WO2012029656A1 - 非線形光学結晶の製造方法、非線形光学結晶、波長変換光学素子および紫外光照射装置 - Google Patents

非線形光学結晶の製造方法、非線形光学結晶、波長変換光学素子および紫外光照射装置 Download PDF

Info

Publication number
WO2012029656A1
WO2012029656A1 PCT/JP2011/069308 JP2011069308W WO2012029656A1 WO 2012029656 A1 WO2012029656 A1 WO 2012029656A1 JP 2011069308 W JP2011069308 W JP 2011069308W WO 2012029656 A1 WO2012029656 A1 WO 2012029656A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
nonlinear optical
optical crystal
raw material
solution
Prior art date
Application number
PCT/JP2011/069308
Other languages
English (en)
French (fr)
Inventor
吉村 政志
森 勇介
佐々木 孝友
北岡 康夫
勇児 福島
祐介 溝邉
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2012029656A1 publication Critical patent/WO2012029656A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents

Definitions

  • the present invention relates to a method for producing a nonlinear optical crystal, a nonlinear optical crystal, a wavelength conversion optical element, and an ultraviolet light irradiation apparatus.
  • the ultraviolet laser there is a method of generating ultraviolet light from a light source laser in the infrared light region by using the nonlinear optical effect of the wavelength conversion optical element a plurality of times.
  • a wavelength conversion optical element used in the final stage, etc. a cesium lithium borate represented by a chemical composition CsLiB 6 O 10 (hereinafter also referred to as “CLBO”) crystal developed by the present inventors.
  • the system crystal is a nonlinear optical crystal that can generate ultraviolet light with high efficiency.
  • the fourth harmonic (wavelength 266 nm) of the Nd: YAG laser, the fifth harmonic (wavelength 213 nm), and ultraviolet light having the same wavelength as the oscillation wavelength of the ArF excimer laser are generated with high conversion efficiency. It has been reported that it can be done.
  • Non-patent Documents 1 and 2 it has been reported that addition of a metal element is effective in suppressing optical damage.
  • the present invention provides a cesium / lithium / borate non-linear optical crystal in which a decrease in the output of ultraviolet light and deformation of the beam shape are suppressed to extend the lifetime, and the crystallization of the growing crystal is also suppressed.
  • An object of the present invention is to provide a production method, a nonlinear optical crystal, a wavelength conversion optical element, and an ultraviolet light irradiation apparatus that can be produced.
  • the first method for producing a nonlinear optical crystal of the present invention comprises: A method for producing a nonlinear optical crystal in which a different element is incorporated into a cesium / lithium / borate crystal, In the raw material melt having a stoichiometric composition of CsLiB 6 O 10, the following (A) and (B) are added to prepare a solution; A crystal growth step for growing the nonlinear optical crystal in the solution.
  • the second method for producing a nonlinear optical crystal of the present invention comprises: A method for producing a nonlinear optical crystal in which a different element is incorporated into a cesium / lithium / borate crystal, A raw material having a stoichiometric composition of CsLiB 6 O 10 is dissolved in water to form an aqueous solution. After the water in the aqueous solution is evaporated, the following (A) and (B) are added and sintered, and then the sintering is performed. A solution preparation step of preparing a solution by melting an object, A crystal growth step for growing the nonlinear optical crystal in the solution. (A) Metal oxide other than CsLiB 6 O 10 (B) At least one of alkali metal halide and alkaline earth metal halide
  • the nonlinear optical crystal of the present invention is manufactured by the manufacturing method of the present invention.
  • the wavelength conversion optical element of the present invention is a wavelength conversion optical element including a nonlinear optical crystal,
  • the nonlinear optical crystal is the nonlinear optical crystal of the present invention.
  • An ultraviolet light irradiation apparatus of the present invention is an ultraviolet light irradiation apparatus that includes a laser light source and a wavelength conversion optical element, and generates ultraviolet light by converting the wavelength of light emitted from the laser light source by the wavelength conversion optical element.
  • the wavelength conversion optical element is the wavelength conversion optical element of the present invention.
  • a non-linear optical crystal of a cesium / lithium / borate system in which a decrease in the output of ultraviolet light and deformation of the beam shape are suppressed to prolong the life, and crystallization of the growing crystal is also suppressed.
  • a manufacturing method, a nonlinear optical crystal, a wavelength conversion optical element, and an ultraviolet light irradiation apparatus can be provided.
  • FIG. 1 is a graph showing changes in ultraviolet light output over time in Example 4 and Comparative Example 3 of the present invention.
  • FIG. 2 is a diagram showing the Al addition amount and LiF co-addition amount with respect to the raw materials in Examples 1 to 4 and Comparative Examples 2, 5 and 6 of the present invention, and photographs taken from above the obtained nonlinear optical crystal. is there.
  • FIG. 3 is a diagram showing Al addition amount and LiF co-addition amount with respect to the raw materials in Examples 1 to 4 and Comparative Example 6 of the present invention, and photographs of the obtained nonlinear optical crystal viewed from the lateral direction.
  • FIG. 4 is a photograph showing the deformation of the beam shape in Example 4 and Comparative Example 3 of the present invention.
  • FIG. 5 is a schematic diagram showing an outline of the ultraviolet light irradiation apparatus of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing an example of the configuration of the stirring mechanism.
  • FIG. 7 is a cross-sectional view showing an example of the configuration of the seed crystal cooling mechanism.
  • FIG. 8 is a cross-sectional view showing an example of the configuration of the crystal growth apparatus.
  • the first nonlinear optical crystal manufacturing method of the present invention includes a solution preparation step and a crystal growth step.
  • a suitable raw material such as cesium carbonate (Cs 2 CO 3 ), lithium carbonate (Li 2 CO 3 ), and boron oxide (B 2 O 3 ) is heated and melted to chemistry of CsLiB 6 O 10 .
  • a raw material melt having a stoichiometric composition is prepared.
  • said (A) and (B) are added in the melt of the said raw material.
  • Al 2 O 3 MgO, CaO, Ga 2 O 3 and the like, among these, is Al 2 O 3 are particularly preferred.
  • the metal element derived from (A) is 25 atom% or less with respect to the raw material, and (A) is added so that it is 15 atom% or less. More preferably, it is more preferable to add (A) so that it may become 10 atom% or less. Further, in this step, it is preferable to add (A) such that the metal element derived from (A) is 0.1 atom% or more with respect to the raw material, and so that the atom element is 1 atom% or more. It is more preferable to add (A), and it is more preferable to add (A) so as to be 2 atom% or more.
  • Examples of (B) used in this step include LiF, NaCl, NaF, LiCl, BaF 2 , and CaF 2. Among these, LiF is particularly preferable.
  • the halogen element is 30 atom% or less with respect to the raw material, and it is more preferable to add (B) so as to be 20 atom% or less. More preferably, the (B) is added so as to be 10 atom% or less. In this step, it is preferable to add the (B) so that the halogen element is 0.1 atom% or more with respect to the raw material, and the (B) is added so as to be 1 atom% or more. It is more preferable to add (B) so as to be 2 atom% or more.
  • the raw material before melting is preliminarily added to the raw material.
  • the solution may be prepared by heating and melting.
  • the nonlinear optical crystal is grown by bringing a seed crystal into contact with the solution in a crucible.
  • a conventionally known cairo porous method, Czochralski method, pulling method or the like is appropriately employed.
  • FIG. 6 is a schematic sectional view showing an example of the configuration of the stirring mechanism used in this step. Crystal growth using this stirring mechanism is performed by bringing a seed crystal (CLBO crystal) 64 supported by a crystal support means such as a seed rod 63 into contact with the solution 62 in the crucible 61. At this time, a blade 65 is placed in the solution 62 in the crucible 61 and the crucible 61 is rotated. Instead of the blade 65, a baffle plate may be arranged.
  • the stirring mechanism includes a rotating body 66 that rotates with the crucible 61 placed thereon.
  • the seed rod 63 may have a seed crystal cooling mechanism.
  • An example of the structure of the seed crystal cooling mechanism is shown in the sectional view of FIG. In this figure, the same parts as those in FIG.
  • the seed crystal 64 is indirectly cooled by blowing air 72 at room temperature onto a platinum holder 71 that fixes the seed crystal 64.
  • the platinum holder 71 is fixed to one end of an alumina hollow tube 73 with a heat resistant adhesive.
  • a double tube structure is formed by passing a stainless steel tube 74 through the alumina hollow tube 73, and air 72 is fed into the stainless steel tube 74 using a compressor (see FIG. 8).
  • the seed crystal 64 is cooled.
  • the flow rate of the air 72 is controlled by using a regulator (pressure reducing valve) and a flow meter having a flow rate adjusting function (see FIG. 8).
  • a regulator pressure reducing valve
  • a flow meter having a flow rate adjusting function
  • FIG. 8 is a cross-sectional view showing an example of the configuration of the crystal growth apparatus used in this process.
  • the same parts as those in FIGS. 6 and 7 are denoted by the same reference numerals.
  • the crucible 61 is placed in a heating furnace 82 having a heater 81, and the heating furnace is provided with a heat insulating material provided with a small hole 83 for allowing the seed crystal 64 to enter and exit from the center of the crucible 61.
  • the upper opening of 82 is sealed.
  • the seed crystal 64 is held at the lower end of the seed bar 63.
  • 67 is a vane plate
  • 72 is air
  • 84 is a compressor
  • 85 is a flow meter
  • 86 is an observation window
  • 87 is a thermocouple
  • 88 is a crucible rotation motor.
  • the second nonlinear optical crystal production method of the present invention in the solution preparation step, instead of adding (A) and (B) to the raw material melt, the chemistry of CsLiB 6 O 10 is used.
  • a raw material having a stoichiometric composition is dissolved in water to form an aqueous solution, the water in the aqueous solution is evaporated, the (A) and (B) are added and sintered, and the sintered product is melted.
  • the method is the same as the first method for producing a nonlinear optical crystal of the present invention except that the solution is prepared. According to the second method for producing a nonlinear optical crystal of the present invention, it is possible to obtain a high-quality nonlinear optical crystal with better uniformity.
  • the solution preparation step a raw material having a stoichiometric composition of CsLiB 6 O 10 is dissolved in water to form an aqueous solution, and water in the aqueous solution is evaporated.
  • a mixture obtained by adding (A) and (B) to a raw material having a stoichiometric composition of CsLiB 6 O 10 is dissolved in water.
  • the solution may be prepared by making an aqueous solution, sintering after evaporating the water in the aqueous solution, and melting the sintered product. Even with this method, it is possible to obtain a high-quality nonlinear optical crystal with better uniformity.
  • the nonlinear optical crystal produced by the production method of the present invention has a high concentration of the metal element derived from (A), has a long life by suppressing a decrease in output of ultraviolet light and deformation of the beam shape, and Also, the crystallization of crystals during growth is suppressed.
  • the concentration of the metal element derived from (A) is preferably in the range of 50 to 4000 ppm by mass, more preferably in the range of 100 to 2000 ppm by mass, and 150 to 1000 ppm. More preferably, it is in the range of ppm.
  • the wavelength conversion optical element of the present invention is characterized by including the nonlinear optical crystal of the present invention, and is not particularly limited otherwise.
  • the wavelength conversion optical element of the present invention can be suitably used for, for example, an ultraviolet light irradiation apparatus.
  • the schematic diagram of FIG. 5 shows an outline of the ultraviolet light irradiation apparatus of the present invention.
  • the ultraviolet light irradiation apparatus 1 includes a laser light source 10 and the wavelength conversion optical element 20 of the present invention.
  • the wavelength conversion optical element 20 of the present invention includes the nonlinear optical crystal of the present invention.
  • the wavelength is converted by the nonlinear optical crystal of the present invention, and ultraviolet light 21 is generated.
  • the ultraviolet light irradiation apparatus of the present invention is not particularly limited.
  • Example 1 Solution preparation process
  • a raw material 5.5 kg (purity: 3N, manufactured by Rare Metallic Co., Ltd.) having a stoichiometric composition of CsLiB 6 O 10 was weighed in a platinum crucible and dissolved in ultrapure water to obtain an aqueous solution. After evaporating the water in the aqueous solution, Al 2 O 3 (purity 3N, manufactured by Kojundo Chemical Laboratory Co., Ltd.) and LiF (manufactured by Kanto Chemical Co., Inc.) and LiF (manufactured by Kanto Chemical Co., Inc.) are added to the raw material, sintered, and sintered. A ligature was obtained. A solution was prepared by melting the sintered body. The amount of Al 2 O 3 added was such that the Al element was 3 atom% with respect to the raw material. The amount of LiF added was such that the F element was 3 atom% with respect to the raw material.
  • the platinum crucible was installed in the crystal growth apparatus shown in FIG. 8, and a nonlinear optical crystal was grown by the chiroporus method.
  • the rotation speed of the platinum crucible was 30 rpm.
  • the growth temperature was adjusted to a temperature about 2 ° C. lower than that of Comparative Example 2 described later without addition of Al 2 O 3 using a seed crystal cooling mechanism.
  • the growth rate was 0.22 mm / h. In this way, a nonlinear optical crystal of this example was obtained.
  • Example 2 In the solution preparation step, the addition amount of LiF was set to an amount such that the F element was 6 atom% with respect to the raw material, and the growth temperature was not adjusted using the seed crystal cooling mechanism in the crystal growth step, A nonlinear optical crystal of this example was obtained in the same manner as in Example 1 except that the growth rate was 0.9 mm / h.
  • the addition amount of Al 2 O 3 is set to an amount that makes Al element 3 atom% with respect to the raw material
  • the addition amount of LiF is set to an amount that makes F element 6 atom% with respect to the raw material.
  • the nonlinear optical crystal could be grown without adjusting the growth temperature using the seed crystal cooling mechanism.
  • Example 3 In the solution preparation step, the addition amount of LiF was set to an amount such that F element was 10 atom% with respect to the raw material, and the growth temperature was not adjusted using a seed crystal cooling mechanism in the crystal growth step, A nonlinear optical crystal of this example was obtained in the same manner as in Example 1 except that the growth rate was 0.46 mm / h.
  • the addition amount of Al 2 O 3 is set to an amount that makes Al element 3 atom% with respect to the raw material
  • the addition amount of LiF is set to an amount that makes F element 10 atom% with respect to the raw material.
  • the nonlinear optical crystal could be grown without adjusting the growth temperature using the seed crystal cooling mechanism.
  • the addition amount of Al 2 O 3 is set to an amount that makes Al element 5 atom% with respect to the raw material, and the growth temperature is not adjusted using the seed crystal cooling mechanism in the crystal growth step.
  • the nonlinear optical crystal of this example was obtained in the same manner as in Example 3 except that the growth rate was 0.43 mm / h.
  • the addition amount of Al 2 O 3 is set to an amount such that the Al element becomes 5 atom% with respect to the raw material
  • the addition amount of LiF is set to an amount such that the F element becomes 10 atom% with respect to the raw material.
  • the nonlinear optical crystal could be grown without adjusting the growth temperature using the seed crystal cooling mechanism.
  • Example 5 In the crystal growth step, a nonlinear optical crystal of this example was obtained in the same manner as in Example 4 except that the growth rate was 0.94 mm / h.
  • FIG. 2 shows the Al addition amount and the LiF co-addition amount with respect to the raw materials in Examples 1 to 4 and Comparative Examples 2, 5 and 6, and photographs taken from above the obtained nonlinear optical crystal.
  • FIG. 3 shows Al addition amounts and LiF co-addition amounts in Examples 1 to 4 and Comparative Example 6, and photographs of the obtained nonlinear optical crystals as seen from the lateral direction.
  • Table 1 shows the Al addition amount and growth rate in Example 5 and Comparative Examples 3 to 6, and the Al concentration of the obtained nonlinear optical crystal. In Table 1, the two Al concentrations are measured values at different measurement points in the same crystal.
  • the wavelength is converted by a LiB 3 O 5 crystal (type-I) to a second harmonic of about 4.3 W.
  • Wavelength of 532 nm was condensed to a radius of 60 ⁇ m and incident on the two wavelength conversion optical elements, thereby generating a fourth harmonic wave (wavelength of 266 nm) of 0.8 W.
  • the incident light to each wavelength conversion optical element was adjusted so that the output from each wavelength conversion optical element was constant at 0.8 W.
  • FIG. 1 shows the change with time of the output of the ultraviolet light (the fourth harmonic wave).
  • the ultraviolet light output began to decrease rapidly after 8 hours, whereas in Example 4, the output was almost constant over 40 hours.
  • the photograph of FIG. 4 shows the deformation of the beam shape in Example 4 and Comparative Example 3.
  • Comparative Example 3 in which Al 2 O 3 was added to the raw material having the B-poor composition, the beam shape shown in FIG. 4A was deformed as shown in FIG. 4B after 8 hours.
  • Example 4 in which Al 2 O 3 was added to the raw material having a stoichiometric composition of CsLiB 6 O 10 , the same deformation of the beam shape was observed after 40 hours, and the nonlinear optical crystal had a long lifetime. was confirmed.
  • a cesium / lithium / borate system in which a decrease in the output of ultraviolet light and deformation of the beam shape are suppressed to extend the lifetime, and crystallization of the growing crystal is also suppressed.
  • the nonlinear optical crystal can be obtained.
  • the nonlinear optical crystal of the present invention can be applied to various applications such as a wavelength conversion optical element of an ultraviolet light irradiation apparatus.

Abstract

 紫外光の出力低下およびビーム形状の変形が抑制されて長寿命化され、且つ、育成中の結晶の骸晶化が抑制されたセシウム・リチウム・ボレート系の非線形光学結晶の製造方法を提供する。 セシウム・リチウム・ボレート結晶に異種元素が取り込まれた非線形光学結晶の製造方法であって、CsLiB10の化学量論組成となる原料の融液中に、下記(A)および(B)を添加し、溶液を調製する溶液調製工程と、前記溶液中で、前記非線形光学結晶を育成する結晶育成工程とを有することを特徴とする。 (A) CsLiB10以外の金属酸化物 (B) アルカリ金属ハロゲン化物およびアルカリ土類金属ハロゲン化物の少なくとも一方

Description

非線形光学結晶の製造方法、非線形光学結晶、波長変換光学素子および紫外光照射装置
 本発明は、非線形光学結晶の製造方法、非線形光学結晶、波長変換光学素子および紫外光照射装置に関する。
 紫外線レーザには、赤外光領域の光源レーザから波長変換光学素子の非線形光学効果を複数回利用して、紫外光を発生させる方法がある。その中で、最終段階等で用いられる波長変換光学素子としては、本発明者等が開発した化学組成CsLiB10(以下、「CLBO」ともいう。)結晶に代表されるセシウム・リチウム・ボレート系結晶が、紫外光を高効率で発生できる非線形光学結晶である。CLBO結晶については、例えば、Nd:YAGレーザの第4高調波(波長266nm)、第5高調波(波長213nm)、ArFエキシマレーザの発振波長と同一の波長193nmの紫外光を高い変換効率で発生できることが報告されている。
 しかしながら、CLBO結晶は、紫外光を長時間発生する際、時間の経過とともに紫外光の出力低下やビーム形状の変形を生じる場合があり、実用上の課題となっている。CLBO結晶以外の非線形光学結晶では、金属元素の添加が、光損傷の抑制に有効なことが報告されている(非特許文献1および2)。
K.Niwa et al., J.Crystal Growth 208, 499(2000). X.H.Zhen et al., Cryst. Res. Technol. 38, No.10, 907(2003).
 しかし、紫外光の出力低下およびビーム形状の変形が抑制されて長寿命化されたセシウム・リチウム・ボレート系の非線形光学結晶の製造方法は、なかった。また、金属元素を添加したセシウム・リチウム・ボレート系の非線形光学結晶の結晶化改善(育成中の骸晶化抑制)の検討も、これまでなされていなかった。
 そこで、本発明は、紫外光の出力低下およびビーム形状の変形が抑制されて長寿命化され、且つ、育成中の結晶の骸晶化も抑制されたセシウム・リチウム・ボレート系の非線形光学結晶を製造可能な製造方法、非線形光学結晶、波長変換光学素子および紫外光照射装置を提供することを目的とする。
 前記目的を達成するために、本発明の第1の非線形光学結晶の製造方法は、
セシウム・リチウム・ボレート結晶に異種元素が取り込まれた非線形光学結晶の製造方法であって、
CsLiB10の化学量論組成となる原料の融液中に、下記(A)および(B)を添加し、溶液を調製する溶液調製工程と、
前記溶液中で、前記非線形光学結晶を育成する結晶育成工程とを有することを特徴とする。
 
 (A) CsLiB10以外の金属酸化物
 (B) アルカリ金属ハロゲン化物およびアルカリ土類金属ハロゲン化物の少なくとも一方
 
 本発明の第2の非線形光学結晶の製造方法は、
セシウム・リチウム・ボレート結晶に異種元素が取り込まれた非線形光学結晶の製造方法であって、
CsLiB10の化学量論組成となる原料を水に溶解して水溶液とし、前記水溶液の水分を蒸発させた後、下記(A)および(B)を添加して焼結し、前記焼結物を融解することで、溶液を調製する溶液調製工程と、
前記溶液中で、前記非線形光学結晶を育成する結晶育成工程とを有することを特徴とする。
 
 (A) CsLiB10以外の金属酸化物
 (B) アルカリ金属ハロゲン化物およびアルカリ土類金属ハロゲン化物の少なくとも一方
 
 本発明の非線形光学結晶は、前記本発明の製造方法により製造されることを特徴とする。
 本発明の波長変換光学素子は、非線形光学結晶を含む波長変換光学素子であって、
前記非線形光学結晶が、前記本発明の非線形光学結晶であることを特徴とする。
 本発明の紫外光照射装置は、レーザ光源および波長変換光学素子を備え、前記レーザ光源から照射された光を前記波長変換光学素子により波長変換して紫外光を発生させる紫外光照射装置であって、
前記波長変換光学素子が、前記本発明の波長変換光学素子であることを特徴とする。
 本発明によれば、紫外光の出力低下およびビーム形状の変形が抑制されて長寿命化され、且つ、育成中の結晶の骸晶化も抑制されたセシウム・リチウム・ボレート系の非線形光学結晶の製造方法、非線形光学結晶、波長変換光学素子および紫外光照射装置の提供が可能である。
図1は、本発明の実施例4および比較例3における紫外光出力の経時変化を示すグラフである。 図2は、本発明の実施例1~4、比較例2、5および6における原料に対するAl添加量およびLiF共添加量と、得られた非線形光学結晶の上方向から見た写真を示す図である。 図3は、本発明の実施例1~4および比較例6における原料に対するAl添加量およびLiF共添加量と、得られた非線形光学結晶の横方向から見た写真を示す図である。 図4は、本発明の実施例4および比較例3におけるビーム形状の変形を示す写真である。 図5は、本発明の紫外光照射装置の概略を示す模式図である。 図6は、撹拌機構の構成の一例を示す概略断面図である。 図7は、種結晶冷却機構の構成の一例を示す断面図である。 図8は、結晶育成装置の構成の一例を示す断面図である。
 以下、本発明の実施形態について説明する。
(第1の非線形光学結晶の製造方法)
 前述のとおり、本発明の第1の非線形光学結晶の製造方法は、溶液調製工程と、結晶育成工程とを有する。
(溶液調製工程)
 まず、初期原料として、炭酸セシウム(CsCO)、炭酸リチウム(LiCO)および酸化ホウ素(B)等の適宜な原料を加熱溶融させることによって、CsLiB10の化学量論組成となる原料の融液を調製する。つぎに、前記原料の融液中に、前記(A)および(B)を添加する。CsLiB10の化学量論組成の原料中に前記(A)を添加することで、前記(A)由来の金属元素濃度が高く、紫外光の出力低下およびビーム形状の変形が抑制された非線形光学結晶を得ることができる。また、前記(A)に加えて、前記(B)を共添加することで、前記(A)の添加に伴う育成中の結晶の骸晶化が抑制された非線形光学結晶を得ることができる。これは、前記(B)に含まれるハロゲン元素が前記溶液の粘性を低減することで、溶液中の不純物の拡散が促され、結晶性が向上するためと考えられる。ただし、このメカニズムは推定であり、本発明を何ら限定しない。
 本工程で用いる前記(A)としては、例えば、Al、MgO、CaO、Ga等があげられ、これらの中でも、Alが特に好ましい。
 本工程において、前記原料に対し、前記(A)由来の金属元素が25atom%以下となるように、前記(A)を添加することが好ましく、15atom%以下となるように、前記(A)を添加することがより好ましく、10atom%以下となるように、前記(A)を添加することがさらに好ましい。また、本工程において、前記原料に対し、前記(A)由来の金属元素が0.1atom%以上となるように、前記(A)を添加することが好ましく、1atom%以上となるように、前記(A)を添加することがより好ましく、2atom%以上となるように、前記(A)を添加することがさらに好ましい。
 本工程で用いる前記(B)としては、例えば、LiF、NaCl、NaF、LiCl、BaF、CaF等があげられ、これらの中でも、LiFが特に好ましい。
 本工程において、前記原料に対し、ハロゲン元素が30atom%以下となるように、前記(B)を添加することが好ましく、20atom%以下となるように、前記(B)を添加することがより好ましく、10atom%以下となるように、前記(B)を添加することがさらに好ましい。また、本工程において、前記原料に対し、ハロゲン元素が0.1atom%以上となるように、前記(B)を添加することが好ましく、1atom%以上となるように、前記(B)を添加することがより好ましく、2atom%以上となるように、前記(B)を添加することがさらに好ましい。
 本発明の第1の非線形光学結晶の製造方法では、本工程において、前記原料の融液中に、前記(A)および(B)を添加するのに代えて、溶融前の前記原料に、予め前記(A)および(B)を添加した後、加熱溶融することで、前記溶液を調製してもよい。
(結晶育成工程)
 つぎに、例えば、坩堝内で前記溶液に種結晶を接触させて前記非線形光学結晶を育成する。前記育成方法としては、従来公知のカイロポーラス法、チョクラルスキー法、引上げ法等が適宜に採用される。
 図6の概略断面図に、本工程に用いる撹拌機構の構成の一例を示す。この撹拌機構を用いた結晶育成は、坩堝61内の前記溶液62に、シード棒63等の結晶支持手段により支持された種結晶(CLBO結晶)64を接触させることで行われる。このとき、前記坩堝61内の前記溶液62中に羽根板65を配置しておき、前記坩堝61を回転させる。前記羽根板65に代えて、じゃま板体を配置しておいてもよい。前記坩堝61の回転のために、前記撹拌機構は、前記坩堝61を載置した状態で回転する回転体66を備える。
 前記シード棒63は、種結晶冷却機構を備えていてもよい。図7の断面図に、前記種結晶冷却機構の構成の一例を示す。同図において、図6と同一部分には同一符号を付している。この種結晶冷却機構では、前記種結晶64を固定する白金製ホルダー71に室温の空気72を吹き付けることによって、前記種結晶64を間接的に冷却する。前記白金製ホルダー71は、アルミナ製中空管73の一端に耐熱性接着剤により固定されている。この種結晶冷却機構では、前記アルミナ製中空管73の中にステンレスチューブ74を通して二重管構造とし、前記ステンレスチューブ74内にコンプレッサー(図8参照)を用いて空気72を送り込むことで、前記種結晶64を冷却する。前記空気72の流量は、レギュレーター(減圧弁)および流量調整機能を備えた流量計を用いて制御する(図8参照)。前記種結晶冷却機構を備えた前記シード棒63を用いることにより、前記(A)の添加量が少なく、育成温度が種結晶であるCLBO結晶の融点に近いときに、前記種結晶が融解し、落下するのを防止できる。
 図8の断面図に、本工程に用いる結晶育成装置の構成の一例を示す。同図において、図6および図7と同一部分には同一符号を付している。この結晶育成装置では、ヒーター81を有する加熱炉82に前記坩堝61が入れられ、前記坩堝61の中心部に前記種結晶64を出入りさせるための小孔83を設けた保温材料により、前記加熱炉82の上部開口が密封されている。前記種結晶64は、前記シード棒63の下端部に保持されている。同図において、67は羽根板、72は空気、84はコンプレッサー、85は流量計、86は観察窓、87は熱電対、88は坩堝回転モーターである。
(第2の非線形光学結晶の製造方法)
 本発明の第2の非線形光学結晶の製造方法は、前記溶液調製工程において、前記原料の融液中に、前記(A)および(B)を添加するのに代えて、CsLiB10の化学量論組成となる原料を水に溶解して水溶液とし、前記水溶液の水分を蒸発させた後、前記(A)および(B)を添加して焼結し、前記焼結物を融解することで、前記溶液を調製する点を除き、本発明の第1の非線形光学結晶の製造方法と同様である。本発明の第2の非線形光学結晶の製造方法によれば、より均一性に優れた高品質の非線形光学結晶を得ることができる。
 本発明の第2の非線形光学結晶の製造方法では、前記溶液調製工程において、CsLiB10の化学量論組成となる原料を水に溶解して水溶液とし、前記水溶液の水分を蒸発させた後、前記(A)および(B)を添加して焼結するのに代えて、CsLiB10の化学量論組成となる原料に前記(A)および(B)を添加した混合物を水に溶解して水溶液とし、前記水溶液の水分を蒸発させた後に焼結し、前記焼結物を融解することで、前記溶液を調製してもよい。この方法でも、より均一性に優れた高品質の非線形光学結晶を得ることができる。
(非線形光学結晶)
 前述のとおり、本発明の製造方法により製造される非線形光学結晶は、前記(A)由来の金属元素濃度が高く、紫外光の出力低下およびビーム形状の変形が抑制されて長寿命化され、且つ、育成中の結晶の骸晶化も抑制されたものである。
 本発明の非線形光学結晶において、前記(A)由来の金属元素濃度は、50~4000質量ppmの範囲であることが好ましく、100~2000質量ppmの範囲であることがより好ましく、150~1000質量ppmの範囲であることがさらに好ましい。
(波長変換光学素子)
 本発明の波長変換光学素子は、本発明の非線形光学結晶を含むことを特徴とし、それ以外は特に制限されない。
(紫外光照射装置)
 本発明の波長変換光学素子は、例えば、紫外光照射装置に好適に用いることができる。
 図5の模式図に、本発明の紫外光照射装置の概略を示す。図示のとおり、この紫外光照射装置1は、レーザ光源10および本発明の波長変換光学素子20を備えている。前記本発明の波長変換光学素子20は、本発明の非線形光学結晶を含む。前記本発明の波長変換光学素子20内の本発明の非線形光学結晶に光11を照射すると、本発明の非線形光学結晶により波長変換され、紫外光21が発生する。これら以外に、本発明の紫外光照射装置は特に制限されない。
 つぎに、本発明の実施例について比較例と併せて説明する。なお、本発明は、下記の実施例および比較例により限定および制限されない。
[実施例1]
(溶液調製工程)
 CsLiB10の化学量論組成となる原料5.5kg(純度3N、(株)レアメタリック製)を白金坩堝に秤量し、これを超純水に溶解して水溶液とした。前記水溶液の水分を蒸発させた後、前記原料に対し、Al(純度3N、(株)高純度化学研究所製)およびLiF(関東化学社製)を添加して焼結し、焼結体を得た。前記焼結体を融解することで、溶液を調製した。Alの添加量は、前記原料に対し、Al元素が3atom%となる量とした。また、LiFの添加量は、前記原料に対し、F元素が3atom%となる量とした。
(結晶育成工程)
 前記白金坩堝を、図8に示す結晶育成装置に設置し、カイロポーラス法により、非線形光学結晶を育成した。前記白金坩堝の回転速度は、30rpmとした。また、育成温度は、種結晶冷却機構を用いて、Al無添加の後記比較例2よりも約2℃低い温度に調整した。成長速度は、0.22mm/hとした。このようにして、本実施例の非線形光学結晶を得た。
[実施例2]
 溶液調製工程において、LiFの添加量を、前記原料に対し、F元素が6atom%となる量としたこと、結晶育成工程において、種結晶冷却機構を用いた育成温度の調整を行わなかったこと、および成長速度を、0.9mm/hとしたこと以外は、実施例1と同様にして、本実施例の非線形光学結晶を得た。このように、Alの添加量を、前記原料に対し、Al元素が3atom%となる量とし、LiFの添加量を、前記原料に対し、F元素が6atom%となる量とすることで、種結晶冷却機構を用いた育成温度の調整を行わずに、非線形光学結晶を育成することができた。
[実施例3]
 溶液調製工程において、LiFの添加量を、前記原料に対し、F元素が10atom%となる量としたこと、結晶育成工程において、種結晶冷却機構を用いた育成温度の調整を行わなかったこと、および成長速度を、0.46mm/hとしたこと以外は、実施例1と同様にして、本実施例の非線形光学結晶を得た。このように、Alの添加量を、前記原料に対し、Al元素が3atom%となる量とし、LiFの添加量を、前記原料に対し、F元素が10atom%となる量とすることで、種結晶冷却機構を用いた育成温度の調整を行わずに、非線形光学結晶を育成することができた。
[実施例4]
 溶液調製工程において、Alの添加量を、前記原料に対し、Al元素が5atom%となる量としたこと、結晶育成工程において、種結晶冷却機構を用いた育成温度の調整を行わなかったこと、および成長速度を、0.43mm/hとしたこと以外は、実施例3と同様にして、本実施例の非線形光学結晶を得た。このように、Alの添加量を、前記原料に対し、Al元素が5atom%となる量とし、LiFの添加量を、前記原料に対し、F元素が10atom%となる量とすることで、種結晶冷却機構を用いた育成温度の調整を行わずに、非線形光学結晶を育成することができた。
[実施例5]
 結晶育成工程において、成長速度を、0.94mm/hとしたこと以外は、実施例4と同様にして、本実施例の非線形光学結晶を得た。
[比較例1]
 市販のCLBO結晶(Al無添加)を、本比較例の非線形光学結晶とした。
[比較例2]
 溶液調製工程において、AlおよびLiFを添加しなかったこと、結晶育成工程において、育成温度を、種結晶冷却機構を用いて、CLBO結晶の融点に調整したこと、および成長速度を、1.4mm/hとしたこと以外は、実施例1と同様にして、本比較例の非線形光学結晶を得た。
[比較例3]
 CsO:LIO:B=1:1:5.5のB-poor組成の原料を用いたこと、Alの添加量を、前記原料に対し、Al元素が1atom%となる量としたこと、およびLiFを添加しなかったこと以外は、実施例1の溶液調製工程と同様にして、溶液を調製した後、セルフフラックス法でセシウム・リチウム・ボレート系結晶を育成し、これを、本比較例の非線形光学結晶とした。成長速度は、0.18mm/hとした。
[比較例4]
 Alの添加量を、前記原料に対し、Al元素が3atom%となる量としたこと、および成長速度を、0.06mm/hとしたこと以外は、比較例3と同様にして、セシウム・リチウム・ボレート系結晶を育成し、これを、本比較例の非線形光学結晶とした。
[比較例5]
 溶液調製工程において、Alの添加量を、前記原料に対し、Al元素が1atom%となる量としたこと、結晶育成工程において、育成温度を、種結晶冷却機構を用いて、Al無添加の前記比較例2よりも約1℃低い温度に調整したこと、LiFを添加しなかったこと、および成長速度を、0.87mm/hとしたこと以外は、実施例1と同様にして、セシウム・リチウム・ボレート系結晶を育成し、これを、本比較例の非線形光学結晶とした。
[比較例6]
 溶液調製工程において、LiFを添加しなかったこと、および結晶育成工程において、成長速度を、0.72mm/hとしたこと以外は、実施例1と同様にして、セシウム・リチウム・ボレート系結晶を育成し、これを、本比較例の非線形光学結晶とした。
 図2に、実施例1~4、比較例2、5および6における原料に対するAl添加量およびLiF共添加量と、得られた非線形光学結晶の上方向から見た写真を示す。また、図3に、実施例1~4および比較例6におけるAl添加量およびLiF共添加量と、得られた非線形光学結晶の横方向から見た写真を示す。さらに、表1に、実施例5および比較例3~6におけるAl添加量および成長速度と、得られた非線形光学結晶のAl濃度を示す。なお、表1において、2つのAl濃度は、同一結晶内の異なる測定点の測定値である。Al濃度は、結晶をテフロン(登録商標)ビーカーに秤取り、硫酸、硝酸およびフッ化水素酸で加熱分解した後、硫酸白煙が生じるまで加熱濃縮し、希硫酸で処理して、ICP質量分析装置(ThermoFisher SCIENTIFIC社製のFinnigan ELEMENTS2)およびICP発光分光分析装置(PerkinElmer社製のOptima4300DV)を用いて測定した。図2から分かるように、Alを添加した比較例5および6(図2(F)および(G))では、無添加の比較例2(図2(E))と比べて骸晶化する傾向が確認された。一方、図2および図3から分かるように、実施例1~3(図2(A)~(C)および図3(A)~(C))では、LiF共添加量の増加に伴い、非線形光学結晶の骸晶化が改善された。さらに、図2および図3から分かるように、Al添加量を増やした実施例4(図2(D)および図3(D))でも、LiFの共添加により、非線形光学結晶の骸晶化が改善した。また、表1から分かるように、B-poor組成の原料中にAlを添加した比較例3では、非線形光学結晶のAl濃度が低かった。さらに、表1から分かるように、B-poor組成の原料中へのAl添加量を増やした比較例4では、成長速度が遅くすることで、Al濃度は高くなったものの、結晶育成に長時間を要した。
Figure JPOXMLDOC01-appb-T000001
 実施例4および比較例3の非線形光学結晶を、大気中で150℃に2~3日加熱した後、150℃の環境下で、つぎの測定を行った。すなわち、まず、実施例4および比較例3の非線形光学結晶から5mm×5mm×10mm(a軸×c軸×a軸)、(θ,φ)=(62°,45°)の波長変換光学素子をそれぞれ作製した。繰り返し周波数15kHz、パルス幅8ns、最大出力12WのNd:YVOレーザ(波長1064nm)をレーザ光源として用い、LiB結晶(type-I)により波長変換した約4.3Wの第2高調波(波長532nm)を半径60μmに集光し、前記2つの波長変換光学素子にそれぞれ入射することで、0.8Wの第4高調波(波長266nm)を発生させた。このとき、各波長変換光学素子からの出力が0.8Wで一定となるように、各波長変換光学素子への入射光を調整した。図1のグラフに、紫外光(前記第4高調波)出力の経時変化を示す。図1から分かるように、比較例3では、8時間後に急速に紫外光出力が低下しはじめたのに対し、実施例4では、40時間にわたり出力がほぼ一定であった。図4の写真に、実施例4および比較例3におけるビーム形状の変形を示す。B-poor組成の原料中にAlを添加した比較例3では、図4(A)に示すビーム形状であったものが、8時間後に図4(B)に示すように変形したのに対し、CsLiB10の化学量論組成の原料中にAlを添加した実施例4では、同様のビーム形状の変形が40時間後に見られ、非線形光学結晶が長寿命化することが確認された。
 以上説明したとおり、本発明によれば、紫外光の出力低下およびビーム形状の変形が抑制されて長寿命化され、且つ、育成中の結晶の骸晶化も抑制されたセシウム・リチウム・ボレート系の非線形光学結晶を得ることができる。本発明の非線形光学結晶は、例えば、紫外光照射装置の波長変換光学素子等、様々な用途に適用可能である。

Claims (14)

  1. セシウム・リチウム・ボレート結晶に異種元素が取り込まれた非線形光学結晶の製造方法であって、
    CsLiB10の化学量論組成となる原料の融液中に、下記(A)および(B)を添加し、溶液を調製する溶液調製工程と、
    前記溶液中で、前記非線形光学結晶を育成する結晶育成工程とを有することを特徴とする非線形光学結晶の製造方法。
     
     (A) CsLiB10以外の金属酸化物
     (B) アルカリ金属ハロゲン化物およびアルカリ土類金属ハロゲン化物の少なくとも一方
     
  2. 前記(A)が、Alである請求項1記載の製造方法。
  3. 前記(B)が、LiFである請求項1記載の製造方法。
  4. 前記溶液調製工程において、前記原料に対し、前記(A)由来の金属元素が25atom%以下となるように、前記(A)を添加する請求項1記載の製造方法。
  5. 前記溶液調製工程において、前記原料に対し、ハロゲン元素が30atom%以下となるように、前記(B)を添加する請求項1記載の製造方法。
  6. セシウム・リチウム・ボレート結晶に異種元素が取り込まれた非線形光学結晶の製造方法であって、
    CsLiB10の化学量論組成となる原料を水に溶解して水溶液とし、前記水溶液の水分を蒸発させた後、下記(A)および(B)を添加して焼結し、前記焼結物を融解することで、溶液を調製する溶液調製工程と、
    前記溶液中で、前記非線形光学結晶を育成する結晶育成工程とを有することを特徴とする非線形光学結晶の製造方法。
     
     (A) CsLiB10以外の金属酸化物
     (B) アルカリ金属ハロゲン化物およびアルカリ土類金属ハロゲン化物の少なくとも一方
     
  7. 前記(A)が、Alである請求項6記載の製造方法。
  8. 前記(B)が、LiFである請求項6記載の製造方法。
  9. 前記溶液調製工程において、前記原料に対し、前記(A)由来の金属元素が25atom%以下となるように、前記(A)を添加する請求項6記載の製造方法。
  10. 前記溶液調製工程において、前記原料に対し、ハロゲン元素が30atom%以下となるように、前記(B)を添加する請求項6記載の製造方法。
  11. 請求項1または6記載の製造方法により製造されることを特徴とする非線形光学結晶。
  12. 前記(A)由来の金属元素濃度が、50~4000質量ppmの範囲である請求項11記載の非線形光学結晶。
  13. 非線形光学結晶を含む波長変換光学素子であって、
    前記非線形光学結晶が、請求項11記載の非線形光学結晶であることを特徴とする波長変換光学素子。
  14. レーザ光源および波長変換光学素子を備え、前記レーザ光源から照射された光を前記波長変換光学素子により波長変換して紫外光を発生させる紫外光照射装置であって、
    前記波長変換光学素子が、請求項13記載の波長変換光学素子であることを特徴とする紫外光照射装置。
PCT/JP2011/069308 2010-08-29 2011-08-26 非線形光学結晶の製造方法、非線形光学結晶、波長変換光学素子および紫外光照射装置 WO2012029656A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-191608 2010-08-29
JP2010191608 2010-08-29

Publications (1)

Publication Number Publication Date
WO2012029656A1 true WO2012029656A1 (ja) 2012-03-08

Family

ID=45772746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069308 WO2012029656A1 (ja) 2010-08-29 2011-08-26 非線形光学結晶の製造方法、非線形光学結晶、波長変換光学素子および紫外光照射装置

Country Status (1)

Country Link
WO (1) WO2012029656A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014169104A1 (en) 2013-04-10 2014-10-16 Kla-Tencor Corporation Passivation of nonlinear optical crystals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126099A (ja) * 1993-10-28 1995-05-16 Hitachi Metals Ltd 三ホウ酸リチウム単結晶
JP2008050240A (ja) * 2006-08-28 2008-03-06 Osaka Univ セシウムホウ酸化合物結晶の製造方法及びそれにより得られたセシウムホウ酸化合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126099A (ja) * 1993-10-28 1995-05-16 Hitachi Metals Ltd 三ホウ酸リチウム単結晶
JP2008050240A (ja) * 2006-08-28 2008-03-06 Osaka Univ セシウムホウ酸化合物結晶の製造方法及びそれにより得られたセシウムホウ酸化合物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CRYSTAL GROWTH, vol. 312, no. 16-17, pages 2415 - 2418 *
JPN.J.APPL.PHYS., vol. 36, no. 1A PT1, January 1997 (1997-01-01), pages 126 - 128 *
YUJI FUKUSHIMA ET AL.: "A1 Tenka CsLiB6O10 nO Ikusei to Hyoka", EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, vol. 71, 30 August 2010 (2010-08-30), pages 14A-ZT-7 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014169104A1 (en) 2013-04-10 2014-10-16 Kla-Tencor Corporation Passivation of nonlinear optical crystals
JP2016522136A (ja) * 2013-04-10 2016-07-28 ケーエルエー−テンカー コーポレイション 非線形光学結晶の不動態化
EP2984205A4 (en) * 2013-04-10 2017-01-18 Kla-Tencor Corporation Passivation of nonlinear optical crystals
CN109898140A (zh) * 2013-04-10 2019-06-18 科磊股份有限公司 非线性光学晶体的钝化
JP2020045277A (ja) * 2013-04-10 2020-03-26 ケーエルエー コーポレイション 非線形光学結晶の不動態化
TWI697592B (zh) * 2013-04-10 2020-07-01 美商克萊譚克公司 非線性光學晶體之鈍化
CN109898140B (zh) * 2013-04-10 2021-06-18 科磊股份有限公司 非线性光学晶体的钝化
US11180866B2 (en) 2013-04-10 2021-11-23 Kla Corporation Passivation of nonlinear optical crystals
JP7086909B2 (ja) 2013-04-10 2022-06-20 ケーエルエー コーポレイション 非線形光学結晶の不動態化

Similar Documents

Publication Publication Date Title
EP2322697B1 (en) Doped low temperature phase bab2o4 single crystal the manufacturing method thereof and wave changing elements therefrom
US7563320B2 (en) Hydrothermal method for preparing large single crystals of scandium, yttrium, and lanthanide sesquioxides
CN111334858B (zh) 化合物氟硼酸钡和氟硼酸钡非线性光学晶体及制备方法和用途
US6391229B1 (en) Borate crystal, growth method of the same and laser equipment using the same
CN110921676A (zh) 化合物氟硼酸铅和氟硼酸铅非线性光学晶体及制备方法和用途
WO2012029656A1 (ja) 非線形光学結晶の製造方法、非線形光学結晶、波長変換光学素子および紫外光照射装置
JP2009215167A (ja) ボレート系結晶の製造方法とレーザー発振装置
Leonyuk Half a century of progress in crystal growth of multifunctional borates RAl3 (BO3) 4 (R= Y, Pr, Sm–Lu)
JP2008050240A (ja) セシウムホウ酸化合物結晶の製造方法及びそれにより得られたセシウムホウ酸化合物
RU2616648C1 (ru) Способ получения стеклокристаллического материала с наноразмерными кристаллами ниобатов редкоземельных элементов
Baldochi et al. A short review on fluoride laser crystals grown by czochralski method at IPEN
CN115467024B (zh) 钾钡钙硼氧氟化合物和钾钡钙硼氧氟非线性光学晶体及制备方法和用途
CN109656079B (zh) 一种BaHgSnS4非线性光学晶体的用途
CN115557514B (zh) 系列碱金属硼磷酸盐化合物及碱金属硼磷酸盐非线性光学晶体及其制备方法和用途
CN112919486B (zh) 化合物硼硝酸铷和硼硝酸铷非线性光学晶体及制备方法和用途
CN113668056B (zh) 化合物磷酸钼锌钾和磷酸钼锌钾非线性光学晶体及制备方法和用途
Lichkova et al. Preparation of Pr-and Dy-Doped Rb 1− x M x Pb 2 Cl 5− y Br y (M= K, Cs) crystals
CN116815317A (zh) 系列含氟碱土硼硅酸盐化合物及含氟碱土硼硅酸盐非线性光学晶体及制法和用途
CN117344382A (zh) 化合物碱金属硼磷酸盐及碱金属硼磷酸盐非线性光学晶体及其制备方法和用途
JP2014076916A (ja) ベータ型硼酸バリウム結晶の製造方法
Bekker et al. Phase equilibria and growth of β-BaB 2 O 4 crystals in the BaB 2 O 4-Ba 2 Na 3 [B 3 O 6] 2 F system
RU2354762C1 (ru) Инфракрасная лазерная матрица на основе кристаллов калия и рубидия пентобромплюмбита
CN117779194A (zh) 硼酸铯铌非线性光学晶体及其制备方法和应用
CN116427031A (zh) 化合物氟硼酸钠和氟硼酸钠非线性光学晶体及制备方法和用途
CN114108085A (zh) 一种氟硼铝酸钡二阶非线性光学晶体及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821673

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP