WO2012028757A1 - Tiazoles fluorados útiles para el tratamiento del cáncer - Google Patents

Tiazoles fluorados útiles para el tratamiento del cáncer Download PDF

Info

Publication number
WO2012028757A1
WO2012028757A1 PCT/ES2011/070605 ES2011070605W WO2012028757A1 WO 2012028757 A1 WO2012028757 A1 WO 2012028757A1 ES 2011070605 W ES2011070605 W ES 2011070605W WO 2012028757 A1 WO2012028757 A1 WO 2012028757A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
phenyl
group
compounds
Prior art date
Application number
PCT/ES2011/070605
Other languages
English (en)
French (fr)
Inventor
Joan Gil Santano
Rodolfo LAVILLA GRÍFOLS
Fernando Albericio Palomera
Alba PÉREZ PERARNAU
Sara Preciado Gallego
Diana Mª GONZÁLEZ GIRONÈS
Daniel Iglesias Serret
Rosario RAMÓN ALBALATE
Original Assignee
Universitat De Barcelona
Fundació Privada Institut D'investigació Biomèdica De Bellvitge
Fundació Privada Institut De Recerca Biomèdica De Barcelona
Fundació Privada Parc Científic De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat De Barcelona, Fundació Privada Institut D'investigació Biomèdica De Bellvitge, Fundació Privada Institut De Recerca Biomèdica De Barcelona, Fundació Privada Parc Científic De Barcelona filed Critical Universitat De Barcelona
Priority to ES11821153.1T priority Critical patent/ES2543918T3/es
Priority to EP20110821153 priority patent/EP2612861B1/en
Priority to US13/820,480 priority patent/US8680126B2/en
Publication of WO2012028757A1 publication Critical patent/WO2012028757A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/08Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D277/12Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/30Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/24Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/56Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention is related to new thiazole compounds, pharmaceutical compositions containing them and their use for the treatment of cancer.
  • Cancer is a heterogeneous disease characterized by the accumulation of tumor cells, which can cause death in both animals and humans.
  • Conventional methods for cancer treatment include surgical treatments, agent administration
  • chemotherapeutic agents and more recently treatments based on the immune response, which involve the administration of an antibody or an antibody fragment that can be conjugated to a therapeutic unit.
  • treatments have had limited success.
  • Chemotherapy despite all its limitations, is still today one of the most widespread methods for the treatment of different types of cancer. Therefore, the development of new antitumor therapies of
  • bioactive natural products maintain the presence of thiazole rings in their structures as a common characteristic, many of them have anti-tumor properties.
  • biogenetic origin of the thiazole ring comes from the cyclodehydration generated by the thiol of the cysteine side chain and the neighboring peptide bond.
  • condensation protocols Hantszch synthesis
  • transition metal coupling reactions from products that already contain its structures the thiazole ring.
  • bistiazole compounds capable of inhibiting cell proliferation have been described previously.
  • 4,4'-bipyridiyl-2,2'-bisoxazoles and 4,4'-bipyridyl-2,2'-bistiazoles compounds with antiproliferative activity are described, in particular in HT-29 cells .
  • the inventors have found a new family of compounds with the thiazoline nucleus substituted by fluorine atoms and a great variety of aromatic rings constituting compounds that contain in their structures up to three and four aromatic rings. These compounds have antitumor properties (apoptotic properties) against several cancer cell lines, and therefore, are useful for the treatment and / or prevention of cancer. It has been found that these compounds promote apoptosis of tumor cells independently of the p53 protein. Under normal conditions, when detecting DNA damage, the p53 protein prevents the replication of the cell by stopping the cell cycle in the G1 phase, or interfere, allowing DNA repair. However, it induces apoptosis if cell damage is very extensive and repair attempts fail. Any interruption in the regulation of the p53 pathway, in its functioning or in the target genes increases the possibility of tumor formation.
  • the compounds of the present invention are very advantageous because they reduce the chemoresistance problems associated with many antitumor agents and are active against a wide variety of cancer cell lines.
  • one aspect of the present invention is related to the preparation of compounds of general formula (I), or their pharmaceutically acceptable salts, or their stereoisomers or mixture of stereoisomers,
  • Ri is a radical selected from the group consisting of: phenyl and phenyl mono-, di-, or tri-substituted by a radical independently selected from the group consisting of F, Cl, Br, I, (dC 6 ) -alkyl, COO- (CrC 6 ) -alkyl and (CrC 6 ) -alkoxy; and R 2 is a radical selected from the same group as Ri, further including a substituted in position 4 by a radical independently selected from the group consisting of phenyl
  • biphenyl means 1,1'-biphenyl.
  • pharmaceutically acceptable salts used herein comprises any salt formed from non-toxic acids or bases.
  • any compound referred to herein may represent any form of a racemic, one or more enantiomeric forms, one or more atropoisomeric forms, and mixtures thereof.
  • the compounds of formula (I) are those in which R 2 is a radical selected from the same group as Ri, further including a biphenyl-4-yl, a thiazol-2-yl and a mono thiazol-2-yl or di-substituted, in positions 4 or 5, by a radical selected from the group consisting of F and phenyl.
  • the compounds of formula (I) are those in which Ri is selected from the group consisting of: phenyl and phenyl mono-substituted by a radical independently selected from the group consisting of Cl, (dC 4 ) -alkyl and COO- (dC 4 ) -alkyl.
  • the compounds of formula (I) are those in which Ri is selected from the group consisting of: phenyl, 4-ethylphenyl, 4-chlorophenyl, 2-methylphenyl, 4-methylphenyl, 2-ethoxyphenylcarbonyl and 4 -ethoxyphenylcarbonyl.
  • the compounds of formula (I) are those in which R 2 is a radical selected from the group consisting of: phenyl and phenyl mono-substituted by a radical independently selected from the group consisting of Cl, (dC 4 ) -alkyl and COO- (dC 4 ) -alkyl.
  • the compounds of formula (I) are those in which R 2 is a radical selected from the group consisting of: phenyl, 4- ethylphenyl, 4-chlorophenyl, 2-methylphenyl, 4-methylphenyl, 2- ethoxyphenylcarbonyl and 4- ethoxyphenylcarbonyl.
  • the compounds of formula (I) are those in which R 2 is biphenyl-4-yl.
  • the compounds of formula (I) are those in which R 2 is selected from a thiazol-2-yl and a substituted thiazol-2-yl, at positions 4 or 5, by a radical selected from the group consisting of F and phenyl, having the following formula (la):
  • R- it has the same meaning as in the compounds of formula (I) and R 3 and R 4 are independently selected from F and phenyl.
  • the compounds of formula (I) are those in which R 2 is 5-phenylthiazol-2-yl or 4-fluoro-5-phenylthiazol-2-yl.
  • the compounds of formula (I) are those in which R 2 is phenyl substituted in the 4-position by -O (CH 2 ) CONH (CH 2 ) 3 CH 3 or by -OCH 2 COOC (CH 3 ) 3 .
  • the compounds of the present invention can be prepared simply and flexibly from commercial reagents by a variety of procedures.
  • 2,5-dibromothiazole is used as the starting material, although other 2,5-dihalogenothiazoles can also be used as starting materials.
  • Scheme I illustrates a particular embodiment of the process for preparing symmetric compounds of formula (I).
  • 4,4 ', 5-trifluoro-4,5-dihydrothiazole of formula (I) can be obtained by direct coupling of 2,5-dibromothiazole using a palladium catalyst such as Pd (OAc) 2 , a base such as sodium carbonate and an appropriate solvent such as an (C 6 -C 8 )-aromatic hydrocarbon, for example, toluene.
  • a palladium catalyst such as Pd (OAc) 2
  • a base such as sodium carbonate
  • an appropriate solvent such as an (C 6 -C 8 )-aromatic hydrocarbon, for example, toluene.
  • the reaction is carried out at a
  • the fluoridation procedure allows in some cases to isolate the
  • a compound of formula RiB (OH) 2 is used where Ri is selected from phenyl, 4-ethylphenyl, 4-methylphenyl, 4-chlorophenyl and 2-methylphenyl.
  • the compounds of formula (I) with R-, other than R 2 ; where Ri has the same meaning as mentioned above and R 2 is a radical selected from the same group as Ri, including in addition biphenyl-4-yl, can be prepared from a process that first comprises carrying out a coupling of Suzuki of a compound of formula (III) with a compound of formula R 2 B (OH) 2 , where R 2 is a radical selected from the same group as Ri, also including biphenyl-4-yl, in the presence of a palladium catalyst then carry out the halogenation of the compound obtained with a halogen source and the subsequent coupling of the compound obtained with a compound of formula RB (OH) 2 , where Ri has the same meaning as for compound (I), in presence of a
  • 2-bromothiazole is used as the starting material, although other 2-halogenothiazoles can also be used.
  • non-symmetric compounds of formula (I) can be obtained by coupling Suzuki of 2-bromothiazole with a boronic acid of formula R 2 B (OH) 2 using a palladium catalyst such as Pd (OAc) 2 , a base such as sodium carbonate and an appropriate solvent such as an (C 6 -C 8 )-aromatic hydrocarbon, for example, toluene.
  • a palladium catalyst such as Pd (OAc) 2
  • a base such as sodium carbonate
  • an appropriate solvent such as an (C 6 -C 8 )-aromatic hydrocarbon, for example, toluene.
  • the reaction is carried out at a temperature between 90-110 ° C, preferably at a temperature close to 100 ° C.
  • the resulting compound of formula (B) can be halogenated in position 5.
  • the halogenation reaction is a bromination carried out with a bromide source such as N-bromosuccinimide (NBS), obtaining a compound formula (C).
  • NBS N-bromosuccinimide
  • a new phenyl group can be introduced in position 5 by Suzuki coupling with a compound of formula R-
  • palladium catalyst such as Pd (OAc) 2
  • a base such as sodium carbonate
  • an appropriate solvent such as an (C 6 -C 8 )-aromatic hydrocarbon, for example, toluene.
  • the reaction is carried out at a
  • the subsequent fluorination in the thiazole ring of the compound (D) obtained can be carried out as described above, for example, with a fluorinating agent such as 1-chloromethyl-4- bis- (tetrafluoroborate) fluoro-1, 4-diazoniabicyclo [2.2.2] octane (Selectfluor®), giving rise to compounds of formula (I) with good yields.
  • a fluorinating agent such as 1-chloromethyl-4- bis- (tetrafluoroborate) fluoro-1, 4-diazoniabicyclo [2.2.2] octane (Selectfluor®), giving rise to compounds of formula (I) with good yields.
  • a method that first comprises carrying out a Suzuki coupling of the compound of formula (III) with a compound of formula R 2 B (OH) 2 where R 2 is a radical selected from the same group as Ri, also including biphen il-4- ilo, where Ri has the same meaning as compound (I), in the presence of a palladium catalyst, followed by subjecting the compound obtained to an activation reaction CH with a compound of formula R-yl where Ri has the same meaning as for the compound (I); and, finally, subjecting the compound obtained to a fluorination reaction with a fluorinating agent to give the compound of formula (I) with R-, other than R.
  • the compound of formula (I) obtained by this procedure is that wherein Ri is 4-methylphenyl and R 2 is
  • reaction is carried out at a temperature between 50 and 70 ° C, preferably at a temperature of approximately 60 ° C.
  • the compounds of formula (I) where Ri is phenyl and R 2 is thiazol-2- yl substituted by a phenyl can be prepared by a process comprising carrying out a homoacoupling reaction of the compound of formula (III) in the presence of a palladium catalyst, the subsequent halogenation of the compound obtained with a halogenation source, followed by a Suzuki coupling reaction of the compound obtained with a compound of formula R to B (OH) 2 , where Ri a is phenyl, in the presence of palladium catalyst, followed by carrying out a fluorination reaction of the compound obtained with a fluorinating agent to give the compound of formula (I) where Ri is phenyl and R 2 is thiazol-2-yl substituted by a phenyl.
  • the halogenation reaction is a bromination reaction.
  • Scheme (IV) illustrates a particular embodiment of the procedure. Scheme (IV):
  • 4,4 ', 5-trifluoro-4,5-dihydrothiazole of formula (I) can be obtained by homoacoupling of 2-bromothiazole using a palladium catalyst, such as Pd (OAc) 2 , a base just like the
  • the resulting 2,2'-bistiazole of formula (E) can be halogenated with a halogen source, such as a bromine source, for example, molecular bromine, to give the compound 5,5'-dibromo-2,2 ' -bistiazole of formula (F).
  • a halogen source such as a bromine source, for example, molecular bromine
  • a Suzuki coupling with a boronic acid of formula R to B (OH) 2 is carried out using a palladium catalyst such as tetrakis (triphenylphosphine) -palladium (0), a base such as sodium carbonate and a solvent appropriate such as toluene, under the same conditions mentioned above to carry out Suzuki coupling.
  • a palladium catalyst such as tetrakis (triphenylphosphine) -palladium (0)
  • a base such as sodium carbonate
  • a solvent appropriate such as toluene
  • the subsequent fluorination of the compound (G) previously obtained is carried out under the conditions described above using a fluorinating agent such as bis- (tetrafluoroborate) of 1-chloromethyl-4-fluoro-1, 4-diazoniabicyclo [2.2.2] octane (Selectfluor®).
  • a fluorinating agent such as bis- (tetrafluoroborate) of 1-chloromethyl-4-fluoro-1, 4-diazoniabicyclo [2.2.2] octane (Selectfluor®).
  • the preparation procedures described above can be modified to obtain enantiopide compounds as well as mixtures of stereoisomers. It is possible to prepare specific stereoisomers or specific mixtures by various methods, including the use of stereospecific reagents or by introducing chiral centers in the compounds during their preparation procedure. Furthermore, it is possible to separate the stereoisomers once the compound has been prepared by standard resolution techniques well known to the person skilled in the art.
  • Compounds of formula (I) can be carried out by methods known in the state of the art. For example, they can be prepared from the primary compounds which contain a basic or acid reactive center, by conventional chemical methods. Generally, said salts are prepared by reacting the free acid or base forms of those compounds with the stoichiometric amount of a pharmaceutically acceptable base or acid in water or in an organic solvent or in a mixture thereof.
  • the compounds of the present invention may be in crystalline form, both as solvent-free compounds or as solvates (for example, hydrates) and it is understood that both forms are within the scope of protection of the present invention. Solvation methods are generally known within the art.
  • An important feature of the compounds of the present invention is their ability to inhibit cell growth in tested tumor lines, and in particular their ability to induce cytotoxicity by promoting apoptosis. As shown in the Examples, the compounds of the present invention have antitumor properties on different cancer cell lines as well as in primary cells of chronic lymphocytic leukemia.
  • Another aspect of the present invention is related to the preparation of compounds of formula (I), or their pharmaceutically acceptable salts, or their stereoisomers or mixture of stereoisomers for use in the treatment and / or Cancer prevention, as they are active against all types of cancer that have been tested.
  • compounds of formula (I), or their pharmaceutically acceptable salts, or their stereoisomers or mixture of stereoisomers are provided for use in the treatment and / or prevention of tumors with mutated P53.
  • the compounds of the present invention are especially active against the following types of cancer: leukemia, lymphoma, cervical cancer, breast adenocarcinoma, glioblastoma and hepatocellular carcinoma. More preferably, the cancer is leukemia or lymphoma. Even more
  • the type of lymphoma or leukemia is B cell neoplasms.
  • This aspect of the invention can also be formulated as the use of the compounds of formula (I) as defined above, for the preparation of a medicament for the treatment and / or prevention of cancer in a mammal, including humans. .
  • the invention also relates to a method of treating cancer in a mammal, including the human being, who suffers or is susceptible to cancer, in particular to the aforementioned types of cancer, said method comprising the administration to said patient of an amount
  • the compounds of the present invention can be used in the same manner as other known chemotherapeutic agents. They can be used alone or in combination with other suitable bioactive compounds.
  • Another aspect of the present invention is related to a pharmaceutical composition containing a therapeutically effective amount of the compounds of the present invention, together with appropriate amounts of pharmaceutically acceptable excipients or carriers.
  • therapeutically effective amount refers to the amount of a compound that, when administered, is sufficient to prevent the development of, or relieve to some degree, one or more of the symptoms of the disease a The one that goes.
  • the particular dose of compound administered according to this invention will of course be
  • pharmaceutically acceptable excipients or carriers refers to pharmaceutically acceptable materials, compositions or vehicles. Each component must be pharmaceutically acceptable in the sense of being compatible with the other ingredients of the pharmaceutical composition. It should also be suitable for use in contact with tissues or organs of humans and animals without too much toxicity, irritation, allergic response, immunogenicity or other problems or complications in accordance with a reasonable benefit / risk ratio.
  • the chemotherapeutic treatment derived from the present invention is a new approach to cancer therapy and has the advantage of being useful for the treatment of various types of cancer.
  • FIG. 1 shows the dose response of compound 1 to 1 ⁇ to 10 ⁇ in the Jurkat cell line (T lymphocytes from an acute type T leukemia, with mutated TP53) at 24 hours of incubation. The viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative).
  • FIG. 2 shows the dose response of compound l a from 2 ⁇ to 40 ⁇ in HeLa cells (epithelial cell line from a cervical carcinoma, with inactivated p53) at 24 hours of incubation. Viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative).
  • FIG. 3 shows the dose response of compound 1 to 2 ⁇ to 40 ⁇ in TK6 cells (human lymphoblastic cell line with wild, non-mutated TP53) at 24 hours of incubation. Viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative).
  • FIG. 4 shows the dose response of compound l a from 2 ⁇ to 40 ⁇ in the Ramos cell line (B lymphocytes from a Burkitt lymphoma, with mutated TP53) at 24 hours of incubation. Viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative).
  • FIG. 5 shows the dose response of compound 1 to 2 ⁇ to 60 ⁇ in MDA-MB-231 cells (epithelial cell line of breast adenocarcinoma, with mutated TP53) at 24 hours of incubation. Viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative).
  • FIG. 6 shows the dose response of compound l a from 2 ⁇ to 60 ⁇ in T98-G cells (cell line from a glioblastoma, with mutated TP53) at 24 hours of incubation. Viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative).
  • FIG. 7 shows the dose response of compound l a from 2 ⁇ to 40 ⁇ in Hep3B cells (epithelial cell line, differentiated, from hepatocellular carcinoma, with deleted TP53) at 24 hours of incubation.
  • the viability was measured by the violet crystal test and was expressed as the percentage of viable cells in relation to untreated control cells.
  • FIG. 8 shows the dose-response of compound 1 a from 1 ⁇ to 20 ⁇ B in Chronic Lymphocytic Leukemia B cells (LLC) with wild TP53 (B-LLC p53S), at 24 hours of incubation. Viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative). A representative patient is shown.
  • LLC Chronic Lymphocytic Leukemia B cells
  • B-LLC p53S wild TP53
  • FIG. 9 shows the dose-response of compound l c from 5 ⁇ to 40 ⁇ in B lymphocytes (blackheads) and T lymphocytes (white dots) with wild TP53 (B and T p53S), at 24 hours of incubation. Viability was measured by flow cytometry and expressed as the percentage of non-apoptotic cells (annexin-V negative FITC). A representative patient is shown.
  • FIG. 10 shows the dose response of compound 1 to 1 ⁇ to 20 ⁇ in LLC cells with mutated TP53 (B-LLC p53M), at 24 hours of incubation. Viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative). A representative patient is shown.
  • FIG. 1 1 shows the dose response of compound 1 g from 5 ⁇ to 40 ⁇ in the Jurkat cell line (T lymphocytes from acute type T leukemia, with mutated TP53) at 24 hours of incubation. Viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative).
  • FIG. 12 shows the dose response of compound 1 g from 5 ⁇ to 40 ⁇ in HeLa cells (epithelial cell line from a cervical carcinoma, with TP53 inactivated) at 24 hours of incubation. Viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative).
  • FIG. 13 shows the dose-response of compound l h from 5 ⁇ to 40 ⁇ in the Jurkat cell line (T lymphocytes from an acute type T leukemia, with mutated TP53) at 24 hours of incubation. The viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative).
  • FIG. 14 shows the dose response of compound l h from 5 ⁇ to 40 ⁇ in HeLa cells (epithelial cell line from a cervical carcinoma, with TP53 inactivated) at 24 hours of incubation. Viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative).
  • the HPLC analyzes were performed in an apparatus composed of two solvent supply pumps, an automatic injector and a variable wavelength detector and a system controller (Breeze V3.20).
  • MALDI-TOF analyzes were performed using the ACH matrix. IR spectra were obtained with a Thermo Nicolet Nexus spectrophotometer and the absorption bands are indicated in cm -1 . Melting points were made in a Büchi Melting Point B-540 apparatus.
  • the title compound was prepared analogously to Example 4 from 2,5-bis (4-ethylphenyl) thiazole (100 mg, 0.34 mmol) and Selectfiuor ® (305.0 mg, 0.82 mmol) in ACN for 1 h at 80 ° C.
  • the residue was purified by flash chromatographic column (SiO 2 , hexane: AcOEt, 9: 1), obtaining 21 mg of 4,4,5-trifluoro-2,5-bis (4-ethylphenyl) -4,5- dihydrotiazole as a white solid (18% yield).
  • the reaction mixture was heated at 100 0 C for 4 h.
  • the inorganic solids were filtered on a bed of diatomaceous earth (Celite®) and the The residue obtained was washed several times with dichloromethane, then filtered and evaporated.
  • the residue was purified by flash chromatographic column (Si0 2 , hexane: AcOEt, 9: 1), obtaining 825.2 mg of 2- (4- (thiazol-2- yl) phenoxy) tert-butyl acetate as a white solid (95% yield).
  • Jurkat human cell lines T lymphocytes from acute T-cell leukemia
  • Ramos B lymphocytes from a Burkitt lymphoma
  • TK6 human lymphoblastic cell line
  • HeLa cervical adenocarcinoma epithelial cell line
  • MDA-MB -231 breast carcinoma epithelial cell line
  • T98-G glioblastoma cell line
  • Hep3B hepatocellular carcinoma epithelial cell line
  • Jurkat, Ramos, TK6 and CLL cell lines were grown in RPMI-1640 medium, and HeLa cells in DMEM medium containing 10% inactivated fetal serum (calf), 1% glutamine, and 1% penicillin-streptomycin.
  • the MDA-MB-231 cell line was grown in DMEM / F-12 medium that additionally contains 1% pyruvate.
  • Hep 3B cells were maintained in MEM medium supplemented with 10% fetal bovine serum. All cell types were grown at 37 ° C in a humidified atmosphere and with 5% carbon dioxide.
  • Peripheral blood lymphocytes were obtained from patients with CLL of the Hematology Unit at the IDIBELL-Hospital de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain. CLL was diagnosed according to standard clinical and laboratory criteria. The Informed consent of all patients, according to the Bellvitge Hospital Ethics Committee. Purification of the mononuclear leukocytes was performed by a gradient of Ficoll-Hypaque (Seromed, Berlin, Germany).
  • the purity of the LLC samples was evaluated by flow cytometry with allophycocyanin-conjugated anti-CD3 (allophycocyanin, APC) and phycoerythrin-conjugated anti-CD19 (phycoerythrin, PE) (Becton Dickinson, Frankiln Lakes, NJ, USA). The results were analyzed by flow cytometry and the analysis was carried out with the appropriate software.
  • DMSO dimethyl sulfoxide
  • Annexin V-FITC and propidium iodide were obtained from Bender MedSystems (Vienna, Austria).
  • Annexin V-APC was obtained from eBioscience (St Diego, USA). Violet crystal was obtained from Sigma-Aldrich
  • Apoptosis or programmed cell death, is a general mechanism of the immune system for the removal of unwanted cells. This
  • Apoptosis is also accompanied by a loss of asymmetry of the phospholipid membrane, resulting in the exposure of phosphatidylserine on the cell surface.
  • the Phosphatidylserine expression on the cell surface plays an important role in the recognition and elimination of apoptotic cells that carry out macrophages. This is one of the earliest events of the apoptotic process.
  • the method for the detection of apoptotic cells by flow cytometry uses the binding of annexin V labeled with a fluorochrome to phosphatidylserine.
  • Pl is sandwiched between double-stranded nucleic acids and is a fluorescent molecule with a molecular weight of 668.4 It can be used to stain the DNA. Pl is excluded by viable cells but can penetrate the cell membranes of dying and dead cells.
  • viable cells are annexin-V and double Pl negative
  • early apoptotics are annexin-V positive and Pl negative
  • late apoptotic cells are annexin-V and double Pl positive.
  • a fourth population of positive Pl cells correlates with necrotic cells.
  • This technique allows quantifying viable cells after being subjected to a toxic treatment and consists of cell staining with the violet crystal dye. Violet crystal only penetrates living cells, making it a good technique to determine cell viability of
  • the culture medium was removed and the cells washed twice with PBS.
  • the cells were stained and fixed with 0.2% (w / v) crystal violet in 2% ethanol for 30 minutes.
  • the plates were dried and the cells lysed with 10% SDS. Using a spectrophotometry analysis, the absorbance at 595 nm was measured. The results were calculated as the percentage of viable cells treated in relation to the control cells (cells incubated in the absence of treatment) at the indicated times.
  • Jurkat cells were chosen among other leukemic tumor cell lines because they have the mutated TP53 protein.
  • a dose-response analysis was performed in Jurkat cells with mutated TP53 and in HeLa cells with inactivated p53.
  • Jurkat cells which are T lymphocytes from an acute type T leukemia, with mutated TP53
  • a dose range from 1 ⁇ to 40 ⁇ for each compound for 24 hours. All compounds induced apoptosis in a dose-dependent manner measured by flow cytometry (cf. FIG. 1).
  • HeLa cells cervical adenocarcinoma epithelial cell line with inactivated p53
  • a dose range from 2 ⁇ to 40 ⁇ to each compound for 24 hours. All compounds induced apoptosis in a dose-dependent manner measured by flow cytometry (cf. FIG. 2).
  • IC 5 or at 24 hours was calculated for each compound using flow cytometric analysis.
  • the results are expressed in Table 3 as the percentage of non-apoptotic cells (annexin-V negative) with respect to untreated cells at 24 hours.
  • TK6 cells human lymphoblastic cell line with wild TP53
  • a dose range from 2 ⁇ to 40 ⁇ of compounds 1 a and I d for 24 hours. These compounds induced apoptosis in a dose-dependent manner measured by flow cytometry (cf. FIG. 3).
  • Ramos cells B lymphocytes from a Burkitt lymphoma with mutated TP53
  • a dose range from 2 ⁇ to 40 ⁇ of compounds 1 a and I d for 24 hours.
  • These compounds induced apoptosis in a dose-dependent manner measured by flow cytometry (cf. FIG. 4).
  • MDA-MB-231 cells epihelial cell line breast carcinoma mutated TP53
  • MDA-MB-231 cells epihelial cell line breast carcinoma mutated TP53
  • T98-G cells (glioblastoma cell line with mutated TP53) were incubated with a dose range from 2 ⁇ to 60 ⁇ of compounds 1 a and Id for 24 hours. These compounds induced apoptosis in a dose-dependent manner measured by flow cytometry (cf. FIG. 6).
  • Hep3B cells hepatocellular carcinoma cell line with deleted TP53
  • a dose range from 2 ⁇ to 40 ⁇ of compounds 1 a and Id for 24 hours. These compounds induced a loss of cell viability in a dose-dependent manner measured by the violet cirstal technique (cf. FIG. 7).
  • B lymphocytes from CLL patients with wild TP53 were incubated with a dose range from 1 ⁇ to 20 ⁇ of compounds 1 a and Id for 24 hours. These compounds induced apoptosis in a dose-dependent manner measured by flow cytometry (cf. FIG. 8).
  • Lymphocytes from LLC patients with wild p53 were incubated with a dose range from 5 ⁇ 5 to 40 ⁇ of compound l c for 24 hours. These compounds induced apoptosis in a dose-dependent manner measured by flow cytometry, in B lymphocytes while T lymphocytes were less sensitive (cf. FIG. 9).
  • B lymphocytes from CLL patients with TP53 mutant were incubated with a dose range from 1 to 20 ⁇ ⁇ compounds to l l d for 24 hours. These compounds induced apoptosis in a dose-dependent manner measured by flow cytometry (cf. FIG. 10).
  • the IC 5 or compounds to l l d was calculated at 24 hours using flow cytometric analysis, except for Hep3B cells was measured by the crystal violet assay. The results are expressed in Table 4 as the percentage of viable cells compared to untreated cells at 24 hours.
  • Example 30 Biological assays for the detection of the antitumor activity of the compounds ⁇ ⁇ v L
  • the effect of the compounds l g and l h has been studied in two cancer cell lines.
  • a dose-response analysis was performed on the Jurkat cell line with mutated TP53 and on HeLa cells with inactivated p53.
  • Viability was measured by flow cytometry and is expressed as the percentage of non-apoptotic cells (annexin-V APC negative) in relation to untreated control cells. Therefore, values below 100% are indicative of apoptosis or loss of cell viability.
  • Jurkat cells which are T lymphocytes from an acute type T leukemia, with mutated TP53
  • a dose range from 5 ⁇ to 40 ⁇ for each compound for 24 hours.
  • Both compounds induced apoptosis in a dose-dependent manner measured by flow cytometry (cf. FIG. 1 1 and 13).
  • HeLa cells cervical adenocarcinoma epithelial cell line with inactivated p53
  • All compounds induced apoptosis in a dose-dependent manner measured by flow cytometry (cf. FIG. 12 and 14).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Los compuestos de fórmula (I) o sus sales farmacéuticamente aceptables, o sus estereoisómeros o mezcla de estereoisómeros, donde: R1 se selecciona del grupo que consiste en: fenilo y fenilo mono-, di-, o tri-substituido por un radical independientemente seleccionado del grupo que consiste en F, Cl, Br, I, (C1C6)-alquilo, COO-(C1-C6)-alquilo, y (C1C6)-alcoxilo; y R2 es un radical seleccionado del mismo grupo que R1, incluyendo además un fenilo substituido en la posición 4 por un radical independientemente seleccionado del grupo que consiste en -O(CH2)CONH(CH2)3CH3 y -OCH2COOC(CH3)3, bifenil-4-ilo, tiazol-2-ilo, y tiazol-2-ilo mono- o di-substituido por un radical seleccionado entre F y fenilo; inhiben la proliferación celular de células tumorales independientemente de la proteína p53 y también pueden inducir apoptosis en varias células tumorales independientemente de la proteína p53, siendo útiles para el tratamiento de varios tipos de cáncer.

Description

Tiazoles fluorados útiles para el tratamiento del cáncer
La presente invención está relacionada con nuevos compuestos tiazólicos, composiciones farmacéuticas que los contienen y su utilización para el tratamiento del cáncer.
ESTADO DE LA TÉCNICA
El cáncer es una enfermedad heterogénea caracterizada por la acumulación de células tumorales, que puede ocasionar la muerte tanto en animales como en humanos. Los métodos convencionales para el tratamiento del cáncer incluyen los tratamientos quirúrgicos, la administración de agentes
quimioterapéuticos, y más recientemente los tratamientos basados en la respuesta inmune, los cuales implican la administración de un anticuerpo o un fragmento del anticuerpo que puede ser conjugado con una unidad terapéutica. Sin embargo, hasta el momento, tales tratamientos han tenido un éxito limitado.
La quimioterapia, a pesar de todas sus limitaciones, es todavía hoy uno de los métodos más extendidos para el tratamiento de diferentes tipos de cáncer. Por esto, el desarrollo de nuevas terapias antitumorales de
aplicabilidad general es uno de los principales objetivos de la química médica.
La incapacidad de los agentes químicos para distinguir entre las células normales de división rápida y las células tumorales puede conducir a una depresión del sistema inmune del paciente. Éste ha sido considerado uno de los principales problemas asociados a la quimioterapia, así como los mecanismos de resistencia desarrollados por las células cancerígenas, que incluyen la inactivación de la vía de p53. Aunque la mayoría de fármacos utilizados actualmente en terapia inducen apoptosis en estas células, al menos parcialmente, a través de la activación de la vía de p53, la proteína p53 se encuentra mutada en la mitad de los tumores analizados,
demostrando su importancia en el desarrollo del cáncer.
Se están realizando grandes esfuerzos a fin de mejorar los tratamientos antitumorales, intentando conseguir compuestos activos y selectivos que puedan actuar independientemente de la vía de p53, para administrar a pacientes con cáncer incipiente y recurrente o con metástasis.
Diversos productos naturales bioactivos mantienen como característica común la presencia de anillos tiazólicos en sus estructuras, muchos de ellos poseen propiedades antitumorales. Existe una gran diversidad estructural de péptidos cíclicos, alcaloides poliheterocíclicos, y compuestos de origen biogenético mixto que presentan motivos estructurales de naturaleza bis- tris- y politiazólica. El origen biogenético del anillo de tiazol proviene de la ciclodeshidratación generada por el tiol de la cadena lateral de la cisteína y el enlace peptídico vecino. Sin embargo, la síntesis de estos productos naturales suele ser complicada, tanto mediante la síntesis peptídica en fase sólida, como mediante protocolos de condensación (síntesis de Hantszch) o mediante reacciones de acoplamiento de metales de transición, a partir de productos que ya contengan en sus estructuras el anillo tiazólico.
Algunos compuestos bistiazólicos con capacidad de inhibir la proliferación celular se han descrito con anterioridad. Así, en la WO 2004/016622 se describen compuestos 4,4'-bipiridiil-2,2'-bisoxazoles y 4,4'-bipiridil-2,2'- bistiazoles con actividad antiproliferativa, en particular en las células HT-29.
Sin embargo, a pesar de los esfuerzos realizados hasta el momento, actualmente no existe una terapia curativa para la mayoría de tumores, por lo que todavía existe la necesidad de encontrar agentes antitumorales eficaces. En particular, sería de gran interés encontrar terapias antitumorales que puedan actuar de manera independiente de p53.
EXPLICACIÓN DE LA INVENCIÓN
Los inventores han encontrado una nueva familia de compuestos con el núcleo de tiazolina sustituido por átomos de flúor y por una gran variedad de anillos aromáticos constituyendo compuestos que contienen en sus estructuras hasta tres y cuatro anillos aromáticos. Estos compuestos presentan propiedades antitumorales (propiedades apoptóticas) contra varias líneas de células cancerígenas, y por lo tanto, son útiles para el tratamiento y/o prevención del cáncer. Se ha encontrado que estos compuestos promueven la apoptosis de las células tumorales independientemente de la proteína p53. En condiciones normales, al detectar daño en el ADN, la proteína p53 impide la replicación de la célula parando el ciclo celular en la fase G1 , o interíase, permitiendo la reparación del ADN. Sin embargo, induce a la apoptosis si el daño celular es muy extenso y los intentos de reparación fracasan. Cualquier interrupción en la regulación de la vía de p53, en su funcionamiento o en los genes diana aumenta la posibilidad de formación de tumores.
El hecho de que los compuestos de la presente invención promuevan la apoptosis de las células tumorales independientemente de la proteína p53 es de gran importancia, ya que la alteración de esta vía es una de las
principales causas de resistencia en la quimioterapia actual.
Por lo tanto, los compuestos de la presente invención son muy ventajosos debido a que reducen los problemas de quimioresistencia asociados a muchos agentes antitumorales y son activos frente a una gran variedad de líneas celulares cancerígenas.
Así, un aspecto de la presente invención está relacionado con la preparación de compuestos de fórmula general (I), o sus sales farmacéuticamente aceptables, o sus estereoisómeros o mezcla de estereoisómeros,
Figure imgf000005_0001
donde Ri es un radical seleccionado del grupo que consiste en: fenilo y fenilo mono-, di-, o tri-substituido por un radical independientemente seleccionado del grupo que consiste en F, Cl, Br, I, (d-C6)-alquilo, COO-(CrC6)-aquilo y (CrC6)-alcoxilo; y R2 es un radical seleccionado del mismo grupo que R-i, incluyendo además un fenilo substituido en la posición 4 por un radical independientemente seleccionado del grupo que consiste en
-O(CH2)CONH(CH2)3CH3 y -OCH2COOC(CH3)3, bifenil-4-ilo, tiazol-2-ilo y tiazol-2-ilo mono- o di-substituido, en las posiciones 4 o 5, por un radical seleccionado del grupo que consiste en F y fenilo.
El término "bifenilo" significa 1 ,1 '-bifenilo.
El término "sales farmacéuticamente aceptables" utilizado aquí comprende cualquier sal formada a partir de ácidos o bases no tóxicos
farmacéuticamente aceptables incluyendo ácidos o bases inorgánicos u orgánicos. No hay restricción de las sales, excepto que si se utilizan con fines terapéuticos deberán ser farmacéuticamente aceptables.
Todos los compuestos citados pueden tener un centro de asimetría, y por lo tanto, existir en diferentes formas enantioméricas. Todos los isómeros ópticos individuales y estereoisómeros de los compuestos a los que se hace referencia aquí, y las mezclas de ellos, se consideran dentro del ámbito de protección de la presente invención. Así pues, cualquier compuesto referido en el presente documento puede representar a cualquier forma de un racémico, a una o más formas enantioméricas, a una o más formas atropoisoméricas, y a mezclas de ellos.
Preferiblemente, los compuestos de fórmula (I) son aquellos en los que R2 es un radical seleccionado entre el mismo grupo que R-i, incluyendo además un bifenil-4-ilo, un tiazol-2-ilo y un tiazol-2-ilo mono o di - sustituido, en posiciones 4 o 5, por un radical seleccionado entre el grupo que consiste en F y fenilo.
En una realización preferida, los compuestos de fórmula (I) son aquéllos en los que Ri se selecciona del grupo que consiste en: fenilo y fenilo mono- sustituido por un radical independientemente seleccionado del grupo que consiste en Cl, (d-C4)-alquilo y COO-(d-C4)-alquilo. En una realización más preferida, los compuestos de fórmula (I) son aquéllos en los que Ri se selecciona del grupo que consiste en: fenilo, 4-etilfenilo, 4-clorofenilo, 2-metilfenilo, 4-metilfenilo, 2-etoxifenilcarbonilo y 4-etoxifenilcarbonilo.
En otra realización preferida, los compuestos de fórmula (I) son aquéllos en los que R2 es un radical seleccionado del grupo que consiste en: fenilo y fenilo mono-sustituido por un radical independientemente seleccionado del grupo que consiste en Cl, (d-C4)-alquilo y COO-(d-C4)-alquilo. En una realización más preferida, los compuestos de fórmula (I) son aquéllos en los que R2 es un radical seleccionado del grupo que consiste en: fenilo, 4- etilfenilo, 4-clorofenilo, 2-metilfenilo, 4-metilfenilo, 2-etoxifenilcarbonilo y 4- etoxifenilcarbonilo.
En otra realización preferida, los compuestos de fórmula (I) son aquéllos en los que R2 es bifenil-4-ilo.
En otra realización preferida, los compuestos de fórmula (I) son aquéllos en los que R2 se selecciona entre un tiazol-2-ilo y un tiazol-2-ilo substituido, en las posiciones 4 o 5, por un radical seleccionado del grupo que consiste en F y fenilo, teniendo la siguiente fórmula (la):
Figure imgf000007_0001
En la fórmula anterior R-, tiene el mismo significado que en los compuestos de fórmula (I) y R3 y R4 se seleccionan independientemente entre F y fenilo.
En otra realización preferida, los compuestos de fórmula (I) son aquéllos en los que R2 es 5-feniltiazol-2-ilo o 4-fluoro-5-feniltiazol-2-ilo.
En otra realización preferida, los compuestos de fórmula (I) son aquéllos en los que R2 es fenilo sustituido en la posición 4 por -O(CH2)CONH(CH2)3CH3 o por -OCH2COOC(CH3)3.
Los compuestos más preferidos de fórmula (I) son los de la Tabla 1
Figure imgf000008_0002
Los compuestos de la presente invención se pueden preparar de manera sencilla y flexible a partir de reactivos comerciales mediante una variedad de procedimientos.
Los compuestos de fórmula (I) donde Ri es igual a R2, Ri y R2 siendo seleccionados del grupo que consiste en: fenilo, y fenilo mono-, di-, tri- sustituido por un radical independientemente seleccionado del grupo que consiste en F, Cl, Br, I, (C C6)-alquilo, COO-(C C6)-alquilo y (C4-C6)- alcoxilo, se pueden preparar por un procedimiento que comprende en primer lugar llevar a cabo una reacción de acoplamiento de Suzuki de un compuesto de fórmula (II), donde X es un halógeno, con un compuesto de fórmula RiB(OH)2, donde Ri tiene el mismo significado que para el compuesto (I), en presencia de un catalizador de paladio, seguido por llevar a cabo una reacción de fluoración del compuesto obtenido con un agente de fluoración para dar un compuesto de fórmula (I) con R-i=R2.
Figure imgf000008_0001
Preferiblemente, se utiliza el 2,5-dibromotiazol como material de partida, aunque otros 2,5-dihalogenotiazoles también se pueden utilizar como materiales de partida.
El Esquema I ilustra una realización particular del procedimiento de preparación de compuestos simétricos de fórmula (I).
Figure imgf000009_0001
Según el esquema anterior, el 4,4',5-trifluoro-4,5-dihidrotiazol de fórmula (I) se puede obtener por acoplamiento directo del 2,5-dibromotiazol utilizando un catalizador de paladio tal como Pd(OAc)2, una base tal como carbonato de sodio y un disolvente apropiado tal como un (C6-C8)-hidrocarburo aromático, por ejemplo, tolueno. En general, la reacción se lleva a cabo a una
temperatura comprendida entre 90-1 10 °C, preferiblemente alrededor de 100 °C.
La posterior fluoración en el anillo de tiazol del compuesto (A) obtenido con un agente fluorante tal como el bis-(tetrafluoroborato) de 1 -clorometil-4- fluoro-1 ,4-diazoniabiciclo[2.2.2]octano (Selectfiuor®), da lugar a compuestos de fórmula (I) con rendimientos moderados. La fluoración se realiza en un disolvente adecuado tal como acetonitrilo, generalmente a altas
temperaturas, en particular a la temperatura de reflujo del disolvente empleado.
El procedimiento de fluoración permite en algunos casos aislar el
correspondiente compuesto monofluorado (H). Preferiblemente, se utiliza un compuesto de fórmula RiB(OH)2 donde Ri se selecciona entre fenilo, 4-etilfenilo, 4-metilfenilo, 4-clorofenilo y 2-metilfenilo.
Los compuestos de fórmula (I) con R-, diferente a R2; donde Ri tiene el mismo significado que se menciona anteriormente y R2 es un radical seleccionado del mismo grupo que R-i, incluyendo además bifenil-4-ilo, se pueden preparar a partir de un procedimiento que comprende en primer lugar llevar a cabo un acoplamiento de Suzuki de un compuesto de fórmula (III) con un compuesto de fórmula R2B(OH)2, donde R2 es un radical seleccionado del mismo grupo que R-i, incluyendo además bifenil-4-ilo, en presencia de un catalizador de paladio, a continuación, llevar a cabo la halogenación del compuesto obtenido con una fuente de halógeno y el posterior acoplamiento del compuesto obtenido con un compuesto de fórmula R B(OH)2, donde Ri tiene el mismo significado que para el compuesto (I), en presencia de un
catalizador de paladio y, finalmente, someter el compuesto obtenido a una reacción de fluoración con un agente fluorante para dar el compuesto de fórmula (I) con R-, diferente a R2.
Figure imgf000010_0001
Preferiblemente, se utiliza el 2-bromotiazol como material de partida, aunque también se pueden utilizar otros 2-halogenotiazoles.
El Esquema II ilustra una realización particular del procedimiento para compuestos no simétricos de fórmula (I) Esquema II:
Figure imgf000011_0001
Según el esquema anterior, los compuestos no simétricos de fórmula (I) se pueden obtener por acoplamiento de Suzuki del 2-bromotiazol con un ácido borónico de fórmula R2B(OH)2 utilizando un catalizador de paladio tal como Pd(OAc)2, una base tal como carbonato de sodio y un disolvente apropiado tal como un (C6-C8)-hidrocarburo aromático, por ejemplo, tolueno. En general, la reacción se lleva a cabo a una temperatura comprendida entre 90-1 10 °C, preferiblemente a una temperatura cercana a 100 °C.
El compuesto resultante de formula (B) se puede halogenar en la posición 5. Preferiblemente, la reacción de halogenación es una bromación llevada a cabo con una fuente de bromuro tal como N-bromosuccinimida (NBS), obteniéndose un compuesto fórmula (C).
Seguidamente, se puede introducir un nuevo grupo fenilo en posición 5 por acoplamiento de Suzuki con un compuesto de fórmula R-|B(OH)2, utilizando catalizador de paladio tal como Pd(OAc)2, una base tal como carbonato de sodio y un disolvente apropiado tal como un (C6-C8)-hidrocarburo aromático, por ejemplo, tolueno. En general, la reacción se lleva a cabo a una
temperatura comprendida entre 90-1 10 °C, preferiblemente a una
temperatura cercana a 100 °C.
La posterior fluoración en el anillo de tiazol del compuesto (D) obtenido puede llevarse a cabo tal como se ha descrito anteriormente, por ejemplo, con un agente fluorante tal como el bis-(tetrafluoroborato) de 1 -clorometil-4- fluoro-1 ,4-diazoniabiciclo[2.2.2]octano (Selectfluor®), dando lugar a compuestos de fórmula (I) con buenos rendimientos.
Alternativamente, los compuestos de formula (I) con R-, diferente a R2 tales como los mencionados anteriormente se pueden preparar por un
procedimiento que comprende primero llevar a cabo un acoplamiento de Suzuki del compuesto de fórmula (III) con un compuesto de fórmula R2B(OH)2 donde R2 es un radical seleccionado del mismo grupo que R-i, incluyendo además bifen il-4-ilo, donde Ri tiene el mismo significado que el compuesto (I), en presencia de un catalizador de paladio, seguido de someter el compuesto obtenido a una reacción de activación C-H con un compuesto de fórmula R-il donde Ri tiene el mismo significado que para el compuesto (I); y, finalmente, someter el compuesto obtenido a una reacción de fluoracion con un agente fluorante para dar el compuesto de fórmula (I) con R-, diferente a R .
En una realización particular, el compuesto de fórmula (I) obtenido por este procedimiento es aquél en el que Ri es 4-metilfenilo y R2 es
4-etoxicarbonilfenilo.
El Esquema III ilustra una realización particular de este procedimiento.
Esquema III:
Figure imgf000012_0001
Generalmente, el acoplamiento de Suzuki para dar el compuesto (B) se lleva a cabo en las mismas condiciones mencionadas anteriormente.
Posteriormente, es posible introducir un nuevo grupo arilo en la posición 5 por reacción de activación C-H con un compuesto de fórmula R-il según se ha definido anteriormente con un catalizador de paladio como 1 ,1 'bis
(difenilfosfina) ferroceno] dicloropaladio (II), y un base como el carbonato de plata. La reacción se lleva a cabo a una temperatura comprendida entre 50 y 70 °C, preferiblemente a una temperatura aproximada de 60 °C.
La posterior fluoración en el anillo de tiazol del compuesto (D) obtenido puede llevarse a cabo como se menciona anteriormente.
Finalmente, los compuestos de fórmula (I) donde Ri es fenilo y R2 es tiazol-2- ilo substituido por un fenilo se pueden preparar por un procedimiento que comprende llevar a cabo una reacción de homoacoplamiento del compuesto de fórmula (III) en presencia de un catalizador de paladio, la posterior halogenación del compuesto obtenido con una fuente de halogenación, seguido de una reacción de acoplamiento de Suzuki del compuesto obtenido con un compuesto de fórmula R aB(OH)2, donde Ria es fenilo, en presencia de catalizador de paladio, seguido de llevar a cabo una reacción de fluoración del compuesto obtenido con un agente fluorante para dar el compuesto de fórmula (I) donde Ri es fenilo y R2 es tiazol-2-ilo substituido por un fenilo.
Preferiblemente, la reacción de halogenación es una reacción de bromación. El Esquema (IV) ilustra una realización particular del procedimiento. Esquema (IV):
Figure imgf000014_0001
Según el esquema anterior, el 4,4',5-trifluoro-4,5-dihidrotiazol de fórmula (I) puede obtenerse por homoacoplamiento del 2-bromotiazol utilizando un catalizador de paladio, tal como el Pd(OAc)2, una base tal como la
diisopropiletilamina y un disolvente apropiado tal como el tolueno. El
2,2'-bistiazol resultante de fórmula (E) se puede halogenar con una fuente de halógeno, tal como una fuente de bromo, por ejemplo, bromo molecular, para dar lugar al compuesto 5,5'-dibromo-2,2'-bistiazol de fórmula (F).
Seguidamente, se lleva a cabo un acoplamiento de Suzuki con un ácido borónico de fórmula R aB(OH)2 utilizando un catalizador de paladio tal como tetraquis(trifenilfosfina)-paladio (0), una base tal como carbonato de sodio y un disolvente apropiado tal como tolueno, en las mismas condiciones mencionadas anteriormente para llevar a cabo el acoplamiento de Suzuki.
La posterior fluoración del compuesto (G) obtenido previamente se lleva a cabo en las condiciones descritas anteriormente utilizando un agente fluorante tal como bis-(tetrafluoroborato) de 1 -clorometil-4-fluoro-1 ,4- diazoniabiciclo[2.2.2]octano (Selectfluor®).
Los procedimientos de preparación descritos anteriormente, se pueden modificar para obtener compuestos enantiopuros así como mezclas de estereoisómeros. Es posible preparar estereoisómeros específicos o mezclas específicas por varios métodos, incluyendo entre ellos el uso de reactivos estereoespecíficos o mediante la introducción de centros quirales en los compuestos durante su procedimiento de preparación. Además, es posible separar los estereoisómeros una vez se ha preparado el compuesto por técnicas de resolución estándar bien conocidas por la persona experta en la materia.
La preparación de las sales farmacéuticamente aceptables de los
compuestos de fórmula (I) puede llevarse a cabo por métodos conocidos en el estado de la técnica. Por ejemplo, pueden prepararse a partir de los compuestos primigenios los cuales contienen un centro reactivo básico o ácido, mediante métodos químicos convencionales. Generalmente, dichas sales se preparan al hacer reaccionar las formas ácido o base libres de esos compuestos con la cantidad estequiométrica de una base o un ácido farmacéuticamente aceptables en agua o en un disolvente orgánico o en una mezcla de los mismos.
Los compuestos de la presente invención pueden encontrarse en forma cristalina, tanto como compuestos libres de disolvente o como solvatos (por ejemplo, hidratos) y se entiende que ambas formas están dentro del ámbito de protección de la presente invención. Los métodos de solvatación son generalmente conocidos dentro de la técnica.
Una característica importante de los compuestos de la presente invención es su capacidad para inhibir el crecimiento celular en las líneas tumorales testadas, y en particular su capacidad para inducir citotoxicidad promoviendo apoptosis. Tal y como se muestra en los Ejemplos, los compuestos de la presente invención presentan propiedades antitumorales sobre distintas líneas celulares de cáncer así como en células primarias de leucemia linfocítica crónica.
Así, otro aspecto de la presente invención está relacionado con la
preparación de compuestos de fórmula general (I), o sus sales
farmacéuticamente aceptables o sus esteroisómeros o mezcla de
esteroisómeros para su utilización como medicamento.
Otro aspecto de la presente invención está relacionado con la preparación de compuestos de fórmula (I), o sus sales farmacéuticamente aceptables, o sus esteroisómeros o mezcla de esteroisómeros para uso en el tratamiento y/o prevención del cáncer, ya que son activos frente a todos los tipos de cáncer que han sido testados.
En una realización particular, se proporcionan compuestos de fórmula (I), o sus sales farmacéuticamente aceptables, o sus esteroisómeros o mezcla de esteroisómeros para uso en el tratamiento y/o prevención de tumores con P53 mutada.
Preferiblemente, los compuestos de la presente invención son especialmente activos frente a los siguientes tipos de cáncer: leucemia, linfoma, cáncer cervical, adenocarcinoma de mama, glioblastoma y carcinoma hepatocelular. Más preferiblemente, el cáncer es leucemia o linfoma. Aún más
preferiblemente, el tipo de linfoma o de leucemia son las neoplasias de células B.
Este aspecto de la invención también se puede formular como el uso de los compuestos de fórmula (I) tal como se han definido anteriormente, para la preparación de un medicamento para el tratamiento y/o prevención del cáncer en un mamífero, incluyendo el ser humano.
La invención también se refiere a un método de tratamiento del cáncer en un mamífero, incluyendo el ser humano, que sufre o es susceptible de padecer un cáncer, en particular a los tipos de cáncer ya mencionados, dicho método comprende la administración al citado paciente de una cantidad
terapéuticamente efectiva de un compuesto de fórmula (I), tal como se ha definido anteriormente, junto con excipientes o portadores farmacéuticamente aceptables.
Los compuestos de la presente invención se pueden utilizar de la misma manera que otros agentes quimioterapéuticos ya conocidos. Se pueden utilizar solos o en combinación con otros compuestos bioactivos adecuados.
Otro aspecto de la presente invención, está relacionado con una composición farmacéutica que contenga una cantidad terapéuticamente eficaz de los compuestos de la presente invención, junto con cantidades apropiadas de excipientes o portadores farmacéuticamente aceptables. La expresión "cantidad terapéuticamente efectiva" como se usa aquí, se refiere a la cantidad de un compuesto que, cuando se administra, es suficiente para prevenir el desarrollo de, o aliviar en cierto grado, uno o más de los síntomas de la enfermedad a la que se dirige. La dosis particular de compuesto administrado según esta invención será por supuesto
determinada por las condiciones particulares que rodean el caso, incluyendo el compuesto administrado, la ruta de administración, la condición particular que se está tratando, y las consideraciones similares.
La expresión "excipientes o portadores farmacéuticamente aceptables" se refiere a materiales farmacéuticamente aceptables, composiciones o vehículos. Cada componente debe ser farmacéuticamente aceptable en el sentido de ser compatible con los otros ingredientes de la composición farmacéutica. Debe ser también apto para el uso en contacto con tejidos u órganos de humanos y animales sin demasiada toxicidad, irritación, respuesta alérgica, inmunogenicidad u otros problemas o complicaciones acorde con una relación beneficio/riesgo razonable.
El tratamiento quimioterapéutico que se deriva de la presente invención es un nuevo enfoque de la terapia del cáncer y tiene la ventaja de ser útil para el tratamiento de varios tipos de cáncer.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La FIG. 1 muestra la dosis-respuesta del compuesto la desde 1 μΜ hasta 10 μΜ en la línea celular Jurkat (linfocitos T procedentes de una leucemia aguda de tipo T, con TP53 mutado) a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas).
La FIG. 2 muestra la dosis-respuesta del compuesto la desde 2 μΜ hasta 40 μΜ en las células HeLa (línea celular epitelial procedente de un carcinoma cervical, con p53 inactivado) a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas).
La FIG. 3 muestra la dosis-respuesta del compuesto la desde 2 μΜ hasta 40 μΜ en las células TK6 (línea celular linfoblástica humana con TP53 salvaje, no-mutada) a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas).
La FIG. 4 muestra la dosis-respuesta del compuesto la desde 2 μΜ hasta 40 μΜ en la línea celular Ramos (linfocitos B procedentes de un linfoma de Burkitt, con TP53 mutado) a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas).
La FIG. 5 muestra la dosis-respuesta del compuesto la desde 2 μΜ hasta 60 μΜ en las células MDA-MB-231 (línea celular epitelial de adenocarcinoma de mama, con TP53 mutado) a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas).
La FIG. 6 muestra la dosis-respuesta del compuesto la desde 2 μΜ hasta 60 μΜ en las células T98-G (línea celular procedente de un glioblastoma, con TP53 mutado) a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas).
La FIG. 7 muestra la dosis-respuesta del compuesto la desde 2 μΜ hasta 40 μΜ en las células Hep3B (línea celular de tipo epitelial, diferenciada, procedente de carcinoma hepatocelular, con TP53 delecionado) a las 24 horas de incubación. La viabilidad se midió por el ensayo de cristal violeta y se expresa como el porcentaje de células viables en relación a las células control no tratadas.
La FIG. 8 muestra la dosis-respuesta del compuesto la desde 1 μΜ hasta 20 μΜ en linfocitos B de Leucemia Linfocítica Crónica (LLC) con TP53 salvaje (B-LLC p53S), a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas). Se muestra un paciente representativo.
La FIG. 9 muestra la dosis-respuesta del compuesto lc desde 5 μΜ hasta 40 μΜ en linfocitos B (puntos negros) y linfocitos T (puntos blancos) con TP53 salvaje (B y T p53S), a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexin-V FITC negativas). Se muestra un paciente representativo.
La FIG. 10 muestra la dosis-respuesta del compuesto la desde 1 μΜ hasta 20 μΜ en células de LLC con TP53 mutado (B-LLC p53M), a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas). Se muestra un paciente representativo.
La FIG. 1 1 muestra la dosis-respuesta del compuesto lg desde 5 μΜ hasta 40 μΜ en la línea celular Jurkat (linfocitos T procedentes de una leucemia aguda de tipo T, con TP53 mutado) a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas).
La FIG. 12 muestra la dosis-respuesta del compuesto lg desde 5 μΜ hasta 40 μΜ en las células HeLa (línea celular epitelial procedente de un carcinoma cervical, con TP53 inactivado) a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas).
La FIG. 13 muestra la dosis-respuesta del compuesto lh desde 5 μΜ hasta 40 μΜ en la línea celular Jurkat (linfocitos T procedentes de una leucemia aguda de tipo T, con TP53 mutado) a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas).
La FIG. 14 muestra la dosis-respuesta del compuesto lh desde 5 μΜ hasta 40 μΜ en las células HeLa (línea celular epitelial procedente de un carcinoma cervical, con TP53 inactivado) a las 24 horas de incubación. La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas).
EJEMPLOS
Salvo indicación contraria, todas las reacciones se llevaron a cabo bajo atmósfera de argón y material de vidrio seco. Los reactivos comerciales se utilizaron sin purificación adicional. Las temperaturas de reacción se controlaron mediante un modulador de la temperatura IKA. La cromatografía en capa fina se realizó en cromatofolios de gel sílice 60 F254 (Merck) y el revelado mediante visualización con luz UV o con una solución de KMnO4. Para la purificación en columna cromatográfica flash se utilizó gel sílice (tamaño de partícula 35-70 μιτι). Se utilizaron columnas de fase reversa Symmetry C18 de dimensiones 4.6 mm x 150 mm, 5 μιτι (columna A) de HPLC. Los análisis por HPLC se realizaron en un aparato compuesto de dos bombas de suministro de disolvente, un inyector automático y un detector de longitud de onda variable y un controlador del sistema (Breeze V3.20). Los análisis por MALDI-TOF se realizaron utilizando la matriz ACH. Los espectros de IR se obtuvieron con un espectrofotómetro Thermo Nicolet Nexus y las bandas de absorción se indican en cm-1. Los puntos de fusión se realizaron en un aparato Büchi Melting Point B-540.
Ejemplo 1 : Preparación del 2,2'-bistiazol (compuesto E)
En un matraz de vidrio (secado en estufa) provisto de un condensador y mantenido bajo atmósfera de nitrógeno, se añadieron 2-bromotiazol (12.88 g, 78.53 mmol), N,N-diisopropiletilamina (13.8 mL, 78.80 mmol), acetato de paladio (0.90 g, 3.93 mmol) y bromuro de tetrabutilamonio (12.67 g, 39.30 mmol). El matraz se purgó tres veces con nitrógeno y seguidamente se adicionó el tolueno (170 mL). La mezcla de reacción se agitó a 105 °C durante 24h. Una vez completada la reacción, se diluyó con H2O (150 mL) y se realizaron extracciones con diclorometano(DCM) (3 x 50 mL). Los extractos orgánicos se secaron sobre Na2SO4, se filtró y se evaporó a presión reducida. El residuo se purificó por columna cromatográfica de tipo flash (instantánea) (SiO2, hexano:AcOEt, 9:1 ), obteniéndose 8.20 g de 2,2'- bistiazol como un sólido amarillo claro (63% de rendimiento). 1H-RMN
(CDCI3, 400 MHz): 57.90 (d, J = 3.1 Hz, 2H), 7.44 (d, J = 3.1 Hz, 2H) ppm. EM (IE): m/z (%): 168 (M+, 100).
Ejemplo 2: Preparación del 5,5'-dibromo-2,2'-bistiazol (compuesto F)
A una solución de 2,2'-bistiazol (84 mg, 0.5 mmol) en DCM anhidro (5 mL) se añadió lentamente Br2 (103 μί, 2 mmol). La reacción se agitó durante 10 h a temperatura ambiente. A continuación, se añadió NaHCO3 (21 mg, 0.25 mmol) y la mezcla se agitó durante 38 h. Trascurrido este tiempo, se diluyó con DCM (25 mL) y se realizaron lavados con una solución acuosa saturada de NaHCO3 (4 x 50 mL), con H2O (4 x 50 mL) y con Na2SO3 (4 x 50 mL). Los extractos orgánicos se secaron sobre Na2SO4, se filtró y se evaporó a presión reducida. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano:AcOEt, 1 :1 ), obteniéndose 138 mg de 5,5'-dibromo-2,2'- bistiazol como un sólido marrón (85% de rendimiento).1H-RMN (CDCI3, 400 MHz): δ 7.75 (s, 2H) ppm. 13C-RMN (CDCI3, 400 MHz): 5161 .91 , 145.12, 1 12.03 ppm. IR (NaCI):D 1695, 1468, 1 142, 1 132, 998, 918, 899, 850, 745, 631 , 604, 474 cm"1. UV-Vis. [ max nm (log ε), MeOH]: 341 .50 (4.43). EM (IE): m/z (%): 326 (M+, 100), 167 (76.13), 83 (4.47), 57 (47.51 ).
Ejemplo 3: Preparación del 5,5'-difenil-2,2'-bistiazol (compuesto G)
En un matraz de vidrio (secado en estufa) provisto de un condensador y mantenido bajo atmósfera de nitrógeno, se añadieron 5,5'-dibromo-2,2'- bistiazol (440 mg, 1 .35 mmol) y tetraquis(trifenilfosfina)paladio (0) (94.4 mg, 0.081 mmol). El matraz se purgó tres veces con nitrógeno y seguidamente se adicionó el tolueno (13.5 mL). Se adicionó una solución acuosa de Na2CO3 2 M (5.4 mL) y el ácido fenilborónico (373.2 mg, 2.97 mmol). La mezcla de la reacción se agitó a 80 °C durante 12 h. Cuando se completó la reacción, los sólidos inorgánicos se filtraron sobre un lecho de tierra de diatomeas
(Celite®) y el residuo obtenido se lavó varias veces con diclorometano, a continuación se filtró y se evaporó. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano: acetato de etilo (AcOEt), 8:2). Seguidamente, se realizó una cristalización en tolueno para rendir 356 mg de 5,5'-difenil-2,2'-bistiazol (82% de rendimiento). 1H-RMN (CDCI3, 400 MHz): δ 8.06 (s, 2H), 7.63 (m, 4H), 7.45 (m, 4H), 7.38 (m, 2H) ppm. 13C-RMN (CDCI3, 400 MHz): δ 160.2, 141 .4, 139.4, 130.9, 129.3, 128.9, 126.8 ppm. IR (NaCI):O 3064, 1477, 1442, 1394, 1332 cm"1. UV-Vis. [ max nm (log ε), MeOH]: 377.50 (4.43), 254.00 (4.05), 201 .00 (4.60). Punto de fusión: 237.4-239.0 °C. EM (IE): m/z (%): 320 (M+, 100). HRMS (ESI): calculado para C18H13N2S2:
321 .0515; encontrado: 321 .0518.
Ejemplo 4: Preparación del 4-fluoro-5-fenil-2-(4,4,5-trifluoro-5-fenil-4,5- dihidrotiazol-2-il)tiazol (compuesto (I) con Ri = fenilo y R? = 4-fluoro-5- feniltiazol-2-ilo, compuesto ( ))
A una solución de 5,5'-difenil-2,2'-bistiazol (100 mg, 0.31 mmol) en acetonitrilo (ACN) (8 ml_) se añadió Selectfiuor® (232.8 mg, 0.62 mmol). La reacción se agitó durante 12 h a la temperatura de reflujo. Pasado este tiempo se añadió de nuevo más Selectfiuor® (232.8 mg, 0.62 mmol) y se agitó durante 12 h a la temperatura de reflujo. A continuación, se diluyó con éter (50 ml_) y se realizaron lavados con H2O (3 x 25 ml_) y una solución acuosa saturada de NaHCO3 (3 x 25 ml_). Los extractos orgánicos se secaron sobre Na2SO4, se filtró y se evaporó a presión reducida. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano:AcOEt, 8:2),
obteniéndose 10 mg de 4-fluoro-5-fenil-2-(4,4,5-trifluoro-5-fenil-4,5- dihidrotiazol-2-il)tiazol como un sólido blanco ( 22% de rendimiento). 1H-RMN (CDCI3, 400 MHz): δ 7.70 (m, 4H), 7.48 (m, 6H) ppm. 19F-RMN (CDCI3, 400 MHz): δ -79.98 (dd, J = 219.06, 9.07 Hz),-103.63 (s), -103.73 (dd, J = 219.05, 7.85 Hz), -131 .52 (m) ppm. EM (IE): m/z (%): 395.02 (M+, 100). HRMS (ESI): calculado para Ci8H10F4N2S2: 395.0294; encontrado: 395.0285.
Ejemplo 5: Preparación del 5-fenil-2-(4,4,5-trifluoro-5-fenil-4,5-dihidrotiazol-2- ¡Dtiazol (compuesto (I) con R1 = fenilo y R? = 5-feniltiazol-2-ilo, compuesto übll
El compuesto del título se preparó de manera análoga al Ejemplo 4 a partir del 5,5'-difenil-2,2'-bistiazol (100 mg, 0.31 mmol) y Selectfiuor® (465.6 mg, 1 .24 mmol), obteniéndose 20 mg de 5-fenil-2-(4,4,5-trifluoro-5-fenil-4,5- dihidrotiazol-2-il)tiazol como un sólido blanco ( 27% de rendimiento). 1H-RMN (CDCI3, 400 MHz): δ 8.24 (s, 1 H), 7.72 (m, 2H), 7.66 (m, 2H), 7.49 (m, 6H) ppm. 19F-RMN (CDCI3, 400 MHz): δ -79.65 (dd, J = 218.74, 9.14 Hz), -103.39 (dd, J = 218.73, 7.89 Hz), -131 .58 (m) ppm. EM (IE): m/z (%): 377.03 (M+, 100).
Ejemplo 6: Preparación del 2,5-difeniltiazol (compuesto (A) con R1 = fenilo, compuesto (An))
El compuesto del título se preparó de manera análoga al Ejemplo 3 a partir del 2,5-dibromotiazol (200 mg, 0.80 mmol) y el ácido fenilborónico (220.8 mg, 1 .76 mmol) durante 18 h a 80 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano: AcOEt, 9:1 ), obteniéndose 78 mg de 2,5-difeniltiazol como un sólido amarillento (42% de rendimiento). EM (IE): m/z (%): 237.89 (M+, 100). HRMS (ESI): calculado para C15HnNS: 238.0685; encontrado: 238.0685.
Ejemplo 7: Preparación del 2,5-bis(4-etilfenil)tiazol (compuesto (A) con R1 = 4-etilfenilo, compuesto (Ah))
El compuesto del título se preparó de manera análoga al Ejemplo 3 a partir del 2,5-dibromotiazol (250 mg, 1 .00 mmol) y el ácido 4-etilfenilborónico (339.6 mg, 2.20 mmol) durante 3 h a 100 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano: AcOEt, 9:1 ),
obteniéndose 242 mg de 2,5-bis(4-etilfenil)tiazol como un sólido amarillento (83% de rendimiento). EM (IE): m/z (%): 293 (M+, 100). HRMS (ESI): (M+H)+ calculado para C6H3N2S2I2: 294.131 1 ; encontrado: 294.1313.
Ejemplo 8: Preparación del 2,5-bis(4-clorofenil)tiazol (compuesto (A) con R1 = 4-clorofenilo, compuesto (Ari))
El compuesto del título se preparó de manera análoga al Ejemplo 3 a partir del 2,5-dibromotiazol (250 mg, 1 .00 mmol) y el ácido 4-clorofenilborónico (361 .5 mg, 2.20 mmol) durante 3 h a 100 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano: AcOEt, 9:1 ),
obteniéndose 236 mg de 2,5-bis(4-clorofenil)tiazol como un sólido blanco (78% de rendimiento). EM (IE): m/z (%): 305.9 (M+, 100). 307.9 (M+, 69). HRMS (ESI): calculado para Ci5H9CI2NS: 304.9906; encontrado: 304.9902.
Ejemplo 9: Preparación del 2,5-di-o-toliltiazol (compuesto (A) con Ri = 2- metilfenilo, compuesto (A¡))
El compuesto del título se preparó de manera análoga al Ejemplo 3 a partir del 2,5-dibromotiazol (264 mg, 1 .08 mmol) y el ácido o-tolilfenilborónico (325.0 mg, 2.39 mmol) durante 3 h a 100 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano: AcOEt, 8:2),
obteniéndose 218 mg de 2,5-di-o-toliltiazol como un sólido amarillo (74% de rendimiento). HRMS (ESI): calculado para Ci7H16NS: 266.0998; encontrado: 266.1005.
Ejemplo 10: Preparación del 2,5-di-p-toliltiazol (compuesto (A) con Ri = 4- metilfenilo, compuesto (AG))
El compuesto del título se preparó de manera análoga al Ejemplo 3 a partir del 2,5-dibromotiazol (250 mg, 1 .00 mmol) y el ácido p-tolilfenilborónico (317.3 mg, 2.20 mmol) durante 3 h a 100 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano: AcOEt, 8:2),
obteniéndose 202 mg de 2,5-di-p_-toliltiazol como un sólido amarillo (73% de rendimiento). EM (IE): m/z (%): 265.1 (M+, 100). HRMS (ESI): calculado para Ci7H16NS: 266.0998; encontrado: 266.0999.
Ejemplo 1 1 : Preparación del 4,4,5-trifluoro-2,5-difenil-4,5-dihidrotiazol (compuesto (I) con Ri = R? = fenilo, compuesto (U)
El compuesto del título se preparó de manera análoga al Ejemplo 4 a partir del 2,5-difeniltiazol (50 mg, 0.18 mmol) y Selectfiuor® (164.1 mg, 0.44 mmol) en ACN durante 2 h a 80 °C. El residuo se purificó por columna
cromatográfica de tipo flash (SiO2, hexano:AcOEt, 9:1 ), obteniéndose 15 mg de 4,4,5-trifluoro-2,5-difenil-4,5-dihidrotiazol como un sólido blanco (28% de rendimiento). 1H-NMR (CDCI3, 400 MHz): δ 8.04-7.98 (m, 2H), 7.74-7.60 (m, 2H), 7.56-7.52 (m, 2H), 7.50-7.41 (m, 4H) ppm. 19F-NMR (CDCI3, 400 MHz): δ -79.76 (dd, J = 218.04, 10.26 Hz), -103.77 (dd, J = 218.14, 8.32 Hz), -130.96 (m) ppm. HRMS (ESI): calculado para Ci5H10 F3NS: 293.0486; encontrado: 293.0553. Ejemplo 12: Preparación del 4,4,5-trifluoro-2,5-bis(4-etilfenil)-4,5-dihidrotiazol (compuesto (I) con Ri = R? = 4-etilfenilo, compuesto (U)
El compuesto del título se preparó de manera análoga al Ejemplo 4 a partir del 2,5-bis(4-etilfenil)tiazol (100 mg, 0.34 mmol) y Selectfiuor® (305.0 mg, 0.82 mmol) en ACN durante 1 h a 80 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano:AcOEt, 9:1 ), obteniéndose 21 mg de 4,4,5-trifluoro-2,5-bis(4-etilfenil)-4,5-dihidrotiazol como un sólido blanco (18% de rendimiento). 1H-RMN (CDCI3, 400 MHz): δ 7.92 (d, J = 8.24 Hz, 2H), 7.62 (d, J = 7.96 Hz, 2H), 7.32 (dd, J = 21 .08, 8.18 Hz, 4H), 2.73 (qd, J = 15.20, 7.59, 7.59, 7.57 Hz, 4H), 1 .28 (td, J = 7.63, 3.81 , 3.81 Hz, 6H) ppm. 19F-RMN (CDCI3, 400 ΜΗζ):δ -79.43 (dd, J = 217.43, 9.85 Hz), -103.79 (dd, J = 217.38, 9.14 Hz), -130.03 (m) ppm. HRMS (ESI): calculado para d9H18 F3NS: 377.0316; encontrado: 377.0385.
Ejemplo 13: Preparación del 4,4,5-trifluoro-2,5-bis(4-clorofenil)-4,5- dihidrotiazol (compuesto (I) con R1 = R? = 4-clorofenilo, compuesto (lri))
El compuesto del título se preparó de manera análoga al Ejemplo 4 a partir del 2,5-bis(4-clorofenil)tiazol (200 mg, 0.65 mmol) y Selectfiuor® (584.5 mg, 1 .57 mmol) en ACN durante 3 h a 80 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano:AcOEt, 95:5), obteniéndose 47 mg de 4,4,5-trifluoro-2,5-bis(4-clorofenil)-4,5-dihidrotiazol como un sólido blanco (21 % de rendimiento). 1H-RMN (CDCI3, 400 MHz): δ 7.94-7.92 (m, 2H), 7.6 (d, J=8.1 Hz, 2H), 7.50-7.53 (m, 2H), 7.44-7.46 (d, J=8.5Hz, 2H) ppm. 19F-RMN (CDCI3, 400 ΜΗζ):δ -79.70 (dd, J = 218.48, 9.93 Hz), -103.70 (dd, J =
218.44, 8.20 Hz), -131 .38 (m) ppm. EM (IE): m/z (%): 361 .1 (M+, 100). 363.1 (M+, 69.4), 362.1 (M+, 18.4), 365.0 (M+, 14.1 ), 364.1 (M+, 12.1 ) HRMS (ESI): calculado para Ci5H8CI 2F3NS: 360.9707; encontrado: 360.9782.
Ejemplo 14: Preparación del 4,4,5-trifluoro-2,5-di-(o-tolil)-4,5-dihidrotiazol (compuesto (I) con R1 = R? = 2-metilfenilo, compuesto (l¡))
El compuesto del título se preparó de manera análoga al Ejemplo 4 a partir del 2,5-di-o-toliltiazol (197 mg, 0.74 mmol) y Selectfiuor® (632.0 mg, 1 .78 mmol) en ACN durante 5 h a 80 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano:AcOEt, 95:5), obteniéndose 78 mg de 4,4,5-trifluoro-2,5-di-(o-tolil)-4,5-dihidrotiazol como un sólido blanco (33% de rendimiento). 1H-RMN (CDCI3, 400 MHz): δ 7.79 (d, 1 H), 7.72 (d, 2H), 7.48 (m, 1 H), 7.33 (m, 4H), 7.23 (m,1 H) , 2.69 (s,3H), 2.61 (d, 3H) ppm. 19F-RMN (CDCI3, 400 ΜΗζ):δ -78.41 (dd, J = 218.81 , 8.88 Hz), -97.51 (dd, J = 218.85, 10.69 Hz), -126.87 (m) ppm. HRMS (ESI): (M+H)+: calculado para C17H15 F3NS: 322.0872; encontrado: 322.0874.
Eiemplo 15: Preparación del 4,4,5-trifluoro-2,5-di-(p-tolil)-4,5-dihidrotiazol (compuesto (I) con Ri = R? = 2-metilfenilo, compuesto (la))
El compuesto del título se preparó de manera análoga al Ejemplo 4 a partir del 2,5-di-p_-toliltiazol (100 mg, 0.36 mmol) y Selectfluor® (304.4 mg, 0.86 mmol) en ACN durante 10 h a 80 °C. El residuo se purificó por HPLC semipreparativo, obteniéndose 35 mg de 4,4,5-trifluoro-2,5-di-(p_-tolil)-4,5- dihidrotiazol como un sólido blanco (30% de rendimiento). 1H-RMN (CDCI3, 400 MHz): δ 7.89 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H), 7.37 - 7.27 (m, 4H), 2.46 (s, 3H), 2.41 (s, 3H). 19F-RMN (CDCI3, 400 ΜΗζ):δ -79.39 (dd, J = 217.6, 9.7 Hz), -102.69 (dd), -130.08 (m). HRMS (ESI): (M+H)+: calculado para d7H15 F3NS: 322.0872; encontrado: 322.0871
Eiemplo 16: Preparación del 2-(bifenil-4-il)tiazol (compuesto (B) con R? = bifenil-4-ilo, compuesto (B ))
El compuesto del título se preparó de manera análoga al Ejemplo 3 a partir del 2-dibromotiazol (500 μΙ_, 5.61 mmol) y el ácido bifenilborónico (1 .22 g, 6.17 mmol) durante 12 h a 80 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano: AcOEt, 9:1 ), obteniéndose 675 mg de 2-(bifenil-4-il)tiazol como un sólido blanco (51 % de rendimiento). EM (IE): m/z (%): 237 (M+, 100). HRMS (ESI): (M+H)+ calculado para C15HnNS: 238.0612; encontrado: 238.0683.
Eiemplo 17: Preparación del 2-(bifenil-4-il)-5-bromotiazol (compuesto (C) con R? = bifenil-4-ilo, compuesto (Ce))
A una solución de 2-(bifenil-4-il)tiazol (540 mg, 2.28 mmol) en acetonitrilo anhidro (10 ml_) se añadió una solución de N-bromosuccinimida (448 mg, 2.50 mmol) en acetonitrilo anhidro (10 mL). La reacción se agitó durante 20 h a temperatura ambiente. A continuación, se añadió una solución acuosa del 10% de Na2SO3 (10 mi) y la mezcla se agitó durante 10 minutos. Trascurrido este tiempo, se realizaron extracciones con acetato de etilo (4 x 25 mL) y los extractos orgánicos se lavaron con una solución acuosa saturada de NaCI (4 x 50 mi), se secaron sobre Na2SO4, se filtró y se evaporó a presión reducida. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano:AcOEt, 9:1 ), obteniéndose 500 mg de 2-(bifenil-4-il)-5-bromotiazol como un sólido blanco (69% de rendimiento). EM (IE): m/z (%): 317 (M+, 100), 315 (M+, 95), 316 (M+, 17.1 ). HRMS (ESI): (M+H)+: calculado para
Ci5H10BrNS: 315.9717; encontrado: 315.9786.
Ejemplo 18: Preparación del 2-(bifenil-4-il)-5-feniltiazol (compuesto (D) con Ri = fenilo y R? = bifenil-4-ilo, compuesto (DP))
El compuesto del título se preparó de manera análoga al Ejemplo 3 a partir del 2-(bifenil-4-il)-5-bromotiazol (31 1 mg, 0.98 mmol) y el ácido fenilborónico (955 mg, 1 .27 mmol) durante 4 h a 100 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano: AcOEt, 8:2), obteniéndose 300 mg de 2-(bifenil-4-il)-5-feniltiazol como un sólido blanco (98% de
rendimiento). EM (IE): m/z (%): 313 (M+, 100). HRMS (ESI): (M+H)+:
calculado para C2iH15NS: 314.0925; encontrado: 314.0995.
Ejemplo 19: Preparación del 4,4,5-trifluoro-2-(bifenil-4-il)-5-fenil-4,5- dihidrotiazol tiazol (compuesto (I) con Ri = fenilo y R? = bifenil-4-ilo, compuesto ( ))
El compuesto del título se preparó de manera análoga al Ejemplo 4 a partir del 2-(bifenil-4-il)-5-feniltiazol (150 mg, 0.48 mmol) y Selectfluor® (429 mg, 1 .15 mmol) en ACN durante 4.5 h a 80 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano:AcOEt, 95:5), obteniéndose 14 mg de 4,4,5-trifluoro-2-(bifenil-4-il)-5-fenil-4,5-dihidrotiazol como un sólido blanco (8% de rendimiento). 1H-RMN (CDCI3, 400 MHz): 58.1 1 - 8.04 (m, 2H), 7.78 - 7.70 (m, 4H), 7.68 - 7.63 (m, 2H), 7.53 - 7.40 (m, 6H). 19F-RMN (CDCI3, 400 ΜΗζ):δ -79.45 (dd, J = 218.0, 10.0 Hz), -103.63 (dd, J = 217.9, 8.7 Hz), -130.77 (m). HRMS (ESI): (M+H)+: calculado para C21H14F3NS: 370.0872; encontrado: 370.0868. Ejemplo 20: Preparación del 4-(tiazol-2-il)benzoato de etilo ((compuesto (B) con R? = 4-etoxicarbonilfenilo, compuesto (Bf))
El compuesto del título se preparó de manera análoga al Ejemplo 3 a partir del 2-dibromotiazol (200 μΙ_, 2.24 mmol) y el ácido
4-etoxicarbonilfenilborónico (493 mg, 2.69 mmol) durante 3 h a 100 °C. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano: AcOEt, 9:1 ), obteniéndose 365 mg de 4-(tiazol-2-il)benzoato de etilo como un sólido blanco (70% de rendimiento). 1H-NMR (CDCI3, 200 MHz): δ 8.14-8.01 (m, 4H) 7.93 (d, J= 3.21 Hz, 1 H), 7.41 (d, J= 3.26Hz, 1 H), 4.41 (q, 2H), 1 .4 (t, 3H) ppm. EM (IE): m/z (%): 233.1 (M+, 100).
Ejemplo 21 : Preparación del 4-(5-p-toliltiazol-2-il)benzoato de etilo
((compuesto (D) con Ri = 4-metilfenilo y R? = 4-etoxicarbonilfenilo, compuesto (Df))
En un tubo cerrado se añadieron 4-(tiazol-2-il)benzoato de etilo (100 mg, 0.43 mmol), 4-metiliodobenceno (1 1 1 mg, 0.51 mmol), carbonato de plata (236 mg, 0.86 mmol) y tetraquis(trifenilfosfina)paladio (0) (1 1 .2 mg, 0.86 mmol). El matraz se purgó tres veces con nitrógeno y seguidamente se adicionó el acetonitrilo (1 .8 ml_). La mezcla se agitó bajo atmosfera de Ar durante 12 h a 60 °C. Cuando se completó la reacción, los sólidos
inorgánicos se filtraron sobre un lecho de tierra de diatomeas (Celite®) y el residuo obtenido se lavó varias veces con diclorometano, a continuación se filtró y se evaporó. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano: AcOEt, 9:1 ), obteniéndose 1 15.8 mg de 4-(5-p_-toliltiazol- 2-il)benzoato de etilo como un sólido blanco cristalino del (84% de
rendimiento). EM (IE): m/z (%): 323.1 (M+, 100). HRMS (ESI): calculado para Ci9H18NO2S: 324.1053; encontrado: 324.1055.
Ejemplo 22: Preparación del 4-(4,4,5-trifluoro-5-(p-tolil)-4,5-dihidrotiazol-2-il) benzoato de etilo ((compuesto (I) con Ri = 4-metilfenilo y R? = 4- etoxicarbonilfenilo, compuesto (lf))
Preparación de manera análoga al Ejemplo 4 a partir del 4-(5-p_-toliltiazol-2- il)benzoato de etilo (50 mg, 0.15 mmol) y Selectfiuor® (131 .3 mg, 0.35 mmol) en ACN durante 2.5 h a 80 °C. El residuo se purificó por columna
cromatográfica de tipo flash (Si02, hexano:AcOEt, 95:5), obteniéndose 10 mg de 4-(4>4>5-trifluoro-5-(2-Tolil)-4>5-dihidrotiazol-2-il) benzoato de etilo como un sólido blanco (17% de rendimiento). 1H-RMN (CDCI3, 400 MHz): δ 8.19 (d, J = 8.5 Hz, 2H), 8.06 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 4.43 (q, J = 7.1 Hz, 2H), 2.42 (s, J = 10.9 Hz, 3H), 1.43 (t, J = 7.1 Hz, 3H).19F-RMN (CDCI3, 400 ΜΗζ):δ -80.45 (dd, J = 219.2, 9.7 Hz), -104.41 (dd, J = 219.1 , 8.5 Hz), -130.39 (m). HRMS (ESI): calculado para
CigHieF3N02S: 380,0854; encontrado: 380.0925.
Ejemplo 23: Preparación del 2-{4-f4.4.5.5-tetrametil-1.3.2-dioxaborolan-2- ¡IMenoxhacetato de tero-butilo
A una solución de 4-(4l4,5,5-tetrametil-1 ,3,2-dioxaborolan-2-il)fenol (440 mg, 2,00 mmol) en THF anhidro (40 mL) se añadió NaH (160 mg, 4.00 mmol). La reacción se agitó durante 10 minutos a temperatura ambiente. A continuación se añadió 2-bromoacetato de tero-butilo a la mezcla y se agitó durante 18 h a temperatura ambiente. Trascurrido este tiempo, se realizaron extracciones con acetato de etilo (4 x 20 mL) y los extractos orgánicos se lavaron con una solución acuosa saturada de NaCI (3 x 20 mL), se secaron sobre Na2S04, se filtró y se evaporó a presión reducida. El residuo se purificó por columna cromatográfica de tipo flash (Si02, hexano:AcOEt, 9:1), obteniéndose 96.3 mg de 2-(4-(4,4,5,5-tetrametil-1 ,3,2-dioxaborolan-2-il)fenoxi) acetato de tero- butilo como un sólido blanco (74% de rendimiento). RMN1H (CDCI3, 400 MHz): δ: 7.86 - 7.59 (m, 2H), 6.95 - 6.78 (m, 2H), 4.53 (s, 2H), 1.33 (s, 12H) ppm.
Ejemplo 24: Preparación del 2-{4-{tiazol-2-il¾fenoxitecetato de tero-butilo
A una solución de 2-bromotiazol (265 μί, 2,97 mmol), 2-(4-(4,4,5,5-tetrametil- 1 ,3,2-dioxaborolan-2-il)fenoxi) acetato de tero-butilo (1 ,19 g, 3,56 mmol), KCI (664.7 mg, 8.91 mmol) en una mezcla de 4:1 de tolueno (20 mL) / EtOH (5 mL) se añadió una solución acuosa de Na2C03 2M (11 ,8 mL). El matraz se purgó tres veces con nitrógeno y seguidamente se adicionó el paladio (0) tetrakis(trrfenilfosfina) (346.2 mg, 0.30 mmol). La mezcla de reacción se calentó a 100 0 C durante 4 h. Cuando se completó la reacción, los sólidos inorgánicos se filtraron sobre un lecho de tierra de diatomeas (Celite®) y el residuo obtenido se lavó varias veces con diclorometano, a continuación se filtró y se evaporó. El residuo se purificó por columna cromatográfica de tipo flash (Si02, hexano: AcOEt, 9:1), obteniéndose 825.2 mg de 2-(4-(tiazol-2- il)fenoxi)acetato de tero-butilo como un sólido blanco (95% de rendimiento). RMN1H (CDCI3, 400 MHz): δ 7.95 - 7.86 (m, 2H), 7.81 (d, J = 3.3 Hz, 1 H), 6.99 - 6.85 (m, 1 H), 4.57 (s, 2H), 1.49 (s, 1 H) ppm.
Ejemplo 25: Preparación del 2-{4-{5-{4-clorofenintiazol-2-il¾fenoxhacetato de tero-butilo
A una solución de 2-(4-(tiazol-2-il)fenoxi)acetato de tero-butilo (360 mg, 1.23 mmol) y 1-cloro-4-yodobenceno (412.5 mg, 1.73 mmol) en acetonitrilo anhidro (ACN, 5,2 mL), PPh3 (32.74 mg, 124 μmοΙ) y Ag2C03 (685.2 mg, 2.46 mmol). El matraz se purgó tres veces con nitrógeno y seguidamente se adicionó el PdCWppf (50.5 mg, 0.062 mmol). La mezcla de reacción se calentó a 60 °C durante 72 h. Cuando se completó la reacción, los sólidos inorgánicos se filtraron sobre un lecho de tierra de diatomeas (Celite®) y el residuo obtenido se lavó varias veces con diclorometano, a continuación se filtró y se evaporó. El residuo se purificó por columna cromatográfica de tipo flash (Si02, hexano: AcOEt, 9:1), obteniéndose 322.5 mg de 2-(4-(5-(4- clorofenil)tiazol-2-il)fenoxi) acetato de tero-butilo como un sólido amarillo (76% de rendimiento). RMN1H (CDCI3, 400 MHz): δ 7.94 (s, 1 H), 7.92 - 7.87 (m, 2H), 7.56 - 7.46 (m, 2H), 7.42 - 7.35 (m, 2H), 7.01 - 6.93 (m, 2H), 4.57 (d, J = 3.6 Hz, 2H), 1.50 (s, 9H) ppm.
Ejemplo 26: Preparación del 2-(4-(5-(4-clorofen¡l)-4.4.5-tr¡fluoro-4.5- dihidrotiazol-2-il¾fenoxhacetato de tero-butilo, (compuesto (\ ))
A una solución de 2-(4-(5-(4-clorofenil)tiazol-2-il) fenoxi)acetato de tero-butilo (78 mg, 190 μmοΙ) en ACN anhidro (5 mL) se añadió Selectfluor ® (170.2 mg, 456 μmοΙ). La reacción se agitó durante 3 h a 60 °C. Cuando se completó la reacción, se diluyó con éter dietílico (50 mL) y se lavó con H20 (3 x 10 mL). Los extractos orgánicos se secaron sobre Na^Cvi, se filtró y se evaporó a presión reducida. El residuo se purificó por columna cromatográfica de tipo flash (Si02, hexano: AcOEt, 9:1), obteniéndose 8.6 mg de 2-(4-(5-(4- clorofenilH,4,5-trifluoro^,5 lihidrotiazol-2-il)fenoxi)acetato de tero-butilo como un sólido blanco (10% de rendimiento). RMN1H (CDCI3, 400 MHz): δ 7.95 (d, J = 8.9 Hz, 2H), 7.64 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 7.00 (d, J = 8.9 Hz, 2H), 4.62 (s, 2H), 1.50 (s, 9H) ppm. RMN19F (CDCI3, 400 MHz): δ -78.53 (dd, J = 217.0, 9.8 Hz), -103.16 (dd, J = 217.4, 7.6 Hz), - 131.00 (m, J = 7.5 Hz) ppm.
Ejemplo 27: Preparación del ácido 2-(4-(5-(4-clorofenil)-4.4.5-trifluoro-4.5- dihidrotiazol-2-il)fenoxi) acético
A una solución de 2-(4-(5-(4-clorofenil)tiazol-2-il) fenoxí)acetato de terc-butilo (160 mg, 370 μmοΙ) en ACN anhidro (7 mL) se añadió Selectfluor ® (327.8 mg, 880 μmοΙ). La reacción se agitó durante 15 h a 80 °C. Cuando se completó la reacción, se diluyó con éter etílico y se lavó con H2O (3 x 10 mL). Los extractos orgánicos se secaron sobre Na2SO4, se filtró y se evaporó a presión reducida. El residuo se purificó por columna cromatográfica de tipo flash (SiO2, hexano: AcOEt, 9:1), obteniéndose 52.2 mg del ácido 2-(4-(5-(4- clorofenil)-4,4,5-trifluoro-4,5-dihidrotiazol-2-il)fenoxi) acético como un sólido blanco (35% de rendimiento) RMN1H (CDCI3, 400 MHz): δ 7.97 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 7.04 (d, J = 7.9 Hz, 2H), 4.78 (s, 2H) ppm. RMN19F (CDCI3, 400 MHz): δ -78.73 (dd, J = 217.2, 9.6 Hz), -103.25 (dd, J = 217.1 , 8.6 Hz), -131.00 (m, J = 9.2 Hz) ppm.
Ejemplo 28: Preparación de N-butil-2-(4 -(5-(4-clorofenil)-4.4.5-trifluoro-4.5- dihidrotiazol-2-il) fenoxi)acetamida. compuesto (lh )
A una solución del ácido 2-(4-(5-(4-clorofenil) -4,4,5-trifluoro-4,5- dihidrotiazol-2-il) fenoxi)acético (45.7 mg, 114 μιηοΙ) en DMF (5.7 mL) se añadieron los agentes de acoplamiento HOBt (18,4 mg, 136 μmοΙ) y
EDOHCI (26,1 mg, 136 μηηοΙ). A continuación, se añadió butilamina (13.6 μί, 136 μmοΙ) y la mezcla se agitó durante 2 h a temperatura ambiente. Cuando se completó la reacción, se diluyó con diclorometano (20 mL) y se lavó con H2O (3 x 5 mL). Los extractos orgánicos se secaron sobre Na2SO4, se filtró y se evaporó a presión reducida. El residuo se purificó por columna
cromatográfica de tipo flash (Si02, hexano: AcOEt, 6:4), obteniéndose 18.1 mg de N-butil-2-(4-(5-(4-clorofenil)-4,4,5-trifluoro-4,5-dihidrotiazol-2-il) fenoxi)acetamida (35% de rendimiento). RMN1H (CDCI3, 400 MHz): δ 8.03 - 7.93 (m, 2H), 7.64 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.09 - 7.01 (m, 2H), 6.48 (bs, 1 H), 4.58 (s,), 3.53 - 3.26 (m, 2H), 1.59 - 1.50 (m, 2H), 1 .41 - 1 .34 (m, 2H), 0.98 - 0.90 (m, 3H) ppm. RMN19F (CDCI3, 400 MHz): δ - 78.81 (dd, J = 217.4, 9.8 Hz), -103.30 (dd, J = 217.3, 8.8 Hz), -130.96 (m, J = 9.3 Hz) ppm.
Ejemplo 29 Ensayos biológicos para la detección de la actividad antitumoral
Se llevó a cabo una exploración de la actividad antitumoral de los compuestos de fórmula (I) en las células Jurkat y se realizó un estudio de los compuestos más activos en las células HeLa, células TK6, células Ramos, células MDA-MB- 231 , células T98-G, células Hep3B y células procedentes de enfermos con leucemia linfocítica crónica (LLC).
Cultivo celular
Las líneas celulares humanas Jurkat (linfocitos T procedentes de una leucemia aguda de células T), Ramos (linfocitos B de un linfoma de Burkitt) y TK6 (línea celular linfoblástica humana), HeLa (línea celular epitelial de adenocarcinoma cervical), MDA-MB-231 (línea celular epitelial de carcinoma de mama), T98-G (línea celular de glioblastoma) y Hep3B (línea celular epitelial de carcinoma hepatocelular) se obtuvieron de la Colección Europea de Cultivos Celulares.
Las líneas celulares Jurkat, Ramos, TK6 y CLL se crecieron en medio RPMI- 1640, y las células HeLa en medio DMEM que contiene el 10% de suero fetal inactivado (de ternera), 1 % glutamina, y 1 % penicilina-estreptomicina. La línea celular MDA-MB-231 se creció en medio DMEM/F-12 que contiene adicionalmente el 1 % de piruvato. Las células Hep 3B se mantuvieron en medio MEM suplementado con un 10% de suero bovino fetal. Todos los tipos celulares fueron cultivados a 37 °C en atmósfera humedecida y con un 5% de dióxido de carbono.
Pacientes con LLC y aislamiento celular
Se obtuvieron linfocitos de sangre periférica procedentes de pacientes con LLC de la Unidad de Hematología en el IDIBELL-Hospital de Bellvitge, L'Hospitalet de Llobregat, Barcelona, España. Se diagnosticó la LLC de acuerdo con los criterios clínicos y de laboratorio estándares. Se obtuvo el consentimiento informado de todos los pacientes, de acuerdo con el Comité Ético del Hospital de Bellvitge. Se realizó una purificación de los leucocitos mononucleados mediante un gradiente de Ficoll-Hypaque (Seromed, Berlín, Germany). La pureza de las muestras de LLC fue evaluada por citometría de flujo con anti-CD3 conjugado con aloficocianina (allophycocyanin, APC) y anti-CD19 conjugado con ficoeritrina (phycoerythrin, PE) (Becton Dickinson, Frankiln Lakes, NJ, USA). Se analizaron los resultados por citometría de flujo y el análisis se llevó a cabo con el programa informático adecuado.
Reactivos
Se obtuvo el dimetil sulfóxido (DMSO) de Sigma Chemicals Co. (St Louis, MO, USA). La anexina V-FITC y el yoduro de propidio ("propidium iodine", Pl) se obtuvieron de Bender MedSystems (Vienna, Austria). La anexina V-APC se obtuvo de eBioscience (St Diego, USA). Cristal violeta se obtuvo de Sigma-Aldrich
Análisis de la apoptosis por citometría de flujo
Se lavaron 0.25-0.3x106 células en tampón fosfato salino ("phosphate- buffered saline", PBS), se resuspendieron en 100 μΙ de tampón de unión de anexina y se incubaron con 1 μΙ de Anexina V-Fluoresceína-5-isotiocianato (FITC) o Anexina V-Allophycocyanin (APC). Después de una incubación de 20 min en la oscuridad a temperatura ambiente, se añadió 100 μΙ de tampón de unión de anexina con 5 μΙ de yoduro de propidio ("propidium iodide", Pl) (20 μg ml) justo antes del análisis por citometría de flujo. Los datos se analizaron con el programa adecuado. La viabilidad celular se midió por el análisis de la externalización de la fosfatidilserina y la incorporación de Pl y se expresa como el porcentaje de células anexina-V y Pl doble negativas.
La apoptosis, o muerte celular programada, es un mecanismo general del sistema inmune para la eliminación de células no deseadas. Está
caracterizada por la condensación de la cromatina, una reducción del volumen celular, y un corte del ADN llevado a cabo por endonucleasas que da lugar a fragmentos de longitud oligonucleosomal. La apoptosis va también acompañada por una pérdida de la asimetría de la membrana fosfolipídica, resultando en la exposición de fosfatidilserina en la superficie celular. La expresión de fosfatidilserina en la superficie celular juega un papel importante en el reconocimiento y eliminación de las células apoptóticas que llevan a cabo los macrófagos. Éste es uno de los eventos más tempranos del proceso apoptótico. El método para la detección de células apoptóticas mediante la citometría de flujo utiliza la unión de la anexina V marcada con un fluorocromo a la fosfatidilserina.
Además, la membrana plasmática se perturba durante la apoptosis tardía pero también durante la necrosis, ya que se vuelve permeable a sustancias como el Pl. El Pl se intercala entre los ácidos nucleicos de doble cadena y es una molécula fluorescente con un peso molecular de 668.4 Da que se puede usar para teñir el ADN. El Pl es excluido por las células viables pero puede penetrar las membranas celulares de células moribundas y muertas.
Por lo tanto, las células viables son anexina-V y Pl doble negativas, las apoptóticas tempranas son anexina-V positivas y Pl negativas mientras que las células apoptóticas tardías son anexina-V y Pl doble positivas. Estas tres poblaciones son indicativas de apoptosis. Una cuarta población de células Pl positivas correlaciona con las células necróticas.
Ensayo de la viabilidad celular por la técnica de cristal violeta
Esta técnica permite cuantificar las células viables después de ser sometidas a un tratamiento tóxico y consiste en la tinción celular con el colorante cristal violeta. El cristal violeta solamente penetra en células vivas, por lo que es una buena técnica para determinar viabilidad celular de células de
crecimiento en adhesión.
Después de la incubación de las células en placas de 12 o 24 pozos con el correspondiente tratamiento, se retiró el medio de cultivo y las células se lavaron 2 veces con PBS. Las células se tiñieron y fijaron con 0.2% (p/v) de cristal violeta en etanol al 2% durante 30 minutos. Tras unos cuantos lavados con PBS o agua destilada para eliminar el exceso de colorante, las placas se secaron y las células se lisaron con SDS al 10%. Mediante un análisis de espectrofotometría, se midió la absorbancia a 595 nm. Los resultados se calcularon como el porcentaje de células viables tratadas en relación a las células control (células incubadas en ausencia de tratamiento) a los tiempos indicados.
Resultados
1 . Ensayo exploratorio de la viabilidad celular en células Jurkat
Se realizó una exploración del efecto de los compuestos la- lf en la línea celular Jurkat (linfocitos T procedentes de una leucemia aguda de células T) a una única dosis de 40 μΜ durante una incubación de 24 horas. La estructura de los compuestos la- lf se indica en la Tabla 1 .
Se ensayaron dos compuestos adicionales como compuestos comparativos: compuesto (Ad) se trata de un compuesto con la fórmula (A) con = R2 = 4- clorofenilo, y el compuesto (Hd) que corresponde a la monofluoración del compuesto (A) donde Ri = R2 = 4-clorofenilo.
Se escogieron las células Jurkat entre otras líneas celulares tumorales leucémicas porque tienen la proteína TP53 mutada.
Todos los compuestos mencionados se disolvieron en la mínima cantidad de DMSO necesario para que quedaran totalmente disueltos. Se midió la viabilidad celular por citometría de flujo. Se verificó que el DMSO por sí solo no disminuía la viabilidad celular. De esta manera, todos los efectos observados en la viabilidad celular eran debidos a la actividad de estos compuestos.
Los resultados se resumen en la Tabla 2: "+" significa baja actividad; "++" significa buena actividad y "+++" significa muy buena actividad; "-" significa que no es activo.
Figure imgf000036_0001
2. Estudio de la dosis-respuesta de los compuestos , lh, lo, Id, v lf.
El efecto de los compuestos la, Ib, lc, Id, y lf se estudió en mayor profundidad en diferentes líneas celulares tumorales.
Se realizó un análisis de la dosis-respuesta en las células Jurkat con TP53 mutado y en las células HeLa con p53 inactivado.
La viabilidad celular se midió por citometría de flujo y se expresa como porcentaje de células no apoptóticas (anexina-V negativas) respecto a las células no tratada a las 24 horas de incubación. Por lo tanto, valores por debajo del 100% son indicativos de apoptosis o pérdida de viabilidad celular.
Las células Jurkat (que son linfocitos T procedentes de una leucemia aguda tipo T, con TP53 mutado) se incubaron con un intervalo de dosis desde 1 μΜ a 40 μΜ para cada compuesto durante 24 horas. Todos los compuestos indujeron apoptosis de una forma dosis-dependiente medida por citometría de flujo (cf. FIG. 1 ).
Las células HeLa (línea celular epitelial de adenocarcinoma cervical con p53 inactivado) se incubaron con un intervalo de dosis desde 2 μΜ a 40 μΜ para cada compuesto durante 24 horas. Todos los compuestos indujeron apoptosis de una forma dosis-dependiente medida por citometría de flujo (cf. FIG. 2).
La IC5o a las 24 horas se calculó para cada compuesto usando el análisis por citometría de flujo. Los resultados se expresan en la Tabla 3 como el porcentaje de células no apoptóticas (anexina-V negativas) respecto a las células no tratadas a las 24 horas.
Figure imgf000037_0001
Además, dos compuestos representativos (la y Id) se ensayaron en las líneas celulares con TP53 mutado Ramos, MDA-MB-231 , T98-G y Hep3B, y en la línea celular tumoral TK6 con TP53 salvaje. El estudio se completó utilizando células B primarias procedentes de pacientes de LLC.
Las células TK6 (línea celular linfoblástica humana con TP53 salvaje) se incubaron con un intervalo de dosis desde 2 μΜ hasta 40 μΜ de los compuestos la y Id durante 24 horas. Estos compuestos indujeron apoptosis de una forma dosis-dependiente medida por citometría de flujo (cf. FIG. 3).
Las células Ramos (linfocitos B procedentes de un linfoma de Burkitt con TP53 mutado) se incubaron con un intervalo de dosis desde 2 μΜ hasta 40 μΜ de los compuestos la y Id durante 24 horas. Estos compuestos indujeron apoptosis de una forma dosis-dependiente medida por citometría de flujo (cf. FIG. 4). Las células MDA-MB-231 (línea celular epitelial de carcinoma de mama con TP53 mutado) se incubaron con un intervalo de dosis desde 2 μΜ hasta 60 μΜ de los compuestos la y Id durante 24 horas. Estos compuestos indujeron apoptosis de una forma dosis-dependiente medida por citometría de flujo (cf. FIG. 5).
Las células T98-G (línea celular de glioblastoma con TP53 mutado) se incubaron con un intervalo de dosis desde 2 μΜ hasta 60 μΜ de los compuestos la y Id durante 24 horas. Estos compuestos indujeron apoptosis de una forma dosis- dependiente medida por citometría de flujo (cf. FIG. 6).
Las células Hep3B (línea celular de carcinoma hepatocelular con TP53 delecionado) se incubaron con un intervalo de dosis desde 2 μΜ hasta 40 μΜ de los compuestos la y Id durante 24 horas. Estos compuestos indujeron una pérdida de la viabilidad celular de una forma dosis-dependiente medida por la técnica de cirstal violeta (cf. FIG. 7).
Los linfocitos B procedentes de pacientes de LLC con TP53 salvaje se incubaron con un intervalo de dosis desde 1 μΜ hasta 20 μΜ de los compuestos la y Id durante 24 horas. Estos compuestos indujeron apoptosis de una forma dosis- dependiente medida por citometría de flujo (cf. FIG. 8).
Los linfocitos procedentes de pacientes de LLC con p53 salvaje se incubaron con un intervalo de dosis desde 5 μΜ hasta 40 μΜ del compuesto lc durante 24 horas. Estos compuestos indujeron apoptosis de una forma dosis-dependiente medida por citometría de flujo, en los linfocitos B mientras que los linfocitos T fueron menos sensibles (cf. FIG. 9).
Los linfocitos B procedentes de pacientes de LLC con TP53 mutado se incubaron con un intervalo de dosis desde 1 μΜ hasta 20 μΜ de los compuestos la y ld durante 24 horas. Estos compuestos indujeron apoptosis de una forma dosis-dependiente medida por citometría de flujo (cf. FIG. 10).
La IC5o de los compuestos la y ld se calculó a las 24 horas usando el análisis por citometría de flujo, excepto para las células Hep3B que se midió por el ensayo de cristal violeta. Los resultados se expresan en la Tabla 4 como el porcentaje de células viables respecto a las células no tratadas a las 24 horas.
Figure imgf000039_0001
Estos resultados demuestran que la familia de compuestos tiazólicos de la presente invención tiene actividad antitumoral. Además, la apoptosis inducida por estos tiazoles es independiente de p53, una diferencia importante respecto a la mayoría de fármacos utilizados en terapia de cáncer, los cuales inducen parada de ciclo celular y apoptosis a través de la activación de p53.
Ejemplo 30: Ensayos biológicos para la detección de la actividad antitumoral de los compuestos Ια v L
El efecto de los compuestos lg y lh ha sido estudiado en dos líneas celulares de cáncer. Se realizó un análisis de dosis-respuesta en la línea celular Jurkat con TP53 mutado y en las células HeLa con p53 inactivado.
La viabilidad se midió por citometría de flujo y se expresa como el porcentaje de células no apoptóticas (annexina-V APC negativas) en relación a las células control no tratadas. Por esto, valores inferiores al 100% son indicativos de apoptosis o pérdida de viabilidad celular.
Las células Jurkat (que son linfocitos T procedentes de una leucemia aguda tipo T, con TP53 mutado) se incubaron con un intervalo de dosis desde 5 μΜ a 40 μΜ para cada compuesto durante 24 horas. Ambos compuestos indujeron apoptosis de una forma dosis-dependiente medida por citometría de flujo (cf. FIG. 1 1 y 13). Las células HeLa (línea celular epitelial de adenocarcinoma cervical con p53 inactivado) se incubaron con un intervalo de dosis desde 5 μΜ a 40 μΜ para cada compuesto durante 24 horas. Todos los compuestos indujeron apoptosis de una forma dosis-dependiente medida por citometría de flujo (cf. FIG. 12 y 14).

Claims

REIVINDICACIONES:
1 . Compuesto de fórmula (I) o una sal farmacéuticamente aceptable del mismo, o un estereoisómero del mismo o una mezcla de estereoisómeros,
Figure imgf000041_0001
donde:
Ri es un radical seleccionado del grupo que consiste en: fenilo y fenilo mono-, di-, o tri-substituido por un radical independientemente seleccionado del grupo que consiste en F, Cl, Br, I, (d-C6)-alquilo, COO-(CrC6)-aquilo y (CrC6)-alcoxilo; y
R2 es un radical seleccionado del mismo grupo que R-i, incluyendo además un fenilo substituido en la posición 4 por un radical independientemente seleccionado del grupo que consiste en -O(CH2)CONH(CH2)3CH3 y
-OCH2COOC(CH3)3, bifenil-4-ilo, tiazol-2-ilo y tiazol-2-ilo mono- o disubstituido, en las posiciones 4 o 5, por un radical seleccionado del grupo que consiste en F y fenilo.
2. Compuesto de fórmula (I) definido en la reivindicación 1 , donde R2 es un radical seleccionado del mismo grupo que R-i, incluyendo además un bifenil- 4-ilo, un tiazol-2-ilo, y un tiazol-2-ilo mono o di-sustituido, en posiciones 4 o 5, por un radical seleccionado entre el grupo que consiste en F y fenilo.
3. Compuesto según la reivindicación 2, donde Ri se selecciona del grupo que consiste en: fenilo y fenilo mono-substituido por un radical
independientemente seleccionado del grupo que consiste en Cl,
(C C4)-alquilo y COO-(C C4)-alquilo.
4. Compuesto según la reivindicación 3, donde Ri se selecciona del grupo que consiste en: fenilo, 4-etilfenilo, 4-clorofenilo, 2-metilfenilo, 4-metilfenilo, 2- etoxifenilcarbonilo y 4-etoxifenilcarbonilo.
5. Compuesto según cualquiera de las reivindicaciones 2-4, donde R2 es un radical seleccionado del grupo que consiste en: fenilo y fenilo mono- substituido por un radical independientemente seleccionado del grupo que consiste en Cl, (d-C4)-alquilo y COO-(d-C4)-alquilo.
6. Compuesto según la reivindicación 5, donde R2 es un radical seleccionado del grupo que consiste en: fenilo, 4-etilfenilo, 4-clorofenilo, 2-metilfenilo, 4- metilfenilo, 2-etoxifenilcarbonilo y 4-etoxifenilcarbonilo.
7. Compuesto según cualquiera de las reivindicaciones 2-4, donde R2 es bifenil-4-ilo.
8. Compuesto según cualquiera de las reivindicaciones 2-4, donde R2 es 5- feniltiazol-2-ilo o 4-fluoro-5-feniltiazol-2-ilo.
9. Compuesto según la reivindicación 1 , donde R2 es fenilo sustituido en la posición 4 por -O(CH2)CONH(CH2)3CH3 o por -OCH2COOC(CH3)3.
10. Compuesto según la reivindicación 2, que se selecciona de la siguiente tabla:
Figure imgf000042_0001
1 1 . Compuesto de fórmula (I), definido en cualquiera de las reivindicaciones 1 - 10, para su uso como medicamento.
12. Uso del compuesto del compuesto de fórmula (I), definido en cualquiera de las reivindicaciones 1 -10, para la preparación de un medicamento para el tratamiento y/o prevención del cáncer en un mamífero, incluyendo el ser humano.
13. Uso según la reivindicación 12, donde el cáncer se selecciona del grupo que consiste en leucemia, linfoma, cáncer cervical, cáncer de mama, glioblastoma y carcinoma hepatocelular.
14. Uso según la reivindicación 13, donde el cáncer es leucemia o linfoma.
15. Uso según la reivindicación 14, donde la leucemia o linfoma son las neoplasias de células B.
16. Composición farmacéutica que comprende una cantidad terapéutica efectiva del compuesto de fórmula (I), definido en cualquiera de las reivindicaciones 1 -10, junto con cantidades suficientes de excipientes o portadores farmacéuticamente aceptables.
17. Procedimiento de preparación de un compuesto de fórmula (I), definido en la reivindicación 1 , que comprende: a) primero someter compuesto de fórmula (II) donde X es un halógeno,
Figure imgf000043_0001
a un acoplamiento de Suzuki con un compuesto de fórmula R B(OH)2, donde Ri tiene el mismo significado que para el compuesto (I), en presencia de un catalizador de paladio, seguido por someter el compuesto obtenido a una reacción de fluoracion con un agente fluorante para obtener el compuesto de fórmula (I) con R-, = R2; o alternativamente, b) primero someter el compuesto de formula (III)
Figure imgf000044_0001
a un acoplamiento de Suzuki con un compuesto de fórmula R2B(OH)2, donde R2 es un radical seleccionado del mismo grupo que R-i, incluyendo además bifenil-4-ilo, y Ri tiene el mismo significado para el compuesto (I), en presencia de un catalizador de paladio, seguido de halogenación del compuesto obtenido con una fuente de halógeno, posterior acoplamiento del compuesto obtenido con un compuesto de fórmula RiB(OH)2 donde Ri tiene el mismo significado que para el compuesto (I), en presencia de un
catalizador de paladio y, finalmente, someter el compuesto obtenido a una reacción de fluoracion con un agente fluorante para obtener el compuesto de fórmula (I) con R-, diferente a R2; o alternativamente, c) primero someter el compuesto de fórmula (III) a un acoplamiento de Suzuki con un compuesto de fórmula R2B(OH)2, donde R2 es un radical seleccionado del mismo grupo que R-i, incluyendo además bifenil-4-ilo y Ri tiene el mismo significado que para el compuesto (I), en presencia de un catalizador de paladio, a continuación someter el compuesto obtenido a una reacción de activación C-H con un compuesto de fórmula R-il donde Ri tiene el mismo significado que para el compuesto (I), en presencia de un catalizador de paladio y, finalmente, someter el compuesto obtenido a una reacción de fluoracion con un agente fluorante para obtener el compuesto de fórmula (I) con R-i diferente a R2; o alternativamente, d) someter el compuesto de fórmula (III) a una reacción de
homoacoplamiento en presencia de un catalizador de paladio, halogenar después el compuesto obtenido con una fuente de halógeno, a continuación someter el compuesto obtenido a un acoplamiento de Suzuki con un compuesto de fórmula R-|B(OH)2, donde Ri tiene el mismo significado que para el compuesto (I), en presencia de un catalizador de paladio y,
finalmente, someter el compuesto obtenido a una reacción de fluoracion con un agente fluorante para dar el compuesto de fórmula (I) donde Ri es fenilo y R2 es tiazol-2-ilo sustituido por fenilo: y e) opcionalmente, convertir los compuestos obtenidos en cualquiera de los procesos a) a d) en sales farmacéuticamente aceptables por reacción del compuesto (I) con un ácido farmacéuticamente aceptable o una base farmacéuticamente aceptable para obtener la correspondiente sal farmacéuticamente aceptable.
PCT/ES2011/070605 2010-09-02 2011-08-29 Tiazoles fluorados útiles para el tratamiento del cáncer WO2012028757A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES11821153.1T ES2543918T3 (es) 2010-09-02 2011-08-29 Tiazoles fluorados útiles para el tratamiento del cáncer
EP20110821153 EP2612861B1 (en) 2010-09-02 2011-08-29 Fluorinated thiazoles for use in treating cancer
US13/820,480 US8680126B2 (en) 2010-09-02 2011-08-29 Fluorinated thiazoles for use in treating cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201031314 2010-09-02
ES201031314 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012028757A1 true WO2012028757A1 (es) 2012-03-08

Family

ID=45772203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070605 WO2012028757A1 (es) 2010-09-02 2011-08-29 Tiazoles fluorados útiles para el tratamiento del cáncer

Country Status (4)

Country Link
US (1) US8680126B2 (es)
EP (1) EP2612861B1 (es)
ES (1) ES2543918T3 (es)
WO (1) WO2012028757A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UY35675A (es) 2013-07-24 2015-02-27 Novartis Ag Derivados sustituidos de quinazolin-4-ona
CN110437173A (zh) * 2019-08-26 2019-11-12 浙江工业大学 一种含噻唑环的二苯乙烯类化合物及其合成方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004016622A1 (es) 2002-08-16 2004-02-26 Consejo Superior De Investigaciones Científicas Derivados de 4-4'-bipiridil-2-2'-bisoxazoles y 4-4'-bipiridil-2-2'-bistiazoles como agentes antineoplásicos

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0603041D0 (en) * 2006-02-15 2006-03-29 Angeletti P Ist Richerche Bio Therapeutic compounds
CA2682189C (en) * 2006-04-07 2015-12-08 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Thiazole and thiophene analogues, and their use in treating autoimmune diseases and cancers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004016622A1 (es) 2002-08-16 2004-02-26 Consejo Superior De Investigaciones Científicas Derivados de 4-4'-bipiridil-2-2'-bisoxazoles y 4-4'-bipiridil-2-2'-bistiazoles como agentes antineoplásicos

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
COUTURE A. ET AL.: "A convenient and concise synthesis of 2,4- diaryl-delta2-thiazolines", SYNLETT, vol. 8, 1995, pages 809 - 811, XP055081049 *
DÖLLING K. ET AL.: "Kristallin-flüssige Thiazole", JOURNAL FÜR PRAKTISCHE CHEMIE, vol. 321, no. 4, 1979, pages 643 - 654, XP055081054 *
KERR V.N. ET AL.: "Liquid Scintillators. VII. 2,5-diaryl substituted thiazoles as liquid scintillator solutes", JOURNAL OF ORGANIC CHEMISTRY, vol. 24, December 1959 (1959-12-01), pages 1861 - 1864, XP055081051 *
KURATA H. ET AL.: "The first synthesis of 2,2':5',2''-Terthiazole", SYNLETT, no. 18, 2008, pages 2882 - 2884, XP002596304 *
SEIJAS J.A. ET AL.: "Straightforward microwave-assisted synthesis of 2-thiazolines using Lawesson's reagent under solvent-free conditions", TETRAHEDRON, vol. 64, no. 39, 2008, pages 9280 - 9285, XP023904174 *

Also Published As

Publication number Publication date
ES2543918T3 (es) 2015-08-25
EP2612861A1 (en) 2013-07-10
EP2612861A4 (en) 2014-01-22
US20130190367A1 (en) 2013-07-25
EP2612861B1 (en) 2015-05-13
US8680126B2 (en) 2014-03-25

Similar Documents

Publication Publication Date Title
ES2874756T3 (es) Derivados de triazolo[1,5-A]piridina como inmunomoduladores
ES2910787T3 (es) Inhibidores de ASH1L y métodos de tratamiento con los mismos
ES2895066T3 (es) Derivados de 1,3-dihidroxi-fenilo útiles como inmunomoduladores
CN110114075B (zh) 含有二硫化物的细胞穿透肽及其制备和使用方法
ES2781398T3 (es) (R)- y (S)-1-(3-(3-N,N-dimetilaminocarbonil)fenoxil-4-nitrofenil)-1-etil-N,N¿-bis (etilen)fosforamidato, composiciones y métodos para sus usos y preparación
JP2021510700A (ja) 生物学的に活性な化合物を含むホスホアルキルポリマー
EP3737417A1 (en) Phosphoalkyl ribose polymers comprising biologically active compounds
CN108404138B (zh) 一种靶向cd24单克隆抗体与二乙胺偶氮鎓二醇盐的偶联物及其应用
JP2021506788A (ja) 生物学的に活性な化合物を含むイオン性ポリマー
KR20200067132A (ko) 프로그램가능한 중합체성 약물
JP2021510696A (ja) 生物学的に活性な化合物を含む剛性間隔基を有するポリマー
ES2300775T3 (es) Furazanobencimidazoles.
CN101932569A (zh) 吲哚、其衍生物和类似物及其用途
CA2826034A1 (en) Stilbene analogs and methods of treating cancer
ES2338060T3 (es) Componentes de tipo ariloxi y ariltoxia-cetofenona para el tratamiento del cancer.
Gariganti et al. Design, synthesis, anticancer activity of new amide derivatives derived from 1, 2, 3-triazole-benzofuran hybrids: An insights from molecular docking, molecular dynamics simulation and DFT studies
WO2001060354A1 (fr) Medicament anticancereux comprenant un derive d'acide anthranilique en tant qu'ingredient actif
WO2012028757A1 (es) Tiazoles fluorados útiles para el tratamiento del cáncer
ES2779465T3 (es) Compuesto para el tratamiento o la prevención del cáncer de mama
WO2011124087A1 (zh) 噁二唑基哌嗪衍生物及其用途
ES2702573T3 (es) Nuevos compuestos y usos de estos
WO2024044649A2 (en) GTPase INHIBITORS AND USES THEREOF
WO2023088493A1 (zh) 一种呋喃并吡啶酮类化合物及其应用
CN115322226B (zh) 一种共价靶向砷抑制剂及其制备方法和应用
ES2410704B1 (es) Indoleninas fluoradas útiles para el tratamiento del cáncer.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13820480

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011821153

Country of ref document: EP