WO2012029437A1 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
WO2012029437A1
WO2012029437A1 PCT/JP2011/066808 JP2011066808W WO2012029437A1 WO 2012029437 A1 WO2012029437 A1 WO 2012029437A1 JP 2011066808 W JP2011066808 W JP 2011066808W WO 2012029437 A1 WO2012029437 A1 WO 2012029437A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog
sampling
output signal
digital converter
delta
Prior art date
Application number
PCT/JP2011/066808
Other languages
English (en)
French (fr)
Inventor
雅俊 野村
田村 学
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Priority to JP2012531745A priority Critical patent/JP5531214B2/ja
Priority to CN201180041160.5A priority patent/CN103080754B/zh
Publication of WO2012029437A1 publication Critical patent/WO2012029437A1/ja
Priority to US13/766,664 priority patent/US9046554B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/257Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques using analogue/digital converters of the type with comparison of different reference values with the value of voltage or current, e.g. using step-by-step method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the present invention relates to a current sensor that measures the magnitude of current.
  • the present invention relates to a current sensor in which a decrease in measurement accuracy is suppressed.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a current sensor capable of suppressing a drop in measurement accuracy by enabling appropriate correction processing.
  • the current sensor of the present invention is disposed around a current line through which a current to be measured flows, and a first magnetic sensor and a second magnetic sensor that output an output signal of opposite phase by an induced magnetic field from the current to be measured.
  • a first analog-to-digital converter connected to the first magnetic sensor and converting an output signal of the first magnetic sensor from an analog signal to a digital signal and outputting the converted signal;
  • a second analog-to-digital converter connected and converting the output signal of the second magnetic sensor from an analog signal to a digital signal and outputting the first analog-to-digital converter and the second analog-to-digital converter
  • the output signal of the first magnetic sensor and the output signal of the second magnetic sensor can be converted into individual digital signals. That is, the correction processing (calculation processing) is performed in a state in which the information uniquely possessed by the output signal of the first magnetic sensor and the information uniquely possessed by the output signal of the second magnetic sensor remain. Therefore, it is possible to use information which the output signal of the first magnetic sensor uniquely has and information which the output signal of the second magnetic sensor uniquely have for the correction process. Therefore, more appropriate correction is possible as compared to the case of converting an analog differential value between the output signal of the first magnetic sensor and the output signal of the second magnetic sensor into a digital signal. And thereby, the fall of current measurement accuracy can be controlled effectively.
  • the term "current line” only indicates a component capable of conducting current, and is not used to limit that the shape is "linear".
  • the “current wire” includes a plate-like conductive member, a thin film-like conductive member, and the like.
  • the first magnetic sensor and the second magnetic sensor may be point-symmetrical about the current line and may be arranged so that the sensitivity axis directions are the same. is there. According to this configuration, it is possible to easily cancel the influence of the external magnetic field by the differential operation.
  • the first magnetic sensor and the second magnetic sensor are disposed in the vicinity of a magnetic sensor element whose characteristics are changed by an induced magnetic field from the measured current, and the magnetic sensor element.
  • a magnetic balance type sensor including a feedback coil that generates a cancellation magnetic field that cancels out the induction magnetic field may be used. According to this configuration, it is possible to easily realize a current sensor having a high response speed and a small temperature dependence.
  • the magnetic sensor element may be a magnetoresistive element. According to this configuration, it is possible to secure sufficient current measurement accuracy by the magnetoresistance effect element.
  • the arithmetic device is configured to generate a second output signal from the first analog-to-digital converter (hereinafter referred to as O 1-1 ) immediately after the first sampling in the first sampling.
  • the arithmetic device is the first sampling in the second sampling immediately after the first sampling with respect to the output signal O 1-1 of the first analog-to-digital converter in the first sampling.
  • variation delta 1 of the output signal O 1-2 of the analog-to-digital converter exceeds a threshold delta th, and, for the output signal O 2-1 of the second analog-to-digital converter at the first sampling, the variation delta 2 of the output signal O 2-2 of the second of said second analog-to-digital converter in the sampling, if it exceeds a threshold delta th, the calculation value in the first sampling, the second sampling It may be output as the calculated value in.
  • the arithmetic device is the first sampling in the second sampling immediately after the first sampling with respect to the output signal O 1-1 of the first analog-to-digital converter in the first sampling.
  • the second variation in the second sampling with respect to the variation ⁇ 1 of the output signal O 1-2 of the analog-to-digital converter, and the output signal O 2-1 of the second variation in the first analog-to-digital converter a change amount delta 2 of the output signal O 2-2 of the analog-to-digital converter, the difference is when it exceeds a threshold delta th, it is possible to output the error signal. According to this configuration, it is possible to prevent the abnormal operation of the system.
  • the arithmetic device is the first sampling in the second sampling immediately after the first sampling with respect to the output signal O 1-1 of the first analog-to-digital converter in the first sampling.
  • variation delta 1 of the output signal O 1-2 of the analog-to-digital converter exceeds a threshold delta th
  • the variation delta 2 of the output signal O 2-2 of the second of said second analog-to-digital converter in the sampling if it exceeds a threshold delta th, it is possible to output an error signal. According to this configuration, it is possible to prevent the abnormal operation of the system.
  • the arithmetic device is the first sampling in the second sampling immediately after the first sampling with respect to the output signal O 1-1 of the first analog-to-digital converter in the first sampling.
  • the arithmetic device is the first sampling in the second sampling immediately after the first sampling with respect to the output signal O 1-1 of the first analog-to-digital converter in the first sampling.
  • variation delta 1 of the output signal O 1-2 of the analog-to-digital converter exceeds a threshold delta th, and, for the output signal O 2-1 of the second analog-to-digital converter at the first sampling, the the second change amount delta 2 of the output signal O 2-2 of the at sampling second analog-to-digital converter, if it exceeds a threshold delta th, in the second sampling, the first analog-to-digital converter the differential value of the output signal O 2-2 of the output signal O 1-2 the second analog-to-digital converters, obtained by multiplying a coefficient less than 1
  • the value calculated from, it may be output as operation value in the second sampling.
  • the arithmetic device is the first sampling in the second sampling immediately after the first sampling with respect to the output signal O 1-1 of the first analog-to-digital converter in the first sampling.
  • the second variation in the second sampling with respect to the variation ⁇ 1 of the output signal O 1-2 of the analog-to-digital converter, and the output signal O 2-1 of the second variation in the first analog-to-digital converter a change amount delta 2 of the output signal O 2-2 of the analog-to-digital converter, the difference is when it exceeds a threshold delta th, it is possible to output the error signal. According to this configuration, it is possible to prevent the abnormal operation of the system.
  • the arithmetic device is the first sampling in the second sampling immediately after the first sampling with respect to the output signal O 1-1 of the first analog-to-digital converter in the first sampling.
  • variation delta 1 of the output signal O 1-2 of the analog-to-digital converter exceeds a threshold delta th
  • the variation delta 2 of the output signal O 2-2 of the second of said second analog-to-digital converter in the sampling if it exceeds a threshold delta th, it is possible to output an error signal. According to this configuration, it is possible to prevent the abnormal operation of the system.
  • the arithmetic device is the first sampling in the second sampling immediately after the first sampling with respect to the output signal O 1-1 of the first analog-to-digital converter in the first sampling. beyond the variation delta 1 of the output signal O 1-2 of the analog-to-digital converter a threshold delta th, and, for the output signal O 2-1 of the second analog-to-digital converter at the first sampling, the first when the change amount delta 2 of the output signal O 2-2 of the second analog-to-digital converter in the second sampling does not exceed the threshold delta th, the calculation value in the first sampling, the second change amount delta 2 A value obtained by adding a double value is output as an operation value in the second sampling, and the first analog digital in the first sampling
  • variation delta 1 of the output signal O 1-2 of the first analog-to-digital converter in the second sampling does not exceed the threshold delta th, and the first of an output signal O 2-1 of the at sampling second analog-to-digital converter, the
  • the current sensor of the present invention can convert the output signal of the first magnetic sensor and the output signal of the second magnetic sensor into individual digital signals, the output signal of the first magnetic sensor and the second Compared with the case where a differential value with the output signal of the magnetic sensor is converted into a digital signal to be used, more appropriate correction is possible. For this reason, it is possible to effectively suppress a decrease in current measurement accuracy.
  • the present inventors do not directly connect the first magnetic sensor and the second magnetic sensor that output the reverse phase output signal to the differential amplifier, but instead, the first magnetic sensor and the second magnetic sensor, respectively. It has been found that connecting an analog-to-digital converter to enables more appropriate correction. This is performed by performing conversion of an analog signal to a digital signal at a stage prior to a correction process (arithmetic process) such as differential value calculation to obtain information uniquely possessed by the output signal of the first magnetic sensor, and the second It is because the information which the output signal of the magnetic sensor uniquely has can be made to remain and to be utilized.
  • the gist of the present invention performs conversion of an analog signal to a digital signal at a stage prior to correction processing (arithmetic processing) such as differential value calculation, thereby uniquely providing the output signal of the first magnetic sensor.
  • correction processing such as differential value calculation
  • the information and the information uniquely provided by the output signal of the second magnetic sensor are used to enable more appropriate correction. It may be rephrased as having an analog-to-digital converter on the upstream side (upstream side of the processing flow) of the arithmetic unit.
  • FIG. 1 is an example of a block diagram of a current sensor 1 according to the present invention.
  • the current sensor 1 shown in FIG. 1 includes a first magnetic sensor 11A and a second magnetic sensor 11B, and a control unit 13 that controls the first magnetic sensor 11A and the second magnetic sensor 11B.
  • the first magnetic sensor 11A is a magnetic balance type sensor, and a feedback coil 111A disposed so as to be capable of generating a magnetic field in a direction to cancel the magnetic field generated by the current to be measured, and two magnetoresistance effect elements as magnetic detection elements. And a bridge circuit 113A composed of two fixed resistance elements. Further, similarly to the first magnetic sensor 11A, the second magnetic sensor 11B also includes a feedback coil 111B disposed so as to be capable of generating a magnetic field in a direction that cancels the magnetic field generated by the current to be measured, and two magnetic detection elements. It is comprised from the bridge circuit 113B which consists of a magnetoresistive effect element and two fixed resistance elements. Although a magnetic balance sensor is used here, a magnetic proportional sensor may be used.
  • the control unit 13 amplifies the differential output of the bridge circuit 113A of the first magnetic sensor 11A and controls the feedback current of the feedback coil 111A, and the feedback current of the first magnetic sensor 11A. It includes an I / V amplifier 123A for converting into a voltage, and a first analog-to-digital converter (A / D converter) 125A for converting the output of the I / V amplifier 123A into a digital signal. Further, the control unit 13 amplifies the differential output of the bridge circuit 113B of the second magnetic sensor 11B and controls the feedback current of the feedback coil 111B, and the feedback of the second magnetic sensor 11B.
  • control unit 13 is an MCU (micro controller unit: Micro Controller Unit) connected to the first analog-to-digital converter 125A and the second analog-to-digital converter 125B as an arithmetic device that performs various processes such as differential operation. Including 127).
  • the feedback coils 111A and 111B are disposed in the vicinity of the magnetoresistance effect elements of the bridge circuits 113A and 113B, and generate a cancellation magnetic field that cancels out the induced magnetic field generated by the current to be measured.
  • a GMR (Giant Magneto Resistance) element, a TMR (Tunnel Magneto Resistance) element, or the like can be used as the magnetoresistive effect element of the bridge circuits 113A and 113B.
  • the magnetoresistance effect element has a characteristic that the resistance value is changed by the application of the induction magnetic field from the current to be measured.
  • Each of the bridge circuits 113A and 113B has two output terminals that generate a voltage difference in accordance with the induced magnetic field generated by the current to be measured.
  • the two outputs from the two output terminals of the bridge circuits 113A and 113B are differentially amplified by the differential / current amplifiers 121A and 121B, and the differentially amplified outputs are fed to the feedback coils 111A and 111B (feedback currents Given as This feedback current corresponds to the voltage difference according to the induced magnetic field.
  • the feedback current When a feedback current is applied to the feedback coils 111A and 111B, the feedback current generates a cancellation magnetic field that cancels out the induced magnetic field.
  • the current flowing through the feedback coils 111A and 111B is converted to a voltage by the I / V amplifiers 123A and 123B and becomes a sensor output.
  • the power supply voltage is set to a value close to the I / V conversion reference voltage + (maximum value within feedback coil resistance rating x full scale feedback coil current).
  • the feedback current is limited, and the effect of protecting the magnetoresistive element and the feedback coil can be obtained.
  • the difference between the two outputs of the bridge circuits 113A and 113B is amplified and used as a feedback current, only the midpoint potential is output from the bridge circuits 113A and 113B, and the potential difference with the predetermined reference potential is The original feedback current may be used.
  • the first analog-to-digital converter 125A and the second analog-to-digital converter 125B convert the outputs of the first magnetic sensor 11A and the second magnetic sensor 11B, which are analog signals, into digital signals and output them.
  • the conversion method includes parallel comparison type, successive comparison type, double integration type, pipeline type, delta sigma type, etc., which can be appropriately selected according to the required accuracy, response speed, and the like.
  • the MCU 127 receives the digital signals from the first analog-to-digital converter 125A and the second analog-to-digital converter 125B, and outputs the first analog-to-digital converter 125A and the second analog-to-digital converter 125B at a certain timing. And the outputs of the first analog-to-digital converter 125A and the second analog-to-digital converter 125B at the timing immediately before that. If the outputs of the two analog-to-digital converters are largely changed in phase, or if only the output of one of the analog-to-digital converters is largely changed, it is assumed that the measurement accuracy is low. Discard the measurement data or reduce the weighting. Such a determination is made because an output change caused by a current change appears as a change in the opposite phase, and does not appear as a change in the same phase or a change in only one of the phases.
  • MCU127 compares the (1) the variation delta 2 of the first change in the output signal of the analog-to-digital converter 125A delta 1 and the second output signal of the analog-to-digital converter 125B If the difference is larger than the threshold ⁇ th , the measurement data is discarded, and correction processing using data acquired at the immediately preceding timing, (2) change amount ⁇ of the output of the first analog-to-digital converter 125A 1 and the sign of the amount of change ⁇ 2 of the output of the second analog-to-digital converter 125 B are the same, and the absolute value of ⁇ 1 and the absolute value of ⁇ 2 are each greater than a predetermined threshold ⁇ th If relinquishes the measurement data, the correction processing using the data acquired at the timing immediately before (3) of the first analog-to-digital converter 125A the output signal variation delta 1 and the second By comparing the Na log digital converter variation delta 2 of the output signal of 125B, when the difference is greater than the threshold delta th, the correction processing to reduce the weighting
  • MCU127 is (5) the absolute value of the change amount delta 1 of the output of the first analog-to-digital converter 125A, or either the absolute value of the change amount delta 2 of the output of the second analog-to-digital converter 125B only one of, if a predetermined threshold delta th greater than that, correction process to give up its one measurement data, there is a case of performing.
  • the MCU 127 may be configured to be able to perform arithmetic processing such as acquisition of differential values and correction of gains and offsets of differential values.
  • the output signal of the first magnetic sensor 11A and the output signal of the second magnetic sensor 11B are divided into a first analog-to-digital converter 125A and a second analog. It can be converted to an individual digital signal by the digital converter 125B. That is, performing the later correction processing (calculation processing) in the state where the information uniquely possessed by the output signal of the first magnetic sensor 11A and the information uniquely possessed by the output signal of the second magnetic sensor 11B remain. As a result, it is possible to use the information uniquely possessed by the output signal of the first magnetic sensor 11A and the information uniquely possessed by the output signal of the second magnetic sensor 11B in the correction process.
  • the configuration of the current sensor 1 according to the block diagram of FIG. 1 is merely an example, and it is naturally possible to adopt other configurations.
  • Embodiment 1 In the present embodiment, an example of the correction process of the current sensor 1 will be described.
  • the difference is a threshold delta If it is larger than th , the measurement data is discarded, and the correction processing using the data acquired at the immediately preceding timing will be described in detail.
  • FIG. 2 is a diagram showing an example of a processing flow in the MCU 127 of the current sensor 1.
  • the first sampling refers to acquisition of measurement data at a certain timing and processing of the acquired measurement data when current measurement is performed in a predetermined sampling cycle
  • the second sampling is It refers to the acquisition of measurement data and the processing of the acquired measurement data at the timing next to the first sampling. That is, the ordinal numbers in the first sampling and the second sampling only indicate that the measurement and processing are performed sequentially, and do not indicate that the measurement and processing at a specific timing.
  • FIG. 2 only the process characteristic to the current sensor 1 of this invention is shown for simplification of description.
  • the first sampling and the second sampling can be performed in the same manner, in the following, mainly the second sampling will be described.
  • step 201 the MCU 127 outputs the operation value in the first sampling.
  • the output signal O 1-1 of the first analog-to-digital converter 125A connected to the first magnetic sensor 11A in the first sampling and the second analog connected to the second magnetic sensor 11B in the first sampling When the noise of the output signal O 1-2 of the digital converter 125 B is small, these differential values (O 1-1 -O 2-1 or O 2-1 -O 1-1 ) are usually It is output as a calculated value.
  • the second sampling is started, and from the first analog-to-digital converter 125A and the second analog-to-digital converter 125B, the output signal of the first magnetic sensor 11A converted to a digital signal (in the second sampling).
  • the output signal O 2-2 ) of the analog-to-digital converter 125B connected to the sensor 11B is input to the MCU 127.
  • the MCU 127 When the output signal O 1-2 and the output signal O 2-2 are input to the MCU 127, the MCU 127 outputs the output signal O 1-2 , the output signal O 2-2 , and an output already acquired in the first sampling.
  • step 205 to determine the magnitude of the noise in the output signal of the output signal and the second magnetic sensor 11B of the first magnetic sensor 11A, the change amount delta 1 of the output of the first analog-to-digital converter 125A, the the difference between the change amount delta 2 of the output of the second analog-digital converter 125B it is determined whether within a predetermined range. Specifically, a change amount delta 1 of the output of the first analog-to-digital converter 125A, the difference between the change amount delta 2 of the output of the second analog-to-digital converter 125B, the threshold delta th determined in advance Compare with.
  • a change amount delta 1 of the output of the first analog-to-digital converter 125A, the difference between the change amount delta 2 of the output of the second analog-to-digital converter 125B is, if it exceeds a threshold delta th, i.e.,
  • the threshold delta th for example, the upper limit of the detected current of the current sensor 1 and I MAX, the measurement accuracy required as its a%, the threshold current represented the resolution of the detection current of the current sensor 1 as I RES
  • the full scale of the current sensor 1 is 1000 A, the required measurement accuracy is 1%, and the resolution of the current sensor 1 is 1 A, the potential difference corresponding to the threshold current 9 A is adopted as the threshold ⁇ th Be done.
  • the method of determining the threshold value ⁇ th is not particularly limited, and another determination method may be employed. In any case, it is desirable to use a threshold ⁇ th suitable for determining the presence or absence of noise.
  • a change amount delta 1 of the output of the first analog-to-digital converter 125A the difference between the change amount delta 2 of the output of the second analog-to-digital converter 125B is, if it exceeds a threshold delta th, i.e.,
  • > ⁇ th the noise of the output signal O 1-2 and the output signal O 2-2 obtained in the second sampling is large, and in step 207, the noise is obtained in the second sampling.
  • the output signal O1-2 and the output signal O2-2 are discarded. Then, the operation value in the first sampling output in step 201 is treated as the operation value in the second sampling.
  • a change amount delta 1 of the output of the first analog-to-digital converter 125A the difference between the change amount delta 2 of the output of the second analog-to-digital converter 125B does not exceed the threshold delta th, i.e.,
  • ⁇ ⁇ th noises of the output signal O 1-2 and the output signal O 2-2 obtained in the second sampling are small, and in step 209, the noise is acquired in the second sampling.
  • the MCU 127 outputs the operation value in the second sampling in step 211.
  • the subsequent processing is the same as that of the first embodiment.
  • the magnitude of the noise is determined from the continuous first sampling and the second sampling, the present invention is not limited to this.
  • the output in the previous sampling is The amount of change may be calculated from the signal, and the same noise determination may be made.
  • the magnitude of the noise can be determined from the relationship with the threshold.
  • the threshold in this case may be equal to or different from the threshold ⁇ th .
  • step 209 may be executed.
  • the correction process shown in compares the variation of the first analog-digital converter output signal delta 1 and a second change amount delta 2 of the output signal of the analog-to-digital converter is large these deviations In this case, new measurement data is discarded, assuming that the measurement accuracy is low. As a result, the decrease in measurement accuracy can be sufficiently suppressed.
  • the correction process is not limited to the process shown in FIG. Instead of the process shown in FIG. 2, different processes can be employed. Moreover, as long as no contradiction arises, it is also possible to use it in combination with other processes shown in the second embodiment and the following.
  • FIG. 3 is a diagram showing an example of a processing flow in the MCU 127 of the current sensor 1. In addition, in FIG. 3, only the process characteristic to the current sensor 1 of this invention is shown for simplification of description.
  • Steps 301, 303 and 311 are the same as steps 201, 203 and 211 in the first embodiment. That, MCU127 in step 301, and outputs the calculated value in a first sampling, at step 303, a change amount delta 1 of the output of the first analog-to-digital converter 125A, the second analog-to-digital converter 125B calculating a change amount delta 2 of the output, in step 311, based on the processing in step 307 or step 309, and outputs the calculated value in the second sampling.
  • step 305 to determine the magnitude of the noise in the output signal of the output signal and the second magnetic sensor 11B of the first magnetic sensor 11A, the change amount delta 1 of the output of the first analog-to-digital converter 125A, the second and variation delta 2 of the output of the analog-to-digital converter 125B it is determined whether within a predetermined range.
  • a change amount delta 1 of the output of the first analog-to-digital converter 125A, the sign of the variation delta 2 of the output of the second analog-to-digital converter 125B To assess whether the same with the absolute value of the change amount delta 1 of the output of the first analog-to-digital converter 125A, and the absolute value of the change amount delta 2 of the output of the second analog-to-digital converter 125B, respectively, predetermined Compare with the threshold ⁇ th .
  • a sign of the change amount delta 2 of the output of the change in the output of the first analog-to-digital converter 125A delta 1 and the second analog-digital converter 125B are the same, the output of the first analog-to-digital converter 125A the absolute value of the change amount delta 1 exceeds the threshold delta th, when the absolute value of the amount of change delta 2 of the output of the second analog-to-digital converter 125B exceeds a threshold delta th, i.e., delta 1> 0 and, If ⁇ 2 > 0 and
  • the method of determining the threshold ⁇ th is arbitrary.
  • the determination method described in Embodiment 1 can be used.
  • the absolute value of the variation delta 1 of the output of the first analog-to-digital converter 125A does not exceed the threshold delta th, or the absolute value of the change amount delta 2 of the output of the second analog-to-digital converter 125B threshold delta If it does not exceed th , that is,
  • the differential value of the output signal O 1-2 and the output signal O 2-2 obtained in the second sampling (O 1-2 -O 2-2 or O 2- 2 ⁇ O 1-2 ) is calculated, and the differential value is treated as the calculated value in the second sampling.
  • the magnitude of the noise is determined from the continuous first sampling and the second sampling, the present invention is not limited to this.
  • the output in the previous sampling is The amount of change may be calculated from the signal, and the same noise determination may be made.
  • the magnitude of the noise can be determined from the relationship with the threshold.
  • the threshold in this case may be equal to or different from the threshold ⁇ th .
  • step 309 may be executed.
  • the correction process described above when the output signal of the first analog-to-digital converter and the output signal of the second analog-to-digital converter both change significantly, it is regarded as being in a state of low measurement accuracy. We have abandoned measurement data. As a result, the decrease in measurement accuracy can be sufficiently suppressed.
  • the correction process is not limited to the process shown in FIG. Instead of the process shown in FIG. 3, different processes can be employed. Moreover, as long as no contradiction arises, it is also possible to use in combination with other processes. For example, by using the process shown in FIG. 2 and the process shown in FIG. 3 in combination, it is possible to further suppress the decrease in measurement accuracy. In the case where a plurality of processes are combined, it is desirable to determine the priority of the processes in advance also in order to prevent the occurrence of contradiction.
  • FIG. 4 is a diagram showing an example of a processing flow in the MCU 127 of the current sensor 1. In addition, in FIG. 4, only the process characteristic to the current sensor 1 of this invention is shown for simplification of description.
  • Steps 401, 403, and 411 are the same as steps 201, 203, and 211 in the first embodiment. That, MCU127 in step 401, and outputs the calculated value in a first sampling, at step 403, a change amount delta 1 of the output of the first analog-to-digital converter 125A, the second analog-to-digital converter 125B calculating a change amount delta 2 of the output, in step 411, based on the processing in step 407 or step 409, and outputs the calculated value in the second sampling.
  • Step 405 is the same as step 205 in the first embodiment. That, MCU127 in step 405, a change amount delta 1 of the output of the first analog-to-digital converter 125A, the difference between the change amount delta 2 of the output of the second analog-to-digital converter 125B, is determined in advance Compare with the threshold value ⁇ th . A change amount delta 1 of the output of the first analog-to-digital converter 125A, the difference between the change amount delta 2 of the output of the second analog-to-digital converter 125B is, if it exceeds a threshold delta th, i.e.,
  • a threshold delta th i.e.,
  • step 409 If a change amount delta 1 of the output of the first analog-to-digital converter 125A, the difference between the change amount delta 2 of the output of the second analog-to-digital converter 125B does not exceed the threshold delta th, i.e.,
  • the method of determining the threshold ⁇ th is arbitrary.
  • the determination method described in Embodiment 1 can be used.
  • a change amount delta 1 of the output of the first analog-to-digital converter 125A the difference between the change amount delta 2 of the output of the second analog-to-digital converter 125B is, if it exceeds a threshold delta th, i.e.,
  • > ⁇ th the noise of the output signal O 1-2 and the output signal O 2-2 obtained in the second sampling is large, and in step 407, the noise is acquired in the second sampling.
  • the value thus calculated is treated as the calculated value in the second sampling.
  • the method of reducing the weighting of the differential values of output signal O1-2 and output signal O2-2 is not limited to this.
  • the magnitude of the noise is determined from the continuous first sampling and the second sampling, the present invention is not limited to this.
  • the output in the previous sampling is The amount of change may be calculated from the signal, and the same noise determination may be made.
  • the magnitude of the noise can be determined from the relationship with the threshold.
  • the threshold in this case may be equal to or different from the threshold ⁇ th .
  • a value obtained by multiplying the differential value of the output signal O 1-2 and the output signal O 2-2 by the coefficient c (c is less than 1) and the zeroth sampling are obtained.
  • Output signal O 1-0 and differential value of output signal O 2-0 (O 1-0 -O 2-0 or O 2-0 -O 1-0 ) multiplied by a factor (1-c) And the value thus calculated may be treated as the calculated value in the second sampling.
  • the value obtained by adding the differential values obtained in the zeroth sampling, the first sampling, and the second sampling at an appropriate ratio may be treated as the calculated value.
  • step 409 may be executed.
  • the correction process is not limited to the process shown in FIG. Instead of the process shown in FIG. 4, different processes can be employed. Moreover, as long as no contradiction arises, it is also possible to use in combination with other processes. For example, by using the process shown in FIG. 3 and the process shown in FIG. 4 in combination, it is possible to further suppress the decrease in measurement accuracy. In the case where a plurality of processes are combined, it is desirable to determine the priority of the processes in advance also in order to prevent the occurrence of contradiction.
  • Embodiment 4 In the present embodiment, an example of correction processing different from the first to third embodiments will be described.
  • a change amount delta 1 of the output of the aforementioned (4) a first analog-to-digital converter 125A, the sign of the variation delta 2 of the output of the second analog-to-digital converter 125B are the same, delta 1 of absolute and delta absolute value of 2, respectively, when a predetermined threshold delta th larger than that, the correction processing to reduce the weighting of the measured data, will be described in detail.
  • FIG. 5 is a diagram showing an example of a processing flow in the MCU 127 of the current sensor 1. In addition, in FIG. 5, only the process characteristic to the current sensor 1 of this invention is shown only for the simplicity of description.
  • Steps 501, 503 and 511 are the same as steps 201, 203 and 211 in the first embodiment. That, MCU127 in step 501, and outputs the calculated value in a first sampling, at step 503, a change amount delta 1 of the output of the first analog-to-digital converter 125A, the second analog-to-digital converter 125B calculating a change amount delta 2 of the output, in step 511, based on the processing in step 507 or step 509, and outputs the calculated value in the second sampling.
  • Step 505 is the same as step 305 in the second embodiment. That is, whether MCU127, in step 505, a change amount delta 1 of the output of the first analog-to-digital converter 125A, the sign of the variation delta 2 of the output of the second analog-to-digital converter 125B are the same together to evaluate whether the absolute value of the amount of change delta 1 of the output of the first analog-to-digital converter 125A, and the absolute value of the change amount delta 2 of the output of the second analog-to-digital converter 125B, respectively, in advance comparing that determined threshold delta th.
  • a sign of the change amount delta 2 of the output of the change in the output of the first analog-to-digital converter 125A delta 1 and the second analog-digital converter 125B are the same, the output of the first analog-to-digital converter 125A the absolute value of the change amount delta 1 exceeds the threshold delta th, when the absolute value of the amount of change delta 2 of the output of the second analog-to-digital converter 125B exceeds a threshold delta th, i.e., delta 1> 0 and, If ⁇ 2 > 0 and
  • the method of determining the threshold ⁇ th is arbitrary.
  • the determination method described in Embodiment 1 can be used.
  • the differential values of the output signal O 1-2 and the output signal O 2-2 obtained in the second sampling (O 1-2 -O 2-2 or O 2-2 -O 1- 2 ) Calculate and use less weighting.
  • the value thus calculated is treated as the calculated value in the second sampling.
  • the method of reducing the weighting of the differential values of output signal O1-2 and output signal O2-2 is not limited to this.
  • the absolute value of the variation delta 1 of the output of the first analog-to-digital converter 125A does not exceed the threshold delta th, or the absolute value of the change amount delta 2 of the output of the second analog-to-digital converter 125B threshold delta If it does not exceed th , that is,
  • the differential value between the output signal O1-2 and the output signal O2-2 obtained in the second sampling O1-2- O 2-2 or O 2- 2 ⁇ O 1-2 ) is calculated, and the differential value is treated as the calculated value in the second sampling.
  • the magnitude of the noise is determined from the continuous first sampling and the second sampling, the present invention is not limited to this.
  • the output in the previous sampling is The amount of change may be calculated from the signal, and the same noise determination may be made.
  • the magnitude of the noise can be determined from the relationship with the threshold.
  • the threshold in this case may be equal to or different from the threshold ⁇ th .
  • a value obtained by multiplying the differential value of the output signal O 1-2 and the output signal O 2-2 by the coefficient c (c is less than 1) and the zeroth sampling are obtained.
  • Output signal O 1-0 and differential value of output signal O 2-0 (O 1-0 -O 2-0 or O 2-0 -O 1-0 ) multiplied by a factor (1-c) And the value thus calculated may be treated as the calculated value in the second sampling.
  • the value obtained by adding the differential values obtained in the zeroth sampling, the first sampling, and the second sampling at an appropriate ratio may be treated as the calculated value.
  • Step 509 may be performed with virtually no noise on the output signal O 2-2 .
  • the correction process described above when the output signal of the first analog-to-digital converter and the output signal of the second analog-to-digital converter both change significantly, it is regarded as being in a state of low measurement accuracy.
  • the weighting of the measurement data is reduced.
  • the decrease in measurement accuracy can be sufficiently suppressed.
  • the correction process is not limited to the process shown in FIG. Instead of the process shown in FIG. 5, different processes can be employed.
  • FIG. 6 is a diagram showing an example of a processing flow in the MCU 127 of the current sensor 1. In addition, in FIG. 6, only the process characteristic to the current sensor 1 of this invention is shown only for the simplicity of description.
  • Steps 601 and 603 are the same as steps 201 and 203 in the first embodiment. That, MCU127 in step 601, and outputs the calculated value in a first sampling, at step 603, a change amount delta 1 of the output of the first analog-to-digital converter 125A, the second analog-to-digital converter 125B calculating a change amount delta 2 outputs.
  • the first analog-to-digital converter 125A is used in order to determine the magnitude of noise in the output signal of the first magnetic sensor 11A and the output signal of the second magnetic sensor 11B. It is determined whether the change amount ⁇ 1 of the output or the change amount ⁇ 2 of the output of the second analog-to-digital converter 125 B is within a predetermined range.
  • step 605 the absolute value of the change amount delta 1 of the output of the first analog-to-digital converter 125A, and compared with a threshold delta th determined in advance
  • step 607 and step 609 the second of the absolute value of the change amount delta 2 of the output of the analog-to-digital converter 125B, it is compared with a threshold delta th determined in advance
  • step 611 the amount of change in the output of the first analog-to-digital converter 125A delta 1 and It is evaluated whether the signs of the change amount ⁇ 2 of the output of the second analog-to-digital converter 125 B are the same.
  • the method of determining the threshold ⁇ th is arbitrary.
  • the determination method described in Embodiment 1 can be used.
  • a sign of the change amount delta 2 of the output of the change in the output of the first analog-to-digital converter 125A delta 1 and the second analog-digital converter 125B are the same, the output of the first analog-to-digital converter 125A the absolute value of the change amount delta 1 exceeds the threshold delta th, when the absolute value of the amount of change delta 2 of the output of the second analog-to-digital converter 125B exceeds a threshold delta th, i.e., delta 1> 0 and, If ⁇ 2 > 0 and
  • Absolute value of the change amount delta 1 of the output of the first analog-to-digital converter 125A does not exceed the threshold delta th
  • the absolute value of the change amount delta 2 of the output of the second analog-to-digital converter 125B exceeds a threshold delta th
  • step 617 is executed.
  • Absolute value of the change amount delta 1 of the output of the first analog-to-digital converter 125A does not exceed the threshold delta th
  • the absolute value of the change amount delta 2 of the output of the second analog-to-digital converter 125B exceeds a threshold delta th If not, that is,
  • a sign of the change amount delta 2 of the output of the change in the output of the first analog-to-digital converter 125A delta 1 and the second analog-digital converter 125B are the same, the output of the first analog-to-digital converter 125A the absolute value of the change amount delta 1 exceeds the threshold delta th, when the absolute value of the amount of change delta 2 of the output of the second analog-to-digital converter 125B exceeds a threshold delta th, i.e., delta 1> 0 and, If ⁇ 2 > 0 and
  • the noise of the output signal O 1-2 obtained in the second sampling is large, and the second as noise in the output signal O 2-2 obtained in sampling of small, in step 615, it calculates the calculated value in a second sampling from the change amount delta 2 of the output signal O 2-2.
  • the relationship of reduced variation delta 2 with an increase in the current to be measured, by reversing the sign of the change amount delta 2 (replaced positive and negative) is calculated operation value. Note that the calculation method of the calculation value is not limited to this.
  • Absolute value of the change amount delta 1 of the output of the first analog-to-digital converter 125A does not exceed the threshold delta th
  • the noise of the output signal O 1-2 obtained in the second sampling is small, and the second as noise resulting output signal O 2-2 large in sampling, in step 617, calculates the calculated value in a second sampling from the change amount delta 1 of the output signal O 1-2.
  • the calculation value in the first sampling the plus 2 times the value of the change amount delta 1, treated as operation value.
  • the relationship variation delta 1 decreases with an increase in the current to be measured, by reversing the sign of the change amount delta 1 (replaced positive and negative) is calculated operation value. Note that the calculation method of the calculation value is not limited to this.
  • Absolute value of the change amount delta 1 of the output of the first analog-to-digital converter 125A does not exceed the threshold delta th
  • the absolute value of the change amount delta 2 of the output of the second analog-to-digital converter 125B exceeds a threshold delta th If not, that is, if
  • the output of the first analog-to-digital converter 125A absolute value of the change amount delta 1 exceeds the threshold delta th
  • when the absolute value of the amount of change delta 2 of the output of the second analog-to-digital converter 125B exceeds a threshold delta th i.e., delta 1> 0 and,, delta 2 ⁇ 0, and when
  • the differential value O 1 of output signal O 1-2 and output signal O 2-2 obtained in the second sampling
  • the magnitude of the noise is determined from the continuous first sampling and the second sampling, the present invention is not limited to this.
  • the output in the previous sampling is The amount of change may be calculated from the signal, and the same noise determination may be made.
  • the magnitude of the noise can be determined from the relationship with the threshold.
  • the threshold in this case may be equal to or different from the threshold ⁇ th .
  • Step 617 may be performed with virtually no noise on the output signal O 2-2 .
  • the MCU 127 outputs the calculated value in the second sampling in step 621.
  • the subsequent processing is the same as that of the first embodiment.
  • the correction process is not limited to the process shown in FIG. Instead of the process shown in FIG. 6, different processes can be employed. Moreover, as long as no contradiction arises, it is also possible to use in combination with other processes.
  • an error signal a signal indicating an error state (hereinafter referred to as an error signal) when noise is determined to be large in the first to fifth embodiments.
  • the state of large noise may appear due to occurrence of some abnormality in the current sensor 1 or a system including the same or occurrence of an abnormality. Therefore, being able to output a signal indicating this state is effective from the viewpoint of failsafe.
  • the magnitude of noise in the output signal of the first magnetic sensor 11A and the output signal of the second magnetic sensor 11B is determined (step 205, step 305, Step 405, Step 505, Step 605, Step 607, Step 609, Step 611, etc.).
  • step 205 a change amount delta 1 of the output of the first analog-to-digital converter 125A, the difference between the change amount delta 2 of the output of the second analog-to-digital converter 125B , it is compared with a threshold value delta th determined in advance.
  • an output process of an error signal is performed in addition to or instead of the correction process.
  • the error signal output process is performed in combination with the correction process, in step 207, after the operation value in the first sampling is made the operation value in the second sampling, In step 211, the operation value and error signal in the second sampling are output.
  • the error signal output process may be related to the correction process or may be independent of the correction process. For example, when the correction processing is completed as described above and the operation signal in sampling is output, an error signal can be output.
  • the correction processing may not be performed, and only the error signal may be output.
  • the MCU 127 when it is determined that the noise of the output signal from the magnetic sensor (the output signal of the analog-to-digital converter) is large, the MCU 127 outputs an error signal.
  • the error signal can be used by a system including the current sensor 1 to prevent an abnormal operation of the system including the current sensor 1.
  • maintenance and inspection of the current sensor 1 and a system including the same become easy. For example, it is also possible to detect a failure of the current sensor 1 early. That is, in the current sensor 1 adopting the above-described process, it is possible to solve the problem of preventing the operation abnormality of the system including the same and facilitating the maintenance of the system.
  • the present invention is not limited to the above embodiment, and can be implemented with various modifications.
  • the connection relation, size, and the like of each element in the above-described embodiment can be appropriately changed and implemented.
  • various processes can be used in combination.
  • the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
  • the current sensor of the present invention can be used, for example, to detect the magnitude of the current for driving a motor of an electric car or a hybrid car.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

 適切な補正処理を可能にして、測定精度の低下を抑制することができる電流センサを提供することを目的とする。本発明の電流センサは、第一の磁気センサ(11A)および第二の磁気センサ(11B)と、第一の磁気センサ(11A)に接続され、第一の磁気センサ(11A)の出力信号をアナログ信号からデジタル信号へと変換して出力する第一のアナログデジタル変換器(125A)と、第二の磁気センサ(11B)に接続され、第二の磁気センサ(11B)の出力信号をアナログ信号からデジタル信号へと変換して出力する第二のアナログデジタル変換器(125B)と、第一のアナログデジタル変換器(125A)および第二のアナログデジタル変換器(125B)に接続され、第一のアナログデジタル変換器(125A)の出力信号と第二のアナログデジタル変換器(125B)の出力信号とを差動演算し、演算値を出力する演算装置と、を具備することを特徴とする。

Description

電流センサ
 本発明は、電流の大きさを測定する電流センサに関する。特に、測定精度の低下が抑制された電流センサに関する。
 電気自動車やハイブリッドカーにおけるモータ駆動技術などの分野では、比較的大きな電流が取り扱われるため、このような用途向けに、大電流を非接触で測定することが可能な電流センサが求められている。そして、このような電流センサとして、被測定電流によって生じる磁界の変化を磁気センサによって検出する方式のものが実用化されている。また、磁気センサを用いる電流センサは、外乱磁界の影響による測定精度の低下が問題となるため、これを抑制する方式が提案されている。
 外乱磁界の影響による測定精度の低下を抑制する方式としては、例えば、二つの磁気センサの出力信号の差動をとるものが提案されている(例えば、特許文献1参照)。この構成では、二つの磁気センサの出力信号において、被測定電流が形成する磁界の影響が逆相で現れ、外乱磁界の影響が同相で現れるため、その差動を取ることで外乱磁界の影響を除去することができる。なお、磁気センサの出力信号はアナログ信号であるから、当該方式では、差動演算を含むすべての補正処理がアナログ信号に基づいて行われる。
 一方で、すべての補正処理をアナログ信号に基づいて行うのではなく、一部の処理をデジタル信号に基づいて行う方式も提案されている(例えば、特許文献2参照)。この方式では、差動アンプによって差動をとった後に、アナログデジタル変換器を用いてアナログ差動値をデジタル信号に変換し、その後の処理を行っている。
特開2002-131342号公報 国際公開第2008/047428号パンフレット
 上述のように、アナログ信号を用いてすべての補正処理を行う場合には、その補正精度を向上させるために、可変抵抗の調整や、抵抗等のレーザートリミングといった調整手法を用いる必要がある。しかしながら、これらの手法はワンタイムのものであって再度の調整が難しく、また、コスト的にも不利であった。一方、特許文献2に記載の方式では、このような問題はある程度解消され得るが、アナログ差動値にノイズが残存する場合などにおいては適切な補正が難しくなるという問題がある。
 本発明はかかる点に鑑みてなされたものであり、適切な補正処理を可能にして、測定精度の低下を抑制することができる電流センサを提供することを目的とする。
 本発明の電流センサは、被測定電流が通流する電流線の周囲に配置され、前記被測定電流からの誘導磁界により逆相の出力信号を出力する第一の磁気センサおよび第二の磁気センサと、前記第一の磁気センサに接続され、前記第一の磁気センサの出力信号をアナログ信号からデジタル信号へと変換して出力する第一のアナログデジタル変換器と、前記第二の磁気センサに接続され、前記第二の磁気センサの出力信号をアナログ信号からデジタル信号へと変換して出力する第二のアナログデジタル変換器と、前記第一のアナログデジタル変換器および前記第二のアナログデジタル変換器に接続され、前記第一のアナログデジタル変換器の出力信号と前記第二のアナログデジタル変換器の出力信号とを差動演算し、演算値を出力する演算装置と、を具備することを特徴とする。
 この構成によれば、第一の磁気センサの出力信号と第二の磁気センサの出力信号とを、個別のデジタル信号に変換することができる。つまり、第一の磁気センサの出力信号が独自に有する情報と、第二の磁気センサの出力信号が独自に有する情報と、が残存した状態で後の補正処理(演算処理)を行うことになるため、第一の磁気センサの出力信号が独自に有する情報と、第二の磁気センサの出力信号が独自に有する情報と、を補正処理に用いることができるようになる。よって、第一の磁気センサの出力信号と第二の磁気センサの出力信号とのアナログ差動値をデジタル信号に変換する場合などと比較して、より適切な補正が可能になる。そして、これにより、電流測定精度の低下を効果的に抑制することができる。
 なお、本明細書において、「電流線」の用語は、電流を導くことが可能な構成要素を示すにすぎず、その形状が「線」状であることを限定する趣旨で用いるものではない。たとえば、「電流線」には、板状の導電部材や、薄膜状の導電部材などが含まれる。
 本発明の電流センサにおいて、前記第一の磁気センサおよび前記第二の磁気センサは、前記電流線を中心として点対象に配置され、かつ、感度軸方向が同じになるように配置されることがある。この構成によれば、差動演算によって、外部磁界の影響を容易にキャンセルすることができる。
 本発明の電流センサにおいて、前記第一の磁気センサおよび前記第二の磁気センサには、前記被測定電流からの誘導磁界により特性が変化する磁気センサ素子と前記磁気センサ素子の近傍に配置され、前記誘導磁界を相殺するキャンセル磁界を発生するフィードバックコイルとを含む磁気平衡式センサが用いられることがある。この構成によれば、応答速度が速く、温度依存の小さい電流センサを容易に実現できる。
 本発明の電流センサにおいて、前記磁気センサ素子は、磁気抵抗効果素子であることがある。この構成によれば、磁気抵抗効果素子によって、十分な電流測定精度を確保することができる。
 本発明の電流センサにおいて、前記演算装置は、第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号(以下、O1-1と表記する)に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号(以下、O1-2と表記する)の変化量(以下、Δと表記する)と、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号(以下、O2-1と表記する)に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号(以下、O2-2と表記する)の変化量(以下、Δと表記する)と、の差が閾値(以下、Δthと表記する)を超える場合に、前記第一のサンプリングにおける演算値を、前記第二のサンプリングにおける演算値として出力することがある。この構成では、第一のアナログデジタル変換器の出力信号の変化量Δと第二のアナログデジタル変換器の出力信号の変化量Δとを比較して、これらのずれが大きい場合には、測定精度が低い状態にあるものとみなして新たな測定データを放棄している。これにより、測定精度の低下を抑制することができる。
 本発明の電流センサにおいて、前記演算装置は、第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが、閾値Δthを超え、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが、閾値Δthを超える場合に、前記第一のサンプリングにおける演算値を、前記第二のサンプリングにおける演算値として出力することがある。この構成では、第一のアナログデジタル変換器の出力信号と第二のアナログデジタル変換器の出力信号がいずれも大きく変化する場合には、測定精度が低い状態にあるものとみなして新たな測定データを放棄している。これにより、測定精度の低下を抑制することができる。
 本発明の電流センサにおいて、前記演算装置は、第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δと、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δと、の差が閾値Δthを超える場合に、エラー信号を出力することがある。この構成によれば、システムの動作異常などを防ぐことができる。
 本発明の電流センサにおいて、前記演算装置は、第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが、閾値Δthを超え、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが、閾値Δthを超える場合に、エラー信号を出力することがある。この構成によれば、システムの動作異常などを防ぐことができる。
 本発明の電流センサにおいて、前記演算装置は、第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δと、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δと、の差が閾値Δthを超える場合に、前記第二のサンプリングにおける、前記第一のアナログデジタル変換器の出力信号O1-2と前記第二のアナログデジタル変換器の出力信号O2-2との差動値に、1未満の係数を乗じて得られる値から算出される値を、前記第二のサンプリングにおける演算値として出力することがある。この構成では、第一のアナログデジタル変換器の出力信号の変化量と第二のアナログデジタル変換器の出力信号の変化量とを比較して、これらのずれが大きい場合には、測定精度が低い状態にあるものとみなして新たな測定データの重み付けを小さくしている。これにより、測定精度の低下を抑制することができる。
 本発明の電流センサにおいて、前記演算装置は、第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが、閾値Δthを超え、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが、閾値Δthを超える場合に、前記第二のサンプリングにおける、前記第一のアナログデジタル変換器の出力信号O1-2と前記第二のアナログデジタル変換器の出力信号O2-2との差動値に、1未満の係数を乗じて得られる値から算出される値を、前記第二のサンプリングにおける演算値として出力することがある。この構成では、第一のアナログデジタル変換器の出力信号と第二のアナログデジタル変換器の出力信号がいずれも大きく変化する場合には、測定精度が低い状態にあるものとみなして新たな測定データの重み付けを小さくしている。これにより、測定精度の低下を抑制することができる。
 本発明の電流センサにおいて、前記演算装置は、第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δと、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δと、の差が閾値Δthを超える場合に、エラー信号を出力することがある。この構成によれば、システムの動作異常などを防ぐことができる。
 本発明の電流センサにおいて、前記演算装置は、第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが、閾値Δthを超え、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが、閾値Δthを超える場合に、エラー信号を出力することがある。この構成によれば、システムの動作異常などを防ぐことができる。
 本発明の電流センサにおいて、前記演算装置は、第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが閾値Δthを超え、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが閾値Δthを超えない場合に、前記第一のサンプリングにおける演算値に、変化量Δの2倍の値を加えた値を、前記第二のサンプリングにおける演算値として出力し、前記第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが閾値Δthを超えず、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが閾値Δth超える場合に、前記第一のサンプリングにおける演算値に、変化量Δ1の2倍の値を加えた値を、前記第二のサンプリングにおける演算値として出力することがある。この構成では、第一のアナログデジタル変換器の出力信号または第二のアナログデジタル変換器の出力信号のいずれかが大きく変化する場合には、大きく変化した出力信号は測定精度が低い状態にあるものとみなして、大きく変化した出力信号を放棄し、大きく変化していない出力信号の変化量を採用している。これにより、測定精度の低下を抑制することができる。
 本発明の電流センサは、第一の磁気センサの出力信号と第二の磁気センサの出力信号とを、個別のデジタル信号に変換することができるため、第一の磁気センサの出力信号と第二の磁気センサの出力信号との差動値をデジタル信号に変換して用いる場合などと比較して、より適切な補正が可能になる。このため、電流測定精度の低下を効果的に抑制することができる。
本発明の電流センサの構成例を示す模式図である。 演算装置における処理フローの例を説明する図である。 演算装置における処理フローの例を説明する図である。 演算装置における処理フローの例を説明する図である。 演算装置における処理フローの例を説明する図である。 演算装置における処理フローの例を説明する図である。
 本発明者らは、逆相の出力信号を出力する第一の磁気センサおよび第二の磁気センサを差動アンプに直接接続するのではなく、第一の磁気センサおよび第二の磁気センサのそれぞれにアナログデジタル変換器を接続することで、より適切な補正が可能になることを見出した。これは、アナログ信号からデジタル信号への変換を、差動値算出などの補正処理(演算処理)の前段階で行うことによって、第一の磁気センサの出力信号が独自に有する情報と、第二の磁気センサの出力信号が独自に有する情報と、を残存させて利用することができるためである。
 すなわち、本発明の骨子は、アナログ信号からデジタル信号への変換を、差動値算出などの補正処理(演算処理)の前段階で行うことによって、第一の磁気センサの出力信号が独自に有する情報と、第二の磁気センサの出力信号が独自に有する情報と、を利用して、より適切な補正を可能にしようとするものである。演算装置の上流側(処理の流れの上流側)にアナログデジタル変換器を有する、と言い換えても良い。以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 図1は、本発明に係る電流センサ1のブロック図の例である。図1に示される電流センサ1は、第一の磁気センサ11Aおよび第二の磁気センサ11Bと、第一の磁気センサ11Aおよび第二の磁気センサ11Bの制御を行う制御部13と、を有する。
 第一の磁気センサ11Aは、磁気平衡式センサであり、被測定電流によって発生する磁界を打ち消す方向の磁界を発生可能に配置されたフィードバックコイル111Aと、磁気検出素子である二つの磁気抵抗効果素子及び二つの固定抵抗素子からなるブリッジ回路113Aとから構成されている。また、第二の磁気センサ11Bも第一の磁気センサ11Aと同様に、被測定電流によって発生する磁界を打ち消す方向の磁界を発生可能に配置されたフィードバックコイル111Bと、磁気検出素子である二つの磁気抵抗効果素子及び二つの固定抵抗素子からなるブリッジ回路113Bとから構成されている。なお、ここでは、磁気平衡式センサを用いているが、磁気比例式センサを用いても良い。
 制御部13は、第一の磁気センサ11Aのブリッジ回路113Aの差動出力を増幅し、フィードバックコイル111Aのフィードバック電流を制御する差動・電流アンプ121Aと、第一の磁気センサ11Aのフィードバック電流を電圧に変換するI/Vアンプ123Aと、I/Vアンプ123Aの出力をデジタル信号に変換する第一のアナログデジタル変換器(A/D変換器)125Aとを含む。また、制御部13は、第二の磁気センサ11Bのブリッジ回路113Bの差動出力を増幅し、フィードバックコイル111Bのフィードバック電流を制御する差動・電流アンプ121Bと、第二の磁気センサ11Bのフィードバック電流を電圧に変換するI/Vアンプ123Bと、I/Vアンプ123Bの出力をデジタル信号に変換する第二のアナログデジタル変換器(A/D変換器)125Bとを含む。また、制御部13は、差動演算などの各種処理を行う演算装置として、第一のアナログデジタル変換器125Aおよび第二のアナログデジタル変換器125Bに接続されたMCU(マイクロコントローラユニット:Micro Controller Unit)127を含む。
 フィードバックコイル111A、111Bは、ブリッジ回路113A、113Bの磁気抵抗効果素子の近傍に配置されており、被測定電流により発生する誘導磁界を相殺するキャンセル磁界を発生する。ブリッジ回路113A、113Bの磁気抵抗効果素子としては、GMR(Giant Magneto Resistance)素子やTMR(Tunnel Magneto Resistance)素子などを用いることができる。磁気抵抗効果素子は、被測定電流からの誘導磁界の印加により抵抗値が変化するという特性を有する。このような特性を有する二つの磁気抵抗効果素子と二つの固定抵抗素子を用いてブリッジ回路113A、113Bを構成することにより、高感度の電流センサを実現することができる。また、磁気抵抗効果素子を用いることにより、電流センサを設置する基板面と平行な方向に感度軸を配置し易くなり、平面コイルを使用することが可能となる。
 ブリッジ回路113A、113Bは、それぞれ、被測定電流により生じた誘導磁界に応じた電圧差を生じる二つの出力端子を備える。ブリッジ回路113A、113Bがそれぞれ有する二つの出力端子からの二つの出力は、差動・電流アンプ121A、121Bで差動増幅され、差動増幅された出力がフィードバックコイル111A、111Bに電流(フィードバック電流)として与えられる。このフィードバック電流は、誘導磁界に応じた電圧差に対応する。フィードバック電流がフィードバックコイル111A、111Bに与えられると、当該フィードバック電流によって、誘導磁界を相殺するキャンセル磁界が発生する。そして、誘導磁界とキャンセル磁界とが相殺される平衡状態となったときにフィードバックコイル111A、111Bを流れる電流が、I/Vアンプ123A、123Bで電圧に変換され、センサ出力となる。
 なお、差動・電流アンプ121A、121Bにおいては、電源電圧を、I/V変換の基準電圧+(フィードバックコイル抵抗の定格内最大値×フルスケール時フィードバックコイル電流)に近い値に設定することで、フィードバック電流が制限され、磁気抵抗効果素子やフィードバックコイルを保護する効果が得られる。また、ここではブリッジ回路113A、113Bの二つの出力の差動を増幅してフィードバック電流に用いたが、ブリッジ回路113A、113Bからは中点電位のみを出力とし、所定の基準電位との電位差をもとにしたフィードバック電流を用いてもよい。
 第一のアナログデジタル変換器125Aおよび第二のアナログデジタル変換器125Bは、アナログ信号である第一の磁気センサ11Aおよび第二の磁気センサ11Bの出力を、デジタル信号に変換して出力する。変換方式には、並列比較型、逐次比較型、二重積分型、パイプライン型、デルタシグマ型などがあるが、これらは要求される精度や応答速度などに応じて適宜選択することができる。
 MCU127は、第一のアナログデジタル変換器125Aおよび第二のアナログデジタル変換器125Bからのデジタル信号を受けて、あるタイミングにおける第一のアナログデジタル変換器125Aおよび第二のアナログデジタル変換器125Bの出力と、その直前のタイミングにおける第一のアナログデジタル変換器125Aおよび第二のアナログデジタル変換器125Bの出力とを比較する。そして、二つのアナログデジタル変換器の出力が共に同相で大きく変化している場合や、一方のアナログデジタル変換器の出力のみが大きく変化している場合には、測定精度が低い状態であるとして、その測定データを放棄し、または、重み付けを小さくする。このような判定を行うのは、電流変化に起因する出力変化は逆相の変化として表れ、同相の変化や、一方のみの変化としては表れないためである。
 より具体的には、MCU127は、(1)第一のアナログデジタル変換器125Aの出力信号の変化量Δと第二のアナログデジタル変換器125Bの出力信号の変化量Δとを比較して、その差が閾値Δthより大きい場合には、その測定データを放棄し、直前のタイミングで取得されたデータを用いる補正処理、(2)第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が同じで、Δの絶対値およびΔの絶対値が、それぞれ、あらかじめ決められている閾値Δthより大きい場合には、その測定データを放棄し、直前のタイミングで取得されたデータを用いる補正処理、(3)第一のアナログデジタル変換器125Aの出力信号の変化量Δと第二のアナログデジタル変換器125Bの出力信号の変化量Δとを比較して、その差が閾値Δthより大きい場合には、その測定データの重み付けを小さくする補正処理、(4)第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が同じで、Δの絶対値およびΔの絶対値が、それぞれ、あらかじめ決められている閾値Δthより大きい場合には、その測定データの重み付けを小さくする補正処理、などを行う。
 また、MCU127は、(5)第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値、または、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値のいずれか一方のみが、あらかじめ決められている閾値Δthより大きい場合に、その一方の測定データを放棄する補正処理、を行う場合がある。なお、MCU127は、他に、差動値の取得、差動値のゲインとオフセットの補正、などの演算処理が行える構成であっても良い。
 上述のように、本実施の形態における電流センサ1では、第一の磁気センサ11Aの出力信号と第二の磁気センサ11Bの出力信号とを、第一のアナログデジタル変換器125Aと第二のアナログデジタル変換器125Bとによって個別のデジタル信号に変換することができる。つまり、第一の磁気センサ11Aの出力信号が独自に有する情報と、第二の磁気センサ11Bの出力信号が独自に有する情報と、が残存した状態で後の補正処理(演算処理)を行うことになるため、第一の磁気センサ11Aの出力信号が独自に有する情報と、第二の磁気センサ11Bの出力信号が独自に有する情報と、を補正処理に用いることができるようになる。よって、第一の磁気センサ11Aの出力信号と第二の磁気センサ11Bの出力信号とのアナログ差動値をデジタル信号に変換する場合などと比較して、より適切な補正が可能になる。そして、これにより、電流測定精度の低下を効果的に抑制することができる。
 なお、図1のブロック図に係る電流センサ1の構成は一例にすぎず、他の構成を採用することは当然に可能である。
(実施の形態1)
 本実施の形態では、電流センサ1の補正処理の一例について説明する。ここでは、上述の(1)第一のアナログデジタル変換器の出力信号の変化量Δと第二のアナログデジタル変換器の出力信号の変化量Δとを比較して、その差が閾値Δthより大きい場合には、その測定データを放棄し、直前のタイミングで取得されたデータを用いる補正処理、について、詳細に説明する。
 図2は、電流センサ1のMCU127における処理フローの一例を示す図である。以下の説明において、第一のサンプリングとは、所定のサンプリング周期で電流測定が行われる場合の、あるタイミングにおける測定データの取得および取得された測定データの処理をいい、第二のサンプリングとは、第一のサンプリングの次のタイミングでの測定データの取得および取得された測定データの処理をいう。つまり、第一のサンプリングおよび第二のサンプリングにおける序数詞は、連続して行われる測定および処理であることを示すに過ぎず、特定のタイミングにおける測定および処理であることを示すものではない。なお、図2では、説明の簡単のため、本発明の電流センサ1に特徴的な処理のみを示すに留める。また、第一のサンプリングと第二のサンプリングは同様に行うことができるため、以下では、主として第二のサンプリングに関しての説明を行うこととする。
 ステップ201において、MCU127は、第一のサンプリングにおける演算値を出力する。第一のサンプリングにおける第一の磁気センサ11Aに接続された第一のアナログデジタル変換器125Aの出力信号O1-1および第一のサンプリングにおける第二の磁気センサ11Bに接続された第二のアナログデジタル変換器125Bの出力信号O1-2のノイズが小である場合には、通常、これらの差動値(O1-1-O2-1 or O2-1-O1-1)が演算値として出力される。その後、第二のサンプリングが開始され、第一のアナログデジタル変換器125Aおよび第二のアナログデジタル変換器125Bから、デジタル信号に変換された第一の磁気センサ11Aの出力信号(第二のサンプリングにおける第一の磁気センサ11Aに接続されたアナログデジタル変換器125Aの出力信号O1-2)と、デジタル信号に変換された第二の磁気センサ11Bの出力信号(第二のサンプリングにおける第二の磁気センサ11Bに接続されたアナログデジタル変換器125Bの出力信号O2-2)とがMCU127に入力される。
 MCU127に出力信号O1-2と出力信号O2-2とが入力されると、MCU127は、出力信号O1-2、出力信号O2-2、第一のサンプリングにおいて既に取得している出力信号O1-1および出力信号O1-2、を基に、ステップ203において、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとを算出する。すなわち、Δ=O1-2-O1-1であり、Δ=O2-2-O2-1である。
 ステップ205では、第一の磁気センサ11Aの出力信号および第二の磁気センサ11Bの出力信号におけるノイズの大小を判定するため、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差が、所定の範囲に収まっているか否かを判定する。具体的には、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差を、あらかじめ決められている閾値Δthと比較する。第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差が、閾値Δthを超える場合、つまり、|Δ-Δ|>Δthである場合には、ステップ207を実行する。第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差が、閾値Δthを超えない場合、つまり、|Δ-Δ|≦Δthである場合には、ステップ209を実行する。
 閾値Δthとしては、例えば、電流センサ1の検出電流の上限をIMAXとし、必要とされる測定精度をそのa%とし、電流センサ1の検出電流の分解能をIRESとして表現される閾値電流Ith=0.01・a・IMAX-IRESに相当する電位差(電圧)を採用することができる。この場合、電流センサ1のフルスケールが1000Aであり、必要とされる測定精度が1%であり、電流センサ1の分解能が1Aであれば、閾値電流9Aに相当する電位差が閾値Δthとして採用される。なお、閾値Δthの決定方法に特に限定はなく、他の決定方法を採用しても良い。いずれにしても、ノイズの有無を判別するために適した閾値Δthを用いることが望ましい。
 第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差が、閾値Δthを超える場合、つまり、|Δ-Δ|>Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが大として、ステップ207では、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2を放棄する。そして、ステップ201において出力された第一のサンプリングにおける演算値を、第二のサンプリングにおける演算値として扱う。
 第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差が、閾値Δthを超えない場合、つまり、|Δ-Δ|≦Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが小として、ステップ209では、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2の差動値(O1-2-O2-2 or O2-2-O1-2)を算出し、当該差動値を第二のサンプリングにおける演算値として扱う。
 その後、ステップ207またはステップ209における処理を基に、MCU127は、ステップ211において、第二のサンプリングにおける演算値を出力する。以後の処理は同様であるため省略する。
 なお、ここでは、連続する第一のサンプリングと第二のサンプリングからノイズの大小を判定しているが、本発明はこれに限られない。例えば、上述の処理フローにおいて、既に、第一のサンプリングにおいて得られた出力信号O1-1および出力信号O1-2のノイズが大と判定されている場合には、それ以前のサンプリングにおける出力信号から変化量を算出して、同様のノイズ判定をしても良い。例えば、第一のサンプリングの直前のサンプリングを第零のサンプリングとして、第零のサンプリングにおける第一のアナログデジタル変換器125Aの出力信号O1-0と、第零のサンプリングにおける第二のアナログデジタル変換器125Bの出力信号O2-0とを用いて、変化量Δ=O1-2-O1-0、および変化量Δ=O2-2-O2-0を算出し、これらと閾値との関係からノイズの大小を判定することができる。この場合の閾値は、閾値Δthと等しいものであっても良いし、異なるものであっても良い。
 または、第一のサンプリングにおいて得られた出力信号O1-1および出力信号O1-2のノイズが大と判定されている場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが仮想的に小として、ステップ209を実行しても良い。
 以上に示した補正処理では、第一のアナログデジタル変換器の出力信号の変化量Δと第二のアナログデジタル変換器の出力信号の変化量Δとを比較して、これらのずれが大きい場合には、測定精度が低い状態にあるものとみなして新たな測定データを放棄している。これにより、測定精度の低下を十分に抑制することができる。なお、補正処理は図2に示す処理に限られない。図2に示す処理に代えて、異なる処理を採用することもできる。また、矛盾を生じない限りにおいて、実施の形態2以下に示す他の処理と組み合わせて用いることも可能である。
(実施の形態2)
 本実施の形態では、実施の形態1とは異なる補正処理の一例について説明する。ここでは、上述の(2)第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が同じで、Δの絶対値およびΔの絶対値が、それぞれ、あらかじめ決められている閾値Δthより大きい場合には、その測定データを放棄し、直前のタイミングで取得されたデータを用いる補正処理、について、詳細に説明する。図3は、電流センサ1のMCU127における処理フローの一例を示す図である。なお、図3では、説明の簡単のため、本発明の電流センサ1に特徴的な処理のみを示すに留める。
 ステップ301、ステップ303およびステップ311は、実施の形態1におけるステップ201、ステップ203およびステップ211と同様である。つまり、MCU127は、ステップ301において、第一のサンプリングにおける演算値を出力し、ステップ303において、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとを算出し、ステップ311において、ステップ307またはステップ309における処理を基に、第二のサンプリングにおける演算値を出力する。
 ステップ305では、第一の磁気センサ11Aの出力信号および第二の磁気センサ11Bの出力信号におけるノイズの大小を判定するため、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとが、所定の範囲に収まっているか否かを判定する。具体的には、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が同じであるか否かを評価すると共に、第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値、および、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値を、それぞれ、あらかじめ決められている閾値Δthと比較する。第一のアナログデジタル変換器125Aの出力の変化量Δと第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が同じであって、第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超え、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超える場合、つまり、Δ>0、かつ、Δ>0、であって|Δ|>Δth、かつ、|Δ|>Δthである場合、または、Δ>0、かつ、Δ>0であって、|Δ|>Δth、かつ、|Δ|>Δthである場合には、ステップ307を実行する。第一のアナログデジタル変換器125Aの出力の変化量Δと第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が異なる場合、第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超えない場合、または、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超えない場合、つまり、Δ>0、かつ、Δ<0である場合、Δ<0、かつ、Δ>0である場合、|Δ|≦Δth、または、|Δ|≦Δthである場合には、ステップ309を実行する。
 閾値Δthの決定方法は任意である。例えば、実施の形態1において示した決定方法を用いることができる。
 第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超え、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超える場合、つまり、|Δ|>Δth、かつ、|Δ|>Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが大として、ステップ307では、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2を放棄する。そして、ステップ301において出力された第一のサンプリングにおける演算値を、第二のサンプリングにおける演算値として扱う。
 第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超えない場合、または、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超えない場合、つまり、|Δ|≦Δth、または、Δ|≦Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが小として、ステップ309では、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2の差動値(O1-2-O2-2 or O2-2-O1-2)を算出し、当該差動値を第二のサンプリングにおける演算値として扱う。
 なお、ここでは、連続する第一のサンプリングと第二のサンプリングからノイズの大小を判定しているが、本発明はこれに限られない。例えば、上述の処理フローにおいて、既に、第一のサンプリングにおいて得られた出力信号O1-1および出力信号O1-2のノイズが大と判定されている場合には、それ以前のサンプリングにおける出力信号から変化量を算出して、同様のノイズ判定をしても良い。例えば、第一のサンプリングの直前のサンプリングを第零のサンプリングとして、第零のサンプリングにおける第一のアナログデジタル変換器125Aの出力信号O1-0と、第零のサンプリングにおける第二のアナログデジタル変換器125Bの出力信号O2-0とを用いて、変化量Δ=O1-2-O1-0、および変化量Δ=O2-2-O2-0を算出し、これらと閾値との関係からノイズの大小を判定することができる。この場合の閾値は、閾値Δthと等しいものであっても良いし、異なるものであっても良い。
 または、第一のサンプリングにおいて得られた出力信号O1-1および出力信号O1-2のノイズが大と判定されている場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが仮想的に小として、ステップ309を実行しても良い。
 上述の補正処理では、第一のアナログデジタル変換器の出力信号と第二のアナログデジタル変換器の出力信号がいずれも大きく変化する場合には、測定精度が低い状態にあるものとみなして新たな測定データを放棄している。これにより、測定精度の低下を十分に抑制することができる。なお、補正処理は図3に示す処理に限られない。図3に示す処理に代えて、異なる処理を採用することもできる。また、矛盾を生じない限りにおいて、他の処理と組み合わせて用いることも可能である。例えば、図2に示す処理と図3に示す処理とを組み合わせて用いることにより、測定精度の低下をさらに抑制することが可能である。なお、複数の処理を組み合わせる場合には、矛盾の発生を防止するためにも、処理の優先度をあらかじめ決めておくことが望ましい。
(実施の形態3)
 本実施の形態では、実施の形態1や実施の形態2とは異なる補正処理の一例について説明する。ここでは、上述の(3)第一のアナログデジタル変換器の出力信号の変化量Δと第二のアナログデジタル変換器の出力信号の変化量Δとを比較して、その差が閾値Δthより大きい場合には、その測定データの重み付けを小さくする補正処理、について、詳細に説明する。図4は、電流センサ1のMCU127における処理フローの一例を示す図である。なお、図4では、説明の簡単のため、本発明の電流センサ1に特徴的な処理のみを示すに留める。
 ステップ401、ステップ403、ステップおよびステップ411は、実施の形態1におけるステップ201、ステップ203およびステップ211と同様である。つまり、MCU127は、ステップ401において、第一のサンプリングにおける演算値を出力し、ステップ403において、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとを算出し、ステップ411において、ステップ407またはステップ409における処理を基に、第二のサンプリングにおける演算値を出力する。
 また、ステップ405は、実施の形態1におけるステップ205と同様である。つまり、MCU127は、ステップ405において、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差を、あらかじめ決められている閾値Δthと比較する。第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差が、閾値Δthを超える場合、つまり、|Δ-Δ|>Δthである場合には、ステップ407を実行する。第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差が、閾値Δthを超えない場合、つまり、|Δ-Δ|≦Δthである場合には、ステップ409を実行する。
 閾値Δthの決定方法は任意である。例えば、実施の形態1において示した決定方法を用いることができる。
 第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差が、閾値Δthを超える場合、つまり、|Δ-Δ|>Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが大として、ステップ407では、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2の差動値(O1-2-O2-2 or O2-2-O1-2)を算出し、その重み付けを小さくして用いる。具体的には、例えば、出力信号O1-2および出力信号O2-2の差動値に係数c(cは1未満)を乗じた値と、第一のサンプリングにおいて得られる出力信号O1-1および出力信号O2-1の差動値(O1-1-O2-1 or O2-1-O1-1)に係数(1-c)を乗じた値との和を算出し、このようにして算出された値を、第二のサンプリングにおける演算値として扱う。なお、出力信号O1-2および出力信号O2-2の差動値の重み付けを小さくする方法はこれに限られない。
 第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差が、閾値Δthを超えない場合、つまり、|Δ-Δ|≦Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが小として、ステップ409では、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2の差動値(O1-2-O2-2 or O2-2-O1-2)を算出し、当該差動値を第二のサンプリングにおける演算値として扱う。
 なお、ここでは、連続する第一のサンプリングと第二のサンプリングからノイズの大小を判定しているが、本発明はこれに限られない。例えば、上述の処理フローにおいて、既に、第一のサンプリングにおいて得られた出力信号O1-1および出力信号O1-2のノイズが大と判定されている場合には、それ以前のサンプリングにおける出力信号から変化量を算出して、同様のノイズ判定をしても良い。例えば、第一のサンプリングの直前のサンプリングを第零のサンプリングとして、第零のサンプリングにおける第一のアナログデジタル変換器125Aの出力信号O1-0と、第零のサンプリングにおける第二のアナログデジタル変換器125Bの出力信号O2-0とを用いて、変化量Δ=O1-2-O1-0、および変化量Δ=O2-2-O2-0を算出し、これらと閾値との関係からノイズの大小を判定することができる。この場合の閾値は、閾値Δthと等しいものであっても良いし、異なるものであっても良い。
 また、上述のような場合には、例えば、出力信号O1-2および出力信号O2-2の差動値に係数c(cは1未満)を乗じた値と、第零のサンプリングにおいて得られる出力信号O1-0および出力信号O2-0の差動値(O1-0-O2-0 or O2-0-O1-0)に係数(1-c)を乗じた値との和を算出し、このようにして算出された値を、第二のサンプリングにおける演算値として扱ってもよい。また、第零のサンプリング、第一のサンプリング、第二のサンプリングにおいて得られる差動値を適当な比率で加えた値を、演算値として扱っても良い。
 または、第一のサンプリングにおいて得られた出力信号O1-1および出力信号O1-2のノイズが大と判定されている場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが仮想的に小として、ステップ409を実行しても良い。
 上述の補正処理では、第一のアナログデジタル変換器の出力信号の変化量と第二のアナログデジタル変換器の出力信号の変化量とを比較して、これらのずれが大きい場合には、測定精度が低い状態にあるものとみなして新たな測定データの重み付けを小さくしている。これにより、測定精度の低下を十分に抑制することができる。なお、補正処理は図4に示す処理に限られない。図4に示す処理に代えて、異なる処理を採用することもできる。また、矛盾を生じない限りにおいて、他の処理と組み合わせて用いることも可能である。例えば、図3に示す処理と図4に示す処理とを組み合わせて用いることにより、測定精度の低下をさらに抑制することが可能である。なお、複数の処理を組み合わせる場合には、矛盾の発生を防止するためにも、処理の優先度をあらかじめ決めておくことが望ましい。
(実施の形態4)
 本実施の形態では、実施の形態1~実施の形態3とは異なる補正処理の一例について説明する。ここでは、上述の(4)第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が同じで、Δの絶対値およびΔの絶対値が、それぞれ、あらかじめ決められている閾値Δthより大きい場合には、その測定データの重み付けを小さくする補正処理、について、詳細に説明する。図5は、電流センサ1のMCU127における処理フローの一例を示す図である。なお、図5では、説明の簡単のため、本発明の電流センサ1に特徴的な処理のみを示すに留める。
 ステップ501、ステップ503およびステップ511は、実施の形態1におけるステップ201、ステップ203およびステップ211と同様である。つまり、MCU127は、ステップ501において、第一のサンプリングにおける演算値を出力し、ステップ503において、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとを算出し、ステップ511において、ステップ507またはステップ509における処理を基に、第二のサンプリングにおける演算値を出力する。
 また、ステップ505は、実施の形態2におけるステップ305と同様である。つまり、MCU127は、ステップ505において、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が同じであるか否かを評価すると共に、第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値、および、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値を、それぞれ、あらかじめ決められている閾値Δthと比較する。第一のアナログデジタル変換器125Aの出力の変化量Δと第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が同じであって、第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超え、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超える場合、つまり、Δ>0、かつ、Δ>0、であって|Δ|>Δth、かつ、|Δ|>Δthである場合、または、Δ>0、かつ、Δ>0であって、|Δ|>Δth、かつ、|Δ|>Δthである場合には、ステップ507を実行する。第一のアナログデジタル変換器125Aの出力の変化量Δと第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が異なる場合、第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超えない場合、または、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超えない場合、つまり、Δ>0、かつ、Δ<0である場合、Δ<0、かつ、Δ>0である場合、|Δ|≦Δth、または、|Δ|≦Δthである場合には、ステップ509を実行する。
 閾値Δthの決定方法は任意である。例えば、実施の形態1において示した決定方法を用いることができる。
 第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超え、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超える場合、つまり、|Δ|>Δth、かつ、Δ|>Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが大として、ステップ507では、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2の差動値(O1-2-O2-2 or O2-2-O1-2)を算出し、その重み付けを小さくして用いる。具体的には、例えば、出力信号O1-2および出力信号O2-2の差動値に係数c(cは1未満)を乗じた値と、第一のサンプリングにおいて得られる出力信号O1-1および出力信号O2-1の差動値(O1-1-O2-1 or O2-1-O1-1)に係数(1-c)を乗じた値との和を算出し、このようにして算出された値を、第二のサンプリングにおける演算値として扱う。なお、出力信号O1-2および出力信号O2-2の差動値の重み付けを小さくする方法はこれに限られない。
 第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超えない場合、または、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超えない場合、つまり、|Δ|≦Δth、または、Δ|≦Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが小として、ステップ509では、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2の差動値(O1-2-O2-2 or O2-2-O1-2)を算出し、当該差動値を第二のサンプリングにおける演算値として扱う。
 なお、ここでは、連続する第一のサンプリングと第二のサンプリングからノイズの大小を判定しているが、本発明はこれに限られない。例えば、上述の処理フローにおいて、既に、第一のサンプリングにおいて得られた出力信号O1-1および出力信号O1-2のノイズが大と判定されている場合には、それ以前のサンプリングにおける出力信号から変化量を算出して、同様のノイズ判定をしても良い。例えば、第一のサンプリングの直前のサンプリングを第零のサンプリングとして、第零のサンプリングにおける第一のアナログデジタル変換器125Aの出力信号O1-0と、第零のサンプリングにおける第二のアナログデジタル変換器125Bの出力信号O2-0とを用いて、変化量Δ=O1-2-O1-0、および変化量Δ=O2-2-O2-0を算出し、これらと閾値との関係からノイズの大小を判定することができる。この場合の閾値は、閾値Δthと等しいものであっても良いし、異なるものであっても良い。
 また、上述のような場合には、例えば、出力信号O1-2および出力信号O2-2の差動値に係数c(cは1未満)を乗じた値と、第零のサンプリングにおいて得られる出力信号O1-0および出力信号O2-0の差動値(O1-0-O2-0 or O2-0-O1-0)に係数(1-c)を乗じた値との和を算出し、このようにして算出された値を、第二のサンプリングにおける演算値として扱ってもよい。また、第零のサンプリング、第一のサンプリング、第二のサンプリングにおいて得られる差動値を適当な比率で加えた値を、演算値として扱っても良い。
 または、第一のサンプリングにおいて得られた出力信号O1-1および出力信号O1-2のノイズが大と判定されている場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが仮想的に小として、ステップ509を実行しても良い。
 上述の補正処理では、第一のアナログデジタル変換器の出力信号と第二のアナログデジタル変換器の出力信号がいずれも大きく変化する場合には、測定精度が低い状態にあるものとみなして新たな測定データの重み付けを小さくしている。これにより、測定精度の低下を十分に抑制することができる。なお、補正処理は図5に示す処理に限られない。図5に示す処理に代えて、異なる処理を採用することもできる。また、矛盾を生じない限りにおいて、他の処理と組み合わせて用いることも可能である。例えば、図4(または図1)に示す処理と図5に示す処理とを組み合わせて用いることにより、測定精度の低下をさらに抑制することが可能である。なお、複数の処理を組み合わせる場合には、矛盾の発生を防止するためにも、処理の優先度をあらかじめ決めておくことが望ましい。
(実施の形態5)
 本実施の形態では、実施の形態1~実施の形態4とは異なる補正処理の一例について説明する。ここでは、(5)第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値、または、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値のいずれか一方のみが、あらかじめ決められている閾値Δthより大きい場合に、その一方の測定データを放棄する補正処理、について、詳細に説明する。図6は、電流センサ1のMCU127における処理フローの一例を示す図である。なお、図6では、説明の簡単のため、本発明の電流センサ1に特徴的な処理のみを示すに留める。
 ステップ601およびステップ603は、実施の形態1におけるステップ201およびステップ203と同様である。つまり、MCU127は、ステップ601において、第一のサンプリングにおける演算値を出力し、ステップ603において、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとを算出する。
 ステップ605、ステップ607、ステップ609、ステップ611では、第一の磁気センサ11Aの出力信号および第二の磁気センサ11Bの出力信号におけるノイズの大小を判定するため、第一のアナログデジタル変換器125Aの出力の変化量Δ、または、第二のアナログデジタル変換器125Bの出力の変化量Δが所定の範囲に収まっているか否かを判定する。具体的には、ステップ605において、第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値を、あらかじめ決められている閾値Δthと比較し、ステップ607およびステップ609において、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値を、あらかじめ決められている閾値Δthと比較し、ステップ611において、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が同じであるか否かを評価する。
 閾値Δthの決定方法は任意である。例えば、実施の形態1において示した決定方法を用いることができる。
 第一のアナログデジタル変換器125Aの出力の変化量Δと第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が同じであって、第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超え、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超える場合、つまり、Δ>0、かつ、Δ>0、であって|Δ|>Δth、かつ、|Δ|>Δthである場合、または、Δ>0、かつ、Δ>0であって、|Δ|>Δth、かつ、|Δ|>Δthである場合には、ステップ613を実行する。第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超え、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超えない場合、つまり、|Δ|>Δth、かつ、|Δ|≦Δthである場合には、ステップ615を実行する。第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超えず、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超える場合、つまり、|Δ|≦Δth、かつ、|Δ|>Δthである場合には、ステップ617を実行する。第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超えず、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超えない場合、つまり、|Δ|≦Δth、かつ、|Δ|≦Δthである場合、または、第一のアナログデジタル変換器125Aの出力の変化量Δと第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が異なり、第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超え、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超える場合、つまり、Δ>0、かつ、Δ<0、であって|Δ|>Δth、かつ、|Δ|>Δthである場合、または、Δ<0、かつ、Δ>0であって、|Δ|>Δth、かつ、|Δ|>Δthである場合には、ステップ619を実行する。
 第一のアナログデジタル変換器125Aの出力の変化量Δと第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が同じであって、第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超え、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超える場合、つまり、Δ>0、かつ、Δ>0、であって|Δ|>Δth、かつ、|Δ|>Δthである場合、または、Δ>0、かつ、Δ>0であって、|Δ|>Δth、かつ、|Δ|>Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2のノイズが大であり、第二のサンプリングにおいて得られた出力信号O2-2のノイズが大として、ステップ613において、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2を放棄して、ステップ601において出力された第一のサンプリングにおける演算値を、第二のサンプリングにおける演算値として扱う。
 第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超え、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超えない場合、つまり、|Δ|>Δth、かつ、|Δ|≦Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2のノイズが大であり、第二のサンプリングにおいて得られた出力信号O2-2のノイズが小として、ステップ615において、出力信号O2-2の変化量Δから第二のサンプリングにおける演算値を算出する。具体的には、例えば、第一のサンプリングにおける演算値に、変化量Δの2倍の値を加えたものを、演算値として扱う。但し、被測定電流の増加に対して変化量Δが減少する関係の場合には、変化量Δの符号を反転させて(正負を入れ替えて)演算値を算出する。なお、演算値の算出方法はこれに限られない。
 第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超えず、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超える場合、つまり、|Δ|≦Δth、かつ、|Δ|>Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2のノイズが小であり、第二のサンプリングにおいて得られた出力信号O2-2のノイズが大として、ステップ617において、出力信号O1-2の変化量Δ1から第二のサンプリングにおける演算値を算出する。具体的には、例えば、第一のサンプリングにおける演算値に、変化量Δ1の2倍の値を加えたものを、演算値として扱う。但し、被測定電流の増加に対して変化量Δ1が減少する関係の場合には、変化量Δ1の符号を反転させて(正負を入れ替えて)演算値を算出する。なお、演算値の算出方法はこれに限られない。
 第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超えず、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超えない場合、つまり、|Δ|≦Δth、かつ、|Δ|≦Δthである場合には、第二のサンプリングにおいて得られた出力信号O1-2のノイズが小であり、第二のサンプリングにおいて得られた出力信号O2-2のノイズが小として、ステップ619において、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2の差動値(O1-2-O2-2 or O2-2-O1-2)を算出し、当該差動値を第二のサンプリングにおける演算値として扱う。また、第一のアナログデジタル変換器125Aの出力の変化量Δと第二のアナログデジタル変換器125Bの出力の変化量Δとの符号が異なり、第一のアナログデジタル変換器125Aの出力の変化量Δの絶対値が閾値Δthを超え、第二のアナログデジタル変換器125Bの出力の変化量Δの絶対値が閾値Δthを超える場合、つまり、Δ>0、かつ、Δ<0、であって|Δ|>Δth、かつ、|Δ|>Δthである場合、または、Δ<0、かつ、Δ>0であって、|Δ|>Δth、かつ、|Δ|>Δthである場合には、ステップ619において、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2の差動値(O1-2-O2-2 or O2-2-O1-2)を算出し、当該差動値を第二のサンプリングにおける演算値として扱う。
 なお、ここでは、連続する第一のサンプリングと第二のサンプリングからノイズの大小を判定しているが、本発明はこれに限られない。例えば、上述の処理フローにおいて、既に、第一のサンプリングにおいて得られた出力信号O1-1および出力信号O1-2のノイズが大と判定されている場合には、それ以前のサンプリングにおける出力信号から変化量を算出して、同様のノイズ判定をしても良い。例えば、第一のサンプリングの直前のサンプリングを第零のサンプリングとして、第零のサンプリングにおける第一のアナログデジタル変換器125Aの出力信号O1-0と、第零のサンプリングにおける第二のアナログデジタル変換器125Bの出力信号O2-0とを用いて、変化量Δ=O1-2-O1-0、および変化量Δ=O2-2-O2-0を算出し、これらと閾値との関係からノイズの大小を判定することができる。この場合の閾値は、閾値Δthと等しいものであっても良いし、異なるものであっても良い。
 または、第一のサンプリングにおいて得られた出力信号O1-1および出力信号O1-2のノイズが大と判定されている場合には、第二のサンプリングにおいて得られた出力信号O1-2および出力信号O2-2のノイズが仮想的に小として、ステップ617を実行しても良い。
 その後、ステップ613、615、617、619における処理を基に、MCU127は、ステップ621において、第二のサンプリングにおける演算値を出力する。以後の処理は同様であるため省略する。
 上述の補正処理では、第一のアナログデジタル変換器の出力信号と第二のアナログデジタル変換器の出力信号がいずれも大きく変化する場合には、測定精度が低い状態にあるものとみなして新たな測定データを放棄している。これにより、測定精度の低下を十分に抑制することができる。なお、この場合、新たな測定データの重み付けを小さくしても良い。また、第一のアナログデジタル変換器の出力信号と第二のアナログデジタル変換器の出力信号の一方のみが大きく変化する場合には、他方の測定精度は高い状態にあるものとみなして、他方の出力信号のみを用いている。これにより、ノイズが多い状況においても、精度の高い測定を行うことができる。また、サンプリングデータの放棄が、かえって大きな測定精度低下の要因となるような、サンプリング周期が電流変化の時間より長い状況であっても、精度の高い測定を行うことができる。なお、補正処理は図6に示す処理に限られない。図6に示す処理に代えて、異なる処理を採用することもできる。また、矛盾を生じない限りにおいて、他の処理と組み合わせて用いることも可能である。
(実施の形態6)
 本実施の形態では、実施の形態1~実施の形態5などにおいてノイズが大と判定された場合に、エラー状態であることを示す信号(以下、エラー信号)を出力する処理について説明する。サンプリングにおいて、ノイズが大という状態は、電流センサ1やこれを含むシステムなどに何らかの異常が発生したこと、または異常が発生しつつあること、などに起因して表れることがある。よって、この状態を示す信号を出力できることは、フェールセーフの観点から有効である。
 まず、実施の形態1~実施の形態5などに示す処理において、第一の磁気センサ11Aの出力信号および第二の磁気センサ11Bの出力信号におけるノイズの大小を判定する(ステップ205、ステップ305、ステップ405、ステップ505、ステップ605、ステップ607、ステップ609、ステップ611、など)。例えば、実施の形態1の処理では、ステップ205において、第一のアナログデジタル変換器125Aの出力の変化量Δと、第二のアナログデジタル変換器125Bの出力の変化量Δとの差を、あらかじめ決められている閾値Δthと比較する。
 上述の処理において、ノイズが大と判定された場合には、補正処理と併せて、または、補正処理に代えて、エラー信号の出力処理を行う。例えば、実施の形態1の処理において、補正処理と併せてエラー信号の出力処理を行う場合には、ステップ207において、第一のサンプリングにおける演算値を、第二のサンプリングにおける演算値とした後に、ステップ211において、第二のサンプリングにおける演算値とエラー信号を出力する。なお、上記エラー信号の出力処理は、補正処理に関連させても良いし、補正処理と独立させても良い。例えば、上述のように補正処理が完了してサンプリングにおける演算信号を出力する際に、エラー信号を出力させる構成とことができる。また、ノイズが大と判定された場合に補正処理を行わず、エラー信号のみを出力させる構成とすることもできる。
 上述の処理では、磁気センサからの出力信号(アナログデジタル変換器の出力信号)のノイズが大と判定された場合には、MCU127がエラー信号を出力している。このエラー信号を、電流センサ1を含むシステムが利用することで、電流センサ1を含むシステムの動作異常を防ぐことができる。また、電流センサ1やこれを含むシステムなどの保守・点検が容易になる。例えば、電流センサ1の故障を早期に発見することなども可能である。すなわち、上述の処理を採用した電流センサ1では、これを含むシステムの動作異常を防ぐ、システムのメンテナンスを容易にする、といった課題を解決することができる。
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態における各素子の接続関係、大きさなどは適宜変更して実施することが可能である。また、各種処理は組み合わせて用いることができる。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。
 本発明の電流センサは、例えば、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検知するために用いることが可能である。
 本出願は、2010年8月31日出願の特願2010-194174に基づく。この内容は、全てここに含めておく。

Claims (13)

  1.  被測定電流が通流する電流線の周囲に配置され、前記被測定電流からの誘導磁界により逆相の出力信号を出力する第一の磁気センサおよび第二の磁気センサと、
     前記第一の磁気センサに接続され、前記第一の磁気センサの出力信号をアナログ信号からデジタル信号へと変換して出力する第一のアナログデジタル変換器と、
     前記第二の磁気センサに接続され、前記第二の磁気センサの出力信号をアナログ信号からデジタル信号へと変換して出力する第二のアナログデジタル変換器と、
     前記第一のアナログデジタル変換器および前記第二のアナログデジタル変換器に接続され、前記第一のアナログデジタル変換器の出力信号と前記第二のアナログデジタル変換器の出力信号とを差動演算し、演算値を出力する演算装置と、
     を具備することを特徴とする電流センサ。
  2.  前記第一の磁気センサおよび前記第二の磁気センサは、前記電流線を中心として点対象に配置され、かつ、感度軸方向が同じになるように配置されたことを特徴とする請求項1に記載の電流センサ。
  3.  前記第一の磁気センサおよび前記第二の磁気センサは、前記被測定電流からの誘導磁界により特性が変化する磁気センサ素子と前記磁気センサ素子の近傍に配置され、前記誘導磁界を相殺するキャンセル磁界を発生するフィードバックコイルとを含む磁気平衡式センサであることを特徴とする請求項1または請求項2に記載の電流センサ。
  4.  前記磁気センサ素子が磁気抵抗効果素子であることを特徴とする請求項3に記載の電流センサ。
  5.  前記演算装置は、
     第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δと、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δと、の差が閾値Δthを超える場合に、
     前記第一のサンプリングにおける演算値を、前記第二のサンプリングにおける演算値として出力することを特徴とする請求項1から請求項4のいずれか一に記載の電流センサ。
  6.  前記演算装置は、
     第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが、閾値Δthを超え、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが、閾値Δthを超える場合に、
     前記第一のサンプリングにおける演算値を、前記第二のサンプリングにおける演算値として出力することを特徴とする請求項1から請求項5のいずれか一に記載の電流センサ。
  7.  前記演算装置は、
     第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δと、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δと、の差が閾値Δthを超える場合に、
     エラー信号を出力することを特徴とする請求項1から請求項6のいずれか一に記載の電流センサ。
  8.  前記演算装置は、
     第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが、閾値Δthを超え、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが、閾値Δthを超える場合に、
     エラー信号を出力することを特徴とする請求項1から請求項7のいずれか一に記載の電流センサ。
  9.  前記演算装置は、
     第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δと、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δと、の差が閾値Δthを超える場合に、
     前記第二のサンプリングにおける、前記第一のアナログデジタル変換器の出力信号O1-2と前記第二のアナログデジタル変換器の出力信号O2-2との差動値に、1未満の係数を乗じて得られる値から算出される値を、前記第二のサンプリングにおける演算値として出力することを特徴とする請求項1から請求項4のいずれか一に記載の電流センサ。
  10.  前記演算装置は、
     第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが、閾値Δthを超え、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが、閾値Δthを超える場合に、
     前記第二のサンプリングにおける、前記第一のアナログデジタル変換器の出力信号O1-2と前記第二のアナログデジタル変換器の出力信号O2-2との差動値に、1未満の係数を乗じて得られる値から算出される値を、前記第二のサンプリングにおける演算値として出力することを特徴とする請求項1から請求項4および請求項9のいずれか一に記載の電流センサ。
  11.  前記演算装置は、
     第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δと、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δと、の差が閾値Δthを超える場合に、
     エラー信号を出力することを特徴とする請求項1から請求項4、および請求項9から請求項10のいずれか一に記載の電流センサ。
  12.  前記演算装置は、
     第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが、閾値Δthを超え、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが、閾値Δthを超える場合に、
     エラー信号を出力することを特徴とする請求項1から請求項4、および請求項9から請求項11のいずれか一に記載の電流センサ。
  13.  前記演算装置は、
     第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第一のサンプリング直後の第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが閾値Δthを超え、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが閾値Δthを超えない場合に、
     前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2から算出される値を、前記第二のサンプリングにおける演算値として出力し、
     前記第一のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-1に対する、前記第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2の変化量Δが閾値Δthを超えず、かつ、前記第一のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-1に対する、前記第二のサンプリングにおける前記第二のアナログデジタル変換器の出力信号O2-2の変化量Δが閾値Δth超える場合に、
     前記第二のサンプリングにおける前記第一のアナログデジタル変換器の出力信号O1-2から算出される値を、前記第二のサンプリングにおける演算値として出力することを特徴とする請求項1から請求項12のいずれか一に記載の電流センサ。
PCT/JP2011/066808 2010-08-31 2011-07-25 電流センサ WO2012029437A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012531745A JP5531214B2 (ja) 2010-08-31 2011-07-25 電流センサ
CN201180041160.5A CN103080754B (zh) 2010-08-31 2011-07-25 电流传感器
US13/766,664 US9046554B2 (en) 2010-08-31 2013-02-13 Current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-194174 2010-08-31
JP2010194174 2010-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/766,664 Continuation US9046554B2 (en) 2010-08-31 2013-02-13 Current sensor

Publications (1)

Publication Number Publication Date
WO2012029437A1 true WO2012029437A1 (ja) 2012-03-08

Family

ID=45772547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066808 WO2012029437A1 (ja) 2010-08-31 2011-07-25 電流センサ

Country Status (4)

Country Link
US (1) US9046554B2 (ja)
JP (1) JP5531214B2 (ja)
CN (1) CN103080754B (ja)
WO (1) WO2012029437A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197132A (zh) * 2013-02-25 2013-07-10 无锡凌湖科技有限公司 Tmr数字电流传感器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028571A (ja) * 2017-09-27 2021-02-25 株式会社村田製作所 電流センサ
JP7273876B2 (ja) * 2021-03-08 2023-05-15 Tdk株式会社 磁気センサ装置、インバータ装置およびバッテリ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523751A (ja) * 1998-08-25 2002-07-30 ルスト・アントリープステヒニク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 電流を電位差の発生なしに測定する方法及び電位差の発生のない電流測定装置
JP2007078374A (ja) * 2005-09-12 2007-03-29 Meidensha Corp 直流電流計測装置および計測方法
JP2008268219A (ja) * 2007-04-23 2008-11-06 Magic Technologies Inc 磁気センサおよびその製造方法、並びに電流検出方法および電流検出装置
JP2010139244A (ja) * 2008-12-09 2010-06-24 Nissan Motor Co Ltd センサ異常検出装置及びセンサの異常検出方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9913688A (pt) * 1998-08-19 2002-07-30 Fisher & Paykel Sistema de abertura e fechamento de porta
US6769805B2 (en) 1998-08-25 2004-08-03 Sensor Highway Limited Method of using a heater with a fiber optic string in a wellbore
JP2007078416A (ja) * 2005-09-12 2007-03-29 Denso Corp 電流センサおよび電流検出方法
SK50302009A3 (sk) 2006-10-18 2010-03-08 Osaki Electric Co., Ltd. Elektronický watthodinový elektromer
CN201514439U (zh) * 2009-10-20 2010-06-23 邱召运 差分式霍尔电流传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523751A (ja) * 1998-08-25 2002-07-30 ルスト・アントリープステヒニク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 電流を電位差の発生なしに測定する方法及び電位差の発生のない電流測定装置
JP2007078374A (ja) * 2005-09-12 2007-03-29 Meidensha Corp 直流電流計測装置および計測方法
JP2008268219A (ja) * 2007-04-23 2008-11-06 Magic Technologies Inc 磁気センサおよびその製造方法、並びに電流検出方法および電流検出装置
JP2010139244A (ja) * 2008-12-09 2010-06-24 Nissan Motor Co Ltd センサ異常検出装置及びセンサの異常検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197132A (zh) * 2013-02-25 2013-07-10 无锡凌湖科技有限公司 Tmr数字电流传感器

Also Published As

Publication number Publication date
JP5531214B2 (ja) 2014-06-25
JPWO2012029437A1 (ja) 2013-10-28
CN103080754A (zh) 2013-05-01
US20130154630A1 (en) 2013-06-20
US9046554B2 (en) 2015-06-02
CN103080754B (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
JP6475833B2 (ja) 二重経路アナログ・デジタル変換器
JP6644068B2 (ja) 共用経路増幅器及びアナログ・デジタル変換器を有する磁界センサ
US9952065B2 (en) Position sensor device to determine a position of a moving device
JP5586036B2 (ja) 電流センサ
WO2012011306A1 (ja) 電流センサ
JP2011027683A (ja) 磁気センサ
JP4936030B2 (ja) 磁気センサ
US9350370B2 (en) Sensor signal processing apparatus and sensor apparatus
WO2013008683A1 (ja) 電流制御用半導体素子およびそれを用いた制御装置
JPWO2012005042A1 (ja) 電流センサ
JP2024537902A (ja) 磁気センサ装置
WO2012029437A1 (ja) 電流センサ
JP2018115929A (ja) 電流センサの信号補正方法、及び電流センサ
JP5406145B2 (ja) 電流制御用半導体素子、およびそれを用いた制御装置
JP6897106B2 (ja) 電流センサの信号補正方法、及び電流センサ
CN114440756B (zh) 用于磁阻传感器的芯片上轮间距识别的方法
JP2020016439A (ja) 角度センサの補正装置および角度センサ
JP5658715B2 (ja) ホール起電力信号検出装置
JP5531216B2 (ja) 電流センサ
JP2014045503A (ja) 電流制御用半導体素子およびそれを用いた制御装置
JP7415867B2 (ja) 磁気平衡式電流センサ
US11536748B2 (en) Current sensor
CN214895761U (zh) 一种适用于磁敏电流传感器的补偿系统
JP2020016438A (ja) 角度センサの補正装置および角度センサ
Datlinger et al. Holistic Rotor Position Sensor System Characterization for Automotive Powertrains

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041160.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012531745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821455

Country of ref document: EP

Kind code of ref document: A1