーナの燃焼空気として使用される。一方、熱交換後の排ガスは、水平ダクト10dを経て図示されない冷却器により更に冷却された後、集塵機により集塵処理され、排気ファンを経て大気放出される。
<比較例>
 先ず、比較例に係る回転炉床炉の排ガスダクト装置につき、図5を参照しながら説明する。図5は、本発明の比較例に係る回転炉床炉本体の排ガスダクト装置の概略を示す模式図である。
 この排ガスダクト装置11aは、回転炉床炉1の排ガス排出室7に連通する排ガスダクト8に接続されており、排ガスを逆V字状に吸引するV字ダクト18と、排ガスの下降に伴ってこの排ガスを冷却する冷却器19と、予熱器20と、を備える。予熱器20は、冷却後の排ガスと熱交換する空気予熱器17によって、空気を予熱する。また、後続して、図示は省略するが、ダストを集塵する集塵機と、集塵後の排ガスを吸引して大気放出する排気ファンと、が設けられている。
 このような構成からなる回転炉床炉1の排ガスダクト装置11aを用いて、連続稼動運転を行なった。連続稼動運転においては、回転炉床炉1から排出される1300℃の排ガスが、V字ダクト18に吸引され、冷却器19に導入されて冷却される。その後、冷却された排ガスは予熱器20内において空気Cと熱交換後、集塵機を経て排気ファンにより大気に排出される。
 上記連続稼働中、冷却器19の出口において測定された排ガス温度は726℃であった。そして、連続運転開始して23日経過後、前記予熱器20が閉塞したため、排ガスダクト装置11aは運転停止した。この予熱器20における23日間連続稼動後の熱回収効率は、稼動開始直後と比較して37.9%も低下した。運転停止後、排ガスダクト装置11a内のダストの堆積状況を検査したところ、単位時間に換算したダスト量は、表1に示される通りであった。
Figure JPOXMLDOC01-appb-T000001
 すなわち、本比較例に係る排ガスダクト装置11aとその運転結果によれば、冷却器19における排ガスの冷却により、冷却器19出口における排ガス温度が726℃となっている。子の温度は、高融点金属塩の固化には充分であるが、一段階の冷却であるためこれ以上の温度低下には至らず、排ガス中の低融点金属塩の固化は不充分と言える。その結果、ダスト捕集装置が設けられていないのにもかかわらず、排ガスダクト装置11aの内部のダスト量は、表1に示されるように、V字ダクト18の頂部においては比較的少ない。しかしながら、空気予熱器17は、排ガスが上昇する予熱器20の内部に配設されているので、空気予熱器17の上部等にダストが滞留し易い。結果として、空気予熱器17に付着したダストは多量であった。
<実施例>
 一方、実施例として用いられる回転炉床炉の排ガスダクト装置の構成は、図4を用いて説明した本発明の実施の形態に係る排ガスダクト装置11の構成と同一である。また、図4を用いて説明した本発明の実施の形態に係る排ガスダクト装置11の運転方法と同様に、回転炉床炉の排ガスダクト装置を用いた実施例に係る連続運転を行なった。
 実施例に係る上記連続運転結果につき、図4を参照しながら以下説明する。運転中、排ガスは、第1ライザー内壁面13-1に衝突した後、第1ライザー9aに沿って上昇し始める。この位置での排ガス温度は1081℃であった。また、排ガスは、逆J字状ダクト内を下降して第2ダスト捕集槽液面13-2に衝突した後、水平ダクト9bに沿って移動し始める。この位置での排ガス温度は685℃であった。
 排ガスダクト装置11は、運転開始後、ダクト内部を閉塞することもなく、180日間連続稼動できた。また、空気予熱器17における180日間連続稼動後の熱回収効率は、稼動開始直後と比較しても4.8%の低下に抑えることができた。稼動停止後、排ガスダクト装置11内のダストの堆積状況を検査し、単位時間に換算したダスト量は、表2に示される通りであった。
Figure JPOXMLDOC01-appb-T000002
 即ち、本実施例に係る排ガスダクト装置11とその運転結果によれば、水冷ダクト12-1による第1冷却部によって排ガス中の高融点金属塩が固化し、次いで、スプレイノズル12-2a,12-2bによる第2段冷却部によって排ガス中の低融点金属塩が固化する、二段階の効果的な固化が可能である。したがって、表2に示されるように、第1ダスト捕集槽16及び第2ダスト捕集槽13-2におけるダスト捕集量は、非常に多量である。
 しかしながら、これらダスト捕集槽16,13-2内に捕集されたダストは、連続的または定期的に排出されるため、排ガスダクト装置11内の排ガス通過領域を閉塞させることはない。一方、空気予熱器17は、排ガスが下降する下降ダクト10c内に介設されているので、ダストは排ガスと共に下方に落下し易い。したがって、空気予熱器17の上部等に滞留したり付着したりしたダストは、0.5kg/hと少量であった。また、排ガスダクト装置11内の他のダクト内においても、滞留したり付着したりしたダストは極めて少量であった、
 以上説明した通り、本発明に係る回転炉床炉の排ガスダクト装置においては、前記回転炉床炉から排出される排ガスを冷却して排ガス中の金属塩を固化させる冷却部と、冷却直後に前記排ガスを衝突させて固化された前記金属塩を落下させる衝突部と、衝突後の排ガスを前記金属塩の落下方向以外の方向に導く方向転換ダクトと、が上記した順で2段、排ガスダクトに配置されている。このようにして、排ガス中に含まれる前記金属塩が二段階の冷却温度で固化し、捕集されることにより、前記金属塩の固化と捕集効率が向上し、排ガスダクト内での付着や堆積の問題が極小化され、長期的な安定稼動が可能となる。
 また、本発明に係る回転炉床炉の排ガスダクト装置の運転方法によれば、前記冷却部により冷却する際の排ガス冷却温度が、排ガス中の金属塩の種類によって変えられるので、金属塩の固化が、効果的かつ確実に実施可能である。更に、前記第2冷却部が、不活性ガス、気水状態の水、空気のうちの何れか1種以上を組み合わせて、直接供給することにより前記排ガスを冷却するので、排ガス中に含まれる低融点金属塩を更に効果的に固化させることができる。
 以上、本発明の実施形態および実施例について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能なものである。本出願は2010年9月2日出願の日本特許出願(特願2010-196415)に基づくものであり、その内容はここに参照として取り込まれる。
 1:回転炉床炉
 2:外周壁
 3:内周壁
 4:天井部
 5:回転炉床
 5a:炉体フレーム
 5b:炉床断熱材や耐火物
 6:粒状金属鉄用原料
 7:排ガス排出室
 8:排ガスダクト
 8a:水冷ジャケット
 9a:第1ライザー(第1方向転換ダクト)
 9b:水平ダクト(第2方向転換ダクト)
 10a:逆J字状ダクト
 10b:第2ライザー
 10c:下降ダクト
 10d:水平ダクト
 11,11a:排ガスダクト装置
 12:冷却部
 12-1:水冷ダクト(第1冷却部)
 12-2a,12-2b:スプレイノズル(第2冷却部)
 13:衝突部
 13-1:第1ライザー内壁面(第1衝突部)
 13-2:第2ダスト捕集槽(第2衝突部)
 14:方向転換ダクト
 15:耐火物
 15a:耐摩耗性耐火物
 16:第1ダスト捕集槽
 17:空気予熱器
 18:V字ダクト
 19:冷却器
 20:予熱器

Claims (15)

  1.  炭素質還元材と酸化鉄含有物質を含む原料を加熱して還元鉄または粒状金属鉄を製造する回転炉床炉の排ガスダクト装置であって、
     前記回転炉床炉の排ガスダクトには、
     前記回転炉床炉から排出される排ガスを冷却して、前記排ガス中の金属塩を固化させる冷却部と、
     冷却直後の前記排ガスを衝突させて、固化された前記金属塩を落下させる衝突部と、
     衝突後の前記排ガスを前記金属塩の落下方向以外の方向に導く方向転換ダクトと、が前記した順で二段配置されることを特徴とする回転炉床炉の排ガスダクト装置。
  2.  請求項1に記載の回転炉床炉の排ガスダクト装置であって、
     前記冷却部が、前記回転炉床炉から排出される排ガスを1000~1200℃の温度に冷却する第1冷却部と、衝突後の前記排ガスを更に450~900℃の温度に冷却する第2冷却部と、を有することを特徴とする回転炉床炉の排ガスダクト装置。
  3.  請求項2に記載の回転炉床炉の排ガスダクト装置であって、
     前記衝突部が、前記第1冷却部の直後の排ガスダクト内に配設された第1衝突部と、前記第2冷却部に後続する排ガスダクト内に配設された第2衝突部と、を有することを特徴とする回転炉床炉の排ガスダクト装置。
  4.  請求項2または3に記載の回転炉床炉の排ガスダクト装置であって、
     前記第1冷却部が、水冷ダクトを含むことを特徴とする回転炉床炉の排ガスダクト装置。
  5.  請求項4に記載の回転炉床炉の排ガスダクト装置であって、
     前記水冷ダクトが、前記第1衝突部の直前に水平に配置されることを特徴とする回転炉床炉の排ガスダクト装置。
  6.  請求項5に記載の回転炉床炉の排ガスダクト装置であって、
     前記水冷ダクトの上部に水冷構造が設けられないことを特徴とする回転炉床炉の排ガスダクト装置。
  7.  請求項4に記載の回転炉床炉の排ガスダクト装置であって、
     前記水冷ダクトが内張耐火物構造を有し、
     ダストの付着し易い前記水冷ダクトの下部における前記内張耐火物構造は、内表面温度が600℃以下となるように構成されることを特徴とする回転炉床炉の排ガスダクト装置。
  8.  請求項2に記載の回転炉床炉の排ガスダクト装置であって、
     前記第2冷却部が、前記排ガスダクト内に流体を直接噴射することを特徴とする回転炉床炉の排ガスダクト装置。
  9.  請求項4に記載の回転炉床炉の排ガスダクト装置であって、
     前記方向転換ダクトが、略垂直上方に向かう第1ライザーを含み、
     前記第1衝突部が、前記第1ライザー内壁面を含み、
     少なくとも前記水冷ダクトの直後の排ガスが衝突する第1ライザー内壁面が、耐摩耗性耐火物により被覆されることを特徴とする回転炉床炉の排ガスダクト装置。
  10.  請求項8に記載の回転炉床炉の排ガスダクト装置であって、
     前記方向転換ダクトが、前記第1ライザー頂部に接続して下降する逆J字状ダクトの最下部に、略水平に配置された水平ダクトを含み、
     前記第2衝突部が、前記水平ダクト内に配設されたダスト捕集槽であり、
     前記第2冷却部が、前記第1ライザー及び前記逆J字状ダクトの少なくともいずれかに配設され、
     前記第2冷却部により冷却された前記排ガスが、前記第2衝突部に衝突することを特徴とする回転炉床炉の排ガスダクト装置。
  11.  請求項9に記載の回転炉床炉の排ガスダクト装置であって、
     前記方向転換ダクトが、前記第1ライザー頂部に接続して下降する逆J字状ダクトの最下部に、略水平に配置された水平ダクトを含み、
     前記第2衝突部が、前記水平ダクト内に配設されたダスト捕集槽であり、
     前記第2冷却部が、前記第1ライザー及び前記逆J字状ダクトの少なくともいずれかに配設され、
     前記第2冷却部により冷却された前記排ガスが、前記第2衝突部に衝突することを特徴とする回転炉床炉の排ガスダクト装置。
  12.  請求項10に記載の回転炉床炉の排ガスダクト装置であって、
     前記ダスト捕集槽に衝突した排ガスが第2ライザーを介して上昇され、
     前記第2ライザーに後続する下降ダクト内に空気予熱器が介設されることを特徴とする回転炉床炉の排ガスダクト装置。
  13.  請求項11に記載の回転炉床炉の排ガスダクト装置であって、
     前記ダスト捕集槽に衝突した排ガスが第2ライザーを介して上昇され、
     前記第2ライザーに後続する下降ダクト内に空気予熱器が介設されることを特徴とする回転炉床炉の排ガスダクト装置。
  14.  請求項2に記載の回転炉床炉の排ガスダクト装置の運転方法であって、
     前記排ガスを冷却する前記冷却部の冷却温度を、前記排ガス中の前記金属塩の種類によって変えることを特徴とする回転炉床炉の排ガスダクト装置の運転方法。
  15.  請求項2に記載の回転炉床炉の排ガスダクト装置の運転方法であって、
     前記第2冷却部が、不活性ガス、気水状態の水、空気のうちの何れか1種以上を前記排ガスに直接供給することにより前記排ガスを冷却することを特徴とする回転炉床炉の排ガスダクト装置の運転方法。
PCT/JP2011/070032 2010-09-02 2011-09-02 回転炉床炉の排ガスダクト装置及びその運転方法 WO2012029947A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2011800420106A CN103080681A (zh) 2010-09-02 2011-09-02 转底炉的排气通道装置及其运行方法
CA2809121A CA2809121A1 (en) 2010-09-02 2011-09-02 Rotary hearth furnace exhaust gas duct apparatus and method for operating same
AU2011296931A AU2011296931A1 (en) 2010-09-02 2011-09-02 Rotary hearth furnace exhaust gas duct apparatus and method for operating same
US13/820,174 US9310133B2 (en) 2010-09-02 2011-09-02 Rotary hearth furnace exhaust gas duct apparatus and method for operating same
RU2013114443/02A RU2013114443A (ru) 2010-09-02 2011-09-02 Газоходное устройство для отходящего газа печи с вращающимся подом, и способ его эксплуатации

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010196415A JP2012052746A (ja) 2010-09-02 2010-09-02 回転炉床炉の排ガスダクト装置及びその運転方法
JP2010-196415 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012029947A1 true WO2012029947A1 (ja) 2012-03-08

Family

ID=45773021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070032 WO2012029947A1 (ja) 2010-09-02 2011-09-02 回転炉床炉の排ガスダクト装置及びその運転方法

Country Status (7)

Country Link
US (1) US9310133B2 (ja)
JP (1) JP2012052746A (ja)
CN (1) CN103080681A (ja)
AU (1) AU2011296931A1 (ja)
CA (1) CA2809121A1 (ja)
RU (1) RU2013114443A (ja)
WO (1) WO2012029947A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084524A (ja) * 2012-10-26 2014-05-12 Kobe Steel Ltd 製鉄プラントにおける熱回収システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10101090B2 (en) * 2016-07-18 2018-10-16 Owens-Brockway Glass Container Inc. Duct cleaning and valve device for furnace system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089805A (ja) * 1999-09-17 2001-04-03 Mitsubishi Heavy Ind Ltd 還元鉄の製造装置
JP2003035492A (ja) * 2001-07-23 2003-02-07 Kobe Steel Ltd 加熱炉の操業方法
JP2004243216A (ja) * 2003-02-13 2004-09-02 Jfe Steel Kk ガス清浄方法および装置
JP2008106952A (ja) * 2006-10-23 2008-05-08 Nippon Steel Engineering Co Ltd 電気炉用排ガスの冷却装置および冷却方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW502066B (en) * 1998-08-27 2002-09-11 Kobe Steel Ltd Method for operating moving hearth reducing furnace
JP2001181720A (ja) 1999-12-28 2001-07-03 Kobe Steel Ltd 回転炉床炉による還元鉄製造方法
JP4072815B2 (ja) * 2002-03-01 2008-04-09 株式会社荏原製作所 ファンスクラバー
JP2004253699A (ja) * 2003-02-21 2004-09-09 Toshiba Corp 排ガスの熱酸化分解式除害装置
JP4427267B2 (ja) 2003-04-01 2010-03-03 新日本製鐵株式会社 回転炉床炉の排ガス処理装置の操業方法
US8034283B2 (en) * 2005-10-31 2011-10-11 Kobe Steel, Ltd. Rotary hearth furnace and method of operating the same
JP4783325B2 (ja) * 2007-04-09 2011-09-28 株式会社神戸製鋼所 高温排ガスの処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089805A (ja) * 1999-09-17 2001-04-03 Mitsubishi Heavy Ind Ltd 還元鉄の製造装置
JP2003035492A (ja) * 2001-07-23 2003-02-07 Kobe Steel Ltd 加熱炉の操業方法
JP2004243216A (ja) * 2003-02-13 2004-09-02 Jfe Steel Kk ガス清浄方法および装置
JP2008106952A (ja) * 2006-10-23 2008-05-08 Nippon Steel Engineering Co Ltd 電気炉用排ガスの冷却装置および冷却方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084524A (ja) * 2012-10-26 2014-05-12 Kobe Steel Ltd 製鉄プラントにおける熱回収システム

Also Published As

Publication number Publication date
JP2012052746A (ja) 2012-03-15
RU2013114443A (ru) 2014-10-10
AU2011296931A1 (en) 2013-03-21
CA2809121A1 (en) 2012-03-08
US20130154167A1 (en) 2013-06-20
CN103080681A (zh) 2013-05-01
US9310133B2 (en) 2016-04-12

Similar Documents

Publication Publication Date Title
JP5881886B1 (ja) 電炉ダストからの鉄および亜鉛の回収方法およびその装置
CN101871025B (zh) 冶金熔渣干式处理装置及其处理方法
CN108796217B (zh) 一种含锌含铁尘泥资源化利用的装置及方法
CN201273767Y (zh) 一种多功能工业炉和包括该工业炉的连续冶炼系统
JP5541736B2 (ja) 電炉ダストからの金属回収方法及び装置
WO2010007875A1 (ja) 排ガス処理設備、および排ガス処理設備によるダスト回収方法
WO2006012781A1 (fr) Procede et systeme pour traiter une poudre ultra-fine de scorie d'acier
CN201495230U (zh) 一种液态钢渣气淬粒化装置
US7037356B2 (en) Method for operating rotary hearth type reducing furnace and rotary hearth type reducing furnace facilities
CN108754056A (zh) 一种高密度全氧短流程高效清洁炼铁工艺
CN1644720A (zh) 高富氧炼锌法
CN101864504B (zh) 一种回收利用高炉渣显热提高热风炉风温的方法
CN107190110A (zh) 一种高温熔渣干法冷却粒化余热回收系统及方法
WO2012029947A1 (ja) 回転炉床炉の排ガスダクト装置及びその運転方法
JP3732136B2 (ja) 還元鉄の製造方法および還元鉄の冷却装置
JP6896011B2 (ja) 電炉ダストからの鉄および亜鉛の回収方法およびその装置
CN205448721U (zh) 一种转底炉热dri冷却装置
CN201825962U (zh) 冶金熔渣干式处理装置
CN103088213B (zh) 一种冷却直接还原铁块的装置及方法
CN211689180U (zh) 一种微波转底炉氯化提金装置
CN210176887U (zh) 一种两段回转窑法非焦炼铁装置
CN219995876U (zh) 一种熔融还原含铜粉尘及污泥的熔炼炉及系统
CN217948178U (zh) 一种钢厂布袋除尘灰的分离回用装置
CN112143911B (zh) 含锌高炉瓦斯灰冶炼装置及冶炼方法
WO2017024535A1 (zh) 熔分炉和采用该熔分炉处理待熔分物料的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042010.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2809121

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13820174

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011296931

Country of ref document: AU

Date of ref document: 20110902

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013114443

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11821961

Country of ref document: EP

Kind code of ref document: A1