WO2012029531A1 - エレクトロルミネッセント素子、表示装置および照明装置 - Google Patents
エレクトロルミネッセント素子、表示装置および照明装置 Download PDFInfo
- Publication number
- WO2012029531A1 WO2012029531A1 PCT/JP2011/068437 JP2011068437W WO2012029531A1 WO 2012029531 A1 WO2012029531 A1 WO 2012029531A1 JP 2011068437 W JP2011068437 W JP 2011068437W WO 2012029531 A1 WO2012029531 A1 WO 2012029531A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- conductive layer
- light emitting
- electroluminescent element
- light
- Prior art date
Links
- 229910044991 metal oxide Inorganic materials 0.000 claims description 8
- 150000004706 metal oxides Chemical class 0.000 claims description 8
- 229920001940 conductive polymer Polymers 0.000 claims description 7
- 230000005525 hole transport Effects 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 221
- 239000000758 substrate Substances 0.000 description 44
- 239000000463 material Substances 0.000 description 37
- 150000001875 compounds Chemical class 0.000 description 20
- 238000000034 method Methods 0.000 description 19
- 229910004298 SiO 2 Inorganic materials 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910000573 alkali metal alloy Inorganic materials 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910001512 metal fluoride Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical group 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 239000011970 polystyrene sulfonate Substances 0.000 description 2
- 229960002796 polystyrene sulfonate Drugs 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- VLRSADZEDXVUPG-UHFFFAOYSA-N 2-naphthalen-1-ylpyridine Chemical class N1=CC=CC=C1C1=CC=CC2=CC=CC=C12 VLRSADZEDXVUPG-UHFFFAOYSA-N 0.000 description 1
- 150000005360 2-phenylpyridines Chemical class 0.000 description 1
- FSEXLNMNADBYJU-UHFFFAOYSA-N 2-phenylquinoline Chemical class C1=CC=CC=C1C1=CC=C(C=CC=C2)C2=N1 FSEXLNMNADBYJU-UHFFFAOYSA-N 0.000 description 1
- QLPKTAFPRRIFQX-UHFFFAOYSA-N 2-thiophen-2-ylpyridine Chemical class C1=CSC(C=2N=CC=CC=2)=C1 QLPKTAFPRRIFQX-UHFFFAOYSA-N 0.000 description 1
- CMSGUKVDXXTJDQ-UHFFFAOYSA-N 4-(2-naphthalen-1-ylethylamino)-4-oxobutanoic acid Chemical compound C1=CC=C2C(CCNC(=O)CCC(=O)O)=CC=CC2=C1 CMSGUKVDXXTJDQ-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910017073 AlLi Inorganic materials 0.000 description 1
- 241001136782 Alca Species 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzo[h]quinoline Chemical class C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- -1 etc. Chemical class 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920000768 polyamine Chemical class 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical class FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/26—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
- H05B33/28—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/816—Multilayers, e.g. transparent multilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/828—Transparent cathodes, e.g. comprising thin metal layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/858—Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80517—Multilayers, e.g. transparent multilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
- H10K59/80524—Transparent cathodes, e.g. comprising thin metal layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/879—Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
Definitions
- the present invention relates to, for example, an electroluminescent element used for a display device or a lighting device.
- an electroluminescent element in which a light emitting material is formed in a layer form, a pair of electrodes including an anode and a cathode is provided on the light emitting layer, and light is emitted by applying a voltage attracts attention. Yes.
- Such an electroluminescent device injects holes and electrons from the anode and the cathode, respectively, by applying a voltage between the anode and the cathode, and the injected electrons and holes are combined in the light emitting layer. It emits light using the energy generated by doing so.
- an electroluminescent element is a device that utilizes a phenomenon in which light is generated when a light emitting material of a light emitting layer is excited by energy due to this coupling and returns from an excited state to a ground state again.
- the light emitting material is self-luminous, and therefore, the response speed as a display device is high and the viewing angle is wide. Further, the structure of the electroluminescent element has an advantage that the display device can be easily reduced in thickness. In addition, in the case of an organic light-emitting element using an organic material as a light-emitting material, for example, it is easy to generate light with high color purity by selecting an organic material, so that a color reproduction range can be widened. Furthermore, since the electroluminescent element can emit light in white and is surface emitting, an application in which the electroluminescent element is incorporated in a lighting device has been proposed.
- an organic layer including a light emitting layer is formed so as to be sandwiched between an anode and a cathode, and a light emitting layer in a region where the anode and the cathode overlap is emitted by applying a voltage between the electrodes.
- Patent Document 1 discloses an organic light emitting element in which one of electrodes is electrically connected to a semiconductor layer and light is emitted from a light emitting layer sandwiched between the semiconductor layer and the other electrode. In this organic light emitting element, light emission can be extracted from the semiconductor layer to the outside, so that the electrode can be formed of an opaque material, and a highly conductive and stable metal can be used as the electrode material.
- an electroluminescent element that electrically connects one of the electrodes to the semiconductor layer and emits light from the light emitting layer sandwiched between the semiconductor layer and the other electrode is formed by patterning the electrode, It is necessary to form a semiconductor layer in contact therewith. Therefore, when the electrodes are formed in a fine pattern, it is difficult to form a smooth semiconductor layer between the electrodes, and light emission in the light emitting surface tends to be nonuniform. In addition, smoothing the semiconductor layer requires a separate smoothing process, which complicates the manufacturing process and leads to an increase in manufacturing cost.
- the electroluminescent device of the present invention includes a stacked portion in which a first conductive layer, a dielectric layer, a second conductive layer, a light emitting layer, and a third conductive layer are sequentially stacked, and at least the dielectric layer.
- a contact hole for electrically connecting the first conductive layer and the second conductive layer When viewed from the light-emitting surface side, (I) having at least one continuous light emitting region; (Ii) the contact number of the holes, and characterized in that with is 10 2 or more per one light emitting region, the ratio of the area occupied by the contact hole is the number to be 0.1 or less with respect to the area of the light-emitting region To do.
- both surfaces of the light emitting element are light emitting surfaces, it is preferable that both surfaces satisfy the above (i) and (ii).
- one light emitting region is a region where the light emitting portion is continuous without interruption, and includes a contact hole included in this region.
- the ratio of the area occupied by the contact hole is preferably 0.001 to 0.1 with respect to the area of the light emitting region, and the shape of the contact hole viewed from the light emitting surface side is the smallest circle including this shape.
- the diameter of the contact hole is preferably 0.01 ⁇ m to 2 ⁇ m, and the contact hole is preferably formed so as to further penetrate the first conductive layer.
- the first conductive layer, the dielectric layer, and the second conductive layer are transparent to the wavelength of light to be emitted, and the refractive index of the dielectric layer is 1.0 to 1.5. It is preferable.
- the second conductive layer preferably contains a conductive metal oxide or a conductive polymer.
- a hole transport layer between the second conductive layer and the third conductive layer, a hole transport layer, a hole blocking layer, and It is preferable to further include at least one layer selected from electron transport layers.
- the display device of the present invention is characterized by including the above-described electroluminescent element.
- the lighting device of the present invention is characterized by including the electroluminescent element described above.
- an electroluminescent element or the like that has high uniformity of light emission and is easy to manufacture.
- FIG. 1 It is a fragmentary sectional view explaining an example of the light emission area
- (A)-(e) is a figure explaining the manufacturing method of the electroluminescent element to which this Embodiment is applied. It is a figure explaining an example of the display apparatus using the electroluminescent element in this Embodiment. It is a figure explaining an example of an illuminating device provided with the electroluminescent element in this Embodiment.
- (A)-(b) is a figure explaining the minimum inclusion circle showing the size of the contact hole in this Embodiment.
- FIG. 1 is a partial cross-sectional view illustrating an example of a light emitting region of an electroluminescent element to which the exemplary embodiment is applied.
- the electroluminescent element 10 shown in FIG. 1 covers a first conductive layer 12 for injecting holes, an insulating dielectric layer 13, and an upper surface of the dielectric layer 13 on a substrate 11.
- a second conductive layer 14 electrically connected to the first conductive layer 12, a light emitting layer 15 that emits light by combining holes and electrons, and a third conductive layer 16 for injecting electrons.
- a stacked portion having a structure in which layers are stacked in order is provided.
- a contact hole 17 is formed in the dielectric layer 13.
- the contact hole 17 is filled with the component of the second conductive layer 14.
- the first conductive layer 12 and the second conductive layer 14 are electrically connected via the contact hole 17. Therefore, when a voltage is applied between the first conductive layer 12 and the third conductive layer 16, a voltage is applied between the second conductive layer 14 and the third conductive layer 16, and the light emitting layer 15 emits light.
- the light emitting surface of the electroluminescent element 10 is a surface on the substrate 11 side and / or a surface on the opposite side.
- the substrate 11 serves as a support for forming the first conductive layer 12, the dielectric layer 13, the second conductive layer 14, the light emitting layer 15, and the third conductive layer 16.
- a material that satisfies the mechanical strength required for the electroluminescent device 10 is used for the substrate 11.
- a material satisfying the mechanical strength necessary for such a support is used for the substrate 11.
- the wavelength of the emitted light when light is to be extracted from the substrate 11 side of the electroluminescent element 10 (when the surface on the substrate 11 side is a surface from which light is extracted, that is, a light emitting surface), the wavelength of the emitted light. It is preferable to be transparent to the above. Specifically, when the emitted light is visible light, glass such as soda glass and non-alkali glass; transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and nylon resin; When it is not necessary to extract light from the surface of the electroluminescent element 10 on the substrate 11 side, the material of the substrate 11 is not limited to a transparent material, and an opaque material can also be used.
- the thickness of the substrate 11 is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm, although it depends on the required mechanical strength.
- the first conductive layer 12 applies a voltage between the third conductive layer 16 and injects holes into the light emitting layer 15 through the second conductive layer 14. That is, in the present embodiment, the first conductive layer 12 is an anode layer.
- the material used for the first conductive layer 12 is not particularly limited as long as it has electrical conductivity, but the sheet resistance is 1000 ⁇ or less in the temperature range of ⁇ 5 ° C. to 80 ° C. Preferably, it is 100 ⁇ or less. In addition, it is preferable that the electrical resistance does not change significantly with respect to the alkaline aqueous solution.
- ⁇ Conductive metal oxides, metals, and alloys can be used as materials that satisfy these conditions.
- the conductive metal oxide include ITO (indium tin oxide) and IZO (indium-zinc oxide).
- the metal include stainless steel, copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), niobium (Nb), and the like.
- An alloy containing these metals can also be used.
- the transparent material used to form the transparent electrode include indium oxide, zinc oxide, tin oxide, and conductive materials made of ITO (indium tin oxide), IZO (indium-zinc oxide), which are composites thereof.
- a transparent conductive film made of an organic material such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
- the thickness of the first conductive layer 12 is preferably 2 nm to 300 nm in order to obtain high light transmittance when it is desired to extract light from the substrate 11 side of the electroluminescent element 10. Further, when it is not necessary to extract light from the substrate 11 side of the electroluminescent element 10, it can be formed with a thickness of 2 nm to 2 mm, for example.
- the substrate 11 can be made of the same material as that of the first conductive layer 12. In this case, the substrate 11 may also serve as the first conductive layer 12.
- the dielectric layer 13 is laminated on the first conductive layer 12, and separates and insulates the first conductive layer 12 and the second conductive layer 14 at locations other than the contact holes 17. Therefore, the dielectric layer 13 is preferably a material having a high resistivity, and the resistivity is preferably 10 8 ⁇ ⁇ cm or more, and more preferably 10 12 ⁇ ⁇ cm or more. Specific examples of the material for the dielectric layer 13 include metal nitrides such as silicon nitride, boron nitride, and aluminum nitride; metal oxides such as silicon oxide and aluminum oxide. In addition, polyimide, polyvinylidene fluoride, and parylene. High molecular compounds such as these can also be used.
- the light extracted from the substrate 11 can be increased by refracting light incident from the light emitting layer 15 and changing the traveling direction of the light.
- the refractive index of the dielectric layer 13 is preferably in the range of 1.0 to 1.5.
- the thickness of the dielectric layer 13 is preferably not more than 1 ⁇ m in order to suppress the electric resistance between the first conductive layer 12 and the second conductive layer 14. However, if it is too thin, the dielectric strength may not be sufficient. Therefore, the thickness of the dielectric layer 13 is preferably 10 nm to 500 nm, more preferably 50 nm to 200 nm.
- the refractive index of the dielectric layer 13 is preferably in the range of 1.0 to 1.5 so that light can be easily taken out.
- the second conductive layer 14 is electrically connected to the first conductive layer 12 inside the contact hole 17 and injects holes received from the first conductive layer 12 into the light emitting layer 15.
- the second conductive layer 14 preferably contains a conductive metal oxide or a conductive polymer. Specifically, it is preferably a transparent conductive film made of ITO, IZO, tin oxide and organic matter having light transmittance.
- the inside of the contact hole 17 is filled with the material forming the second conductive layer 14, so that the second conductive layer is formed in order to facilitate film formation on the inner surface of the contact hole 17.
- the layer 14 is preferably formed by coating. Therefore, from this viewpoint, the second conductive layer 14 is particularly preferably a transparent conductive film made of an organic material. The material of the second conductive layer 14 and the first conductive layer 12 may be the same.
- the thickness of the second conductive layer 14 is preferably 2 nm to 300 nm in order to obtain high light transmittance when it is desired to extract light from the substrate 11 side of the electroluminescent element 10.
- a layer that facilitates injection of holes into the light emitting portion 15 may be provided on the surface of the second conductive layer 14 that is in contact with the light emitting portion 15.
- conductive polymers such as phthalocyanine derivatives and polythiophene derivatives, 1 nm to 200 nm layers made of Mo oxide, amorphous carbon, carbon fluoride, polyamine compounds, etc., or metal oxides, metal fluorides, organic insulation This can be realized by forming a layer made of a material or the like and having an average film thickness of 10 nm or less.
- the light emitting unit 15 includes a light emitting material that emits light by applying a voltage.
- a light emitting material of the light emitting layer 15 both organic materials and inorganic materials can be used. As long as it is an organic compound, both a low molecular compound and a high molecular compound can be used.
- the luminescent organic material a phosphorescent organic compound and a metal complex are preferable. Some metal complexes exhibit phosphorescence, and such metal complexes are also preferably used. In the present invention, it is particularly desirable to use a cyclometalated complex from the viewpoint of improving luminous efficiency.
- Examples of cyclometalated complexes include 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2- (2-thienyl) pyridine derivatives, 2- (1-naphthyl) pyridine derivatives, 2-phenylquinoline derivatives, and the like.
- Examples of the complex include Ir, Pd and Pt having a ligand, and an iridium (Ir) complex is particularly preferable.
- the cyclometalated complex may have other ligands in addition to the ligands necessary for forming the cyclometalated complex.
- the cyclometalated complex includes a compound that emits light from triplet excitons, which is preferable from the viewpoint of improving luminous efficiency.
- the light-emitting polymer compound examples include poly-p-phenylene vinylene (PPV) derivatives such as MEH-PPV; ⁇ -conjugated polymer compounds such as polyfluorene derivatives and polythiophene derivatives; low molecular dyes and tetraphenyldiamine; And a polymer in which triphenylamine is introduced into the main chain or side chain.
- PPV poly-p-phenylene vinylene
- ⁇ -conjugated polymer compounds such as polyfluorene derivatives and polythiophene derivatives
- low molecular dyes and tetraphenyldiamine and a polymer in which triphenylamine is introduced into the main chain or side chain.
- a light emitting high molecular compound and a light emitting low molecular weight compound can also be used in combination.
- the light emitting layer 15 includes a host material together with the light emitting material, and the light emitting material may be dispersed in the host material
- the third conductive layer 16 applies a voltage between the first conductive layer 12 and injects electrons into the light emitting layer 15. That is, in the present embodiment, the third conductive layer 16 is a cathode layer.
- the material used for the third conductive layer 16 is not particularly limited as long as it has electrical conductivity like the first conductive layer 12, but it has a low work function and is chemically low. Stable ones are preferred. Specifically, materials such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi and AlCa can be exemplified.
- the material of the third conductive layer 16 is to extract light from the third conductive layer 16 side of the electroluminescent element 10 (the surface on the third conductive layer 16 side takes out light, that is, In the case of a light emitting surface, for example, it is preferable to use a material that is transparent to emitted light similar to that of the first conductive layer 12.
- the thickness of the third conductive layer 16 is preferably 0.01 ⁇ m to 1 ⁇ m, and more preferably 0.05 ⁇ m to 0.5 ⁇ m.
- a cathode buffer layer (not shown) may be provided adjacent to the third conductive layer 16 for the purpose of increasing the electron injection efficiency by lowering the electron injection barrier from the third conductive layer 16 to the light emitting layer 15. Good.
- the cathode buffer layer needs to have a work function lower than that of the third conductive layer 16, and a metal material is preferably used.
- a metal material is preferably used.
- alkali metals Na, K, Rb, Cs
- alkaline earth metals Sr, Ba, Ca, Mg
- rare earth metals Pr, Sm, Eu, Yb
- fluorides or chlorides of these metals A simple substance selected from oxides or a mixture of two or more can be used.
- the thickness of the cathode buffer layer is preferably from 0.05 nm to 50 nm, more preferably from 0.1 nm to 20 nm, and even more preferably from 0.5 nm to 10 nm.
- a layer other than the light emitting layer 15 may be formed between the second conductive layer 14 and the third conductive layer 16. Examples of such a layer include a hole transport layer, a hole block layer, an electron transport layer, and the like.
- known layers are also known. Materials can be used.
- the shape of the contact hole 17 can be, for example, a cylindrical shape or a quadrangular prism shape, but is not limited thereto.
- the size of the contact hole 17 is set to be the first conductive layer 12 and the second conductive layer. A smaller is desirable as long as an electrical connection to the layer 14 is sufficiently possible.
- the size of the contact hole 17 includes the shape of the contact hole 17 as shown in FIGS. 5A and 5B when viewed from the light emitting surface side in a direction perpendicular to the substrate 11. This is represented by the diameter of the minimum circle (minimum inner circle) 17a. That is, in FIG.
- the minimum inner circle when the contact hole 17 has a square shape is indicated by 17a
- the minimum inner circle when the contact hole 17 has a regular hexagon shape is indicated by 17a.
- the diameter of the minimum inner circle 17a is preferably 0.01 ⁇ m to 2 ⁇ m.
- the diameter of the cylinder is preferably 0.01 ⁇ m to 2 ⁇ m.
- the ratio of the area occupied by the contact hole 17 as viewed from the light emitting surface side is preferably 0.1 or less, and particularly preferably 0.001 to 0.1 with respect to the area of the light emitting region. This makes it possible to obtain light emission with high luminance.
- the contact hole 17, at least 10 2 or more in one light-emitting region preferably is preferably formed 10 4 or more. Further, it is preferable that these many contact holes 17 are uniformly distributed in the light emitting region. However, the upper limit of the number of contact holes 17 is preferably in a range where the ratio of the area occupied by the contact holes 17 on the light emitting region surface is 0.1 or less, as described above. These increase the uniformity of light emission in the light emitting region. Note that FIG. 1 is a schematic diagram and does not necessarily represent the ratio of these numerical values. Further, although the contact hole 17 is formed only in the dielectric layer 13 in FIG. 1, the contact hole 17 may be further extended and penetrated to the first conductive layer 12 and / or the third conductive layer 16. .
- the present invention is not limited to this.
- the cathode layer may be used, and the third conductive layer 16 may be used as the anode layer.
- FIGS. 2A to 2E are diagrams illustrating a method for manufacturing the electroluminescent element 10 to which the exemplary embodiment is applied.
- a first conductive layer 12 and a dielectric layer 13 are sequentially stacked on a substrate 11 (FIG. 2A).
- resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion plating, CVD, or the like can be used.
- a coating film formation method that is, a method in which a target material is dissolved in a solvent and then dried
- a spin coating method a dip coating method, an inkjet method, a printing method, a spray
- a method such as a method or a dispenser method.
- contact holes 17 are formed in the dielectric layer 13.
- a method using lithography can be used. In order to do this, first, a resist solution is applied on the dielectric layer 13, and the excess resist solution is removed by spin coating or the like to form a resist layer 71 (FIG. 2B). Then, a mask on which a predetermined pattern for forming the contact hole 17 is applied, and exposure is performed with ultraviolet (UV), electron beam (EB), or the like.
- UV ultraviolet
- EB electron beam
- the pattern of the contact hole 17 that is the same size as the mask pattern, and if the reduced exposure (for example, in the case of exposure using a stepper) is performed, The pattern of the contact hole 17 reduced with respect to the mask pattern can be formed.
- the exposed portion of the resist layer 71 is removed using a developing solution, the resist layer 71 in the pattern portion is removed (FIG. 2C).
- the exposed portion of the dielectric layer 13 is removed by etching (in some cases, the portion of the first conductive layer 12) to form a contact hole 17 (FIG. 2D).
- the etching either dry etching or wet etching can be used.
- etching reactive ion etching (RIE) or inductively coupled plasma etching can be used.
- RIE reactive ion etching
- wet etching a method of immersing in dilute hydrochloric acid or dilute sulfuric acid can be used. Note that the layer through which the contact hole 17 penetrates can be selected by adjusting the etching conditions (processing time, gas used, pressure, substrate temperature) during etching.
- the contact hole 17 can be formed by a nanoimprint method. Specifically, after forming the resist layer 71, a mask on which a predetermined convex pattern for forming a pattern is drawn is pressed against the surface of the resist layer 71 with pressure. In this state, the resist layer 71 is cured by irradiating the resist layer 71 with heat or / and light. Next, by removing the mask, the pattern of the contact hole 17 corresponding to the convex pattern is formed on the surface of the resist layer 71. Subsequently, the contact hole 17 can be formed by performing the etching described above.
- the second conductive layer 14, the light emitting layer 15, and the third conductive layer 16 are formed in this order (FIG. 2 (e)).
- the same technique as that used to form the first conductive layer 12 and the dielectric layer 13 can be used.
- the electroluminescent element 10 can be manufactured through the above steps. Moreover, it is preferable to use the electroluminescent element 10 stably for a long period of time and to attach a protective layer or a protective cover (not shown) for protecting the electroluminescent element 10 from the outside.
- a protective layer polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used.
- a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used.
- the protective cover is preferably bonded to the element substrate with a thermosetting resin or a photocurable resin and sealed.
- a spacer because a predetermined space can be maintained and the electroluminescent element 10 can be prevented from being damaged. If an inert gas such as nitrogen, argon, or helium is sealed in this space, the upper third conductive layer 16 can be easily prevented from being oxidized.
- an inert gas such as nitrogen, argon, or helium
- heat conduction is high, and thus heat generated from the electroluminescent element 10 when voltage is applied can be effectively transmitted to the protective cover, which is preferable.
- a desiccant such as barium oxide
- FIG. 3 is a diagram illustrating an example of a display device using the electroluminescent element in this embodiment.
- the display device 200 shown in FIG. 3 is a so-called passive matrix display device, and includes a display device substrate 202, an anode wiring 204, an anode auxiliary wiring 206, a cathode wiring 208, an insulating film 210, a cathode partition wall 212, and electroluminescence.
- An element 214, a sealing plate 216, and a sealing material 218 are provided.
- the display device substrate 202 for example, a transparent substrate such as a rectangular glass substrate can be used.
- the thickness of the display device substrate 202 is not particularly limited, but for example, a thickness of 0.1 to 1 mm can be used.
- a plurality of anode wirings 204 are formed on the display device substrate 202.
- the anode wirings 204 are arranged in parallel at a constant interval.
- the anode wiring 204 is made of a transparent conductive film, and for example, ITO (Indium Tin Oxide) can be used.
- the thickness of the anode wiring 204 can be set to 100 nm to 150 nm, for example.
- An anode auxiliary wiring 206 is formed on the end of each anode wiring 204.
- the anode auxiliary wiring 206 is electrically connected to the anode wiring 204.
- the anode auxiliary wiring 206 functions as a terminal for connecting to the external wiring on the end portion side of the display device substrate 202, and the anode auxiliary wiring 206 is connected from an external driving circuit (not shown). A current can be supplied to the anode wiring 204 through the wiring.
- the anode auxiliary wiring 206 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
- a plurality of cathode wirings 208 are provided on the electroluminescent element 214.
- the plurality of cathode wirings 208 are arranged so as to be parallel to each other and orthogonal to the anode wiring 204.
- As the cathode wiring 208 Al or an Al alloy can be used.
- the thickness of the cathode wiring 208 is, for example, 100 nm to 150 nm.
- a cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 208 and is electrically connected to the cathode wiring 208. Therefore, current can flow between the cathode wiring 208 and the cathode auxiliary wiring.
- An insulating film 210 is formed on the display device substrate 202 so as to cover the anode wiring 204.
- the insulating film 210 is provided with a rectangular opening 220 so as to expose a part of the anode wiring 204.
- the plurality of openings 220 are arranged in a matrix on the anode wiring 204.
- an electroluminescent element 214 is provided between the anode wiring 204 and the cathode wiring 208 as described later. That is, each opening 220 is a pixel. Accordingly, a display area is formed corresponding to the opening 220.
- the film thickness of the insulating film 210 can be, for example, 200 nm to 300 nm, and the size of the opening 220 can be, for example, 300 ⁇ m ⁇ 300 ⁇ m.
- An electroluminescent element 214 is formed at a location corresponding to the position of the opening 220 on the anode wiring 204.
- the electroluminescent element 214 since the anode wiring 204 replaces the substrate 11, the first conductive layer 12, the dielectric layer 13, and the second conductive layer 14 are directly formed on the anode wiring 204.
- a light emitting layer 15 and a third conductive layer 16 are formed.
- the electroluminescent element 214 is sandwiched between the anode wiring 204 and the cathode wiring 208 in the opening 220.
- the thickness of the electroluminescent element 214 can be set to, for example, 150 nm to 200 nm.
- a plurality of cathode partitions 212 are formed on the insulating film 210 along a direction perpendicular to the anode wiring 204.
- the cathode partition 212 plays a role in spatially separating the plurality of cathode wirings 208 so that the wirings of the cathode wirings 208 are not electrically connected to each other. Accordingly, the cathode wiring 208 is disposed between the adjacent cathode partition walls 212.
- a cathode partition with a height of 2 to 3 ⁇ m and a width of 10 ⁇ m can be used.
- the display device substrate 202 is bonded through a sealing plate 216 and a sealing material 218. Thereby, the space in which the electroluminescent element 214 is provided can be sealed, and the electroluminescent element 214 can be prevented from being deteriorated by moisture in the air.
- a sealing plate 216 for example, a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used.
- an electric current is supplied to the electroluminescent element 214 by a driving device (not shown) via the anode auxiliary wiring 206 and the cathode auxiliary wiring (not shown) to cause the light emitting layer 15 to emit light. Can be emitted.
- An image can be displayed on the display device 200 by controlling light emission and non-light emission of the electroluminescent element 214 corresponding to the above-described pixel by the control device.
- FIG. 4 is a diagram illustrating an example of a lighting device including the electroluminescent element in this embodiment.
- the lighting device 300 shown in FIG. 4 is disposed adjacent to the electroluminescent element 10 and the substrate 11 (see FIG. 1) of the electroluminescent element 10 described above, and the first conductive layer 12 (see FIG. 1). ), A terminal 303 installed adjacent to the substrate 11 (see FIG. 1) and connected to the third conductive layer 16 (see FIG. 1) of the electroluminescent element 10, and a terminal 302 And a lighting circuit 301 for driving the electroluminescent element 10 connected to the terminal 303.
- the lighting circuit 301 has a DC power source (not shown) and a control circuit (not shown) inside, and is connected between the first conductive layer 12 and the third conductive layer 16 of the electroluminescent element 10 through the terminal 302 and the terminal 303. To supply current. Then, the electroluminescent element 10 is driven, the light emitting layer 15 (see FIG. 1) emits light, the light is emitted through the substrate 11, and used as illumination light.
- the light emitting layer 15 may be made of a light emitting material that emits white light, and an electroluminescent element using a light emitting material that emits green light (G), blue light (B), and red light (R). A plurality of 10 may be provided, and the combined light may be white.
- Example 1 An electroluminescent device was produced by the following method. First, on the glass substrate (25 mm square, 1 mm thickness) made of quartz glass as the substrate 11, ITO (Indium Tin Oxide) is used as the first conductive layer 12 by using a sputtering apparatus (E-401s manufactured by Canon Anelva Co., Ltd.). A film was formed by sequentially stacking a film of 150 nm and a silicon dioxide (SiO 2 ) layer of 50 nm as the dielectric layer 13 in this order.
- ITO Indium Tin Oxide
- a photoresist (AZ 1500 made by AZ Electronic Materials Co., Ltd.) was formed to a thickness of about 1 ⁇ m by spin coating.
- a mask A corresponding to a pattern in which a circle (plate thickness: 3 mm) is used as a base and circles are arranged in a triangular lattice shape is prepared, and a stepper exposure apparatus (manufactured by Nikon, model NSR-1505i6) is used. Exposure was performed at 5 scale.
- the resist layer was patterned by developing with a 1.2% solution of TMAH (Tetramethyl ammonium hydroxide: (CH 3 ) 4 NOH). Thereafter, heat was applied at 130 ° C. for 10 minutes (post-baking treatment).
- TMAH Tetramethyl ammonium hydroxide: (CH 3 ) 4 NOH
- the contact residue 17 penetrating the SiO 2 layer was formed by removing the resist residue with a resist removing solution.
- the contact holes 17 have a cylindrical shape with a diameter of 1 ⁇ m, and are arranged in a triangular lattice pattern at a pitch of 4 ⁇ m on the entire surface of the SiO 2 layer.
- a xylene solution of the following compound (A) is applied onto the second conductive layer 14 by a spin coating method (rotation number: 3000 rpm) and left to stand at 210 ° C. for 1 hour in a nitrogen atmosphere and dried. As a result, a hole transport layer was formed.
- a xylene solution containing the following compound (B), compound (C), and compound (D) at a mass ratio of 9: 1: 90 is spin-coated on the hole transport layer (rotation speed: 3000 rpm). ), And left to dry at 140 ° C. for 1 hour in a nitrogen atmosphere to form the light emitting layer 15.
- an electroluminescent device is manufactured by sequentially depositing sodium fluoride (4 nm) as the cathode buffer layer and aluminum (130 nm) as the third conductive layer 16 on the light emitting layer 15 by the vapor deposition method. did.
- the produced electroluminescent element has a substrate surface side as a light emitting surface and one continuous light emitting region. Further, when this electroluminescent element was observed from the light emitting surface side, the number of contact holes in the light emitting region was about 2 ⁇ 10 7 . The ratio of the area occupied by the contact holes to the area of the light emitting region was 0.057.
- an electroluminescent device was produced.
- the produced electroluminescent element has a substrate surface side as a light emitting surface and one continuous light emitting region. Further, when this electroluminescent element was observed from the light emitting surface side, the number of contact holes in the light emitting region was about 2 ⁇ 10 7 . The ratio of the area occupied by the contact holes to the area of the light emitting region was 0.057.
- Example 3 First, in the same manner as in Example 1, a 150 nm ITO film as the first conductive layer 12 and a 50 nm SiO 2 layer as the dielectric layer 13 were sequentially stacked on the quartz glass substrate. Next, in the same manner as in Example 1, after forming a 1 ⁇ m photoresist layer on the SiO 2 layer, a mask B corresponding to a pattern in which quartz is used as a base material and circles are arranged in a triangular lattice pattern is used. The photoresist layer was exposed to 1/5 scale with an exposure apparatus. Next, the photoresist layer was patterned by developing with a 1.2% solution of TMAH and heating at 130 ° C. for 10 minutes.
- TMAH 1.2% solution of TMAH
- the contact holes 17 have a cylindrical shape with a diameter of 0.5 ⁇ m, and are arranged in a triangular lattice pattern at a pitch of 1.6 ⁇ m on the entire surface of the SiO 2 layer and the ITO film.
- a 20 nm ITO film was formed as the second conductive layer 14 on the entire surface of the SiO 2 layer and in the contact hole 17 by using a sputtering apparatus.
- a hole transport layer, a light emitting layer 15, a cathode buffer layer, and a third conductive layer 16 are sequentially stacked on the second conductive layer 14 to form electroluminescence. An element was produced.
- the produced electroluminescent element has a light emitting surface on the substrate surface side and one continuous light emitting region. Further, when this electroluminescent element was observed from the light emitting surface side, the number of contact holes 17 in the light emitting region was about 1.4 ⁇ 10 8 . The ratio of the area occupied by the contact hole 17 to the area of the light emitting region was 0.089. The refractive index of the SiO 2 layer was 1.4.
- Example 1 An electroluminescent device was produced in the same manner as in Example 1 except that the mask C was used as a pattern mask when exposing the photoresist layer.
- the produced electroluminescent element has a light emitting surface on the substrate surface side, and has one continuous light emitting region, a cylindrical shape with a diameter of 2.5 ⁇ m, and a triangular lattice with a pitch of 5 ⁇ m on the entire surface of the SiO 2 layer.
- the contact holes were arranged in a line. When this electroluminescent element was observed from the light emitting surface side, the number of contact holes in the light emitting region was about 1.4 ⁇ 10 7 . Further, the ratio of the area occupied by the contact hole to the area of the light emitting region was 0.23.
- the refractive index of the SiO 2 layer was 1.4.
- Electroluminescent element 11 ... Board
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
Description
更に、エレクトロルミネッセント素子は、白色での発光も可能であり、面発光であることから、このエレクトロルミネッセント素子を照明装置に組み込んで利用する用途も提案されている。
また特許文献1には、電極の一方を半導体層と電気的に接続し、この半導体層ともう一方の電極との間に挟まれた発光層から発光する有機発光素子が開示されている。この有機発光素子では、発光を半導体層から外部へ取り出すことができるため、電極を不透明な材料で形成することができ、導電性が高く安定な金属を電極材料として用いることができる。
上記の問題に鑑み、本発明の目的は、発光部における発光面が平滑で、発光の均一性が高く、製造が容易なエレクトロルミネッセント素子を提供することである。
また、本発明の他の目的は、発光の均一性が高い表示装置および照明装置を提供することである。
発光面側から見たとき、
(i)連続した発光領域を少なくとも1つ有し、
(ii)コンタクトホールの個数は、1つの発光領域あたり102個以上であると共に、コンタクトホールの占める面積の割合が発光領域の面積に対して0.1以下となる個数である
ことを特徴とする。
発光素子の両面が発光面となっている時は、両面ともに上記(i)及び(ii)を満たしていることが好ましい。
また、コンタクトホールの占める面積の割合は、発光領域の面積に対して0.001~0.1であることが好ましく、発光面側から見たコンタクトホールの形状は、この形状を内包する最小円の直径が0.01μm~2μmであることが好ましく、コンタクトホールは、第1の導電層を更に貫通して形成されることが好ましい。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
図1は、本実施の形態が適用されるエレクトロルミネッセント素子の発光領域の一例を説明した部分断面図である。
図1に示したエレクトロルミネッセント素子10は、基板11上に、正孔を注入するための第1の導電層12と、絶縁性の誘電体層13と、誘電体層13の上面を覆って第1の導電層12と電気的に接続した第2の導電層14と、正孔と電子が結合して発光する発光層15と、電子を注入するための第3の導電層16とが順に積層した構造の積層部を備える。また、誘電体層13にはコンタクトホール17が形成されている。そしてコンタクトホール17内には第2の導電層14の成分が充填されている。これにより第1の導電層12と第2の導電層14とはコンタクトホール17を介して電気的に接続する。そのため第1の導電層12と第3の導電層16との間に電圧を印加すると、第2の導電層14と第3の導電層16との間に電圧が印加され、発光層15が発光する。この場合、エレクトロルミネッセント素子10の発光面は、基板11側の面、及び/または、その反対側の面となる。
エレクトロルミネッセント素子10の基板11側との面から光を取り出す必要がない場合は、基板11の材料としては、透明であるものに限られず、不透明なものも使用できる。具体的には、上記材料に加えて、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W)、チタン(Ti)、タンタル(Ta)、もしくはニオブ(Nb)の単体、またはこれらの合金、あるいはステンレスなどからなる材料も使用することができる。
基板11の厚さは、要求される機械的強度にもよるが、好ましくは、0.1mm~10mm、より好ましくは0.25mm~2mmである。
なお、基板11は、第1の導電層12と同一の材質を使用することもできる。この場合、基板11は第1の導電層12を兼ねてもよい。
また、基板11側の面からの光を取り出す場合、発光層15から入射する光を屈折して光の進行方向を変えることによって基板11の外へ取り出す光を増加させることができる。このためには、誘電体層13の屈折率は1.0~1.5の範囲内であることが好ましい。
また誘電体層13の屈折率は、光を外部に取出しやすくするため、1.0~1.5の範囲内であることが好ましい。
また発光部15への正孔の注入を容易にする層を、第2の導電層14の発光部15と接触する表面上に設けてもよい。具体的には、フタロシアニン誘導体、ポリチオフェン誘導体等の導電性高分子、Mo酸化物、アモルファスカーボン、フッ化カーボン、ポリアミン化合物等からなる1nm~200nmの層、あるいは金属酸化物、金属フッ化物、有機絶縁材料等からなる平均膜厚10nm以下の層を形成することで実現することができる。
発光層15の発光材料としては、有機材料および無機材料のいずれも用いることができる。有機化合物であれば低分子化合物及び高分子化合物のいずれをも使用することができる。発光性有機材料としては、リン光性有機化合物および金属錯体が好ましい。金属錯体の中にはリン光性を示すものもあり、かかる金属錯体も好ましく用いられる。本発明においては、特にシクロメタル化錯体を用いることが発光効率向上の観点から非常に望ましい。シクロメタル化錯体としては、例えば、2-フェニルピリジン誘導体、7,8-ベンゾキノリン誘導体、2-(2-チエニル)ピリジン誘導体、2-(1-ナフチル)ピリジン誘導体、2-フェニルキノリン誘導体等の配位子を有するIr、PdおよびPt等の錯体が挙げられるが、イリジウム(Ir)錯体が特に好ましい。シクロメタル化錯体は、シクロメタル化錯体を形成するのに必要な配位子以外に、他の配位子を有していてもよい。なお、シクロメタル化錯体には、三重項励起子から発光する化合物も含まれ、発光効率向上の観点から好ましい。
また、発光性高分子化合物としては、MEH-PPVなどのポリ-p-フェニレンビニレン(PPV)誘導体;ポリフルオレン誘導体、ポリチオフェン誘導体等のπ共役系の高分子化合物;低分子色素とテトラフェニルジアミンやトリフェニルアミンを主鎖や側鎖に導入したポリマー;等が挙げられる。発光性高分子化合物と発光性低分子化合物とを併用することもできる。
発光層15は発光材料とともにホスト材料を含み、ホスト材料中に発光材料が分散されていることもある。このようなホスト材料は電荷輸送性を有していることが好ましく、正孔輸送性化合物や電子輸送性化合物であることが好ましい。
第3の導電層16に使用される材料としては、第1の導電層12と同様に電気伝導性を有するものであれば、特に限定されるものではないが、仕事関数が低く、かつ化学的に安定なものが好ましい。具体的には、Al、MgAg合金、AlLiやAlCaなどのAlとアルカリ金属の合金等の材料を例示することができる。
ただし、第3の導電層16の材料は、エレクトロルミネッセント素子10の第3の導電層16側から光を取り出したい場合(第3の導電層16側の面が光を取出す面、すなわち、発光面となる場合)は、例えば、第1の導電層12と同様な発光光に対して透明な材料を用いることが好ましい。
第3の導電層16の厚さは0.01μm~1μmが好ましく、0.05μm~0.5μmがより好ましい。
第2の導電層14と第3の導電層16の間に、発光層15以外の層が形成されていてもよい。このような層としては正孔輸送層、正孔ブロック層、電子輸送層等を例示することができ、それぞれの機能に応じて、上記のホスト材料として例示した電荷輸送性化合物のほか、公知の材料を用いることができる。
誘電体層13上に形成される発光層15の面積を大きくし、エレクトロルミネッセント素子10の輝度を高くするため、コンタクトホール17の大きさは、第1の導電層12と第2の導電層14との間で電気的な接続が十分可能である限りにおいて、より小さいことが望ましい。本実施の形態においてコンタクトホール17の大きさは、発光面側から基板11に対して鉛直方向から見た場合、図5(a)~(b)に示すように、コンタクトホール17の形状を内包する最小円(最小内包円)17aの直径で表す。即ち、図5(a)では、コンタクトホール17が正方形状である場合の最小内包円を17aで示し、図5(b)では、コンタクトホール17が正六角形状である場合の最小内包円を17aで示している。そして最小内包円17aの直径は、0.01μm~2μmであることが好ましい。例えばコンタクトホール17が円柱形状である場合、その円柱の直径は0.01μm~~2μmであることが好ましい。
また、発光面側から見たコンタクトホール17の占める面積の割合が発光領域の面積に対して0.1以下であることが好ましく、0.001~0.1であることが特に好ましい。これによって輝度が高い発光を得ることが可能となる。
更に、コンタクトホール17は、1つの発光領域に少なくとも102個以上、好ましくは104個以上形成されることが好ましい。更にこれら多数のコンタクトホール17が発光領域内で均一に分布していることが好ましい。ただし、コンタクトホール17の個数の上限は、前述したとおり、発光領域面におけるコンタクトホール17の占める面積の割合が0.1以下となる範囲であることが好ましい。これらにより発光領域における発光の均一性が高まる。なお、図1は模式図であるので必ずしもこれら各数値の比を表すものとしていない。
更に図1でコンタクトホール17は誘電体層13内にのみ形成されているが、更に第1の導電層12及び/または第3の導電層16にまで延伸し貫通して形成されていてもよい。
次に、本発明のエレクトロルミネッセント素子の製造方法について、図1で説明を行ったエレクトロルミネッセント素子10の場合を例に取り説明を行う。
図2(a)~(e)は、本実施の形態が適用されるエレクトロルミネッセント素子10の製造方法について説明した図である。
まず基板11上に第1の導電層12、誘電体層13を順に積層する形で形成する(図2(a))。これらの層を形成するには、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法などを用いることができる。また、塗布成膜方法(即ち、目的とする材料を溶剤に溶解させた状態で基板に塗布し乾燥する方法)が可能な場合は、スピンコーティング法、ディップコーティング法、インクジェット法、印刷法、スプレー法、ディスペンサー法などの方法を用いて成膜することも可能である。
そして、コンタクトホール17を形成するための所定のパターンが描画されたマスクをかぶせ、紫外線(UV:Ultra Violet)、電子線(EB:Electron Beam)等により露光を行う。ここで、等倍露光(例えば、接触露光やフロキシ露光の場合)を行えばマスクパターンと等倍のコンタクトホール17のパターンを、縮小露光(例えば、ステッパーを使用した露光の場合)を行えば、マスクパターンに対して縮小されたコンタクトホール17のパターンを、それぞれ形成することができる。次に、現像液を用いてレジスト層71の露光部分を除去すると、パターンの部分のレジスト層71が除去される(図2(c))。
次に、露出した誘電体層13の部分を(場合によっては第1の導電層12の部分も)エッチング除去し、コンタクトホール17を形成する(図2(d))。エッチングは、ドライエッチングとウェットエッチングの何れをも使用することができる。ドライエッチングとしては、反応性イオンエッチング(RIE:Reactive Ion Etching)や誘導結合プラズマエッチングが利用でき、またウェットエッチングとしては、希塩酸や希硫酸への浸漬を行う方法などが利用できる。なお、エッチングを行う際にエッチングの条件(処理時間、使用ガス、圧力、基板温度)を調節することにより、コンタクトホール17が貫通する層を選択することができる。
具体的にはレジスト層71を形成した後に、パターンを形成するための所定の凸パターンが描画されたマスクを、レジスト層71表面に、圧力をかけて押し当てる。そしてこの状態で、熱あるいは/および光をレジスト層71に照射することにより、レジスト層71を硬化させる。次にマスクを除去することにより、レジスト層71表面に凸パターンに対応するコンタクトホール17のパターンが形成される。続いて、前述したエッチングを行うことにより、コンタクトホール17を形成することができる。
次に、以上詳述したエレクトロルミネッセント素子を備える表示装置について説明を行う。
図3は、本実施の形態におけるエレクトロルミネッセント素子を用いた表示装置の一例を説明した図である。
図3に示した表示装置200は、いわゆるパッシブマトリクス型の表示装置であり、表示装置基板202、陽極配線204、陽極補助配線206、陰極配線208、絶縁膜210、陰極隔壁212、エレクトロルミネッセント素子214、封止プレート216、シール材218とを備えている。
次に、エレクトロルミネッセント素子10を用いた照明装置について説明を行う。
図4は、本実施の形態におけるエレクトロルミネッセント素子を備える照明装置の一例を説明した図である。
図4に示した照明装置300は、上述したエレクトロルミネッセント素子10と、エレクトロルミネッセント素子10の基板11(図1参照)に隣接して設置され第1の導電層12(図1参照)に接続される端子302と、基板11(図1参照)に隣接して設置されエレクトロルミネッセント素子10の第3の導電層16(図1参照)に接続される端子303と、端子302と端子303とに接続しエレクトロルミネッセント素子10を駆動するための点灯回路301とから構成される。
以下の方法によりエレクトロルミネッセント素子を作製した。
まず基板11として石英ガラスからなるガラス基板(25mm角、厚さ1mm)上に、スパッタ装置(キヤノンアネルバ株式会社製E-401s)を用いて、第1の導電層12としてITO(Indium Tin Oxide)膜を150nm、誘電体層13として二酸化ケイ素(SiO2)層を50nm、順に積層して成膜した。
次に、上記の第2の導電層14上に、以下に示す化合物(A)のキシレン溶液をスピンコート法(回転数:3000rpm)により塗布し、窒素雰囲気下、210℃で1時間放置し乾燥することで、正孔輸送層を形成した。
作成されたエレクトロルミネッセント素子は、基板面側を発光面とし、連続した発光領域を1つ有している。また、このエレクトロルミネッセント素子を発光面側から観察したところ、前記発光領域中のコンタクトホールの数は、約2×107個であった。また、該発光領域の面積に対してコンタクトホールの占める面積の割合は0.057であった。
発光層の組成を、以下に示す化合物(E):化合物(F):化合物(G):化合物(D)=10:0.4:0.6:89(質量比)としたほかは実施例1と同様にしてエレクトロルミネッセント素子を作製した。
作成されたエレクトロルミネッセント素子は、基板面側を発光面とし、連続した発光領域を1つ有している。また、このエレクトロルミネッセント素子を発光面側から観察したところ、前記発光領域中のコンタクトホールの数は、約2×107個であった。また、該発光領域の面積に対してコンタクトホールの占める面積の割合は0.057であった。
まず実施例1と同様にして石英ガラス基板上に、第1の導電層12として150nmのITO膜および誘電体層13として50nmのSiO2層を順に積層して成膜した。
次に実施例1と同様にして、SiO2層上に1μmのフォトレジスト層を成膜した後、石英を基材とし、円を三角格子状に配置したパターンに対応するマスクBを用い、ステッパー露光装置にて1/5縮尺でフォトレジスト層に露光を行った。次にTMAHの1.2%液により現像し、130℃で10分間加熱することでフォトレジスト層をパターン化した。
次に実施例1と同様にして、第2の導電層14上に正孔輸送層、発光層15、陰極バッファ層および第3の導電層16を順に積層して形成することでエレクトロルミネッセント素子を作製した。
フォトレジスト層に露光する時のパターンマスクとしてマスクCを用いたほかは実施例1と同様にしてエレクトロルミネッセント素子を作製した。
作製されたエレクトロルミネッセント素子は、基板面側を発光面とし、連続した発光領域を1つ有しており、直径2.5μmの円柱状でSiO2層の全面に5μmのピッチで三角格子状に配列して形成されたコンタクトホールを有していた。このエレクトロルミネッセント素子を発光面側から観察したところ、前記発光領域中のコンタクトホールの数は、約1.4×107個であった。また、該発光領域の面積に対してコンタクトホールの占める面積の割合は0.23であった。なお、SiO2層の屈折率は1.4であった。
また、以下の表1に実施例1~3及び比較例1で作製したエレクトロルミネッセント素子を300cd/m2の平均輝度で点灯させた時の発光効率と駆動電圧を示した。実施例1~3のエレクトロルミネッセント素子は、比較例1のエレクトロルミネッセント素子に比較して発光効率が高く、低い電圧で駆動できる優れた特性も有する。
Claims (10)
- 第1の導電層、誘電体層、第2の導電層、発光層および第3の導電層が順に積層された積層部と、少なくとも前記誘電体層を貫通し当該第1の導電層および当該第2の導電層を電気的に接続するコンタクトホールとを備え、
発光面側から見たとき、
(i)連続した発光領域を少なくとも1つ有し、
(ii)前記コンタクトホールの個数は、1つの前記発光領域あたり102個以上であると共に、当該コンタクトホールの占める面積の割合が当該発光領域の面積に対して0.1以下となる個数である
ことを特徴とするエレクトロルミネッセント素子。 - 前記コンタクトホールの占める面積の割合は、前記発光領域の面積に対して0.001~0.1である請求項1に記載のエレクトロルミネッセント素子。
- 発光面側から見た前記コンタクトホールの形状は、当該形状を内包する最小円の直径が0.01μm~2μmである請求項1または2に記載のエレクトロルミネッセント素子。
- 前記コンタクトホールは、前記第1の導電層を更に貫通して形成される請求項1乃至3の何れか1項に記載のエレクトロルミネッセント素子。
- 前記第1の導電層、前記誘電体層および前記第2の導電層が、発光する光の波長に対して透明である請求項1乃至4の何れか1項に記載のエレクトロルミネッセント素子。
- 前記誘電体層の屈折率は、1.0~1.5である請求項1乃至5の何れか1項に記載のエレクトロルミネッセント素子。
- 前記第2の導電層は、導電性金属酸化物または導電性高分子を含む請求項1乃至6の何れか1項に記載のエレクトロルミネッセント素子。
- 前記第2の導電層と第3の導電層の間に、正孔輸送層、正孔ブロック層及び電子輸送層から選ばれる少なくとも1層を更に備える請求項1乃至7の何れか1項に記載のエレクトロルミネッセント素子。
- 請求項1乃至8の何れか1項に記載のエレクトロルミネッセント素子を備えることを特徴とする表示装置。
- 請求項1乃至8の何れか1項に記載のエレクトロルミネッセント素子を備えることを特徴とする照明装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137004829A KR101408463B1 (ko) | 2010-09-01 | 2011-08-12 | 전계발광 소자, 표시 장치 및 조명 장치 |
EP11821549.0A EP2613611A4 (en) | 2010-09-01 | 2011-08-12 | ELECTROLUMINESCENCE ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE |
CN2011800422760A CN103098551A (zh) | 2010-09-01 | 2011-08-12 | 电致发光元件、显示装置以及照明装置 |
JP2011546487A JP4913927B1 (ja) | 2010-09-01 | 2011-08-12 | エレクトロルミネッセント素子、表示装置および照明装置 |
US13/819,895 US20130161664A1 (en) | 2010-09-01 | 2011-08-12 | Electroluminescent element, display device and lighting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010195378 | 2010-09-01 | ||
JP2010-195378 | 2010-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012029531A1 true WO2012029531A1 (ja) | 2012-03-08 |
Family
ID=45772636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/068437 WO2012029531A1 (ja) | 2010-09-01 | 2011-08-12 | エレクトロルミネッセント素子、表示装置および照明装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130161664A1 (ja) |
EP (1) | EP2613611A4 (ja) |
JP (1) | JP4913927B1 (ja) |
KR (1) | KR101408463B1 (ja) |
CN (1) | CN103098551A (ja) |
TW (1) | TW201222915A (ja) |
WO (1) | WO2012029531A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013128601A1 (ja) * | 2012-02-29 | 2013-09-06 | 昭和電工株式会社 | エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置 |
JP2015505639A (ja) * | 2012-02-03 | 2015-02-23 | コーニンクレッカ フィリップス エヌ ヴェ | Oled素子及びその製造 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013129612A1 (ja) * | 2012-02-29 | 2013-09-06 | 昭和電工株式会社 | エレクトロルミネッセント素子の製造方法 |
JPWO2013129611A1 (ja) * | 2012-02-29 | 2015-07-30 | 昭和電工株式会社 | エレクトロルミネッセント素子の製造方法 |
TWI647836B (zh) * | 2017-08-07 | 2019-01-11 | 智晶光電股份有限公司 | 觸控有機發光二極體之隔離柱導電結構 |
CN110032285A (zh) * | 2018-01-11 | 2019-07-19 | 南昌欧菲显示科技有限公司 | 触控模组及其制造方法 |
CN109256490B (zh) * | 2018-09-28 | 2021-02-26 | 广州国显科技有限公司 | 柔性显示装置、有机发光器件及其制备方法 |
CN112015299B (zh) | 2020-08-27 | 2023-11-28 | 合肥鑫晟光电科技有限公司 | 触控基板和触控装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000067531A1 (fr) | 1999-04-30 | 2000-11-09 | Idemitsu Kosan Co., Ltd. | Dispositif organique electroluminescent et procede de fabrication |
JP2005332773A (ja) * | 2004-05-21 | 2005-12-02 | Semiconductor Energy Lab Co Ltd | 照明装置 |
JP2006302860A (ja) * | 2005-03-23 | 2006-11-02 | Mitsubishi Electric Corp | El素子及びその製造方法 |
WO2008061524A2 (de) * | 2006-11-23 | 2008-05-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Beleuchtungselement und verfahren zu seiner herstellung |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6593687B1 (en) * | 1999-07-20 | 2003-07-15 | Sri International | Cavity-emission electroluminescent device and method for forming the device |
JP3841092B2 (ja) * | 2003-08-26 | 2006-11-01 | 住友電気工業株式会社 | 発光装置 |
JP4723213B2 (ja) * | 2003-08-29 | 2011-07-13 | 株式会社半導体エネルギー研究所 | 発光素子の作製方法 |
US8697254B2 (en) * | 2006-11-14 | 2014-04-15 | Sri International | Cavity electroluminescent devices and methods for producing the same |
TWI349381B (en) * | 2007-08-03 | 2011-09-21 | Chi Mei Lighting Tech Corp | Light-emitting diode and manufacturing method thereof |
JP5552433B2 (ja) * | 2008-01-24 | 2014-07-16 | エスアールアイ インターナショナル | 高効率エレクトロルミネセント素子およびそれを生産するための方法 |
-
2011
- 2011-08-12 WO PCT/JP2011/068437 patent/WO2012029531A1/ja active Application Filing
- 2011-08-12 KR KR1020137004829A patent/KR101408463B1/ko not_active IP Right Cessation
- 2011-08-12 JP JP2011546487A patent/JP4913927B1/ja not_active Expired - Fee Related
- 2011-08-12 CN CN2011800422760A patent/CN103098551A/zh active Pending
- 2011-08-12 US US13/819,895 patent/US20130161664A1/en not_active Abandoned
- 2011-08-12 EP EP11821549.0A patent/EP2613611A4/en not_active Withdrawn
- 2011-08-30 TW TW100131106A patent/TW201222915A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000067531A1 (fr) | 1999-04-30 | 2000-11-09 | Idemitsu Kosan Co., Ltd. | Dispositif organique electroluminescent et procede de fabrication |
JP2005332773A (ja) * | 2004-05-21 | 2005-12-02 | Semiconductor Energy Lab Co Ltd | 照明装置 |
JP2006302860A (ja) * | 2005-03-23 | 2006-11-02 | Mitsubishi Electric Corp | El素子及びその製造方法 |
WO2008061524A2 (de) * | 2006-11-23 | 2008-05-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Beleuchtungselement und verfahren zu seiner herstellung |
Non-Patent Citations (1)
Title |
---|
See also references of EP2613611A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015505639A (ja) * | 2012-02-03 | 2015-02-23 | コーニンクレッカ フィリップス エヌ ヴェ | Oled素子及びその製造 |
WO2013128601A1 (ja) * | 2012-02-29 | 2013-09-06 | 昭和電工株式会社 | エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置 |
Also Published As
Publication number | Publication date |
---|---|
US20130161664A1 (en) | 2013-06-27 |
JPWO2012029531A1 (ja) | 2013-10-28 |
KR20130041977A (ko) | 2013-04-25 |
TW201222915A (en) | 2012-06-01 |
EP2613611A4 (en) | 2014-07-30 |
KR101408463B1 (ko) | 2014-06-17 |
JP4913927B1 (ja) | 2012-04-11 |
CN103098551A (zh) | 2013-05-08 |
EP2613611A1 (en) | 2013-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013128601A1 (ja) | エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置 | |
JP4913927B1 (ja) | エレクトロルミネッセント素子、表示装置および照明装置 | |
JP4675435B2 (ja) | 電界発光素子、電界発光素子の製造方法、画像表示装置および照明装置 | |
KR100462858B1 (ko) | 유기 발광 장치 | |
JP4882037B1 (ja) | 有機発光素子および有機発光素子の製造方法 | |
WO2010067861A1 (ja) | 有機電界発光素子、表示装置および照明装置 | |
WO2012147390A1 (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
WO2010061898A1 (ja) | 有機電界発光素子、表示装置および照明装置 | |
WO2012029156A1 (ja) | El素子、el素子の製造方法、表示装置および照明装置 | |
JP5255161B1 (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
WO2011148478A1 (ja) | 発光素子、画像表示装置および照明装置 | |
JP5292863B2 (ja) | 有機電界発光表示装置及びその製造方法 | |
JP2012243517A (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
JP5145483B2 (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
JP2011081948A (ja) | 有機電界発光素子、有機電界発光素子の製造方法、表示装置および照明装置 | |
JP2007250719A (ja) | 有機エレクトロルミネッセント素子およびその製造方法 | |
JPWO2013128601A1 (ja) | エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置 | |
WO2010032757A1 (ja) | 有機電界発光素子、表示装置および照明装置 | |
JP2011210562A (ja) | 有機el素子の製造方法及び有機elパネルの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180042276.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011546487 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11821549 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137004829 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13819895 Country of ref document: US Ref document number: 2011821549 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |