WO2012029126A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2012029126A1
WO2012029126A1 PCT/JP2010/064818 JP2010064818W WO2012029126A1 WO 2012029126 A1 WO2012029126 A1 WO 2012029126A1 JP 2010064818 W JP2010064818 W JP 2010064818W WO 2012029126 A1 WO2012029126 A1 WO 2012029126A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
input shaft
shift
regenerative
output shaft
Prior art date
Application number
PCT/JP2010/064818
Other languages
English (en)
French (fr)
Inventor
健太 熊▲崎▼
松原 亨
田端 淳
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011526351A priority Critical patent/JP5105003B2/ja
Priority to US13/142,741 priority patent/US8296002B2/en
Priority to DE112010005833.4T priority patent/DE112010005833B4/de
Priority to CN201080003731.1A priority patent/CN102612447B/zh
Priority to PCT/JP2010/064818 priority patent/WO2012029126A1/ja
Publication of WO2012029126A1 publication Critical patent/WO2012029126A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/111Stepped gearings with separate change-speed gear trains arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • B60W2510/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • F16H2037/0873Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft with switching, e.g. to change ranges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a technical field of a vehicle control device that controls a vehicle including a rotating electrical machine that can function as a power source and a transmission connected to the power source.
  • Patent Document 1 a device that suppresses fluctuations in the output shaft torque during coast downshifting has been proposed (see, for example, Patent Document 1).
  • the control device for a vehicle drive device disclosed in Patent Document 1 it is said that the fluctuation of the output shaft torque can be suppressed by reducing the regenerative torque of the motor in the inertia phase during the coast downshift. .
  • JP 2008-207690 A Japanese Patent Laid-Open No. 2003-04971 JP 2007-155026 A JP 2008-094332 A
  • the fluctuation of the output shaft torque in the torque phase or the inertia phase can be considerably suppressed by, for example, the technique disclosed in the above-mentioned Patent Document 1, but it is practically required to suppress it to zero or a level that can be regarded as it. Accompanied by difficulties.
  • the present invention has been made in view of such problems, and it is an object of the present invention to provide a vehicle control device that can suppress fluctuations in output shaft torque during a regenerative coast shift period regardless of whether or not a brake operation is performed. To do.
  • a vehicle control device includes a rotating electrical machine capable of inputting and outputting torque between an input shaft and an output shaft connected to the input shaft and the axle.
  • a plurality of engagement devices are installed, and torque is transmitted between the input shaft and the output shaft, and the rotational speed of the input shaft and the rotation speed are determined according to the engagement state of the plurality of engagement devices.
  • a device for controlling a vehicle comprising a transmission capable of constructing a plurality of shift stages having mutually different transmission ratios with respect to the rotational speed of the output shaft, and detecting means for detecting a braking operation amount of the driver In the coast regenerative shift period in which the shift stage is switched during coast regeneration of the rotating electrical machine, when the detected amount of braking operation changes in a decreasing direction that promotes a decrease in the braking force applied to the vehicle,
  • the above-mentioned output accompanying the change of the braking operation amount Wherein the change in the axis of the torque and a input shaft torque control means for controlling the torque of the input shaft so as to be suppressed.
  • a vehicle according to the present invention includes a rotating electrical machine and a transmission capable of constructing a plurality of shift stages by a plurality of engagement devices.
  • the rotating electrical machine according to the present invention is a device that can take a practical aspect such as a motor generator, for example, and outputs torque output to the input shaft (that is, supply of driving torque to the axle) and torque via the input shaft. (That means power regeneration (power generation)).
  • the transmission according to the present invention includes a plurality of engagement devices (for example, a hydraulic engagement wet multi-plate type clutch mechanism and a brake mechanism) in a torque transmission path between the input shaft and the output shaft connected to the axle.
  • a plurality of engagement devices for example, a hydraulic engagement wet multi-plate type clutch mechanism and a brake mechanism
  • it is a device that can adopt practical aspects such as various types of ECT (Electronic Controlled Transmission).
  • the transmission can construct a plurality of gear stages having different gear ratios according to the engagement states of the plurality of engagement devices.
  • the input shaft means the input shaft of the transmission
  • the output shaft means the output shaft of the transmission
  • the vehicle control device is a device for controlling such a vehicle.
  • a vehicle for example, one or a plurality of CPUs (Central Processing Unit), MPU (Micro Processing Unit), ECU (Electronic Controlled Unit), various types Practical aspects such as a processor or various controllers may be adopted.
  • CPUs Central Processing Unit
  • MPU Micro Processing Unit
  • ECU Electronic Controlled Unit
  • various storage means such as a ROM (Read Only Memory), a RAM (Random Access Memory), a buffer memory, a flash memory, and the like may be further incorporated or attached as necessary.
  • the braking operation amount of the driver is detected by the detecting means.
  • the “braking operation amount” detected by the detection means means the operation amount of the appropriate operation means associated with the braking force applied to the vehicle on a one-to-one, one-to-many, many-to-one or many-to-many basis, For example, as a preferred form, it means the amount of depression of the brake pedal.
  • the detecting means may be a detecting means such as a sensor capable of detecting the amount of depression of the brake pedal, or indirectly grasping the amount of braking operation by receiving electrical signals from various types of detecting means. Possible means may be used.
  • coast regeneration In the period during which coast deceleration is performed as inertia deceleration accompanied by full closing operation of the accelerator pedal, power regeneration by regenerative torque of the rotating electrical machine, so-called coast regeneration can be executed.
  • This coast regeneration can be executed regardless of the presence or absence of the driver's braking operation described above (for example, stepping on the brake pedal).
  • the regenerative torque of the rotating electrical machine is a kind of braking force that acts in the direction of stopping the vehicle. Accordingly, the amount of braking operation that reflects the driver's positive braking intention is generally correlated with the regenerative torque of the rotating electrical machine, and as a preferred form, the magnitude is the magnitude of the regenerative torque of the rotating electrical machine. Furthermore, they correspond to one-to-one, one-to-many, many-to-one, or many-to-many. Since the regenerative torque is a negative torque, “large” means “small” as an absolute torque value considering the sign of positive and negative.
  • the coast regeneration period as a period during which coast regeneration is performed, switching of the gear stage to the side that increases the rotational speed of the input shaft according to the deceleration state of the vehicle, preferably according to the decrease in the vehicle speed, That is, a so-called downshift can occur.
  • the rotational speed of the input shaft (uniquely the rotational speed of the rotating electrical machine) is determined from the synchronous rotational speed corresponding to the gear position before the gear shift. It changes to the synchronous rotational speed corresponding to the gear position after the shift.
  • the amount of braking operation related to the braking operation may change in a decreasing direction.
  • “the amount of braking operation changes in a decreasing direction” means, for example, as a preferred form, that the amount of depression of the brake pedal changes to a brake-off equivalent value, that is, the driver depresses the foot from the brake pedal. This means that the pedaling force applied to the brake pedal becomes substantially zero or substantially zero by removing the button.
  • the braking operation amount changes in a decreasing direction means that, for example, as a preferred form, the amount of depression of the brake pedal is large within the brake-on region (in this case, “large” means that This means that the degree of change in regenerative torque that cannot be ignored in practice means that the change can occur). Since the braking operation is an artificial action of the driver, such a change in the braking operation amount in the decreasing direction can occur regardless of the progress of the downshift in the coast regenerative shift period.
  • the torque of the output shaft causes the decrease in the regenerative torque described above.
  • input shaft torque that is, approaches zero torque
  • deceleration of the vehicle decreases at least temporarily.
  • the so-called period during which the rotational speed of the rotating electrical machine is changed from the synchronous rotational speed corresponding to the gear stage before the shift to the synchronous rotational speed corresponding to the gear stage after the shift in the shift period of the transmission In the torque phase and the inertia phase, a part of the input shaft torque is consumed by the inertia torque of the input inertia system of the transmission including the rotating electrical machine, so that the input shaft torque decreases again. As a result, the output shaft torque also decreases to some extent with respect to the required value.
  • the input shaft torque control means controls the input shaft torque.
  • the input shaft torque control means By controlling the input shaft torque by the input shaft torque control means, for example, a decrease in the regenerative torque due to a change in the braking operation amount in the decreasing direction (because the regenerative torque is a negative torque, that is, the input shaft torque Increase) or an increase in the regenerative torque after the decrease in the regenerative torque (that is, a decrease in the input shaft torque) is suppressed, and as a result, the fluctuation of the output shaft torque due to the change in the decreasing direction of the braking operation amount Suppressed or mitigated.
  • the vehicle control apparatus of the present invention it is possible to suppress fluctuations in the output shaft torque.
  • the input shaft torque control means may apply the braking force when the detected braking operation amount changes in the decreasing direction.
  • the torque of the input shaft is controlled when the value changes from a power value to a value that the braking force should not be applied.
  • the variation in the input shaft torque that urges the variation in the output shaft torque is a region where the braking force should not be applied from the value within the region where the braking force should be applied, such as when the foot is released from the brake pedal.
  • the value changes to a value within the range for example, a dead zone including a zero value, etc.
  • the input shaft torque control means is configured to control the input shaft when the detected braking operation amount changes in the decreasing direction during the shift speed switching period. Control torque.
  • the above-described torque control of the input shaft is particularly performed as the period during which the shift stage is switched, particularly during the shift stage switching period as the period during which the shift stage is actually executed after the shift request is generated. Is executed. Therefore, it is efficient and effective.
  • the input shaft torque control means as the switching period, in the period from when the shift stage switching request is generated until the torque phase forming a part of the coast regenerative shift period is started.
  • the torque of the input shaft may be controlled.
  • the input shaft torque control means acts remarkably effectively.
  • the effect of the input shaft torque control means according to the present invention is ensured even if the braking operation amount changes in a decreasing direction in any time region of the coast regenerative shift period. Therefore, when the amount of braking operation changes in the decreasing direction before the torque phase start time, measures such as increasing the degree of suppression related to suppression of change in output shaft torque in the input shaft torque control means may be taken. .
  • the input shaft torque control means includes the input shaft torque control means as compared with a case where the detected braking operation amount changes in the decreasing direction in a period other than the coast regenerative shift period. Limit the speed of torque increase on the input shaft.
  • the braking operation amount changes in the decreasing direction. Even so, it is possible to suppress a sudden change in the input shaft torque, and it is possible to mitigate the torque shock caused by the decrease in the output shaft torque in the torque phase and the inertia phase.
  • the torque of the output shaft is reduced by reducing the regenerative torque of the rotating electrical machine in at least one of a torque phase and an inertia phase forming a part of the coast regenerative shift period.
  • the input shaft torque control means further corrects the reduction amount of the regenerative torque related to the suppression means to the decrease side.
  • the reduction of the output shaft torque that occurs in these is corrected to the decrease side of the regenerative torque (correction to the increase side of the input shaft torque). It is suppressed by. Therefore, fluctuations in the output shaft torque during the coast regenerative shift period can be effectively suppressed.
  • the input shaft torque control unit further corrects the reduction amount of the regenerative torque related to the suppression unit to the decreasing side. Therefore, even if the input shaft torque suddenly changes due to the change in the braking operation amount in the decreasing direction, it is possible to suppress a drop in the output shaft torque in the subsequent inertia phase and torque phase, resulting in the output shaft torque. Can be suitably suppressed.
  • the torque of the output shaft is reduced by reducing the regenerative torque of the rotating electrical machine in at least one of a torque phase and an inertia phase forming a part of the coast regenerative shift period.
  • the input shaft torque control means is further configured to suppress the change of the input shaft torque compared to a case where the detected braking operation amount changes in the decreasing direction in a period other than the coast regenerative shift period.
  • the rate of increase in torque is limited, and the amount of decrease in the regenerative torque related to the suppression means is further corrected to the decrease side.
  • the control related to the limitation on the increase speed of the input shaft torque described above and the correction control to the decrease side related to the decrease amount of the regenerative torque described above are executed in cooperation with each other.
  • the fluctuation of the shaft torque can be suppressed.
  • the engagement hydraulic pressure of the engagement device related to the gear position after the shift is changed depending on the magnitude of the change speed of the torque of the input shaft.
  • An engagement hydraulic pressure control means is further provided.
  • the engagement hydraulic pressure applied to the engagement device related to the gear stage after the shift is corrected to a small or large value with respect to the magnitude of the change speed of the input shaft torque. Therefore, it is possible to alleviate a sudden change in the input shaft torque when the braking operation amount changes in the decreasing direction.
  • a correction mode, a correction value, a correction coefficient, or the like related to correction of this type of engagement hydraulic pressure may be set based on simulation or the like.
  • the vehicle further includes power storage means capable of inputting / outputting electric power to / from the rotating electrical machine
  • the vehicle control device includes: Regenerative torque control means for controlling the regenerative torque of the rotating electrical machine at the time of the coast regeneration within a constraint range defined according to at least one of the amount of stored electricity and the temperature;
  • the input shaft torque control means controls the torque of the input shaft in accordance with a control state of the regenerative torque by the regenerative torque control means.
  • the regenerative torque during coast regeneration is controlled according to at least one of the power storage amount and temperature of the power storage means such as a battery.
  • the required power regeneration amount of the rotating electrical machine when the power storage means is in a state close to a fully charged state, the required power regeneration amount of the rotating electrical machine is relatively small, and in a state close to a complete discharge state, the required power regeneration amount of the rotating electrical machine is It becomes relatively large.
  • the temperature of the power storage means deviates from a predetermined recommended region set on the low temperature side, the high temperature side, or both, etc., electric power allowed to be supplied to the power storage means per unit time (ie, In short, the input limit value Win) is limited, and the power regeneration amount is limited.
  • the magnitude of the required power regeneration amount means the magnitude of the regenerative torque during coast regeneration, but if the regenerative torque is large, the degree of change in the regenerative torque when the braking operation amount is changed in the decreasing direction. growing. Therefore, depending on the control state of the regenerative torque, the degree of fluctuation of the output shaft torque when the braking operation amount changes in the decreasing direction during the coast regenerative shift period changes.
  • the input shaft torque is controlled by the input shaft torque control means in accordance with the control state of the regenerative torque, it is possible to more efficiently suppress fluctuations in the output shaft torque. .
  • the vehicle includes an internal combustion engine, another rotating electrical machine different from the rotating electrical machine as a reaction force element that provides reaction torque to the internal combustion engine,
  • a plurality of rotating elements including rotating elements respectively connected to the internal combustion engine, the rotating electric machine, and the other rotating electric machines are provided, and the ratio between the rotating speed of the internal combustion engine and the rotating speed of the rotating electric machine is changed steplessly.
  • the vehicle constitutes an example of a so-called hybrid vehicle
  • the continuously variable transmission function by the differential mechanism drives the internal combustion engine along, for example, the optimum fuel consumption operation line that minimizes the fuel consumption rate. Therefore, the energy efficiency of the vehicle as a whole can be secured well in combination with the practical benefits of the vehicle control device according to the present invention.
  • FIG. 1 is a schematic configuration diagram conceptually illustrating a configuration of a hybrid vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram conceptually showing a configuration of a hybrid drive device in the hybrid vehicle of FIG. 1.
  • 3 is an engagement table illustrating the relationship between the engagement state of the engagement device of the transmission and the gear position in the hybrid drive device of FIG. 2.
  • FIG. 3 is an operation alignment chart illustrating one operation state of a power split mechanism in the hybrid drive device of FIG. 2.
  • FIG. 3 is an operation alignment chart illustrating one operation state of the hybrid drive device of FIG. 2.
  • 2 is a flowchart of shift control executed by an ECU in the hybrid vehicle of FIG. It is a schematic diagram of a shift map that defines the shift conditions of the transmission.
  • FIG. 1 is a schematic configuration diagram conceptually illustrating a configuration of a hybrid vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram conceptually showing a configuration of a hybrid drive device in
  • FIG. 7 is a timing chart illustrating the one-hour transition of the state of each part of the ECT in relation to the effect of the regeneration coast down process in the shift control of FIG. 6.
  • FIG. 7 is a timing chart illustrating a one-hour transition of the state of each part of the ECT when input shaft torque correction processing is not performed in the shift control of FIG. 6.
  • 7 is a timing chart illustrating a one-hour transition of the state of each part of the ECT when an example of input shaft torque correction processing in the shift control of FIG. 6 is performed.
  • 7 is a timing chart illustrating a one-hour transition of the state of each part of the ECT when another example of input shaft torque correction processing in the shift control of FIG. 6 is performed.
  • FIG. 7 is a timing chart illustrating a one-hour transition of the state of each part of the ECT when another example of input shaft torque correction processing in the shift control of FIG. 6 is performed.
  • 7 is a timing chart illustrating a one-hour transition of the state of each part of the ECT when another example of input shaft torque correction processing in the shift control of FIG. 6 is performed.
  • FIG. 6 is a schematic configuration diagram conceptually showing the configuration of another hybrid drive apparatus according to the second embodiment of the present invention.
  • FIG. 10 is a schematic configuration diagram conceptually illustrating a configuration of another hybrid drive device according to a third embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram conceptually showing the configuration of the hybrid vehicle 1.
  • the hybrid vehicle 1 includes an ECU 100, a PCU (Power Control Unit) 11, a battery 12, an accelerator opening sensor 13, a vehicle speed sensor 14, a brake pedal sensor 15, a shift position sensor 16, and a hybrid drive device 10. It is a hybrid vehicle as an example of the “vehicle” according to the present invention.
  • the ECU 100 is an electronic control unit that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM, and the like, and is configured to be able to control the operation of each part of the hybrid vehicle 1. 1 is an example of a “vehicle control device”.
  • the ECU 100 is configured to be able to execute shift control described later according to a control program stored in the ROM.
  • the ECU 100 is configured to function as an example of each of the “detection means”, “input shaft torque control means”, “suppression means”, “engagement hydraulic pressure control means”, and “regenerative torque control means” according to the present invention.
  • the integrated electronic control unit is configured such that all the operations related to these means are executed by the ECU 100.
  • each of the units includes a plurality of ECUs, various processing units, various controllers, a microcomputer device, and the like. It may be configured as various computer systems.
  • the hybrid drive device 10 drives the hybrid vehicle 1 by supplying driving torque as driving force to the left axle SFL (corresponding to the left front wheel FL) and the right axle SFR (corresponding to the right front wheel FR), which are the axles of the hybrid vehicle 1. It is a powertrain unit that The detailed configuration of the hybrid drive device 10 will be described later.
  • Each axle is connected to an output shaft 700 that is a power output shaft of the hybrid drive device 10 through a differential D / G as a final reduction mechanism.
  • the PCU 11 converts the DC power extracted from the battery 12 into AC power and supplies it to a motor generator MG1 and a motor generator MG2, which will be described later, and also converts AC power generated by the motor generator MG1 and the motor generator MG2 into DC power.
  • Inverter (not shown) configured to be supplied to the battery 12, and the power input / output between the battery 12 and each motor generator, or the power input / output between the motor generators (that is, In this case, the power control unit is configured to be capable of controlling power transfer between the motor generators without using the battery 12.
  • the PCU 11 is electrically connected to the ECU 100, and its operation is controlled by the ECU 100.
  • the battery 12 has a configuration in which a plurality of unit battery cells are connected in series, and is a rechargeable battery unit that functions as a power supply source related to power for powering the motor generator MG1 and the motor generator MG2. It is an example of such “power storage means”.
  • the accelerator opening sensor 13 is a sensor configured to be able to detect an accelerator opening Ta that is an operation amount of an accelerator pedal (not shown) of the hybrid vehicle 1.
  • the accelerator opening sensor 13 is electrically connected to the ECU 100, and the detected accelerator opening Ta is referred to by the ECU 100 at a constant or indefinite period.
  • the vehicle speed sensor 14 is a sensor configured to be able to detect the vehicle speed Vh of the hybrid vehicle 1.
  • the vehicle speed sensor 14 is electrically connected to the ECU 100, and the detected vehicle speed Vh is referred to by the ECU 100 at a constant or indefinite period.
  • the brake pedal sensor 15 is a sensor configured to be able to detect a brake pedal Tb that is an operation amount (stepping amount) of a brake pedal (not shown).
  • the brake pedal is a braking operation means in which the operation amount is associated with the braking force to be applied to the hybrid vehicle 1, and the brake pedal depression amount Tb as the operation amount is the “braking operation amount” according to the present invention. It is an example.
  • the brake pedal sensor 15 is electrically connected to the ECU 100, and the detected brake pedal depression amount Tb is referred to by the ECU 100 at a constant or indefinite period.
  • the hybrid vehicle 1 is equipped with an ECB (Electronic Controlled Braking System) that can individually apply a friction braking force to each wheel, and the friction realized by hydraulic drive.
  • Braking is configured to be executed in cooperation with regenerative braking by a motor generator MG2 described later.
  • ECB Electronic Controlled Braking System
  • the configuration of the ECB and its operation mode have little correlation with the essence of the present invention, and therefore the description thereof will be omitted here for the purpose of preventing complication of the description.
  • the shift position sensor 16 is a sensor configured to be able to detect a shift position that defines an operation mode of the ECT 400 described later.
  • the shift position sensor 16 is electrically connected to the ECU 100, and the detected shift position is referred to by the ECU 100 at a constant or indefinite period.
  • FIG. 2 is a schematic configuration diagram conceptually showing the configuration of the hybrid drive apparatus 10.
  • the same reference numerals are given to the same portions as those in FIG. 1, and the description thereof will be omitted as appropriate.
  • the hybrid drive apparatus 10 includes an engine 200, a power split mechanism 300, a motor generator MG1 (hereinafter appropriately referred to as “MG1”), a motor generator MG2 (hereinafter appropriately referred to as “MG2”), an engine output.
  • MG1 motor generator
  • MG2 motor generator
  • a shaft SFTeg, ECT400, a drive shaft 500, an input shaft 600, and an output shaft 700 are provided.
  • Engine 200 is a V-type six-cylinder gasoline engine that is configured to function as one power source of hybrid vehicle 1 and is an example of an “internal combustion engine” according to the present invention.
  • the engine 200 is a known gasoline engine, and the detailed configuration thereof is omitted here.
  • the engine torque Te which is the output power of the engine 200, is transmitted to the engine input shaft of the hybrid drive apparatus 10 via a crankshaft (not shown).
  • the engine 200 is merely an example of a practical aspect that can be adopted by the internal combustion engine according to the present invention.
  • the practical aspect of the internal combustion engine according to the present invention is not limited to the engine 200, and various known engines can be employed. It is.
  • Motor generator MG1 is a motor generator having a power running function that converts electrical energy into kinetic energy and a regeneration function that converts kinetic energy into electrical energy, and is an example of “another rotating electrical machine” according to the present invention. is there.
  • the motor generator MG2 is a motor generator that is an example of the “rotary electric machine” according to the present invention and is larger than the motor generator MG1, and, like the motor generator MG1, has a power running function that converts electrical energy into kinetic energy, It has a configuration with a regenerative function that converts kinetic energy into electrical energy.
  • Motor generators MG1 and MG2 are configured as synchronous motor generators, and include, for example, a rotor having a plurality of permanent magnets on the outer peripheral surface and a stator wound with a three-phase coil that forms a rotating magnetic field. Of course, other configurations may be used.
  • the power split mechanism 300 is a planetary gear mechanism that is an example of a “differential mechanism” according to the present invention.
  • the power split mechanism 300 includes a sun gear Sg0 that is an example of the “rotating element” according to the present invention provided in the center, and a “rotating element” according to the present invention that is provided concentrically around the outer periphery of the sun gear Sg0.
  • a carrier Cr0 as another example of the “rotating element” according to the present invention.
  • the sun gear Sg0 is coupled to the rotor of the motor generator MG1 so as to share the rotation axis thereof, and the rotation speed is equivalent to the MG1 rotation speed Ng that is the rotation speed of the MG1.
  • the ring gear Rg0 is coupled to the drive shaft 500.
  • This drive shaft 500 is coupled to the rotor of motor generator MG2 so as to share the rotation shaft. Accordingly, the MG 2 can input and output torque with the drive shaft 500.
  • the input of torque means that motor generator MG2 is a driven element, and means that MG2 outputs regenerative torque to regenerate electric power.
  • the torque output means that the MG2 torque Tm that is at least a part of the output shaft torque Tout of the hybrid drive device 10 (that is, an example of the “output shaft torque” according to the present invention) is supplied to the drive shaft 500. It means to do.
  • the drive shaft 500 is connected to an input shaft 600 that is a power input shaft of the ECT 400 (that is, an example of an “input shaft” according to the present invention).
  • the carrier Cr0 is connected to the engine input shaft SFTeg connected to the crankshaft of the engine 200.
  • the rotational speed of the carrier Cr0 is equivalent to the engine rotational speed NE of the engine 200.
  • the ECT 400 includes a plurality of pairs of engagement devices, and is configured to be capable of constructing a plurality of shift stages having different gear ratios ⁇ according to these engagement states, and is an electronic control as an example of a “transmission device” according to the present invention. It is a type stepped transmission.
  • the input shaft rotational speed Nin is the rotational speed of the drive shaft 500, that is, the motor generator MG2.
  • the input shaft torque Tin is equivalent to the torque acting on the input shaft 600 is equivalent to the torque acting on the drive shaft 500.
  • the ECT 400 is a composite planetary gear unit obtained by combining two types of differential mechanisms, and each wet multi-plate clutch mechanism of CL1, CL2, and CL3 (each is an example of an “engagement device” according to the present invention). And a one-way clutch F1 and each wet multi-plate brake mechanism of BR1 and BR2. Of these, each wet multi-plate clutch mechanism, one-way clutch F1 and each wet multi-plate brake mechanism are engaged in a pair of engagements (note that the engagement elements are not limited to two). Elements are configured to be selectively controlled between a fastening state and a released state by the action of a hydraulic actuator (not shown).
  • the hydraulic actuator that controls the hydraulic pressure that defines the engagement force of the clutch mechanism and the brake mechanism is electrically connected to the ECU 100, and the ECU 100 changes the gear position of the ECT 400 via the operation control of the hydraulic actuator. You can switch freely. Details of the shift by the ECT 400 will be described later.
  • the input shaft 600 is fixed to one engagement element (that is, a clutch plate) in each of the clutches CL1, CL2, and CL3.
  • the other engagement element of the clutch CL1 (which is also a clutch plate) is one planetary gear unit (the planetary gear unit on the right side of the figure) constituting the differential mechanism. It is connected to the sun gear Sg2 that is one rotation element).
  • the other engagement element of the clutch CL2 is one rotation of the other planetary gear unit constituting the differential mechanism (the planetary gear unit on the left side of the drawing, and hereinafter referred to as “first differential mechanism” as appropriate). It is connected to the carrier Cr1, which is an element.
  • the other engagement element of the clutch CL3 is connected to the sun gear Sg1 that is the other rotation element of the first planetary gear unit and one engagement element of the brake BR1.
  • the other engagement element of the brake BR1 is a fixed element.
  • one engagement element is connected to the ring gear Rg2 of the second planetary gear unit and the carrier Cr1 of the first planetary gear unit, and the other engagement element is a fixed element.
  • the one-way clutch F1 is a one-way clutch that transmits only power in the positive rotation direction and idles for power in the negative rotation direction.
  • One engagement element of the one-way clutch F1 is connected to the carrier Cr1 of the first differential mechanism.
  • the first differential mechanism is disposed between the sun gear Sg1, the ring gear Rg1 provided concentrically on the outer periphery of the sun gear Sg1, and between the sun gear Sg1 and the ring gear Rg1, and revolves while rotating on the outer periphery of the sun gear Sg1.
  • This is a single pinion type planetary gear unit that includes a plurality of pinion gears (not shown) and a carrier Cr1 that supports the rotation shaft of each pinion gear.
  • the second differential mechanism is disposed between the sun gear Sg2, the ring gear Rg2 concentrically provided on the outer periphery of the sun gear Sg2, and between the sun gear Sg2 and the ring gear Rg2, and revolves while rotating on the outer periphery of the sun gear Sg2.
  • This is a single pinion type planetary gear unit that includes a plurality of pinion gears (not shown) and a carrier Cr2 that supports the rotation shaft of each pinion gear.
  • the carrier Cr1 of the first differential mechanism is connected to the ring gear Rg2 of the second differential mechanism, and the carrier Cr2 of the second differential mechanism is the ring gear of the second differential mechanism.
  • Rg1 By connecting to Rg1, a composite planetary gear unit is configured.
  • the carrier Cr2 of the second differential mechanism is connected to an output shaft 700 that is an output shaft of the ECT 400.
  • 2nd speed stage about 7
  • Various operation modes are set in the ECT 400, and one operation mode is selected by the driver via a shift lever (not shown).
  • “P”, “R”, “N”, “D”, “3”, “2”, and “1” shift ranges (shift positions) correspond to the operation mode, for example,
  • the ECU 100 selects one of the above-mentioned four types of shift speeds that is optimal for the driving conditions of the hybrid vehicle 1 at that time, and appropriately switches the shift speed while switching the hybrid vehicle 1. Is configured to run.
  • the operation mode of the ECT 400 corresponding to each shift range is publicly known, and details thereof will not be described here for the purpose of preventing the explanation from becoming complicated.
  • FIG. 3 is a table illustrating the relationship between the engagement state of the engagement device in ECT 400 and the gear position.
  • the clutch CL1 is a low speed clutch
  • the clutch CL2 is a high speed clutch.
  • the shift speed is the first speed or the second speed, which is a low speed gear having a relatively large gear ratio.
  • the brake BR1 is released, the first gear is set, and if engaged, the second gear is set.
  • the gear stage becomes a high-speed fourth gear stage having a relatively small gear ratio.
  • the gear ratio of each rotating element constituting the ECT 400 is of a nature that is appropriately changed according to the gear ratio of the gear to be obtained, and deviates from the essential part of the present invention. The detailed value will not be mentioned.
  • the gear ratio of each gear stage is exemplified as described above, and the gear ratio of each rotating element for realizing the gear ratio of each gear stage in the configuration of FIG. .
  • the hybrid drive device 10 includes resolvers RV1, RV2, and RV3.
  • the resolver RV1 is a rotation speed sensor configured to be able to detect the MG1 rotation speed Ng which is the rotation speed of the MG1.
  • the resolver RV1 is electrically connected to the ECU 100, and the detected MG1 rotational speed Ng is referred to by the ECU 100 at a constant or indefinite period.
  • the resolver RV2 is a rotation speed sensor configured to be able to detect the MG2 rotation speed Nm, which is the rotation speed of the MG2.
  • the resolver RV2 is electrically connected to the ECU 100, and the detected MG2 rotational speed Nm is referred to by the ECU 100 at a constant or indefinite period.
  • the MG2 rotational speed Nm is equivalent to the input shaft rotational speed Nin as already described.
  • the resolver RV3 is a rotational speed sensor configured to be able to detect the output shaft rotational speed Nout, which is the rotational speed of the output shaft 700.
  • the resolver RV3 is electrically connected to the ECU 100, and the detected output shaft rotation speed Nout is referred to by the ECU 100 at a constant or indefinite period.
  • the engine torque Te supplied from the engine 200 to the engine output shaft SFTeg is transferred to the sun gear Sg0 and the ring gear Rg0 by the carrier Cr0 under the above-described configuration (the gear ratio between the gears). It is possible to divide the power of the engine 200 into two systems.
  • FIG. 4 is an operation collinear diagram illustrating one operation state of the hybrid drive device 10.
  • the same reference numerals are given to the same portions as those in FIG. 2, and the description thereof will be omitted as appropriate.
  • the vertical axis represents the rotation speed
  • the horizontal axis represents the motor generator MG1 (uniquely sun gear Sg0), engine 200 (uniquely carrier Cr0) and motor generator MG2 (uniquely) in order from the left.
  • the ring gear Rg0) is represented.
  • power split mechanism 300 is a planetary gear unit with two degrees of rotation constituted by a plurality of rotary elements having a differential relationship with each other, and sun gear Sg0.
  • the rotational speeds of the two elements of the carrier Cr0 and the ring gear Rg0 are determined, the rotational speed of the remaining one rotational element is inevitably determined. That is, on the operation collinear diagram, the operation state of each rotary element can be represented by one operation collinear line corresponding to one operation state of the hybrid drive device 10 on a one-to-one basis.
  • the operating point of the motor generator MG2 that has a unique rotational relationship with the drive shaft 500 and the input shaft 600 is the illustrated operating point m1.
  • the operating point of the motor generator MG1 is the illustrated operating point m2
  • the operating point of the engine 200 connected to the carrier Cr0 as the remaining one rotation element is the operating point m3.
  • the operating point of the motor generator MG1 is changed to the illustrated operating point m4 and the illustrated operating point m5 while maintaining the input shaft rotational speed Nin which is the rotational speed of the drive shaft 500 in an easy-to-understand manner,
  • the points change to the illustrated operation point m6 and the illustrated operation point m7, respectively.
  • the engine 200 can be operated at a desired operating point by causing the motor generator MG1 to function as a rotation speed control mechanism.
  • the power split mechanism 300 is a part that realizes an electric continuously variable transmission function in the hybrid drive device 10 and constitutes an example of the “differential mechanism” according to the present invention.
  • the operating point of the engine 200 (the operating point in this case is one operating condition of the engine 200 defined by the combination of the engine speed NE and the engine torque Te). Is basically controlled to the optimum fuel consumption operating point at which the fuel consumption rate of the engine 200 is minimized.
  • FIG. 5 is an operation alignment chart illustrating another operation state of the hybrid drive apparatus 10.
  • the same reference numerals are given to the same portions as those in FIG. 4, and the description thereof will be omitted as appropriate.
  • the left side is an operation collinear diagram related to the operation of the power split mechanism 300 illustrated in FIG. 2
  • the right side is an operation collinear diagram related to the operation of the ECT 400.
  • the sun gear Sg2 and the ring gear Rg0 are fixed by the action of the clutch CL1, so that the rotational speed of the sun gear Sg2 is MG2 rotations as shown by the broken line in the figure. It becomes equal to the speed Nm.
  • the rotation speed of the carrier Cr1 is fixed to zero rotation by the action of the one-way clutch F1. Therefore, the operation collinear line at the first speed is L_ECT1 in the figure.
  • the gear ratio ⁇ 1 of the first gear is greater than 1, the output shaft rotational speed Nout is lower than the input shaft rotational speed Nin in the situation where the first gear is selected.
  • the sun gear Sg2 and the ring gear Rg0 are fixed by the action of the clutch CL1, so that the rotational speed of the sun gear Sg2 is MG2 rotational speed as shown by the broken line in the figure. Equal to Nm.
  • the rotation speed of the sun gear Sg1 is fixed at zero rotation by the action of the brake BR1. Accordingly, the operation collinear line at the second speed stage is L_ECT2 shown in the figure.
  • the gear ratio ⁇ 2 of the second gear is greater than 1 and smaller than ⁇ 1
  • the output shaft rotational speed Nout is lower than the input shaft rotational speed Nin
  • the rotational speed is higher than that when the first gear is selected.
  • the sun gear Sg2 and the ring gear Rg0 are fixed by the action of the clutch CL1, so that the rotational speed of the sun gear Sg2 is MG2 rotational speed as shown by the broken line in the figure. Equal to Nm.
  • the carrier Cr1 that is, the ring gear Rg2
  • the carrier Cr1 that is, the ring gear Rg2
  • the ring gear Rg0 are fixed by the action of the clutch CL2, so that the rotational speed of the ring gear Rg2 is MG2 rotational speed. Equal to Nm.
  • the rotation speed of the sun gear Sg1 is fixed at zero rotation by the action of the brake BR1. Accordingly, the operation collinear line at the fourth speed stage is L_ECT4 shown in the figure.
  • the gear ratio ⁇ 4 of the fourth speed is smaller than 1, in the situation where the fourth speed is selected, the output shaft rotational speed Nout becomes higher than the input shaft rotational speed Nin, so-called overdrive. A state is realized.
  • the output shaft rotational speed Nout can be changed in four stages with respect to one operation state of the power split mechanism 300. Therefore, according to the ECT 400, it is possible to increase the opportunity to operate the engine 200 at an operating point where the electrical transmission efficiency ⁇ e can be maximized, and to maintain the system transmission efficiency ⁇ sys as a whole of the hybrid drive apparatus 10 favorably. Can do.
  • the system transmission efficiency ⁇ sys is the product of the electrical transmission efficiency ⁇ e and the mechanical transmission efficiency ⁇ t.
  • FIG. 6 is a flowchart of the shift control.
  • the ECU 100 determines whether or not the D range is selected as the shift position that defines the operation mode of the ECT 400 based on the detection signal from the shift position sensor 16 (step S101).
  • step S101 NO
  • the ECU 100 repeatedly executes step S101 and substantially enters a standby state.
  • step S102 the ECU 100 determines whether or not the hybrid vehicle 1 is undergoing a coast downshift.
  • coast down shift means a shift when the hybrid vehicle 1 is in a deceleration state.
  • the coast down may be accompanied by active braking by depressing the brake pedal, or may be caused by inertia when the driver stops the operation of the accelerator pedal. .
  • FIG. 7 is a schematic diagram of a shift map that defines the shift conditions of the ECT 400.
  • the vertical axis and the horizontal axis represent the output shaft torque Tout and the vehicle speed Vh, respectively.
  • the shift conditions of the ECT 400 are indicated by the illustrated shift line 21 down shift line L_21, 12 up shift line L_12, 32 down shift line L_32, 23 up shift line L_23, 43 down shift line L_43 and 34 up shift line L_34. It is prescribed. More specifically, a shift defined by each shift line is realized when the driving condition of the hybrid vehicle 1 at that time crosses any shift line. For example, when the driving condition of the hybrid vehicle 1 crosses the 32 down shift line from the driving region on the right side of the 32 down shift line, the ECU 100 controls the ECT 400 to shift from the 3rd speed to the 2nd speed (shift). Down).
  • the ECU 100 controls the ECT 400 to shift from the first gear to the second gear. (Shift up) is executed.
  • a map that numerically defines the shift map exemplified in FIG. 7 is stored in advance.
  • step S102 when the coast downshift is not being performed (step S102: NO), the ECU 100 returns the process to step S101.
  • step S102: YES when the coast downshift is being performed (step S102: YES), the ECU 100 determines whether or not the driving region of the hybrid vehicle 1 corresponds to the regeneration region (step S103).
  • the “regeneration region” means that the motor generator MG2 should be maintained in the power generation state by outputting the regeneration torque from the motor generator MG2 (that is, inputting the torque from the input shaft 600 and the drive shaft 500). This is a defined area.
  • the ROM of the ECU 100 stores a regeneration region map that defines such a regeneration region.
  • the ECU 100 determines the operating conditions of the hybrid vehicle 1 at that time (for example, the vehicle speed Vh or the SOC (State Of Charge: It is determined based on the regeneration area map whether or not the charging limit value Win defined by the storage state) corresponds to the regeneration area.
  • the ECU 100 controls the PCU 11 to output a predetermined regeneration torque from the MG 2 and supplies the generated power to the battery 12 via the PCU 11.
  • the target value of the regenerative torque to be output from MG2 is defined in a regenerative torque map that is preset and stored in the ROM. Further, the target value of the regenerative torque is basically determined so as to change in magnitude with respect to the magnitude of the brake pedal depression amount Tb.
  • the magnitude of the regenerative torque during coast down running corresponds to the magnitude of the deceleration of the hybrid vehicle 1. That is, the regenerative torque acts as a kind of braking force on the hybrid vehicle 1.
  • step S103 When the driving condition of the hybrid vehicle 1 does not correspond to the regeneration region (step S103: NO), the ECU 100 shifts the process to step S107. Step S107 will be described later. On the other hand, when it corresponds to the regeneration region (step S103: YES), the ECU 100 starts the regeneration coast down process (step S104). The regeneration coast down process will be described later.
  • the operation of the ECU 100 according to step S105 is an example of the operation of the “detecting means” according to the present invention.
  • step S105 NO
  • the brake pedal depression amount Tb has not been depressed from the beginning, or the brake pedal depression amount Tb has If it changes within the region, or if the brake pedal depression amount Tb is maintained at a value within the brake-on region, the ECU 100 shifts the process to step S107. That is, in this case, only the regeneration coast down process is executed.
  • step S105 when the operation position of the brake pedal changes from the on region to the off region (meaning that step S105 branches to “YES” side, that is, the “braking operation amount prompts the braking force to decrease” according to the present invention.
  • the ECU 00 executes an input shaft torque correction process (step S106).
  • the input shaft torque correction process will be described later.
  • the process proceeds to step S107.
  • step S107 it is determined whether or not shifting has been completed (step S107). If the shift is continuing (step S107: NO), the ECU 100 returns the process to step S103 and repeats or continues the series of processes. If the shift is completed (step S107: NO), the process returns to step S101. The return process is repeated. Whether or not the shift has been completed is determined based on whether or not the input shaft rotation speed Nin has converged to the synchronous rotation speed corresponding to the gear position after the shift has been completed.
  • the shift control according to the present embodiment is executed as described above. Note that when the steps S101 and S102 branch to the “NO” side, the ECT 400 is not controlled. That is, the shift control illustrated in FIG. 6 is a shift control at the time of coast down shift, and the control mode of the ECT 400 in other cases is performed by the ECU 100 without any delay as normal shift control. .
  • FIG. 8 is a timing chart illustrating the one-hour transition of the state of each part of the ECT 400 in relation to the effect of the regeneration coast down process in the shift control.
  • FIG. 8 shows a case where a coast down shift from the third speed to the second speed is performed.
  • the vertical axis represents, in order from the top, the input shaft rotation speed Nin, the input shaft torque Tin, the output shaft torque Tout, the brake flag F_brk, and the engagement hydraulic pressure of each engagement device in the ECT 400.
  • the brake flag F_brk is a flag that is set to “1” when the brake pedal is operated, and is set to “0” when the brake pedal is not operated.
  • the ECU 100 is based on the sensor output of the shift position sensor 15. Flag to set. That is, the case where step S105 in FIG. 6 branches to the “ON” side means a case where the brake flag F_brk changes from “1” to “0”.
  • the ECU 100 decreases the engagement hydraulic pressure of the disengagement side engagement device (clutch CL2) at time T1 as shown by the broken line in the drawing, and the engagement hydraulic pressure of the engagement side engagement device (brake BR1) is illustrated. Increase as shown by the solid line.
  • the engagement hydraulic pressure of the engagement-side brake BR1 reaches a predetermined value for maintaining the engagement state.
  • the torque phase means that the rotation speed of the input shaft rotation speed Nin (that is, MG2 rotation speed Nm) is increased by two-speed synchronous rotation by increasing the engagement hydraulic pressure of the engagement device (here, the brake BR1) on the engagement side. This means a torque transfer period for increasing the speed to N2nd (see the chain line in the figure).
  • an inertia phase is started where the input shaft rotational speed Nin actually starts to increase due to the engagement torque of the engagement device.
  • the ECU 100 determines the end of the shift, and the inertia phase ends at a later time T5.
  • the end of the inertia phase and the end of the shift period are treated equally.
  • the shift of the ECT 400 is a so-called equal power shift, and is executed such that the vehicle speed Vh (that is, the required output required for the hybrid drive device 10) at that time is maintained before and after the shift. Therefore, when performing a shift, it is necessary to increase (in the case of a downshift) the input shaft rotation speed Nin to a synchronous rotation speed corresponding to the shift stage selected after the shift. On the other hand, the output shaft torque Tout is maintained at the previous value because the output shaft rotation speed Nout is maintained.
  • the input shaft torque Tin increases as the input shaft rotational speed Nin increases to the 2-speed synchronous rotational speed (in addition, during the regenerative coast down shift, Since the output torque is a regenerative torque that is a negative torque, the actual response will approach zero).
  • the characteristic is represented by the illustrated PRF_Tin_cmpA (broken line).
  • the regenerative torque of MG2 equivalent to the input shaft torque Tin (note that the magnitude change of the regenerative torque corresponds to the magnitude change of the input shaft torque Tin, respectively) is greater than that of the comparative example. It is decreased (PRF_Tin_A (solid line) in the figure).
  • PRF_Tin_A solid line
  • the response of the actual output shaft torque Tout becomes as shown in the figure PRF_Tout_A (solid line)
  • the decrease of the output shaft torque Tout is suppressed by the amount of the reduced regenerative torque, and the torque shock can be mitigated. It becomes.
  • FIG. 9 is a timing chart illustrating the one-hour transition of the state of each part of the ECT when the torque correction process is not performed.
  • the same reference numerals are given to the same portions as those in FIG. 8, and the description thereof will be omitted as appropriate.
  • the target value of the output shaft torque Tout before and after the shift changes due to the change in the brake pedal depression amount Tb.
  • the output shaft torque Tout temporarily changes. To rise.
  • the change in the output shaft torque Tout due to the torque phase and the inertia phase described above thereafter occurs, the fluctuation of the output shaft torque Tout increases by the amount after the temporary increase, and the regeneration coast down process is performed. Regardless of whether it is performed (PRF_Tout_B (solid line) or not (PRF_Tout_cmpB (broken line))), there is a concern that fluctuations in the output shaft torque may decrease drivability. It is necessary to compensate for the input shaft torque correction process.
  • FIG. 10 is a timing chart illustrating a one-hour transition of the state of each part of the ECT when an example of the input shaft torque correction process is performed.
  • the same reference numerals are given to the same portions as those in FIG. 9, and the description thereof will be omitted as appropriate.
  • the ECU 100 limits the rate of increase of the input shaft torque Tin as one aspect of the input shaft torque correction process. If no countermeasure is taken, the input shaft torque Tin rapidly increases at the same time as the brake pedal is turned off. For example, the ECU 100 gives an upper limit to the increasing speed of the input shaft torque Tin, and the input shaft torque rapidly increases. Suppress.
  • the time transition of the input shaft torque Tin is represented as illustrated PRF_Tin_C (solid line).
  • PRF_Tin_C solid line
  • the rising characteristic of the input shaft torque Tin is slowed by the input shaft torque correction process as compared with the characteristic when no countermeasure is taken (that is, PRF_Tin_B (broken line)).
  • characteristics as shown in the figure may be realized by gradually changing the upper limit value of the input shaft torque Tin with respect to time change, or time smoothing may be performed by time filter processing or the like. Or you may restrict
  • FIG. 11 is a timing chart illustrating a one-hour transition of the state of each part of the ECT when another example of the input shaft torque correction process is performed.
  • the same reference numerals are given to the same portions as those in FIG. 9, and the description thereof will be omitted as appropriate.
  • the ECU 100 further reduces the reduction amount of the regenerative torque of the MG 2 as one aspect of the input shaft torque correction process. That is, the ECU 100 further corrects the decrease amount of the regenerative torque in the regenerative coast down process to the decrease side.
  • the time transition of the input shaft torque Tin when such processing is performed is shown as an illustration (PRF_Tin_D (solid line)).
  • PRF_Tin_B broken line
  • the amount of reduction in regenerative torque in the regenerative coast down process does not assume fluctuations in output shaft torque due to this type of brake-off operation. That is, the reduction of the regenerative torque as the input shaft torque correction process and the reduction of the regenerative torque in the regenerative coast down process are the same in terms of technical matters related to the reduction of the regenerative torque, but are completely different in their essential parts.
  • FIG. 12 is a timing chart illustrating the one-hour transition of the state of each part of the ECT when another example of the input shaft torque correction process is performed.
  • the same reference numerals are given to the same portions as those in FIG. 9, and the description thereof will be omitted as appropriate.
  • the ECU 100 cooperates with the increase speed limit of the input shaft torque Tin exemplified in FIG. 10 and the reduction correction of the regenerative torque of MG2 exemplified in FIG. While running.
  • the time transition of the input shaft torque Tin when such processing is performed is shown as an illustration (PRF_Tin_E (solid line)).
  • PRF_Tin_E solid line
  • PRF_Tin_B broken line
  • the input shaft torque correction process is executed by the ECU 100, and fluctuations in the output shaft torque Tout are suitably suppressed. Therefore, drivability during regenerative coast down can be suitably maintained without being affected by the brake operation.
  • FIGS. 10 to 12 the brake-off operation occurs at a timing before the start of the torque phase.
  • the correction of the input shaft torque according to the present embodiment is remarkably effective, but the correction of the input shaft torque is performed at other timings. Of course, it is effective in suppressing fluctuations in the output shaft torque.
  • FIG. 13 is a timing chart illustrating a one-hour transition of the state of each part of the ECT when another example of the input shaft torque correction process is performed. In the figure, the same reference numerals are given to the same portions as those in FIG. 9, and the description thereof will be omitted as appropriate.
  • the fluctuation of the output shaft torque Tout is suppressed due to the effect of suppressing the rising speed of the input shaft torque Tin (PRF_Tout_F (solid line) in the drawing).
  • PRF_Tout_F solid line
  • the mode of power regeneration control by MG2 is not changed.
  • the SOC of battery 12 in this case, SOC means a standardized index value that defines the state of charge
  • the need for power regeneration is reduced, so even if a brake-off operation occurs during regeneration coast down, fluctuations in the output shaft torque are relatively small.
  • the SOC of battery 12 is less than a predetermined value (different from the previous predetermined value)
  • the need for power regeneration increases, so the output shaft torque when a brake-off operation occurs during regenerative coastdown. The fluctuation is relatively large.
  • the ECU 100 uses, for example, a sensor output such as an SOC sensor attached to the battery 12, and the input shaft torque related to the input shaft torque correction process according to the state of charge of the battery 12 at that time.
  • the correction mode or scale may be determined.
  • Such an index value is not limited to the SOC, and may be the temperature of the battery 12, for example.
  • the battery 12 has low charge / discharge performance in a low temperature or high temperature region. Therefore, measures such as relatively increasing the correction scale related to the input shaft torque correction process may be taken in the low temperature or high temperature region.
  • Second Embodiment The configuration of the hybrid drive device is not limited to that of the hybrid drive device 10 according to the first embodiment.
  • FIG. 14 is a schematic configuration diagram conceptually illustrating the configuration of the hybrid drive apparatus 20.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the hybrid drive apparatus 20 is configured such that the drive shaft 500 and the input shaft 600 are selectively controlled to be engaged or released by the clutch 900. Further, between motor generator MG2 and input shaft 600, MG2 reduction mechanism 800 capable of decelerating MG2 rotational speed Nm in two stages is interposed.
  • the MG2 reduction mechanism 800 includes brake mechanisms 801 and 802 as wet multi-plate engagement devices, and a differential mechanism 803 including rotating elements respectively connected to these brake mechanisms.
  • the MG2 reduction mechanism 800 has a configuration in which the reduction ratio of the MG2 rotational speed Nm is different between when the brake mechanism 801 is selected as the brake mechanism and when the brake mechanism 802 is selected. , MG2 can be operated in a more efficient operating region at that time. Of course, even in such a configuration, the above-described shift control can be applied.
  • the power source of the hybrid drive device 20 is only MG2.
  • This state is equivalent to a so-called electric vehicle. That is, the vehicle to which the present invention is applied is not limited to a hybrid vehicle, and includes an electric vehicle using only a motor as a power source.
  • the configuration of the hybrid drive device is not limited to that of the hybrid drive device 10 according to the first embodiment.
  • the structure of the hybrid drive device 30 is demonstrated to 3rd Embodiment of this invention.
  • FIG. 15 is a schematic configuration diagram conceptually illustrating the configuration of the hybrid drive device 30. As shown in FIG. In the figure, the same parts as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the hybrid drive device 30 includes a continuously variable transmission unit 1000 and a stepped transmission unit 1100.
  • the continuously variable transmission unit 1000 includes a planetary gear unit that is conceptually equivalent to the power split mechanism 300 in the hybrid drive device 10 and a reduction gear that decelerates the MG2 rotational speed Nm. It functions as a differential mechanism with a degree of freedom.
  • the stepped transmission unit 1100 includes clutches C1, C2, C3, and C4 and two sets of differential mechanisms, and is configured to realize a plurality of shift stages according to the engagement state thereof.
  • the drive element and the reaction force element can be switched by the function of the stepped transmission unit 1100.
  • the clutch C1 when the clutch C1 is engaged and the clutch C2 is released, the input shaft of the transmission becomes the illustrated input shaft 600a, and the MG2 receives torque between the drive element (the output shaft 700 and the output shaft 700) as in the above embodiment.
  • MG1 is a reaction force element.
  • the clutch C2 when the clutch C2 is engaged and the clutch C1 is released, the input shaft of the transmission becomes the illustrated input shaft 600b.
  • MG1 is a driving element (in this case, MG1 is the present invention).
  • MG2 becomes a reaction force element.
  • the present invention can also be applied to a hybrid vehicle that can travel while selectively switching between the driving element and the reaction force element according to the engaged state of the transmission unit.
  • the present invention can be widely applied to vehicles provided with a stepped transmission between a rotating electric machine capable of power running and regeneration and an axle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

回生コースト変速期間における出力軸のトルク変動を抑制する。 入力軸との間でトルクの入出力が可能な回転電機と、入力軸と車軸に連結された出力軸との間に複数の係合装置を備えて設置され、入力軸と出力軸との間でトルクを伝達すると共に、複数の係合装置の係合状態に応じて、入力軸の回転速度と出力軸の回転速度との比たる変速比が相互に異なる複数の変速段を構築可能な変速装置とを備えた車両を制御する制御装置は、運転者の制動操作量を検出する検出手段と、前記回転電機のコースト回生時に前記変速段の切り替えがなされるコースト回生変速期間において、前記検出された制動操作量が前記車両に付与される制動力の減少を促す減少方向へ変化した場合に、該制動操作量の変化に伴う前記出力軸のトルクの変化が抑制されるように前記入力軸のトルクを制御する入力軸トルク制御手段とを具備する。

Description

車両の制御装置
 本発明は、動力源として機能し得る回転電機と、当該動力源に連結された変速装置とを備えた車両を制御する車両の制御装置の技術分野に関する。
 この種の装置として、コーストダウン変速時における出力軸トルクの変動を抑制するものが提案されている(例えば、特許文献1参照)。特許文献1に開示された車両用駆動装置の制御装置によれば、コーストダウン変速時におけるイナーシャ相においてモータの回生トルクを低減させることにより、出力軸トルクの変動が抑制可能であるとされている。
 尚、コースト走行時にダウンシフトする場合に、駆動力源の出力を増大させる旨の技術と、駆動力源の回転速度が所定の変化率で上昇するように出力制御要素を徐々に変化させる技術の開示もある(例えば、特許文献2参照)。
 また、コーストダウン変速中にブレーキ操作がある場合、ダウンシフトを進行させないようにする技術の開示もある(例えば、特許文献3参照)。
 更に、モータと変速機を有するハイブリッド車両において、コースト減速時に変速する場合に回生トルクを制限する技術も提案されている(例えば、特許文献4参照)。
特開2008-207690号公報 特開2003-041971号公報 特開2007-155026号公報 特開2008-094332号公報
 ドライバの制動操作を伴う回生コーストダウン変速中に当該制動操作が解除された場合、モータによる回生トルクがこの解除操作に伴って低減されるため、車両の減速度は一時的に低下する。
 一方で、トルク相或いはイナーシャ相における出力軸トルクの変動は、例えば上記特許文献1に開示される技術等によりいくらかなり抑制可能であるものの、ゼロ或いはそれとみなし得る程度まで抑制することには実践上の困難が伴う。
 従って、このような場合には、ブレーキ操作が解除されない場合には顕在化しなかった、車両の減速度の低下後の再減速が発生することになる。即ち、上記特許文献1に開示される装置には、回生コーストダウン変速中のブレーキ操作の解除が生じた場合に、相対的にドライバに知覚されるショックが大きくなって、ドライバビリティの低下を招来するといった技術的問題点がある。係る問題点については、上記特許文献2乃至4に開示される技術においても同様である。
 本発明は、係る問題点に鑑みてなされたものであって、回生コースト変速期間における出力軸トルクの変動を、ブレーキ操作の有無にかかわらず抑制可能な車両の制御装置を提供することを課題とする。
 上述した課題を解決するため、本発明に係る車輌の制御装置は、入力軸との間でトルクの入出力が可能な回転電機と、前記入力軸と車軸に連結された出力軸との間に複数の係合装置を備えて設置され、前記入力軸と前記出力軸との間でトルクを伝達すると共に、前記複数の係合装置の係合状態に応じて、前記入力軸の回転速度と前記出力軸の回転速度との比たる変速比が相互に異なる複数の変速段を構築可能な変速装置とを備えた車両を制御する装置であって、運転者の制動操作量を検出する検出手段と、前記回転電機のコースト回生時に前記変速段の切り替えがなされるコースト回生変速期間において、前記検出された制動操作量が前記車両に付与される制動力の減少を促す減少方向へ変化した場合に、該制動操作量の変化に伴う前記出力軸のトルクの変化が抑制されるように前記入力軸のトルクを制御する入力軸トルク制御手段とを具備することを特徴とする。
 本発明に係る車両は、回転電機と、複数の係合装置により複数の変速段を構築可能な変速装置とを備える。
 本発明に係る回転電機は、例えばモータジェネレータ等の実践的態様を採り得る装置であり、入力軸に対するトルクの出力(即ち、車軸に対する駆動トルクの供給を意味する)と、入力軸を介したトルクの入力(即ち、電力回生(発電)を意味する)とを可能とする装置である。
 本発明に係る変速装置は、この入力軸と車軸に繋がる出力軸との間のトルク伝達経路に複数の係合装置(例えば、油圧係合湿式多板型のクラッチ機構やブレーキ機構等)を備えた、例えば、各種ECT(Electronic Controlled Transmission:電子制御式変速装置)等の実践的態様を採り得る装置である。変速装置は、これら複数の係合装置の各々の係合状態に応じて、相互に変速比の異なる複数の変速段を構築可能である。
 尚、入力軸、出力軸及び変速装置の位置関係から言えば、入力軸は変速装置の入力軸を、出力軸は変速装置の出力軸を夫々意味する。
 本発明に係る車両の制御装置は、このような車両を制御する装置であって、例えば、一又は複数のCPU(Central Processing Unit)、MPU(Micro Processing Unit)、ECU(Electronic Controlled Unit)、各種プロセッサ又は各種コントローラ等の実践的態様を採り得る。尚、これらには必要に応じて更にROM(Read Only Memory)、RAM(Random Access Memory)、バッファメモリ又はフラッシュメモリ等の各種記憶手段等が内蔵又は付帯されていてもよい。
 本発明に係る車両の制御装置によれば、検出手段により運転者の制動操作量が検出される。
 検出手段により検出される「制動操作量」とは、車両に付与される制動力と一対一、一対多、多対一又は多対多に対応付けられた、然るべき操作手段の操作量を意味し、例えば、好適な一形態としてブレーキペダルの踏下量を意味する。
 尚、検出手段に係る「検出」とは、直接的検出と間接的検出との両方の意味を有するものである。即ち、検出手段は、例えばブレーキペダルの踏下量を検出可能なセンサ等の検出手段であってもよいし、この種の各種検出手段から電気信号を受け取ることにより間接的に制動操作量を把握可能な手段であってもよい。
 アクセルペダルの全閉操作を伴う惰性減速としてのコースト減速がなされる期間においては、回転電機の回生トルクによる電力回生、所謂コースト回生が実行され得る。このコースト回生は、上述した運転者の制動操作(端的な一例としては、ブレーキペダルの踏下)の有無によらず実行され得る。
 一方、回転電機の回生トルクは、車両を停止させる方向に作用する一種の制動力である。従って、運転者の積極的な制動意思を反映する制動操作量は、回転電機の回生トルクと相関するのが一般的であり、好適な一形態としては、その大小が回転電機の回生トルクの大小に、夫々一対一、一対多、多対一又は多対多に対応する。尚、回生トルクは負トルクであるから、「大きい」とは、正負の符合まで勘案した絶対的なトルク値としては「小さい」ことを意味する。
 他方、コースト回生がなされる期間としてのコースト回生期間においては、車両の減速状態に応じて、好適には車速の低下に応じて、入力軸の回転速度を上昇させる側への変速段の切り替え、即ち所謂ダウンシフトが生じ得る。この際、変速段の切り替え(以下、適宜「変速」と称する)前後においては、入力軸の回転速度(一義的に回転電機の回転速度)が、変速前の変速段に対応する同期回転速度から変速後の変速段に対応する同期回転速度へと変化する。
 ところで、運転者の制動操作を伴うコースト回生変速期間においては、当該制動操作に係る制動操作量が減少方向に変化する場合がある。ここで、「制動操作量が減少方向へ変化する」とは、例えば、好適な一形態として、ブレーキペダルの踏下量がブレーキオフ相当値へ変化すること、即ち、運転者がブレーキペダルから足を外す等してブレーキペダルに加わる踏力が実質的にゼロ或いは略ゼロとなること等を意味する。或いは、「制動操作量が減少方向へ変化する」とは、例えば、好適な一形態として、ブレーキペダルの踏下量が、ブレーキオン領域内で大きく(この際、「大きく」とは、即ち、実践上無視し得ない回生トルクの変化が生じ得る程度の度合いを意味する)減少すること等を意味する。制動操作は、運転者の人為行為であるから、制動操作量のこのような減少方向への変化は、コースト回生変速期間におけるダウンシフトの進捗とは無関係に生じ得る。
 ここで、このようなコースト回生変速期間中の制動操作量の減少変化に対しては、出力軸のトルク(以下、適宜「出力軸トルク」と表現する)が、上述した回生トルクの減少に惹起された入力軸のトルク(以下、適宜「入力軸トルク」と表現する)の上昇に伴って上昇し(即ち、ゼロトルクに近付く)、車両の減速度が少なくとも一時的に減少する。
 その一方で、変速機の変速期間のうち、回転電機の回転速度を変速前の変速段に対応する同期回転速度から変速後の変速段に対応する同期回転速度へと変化させる期間としての、所謂トルク相及びイナーシャ相においては、入力軸トルクの一部がこの回転電機を含む変速装置の入力慣性系のイナーシャトルクによって消費されるため、入力軸トルクは再度減少する。その結果、出力軸トルクもまた、要求値に対して、程度の差こそあれ減少することになる。
 即ち、コースト回生変速期間において制動操作量が減少方向へ変化した場合、入力軸のトルクは、上述した回生トルクの減少に伴う上昇の後に再び減少し、それに伴い、出力軸のトルクの変動幅が相対的に大きくなって、出力軸のトルク変動が、ドライバに知覚され得る程度に増大する懸念がある。
 このような問題は、回転電機の元々の電力回生制御に起因して生じるものであり、イナーシャ相における出力軸のトルク変動を抑制すべくコースト回生変速期間において回生トルクを減少させる旨の制御がなされようと変わりなく生じる全く新規な問題である。
 そこで、本発明に係る車両の制御装置によれば、コースト回生変速期間において、検出された制動操作量が減少方向へ変化した場合に、この制動操作量に起因する出力軸トルクの変動が抑制されるように、入力軸トルク制御手段が入力軸トルクを制御する。
 入力軸トルク制御手段により入力軸トルクが制御されることによって、例えば、制動操作量の減少方向への変化に起因する回生トルクの減少(回生トルクは負トルクであるから、即ち、入力軸トルクの上昇)が抑制され、或いは回生トルク減少後の回生トルクの増加(即ち、入力軸トルクの減少)が抑制され、結果的に制動操作量の減少方向への変化に起因する出力軸トルクの変動が抑制或いは緩和される。即ち、本発明に係る車両の制御装置によれば、出力軸トルクの変動を抑制することが可能となるのである。
 尚、「制動操作量の変化に伴う出力軸のトルクの変動が抑制されるように」とは、この種の車両において、変速前後で車速(即ち、変速装置の出力軸に要求される要求出力)を維持しつつ変速を遂行する場合(即ち、所謂等パワー変速である)に、変速装置の入力軸回転速度が変速前後の変速段に係る同期回転速度に移行することに伴い出力軸のトルクもまた相応に変化することを考慮したものである。即ち、本発明がその抑制の対象とするところの出力軸のトルク変化とは、このような、言わばあって然るべきトルク変化ではなく、あくまで制動操作量の変化が減少方向へ変化した場合に入力軸トルクが変化することに伴って生じる出力軸トルクの変化を意味するのである。
 本発明に係る車両の制御装置の一の態様では、前記入力軸トルク制御手段は、前記検出された制動操作量が前記減少方向へ変化する場合として、前記制動操作量が前記制動力を付与すべき旨の値から前記制動力を付与すべきでない旨の値へと変化した場合に前記入力軸のトルクを制御する。
 出力軸トルクの変動を促す入力軸トルクの変動は、例えば、ブレーキペダルから足が離される等、制動操作量が、制動力を付与すべき領域内の値から、制動力を付与すべきでない領域(例えば、ゼロ値を含む不感帯領域等)内の値へと変化した場合に顕著に大きくなる。従って、この態様によれば、出力軸トルクの変化を効果的に抑制することが可能となる。
 本発明に係る車両の制御装置の他の態様では、前記入力軸トルク制御手段は、前記変速段の切り替え期間において前記検出された制動操作量が前記減少方向へ変化した場合に、前記入力軸のトルクを制御する。
 この態様によれば、変速段の切り替えがなされる期間として特に、変速要求が生じて以降実際に変速段の切り替えが実行される期間としての変速段の切り替え期間において、上述した入力軸のトルク制御が実行される。従って、効率的且つ効果的である。
 尚、この態様では、前記入力軸トルク制御手段は、前記切り替え期間として、前記変速段の切り替え要求が生じてから前記コースト回生変速期間の一部をなすトルク相が開始されるまでの期間において前記検出された制動操作量が前記減少方向へ変化した場合に、前記入力軸のトルクを制御してもよい。
 トルク相が開始される前に制動操作量が減少方向に変化して入力軸トルクが上昇(回転電機の回生トルクが減少)すると、トルク相開始後イナーシャ相にわたる期間における出力軸トルクの減少によって引き起こされるトルクショックの規模が相対的に大きくなる。従って、このような場合には、本発明に係る入力軸トルク制御手段が顕著に効果的に作用する。
 尚、本発明に係る入力軸トルク制御手段の効果は、コースト回生変速期間のうち如何なる時間領域で制動操作量が減少方向に変化したとしても担保されるものであることは言うまでもない。従って、トルク相開始時期以前に制動操作量が減少方向に変化した場合には、入力軸トルク制御手段における出力軸トルクの変化抑制に係る抑制の度合いを大きくする等の措置が講じられてもよい。
 本発明に係る車両の制御装置の他の態様では、前記入力軸トルク制御手段は、前記コースト回生変速期間以外の期間において前記検出された制動操作量が前記減少方向へ変化した場合と較べて前記入力軸のトルクの上昇速度を制限する。
 この態様によれば、コースト回生変速期間以外の期間において制動操作量が減少方向に変化する場合と較べて入力軸トルクの上昇速度が制限されるため、制動操作量の減少方向への変化が生じたとしても、入力軸トルクの急変を抑えることが可能となり、トルク相及びイナーシャ相における出力軸トルクの減少がもたらすトルクショックを緩和することが可能となる。
 本発明に係る車両の制御装置の他の態様では、前記コースト回生変速期間の一部をなすトルク相及びイナーシャ相の少なくとも一方において、前記回転電機の回生トルクを減少させることにより前記出力軸のトルクの変化を抑制する抑制手段を更に具備し、前記入力軸トルク制御手段は、前記抑制手段に係る前記回生トルクの減少量を更に減少側に補正する。
 この態様によれば、抑制手段により、トルク相及びイナーシャ相の少なくとも一部において、これらにおいて生じる出力軸トルクの減少が、回生トルクの減少側への補正(入力軸トルクの増加側への補正)により抑制される。従って、コースト回生変速期間における出力軸トルクの変動を効果的に抑制することができる。
 一方、入力軸トルク制御手段は、制動操作量が減少方向へ変化した場合には、この抑制手段に係る回生トルクの減少量を更に減少側へ補正する。従って、制動操作量の減少方向への変化に伴う入力軸トルクの急変が生じたとしても、その後のイナーシャ相及びトルク相における出力軸トルクの落ち込みを抑制することができ、結果的に出力軸トルクの変動を好適に抑制することができる。
 本発明に係る車両の制御装置の他の態様では、前記コースト回生変速期間の一部をなすトルク相及びイナーシャ相の少なくとも一方において、前記回転電機の回生トルクを減少させることにより前記出力軸のトルクの変化を抑制する抑制手段を更に具備し、前記入力軸トルク制御手段は、前記コースト回生変速期間以外の期間において前記検出された制動操作量が前記減少方向へ変化した場合と較べて前記入力軸のトルクの上昇速度を制限すると共に、前記抑制手段に係る前記回生トルクの減少量を更に減少側に補正する。
 この態様によれば、上述した入力軸トルクの上昇速度の制限に係る制御と、上述した回生トルクの減少量に係る減少側への補正制御とが、相互に協調して実行される。即ち、制動操作量の減少方向への変化に伴う入力軸トルクの急変を緩和させつつ、更にトルク相及びイナーシャ相における出力軸トルクの落ち込みを防止することが可能となって、一層効果的に出力軸トルクの変動を抑制可能である。
 本発明に係る車両の制御装置の他の態様では、前記入力軸のトルクの変化速度の大小に応じて、変速後の前記変速段に係る前記係合装置の係合油圧を大小に夫々変化させる係合油圧制御手段を更に具備する。
 この態様によれば、変速後の変速段に係る係合装置に与えられる係合油圧が、入力軸トルクの変化速度の大小に対し夫々小大に補正される。従って、制動操作量の減少方向への変化に際して入力軸トルクの急変を緩和することが可能である。
 但し、係合油圧の印加特性は、変速期間の長さに影響するから、現実的には、変速期間の長さが許容範囲に収まり得るように、予め実験的に、経験的に、理論的に又はシミュレーション等に基づいてこの種の係合油圧の補正に係る補正態様又は補正値若しくは補正係数等が設定されていてもよい。
 本発明に係る車両の制御装置の他の態様では、前記車両は、前記回転電機との間で電力の入出力が可能な蓄電手段を更に具備し、前記車両の制御装置は、前記蓄電手段の蓄電量及び温度のうち少なくとも一方に応じて規定される制約の範囲で前記コースト回生時における前記回転電機の回生トルクを制御する回生トルク制御手段を更に具備し、
 前記入力軸トルク制御手段は、前記回生トルク制御手段による前記回生トルクの制御状態に応じて前記入力軸のトルクを制御する。
 この態様によれば、バッテリ等の蓄電手段の蓄電量及び温度のうち少なくとも一方に応じてコースト回生時における回生トルクが制御される。
 ここで、例えば、蓄電手段が満充電状態に近い状態である場合、回転電機の要求電力回生量は相対的に小さくなり、完全放電状態に近い状態である場合、回転電機の要求電力回生量は相対的に大きくなる。また、蓄電手段の温度が低温側又は高温側或いはその両方に設定された所定の推奨領域から逸脱している場合等には、蓄電手段に単位時間当たりに供給することが許容される電力(即ち、端的には、入力制限値Win)は制限され、電力回生量は制限される。
 一方、要求電力回生量の大小は、コースト回生時の回生トルクの大小を意味するが、回生トルクが大であれば、それだけ制動操作量が減少方向へ変化した場合の回生トルクの変化の度合いは大きくなる。従って、回生トルクの制御状態によっては、コースト回生変速期間において制動操作量が減少方向に変化した場合における、出力軸トルクの変動の度合いが変化する。
 ここで、本態様によれば、入力軸トルク制御手段により、回生トルクの制御状態に応じて入力軸トルクが制御されるため、より効率的に出力軸トルクの変動を抑制することが可能となる。
 本発明に係る車両の制御装置の他の態様では、前記車両は、内燃機関と、前記内燃機関に反力トルクを与える反力要素としての、前記回転電機とは異なる他の回転電機と、前記内燃機関、前記回転電機及び前記他の回転電機に夫々連結される回転要素を含む複数の回転要素を備え、前記内燃機関の回転速度と前記回転電機の回転速度との比を無段階に変化させることが可能な差動機構とを具備する。
 この態様によれば、車両は、所謂ハイブリッド車両の一例を構成することとなり、差動機構による無段変速機能により、内燃機関を、例えば燃料消費率が最小となる最適燃費動作線に沿って駆動すること等が可能となるため、本発明に係る車両の制御装置に係る実践上の利益とあいまって、車両全体のエネルギ効率が良好に担保され得る。
 本発明のこのような作用及び他の利得は次に説明する実施形態から明らかにされる。
本発明の第1実施形態に係るハイブリッド車両の構成を概念的に表してなる概略構成図である。 図1のハイブリッド車両におけるハイブリッド駆動装置の構成を概念的に表してなる概略構成図である。 図2のハイブリッド駆動装置における変速装置の係合装置の係合状態と変速段との関係を例示する係合表である。 図2のハイブリッド駆動装置における動力分割機構の一動作状態を例示する動作共線図である。 図2のハイブリッド駆動装置の一動作状態を例示する動作共線図である。 図1のハイブリッド車両においてECUにより実行される変速制御のフローチャートである。 変速装置の変速条件を規定する変速マップの模式図である。 図6の変速制御における回生コーストダウン処理の効果に係り、ECT各部の状態の一時間推移を例示するタイミングチャートである。 図6の変速制御における入力軸トルク補正処理を行わない場合のECT各部の状態の一時間推移を例示するタイミングチャートである。 図6の変速制御における入力軸トルク補正処理の一例を行った場合のECT各部の状態の一時間推移を例示するタイミングチャートである。 図6の変速制御における入力軸トルク補正処理の他の例を行った場合のECT各部の状態の一時間推移を例示するタイミングチャートである。 図6の変速制御における入力軸トルク補正処理の他の例を行った場合のECT各部の状態の一時間推移を例示するタイミングチャートである。 図6の変速制御における入力軸トルク補正処理の他の例を行った場合のECT各部の状態の一時間推移を例示するタイミングチャートである。 本発明の第2実施形態に係り、他のハイブリッド駆動装置の構成を概念的に表してなる概略構成図である。 本発明の第3実施形態に係り、他のハイブリッド駆動装置の構成を概念的に表してなる概略構成図である。
<発明の実施形態>
 以下、図面を参照して、本発明の各種実施形態について説明する。
<第1実施形態>
 <実施形態の構成>
 始めに、図1を参照し、本発明の第1実施形態に係るハイブリッド車両1の構成について説明する。ここに、図1は、ハイブリッド車両1の構成を概念的に表してなる概略構成図である。
 図1において、ハイブリッド車両1は、ECU100、PCU(Power Control Unit)11、バッテリ12、アクセル開度センサ13、車速センサ14、ブレーキペダルセンサ15及びシフト位置センサ16並びにハイブリッド駆動装置10を備えた、本発明に係る「車両」の一例たるハイブリッド車両である。
 ECU100は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM等を備え、ハイブリッド車両1の各部の動作を制御することが可能に構成された電子制御ユニットであり、本発明に係る「車両の制御装置」の一例である。ECU100は、ROMに格納された制御プログラムに従って、後述する変速制御を実行可能に構成されている。尚、ECU100は、本発明に係る「検出手段」、「入力軸トルク制御手段」、「抑制手段」、「係合油圧制御手段」及び「回生トルク制御手段」の夫々一例として機能するように構成された一体の電子制御ユニットであり、これら各手段に係る動作は、全てECU100によって実行されるように構成されている。但し、本発明に係るこれら各手段の物理的、機械的及び電気的な構成はこれに限定されるものではなく、例えばこれら各手段は、複数のECU、各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等として構成されていてもよい。
 ハイブリッド駆動装置10は、ハイブリッド車両1の車軸たる左車軸SFL(左前輪FLに対応)及び右車軸SFR(右前輪FRに対応)に駆動力としての駆動トルクを供給することによりハイブリッド車両1を駆動するパワートレインユニットである。ハイブリッド駆動装置10の詳細な構成については後述する。尚、各車軸は、最終減速機構としてのデファレンシャルD/Gを介してハイブリッド駆動装置10の動力出力軸である出力軸700に連結されている。
 PCU11は、バッテリ12から取り出した直流電力を交流電力に変換して後述するモータジェネレータMG1及びモータジェネレータMG2に供給すると共に、モータジェネレータMG1及びモータジェネレータMG2によって発電された交流電力を直流電力に変換してバッテリ12に供給することが可能に構成された不図示のインバータを含み、バッテリ12と各モータジェネレータとの間の電力の入出力を、或いは各モータジェネレータ相互間の電力の入出力(即ち、この場合、バッテリ12を介さずに各モータジェネレータ相互間で電力の授受が行われる)を制御することが可能に構成された電力制御ユニットである。PCU11は、ECU100と電気的に接続されており、ECU100によってその動作が制御される構成となっている。
 バッテリ12は、複数の単位電池セルを直列接続した構成を有し、モータジェネレータMG1及びモータジェネレータMG2を力行するための電力に係る電力供給源として機能する充電可能な電池ユニットであり、本発明に係る「蓄電手段」の一例である。
 アクセル開度センサ13は、ハイブリッド車両1の図示せぬアクセルペダルの操作量たるアクセル開度Taを検出することが可能に構成されたセンサである。アクセル開度センサ13は、ECU100と電気的に接続されており、検出されたアクセル開度Taは、ECU100によって一定又は不定の周期で参照される構成となっている。
 車速センサ14は、ハイブリッド車両1の車速Vhを検出することが可能に構成されたセンサである。車速センサ14は、ECU100と電気的に接続されており、検出された車速Vhは、ECU100によって一定又は不定の周期で参照される構成となっている。
 ブレーキペダルセンサ15は、不図示のブレーキペダルの操作量(踏下量)たるブレーキペダルTbを検出可能に構成されたセンサである。ブレーキペダルは、その操作量がハイブリッド車両1に付与すべき制動力に対応付けられてなる制動操作手段であり、その操作量たるブレーキペダル踏下量Tbは、本発明に係る「制動操作量」の一例となっている。ブレーキペダルセンサ15は、ECU100と電気的に接続されており、検出されたブレーキペダル踏下量Tbは、ECU100により、一定又は不定の周期で参照される構成となっている。
 尚、補足すると、ハイブリッド車両1には、各車輪に対し個別に摩擦制動力を付与可能なECB(Electronic Controlled Braking system:電子制御式制動装置)が備わっており、油圧駆動により実現されるその摩擦制動は、後述するモータジェネレータMG2による回生制動と相互に協調的に実行される構成となっている。但し、ECBの構成及びその稼働態様については、本発明の本質と相関が薄いため、ここでは説明の煩雑化を防ぐ目的からその説明を省略することとする。
 シフト位置センサ16は、後述するECT400の動作モードを規定するシフト位置を検出可能に構成されたセンサである。シフト位置センサ16は、ECU100と電気的に接続されており、検出されたシフト位置は、ECU100によって一定又は不定の周期で参照される構成となっている。
 ここで、図2を参照し、ハイブリッド駆動装置10の詳細な構成について説明する。ここに、図2は、ハイブリッド駆動装置10の構成を概念的に表してなる概略構成図である。尚、同図において、図1と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
 図2において、ハイブリッド駆動装置10は、エンジン200、動力分割機構300、モータジェネレータMG1(以下、適宜「MG1」と略称する)、モータジェネレータMG2(以下、適宜「MG2」と略称する)、機関出力軸SFTeg、ECT400、駆動軸500、入力軸600及び出力軸700を備える。
 エンジン200は、ハイブリッド車両1の一動力源として機能するように構成された、本発明に係る「内燃機関」の一例たるV型6気筒ガソリンエンジンである。エンジン200は、公知のガソリンエンジンであり、ここでは、その詳細な構成を割愛するが、エンジン200の出力動力たるエンジントルクTeは、不図示のクランク軸を介してハイブリッド駆動装置10の機関入力軸SFTegに連結されている。尚、エンジン200は、本発明に係る内燃機関の採り得る実践的態様の一例に過ぎず、本発明に係る内燃機関の実践的態様としては、エンジン200に限らず、公知の各種エンジンを採用可能である。
 モータジェネレータMG1は、電気エネルギを運動エネルギに変換する力行機能と、運動エネルギを電気エネルギに変換する回生機能とを備えた電動発電機であり、本発明に係る「他の回転電機」の一例である。
 モータジェネレータMG2は、モータジェネレータMG1よりも体格の大きい、本発明に係る「回転電機」の一例たる電動発電機であり、モータジェネレータMG1と同様に、電気エネルギを運動エネルギに変換する力行機能と、運動エネルギを電気エネルギに変換する回生機能とを備えた構成となっている。
 尚、モータジェネレータMG1及びMG2は、同期電動発電機として構成され、例えば外周面に複数個の永久磁石を有するロータと、回転磁界を形成する三相コイルが巻回されたステータとを備える構成を有するが、無論他の構成を有していてもよい。
 動力分割機構300は、本発明に係る「差動機構」の一例たる遊星歯車機構である。
 動力分割機構300は、中心部に設けられた、本発明に係る「回転要素」の一例たるサンギアSg0と、サンギアSg0の外周に同心円状に設けられた、本発明に係る「回転要素」の他の一例たるリングギアRg0と、サンギアSg0とリングギアRg0との間に配置されてサンギアSg0の外周を自転しつつ公転する複数のピニオンギア(不図示)と、これら各ピニオンギアの回転軸を軸支する、本発明に係る「回転要素」の更に他の一例たるキャリアCr0とを備える。
 サンギアSg0は、モータジェネレータMG1のロータに、その回転軸を共有する形で連結されており、その回転速度はMG1の回転速度たるMG1回転速度Ngと等価である。
 一方、リングギアRg0は、駆動軸500に連結されている。この駆動軸500は、モータジェネレータMG2のロータに、その回転軸を共有する形で連結されている。従って、MG2は、駆動軸500との間でトルクの入出力が可能である。
 尚、トルクの入力とは、モータジェネレータMG2が被駆動要素となることを意味し、MG2が回生トルクを出力することにより電力回生がなされることを意味する。また、トルクの出力とは、駆動軸500に対し、ハイブリッド駆動装置10の出力軸トルクTout(即ち、本発明に係る「出力軸のトルク」の一例)の少なくとも一部となるMG2トルクTmを供給することを意味する。駆動軸500は、ECT400の動力入力軸たる入力軸600(即ち、本発明に係る「入力軸」の一例)に接続されている。
 他方、キャリアCr0は、エンジン200のクランク軸に連結された機関入力軸SFTegと連結されている。キャリアCr0の回転速度は、エンジン200の機関回転速度NEと等価である。
 ECT400は、複数対の係合装置を備え、これらの係合状態に応じて変速比γの異なる複数の変速段を構築可能に構成された、本発明に係る「変速装置」の一例たる電子制御式有段変速装置である。
 尚、変速比γとは、入力軸600の回転速度たる入力軸回転速度Ninと出力軸700の回転速度たる出力軸回転速度Noutとの比(γ=Nin/Nout)である。先に述べたように、入力軸600は、動力分割機構300の動力出力軸たる駆動軸500に接続されているから、入力軸回転速度Ninは、駆動軸500の回転速度、即ち、モータジェネレータMG2の回転速度たるMG2回転速度Nmと等価である。また、同様に入力軸600に作用するトルクである入力軸トルクTinは、駆動軸500に作用するトルクと等価である。
 ECT400は、二種類の差動機構を組み合わせて得られる複合型プラネタリギアユニットと、CL1、CL2及びCL3の各湿式多板型クラッチ機構(各々が、本発明に係る「係合装置」の一例である)と、ワンウェイクラッチF1と、BR1及びBR2の各湿式多板型ブレーキ機構とから構成されている。このうち、各湿式多板型クラッチ機構、ワンウェイクラッチF1及び各湿式多板型ブレーキ機構は、各々における一対の(尚、一対とは言っても、係合要素は二個に限定されない)係合要素同士が、不図示の油圧アクチュエータ(不図示)の作用により締結状態と解放状態との間で選択的に制御される構成となっている。
 ここで、これらクラッチ機構及びブレーキ機構の係合力を規定する油圧を制御する油圧アクチュエータは、ECU100と電気的に接続されており、ECU100は、油圧アクチュエータの動作制御を介して、ECT400の変速段を自由に切り替えることができる。ECT400による変速の詳細については後述する。
 ECT400において、入力軸600は、クラッチCL1、CL2及びCL3の夫々における一方の係合要素(即ち、クラッチ板である)に固定されている。
 一方、クラッチCL1の他方の係合要素(これもまたクラッチ板である)は、差動機構を構成する一方のプラネタリギアユニット(図右側のプラネタリギアユニットであり、これ以降、適宜「第2差動機構」と称する)の一回転要素であるサンギアSg2に連結されている。また、クラッチCL2の他方の係合要素は、差動機構を構成する他方のプラネタリギアユニット(図左側のプラネタリギアユニットであり、これ以降、適宜「第1差動機構」と称する)の一回転要素であるキャリアCr1に連結されている。更に、クラッチCL3の他方の係合要素は、第1プラネタリギアユニットの他の回転要素であるサンギアSg1と、ブレーキBR1の一方の係合要素とに連結されている。尚、ブレーキBR1の他方の係合要素は、固定要素である。
 ブレーキBR2は、一方の係合要素が、第2プラネタリギアユニットのリングギアRg2と第1プラネタリギアユニットのキャリアCr1とに連結されており、他方の係合要素が固定要素となっている。
 ワンウェイクラッチF1は、正回転方向の動力のみ伝達し、負回転方向の動力に対しては空転する一方向クラッチである。ワンウェイクラッチF1の一方の係合要素は、第1差動機構のキャリアCr1に連結されている。
 第1差動機構は、サンギアSg1と、サンギアSg1の外周に同心円状に設けられたリングギアRg1と、サンギアSg1とリングギアRg1との間に配置されてサンギアSg1の外周を自転しつつ公転する複数のピニオンギア(不図示)と、これら各ピニオンギアの回転軸を軸支するキャリアCr1とを備えた、シングルピニオン型のプラネタリギアユニットである。
 第2差動機構は、サンギアSg2と、サンギアSg2の外周に同心円状に設けられたリングギアRg2と、サンギアSg2とリングギアRg2との間に配置されてサンギアSg2の外周を自転しつつ公転する複数のピニオンギア(不図示)と、これら各ピニオンギアの回転軸を軸支するキャリアCr2とを備えた、シングルピニオン型のプラネタリギアユニットである。
 第1及び第2差動機構は、第1差動機構のキャリアCr1が第2差動機構のリングギアRg2に連結され、また第2差動機構のキャリアCr2が第2差動機構のリングギアRg1に連結されることによって、複合型プラネタリギアユニットを構成している。また第2差動機構のキャリアCr2は、ECT400の出力軸たる出力軸700に連結されている。
 このような構成において、ECT400は、各係合装置の係合状態を切り替えることにより、変速段として変速比γ1(例えばγ1=3.2程度)の1速段、変速比γ2例えばγ2=1.7程度)の2速段、変速比γ3(例えばγ3=1.0程度)の3速段及び変速比γ4(例えばγ4=0.67程度)の4速段(即ち、オーバードライブ段である)の合計四種類の前進用変速段を構築することが可能である。
 尚、ECT400には動作モードが各種設定されており、不図示のシフトレバーを介して運転者により一の動作モードが選択される構成となっている。ここで、動作モードには、「P」、「R」、「N」、「D」、「3」、「2」及び「1」の各シフトレンジ(シフト位置)が対応しており、例えば、Dレンジが選択されている場合、ECU100は、上記4種類の変速段のうちその時点のハイブリッド車両1の運転条件に最適な一の変速段を選択し、適宜変速段を切り替えつつハイブリッド車両1を走行させる構成となっている。尚、各シフトレンジに対応するECT400の動作モードについては、公知であり、説明の煩雑化を防ぐ目的から、ここでは、その詳細については触れないこととする。
 ここで、図3を参照し、ECT400の各係合装置の係合状態と構築される変速段との関係について説明する。ここに、図3は、ECT400における係合装置の係合状態と変速段との関係を例示する表である。
 図3において、「○」は締結を、無印は解放を意味し、「◎」は、電気的無段変速状態を作り出す際には解放、固定段走行を行う場合には係合することを意味する。
 図3において、前進用変速段についてのみ簡略的に説明すると、クラッチCL1は低速用クラッチ、クラッチCL2が高速用のクラッチとなっている。クラッチCL1が係合、クラッチCL2が解放の状態を採ると、変速段は相対的に変速比の大きい低速用変速段たる1速段又は2速段となる。この際、ブレーキBR1を解放すれば1速段、係合すれば2速段となる。
 一方、クラッチCL1を解放、クラッチCL2を係合させると共にブレーキBR2を係合させると、変速段は相対的に変速比の小さい高速用の4速段となる。
 また、クラッチCL1及びクラッチCL2を両方係合させると、第1差動機構のキャリアCr1に連結された第2差動機構のリングギアRg2と、第2差動機構のサンギアSg2との回転が、入力軸回転速度Ninで等しくなる。第1及び第2差動機構は、各々を構成する回転要素のうち2要素の回転速度が定まれた残余の回転速度が決定される差動機構であるから、リングギアRg2の回転速度とサンギアSg2の回転速度とが一致すると、必然的にキャリアCr2の回転速度もこれらと一致する。その結果、キャリアCr2の回転速度たる出力軸回転速度Noutが入力軸回転速度Ninと等しくなり、変速比γ3(≒1)の三速段が構築される。
 尚、ECT400を構成する各回転要素のギア比は、得ようとする変速段の変速比に応じて適宜変更される性質のものであり、本発明の本質部分から外れるため、本実施形態においては、その詳細な値については触れないこととする。但し、各変速段の変速比については、上述の如くに例示されており、図2の構成において、各変速段の変速比を実現するための各回転要素のギア比は、自ずと明らかであろう。
 図2に戻り、ハイブリッド駆動装置10は、レゾルバRV1、RV2及びRV3を備える。
 レゾルバRV1は、MG1の回転速度たるMG1回転速度Ngを検出可能に構成された回転速度センサである。レゾルバRV1は、ECU100と電気的に接続されており、検出されたMG1回転速度Ngは、ECU100により、一定又は不定の周期で参照される構成となっている。
 レゾルバRV2は、MG2の回転速度たるMG2回転速度Nmを検出可能に構成された回転速度センサである。レゾルバRV2は、ECU100と電気的に接続されており、検出されたMG2回転速度Nmは、ECU100により、一定又は不定の周期で参照される構成となっている。尚、MG2回転速度Nmは、既に述べたように、入力軸回転速度Ninと等価である。
 レゾルバRV3は、出力軸700の回転速度たる出力軸回転速度Noutを検出可能に構成された回転速度センサである。レゾルバRV3は、ECU100と電気的に接続されており、検出された出力軸回転速度Noutは、ECU100により、一定又は不定の周期で参照される構成となっている。
<実施形態の動作>
 <動力分割機構300による無段変速機能>
 動力分割機構300は、上述した構成の下で、エンジン200から機関出力軸SFTegに供給されるエンジントルクTeを、キャリアCr0によってサンギアSg0及びリングギアRg0に所定の比率(各ギア相互間のギア比に応じた比率)で分配し、エンジン200の動力を2系統に分割することが可能である。この際、動力分割機構300の動作を分かり易くするため、リングギアRg0の歯数に対するサンギアSg0の歯数としてのギア比ρを定義すると、エンジン200からキャリアCr0に対しエンジントルクTeを作用させた場合に、サンギアSg0に作用するトルクTesは下記(1)式により、また駆動軸500に現れるエンジン直達トルクTerは下記(2)式により、夫々表される。
 Tes=-Te×ρ/(1+ρ)・・・(1)
 Ter=Te×1/(1+ρ)・・・(2)
 ここで、図4を参照し、動力分割機構300による電気的無段変速機能について説明する。ここに、図4は、ハイブリッド駆動装置10の一動作状態を例示する動作共線図である。尚、同図において、図2と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
 図4において、縦軸は回転速度を表しており、横軸には、左から順にモータジェネレータMG1(一義的にサンギアSg0)、エンジン200(一義的にキャリアCr0)及びモータジェネレータMG2(一義的にリングギアRg0)が表されている。
 ここで、先に述べたECT400の各差動機構と同様、動力分割機構300は、相互に差動関係にある複数の回転要素により構成された回転二自由度のプラネタリギアユニットであり、サンギアSg0、キャリアCr0及びリングギアRg0のうち二要素の回転速度が定まった場合に、残余の一回転要素の回転速度が必然的に定まる構成となっている。即ち、動作共線図上において、各回転要素の動作状態は、ハイブリッド駆動装置10の一動作状態に一対一に対応する一の動作共線によって表すことができる。
 図4において、駆動軸500及び入力軸600と一義的な回転関係にあるモータジェネレータMG2の動作点が、図示動作点m1であるとする。この場合、モータジェネレータMG1の動作点が図示動作点m2であれば、残余の一回転要素たるキャリアCr0に連結されたエンジン200の動作点は、動作点m3となる。ここで、例えば、分かり易く駆動軸500の回転速度たる入力軸回転速度Ninを維持した状態でモータジェネレータMG1の動作点を図示動作点m4及び図示動作点m5に変化させれば、エンジン200の動作点は、夫々図示動作点m6及び図示動作点m7へと変化する。
 即ち、この場合、モータジェネレータMG1を回転速度制御機構として機能させることによって、エンジン200を所望の動作点で動作させることが可能となる。このように、動力分割機構300は、ハイブリッド駆動装置10において電気的無段変速機能を実現する部分となっており、本発明に係る「差動機構」の一例を構成している。
 尚、このような電気的無段変速機能の下では、エンジン200の動作点(この場合の動作点とは、機関回転速度NEとエンジントルクTeとの組み合わせによって規定されるエンジン200の一動作条件を意味する)は、基本的にエンジン200の燃料消費率が最小となる最適燃費動作点に制御される。
 <ECT400による有段変速機能>
 次に、図5を参照し、ECT400による有段変速機能について説明する。ここに、図5は、ハイブリッド駆動装置10の他の動作状態を例示する動作共線図である。尚、同図において、図4と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
 図5において、左側は図2に例示した動力分割機構300の動作に係る動作共線図であり、右側はECT400の動作に係る動作共線図である。
 図5において、動力分割機構300の動作状態が、MG1回転速度Ng=0且つMG2回転速度Nm=Nm1に対応する一動作共線L_PG1によって表される状況であるとする。ECT400の変速作用によれば、この動力分割機構300の一動作状態に対し、変速段の数だけ異なる動作共線を描くことができる。
 例えば、変速段として1速段が選択されている場合、クラッチCL1の作用によってサンギアSg2とリングギアRg0とが固定されるため、図示破線で示されるように、サンギアSg2の回転速度は、MG2回転速度Nmと等しくなる。一方、1速段においては、ワンウェイクラッチF1の作用によってキャリアCr1の回転速度がゼロ回転に固定される。従って、1速段における動作共線は、図示L_ECT1となる。既に述べたように、1速段の変速比γ1は1より大きいから、1速段が選択されている状況において、出力軸回転速度Noutは、入力軸回転速度Ninよりも低くなる。
 また、変速段として2速段が選択された場合、クラッチCL1の作用によってサンギアSg2とリングギアRg0とが固定されるため、図示破線で示されるように、サンギアSg2の回転速度は、MG2回転速度Nmと等しくなる。一方、2速段においては、ブレーキBR1の作用によってサンギアSg1の回転速度がゼロ回転に固定される。従って、2速段における動作共線は、図示L_ECT2となる。既に述べたように、2速段の変速比γ2は1より大きくγ1より小さいから、2速段が選択されている状況において、出力軸回転速度Noutは、入力軸回転速度Ninよりも低くなり、且つ1速段選択時の回転速度よりも高くなる。
 また、変速段として3速段が選択された場合、クラッチCL1の作用によってサンギアSg2とリングギアRg0とが固定されるため、図示破線で示されるように、サンギアSg2の回転速度は、MG2回転速度Nmと等しくなる。一方、3速段においては、クラッチCL2の作用によってキャリアCr1(即ち、リングギアRg2)もまたリングギアRg0と固定される。従って、2速段における動作共線は、図示L_ECT3となる。即ち、入力軸回転速度Ninは出力回転速度Nouと等しくなり、既に述べたように変速比γ3=1の3速段が構築されるのである。
 更に、変速段として4速段が選択された場合、クラッチCL2の作用によってキャリアCr1(即ち、リングギアRg2)とリングギアRg0とが固定されるため、リングギアRg2の回転速度は、MG2回転速度Nmと等しくなる。一方、4速段においては、ブレーキBR1の作用によってサンギアSg1の回転速度がゼロ回転に固定される。従って、4速段における動作共線は、図示L_ECT4となる。既に述べたように、4速段の変速比γ4は1より小さいから、4速段が選択されている状況において、出力軸回転速度Noutは、入力軸回転速度Ninよりも高くなり、所謂オーバードライブ状態が実現される。
 動力分割機構300の電気的な伝達効率ηeは、MG1回転速度Ng=0である場合に最大となる。従って、動力分割機構300は、理想的には、Ng=0の状態で駆動されるのが望ましい。ここで、ECT400の作用によれば、上述のように、動力分割機構300の一動作状態に対して、出力軸回転速度Noutを4段階に変化させることができる。従って、ECT400によれば、電気的な伝達効率ηeを最大とし得る動作点でエンジン200を動作させる機会を増やすことが可能となり、ハイブリッド駆動装置10全体としてのシステム伝達効率ηsysを良好に維持することができる。尚、実践的運用面においては、システム伝達効率ηsysは、電気的な伝達効率ηeと機械的伝達効率ηtとの積であり、ECT400のように、複数の係合装置を備える構成においては、これらによる機械的伝達効率の低下が、電気的伝達効率の増加によるシステム伝達効率の向上を妨げる。従って、ECT400による効果は、比較的大容量のエンジンを動力源として備えるハイブリッド駆動装置において顕著に奏される。
 <変速制御の詳細>
 次に、図6を参照し、ECU100により実行される変速制御の詳細について説明する。ここに、図6は、変速制御のフローチャートである。
 図6において、ECU100は、シフト位置センサ16からの検出信号に基づいて、運転者によりECT400の動作モードを規定するシフト位置としてDレンジが選択されているか否かを判別する(ステップS101)。Dレンジ以外のシフト位置が選択されている場合(ステップS101:NO)、ECU100は、ステップS101を繰り返し実行し、実質的に待機状態となる。
 シフト位置がDレンジである場合(ステップS101:YES)、ECU100は、ハイブリッド車両1がコーストダウン変速中であるか否かを判別する(ステップS102)。ここで、「コーストダウン変速」とは、ハイブリッド車両1が減速状態にある場合の変速を意味する。尚、この場合、コーストダウンは、ブレーキペダルが踏下されることによる積極的な制動を伴うものであっても、運転者がアクセルペダルの操作を止めることによって惰性で生じるものであってもよい。
 ここで、図7を参照し、ECT400の変速条件について説明する。ここに、図7は、ECT400の変速条件を規定する変速マップの模式図である。
 図7において、縦軸及び横軸には、夫々出力軸トルクTout及び車速Vhが表されている。係るマップ中において、ECT400の変速条件は、図示変速線21ダウン変速線L_21、12アップ変速線L_12、32ダウン変速線L_32、23アップ変速線L_23、43ダウン変速線L_43及び34アップ変速線L_34によって規定される。より具体的には、その時点のハイブリッド車両1の運転条件が、いずれかの変速線を跨ぐ際に、各変速線によって規定される変速が実現される。例えば、ハイブリッド車両1の運転条件が、32ダウン変速線の右側の運転領域から、32ダウン変速線を跨ぐ場合、ECU100は、ECT400を制御して、3速段から2速段への変速(シフトダウン)を実行する。或いは、例えば、ハイブリッド車両1の運転条件が、12アップ変速線の左側の運転領域から、12アップ変速線を跨ぐ場合、ECU100は、ECT400を制御して、1速段から2速段への変速(シフトアップ)を実行する。ECU100のROMには、予め図7に例示される変速マップを数値的に規定したマップが格納されている。
 図6に戻り、コーストダウン変速中でない場合(ステップS102:NO)、ECU100は、処理をステップS101に戻す。一方、コーストダウン変速中である場合(ステップS102:YES)、ECU100は、ハイブリッド車両1の運転領域が、回生領域に該当するか否かを判別する(ステップS103)。
 ここで、「回生領域」とは、モータジェネレータMG2から回生トルクを出力して(即ち、入力軸600及び駆動軸500からトルクを入力して)、モータジェネレータMG2を発電状態に維持するべき旨が定められた領域である。ECU100のROMには、このような回生領域を規定する回生領域マップが格納されており、ECU100は、その時点のハイブリッド車両1の運転条件(例えば、車速Vh或いはバッテリ12のSOC(State Of Charge:蓄電状態)により規定される充電制限値Win等)が回生領域に該当するか否かを当該回生領域マップに基づいて判別する。
 尚、MG2による電力回生が行われる場合、ECU100は、PCU11を制御して、MG2から所定の回生トルクを出力させ、PCU11を介して発電電力をバッテリ12に供給する。この際、MG2から出力すべき回生トルクの目標値は、予め設定されROMに格納された回生トルクマップに規定されている。また、この回生トルクの目標値は、基本的に、ブレーキペダル踏下量Tbの大小に対し夫々大小に変化するよう定めされている。一方、コーストダウン走行中の回生トルクの大小は、ハイブリッド車両1の減速度の大小に対応する。即ち、回生トルクは、ハイブリッド車両1に対し一種の制動力として作用する。
 ハイブリッド車両1の運転条件が回生領域に該当しない場合(ステップS103:NO)、ECU100は、処理をステップS107に移行させる。ステップS107については後述する。一方、回生領域に該当する場合(ステップS103:YES)、ECU100は、回生コーストダウン処理を開始する(ステップS104)。回生コーストダウン処理については後述する。
 回生コーストダウン処理を開始すると、ECU100は、ブレーキペダルセンサ15を介して取得されるブレーキペダル踏下量Tbが、ハイブリッド車両1が制動力を必要としている旨のブレーキオン領域の値から、積極的な制動力を必要としない旨のブレーキオフ領域の値へと変化したか否かを判別する。この際、本実施形態では特に、運転者がブレーキペダルを踏下している状態において、運転者がブレーキペダルから足を外したか否か(即ち、Tb=0に変化したか否か)を判別する(ステップS105)。ステップS105に係るECU100の動作は、本発明に係る「検出手段」の動作の一例である。
 ブレーキペダル踏下量Tbがブレーキオン領域からブレーキオフ領域へ変化していない場合(ステップS105:NO)、即ち、ブレーキペダルが元より踏下されていないか、ブレーキペダル踏下量Tbがブレーキオン領域内で変化しているか、ブレーキペダル踏下量Tbがブレーキオン領域内の値で維持されている場合、ECU100は、処理をステップS107に移行させる。即ち、この場合、回生コーストダウン処理のみが実行される。
 一方、ブレーキペダルの操作位置がオン領域からオフ領域へ変化した場合(ステップS105が「YES」側へ分岐することを意味し、即ち、本発明に係る「制動操作量が制動力の減少を促す減少方向へ変化した場合」の一例である)、ECU00は入力軸トルク補正処理を実行する(ステップS106)。入力軸トルク補正処理については後述する。入力軸トルク補正処理が実行されると、処理はステップS107に移行される。
 ステップS107においては、変速が終了したか否かが判別される(ステップS107)。変速が継続中である場合(ステップS107:NO)、ECU100は、処理をステップS103に戻し一連の処理を繰り返す或いは継続すると共に、変速が終了した場合(ステップS107:NO)、処理をステップS101に戻し一連の処理を繰り返す。尚、変速が終了したか否かは、入力軸回転速度Ninが変速終了後の変速段に対応する同期回転速度に収束したか否かに基づいて判別される。
 本実施形態に係る変速制御は以上のように実行される。尚、ステップS101及びS102が「NO」側に分岐する場合、ECT400の制御がなされない訳ではない。即ち、図6に例示する変速制御とは、コーストダウン変速時における変速制御であって、それ以外の場合についてのECT400の制御態様は、通常の変速制御として、ECU100により別途滞りなく遂行されている。
 <変速制御の効果>
 ここで、図8を参照し、変速制御の効果について説明する。ここに、図8は、変速制御における回生コーストダウン処理の効果に係り、ECT400各部の状態の一時間推移を例示するタイミングチャートである。尚、図8は、3速段から2速段へのコーストダウン変速がなされる場合を示したものである。
 図8において、縦軸は、上段から順に、入力軸回転速度Nin、入力軸トルクTin、出力軸トルクTout、ブレーキフラグF_brk及びECT400における各係合装置の係合油圧が表されており、横軸は時刻で統一されている。尚、ブレーキフラグF_brkは、ブレーキペダルが操作されていれば「1」に、ブレーキペダルが操作されていなければ「0」に設定されるフラグであり、ECU100がシフト位置センサ15のセンサ出力に基づいて設定するフラグである。即ち、図6のステップS105が「ON」側に分岐する場合とは、このブレーキフラグF_brkが「1」から「0」となる場合を意味する。
 図8において、時刻T1にコーストダウン変速に係る変速条件が満たされたとする。この場合、ECU100は、時刻T1において、解放側の係合装置(クラッチCL2)の係合油圧を図示破線の如くに低下させ、且つ締結側の係合装置(ブレーキBR1)の係合油圧を図示実線の如くに増加させる。変速が終了した時刻T5の時点において、締結側のブレーキBR1の係合油圧は締結状態保持用の所定値に到達する。
 続いて、図示時刻T2において、トルク相が開始される。トルク相とは、締結側の係合装置(ここでは、ブレーキBR1)の係合油圧を上昇させることによって、入力軸回転速度Nin(即ち、MG2回転速度Nm)の回転速度を、2速同期回転速度N2nd(図示鎖線参照)まで上昇させるためのトルク移譲期間を意味する。更に、時刻T3において、この係合装置の係合トルクによって実際に入力軸回転速度Ninが上昇し始めるイナーシャ相が開始される。入力軸回転速度Ninが、2速同期回転速度に対し所定の割合にまで達した時刻T4において、ECU100は変速終了の判定を行い、イナーシャ相は、それより後の時刻T5において終了する。尚、本実施形態では、イナーシャ相の終了と変速期間の終了とを等しく扱うこととする。
 ECT400の変速は、所謂等パワー変速であり、その時点の車速Vh(即ち、ハイブリッド駆動装置10に要求される要求出力)が変速前後で維持されるように実行される。従って、変速を行うにあたっては、入力軸回転速度Ninを変速後に選択される変速段に対応する同期回転速度まで上昇(ダウンシフトの場合)させる必要がある。その一方で、出力軸トルクToutは、出力軸回転速度Noutが維持されるため、従前の値に維持される。
 ここで、回生コーストダウン処理が実行されない場合、入力軸トルクTinは、入力軸回転速度Ninが2速同期回転速度まで上昇することに伴って上昇する(尚、回生コーストダウン変速中は、MG2の出力トルクは、負トルクたる回生トルクであるから、実応答としてはゼロに近付くことになる)。その特性が、図示PRF_Tin_cmpA(破線)に表される。
 ところが、このような入力軸トルクTinの時間推移に対し、実際の出力軸トルクToutは、トルク相及びイナーシャ相においてMG2の回転速度変化にその一部が消費されることによって、一時的に低下する(図示PRF_Tout_cmpA(破線)参照)。その結果、変速中において、トルクショックが生じ、ドライバビリティを低下させる要因となる。
 そこで、回生コーストダウン処理においては、入力軸トルクTinと等価なMG2の回生トルク(尚、回生トルクの大小変化は、夫々入力軸トルクTinの小大変化に対応する)が、比較例に対しより減少される(図示PRF_Tin_A(実線))。その結果、実際の出力軸トルクToutの応答は、図示PRF_Tout_A(実線))のようになり、減少させた回生トルクの分だけ出力軸トルクToutの減少が抑制され、トルクショックを緩和させることが可能となるのである。
 次に、図9を参照し、入力軸トルク補正処理の必要性について説明する。ここに、図9は、トルク補正処理を行わない場合のECT各部の状態の一時間推移を例示するタイミングチャートである。尚、同図において、図8と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
 図9において、トルク相開始以前の時刻T6に、ブレーキペダルの操作が停止されたとする。
 ブレーキペダルの操作が停止されると、MG2による電力回生の規模が縮小されるため、その時点で入力軸トルクTinは大きく変化する。それは、回生コーストダウン処理が行われようが(PRF_Tin_B(実線))、行われまいが(PRF_Tin_cmpB(破線))変わることがない。
 一方、ブレーキペダル踏下量Tbの変化により、変速前後の出力軸トルクToutの目標値は変化するが、このような入力軸トルクTinの一時的な変動が生じると、出力軸トルクToutは一時的に上昇する。ところが、その後に先に述べたトルク相及びイナーシャ相による出力軸トルクToutの変化が生じると、一時的な上昇の後である分、出力軸トルクToutの変動は大きくなり、回生コーストダウン処理が行われようが(PRF_Tout_B(実線)、行われまいが(PRF_Tout_cmpB(破線))、出力軸トルクの変動がドライバビリティを低下させる懸念がある。即ち、回生コーストダウン中においては、ブレーキペダルのブレーキオフ操作に対する補償が必要となる。その補償が、即ち、入力軸トルク補正処理である。
 次に、図10を参照し、入力軸トルク補正処理の効果について説明する。ここに、図10は、入力軸トルク補正処理の一例を行った場合のECT各部の状態の一時間推移を例示するタイミングチャートである。尚、同図において、図9と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
 図10において、ECU100は、入力軸トルク補正処理の一態様として、入力軸トルクTinの上昇速度に制限を与える。入力軸トルクTinは、何らの対策も講じられることがなければ、ブレーキペダルのオフ操作と同時に急上昇するが、ECU100は、例えば、入力軸トルクTinの上昇速度に上限を与え、入力軸トルクの急上昇を抑制する。
 その場合の入力軸トルクTinの時間推移が、図示PRF_Tin_C(実線)として表される。図示する通り、何らの対策も講じられることがない場合の特性(即ち、PRF_Tin_B(破線))と較べると、入力軸トルク補正処理によって、入力軸トルクTinの立ち上がり特性が緩慢となる。
 その結果、ブレーキオフ操作による出力軸トルクToutの一時的な上昇も、その規模が小さくなり(PRF_Tout_C(実線))、入力軸トルク補正処理がなされない場合(PRF_Tout_B(破線))と較べて、ショックを低減することができる。
 尚、入力軸トルクの上昇速度を制限するにあたっての実践的態様は多様であってよい。例えば、入力軸トルクTinの上限値を時間変化に対し徐変させることにより、図示の如き特性が実現されてもよいし、時間フィルタ処理等によって、時間なましを行ってもよい。或いは、補正係数に基づいた数値演算に従って、回生トルクの目標値を制限してもよい。
 次に、図11を参照し、他の入力軸トルク補正処理の効果について説明する。ここに、図11は、入力軸トルク補正処理の他の例を行った場合のECT各部の状態の一時間推移を例示するタイミングチャートである。尚、同図において、図9と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
 図11において、ECU100は、入力軸トルク補正処理の一態様として、MG2の回生トルクの減少量を更に減少させる。即ち、ECU100は、回生コーストダウン処理における回生トルクの減少量を更に減少側に補正する。このような処理がなされた場合の入力軸トルクTinの時間推移が、図示(PRF_Tin_D(実線))として示される。このように、入力軸トルク補正処理がなされると、回生コーストダウン処理がなされるのみの場合(PRF_Tin_B(破線))と較べてMG2の回生トルクが更に減少する。
 このように回生トルクがより減少側へ補正されると、トルク相及びイナーシャ相における出力軸トルクToutの落ち込みが緩和される(PRF_Tout_D(実線))。従って、回生コーストダウン処理がなされるのみの場合(PRF_Tout_B(破線))と較べて、ブレーキオフ操作によって一時的に上昇した出力軸トルクToutの落ち込みが抑制される。即ち、ドライバビリティの低下が緩和される。
 尚、回生コーストダウン処理における回生トルクの低減量は、この種のブレーキオフ操作による出力軸トルクの変動を想定していない。即ち、入力軸トルク補正処理としての回生トルクの低減と、回生コーストダウン処理における回生トルクの低減とは、回生トルクの低減に関する技術事項については等しいが、その本質部分において全く異なるものである。
 次に、図12を参照し、他の入力軸トルク補正処理の効果について説明する。ここに、図12は、入力軸トルク補正処理の他の例を行った場合のECT各部の状態の一時間推移を例示するタイミングチャートである。尚、同図において、図9と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
 図12において、ECU100は、入力軸トルク補正処理の一態様として、図10に例示した入力軸トルクTinの上昇速度制限と、図11に例示したMG2の回生トルクの減少補正とを相互に協調させつつ実行する。
 このような処理がなされた場合の入力軸トルクTinの時間推移が、図示(PRF_Tin_E(実線))として示される。このように、入力軸トルク補正処理がなされると、回生コーストダウン処理がなされるのみの場合(PRF_Tin_B(破線))と較べて、ブレーキオフ操作に伴う入力軸トルクの上昇に係る上昇速度が制限され、その立ち上がりが緩やかになると共に、MG2の回生トルクが回生コーストダウンにおける減少量に対して更に減少補正される。
 このように上昇速度の制限及び回生トルクの減少補正がなされると、出力軸トルクToutの立ち上がりがなまされ、且つトルク相及びイナーシャ相における出力軸トルクToutの落ち込みが緩和される(PRF_Tout_E(実線))。従って、出力軸トルクToutの時間推移は極めて円滑になり、回生コーストダウン処理がなされるのみの場合(PRF_Tout_B(破線))と較べて、ドライバビリティが顕著に改善される。
 このように、本実施形態によれば、回生コーストダウン中にブレーキオフ操作が生じた場合に、ECU100によって入力軸トルク補正処理が実行され、出力軸トルクToutの変動が好適に抑制される。従って、ブレーキ操作の影響を受けることなく回生コーストダウン中のドライバビリティを好適に維持することが可能となるのである。
 尚、図10乃至図12において、ブレーキオフ操作はトルク相開始以前のタイミングで生じている。このようにトルク相開始以前のタイミングで生じるブレーキオフ操作に対しては、本実施形態に係る上記入力軸トルクの補正は顕著に効果的であるが、上記入力軸トルクの補正は、他のタイミングで生じたとしても無論、出力軸トルクの変動抑制に効果的である。このことを、図13を参照して説明する。ここに、図13は、入力軸トルク補正処理の他の例を行った場合のECT各部の状態の一時間推移を例示するタイミングチャートである。尚、同図において、図9と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
 図13において、これまでの例と異なり、イナーシャ相に相当する時刻T7においてブレーキオフ操作が生じたとする。この場合、何らの対策も講じられなければ、入力軸トルクTinは、図示PRF_Tin_cmpF(破線)のように時刻T7において上昇する(回生トルクが減少する)。この際、締結側の係合装置の係合油圧は、減少側に補正されるが(実線)、係る処理のみでは、係合油圧の実応答遅延に起因して、入力軸回転速度Ninの急変を止めることが難しい。その結果、出力軸トルクToutは、図示PRF_Tout_cmpF(破線)のように、変速終了前後で変動し、ドライバビリティを低下させる。
 それに対し、入力軸トルク補正処理が実行された場合、ブレーキオフ操作タイミングにおける入力軸トルクTinの急変が抑制されるため(図示PRF_Tin_F(実線))、係合装置の油圧低減に係る効果とあいまって、変速終期の入力軸回転速度Ninの急変を抑制することができる。そのため、入力軸回転速度Ninは、オーバーシュート(破線)することなく、2速同期回転速度へ到達する。
 また、出力軸トルクToutは、入力軸トルクTinの上昇速度抑制に係る効果によって、その変動が抑制される(図示PRF_Tout_F(実線))。このように、本実施形態に係る入力軸トルク補正処理は、ブレーキオフ操作が回生コーストダウン中の如何なるタイミングで生じたとしても、明確に出力軸トルクToutの変動抑制に係る効果を発揮する。
 尚、図13においては、入力軸トルク補正処理として、入力軸トルクの上昇速度抑制が採用されたが、図11或いは図12に例示する態様を適用することも容易にして可能であることは言うまでもない。
 尚、本実施形態においては、MG2による電力回生制御の態様は不変とされているが、例えば、バッテリ12のSOC(この場合、SOCとは、充電状態を規定する規格化された指標値を意味する)が所定値以上であれば、電力回生の必要性は低下するため、回生コーストダウン中にブレーキオフ操作が生じたとしても、出力軸トルクの変動は相対的に小さくなる。一方、バッテリ12のSOCが所定値(先の所定値とは異なる)未満であれば、電力回生の必要性が上昇するため、回生コーストダウン中にブレーキオフ操作が生じた場合の出力軸トルクの変動は相対的に大きくなる。
 その点に鑑みれば、ECU100は、例えばバッテリ12に付設されるSOCセンサ等のセンサ出力を利用して、その時点のバッテリ12の充電状態に応じて、上記入力軸トルク補正処理に係る入力軸トルクの補正態様或いは規模を決定してもよい。また、このような指標値は、SOCに限定されず、例えば、バッテリ12の温度であってもよい。バッテリ12は、低温或いは高温領域における充放電性能が低下する。従って、低温或いは高温領域においては入力軸トルク補正処理に係る補正規模を相対的に大きくする等の措置が講じられてもよい。
<第2実施形態>
 ハイブリッド駆動装置の構成は、第1実施形態に係るハイブリッド駆動装置10のものに限定されない。ここで、図14を参照し、本発明の第2実施形態にハイブリッド駆動装置20の構成について説明する。ここに、図14は、ハイブリッド駆動装置20の構成を概念的に例示してなる概略構成図である。尚、同図において、図2と重複する箇所には、同一の符号を付してその説明を適宜省略する。
 図14において、ハイブリッド駆動装置20は、駆動軸500と入力軸600とがクラッチ900によって選択的に係合又は解放状態に制御される構成となっている。また、モータジェネレータMG2と入力軸600との間には、MG2回転速度Nmを二段階に減速することが可能なMG2リダクション機構800が介装されている。
 MG2リダクション機構800は、湿式多板係合装置としてのブレーキ機構801及び802と、これらブレーキ機構に夫々連結された回転要素を含む差動機構803から構成される。MG2リダクション機構800は、ブレーキ機構としてブレーキ機構801が選択された場合とブレーキ機構802が選択された場合とで、MG2回転速度Nmの減速比が異なる構成を有しており、ECT400による変速に加え、MG2をその時点でより効率的な動作領域で動作させることが可能となっている。このような構成においても無論、上述の変速制御を適用することが可能である。
 また、クラッチ900が解放側に制御された状態においては、ハイブリッド駆動装置20の動力源はMG2のみとなる。この状態は、所謂電気自動車と同等である。即ち、本発明が適用対象とする車両は、ハイブリッド車両に限定されず、モータのみを動力源とする電気自動車も含まれる。
<第3実施形態>
 ハイブリッド駆動装置の構成は、第1実施形態に係るハイブリッド駆動装置10のものに限定されない。ここで、図15を参照し、本発明の第3実施形態にハイブリッド駆動装置30の構成について説明する。ここに、図15は、ハイブリッド駆動装置30の構成を概念的に例示してなる概略構成図である。尚、同図において、図2と重複する箇所には、同一の符号を付してその説明を適宜省略する。
 図15において、ハイブリッド駆動装置30は、無段変速部1000と有段変速部1100を有する。無段変速部1000は、ハイブリッド駆動装置10における動力分割機構300と概念的には同等のプラネタリギアユニットと、MG2回転速度Nmを減速する減速ギアとからなり、動力分割機構300と同様に回転二自由度の差動機構として機能する。
 一方、有段変速部1100は、クラッチC1、C2、C3及びC4と二組の差動機構からなり、これらの係合状態に応じて複数の変速段を実現する構成となっている。
 ここで、ハイブリッド駆動装置30によれば、この有段変速部1100の機能により、駆動要素と反力要素とを切り替えることが可能である。例えば、クラッチC1を係合させ、クラッチC2を解放すれば、変速装置の入力軸は、図示入力軸600aとなり、上記実施形態と同様に、MG2が駆動要素(出力軸700との間でトルクの入出力を行う要素)となり、MG1が反力要素となる。その逆に、クラッチC2を係合させ、クラッチC1を解放すれば、変速装置の入力軸は、図示入力軸600bとなり、上記実施形態とは異なり、MG1が駆動要素(この場合、MG1が本発明に係る「回転電機」として機能する)となり、MG2が反力要素となる。このように、変速部の係合状態によって、駆動要素と反力要素とを選択的に切り替えつつ走行可能なハイブリッド車両に対しても本発明は適用可能である。
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う車両の制御装置もまた本発明の技術的範囲に含まれるものである。
 本発明は、力行及び回生が可能な回転電機と車軸との間に有段の変速装置を備えた車両に広く適用可能である。
 1…ハイブリッド車両、10…ハイブリッド駆動装置、100…ECU、200…エンジン、300…動力分割機構、400…変速装置、500…駆動軸、600…入力軸、700…出力軸。

Claims (10)

  1.  入力軸との間でトルクの入出力が可能な回転電機と、
     前記入力軸と車軸に連結された出力軸との間に複数の係合装置を備えて設置され、前記入力軸と前記出力軸との間でトルクを伝達すると共に、前記複数の係合装置の係合状態に応じて、前記入力軸の回転速度と前記出力軸の回転速度との比たる変速比が相互に異なる複数の変速段を構築可能な変速装置と
     を備えた車両を制御する装置であって、
     運転者の制動操作量を検出する検出手段と、
     前記回転電機のコースト回生時に前記変速段の切り替えがなされるコースト回生変速期間において、前記検出された制動操作量が前記車両に付与される制動力の減少を促す減少方向へ変化した場合に、該制動操作量の変化に伴う前記出力軸のトルクの変化が抑制されるように前記入力軸のトルクを制御する入力軸トルク制御手段と
     を具備することを特徴とする車両の制御装置。
  2.  前記入力軸トルク制御手段は、前記検出された制動操作量が前記減少方向へ変化する場合として、前記制動操作量が前記制動力を付与すべき旨の値から前記制動力を付与すべきでない旨の値へと変化した場合に前記入力軸のトルクを制御する
     ことを特徴とする請求の範囲第1項に記載の車両の制御装置。
  3.  前記入力軸トルク制御手段は、前記変速段の切り替え期間において前記検出された制動操作量が前記減少方向へ変化した場合に、前記入力軸のトルクを制御する。
     ことを特徴とする請求の範囲第1項に記載の車両の制御装置。
  4.  前記入力軸トルク制御手段は、前記切り替え期間として、前記変速段の切り替え要求が生じてから前記コースト回生変速期間の一部をなすトルク相が開始されるまでの期間において前記検出された制動操作量が前記減少方向へ変化した場合に、前記入力軸のトルクを制御する。
     ことを特徴とする請求の範囲第3項に記載の車両の制御装置。
  5.  前記入力軸トルク制御手段は、前記コースト回生変速期間以外の期間において前記検出された制動操作量が前記減少方向へ変化した場合と較べて前記入力軸のトルクの上昇速度を制限する
     ことを特徴とする請求の範囲第1項に記載の車両の制御装置。
  6.  前記コースト回生変速期間の一部をなすトルク相及びイナーシャ相の少なくとも一方において、前記回転電機の回生トルクを減少させることにより前記出力軸のトルクの変化を抑制する抑制手段を更に具備し、
     前記入力軸トルク制御手段は、前記抑制手段に係る前記回生トルクの減少量を更に減少側に補正する
     ことを特徴とする請求の範囲第1項に記載の車両の制御装置。
  7.  前記コースト回生変速期間の一部をなすトルク相及びイナーシャ相の少なくとも一方において、前記回転電機の回生トルクを減少させることにより前記出力軸のトルクの変化を抑制する抑制手段を更に具備し、
     前記入力軸トルク制御手段は、前記コースト回生変速期間以外の期間において前記検出された制動操作量が前記減少方向へ変化した場合と較べて前記入力軸のトルクの上昇速度を制限すると共に、前記抑制手段に係る前記回生トルクの減少量を更に減少側に補正する
     ことを特徴とする請求の範囲第1項に記載の車両の制御装置。
  8.  前記入力軸のトルクの変化速度の大小に応じて、変速後の前記変速段に係る前記係合装置の係合油圧を大小に夫々変化させる係合油圧制御手段を更に具備する
     ことを特徴とする請求の範囲第1項に記載の車両の制御装置。
  9.  前記車両は、前記回転電機との間で電力の入出力が可能な蓄電手段を更に具備し、
     前記車両の制御装置は、
     前記蓄電手段の蓄電量及び温度のうち少なくとも一方に応じて規定される制約の範囲で前記コースト回生時における前記回転電機の回生トルクを制御する回生トルク制御手段を更に具備し、
     前記入力軸トルク制御手段は、前記回生トルク制御手段による前記回生トルクの制御状態に応じて前記入力軸のトルクを制御する
     ことを特徴とする請求の範囲第1項に記載の車両の制御装置。
  10.  前記車両は、
     内燃機関と、
     前記内燃機関に反力トルクを与える反力要素としての、前記回転電機とは異なる他の回転電機と、
     前記内燃機関、前記回転電機及び前記他の回転電機に夫々連結される回転要素を含む複数の回転要素を備え、前記内燃機関の回転速度と前記回転電機の回転速度との比を無段階に変化させることが可能な差動機構と
     を具備する
     ことを特徴とする請求の範囲第1項に記載の車両の制御装置。
PCT/JP2010/064818 2010-08-31 2010-08-31 車両の制御装置 WO2012029126A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011526351A JP5105003B2 (ja) 2010-08-31 2010-08-31 車両の制御装置
US13/142,741 US8296002B2 (en) 2010-08-31 2010-08-31 Vehicle control apparatus
DE112010005833.4T DE112010005833B4 (de) 2010-08-31 2010-08-31 Fahrzeug-Steuervorrichtung
CN201080003731.1A CN102612447B (zh) 2010-08-31 2010-08-31 车辆的控制装置
PCT/JP2010/064818 WO2012029126A1 (ja) 2010-08-31 2010-08-31 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064818 WO2012029126A1 (ja) 2010-08-31 2010-08-31 車両の制御装置

Publications (1)

Publication Number Publication Date
WO2012029126A1 true WO2012029126A1 (ja) 2012-03-08

Family

ID=45698266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064818 WO2012029126A1 (ja) 2010-08-31 2010-08-31 車両の制御装置

Country Status (5)

Country Link
US (1) US8296002B2 (ja)
JP (1) JP5105003B2 (ja)
CN (1) CN102612447B (ja)
DE (1) DE112010005833B4 (ja)
WO (1) WO2012029126A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229441A (ja) * 2014-06-05 2015-12-21 日産自動車株式会社 電動車両の制御装置
JP2018091432A (ja) * 2016-12-05 2018-06-14 トヨタ自動車株式会社 車両の変速制御装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108114A1 (ja) * 2010-03-05 2011-09-09 トヨタ自動車株式会社 動力伝達装置
KR20130030507A (ko) * 2011-09-19 2013-03-27 현대자동차주식회사 Amt 하이브리드 차량의 타행주행 제어방법
JP2013180598A (ja) * 2012-02-29 2013-09-12 Nissan Motor Co Ltd 電動車両の変速制御装置
US8540604B1 (en) * 2012-03-15 2013-09-24 Ford Global Technologies, Llc Transmission control during regenerative braking
JP6119966B2 (ja) * 2012-12-21 2017-04-26 三菱自動車工業株式会社 ハイブリッド車の走行モード切換制御装置
CN107110040B (zh) * 2014-09-19 2020-09-15 康明斯有限公司 用于基于加速器自适应速度控制的系统和方法
DE102015226591A1 (de) * 2015-12-22 2017-06-22 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Fahrzeugs mit einem Fahrzeugantriebsstrang und mit einer Fahrzeugbremse
JP6423392B2 (ja) * 2016-07-28 2018-11-14 トヨタ自動車株式会社 自動変速機の制御装置
DE102017100988A1 (de) * 2017-01-19 2018-07-19 Schaeffler Technologies AG & Co. KG Verfahren zur Steuerung eines Segelbetriebes eines Fahrzeuges mit automatisierter Kupplung
JP6791027B2 (ja) * 2017-06-09 2020-11-25 トヨタ自動車株式会社 車両の制御装置
JP6885256B2 (ja) * 2017-08-04 2021-06-09 トヨタ自動車株式会社 車両の制御装置
CN109760519B (zh) * 2019-03-25 2020-08-18 江西江铃集团新能源汽车有限公司 电动汽车的陡坡缓降控制方法及系统
KR102405909B1 (ko) * 2020-07-27 2022-06-08 현대모비스 주식회사 자동차용 동력 전달 장치 및 그 동력 전달 장치를 포함하는 자동차
CN112202525B (zh) * 2020-10-29 2022-11-01 电信科学技术第五研究所有限公司 一种多板卡设备的pps延迟自动测量及补偿方法
CN113173080B (zh) * 2021-06-11 2022-06-14 浙江吉利新能源商用车集团有限公司 燃料电池车辆控制方法、控制系统及燃料电池车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292603A (ja) * 1992-04-09 1993-11-05 Toyota Motor Corp 電気自動車の制動制御装置
JP2008104306A (ja) * 2006-10-20 2008-05-01 Nissan Motor Co Ltd 車両の制御装置
JP2008207690A (ja) * 2007-02-27 2008-09-11 Toyota Motor Corp 車両用駆動装置の制御装置
JP2010074886A (ja) * 2008-09-16 2010-04-02 Toyota Motor Corp 車両用動力伝達装置の制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622338B2 (ja) * 1996-05-28 2005-02-23 トヨタ自動車株式会社 車両の変速制御装置
JP3520668B2 (ja) * 1996-06-11 2004-04-19 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP3683194B2 (ja) 2001-07-30 2005-08-17 トヨタ自動車株式会社 車両の変速制御装置
JP3852402B2 (ja) * 2002-12-25 2006-11-29 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置
US7261671B2 (en) * 2003-09-10 2007-08-28 Ford Global Technologies, Llc Hybrid vehicle powertrain with a multiple-ratio power transmission mechanism
DE10360804B4 (de) 2003-12-23 2005-10-06 Bayerische Motoren Werke Ag Antriebseinrichtung für ein Kraftfahrzeug
JP4415931B2 (ja) 2005-12-06 2010-02-17 トヨタ自動車株式会社 車両用自動変速機の変速制御装置
JP5305576B2 (ja) 2006-10-16 2013-10-02 日産自動車株式会社 車両の制御装置
US7953539B2 (en) * 2007-04-04 2011-05-31 GM Global Technology Operations LLC Torque split strategy for a belt alternator starter (BAS) hybrid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292603A (ja) * 1992-04-09 1993-11-05 Toyota Motor Corp 電気自動車の制動制御装置
JP2008104306A (ja) * 2006-10-20 2008-05-01 Nissan Motor Co Ltd 車両の制御装置
JP2008207690A (ja) * 2007-02-27 2008-09-11 Toyota Motor Corp 車両用駆動装置の制御装置
JP2010074886A (ja) * 2008-09-16 2010-04-02 Toyota Motor Corp 車両用動力伝達装置の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229441A (ja) * 2014-06-05 2015-12-21 日産自動車株式会社 電動車両の制御装置
JP2018091432A (ja) * 2016-12-05 2018-06-14 トヨタ自動車株式会社 車両の変速制御装置

Also Published As

Publication number Publication date
JP5105003B2 (ja) 2012-12-19
US20120053769A1 (en) 2012-03-01
DE112010005833T5 (de) 2013-08-29
CN102612447B (zh) 2014-08-13
US8296002B2 (en) 2012-10-23
CN102612447A (zh) 2012-07-25
DE112010005833T8 (de) 2014-03-20
DE112010005833B4 (de) 2022-03-17
JPWO2012029126A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5105003B2 (ja) 車両の制御装置
JP5348034B2 (ja) 車両の制御装置
EP3098104B1 (en) Hybrid vehicle
JP6384464B2 (ja) 動力伝達装置の制御装置
JP5071438B2 (ja) 車両用動力伝達装置の制御装置
US8882632B2 (en) Control device of vehicle power transmission device
JP4371099B2 (ja) 動力伝達装置の制御装置
WO2010137123A1 (ja) 車両用動力伝達装置の変速制御装置
JP6780610B2 (ja) 車両の制御装置
JP2020032854A (ja) 車両の制御装置
JP2010167803A (ja) ハイブリッド車両の制御装置
JP4274158B2 (ja) 車両用駆動装置の制御装置
JP5760958B2 (ja) ハイブリッド車両用動力伝達装置の制御装置
JP2007120586A (ja) 車両用自動変速機の制御装置
JP5348033B2 (ja) 車両の制御装置
JP2019142365A (ja) ハイブリッド車両の制御装置
JP5413252B2 (ja) 車両の制御装置
US20170166184A1 (en) Control system for power transmission system
JP5459073B2 (ja) 車両の制御装置
JP2010074886A (ja) 車両用動力伝達装置の制御装置
JP2013169896A (ja) 車両用動力伝達装置
JP2013103578A (ja) ハイブリッド車両の駆動制御装置
JP5614104B2 (ja) ハイブリッド車両の制御装置
JP2019031208A (ja) 車両の制御装置
JP2010070041A (ja) 車両用動力伝達装置の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003731.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011526351

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13142741

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 112010005833

Country of ref document: DE

Ref document number: 1120100058334

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856678

Country of ref document: EP

Kind code of ref document: A1