WO2012026239A1 - 顕微鏡対物レンズ - Google Patents

顕微鏡対物レンズ Download PDF

Info

Publication number
WO2012026239A1
WO2012026239A1 PCT/JP2011/066181 JP2011066181W WO2012026239A1 WO 2012026239 A1 WO2012026239 A1 WO 2012026239A1 JP 2011066181 W JP2011066181 W JP 2011066181W WO 2012026239 A1 WO2012026239 A1 WO 2012026239A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
microscope objective
diffractive optical
line
Prior art date
Application number
PCT/JP2011/066181
Other languages
English (en)
French (fr)
Inventor
三環子 吉田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201180031598.5A priority Critical patent/CN102959450B/zh
Priority to JP2012530587A priority patent/JP5440891B2/ja
Priority to EP11819707.8A priority patent/EP2610661B1/en
Publication of WO2012026239A1 publication Critical patent/WO2012026239A1/ja
Priority to US13/760,681 priority patent/US9341832B2/en
Priority to US15/131,694 priority patent/US9958659B2/en
Priority to US15/939,556 priority patent/US10890746B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms

Definitions

  • the present invention relates to a microscope objective lens.
  • An objective lens used in a microscope apparatus for observing a specimen such as a semiconductor or a printed circuit board needs to observe a fine pattern as a clear image at a high magnification with a recent increase in integration of semiconductors, and has a large aperture.
  • Advanced aberration correction including number and chromatic aberration is required.
  • a sufficient working distance is required in terms of work efficiency and operability.
  • Patent Document 1 As an objective lens in which chromatic aberration is well corrected with a high magnification and a high numerical aperture, for example, one disclosed in Patent Document 1 is known.
  • the present invention has been made in view of the above problems, and has a high numerical aperture, is apochromatic with respect to chromatic aberration, and further has a microscope objective lens in which aberrations are favorably corrected to the periphery at a long working distance.
  • the purpose is to provide.
  • a microscope objective lens includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a negative refractive power.
  • the diffractive optical element is disposed on the image side of the portion where the diameter of the light beam passing through the first lens group and the second lens group is the largest.
  • the microscope objective lens has a refractive index with respect to the d-line of the medium of the positive meniscus lens arranged closest to the object side of the first lens group as n1, and has a negative or convex surface when having a concave surface toward the object side.
  • the radius of curvature of the lens surface closest to the object side of the first lens group is r1
  • the focal length of the entire system is F
  • the luminous flux passing through the first lens group and the second lens group is ⁇ DOE
  • ⁇ gF (ng ⁇ nF) / (nF ⁇ nC)
  • the second lens group has at least one cemented lens
  • the refractive index for g line is ng
  • the refractive index for F line is nF
  • the refractive index for C line is As nC
  • ⁇ gF2 the difference in partial dispersion ratio between the positive lens and the negative lens constituting the cemented lens of the second lens group
  • the difference in Abbe number is ⁇ 2
  • the present invention is configured as described above, it is possible to provide a microscope objective lens that is apochromat with respect to chromatic aberration and has a good aberration corrected to the periphery of the field of view at a long working distance.
  • FIG. 6 is a diagram illustrating various aberrations of the microscope objective lens according to the first example. It is a lens block diagram of the microscope objective lens which concerns on 2nd Example.
  • FIG. 5 is an aberration diagram of the microscope objective lens according to the second example. It is a lens block diagram of the microscope objective lens which concerns on 3rd Example.
  • FIG. 10 is a diagram illustrating all aberrations of the microscope objective lens according to the third example. It is a lens block diagram of the imaging lens used with the said microscope objective lens.
  • the microscope objective lens OL includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a negative refractive power. , And is configured.
  • the first lens group G1 is a lens group for guiding the diverging light emitted from the object to the second lens group G2 while reducing the angle with respect to the optical axis and approaching the parallel light flux
  • a positive meniscus lens (for example, the positive meniscus lens L1 in FIG. 1) having a concave surface facing the object side is configured on the most object side.
  • the second lens group G2 is a lens group that uses the luminous flux emitted from the first lens group G1 as convergent light, and mainly corrects axial chromatic aberration, chromatic spherical aberration, and higher-order aberration components. Therefore, the second lens group G2 includes a diffractive optical element GD having a positive refractive power. Here, the diffractive optical element GD is disposed on the image side of the portion where the diameter of the light beam passing through the first lens group G1 and the second lens group G2 is the largest.
  • the second lens group G2 is configured to include at least one cemented lens (for example, the cemented lens CL11 in FIG. 1) in order to correct the above aberration.
  • Abbe number ⁇ 3.453
  • large dispersion large dispersion
  • anomalous dispersion described later.
  • the Abbe number of the optical glass is usually about 30 to 80, but the Abbe number of the diffractive optical element has a negative value as described above.
  • the diffractive optical surface D of the diffractive optical element GD has a dispersion characteristic that is opposite to that of normal glass (refractive optical element), and the refractive power decreases as the wavelength of light decreases, and the longer the wavelength of light, the greater the curvature. have. Therefore, a large achromatic effect can be obtained by combining with an ordinary refractive optical element. Therefore, by using the diffractive optical element GD, it becomes possible to correct chromatic aberration that cannot be achieved with ordinary optical glass.
  • the diffractive optical element GD in the present embodiment joins two diffractive element elements (for example, optical members L9 and L10 in the case of FIG. 1) made of different optical materials, and provides a diffraction grating groove on the joint surface to provide diffractive optics.
  • This is a so-called “contact multilayer diffractive optical element” constituting the surface D. Therefore, this diffractive optical element can increase the diffraction efficiency in a wide wavelength region including g-line to C-line. Therefore, the microscope objective lens OL according to the present embodiment can be used in a wide wavelength range.
  • the contact multilayer diffractive optical element is compared to a so-called separated multilayer diffractive optical element in which two diffraction element elements formed with diffraction grating grooves are arranged close to each other so that the diffraction grating grooves face each other. Since the manufacturing process can be simplified, it has the advantages of high mass production efficiency and good diffraction efficiency with respect to the incident angle of light. Therefore, the microscope objective lens OL according to the present embodiment using the contact multilayer diffractive optical element is easy to manufacture and improves the diffraction efficiency.
  • the third lens group G3 is a lens group that converts the convergent light beam emitted from the second lens group G2 into a substantially parallel light beam.
  • the third lens group G3 includes at least one cemented lens (for example, the cemented lens CL31 in FIG. 1) in order to correct chromatic aberration.
  • the microscope objective lens OL is disposed closest to the object side of the first lens group G1, and the refractive index with respect to the d-line of the medium of the positive meniscus lens L1 having a concave surface facing the object side is n1. It is desirable that the following conditional expression (1) is satisfied.
  • the microscope objective lens OL has a curvature radius of the lens surface closest to the object side of the first lens group G1, that is, the lens surface on the object side of the positive meniscus lens L1 (the first surface in FIG. 1). It is desirable that the following conditional expression (2) be satisfied, where r1 is F and the focal length of the entire microscope objective lens OL is F.
  • Conditional expression (2) defines the radius of curvature of the lens surface closest to the object side of the microscope objective lens OL. If the lower limit of conditional expression (2) is not reached, the curvature of the first surface becomes too tight and the light beam diverges too much, making it difficult to correct with the rear lens group and worsening spherical aberration. . On the contrary, if the upper limit value of the conditional expression (2) is exceeded, the curvature of the first surface becomes too loose, and a high-order spherical aberration occurs on this surface in a high numerical aperture microscope objective lens. In addition, the effect of this application can be exhibited further by making the upper limit of conditional expression (2) 4.2. Moreover, the effect of this application can be exhibited further by making the upper limit of this conditional expression (2) 4.0.
  • the maximum diameter of the light beam passing through the first lens group G1 and the second lens group G2 is ⁇ max, and the maximum light beam passing through the diffractive optical surface D of the diffractive optical element GD is used.
  • the diameter is ⁇ DOE, it is desirable to satisfy the following conditional expression (3).
  • Conditional expression (3) indicates the condition of the maximum effective diameter of the light beam passing through the diffractive optical surface D of the diffractive optical element GD. If the diffractive optical element GD (diffractive optical surface D) is disposed at a location where the effective diameter is large, higher-order spherical aberration and coma aberration will occur, so this conditional expression (3) must be satisfied. In addition, the effect of this application can be exhibited further by making the upper limit of conditional expression (3) into 0.8.
  • the microscope objective lens OL has the following conditional expression when the combined focal length of the first lens group G1 and the second lens group G2 is f12 and the focal length of the third lens group G3 is f3. It is desirable to satisfy (4).
  • Conditional expression (4) defines the refractive power arrangement of the first lens group G1, the second lens group G2, and the third lens group G3. If the upper limit of conditional expression (4) is exceeded, it will be difficult to perform higher-order aberration correction. On the other hand, if the lower limit of conditional expression (4) is not reached, a sufficient working distance cannot be obtained.
  • the microscope objective lens OL according to the present embodiment satisfies the following conditional expression (5) when the focal length of the diffractive optical element GD is fDOE.
  • Conditional expression (5) defines the focal length of the diffractive optical element GD. If the upper limit value of the conditional expression (5) is exceeded, the refractive power of the diffractive optical element GD becomes weak and does not sufficiently contribute to correction of chromatic aberration. On the contrary, if the lower limit value of the conditional expression (5) is not reached, the minimum pitch of the diffraction grating becomes too fine, and the error of the grating shape greatly deteriorates the performance of the diffractive optical element GD. turn into.
  • the diffractive optical element GD is disposed in the second lens group G2
  • the diffractive optical element GD makes it possible to satisfactorily correct high-order aberrations because the diffractive optical element GD is disposed in a portion where the light beam from the object converges. It can be carried out.
  • 587.5562 nm
  • the difference between the partial dispersion ratio and the Abbe number may be handled from a positive lens to a negative lens, or from a negative lens to a positive lens.
  • the difference in partial dispersion ratio is changed from a positive lens to a negative lens, the Abbe number The difference may be changed from the same positive lens to a negative lens.
  • Conditional expression (6) defines a difference in partial dispersion ratio and a difference in Abbe number between the positive lens and the negative lens of the cemented lens included in the third lens group G3.
  • the diffractive optical element GD disposed in the second lens group G2 does not greatly contribute to the correction of chromatic aberration of magnification. Therefore, it is necessary to effectively correct the chromatic aberration of magnification by selecting the medium (glass material) of the cemented lens arranged in the third lens group G3. If the lower limit value of conditional expression (6) is not reached, a secondary spectrum of chromatic aberration of magnification remains. Conversely, if the upper limit value is exceeded, the difference in Abbe number becomes small, and primary chromatic aberration of magnification remains. End up.
  • This microscope objective lens OL has the following when the difference in partial dispersion ratio between the positive lens and the negative lens constituting the cemented lens of the second lens group G2 is ⁇ gF2 and the difference in Abbe number with respect to the d-line is ⁇ 2. It is desirable to satisfy conditional expression (7).
  • Conditional expression (7) defines the difference in partial dispersion ratio between the positive lens and the negative lens of the cemented lens included in the second lens group G2 and the difference in Abbe number. Normally, it is better that these differences are smaller. However, since the diffractive optical element GD is used, if the upper limit value of the conditional expression (7) is exceeded, the secondary spectrum will be overcorrected. When this overcorrection of the secondary spectrum is adjusted by the diffractive optical element GD, the refractive power of the diffractive optical element GD becomes small and cannot sufficiently contribute to the correction of chromatic aberration. On the other hand, if the lower limit of conditional expression (7) is not reached, a secondary spectrum remains. If this secondary spectrum is corrected by the diffractive optical element GD, the minimum pitch of the diffraction grating becomes small, and the manufacturing error greatly affects the optical performance.
  • the microscope objective lens OL according to the present embodiment satisfies the following conditional expression (8) when the focal length of the first lens group G1 is f1.
  • Conditional expression (8) defines the focal length of the first lens group G1. If the lower limit value of conditional expression (8) is not reached, the refractive power of the first lens group G1 becomes too strong, and spherical aberration, coma aberration, etc. cannot be corrected well. On the contrary, if the upper limit value of conditional expression (8) is exceeded, the light rays from the object cannot be converged, the light flux becomes too large, and the outer shape of the lenses constituting the first lens group G1 becomes large. In addition, the height of the light beam incident on the rear lens becomes high, and spherical aberration cannot be corrected well.
  • the microscope objective lens OL according to the present embodiment satisfies the following conditional expression (9) when the focal length of the second lens group G2 is f2.
  • Conditional expression (9) defines the focal length of the second lens group G2. If the lower limit of conditional expression (9) is not reached, correction of chromatic aberration and spherical aberration generated in the first lens group G1 will be insufficient. On the contrary, if the upper limit value of the conditional expression (9) is exceeded, the negative refractive power of the cemented surface of the cemented lens provided in the second lens group G2 becomes strong, and the generation of higher-order spherical aberration increases. End up. In addition, the height of the light beam incident on the third lens group G3 increases, and it becomes difficult to correct various aberrations.
  • the microscope objective lens according to the present embodiment When configured as described above, it has a high magnification, a high numerical aperture, a sufficient working distance, an apochromat for chromatic aberration, and other aberrations are also well corrected. Microscope objectives can be provided.
  • the phase difference of the diffractive optical surface D formed on the diffractive optical element GD is a normal refractive index and will be described later.
  • the calculation was performed by the ultrahigh refractive index method using the aspherical formula (b).
  • the ultrahigh refractive index method uses a certain equivalent relationship between the aspherical shape and the grating pitch of the diffractive optical surface.
  • the diffractive optical surface D is replaced by the ultrahigh refractive index method.
  • an aspheric formula (b) described later and its coefficient As data, that is, an aspheric formula (b) described later and its coefficient.
  • d-line, C-line, F-line and g-line are selected as the calculation target of the aberration characteristics.
  • the wavelengths of these d-line, C-line, F-line and g-line used in this example and the refractive index values used for calculation of the ultrahigh refractive index method set for each spectral line are shown in the following table. It is shown in 1.
  • the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y.
  • Is S (y) r is the radius of curvature of the reference sphere (vertex radius of curvature)
  • is the conic constant
  • An is the nth-order aspherical coefficient.
  • E ⁇ n represents “ ⁇ 10 ⁇ n ”.
  • the lens surface on which the diffractive optical surface is formed is marked with an asterisk (*) on the right side of the surface number in the table, and the aspherical expression (b) indicates the performance of the diffractive optical surface.
  • the specifications are shown.
  • the microscope objective lenses OL1 to OL3 in the following embodiments are of the infinity correction type, have the configuration shown in FIG. 7, and are used together with the imaging lens IL having the specifications shown in Table 2.
  • Table 2 the first column m is the number of each optical surface from the object side, the second column r is the radius of curvature of each optical surface, and the third column d is from each optical surface to the next optical surface.
  • the fourth column nd indicates the refractive index for the d-line, and the fifth column ⁇ d indicates the Abbe number for the d-line.
  • the refractive index of air of 1.0000 is omitted.
  • the description of the specification table is the same in the following embodiments.
  • the imaging lens IL is composed of a cemented lens in which a biconvex lens L21 and a biconcave lens L22 are cemented in order from the object side, and a cemented lens in which a biconvex lens L23 and a biconcave lens L24 are cemented.
  • FIG. 1 used in the above description shows a microscope objective lens OL1 according to the first embodiment.
  • the microscope objective lens OL1 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. And a group G3.
  • the first lens group G1 in order from the object side, includes a positive meniscus lens L1 having a concave surface facing the object side, a positive meniscus lens L2 having a concave surface facing the object side, and a negative meniscus lens L3 having a convex surface facing the object side.
  • the second lens group G2 includes a cemented lens CL21 in which a biconvex lens L5, a biconcave lens L6, and a biconvex lens L7 are cemented in order from the object side, and a flat plate-shaped diffractive optical element GD including the diffractive optical surface D. Is done.
  • the third lens group G3 includes a cemented lens CL31 in which a biconcave lens L12, a biconvex lens L13, and a biconcave lens L14 are cemented.
  • the diffractive optical element GD In the diffractive optical element GD, a flat optical glass L8, two optical members L9 and L10 formed of different resin materials, and a flat optical glass L11 are joined in this order, and the optical member L9 is joined. , L10 is formed with a diffraction grating groove (diffractive optical surface D). That is, the diffractive optical element GD is a contact multilayer diffractive optical element.
  • Table 3 shows the specifications of the microscope objective lens OL1 according to the first example shown in FIG.
  • F is the focal length of the entire system
  • NA is the numerical aperture
  • is the magnification
  • d0 is the object side surface (first surface) of the first lens (positive meniscus lens L1) from the object.
  • F1 is the focal length of the first lens group G1
  • f2 is the focal length of the second lens group G2
  • f12 is the combined focal length of the first lens group G1 and the second lens group G2
  • f3 is the third lens.
  • the focal length of the group G3, fDOE is the focal length of the diffractive optical element GD
  • ⁇ max is the maximum diameter of the light beam passing through the first lens group G1 and the second lens group G2
  • ⁇ DOE is the diffractive optical surface of the diffractive optical element GD.
  • the maximum diameter of the light beam passing through D is shown.
  • the numbers of the optical surfaces shown in the first column m (* on the right indicate lens surfaces formed as diffractive optical surfaces) correspond to the surface numbers 1 to 21 shown in FIG.
  • the curvature radius 0.000 indicates a plane.
  • the second column r indicates the radius of curvature of the spherical surface that serves as a reference for the base aspherical surface, and the data used for the ultrahigh refractive index method is indicated in the specification table as aspherical data.
  • Table 3 also shows values corresponding to the conditional expressions (1) to (8), that is, condition corresponding values. The description of the above specification table is the same in the following embodiments.
  • mm is generally used as the unit of the radius of curvature r, the surface interval d, the focal length F of the entire system, and other lengths that are listed in all the following specifications. Since the same optical performance can be obtained even when proportional expansion or reduction is performed, the unit is not limited to “mm”, and other appropriate units may be used.
  • conditional expression (6) indicates the values of the lenses L12 and L13 and the values of the lenses L13 and L14 constituting the cemented lens CL31 included in the third lens group G3.
  • Conditional expression (7) indicates the values of the lenses L5 and L6 and the values of the lenses L6 and L7 constituting the cemented lens CL21 included in the second lens group G2.
  • FIG. 2 shows various aberration diagrams of spherical aberration, astigmatism, and coma aberration with respect to the rays of the d-line, C-line, F-line, and g-line in the first example.
  • the spherical aberration diagram shows the aberration amount with respect to the numerical aperture NA
  • the astigmatism diagram shows the aberration amount with respect to the image height Y
  • the coma aberration diagram shows that the image height Y is 92.5 mm.
  • Aberration amounts are shown for 0.0 mm, 6.0 mm, and 0 mm.
  • the solid line indicates the d line
  • the dotted line indicates the C line
  • the alternate long and short dash line indicates the F line
  • the alternate long and two short dashes line indicates the g line.
  • the solid line indicates the sagittal image plane for the light beams of each wavelength
  • the broken line indicates the meridional image plane for the light beams of each wavelength.
  • the microscope objective lens OL2 shown in FIG. 3 also includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. And a lens group G3.
  • the first lens group G1 includes, in order from the object side, a positive meniscus lens L1 having a concave surface facing the object side, a positive meniscus lens L2 having a concave surface facing the object side, a biconvex lens L3, and a biconvex lens L4 and a concave surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a cemented lens CL21 in which the biconvex lens L6, the biconcave lens L7, and the biconvex lens L8 are cemented, a cemented lens CL22 in which the biconvex lens L9 and the biconcave lens L10 are cemented, and A diffractive optical element GD having a flat plate shape including the diffractive optical surface D is formed.
  • the third lens group G3 includes, in order from the object side, a biconcave lens L15 and a cemented lens CL31 in which the biconcave lens L16 and the biconvex lens L17 are cemented.
  • the diffractive optical element according to the second embodiment is also a multi-layered diffractive optical element, which is a flat optical glass L11, two optical members L12, L13 formed from different resin materials, and The flat optical glass L14 is bonded in this order, and a diffraction grating groove (diffractive optical surface D) is formed on the bonding surfaces of the optical members L12 and L13.
  • Table 4 shows the specifications of the microscope objective lens OL2 according to the second example shown in FIG.
  • the surface numbers shown in Table 4 coincide with the surface numbers 1 to 27 shown in FIG.
  • conditional expression (6) indicates the values of the lenses L16 and L17 constituting the cemented lens CL31 included in the third lens group G3.
  • Conditional expression (7) includes the values of the lenses L6 and L7 and the values of the lenses L7 and L8 that constitute the cemented lens CL21 included in the second lens group G2, and the values of the lenses L9 and L10 that constitute the cemented lens CL22. Is shown.
  • FIG. 4 shows various aberrations of spherical aberration, astigmatism, and coma aberration of the microscope objective lens OL2 according to the second example. As is apparent from the respective aberration diagrams, it is understood that the aberration is corrected well and excellent imaging performance is ensured also in the second embodiment.
  • the microscope objective lens OL3 shown in FIG. 5 also has, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. And a lens group G3.
  • the first lens group G1 includes, in order from the object side, a positive meniscus lens L1 having a concave surface facing the object side, a positive meniscus lens L2 having a concave surface facing the object side, a biconvex lens L3, and a negative meniscus lens having a concave surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a cemented lens CL21 obtained by cementing a biconvex lens L5, a biconcave lens L6, and a biconvex lens L7, a biconvex lens L8, and a negative meniscus lens L9 having a concave surface facing the object side. It is composed of a cemented lens CL22 and a plate-shaped diffractive optical element GD including the diffractive optical surface D.
  • the third lens group G3 includes, in order from the object side, a biconcave lens L14 and a cemented lens CL31 in which the biconcave lens L15 and the biconvex lens L16 are cemented.
  • the diffractive optical element according to the third embodiment is also a close-contact multilayer diffractive optical element, which is a flat optical glass L10, two optical members L11, L12 formed from different resin materials, and The flat optical glass L13 is bonded in this order, and a diffraction grating groove (diffractive optical surface D) is formed on the bonding surfaces of the optical members L11 and L12.
  • a close-contact multilayer diffractive optical element which is a flat optical glass L10, two optical members L11, L12 formed from different resin materials, and The flat optical glass L13 is bonded in this order, and a diffraction grating groove (diffractive optical surface D) is formed on the bonding surfaces of the optical members L11 and L12.
  • Table 5 shows the specifications of the microscope objective lens OL3 according to the third example shown in FIG.
  • the surface numbers shown in Table 5 coincide with the surface numbers 1 to 25 shown in FIG.
  • conditional expression (6) indicates the values of the lenses L15 and L16 constituting the cemented lens CL31 included in the third lens group G3.
  • Conditional expression (7) includes the values of the lenses L5 and L6 and the values of the lenses L6 and L7 that constitute the cemented lens CL21 included in the second lens group G2, and the values of the lenses L8 and L9 that constitute the cemented lens CL22. Is shown.
  • FIG. 6 shows various aberrations of spherical aberration, astigmatism and coma aberration of the microscope objective lens OL3 according to the third example. As is apparent from the respective aberration diagrams, it is understood that aberrations are corrected well and excellent imaging performance is secured in this third embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)

Abstract

 高開口数で、且つ、色収差に対してアポクロマートであり、更に、長作動距離で周辺まで収差が良好に補正された顕微鏡対物レンズを提供する。 顕微鏡対物レンズOLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、を有し、第1レンズ群G1は、最も物体側に物体側に凹面を向けた正メニスカスレンズL1を有し、第2レンズ群G2は、正の屈折力を有する回折光学素子GDを有して構成され、この回折光学素子GDは、第1レンズ群G1及び第2レンズ群G2を通過する光束の径が最も大きくなる部分よりも像側に配置される。

Description

顕微鏡対物レンズ
 本発明は、顕微鏡対物レンズに関する。
 半導体やプリント基板等の標本を観察するための顕微鏡装置に用いられる対物レンズは、近年における半導体の高集積化に伴い、微細なパターンを高倍率で鮮明な画像として観察する必要があり、大きい開口数と色収差を含めた高度な収差補正が必要となっている。その上、作業効率や操作性の面から、十分な作動距離も必要とされている。従来、高倍率・高開口数で色収差が良好に補正された対物レンズとしては、例えば、特許文献1に開示されたものが知られている。
特開2009-192988号公報
 しかしながら、このような従来の顕微鏡対物レンズは開口数が大きく、また色収差も良く補正されているが、この顕微鏡対物レンズが取り付けられた顕微鏡装置の操作性の面で作動距離が十分とは言えない。
 本発明はこのような課題に鑑みてなされたものであり、高開口数で、且つ、色収差に対してアポクロマートであり、更に、長作動距離で周辺まで収差が良好に補正された顕微鏡対物レンズを提供することを目的とする。
 前記課題を解決するために、本発明に係る顕微鏡対物レンズは、物体側から順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、を有し、第1レンズ群は、最も物体側に、物体側に凹面を向けた正メニスカスレンズを有し、第2レンズ群は、正の屈折力を有する回折光学素子を有し、回折光学素子は、第1レンズ群及び第2レンズ群を通過する光束の径が最も大きくなる部分よりも像側に配置される。
 そして、この顕微鏡対物レンズは、第1レンズ群の最も物体側に配置された正メニスカスレンズの媒質のd線に対する屈折率をn1とし、物体側に向けて凹面を有したときは負、凸面を有したときは正の符号とし、第1レンズ群の最も物体側のレンズ面の曲率半径をr1とし、全系の焦点距離をFとし、第1レンズ群及び第2レンズ群を通過する光束の最大径をΦmaxとし、回折光学素子の回折光学面を通過する光束の最大径をΦDOEとしたとき、次式
n1 ≧ 1.8
0.5 ≦ (-r1)/F ≦ 4.5
ΦDOE/Φmax < 0.9
の条件を満足する。
 このような顕微鏡対物レンズは、第1レンズ群及び第2レンズ群の合成焦点距離をf12とし、第3レンズ群の焦点距離をf3としたとき、次式
0.3 ≦ f12/(-f3) ≦ 2
の条件を満足することが好ましい。
 また、このような顕微鏡対物レンズは、回折光学素子の焦点距離をfDOEとしたとき、次式
100 ≦ fDOE/F ≦ 1000
の条件を満足することが好ましい。
 また、このような顕微鏡対物レンズにおいて、第3レンズ群は、少なくとも1枚の接合レンズを有し、g線に対する屈折率をngとし、F線に対する屈折率をnFとし、C線に対する屈折率をnCとして、部分分散比θgFを次式
θgF = (ng-nF)/(nF-nC)
で定義し、第3レンズ群が有する接合レンズを構成する正レンズと負レンズの部分分散比の差をΔθgF3、アッベ数の差をΔν3としたとき、次式
-0.0035 ≦ ΔθgF3/Δν3 ≦ -0.002
の条件を満足することが好ましい。
 また、このような顕微鏡対物レンズにおいて、第2レンズ群は、少なくとも1枚の接合レンズを有し、g線に対する屈折率をngとし、F線に対する屈折率をnFとし、C線に対する屈折率をnCとして、部分分散比θgFを次式
θgF = (ng-nF)/(nF-nC)
で定義し、第2レンズ群が有する接合レンズを構成する正レンズと負レンズの部分分散比の差をΔθgF2、アッベ数の差をΔν2としたとき、次式
-0.0025 ≦ ΔθgF2/Δν2 ≦ -0.0006
の条件を満足することが好ましい。
 また、このような顕微鏡対物レンズは、第1レンズ群の焦点距離をf1とし、第2レンズ群の焦点距離をf2としたとき、次式
2 ≦ f1/F ≦ 10
15 ≦ f2/F ≦ 30
の条件を満足することが好ましい。
 本発明を以上のように構成すると、色収差に対してアポクロマートであって、長作動距離で視野の周辺まで収差が良好に補正された顕微鏡対物レンズを提供することができる。
第1実施例に係る顕微鏡対物レンズのレンズ構成図である。 上記第1実施例に係る顕微鏡対物レンズの諸収差図である。 第2実施例に係る顕微鏡対物レンズのレンズ構成図である。 上記第2実施例に係る顕微鏡対物レンズの諸収差図である。 第3実施例に係る顕微鏡対物レンズのレンズ構成図である。 上記第3実施例に係る顕微鏡対物レンズの諸収差図である。 上記顕微鏡対物レンズとともに用いられる結像レンズのレンズ構成図である。
 以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて、本実施形態に係る顕微鏡対物レンズの構成について説明する。この顕微鏡対物レンズOLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、を有して構成される。
 このような顕微鏡対物レンズOLにおいて、第1レンズ群G1は、物体から出た発散光の光軸に対する角度を緩めつつ平行光束へと近づけて第2レンズ群G2に導くためのレンズ群であり、最も物体側に、物体側に凹面を向けた正メニスカスレンズ(例えば、図1における正メニスカスレンズL1)を有して構成される。
 また、第2レンズ群G2は、第1レンズ群G1から出射した光束を収束光にするレンズ群であり、主に軸上色収差や色の球面収差、高次収差成分を補正している。そのため、この第2レンズ群G2は、正の屈折力を有する回折光学素子GDを有して構成される。ここで、回折光学素子GDは、第1レンズ群G1及び第2レンズ群G2を通過する光束の径が最も大きくなる部分よりも像側に配置される。また、この第2レンズ群G2は、上記の収差を補正するために、少なくとも1枚の接合レンズ(例えば、図1における接合レンズCL11)を有して構成されている。
 この第2レンズ群G2に設けられた回折光学素子GD(回折光学面D)は、負の分散値(アッベ数=-3.453)を有し、分散が大きく、また異常分散性(後述する実施例では部分分散比(ng-nF)/(nF-nC)=0.2956)が強いため、強力な色収差補正能力を有している。光学ガラスのアッベ数は、通常30~80程度であるが、上述のように回折光学素子のアッベ数は負の値を持っている。換言すると、回折光学素子GDの回折光学面Dは分散特性が通常のガラス(屈折光学素子)とは逆で光の波長が短くなるに伴い屈折力が小さくなり、長い波長の光ほど大きく曲がる性質を有している。そのため、通常の屈折光学素子と組み合わせることにより、大きな色消し効果が得られる。したがって回折光学素子GDを利用することで、通常の光学ガラスでは達し得ない良好な色収差の補正が可能になる。
 本実施形態における回折光学素子GDは、異なる光学材料からなる2つの回折素子要素(例えば、図1の場合、光学部材L9,L10)を接合し、その接合面に回折格子溝を設けて回折光学面Dを構成している、いわゆる「密着複層型回折光学素子」である。そのため、この回折光学素子は、g線からC線を含む広波長域において回折効率を高くすることができる。したがって、本実施の形態に係る顕微鏡対物レンズOLは広波長域において利用することが可能となる。なお、回折効率は、透過型の回折光学素子において1次回折光を利用する場合、入射強度I0と一次回折光の強度I1との割合η(=I1/I0×100[%])を示す。
 また、密着複層型回折光学素子は、回折格子溝が形成された2つの回折素子要素をこの回折格子溝同士が対向するように近接配置してなるいわゆる分離複層型回折光学素子に比べて製造工程を簡素化することができるため、量産効率がよく、また光線の入射角に対する回折効率が良いという長所を備えている。したがって、密着複層型回折光学素子を利用した本実施形態に係る顕微鏡対物レンズOLでは、製造が容易となり、また回折効率も良くなる。
 また、第3レンズ群G3は、第2レンズ群G2を出射した収斂光束を略平行光束にするレンズ群である。この第3レンズ群G3は、色収差を補正するために、少なくとも1枚の接合レンズ(例えば、図1における接合レンズCL31)を有して構成されている。
 それでは、本実施形態に係る顕微鏡対物レンズOLを構成するための条件について説明する。
 まず、本実施形態に係る顕微鏡対物レンズOLは、第1レンズ群G1の最も物体側に配置され、物体側に凹面を向けた正メニスカスレンズL1の媒質のd線に対する屈折率をn1としたとき、次の条件式(1)を満足することが望ましい。
n1 ≧ 1.8                      (1)
 この条件式(1)を満足すると、正メニスカスレンズL1のレンズ面の曲率が緩くなり、収差を良好に保つことができる。また、物体側に凹面を向けたレンズ面(第1面)の負の屈折力を強くすることにより、ペッツバール和を負とすることができ、平坦性を維持することができる。
 また、本実施形態に係る顕微鏡対物レンズOLは、第1レンズ群G1の最も物体側のレンズ面、すなわち、正メニスカスレンズL1の物体側のレンズ面(図1における第1面)の曲率半径をr1とし、この顕微鏡対物レンズOLの全系の焦点距離をFとしたとき、次の条件式(2)を満足することが望ましい。
0.5 ≦ (-r1)/F ≦ 4.5           (2)
 条件式(2)は、顕微鏡対物レンズOLの最も物体側にあるレンズ面の曲率半径を規定するものである。この条件式(2)の下限値を下回ると第1面の曲率がきつくなり過ぎて光束が大きく発散しすぎてしまい、後群のレンズ群での補正が難しくなり、球面収差が悪化してしまう。反対にこの条件式(2)の上限値を上回ると第1面の曲率が緩くなり過ぎてしまい、高開口数の顕微鏡対物レンズでは、この面で高次の球面収差が発生してしまう。なお、条件式(2)の上限値を4.2にすることにより、本願の効果をさらに発揮させることができる。また、この条件式(2)の上限値を4.0にすることにより、本願の効果をさらに発揮させることができる。
 また、本実施形態に係る顕微鏡対物レンズOLは、第1レンズ群G1及び第2レンズ群G2を通過する光束の最大径をΦmaxとし、回折光学素子GDの回折光学面Dを通過する光束の最大径をΦDOEとしたとき、次の条件式(3)を満足することが望ましい。
ΦDOE/Φmax < 0.9                  (3)
 条件式(3)は、回折光学素子GDの回折光学面Dを通過する光線の最大有効径の条件を示している。有効径の大きいところに回折光学素子GD(回折光学面D)が配置されると、高次の球面収差やコマ収差が発生してしまうため、この条件式(3)を満足する必要がある。なお、条件式(3)の上限値を0.8にすることにより、本願の効果をさらに発揮させることができる。
 また、本実施形態に係る顕微鏡対物レンズOLは、第1レンズ群G1及び第2レンズ群G2の合成焦点距離をf12とし、第3レンズ群G3の焦点距離をf3としたとき、次の条件式(4)を満足することが望ましい。
0.3 ≦ f12/(-f3) ≦ 2           (4)
 条件式(4)は第1レンズ群G1及び第2レンズ群G2と第3レンズ群G3との屈折力配置を規定するものである。この条件式(4)の上限値を上回ると高次の収差補正を行うことが難しくなる。反対にこの条件式(4)の下限値を下回ると、十分な作動距離を得ることができなくなる。
 また、本実施形態に係る顕微鏡対物レンズOLは、回折光学素子GDの焦点距離をfDOEとしたとき、次の条件式(5)を満足することが望ましい。
100 ≦ fDOE/F ≦ 1000             (5)
 条件式(5)は回折光学素子GDの焦点距離を規定するものである。この条件式(5)の上限値を上回ると回折光学素子GDの屈折力が弱くなり、色収差の補正に十分寄与しなくなってしまう。反対にこの条件式(5)の下限値を下回ると回折格子の最小ピッチが細かくなりすぎてしまい、格子形状の誤差が、この回折光学素子GDの性能を大きく落としてしまうため、製造誤差が厳しくなってしまう。
 なお、回折光学素子GDは第2レンズ群G2に配置されているが、これにより、物体からの光束が収束する部分に配置されるので、この回折光学素子GDにより高次収差の補正を良好に行うことができる。
 また、本実施形態に係る顕微鏡対物レンズOLは、第3レンズ群G3が有する接合レンズを構成する正レンズと負レンズの部分分散比の差をΔθgF3、d線(λ=587.562nm)に対するアッベ数の差をΔν3としたとき、次の条件式(6)を満足することが望ましい。また、部分分散比及びアッベ数の差の取り扱いは、正レンズから負レンズ、又は、負レンズから正レンズのどちらでも良く、部分分散比の差を正レンズから負レンズとした場合、アッベ数の差も同じ正レンズから負レンズとすれば良い。
-0.0035 ≦ ΔθgF3/Δν3 ≦ -0.002  (6)
 ただし、上記部分分散比θgFは、下記式(a)によって定義された数値であり、ng、nF、nCは、接合レンズを構成する正レンズ及び負レンズの媒質のg線(λ=435.835nm)、F線(λ=486.133nm)及びC線(λ=656.273nm)に対する屈折率をそれぞれ表している。
θgF = (ng-nF)/(nF-nC)    (a)
 条件式(6)は、第3レンズ群G3に含まれる接合レンズの正レンズと負レンズの部分分散比の差とアッベ数の差とを規定するものである。第2レンズ群G2に配置されている回折光学素子GDは、倍率の色収差の補正には大きく寄与していない。そのため、倍率の色収差については、第3レンズ群G3に配置された接合レンズの媒質(硝材)の選択により効果的に補正することが必要である。この条件式(6)の下限値を下回ると倍率の色収差の2次スペクトルが残存してしまい、反対に上限値を上回るとアッベ数の差が小さくなり、倍率の1次の色収差が残存してしまう。
 また、この顕微鏡対物レンズOLは、第2レンズ群G2が有する接合レンズを構成する正レンズと負レンズの部分分散比の差をΔθgF2、d線に対するアッベ数の差をΔν2としたとき、次の条件式(7)を満足することが望ましい。
-0.0025 ≦ ΔθgF2/Δν2 ≦ -0.0006 (7)
 条件式(7)は、第2レンズ群G2に含まれる接合レンズの正レンズと負レンズの部分分散比の差とアッベ数の差とを規定するものである。通常はこれらの差がより小さい方が良いが、回折光学素子GDを使用しているため、この条件式(7)の上限値を上回ると2次スペクトルが補正過剰となってしまう。この2次スペクトルの補正過剰を回折光学素子GDで調整すると、回折光学素子GDの屈折力が小さくなってしまい、色収差の補正に十分寄与できなくなってしまう。反対に条件式(7)の下限値を下回ると2次スペクトルが残存してしまう。この2次スペクトルを回折光学素子GDで補正しようとすると、回折格子の最小ピッチが小さくなってしまい、製造誤差が光学性能に大きく影響してしまう。
 また、本実施形態に係る顕微鏡対物レンズOLは、第1レンズ群G1の焦点距離をf1としたとき、次の条件式(8)を満足することが望ましい。
2 ≦ f1/F ≦ 10                 (8)
 条件式(8)は第1レンズ群G1の焦点距離を規定するものである。この条件式(8)の下限値を下回ると第1レンズ群G1の屈折力が強くなりすぎ、球面収差やコマ収差などを良好に補正することができなくなる。反対に条件式(8)の上限値を上回ると物体からの光線を収束させることができず、光束が大きくなり過ぎてしまい、第1レンズ群G1を構成するレンズの外形が大きくなってしまう。また、後方のレンズに入射する光線の高さが高くなり、球面収差を良好に補正することができなくなる。
 また、本実施形態に係る顕微鏡対物レンズOLは、第2レンズ群G2の焦点距離をf2としたとき、次の条件式(9)を満足することが望ましい。
15 ≦ f2/F ≦ 30                (9)
 条件式(9)は第2レンズ群G2の焦点距離を規定するものである。この条件式(9)の下限値を下回ると第1レンズ群G1で発生した色収差や球面収差の補正が不足してしまう。反対にこの条件式(9)の上限値を上回ると、この第2レンズ群G2に設けられた接合レンズの接合面の負の屈折力が強くなり、高次の球面収差の発生が大きくなってしまう。また、第3レンズ群G3に入射する光線の高さが高くなってしまい、諸収差の補正が困難になる。
 本実施形態に係る顕微鏡対物レンズを以上のように構成すると、高倍率で高開口数であり、十分な作動距離を持ち、色収差に対してアポクロマートであり、また、その他の諸収差も良好に補正された顕微鏡対物レンズを提供することができる。
 以下に、本実施形態に係る顕微鏡対物レンズOLの3つの実施例を示すが、各実施例において、回折光学素子GDに形成された回折光学面Dの位相差は、通常の屈折率と後述する非球面式(b)とを用いて行う超高屈折率法により計算した。超高屈折率法とは、非球面形状と回折光学面の格子ピッチとの間の一定の等価関係を利用するものであり、本実施例においては、回折光学面Dを超高屈折率法のデータとして、すなわち、後述する非球面式(b)及びその係数により示している。なお、本実施例では収差特性の算出対象として、d線、C線、F線及びg線を選んでいる。本実施例において用いられたこれらd線、C線、F線及びg線の波長と、各スペクトル線に対して設定した超高屈折率法の計算に用いるための屈折率の値を次の表1に示す。
(表1)
     波長      屈折率(超高屈折率法による)
 d線   587.562nm   10001.0000
 C線   656.273nm   11170.4255
 F線   486.133nm   8274.7311
 g線   435.835nm   7418.6853
 各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(頂点曲率半径)をrとし、円錐定数をκとし、n次の非球面係数をAnとしたとき、以下の式(b)で表される。なお、以降の実施例において、「E-n」は「×10-n」を示す。
S(y)=(y2/r)/{1+(1-κ×y2/r21/2
    +A2×y2+A4×y4+A6×y6+A8×y8+A10×y10  (b)
 なお、各実施例において、回折光学面が形成されたレンズ面には、表中の面番号の右側に*印を付しており、非球面式(b)は、この回折光学面の性能の諸元を示している。
 また、以下の各実施例における顕微鏡対物レンズOL1~OL3は、無限遠補正型のものであり、図7に示す構成であって、表2に示す諸元を有する結像レンズILとともに使用される。なお、この表2において、第1欄mは物体側からの各光学面の番号を、第2欄rは各光学面の曲率半径を、第3欄dは各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄ndはd線に対する屈折率を、そして、第5欄νdはd線に対するアッベ数をそれぞれ示している。ここで、空気の屈折率1.00000は省略してある。この諸元表の説明は以降の実施例においても同様である。
(表2)
m   r    d    nd    νd
 1   75.043   5.10   1.623   57.0
 2  -75.043   2.00   1.750   35.2
 3  1600.580   7.50
 4   50.256   5.10   1.668   42.0
 5  -84.541   1.80   1.613   44.4
 6   36.911
 なお、この結像レンズILは、物体側から順に、両凸レンズL21と両凹レンズL22とを接合した接合レンズ、及び、両凸レンズL23と両凹レンズL24とを接合した接合レンズから構成される。
[第1実施例]
 上述の説明で用いた図1は、第1実施例に係る顕微鏡対物レンズOL1を示している。この顕微鏡対物レンズOL1は上述した通り、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、から構成される。第1レンズ群G1は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL1、物体側に凹面を向けた正メニスカスレンズL2、及び、物体側に凸面を向けた負メニスカスレンズL3と両凸レンズL4とを接合した接合レンズCL11から構成される。また、第2レンズ群G2は、物体側から順に、両凸レンズL5と両凹レンズL6と両凸レンズL7とを接合した接合レンズCL21、及び、回折光学面Dを含む平板形状の回折光学素子GDから構成される。さらに、第3レンズ群G3は、両凹レンズL12と両凸レンズL13と両凹レンズL14とを接合した接合レンズCL31から構成される。
 また、回折光学素子GDは、平板状の光学ガラスL8、それぞれ異なる樹脂材料から形成された2個の光学部材L9,L10、及び、平板状の光学ガラスL11がこの順で接合され、光学部材L9,L10の接合面に回折格子溝(回折光学面D)が形成されている。すなわち、この回折光学素子GDは、密着複層型の回折光学素子である。
 この図1に示す第1実施例に係る顕微鏡対物レンズOL1の諸元を表3に示す。なお、この表3において、Fは全系の焦点距離を、NAは開口数を、βは倍率を、d0は物体から最初のレンズ(正メニスカスレンズL1)の物体側の面(第1面)の頂点までの光軸上の距離をそれぞれ示している。また、f1は第1レンズ群G1の焦点距離を、f2は第2レンズ群G2の焦点距離を、f12は第1レンズ群G1及び第2レンズ群G2の合成焦点距離を、f3は第3レンズ群G3の焦点距離を、fDOEは回折光学素子GDの焦点距離を、Φmaxは第1レンズ群G1及び第2レンズ群G2を通過する光束の最大径を、ΦDOEは回折光学素子GDの回折光学面Dを通過する光束の最大径をそれぞれ示している。なお、第1欄mに示す各光学面の番号(右の*は回折光学面として形成されているレンズ面を示す)は、図1に示した面番号1~21に対応している。また、第2欄rにおいて、曲率半径0.000は平面を示している。また、回折光学面の場合は、第2欄rにベースとなる非球面の基準となる球面の曲率半径を示し、超高屈折率法に用いるデータは非球面データとして諸元表内に示している。さらに、この表3には、上記条件式(1)~(8)に対応する値、すなわち、条件対応値も示している。以上の諸元表の説明は、以降の実施例においても同様である。
 なお、以下の全ての諸元において掲載される曲率半径r、面間隔d、全系の焦点距離Fその他長さの単位は、特記の無い場合、一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることはなく、他の適当な単位を用いることもできる。
(表3)
F=4mm
NA=0.8
β=50x
d0=3.38
f1=9.2
f2=114.2
f12=8.8
f3=-22.4
Φmax=17.92
ΦDOE=12.80

m   r    d    nd    νd
 1   -4.220   4.00   1.903   35.7
 2   -5.421   0.20
 3  -47.354   4.00   1.603   65.5
 4  -12.900   0.20
 5   85.133   1.10   1.517   52.4
 6   12.610   8.00   1.498   82.5
 7  -16.869   0.20
 8   30.992   5.35   1.640   60.1
 9  -17.900   1.20   1.738   32.3
10   9.973   5.60   1.498   82.5
11  -32.895   3.00
12   0.000   2.50   1.517   64.1
13   0.000   0.06   1.528   34.7
14   0.000   0.00 10001.000   -3.5
15*   0.000   0.06   1.557   50.2
16   0.000   3.00   1.517   64.1
17   0.000  16.10
18  -67.221   1.70   1.652   58.5
19   12.651   2.70   1.717   29.5
20   -9.076   1.25   1.517   52.3
21   8.270

回折光学面データ
第15面  κ=1  A2=-5.9524E-08  A4=3.8419E-10
      A6=-4.8802E-12  A8=6.5871E-15  A10=0.00000E+00

条件対応値
(1)n1=1.903
(2)(-r1)/F=1.06
(3)ΦDOE/Φmax=0.71
(4)f12/(-f3)=0.4
(5)fDOE/F=210
(6)ΔθgF3/Δν3=-0.0022,-0.0021
(7)ΔθgF2/Δν2=-0.0019,-0.0010
(8)f1/F=2.3
(9)f2/F=28.6
 なお、表3に示した条件対応値のうち、条件式(6)は第3レンズ群G3に含まれる接合レンズCL31を構成するレンズL12,L13の値及びレンズL13,L14の値を示している。また、条件式(7)は第2レンズ群G2に含まれる接合レンズCL21を構成するレンズL5,L6の値及びレンズL6,L7の値を示している。このように、第1実施例では上記条件式(1)~(9)は全て満たされていることが分かる。
 図2に、この第1実施例におけるd線、C線、F線及びg線の光線に対する球面収差、非点収差、及び、コマ収差の諸収差図を示す。これらの収差図のうち、球面収差図は開口数NAに対する収差量を示し、非点収差図は像高Yに対する収差量を示し、コマ収差図は、像高Yが12.5mmのとき、9.0mmのとき、6.0mmのとき、及び、0mmのときの収差量を示している。また、球面収差図及びコマ収差図において、実線はd線を示し、点線はC線を示し、一点鎖線はF線を示し、二点鎖線はg線を示している。さらに、非点収差図において、実線は各波長の光線に対するサジタル像面を示し、破線は各波長の光線に対するメリジオナル像面を示している。これらの諸収差図の説明は以降の実施例においても同様である。この図2に示す各収差図から明らかなように、第1実施例では諸収差が良好に補正され、優れた結像性能が確保されていることがわかる。
[第2実施例]
 次に、第2実施例として、図3に示す顕微鏡対物レンズOL2について説明する。この図3に示す顕微鏡対物レンズOL2も、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。第1レンズ群G1は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL1、物体側に凹面を向けた正メニスカスレンズL2、両凸レンズL3、及び、両凸レンズL4と物体側に凹面を向けた負メニスカスレンズL5とを接合した接合レンズCL11から構成される。また、第2レンズ群G2は、物体側から順に、両凸レンズL6と両凹レンズL7と両凸レンズL8とを接合した接合レンズCL21、両凸レンズL9と両凹レンズL10とを接合した接合レンズCL22、及び、回折光学面Dを含む平板形状の回折光学素子GDから構成される。さらに、第3レンズ群G3は、物体側から順に、両凹レンズL15、及び、両凹レンズL16と両凸レンズL17とを接合した接合レンズCL31から構成される。
 また、この第2実施例に係る回折光学素子も密着複層型の回折光学素子であって、平板状の光学ガラスL11、それぞれ異なる樹脂材料から形成された2個の光学部材L12,L13、及び、平板状の光学ガラスL14がこの順で接合され、光学部材L12,L13の接合面に回折格子溝(回折光学面D)が形成されている。
 この図3に示した第2実施例に係る顕微鏡対物レンズOL2の諸元を表4に示す。なお、表4に示す面番号は図3に示した面番号1~27と一致している。
(表4)
F=2mm
NA=0.9
β=100x
d0=3.81
f1=8.6
f2=36.4
f12=9.5
f3=-6.1
Φmax=19.79
ΦDOE=10.36
m   r    d    nd    νd
 1   -7.160   3.40   1.883   40.8
 2   -6.151   0.10
 3  -23.001   4.00   1.498   82.5
 4  -10.283   0.10
 5  135.400   4.20   1.498   82.5
 6  -19.100   0.10
 7   82.148   6.20   1.498   82.5
 8  -13.130   1.10   1.613   44.3
 9  -39.504   0.20
10   50.990   5.95   1.498   82.5
11  -13.200   1.10   1.654   39.7
12   18.697   6.10   1.498   82.5
13  -15.801   0.20
14   17.850   4.85   1.498   82.5
15  -12.450   1.00   1.804   39.6
16  231.728   1.00
17   0.000   2.00   1.517   64.1
18   0.000   0.10   1.528   34.7
19   0.000   0.00 10001.000   -3.5
20*   0.000   0.10   1.557   50.2
21   0.000   3.00   1.517   64.1
22   0.000   9.05
23   -5.917   1.15   1.713   53.9
24   6.350   1.60
25   -5.331   1.00   1.564   60.7
26   9.204   1.70   1.755   27.5
27   -7.900

回折光学面データ
第20面  κ=1  A2=-8.0000E-08  A4=8.4238E-10
      A6=-1.2711E-11  A8=1.1492E-13  A10=0.00000E+00

条件対応値
(1)n1=1.883
(2)(-r1)/F=3.58
(3)ΦDOE/Φmax=0.52
(4)f12/(-f3)=1.6
(5)fDOE/F=312.5
(6)ΔθgF3/Δν3=-0.0021
(7)ΔθgF2/Δν2=-0.0008,-0.0008,-0.0008
(8)f1/F=4.3
(9)f2/F=18.2
 なお、表4に示した条件対応値のうち、条件式(6)は第3レンズ群G3に含まれる接合レンズCL31を構成するレンズL16,L17の値を示している。また、条件式(7)は第2レンズ群G2に含まれる接合レンズCL21を構成するレンズL6,L7の値及びレンズL7,L8の値と、接合レンズCL22を構成するレンズL9,L10の値とを示している。このように、第2実施例では上記条件式(1)~(9)は全て満たされていることが分かる。また、図4にこの第2実施例に係る顕微鏡対物レンズOL2の球面収差、非点収差及びコマ収差の諸収差図を示す。この各収差図から明らかなように、この第2実施例でも、収差が良好に補正され、優れた結像性能が確保されていることが分かる。
[第3実施例]
 次に、第3実施例として、図5に示す顕微鏡対物レンズOL3について説明する。この図5に示す顕微鏡対物レンズOL3も、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。第1レンズ群G1は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL1、物体側に凹面を向けた正メニスカスレンズL2、両凸レンズL3と物体側に凹面を向けた負メニスカスレンズL4を接合した接合レンズCL11から構成される。また、第2レンズ群G2は、物体側から順に、両凸レンズL5と両凹レンズL6と両凸レンズL7とを接合した接合レンズCL21、両凸レンズL8と物体側に凹面を向けた負メニスカスレンズL9とを接合した接合レンズCL22、及び、回折光学面Dを含む平板形状の回折光学素子GDから構成される。さらに、第3レンズ群G3は、物体側から順に、両凹レンズL14、及び、両凹レンズL15と両凸レンズL16とを接合した接合レンズCL31から構成される。
 また、この第3実施例に係る回折光学素子も密着複層型の回折光学素子であって、平板状の光学ガラスL10、それぞれ異なる樹脂材料から形成された2個の光学部材L11,L12、及び、平板状の光学ガラスL13がこの順で接合され、光学部材L11,L12の接合面に回折格子溝(回折光学面D)が形成されている。
 この図5に示した第3実施例に係る顕微鏡対物レンズOL3の諸元を表5に示す。なお、表5に示す面番号は図5に示した面番号1~25と一致している。
(表5)
F=1.33mm
NA=0.9
β=150x
d0=2.95
f1=7.7
f2=33.0
f12=8.2
f3=-4.8
Φmax=17.83
ΦDOE=10.15

m   r    d    nd    νd
 1   -5.290   3.50   1.804   39.6
 2   -5.030   0.15
 3  -18.200   2.90   1.603   65.5
 4   -9.566   0.15
 5   27.978   6.20   1.498   82.6
 6  -12.264   1.30   1.569   56.0
 7  -19.297   0.20
 8   30.758   5.60   1.498   82.6
 9  -13.300   1.00   1.673   38.2
10   12.192   6.70   1.498   82.6
11  -14.331   0.15
12   21.570   4.70   1.498   82.6
13  -10.130   1.00   1.804   39.6
14  -89.173   0.70
15   0.000   2.50   1.517   64.1
16   0.000   0.06   1.528   34.7
17   0.000   0.00 10001.000   -3.5
18*   0.000   0.06   1.557   50.2
19   0.000   3.00   1.517   64.1
20   0.000  12.00
21   -6.151   1.70   1.517   52.4
22   6.151   3.00
23   -4.178   1.00   1.734   51.5
24   6.681   2.20   1.785   25.6
25   -7.986

回折光学面データ
第18面  κ=1  A2=-7.3529E-08  A4=1.2704E-09
      A6=-3.6213E-11  A8=1.4394E-13  A10=0.00000E+00

条件対応値
(1)n1=1.804
(2)(-r1)/F=3.98
(3)ΦDOE/Φmax=0.57
(4)f12/(-f3)=1.7
(5)fDOE/F=511.3
(6)ΔθgF3/Δν3=-0.0026
(7)ΔθgF2/Δν2=-0.0008,-0.0008,-0.0008
(8)f1/F=5.8
(9)f2/F=24.8
 なお、表5に示した条件対応値のうち、条件式(6)は第3レンズ群G3に含まれる接合レンズCL31を構成するレンズL15,L16の値を示している。また、条件式(7)は第2レンズ群G2に含まれる接合レンズCL21を構成するレンズL5,L6の値及びレンズL6,L7の値と、接合レンズCL22を構成するレンズL8,L9の値とを示している。このように、第3実施例では上記条件式(1)~(9)は全て満たされていることが分かる。また、図6にこの第3実施例に係る顕微鏡対物レンズOL3の球面収差、非点収差及びコマ収差の諸収差図を示す。この各収差図から明らかなように、この第3実施例でも、収差が良好に補正され、優れた結像性能が確保されていることが分かる。
OL(OL1~OL3) 顕微鏡対物レンズ  G1 第1レンズ群
L1 正メニスカスレンズ  G2 第2レンズ群  G3 第3レンズ群
GD 回折光学素子  CL21,CL22,CL31 接合レンズ

Claims (6)

  1.  物体側から順に、
     正の屈折力を有する第1レンズ群と、
     正の屈折力を有する第2レンズ群と、
     負の屈折力を有する第3レンズ群と、を有し、
     前記第1レンズ群は、最も物体側に、物体側に凹面を向けた正メニスカスレンズを有し、
     前記第2レンズ群は、正の屈折力を有する回折光学素子を有し、
     前記回折光学素子は、前記第1レンズ群及び前記第2レンズ群を通過する光束の径が最も大きくなる部分よりも像側に配置され、
     前記第1レンズ群の前記正メニスカスレンズの媒質のd線に対する屈折率をn1とし、前記第1レンズ群の最も物体側のレンズ面の曲率半径をr1とし、全系の焦点距離をFとし、前記第1レンズ群及び前記第2レンズ群を通過する光束の最大径をΦmaxとし、前記回折光学素子の回折光学面を通過する光束の最大径をΦDOEとしたとき、次式
    n1 ≧ 1.8
    0.5 ≦ (-r1)/F ≦ 4.5
    ΦDOE/Φmax < 0.9
    の条件を満足する顕微鏡対物レンズ。
  2.  前記第1レンズ群及び前記第2レンズ群の合成焦点距離をf12とし、前記第3レンズ群の焦点距離をf3としたとき、次式
    0.3 ≦ f12/(-f3) ≦ 2
    の条件を満足する請求項1に記載の顕微鏡対物レンズ。
  3.  前記回折光学素子の焦点距離をfDOEとしたとき、次式
    100 ≦ fDOE/F ≦ 1000
    の条件を満足する請求項1または2に記載の顕微鏡対物レンズ。
  4.  前記第3レンズ群は、少なくとも1枚の接合レンズを有し、
     g線に対する屈折率をngとし、F線に対する屈折率をnFとし、C線に対する屈折率をnCとして、部分分散比θgFを次式
    θgF = (ng-nF)/(nF-nC)
    で定義し、前記第3レンズ群が有する前記接合レンズを構成する正レンズと負レンズの前記部分分散比の差をΔθgF3、アッベ数の差をΔν3としたとき、次式
    -0.0035 ≦ ΔθgF3/Δν3 ≦ -0.002
    の条件を満足する請求項1~3のいずれか一項に記載の顕微鏡対物レンズ。
  5.  前記第2レンズ群は、少なくとも1枚の接合レンズを有し、
     g線に対する屈折率をngとし、F線に対する屈折率をnFとし、C線に対する屈折率をnCとして、部分分散比θgFを次式
    θgF = (ng-nF)/(nF-nC)
    で定義し、前記第2レンズ群が有する前記接合レンズを構成する正レンズと負レンズの前記部分分散比の差をΔθgF2、アッベ数の差をΔν2としたとき、次式
    -0.0025 ≦ ΔθgF2/Δν2 ≦ -0.0006
    の条件を満足する請求項1~4のいずれか一項に記載の顕微鏡対物レンズ。
  6.  前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2としたとき、次式
    2 ≦ f1/F ≦ 10
    15 ≦ f2/F ≦ 30
    の条件を満足する請求項1~5のいずれか一項に記載の顕微鏡対物レンズ。
PCT/JP2011/066181 2010-08-25 2011-07-15 顕微鏡対物レンズ WO2012026239A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180031598.5A CN102959450B (zh) 2010-08-25 2011-07-15 显微镜物镜
JP2012530587A JP5440891B2 (ja) 2010-08-25 2011-07-15 顕微鏡対物レンズ
EP11819707.8A EP2610661B1 (en) 2010-08-25 2011-07-15 Microscope objective lens
US13/760,681 US9341832B2 (en) 2010-08-25 2013-02-06 Microscope objective lens
US15/131,694 US9958659B2 (en) 2010-08-25 2016-04-18 Microscope objective lens
US15/939,556 US10890746B2 (en) 2010-08-25 2018-03-29 Microscope objective lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010187827 2010-08-25
JP2010-187827 2010-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/760,681 Continuation US9341832B2 (en) 2010-08-25 2013-02-06 Microscope objective lens

Publications (1)

Publication Number Publication Date
WO2012026239A1 true WO2012026239A1 (ja) 2012-03-01

Family

ID=45723248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066181 WO2012026239A1 (ja) 2010-08-25 2011-07-15 顕微鏡対物レンズ

Country Status (5)

Country Link
US (3) US9341832B2 (ja)
EP (1) EP2610661B1 (ja)
JP (1) JP5440891B2 (ja)
CN (1) CN102959450B (ja)
WO (1) WO2012026239A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107881A1 (ja) 2014-01-15 2015-07-23 株式会社ニコン 対物レンズおよび顕微鏡

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158778A1 (ja) 2010-06-16 2011-12-22 株式会社ニコン 顕微鏡対物レンズ
CN102959450B (zh) 2010-08-25 2015-06-24 株式会社尼康 显微镜物镜
WO2016050383A1 (en) 2014-09-29 2016-04-07 Asml Netherlands B.V. High numerical aperture objective lens system
WO2017097564A1 (en) * 2015-12-07 2017-06-15 Asml Holding N.V. Objective lens system
CN106405803B (zh) * 2016-11-22 2019-02-01 南京先进激光技术研究院 一种大轴向色差的线性色散物镜
CN107505696B (zh) * 2017-09-15 2019-05-07 中国科学院长春光学精密机械与物理研究所 平场复消色差显微物镜
CN108254911A (zh) * 2018-01-25 2018-07-06 张佳 一种显微镜物镜
US20190340606A1 (en) * 2018-05-07 2019-11-07 Capital One Services, Llc Merchant quality ratings in a financial computer network
JP7086709B2 (ja) 2018-05-14 2022-06-20 キヤノン株式会社 光学系およびそれを有する撮像装置
CN108873288B (zh) * 2018-06-13 2021-05-14 中国科学院苏州生物医学工程技术研究所 一种显微镜物镜及包括显微镜物镜的显微镜
CN113126258B (zh) * 2021-04-23 2023-05-02 浙江舜宇光学有限公司 光学成像镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286113A (ja) * 1995-04-17 1996-11-01 Olympus Optical Co Ltd 対物レンズ
WO2009041546A1 (ja) * 2007-09-25 2009-04-02 Nikon Corporation 対物レンズ
JP2009192988A (ja) 2008-02-18 2009-08-27 Nikon Corp 顕微鏡対物レンズ
JP2009251554A (ja) * 2008-04-11 2009-10-29 Nikon Corp 顕微鏡対物レンズ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631779A (en) * 1993-05-24 1997-05-20 Olympus Optical Co., Ltd. Objective lens system
US5847877A (en) * 1994-09-12 1998-12-08 Olympus Optical Co., Ltd. Diffractive optical element
JPH08297247A (ja) * 1995-04-26 1996-11-12 Olympus Optical Co Ltd 対物レンズ
US20040070846A1 (en) * 2001-06-22 2004-04-15 Hans-Juergen Dobschal Objective
JP4383080B2 (ja) * 2003-04-15 2009-12-16 オリンパス株式会社 対物レンズ
JP2008122592A (ja) * 2006-11-10 2008-05-29 Nikon Corp 顕微鏡対物レンズ
JP5109712B2 (ja) * 2008-02-25 2012-12-26 株式会社ニコン 対物レンズ
EP3128355B1 (en) * 2008-04-11 2018-06-13 Nikon Corporation Microscope objective lens
CN102959450B (zh) * 2010-08-25 2015-06-24 株式会社尼康 显微镜物镜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286113A (ja) * 1995-04-17 1996-11-01 Olympus Optical Co Ltd 対物レンズ
WO2009041546A1 (ja) * 2007-09-25 2009-04-02 Nikon Corporation 対物レンズ
JP2009192988A (ja) 2008-02-18 2009-08-27 Nikon Corp 顕微鏡対物レンズ
JP2009251554A (ja) * 2008-04-11 2009-10-29 Nikon Corp 顕微鏡対物レンズ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107881A1 (ja) 2014-01-15 2015-07-23 株式会社ニコン 対物レンズおよび顕微鏡
US9869879B2 (en) 2014-01-15 2018-01-16 Nikon Corporation Objective lens and microscope

Also Published As

Publication number Publication date
US10890746B2 (en) 2021-01-12
US20130148202A1 (en) 2013-06-13
EP2610661A4 (en) 2017-11-15
JP5440891B2 (ja) 2014-03-12
JPWO2012026239A1 (ja) 2013-10-28
CN102959450A (zh) 2013-03-06
US9341832B2 (en) 2016-05-17
EP2610661A1 (en) 2013-07-03
CN102959450B (zh) 2015-06-24
US9958659B2 (en) 2018-05-01
EP2610661B1 (en) 2019-03-13
US20180239122A1 (en) 2018-08-23
US20170023783A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP5440891B2 (ja) 顕微鏡対物レンズ
WO2009125778A1 (ja) 顕微鏡対物レンズ
JP5614448B2 (ja) 顕微鏡対物レンズ
US9030750B2 (en) Objective lens
WO2012026379A1 (ja) 顕微鏡光学系及び顕微鏡システム
JP4860500B2 (ja) 色消しレンズ系、光学装置
JP6354170B2 (ja) 対物レンズ
JP2008083096A (ja) 色消しレンズ系、光学装置
JP5206085B2 (ja) 顕微鏡対物レンズ
JP2008122592A (ja) 顕微鏡対物レンズ
JP5190691B2 (ja) 顕微鏡対物レンズ
JP5434130B2 (ja) 顕微鏡対物レンズ
WO2015107881A1 (ja) 対物レンズおよび顕微鏡
JP5288242B2 (ja) 顕微鏡対物レンズ
JP2008122640A (ja) 顕微鏡対物レンズ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031598.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012530587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011819707

Country of ref document: EP