CN113126258B - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
CN113126258B
CN113126258B CN202110443180.0A CN202110443180A CN113126258B CN 113126258 B CN113126258 B CN 113126258B CN 202110443180 A CN202110443180 A CN 202110443180A CN 113126258 B CN113126258 B CN 113126258B
Authority
CN
China
Prior art keywords
lens
optical imaging
imaging lens
optical
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110443180.0A
Other languages
English (en)
Other versions
CN113126258A (zh
Inventor
张成卓
国成立
龙思琛
戴付建
赵烈烽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN202110443180.0A priority Critical patent/CN113126258B/zh
Publication of CN113126258A publication Critical patent/CN113126258A/zh
Application granted granted Critical
Publication of CN113126258B publication Critical patent/CN113126258B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明提供了一种光学成像镜头。沿光轴由光学成像镜头的物侧至光学成像镜头的像侧包括:第一透镜,第一透镜具有正光焦度;第二透镜,第二透镜具有负光焦度;第三透镜,第三透镜具有正光焦度;棱镜;衍射元件,衍射元件设置在棱镜与被射物之间,衍射元件在可见光范围内的衍射效率ef≥80%。本发明解决了现有技术中长焦镜头存在成像质量差的问题。

Description

光学成像镜头
技术领域
本发明涉及光学成像设备技术领域,具体而言,涉及一种光学成像镜头。
背景技术
随着移动通讯的发展,智能手机、电脑等电子设备高速发展,拍摄在日常生活中逐渐常态化,消费者对设备重量要求越来越轻,对成像质量要求越来越高,特别在拍摄人眼无法看清的远处景物时,长焦镜头具备比普通镜头更清晰的画质,越来越受到消费者的青睐,长焦镜头的高像质量会是未来的趋势。
也就是说,现有技术中长焦镜头存在成像质量差的问题。
发明内容
本发明的主要目的在于提供一种光学成像镜头,以解决现有技术中长焦镜头存在成像质量差的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种光学成像镜头,沿光轴由光学成像镜头的物侧至光学成像镜头的像侧包括:第一透镜,第一透镜具有正光焦度;第二透镜,第二透镜具有负光焦度;第三透镜,第三透镜具有正光焦度;棱镜;衍射元件,衍射元件设置在棱镜与被射物之间,衍射元件在可见光范围内的衍射效率ef≥80%。
进一步地,衍射元件包括:基底层;第一胶层,第一胶层与基底层一侧的表面连接;第二胶层,第二胶层与第一胶层远离基底层的一侧表面连接,第一胶层与第二胶层的折射率不同。
进一步地,第一胶层的至少一侧表面的光学有效区具有多个齿环,多个齿环同心设置,齿环由多个齿结构绕光轴的周向设置形成。
进一步地,第一胶层与第二胶层之间的间隙d满足:d<1μm。
进一步地,第一透镜、第二透镜和第三透镜中的至少一个透镜为非球面透镜。
进一步地,光学成像镜头的有效焦距f满足:f≥25mm。
进一步地,第一透镜的有效焦距f1、第二透镜的有效焦距f2和第三透镜的有效焦距f3之间满足:1<|f2/f1|+|f3/f1|<2。
进一步地,衍射元件的厚度T4满足:T4<0.6mm。
进一步地,第三透镜的折射率N3满足:1.70<N3<1.80。
进一步地,第二透镜的阿贝数V2和第三透镜的阿贝数V3之间满足:10<V3-V2<20。
进一步地,光学成像镜头的有效焦距f与第二透镜的有效焦距f2之间满足:-2.0<f/f2<-1.0。
进一步地,光学成像镜头的最大视场角FOV满足:FOV<15°。
进一步地,第一透镜的中心厚度CT1和第二透镜的中心厚度CT2之间满足:1.0<CT1/CT2≤2.0。
进一步地,第二透镜的中心厚度CT2和第三透镜的中心厚度CT3之间满足:0.9≤CT2/CT3<2.0。
进一步地,光学成像镜头的有效焦距f和第一透镜、第二透镜和第三透镜的中心厚度的总和∑CT之间满足:7.0<f/∑CT<10。
进一步地,光学成像镜头的有效焦距f和光学成像镜头的最大半视场角Semi-FOV之间满足:f*tan(Semi-FOV)≥2.5mm。
进一步地,衍射元件的主光线入射角A满足A<10°。
根据本发明的另一方面,提供了一种光学成像镜头,沿光轴由光学成像镜头的物侧至光学成像镜头的像侧包括:第一透镜,第一透镜具有正光焦度;第二透镜,第二透镜具有负光焦度;第三透镜,第三透镜具有正光焦度;棱镜;衍射元件,衍射元件设置在棱镜与被射物之间,衍射元件的厚度T4满足:T4<0.6mm。
进一步地,衍射元件包括:基底层;第一胶层,第一胶层与基底层一侧的表面连接;第二胶层,第二胶层与第一胶层远离基底层的一侧表面连接,第一胶层与第二胶层的折射率不同。
进一步地,第一胶层的至少一侧表面的光学有效区具有多个齿环,多个齿环同心设置,齿环由多个齿结构绕光轴的周向设置形成。
进一步地,第一胶层与第二胶层之间的间隙d满足:d<1μm。
进一步地,第一透镜、第二透镜和第三透镜中的至少一个透镜为非球面透镜。
进一步地,第一透镜的有效焦距f1、第二透镜的有效焦距f2和第三透镜的有效焦距f3之间满足:1<|f2/f1|+|f3/f1|<2。
进一步地,第三透镜的折射率N3满足:1.70<N3<1.80。
进一步地,第二透镜的阿贝数V2和第三透镜的阿贝数V3之间满足:10<V3-V2<20。
进一步地,光学成像镜头的有效焦距f与第二透镜的有效焦距f2之间满足:-2.0<f/f2<-1.0。
进一步地,光学成像镜头的最大视场角FOV满足:FOV<15°。
进一步地,第一透镜的中心厚度CT1和第二透镜的中心厚度CT2之间满足:1.0<CT1/CT2≤2.0。
进一步地,第二透镜的中心厚度CT2和第三透镜的中心厚度CT3之间满足:0.9≤CT2/CT3<2.0。
进一步地,光学成像镜头的有效焦距f和第一透镜、第二透镜和第三透镜的中心厚度的总和∑CT之间满足:7.0<f/∑CT<10。
进一步地,光学成像镜头的有效焦距f和光学成像镜头的最大半视场角Semi-FOV之间满足:f*tan(Semi-FOV)≥2.5mm。
进一步地,衍射元件的主光线入射角A满足A<10°。
应用本发明的技术方案,沿光轴由光学成像镜头的物侧至光学成像镜头的像侧包括第一透镜、第二透镜、第三透镜、棱镜和衍射元件,第一透镜具有正光焦度;第二透镜具有负光焦度;第三透镜具有正光焦度;衍射元件设置在棱镜与被射物之间,衍射元件在可见光范围内的衍射效率ef≥80%。
通过在光学成像镜头上设置棱镜,能够平衡光学成像镜头的色差,有效增加光学成像镜头的成像质量。衍射元件具有独特的负色散特性,与光学系统组合能够校正光学系统的色差,使得光学成像镜头具有较小的色差,大大增加了光学成像镜头的成像质量。衍射效率越大对光学系统的色差校正的效果越好,越能够保证光学成像镜头的成像质量。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明的一个可选实施例的光学元件的结构示意图;以及
图2示出了本发明的透镜对白光的色散的作用;
图3示出了本发明的衍射元件对白光的色散的作用;
图4示出了本发明的衍射元件与设计波长的关系;
图5示出了本发明的例子一的光学成像镜头的结构示意图;
图6示出了本发明的例子一的轴上色差曲线的示意图;
图7示出了本发明的例子一的光学成像镜头的衍射元件的MTF图;
图8示出了本发明的例子二的光学成像镜头的结构示意图;
图9示出了本发明的例子二的轴上色差曲线的示意图;
图10示出了本发明的例子二的光学成像镜头的衍射元件的MTF图;
图11示出了本发明的例子三的光学成像镜头的结构示意图;
图12示出了本发明的例子三的轴上色差曲线的示意图;
图13示出了本发明的例子三的光学成像镜头的衍射元件的MTF图;
图14示出了本发明的例子四的光学成像镜头的结构示意图;
图15示出了本发明的例子四的轴上色差曲线的示意图;
图16示出了本发明的例子四的光学成像镜头的衍射元件的MTF图。
其中,上述附图包括以下附图标记:
10、衍射元件;11、基底层;12、第一胶层;13、第二胶层;E1、第一透镜;E2、第二透镜;E3、第三透镜;E4、棱镜;S1、第一透镜的物侧面;S2、第一透镜的像侧面;S3、第二透镜的物侧面;S4、第二透镜的像侧面;S5、第三透镜的物侧面;S6、第三透镜的像侧面;
S7、棱镜的物侧面;S8、棱镜的像侧面;S9、滤光片的物侧面;S10、滤光片的像侧面;S11、成像面。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示出的球面或非球面的形状通过实例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜靠近物侧的表面成为该透镜的物侧面,每个透镜靠近像侧的表面称为该透镜的像侧面。在近轴区域的面形的判断可依据该领域中通常知识者的判断方式,以R值,(R指近轴区域的曲率半径,通常指光学软件中的透镜数据库(lens data)上的R值)正负判断凹凸。以物侧面来说,当R值为正时,判定为凸面,当R值为负时,判定为凹面;以像侧面来说,当R值为正时,判定为凹面,当R值为负时,判定为凸面。
为了解决现有技术中长焦镜头存在成像质量差的问题,本发明提供了一种光学成像镜头。
实施例一
如图1至图16所示,沿光轴由光学成像镜头的物侧至光学成像镜头的像侧包括第一透镜、第二透镜、第三透镜、棱镜和衍射元件10,第一透镜具有正光焦度;第二透镜具有负光焦度;第三透镜具有正光焦度;衍射元件10设置在棱镜与被射物之间,衍射元件10在可见光范围内的衍射效率ef≥80%。
通过在光学成像镜头上设置棱镜,能够平衡光学成像镜头的色差,有效增加光学成像镜头的成像质量。衍射元件10具有独特的负色散特性,与光学系统组合能够校正光学系统的色差,使得光学成像镜头具有较小的色差,大大增加了光学成像镜头的成像质量。衍射效率越大对光学系统的色差校正的效果越好,越能够保证光学成像镜头的成像质量。
从图4中可以看出,本申请的衍射元件10对光的衍射效率能够达到80%以上。
如图1所示,衍射元件10包括基底层11、第一胶层12和第二胶层13,第一胶层12与基底层11一侧的表面连接;第二胶层13与第一胶层12远离基底层11的一侧表面连接,第一胶层12与第二胶层13的折射率不同。将衍射元件10设置成双层DOE的形式能够大大增加衍射元件10的衍射效率,进而有效增加光学成像镜头的成像质量。光线进入双层DOE时发生衍射,而双层DOE具有与透镜相反的色散特性,可以矫正透镜产生的色差,以有效增加光学成像镜头的成像质量。
如图2所示,光线经过透镜产生的色散是红光在上,蓝光在下。如图3所示,光线经衍射元件10产生的色散是蓝光在上,红光在下,进而说明透镜与衍射元件具有相反的色散特性。
具体的,第一胶层12的至少一侧表面的光学有效区具有多个齿环,多个齿环同心设置,齿环由多个齿结构绕光轴的周向设置形成。齿环的设置能够大大增加衍射元件10的衍射效率,而将齿环设置在第一胶层12的光学有效区上能够保证用于成像的光线经过充分衍射后成像,大大增加了光学成像镜头的成像质量。
在图1所示的具体实施例中,第一胶层12远离基底层11的一侧表面具有多个齿环。
具体的,第一胶层12与第二胶层13之间的间隙d满足:d<1μm。这样设置能够保证第一胶层12与第二胶层13之间贴合的紧密度,保证第一胶层12与第二胶层13紧密连接,避免第一胶层12与第二胶层13脱离的风险。
在本实施例中,第一透镜、第二透镜和第三透镜中的至少一个透镜为非球面透镜。这样设置便于平衡像差、修正影像、减少视场歪曲的情况,同时使得透镜更轻、更薄、更平,有利于光学成像镜头的小型化。
在本实施例中,光学成像镜头的有效焦距f满足:f≥25mm。这样设置能够保证光学成像镜头的长焦特性,从而实现拉近放大拍摄主体、压缩空间的效果以及实现背景虚化的功能。
在本实施例中,第一透镜的有效焦距f1、第二透镜的有效焦距f2和第三透镜的有效焦距f3之间满足:1<|f2/f1|+|f3/f1|<2。这样设置能够防止进入光学成像镜头的光线过于弯折,有利于光学成像镜头更好地平衡像差,增大光学成像镜头的成像质量。优选地,1.37≤|f2/f1|+|f3/f1|≤1.48。
在本实施例中,衍射元件10的厚度T4满足:T4<0.6mm。这样设置有利于降低光学成像镜头的厚度,有利于光学成像镜头的轻薄化和小型化。
在本实施例中,第三透镜的折射率N3满足:1.70<N3<1.80。这样设置使得第三透镜的折射率为高折射率,而高折射率的玻璃材料可有效减少温度对成像质量的影响。
在本实施例中,第二透镜的阿贝数V2和第三透镜的阿贝数V3之间满足:10<V3-V2<20。通过限制第三透镜的阿贝数V3与第二透镜的阿贝数V2的差值,有助于平衡光学成像镜头的色差。优选地,11.5≤V3-V2≤14.65。
在本实施例中,光学成像镜头的有效焦距f与第二透镜的有效焦距f2之间满足:-2.0<f/f2<-1.0。通过限制光学成像镜头的有效焦距f与第二透镜的有效焦距f2的比值范围,能够让经过第二透镜后的光线更平缓,以降低光学成像镜头的敏感度。优选地,-1.56≤f/f2≤-1.41。
在本实施例中,光学成像镜头的最大视场角FOV满足:FOV<15°。这样设置可防止进入光学成像镜头的光线过于弯折,有利于光学成像镜头更好地平衡像差。
在本实施例中,第一透镜的中心厚度CT1和第二透镜的中心厚度CT2之间满足:1.0<CT1/CT2≤2.0。通过限制第一透镜的中心厚度CT1和第二透镜的中心厚度CT2的比值,能够在保证光学成像镜头的加工可行性的同时能够有效地校正光学成像镜头的像差。优选地,1.36≤CT1/CT2≤1.94。
在本实施例中,第二透镜的中心厚度CT2和第三透镜的中心厚度CT3之间满足:0.9≤CT2/CT3<2.0。通过限制第二透镜的中心厚度CT2和第三透镜的中心厚度CT3的比值,能够在保证光学成像镜头的加工可行性的同时能够有效地校正光学成像镜头的像差。优选地,0.95≤CT2/CT3≤1.88。
在本实施例中,光学成像镜头的有效焦距f、第一透镜、第二透镜和第三透镜的中心厚度的总和∑CT之间满足:7.0<f/∑CT<10。这样设置有利于保证光学成像镜头的结构的紧凑性,同时降低光学成像镜头中各透镜的中心厚度的敏感度,保证光学成像镜头的成像质量。优选地,7.5≤f/∑CT≤8.52。
在本实施例中,光学成像镜头的有效焦距f和光学成像镜头的最大半视场角Semi-FOV之间满足:f*tan(Semi-FOV)≥2.5mm。这样设置有利于增大光学成像镜头的成像面,进而提高光学成像镜头的成像质量。
在本实施例中,衍射元件10的主光线入射角A满足A<10°。通过限制衍射元件10的主光线入射角A的大小,可以防止进入到衍射元件10的光线过于弯折,有利于校正光学成像镜头的色差。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
实施例二
如图1至图16所示,沿光轴由光学成像镜头的物侧至光学成像镜头的像侧包括第一透镜、第二透镜、第三透镜、棱镜和衍射元件10,第一透镜具有正光焦度;第二透镜具有负光焦度;第三透镜具有正光焦度;衍射元件10设置在棱镜与被射物之间,衍射元件10的厚度T4满足:T4<0.6mm。
通过在光学成像镜头上设置棱镜,能够平衡光学成像镜头的色差,有效增加光学成像镜头的成像质量。衍射元件10具有独特的负色散特性,与光学系统组合能够校正光学系统的色差,使得光学成像镜头具有较小的色差,大大增加了光学成像镜头的成像质量。将衍射元件10的厚度限制在小于0.6毫米的范围内,有利于降低光学成像镜头的厚度,有利于光学成像镜头的轻薄化和小型化。
在本实施例中,衍射元件10包括基底层11、第一胶层12和第二胶层13,第一胶层12与基底层11一侧的表面连接;第二胶层13与第一胶层12远离基底层11的一侧表面连接,第一胶层12与第二胶层13的折射率不同。将衍射元件10设置成双层DOE的形式能够大大增加衍射元件10的衍射效率,进而有效增加光学成像镜头的成像质量。光线进入双层DOE时发生衍射,而双层DOE具有与透镜相反的色散特性,可以矫正透镜产生的色差,以有效增加光学成像镜头的成像质量。
在本实施例中,第一胶层12的至少一侧表面的光学有效区具有多个齿环,多个齿环同心设置,齿环由多个齿结构绕光轴的周向设置形成。齿环的设置能够大大增加衍射元件10的衍射效率,而将齿环设置在第一胶层12的光学有效区上能够保证用于成像的光线经过充分衍射后成像,大大增加了光学成像镜头的成像质量。
具体的,第一胶层12与第二胶层13之间的间隙d满足:d<1μm。这样设置能够保证第一胶层12与第二胶层13之间贴合的紧密度,保证第一胶层12与第二胶层13紧密连接,避免第一胶层12与第二胶层13脱离的风险。
在本实施例中,第一透镜、第二透镜和第三透镜中的至少一个透镜为非球面透镜。这样设置便于平衡像差、修正影像、减少视场歪曲的情况,同时使得透镜更轻、更薄、更平,有利于光学成像镜头的小型化。
在本实施例中,第一透镜的有效焦距f1、第二透镜的有效焦距f2和第三透镜的有效焦距f3之间满足:1<|f2/f1|+|f3/f1|<2。这样设置能够防止进入光学成像镜头的光线过于弯折,有利于光学成像镜头更好地平衡像差,增大光学成像镜头的成像质量。
在本实施例中,第三透镜的折射率N3满足:1.70<N3<1.80。这样设置使得第三透镜的折射率为高折射率,而高折射率的玻璃材料可有效减少温度对成像质量的影响。
在本实施例中,第二透镜的阿贝数V2和第三透镜的阿贝数V3之间满足:10<V3-V2<20。通过限制第三透镜的阿贝数V3与第二透镜的阿贝数V2的差值,有助于平衡光学成像镜头的色差。
在本实施例中,光学成像镜头的有效焦距f与第二透镜的有效焦距f2之间满足:-2.0<f/f2<-1.0。通过限制光学成像镜头的有效焦距f与第二透镜的有效焦距f2的比值范围,能够让经过第二透镜后的光线更平缓,以降低光学成像镜头的敏感度。
在本实施例中,光学成像镜头的最大视场角FOV满足:FOV<15°。这样设置可防止进入光学成像镜头的光线过于弯折,有利于光学成像镜头更好地平衡像差。
在本实施例中,第一透镜的中心厚度CT1和第二透镜的中心厚度CT2之间满足:1.0<CT1/CT2≤2.0。通过限制第一透镜的中心厚度CT1和第二透镜的中心厚度CT2的比值,能够在保证光学成像镜头的加工可行性的同时能够有效地校正光学成像镜头的像差。
在本实施例中,第二透镜的中心厚度CT2和第三透镜的中心厚度CT3之间满足:0.9≤CT2/CT3<2.0。通过限制第二透镜的中心厚度CT2和第三透镜的中心厚度CT3的比值,能够在保证光学成像镜头的加工可行性的同时能够有效地校正光学成像镜头的像差。
在本实施例中,光学成像镜头的有效焦距f和第一透镜、第二透镜和第三透镜的中心厚度的总和∑CT之间满足:7.0<f/∑CT<10。这样设置有利于保证光学成像镜头的结构的紧凑性,同时降低光学成像镜头中各透镜的中心厚度的敏感度,保证光学成像镜头的成像质量。
在本实施例中,光学成像镜头的有效焦距f和光学成像镜头的最大半视场角Semi-FOV之间满足:f*tan(Semi-FOV)≥2.5mm。这样设置有利于增大光学成像镜头的成像面,进而提高光学成像镜头的成像质量。
在本实施例中,衍射元件10的主光线入射角A满足A<10°。通过限制衍射元件10的主光线入射角A的大小,可以防止进入到衍射元件10的光线过于弯折,有利于校正光学成像镜头的色差。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
在本申请中的光学成像镜头可采用多片镜片,例如上述的三片。通过合理分配各透镜的光焦度、面形、各透镜的中心厚度以及各透镜之间的轴上距离等,可有效增大光学成像镜头的孔径、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于智能手机等便携式电子设备。上述的光学成像镜头还具有长焦距、超薄、成像质量佳的优点,能够满足智能电子产品微型化的需求。
在本申请中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以三片透镜为例进行了描述,但是光学成像镜头不限于包括三片透镜。如需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体面型、参数的举例。
需要说明的是,下述的例子一至例子四中的任何一个例子均适用于本申请的所有实施例。
例子一
如图5至图7所示,描述了本申请例子一的光学成像镜头,图5示出了例子一的光学成像镜头结构示意图。
如图5所示,光学成像镜头由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、衍射元件10、棱镜E4、滤光片E5和成像面S11。
第一透镜E1具有正光焦度,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面。第二透镜E2具负光焦度,第二透镜的物侧面S3为凸面,第二透镜的像侧面S4为凹面。第三透镜E3具有正光焦度,第三透镜的物侧面S5为凸面,第三透镜的像侧面S6为凸面。棱镜E4具有棱镜的物侧面S7和棱镜的像侧面S8,滤光片E7具有滤光片的物侧面S9和滤光片的像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本例子中,光学成像镜头的总有效焦距f为28.21mm,光学成像镜头的最大视场角FOV为12.1°。
表1示出了例子一的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure BDA0003035769460000091
Figure BDA0003035769460000101
表1
在例子一中,第一透镜E1至第三透镜E3中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型可利用但不限于以下非球面公式进行限定:
Figure BDA0003035769460000102
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于例子一中各非球面镜面S1-S4的高次项系数A4、A6、A8、A10、A12、A14、A16。
面号 A4 A6 A8 A10 A12 A14 A16
S1 4.2200E-02 -5.4900E-03 -3.5900E-04 -1.1700E-04 1.2700E-04 -1.5800E-05 -8.5100E-06
S2 1.5900E-01 -2.7400E-02 1.0800E-03 -1.0500E-03 2.5300E-04 -5.1600E-04 -3.3100E-05
S3 -2.5200E-01 1.1400E-02 6.4100E-04 -5.6800E-04 6.5200E-05 -2.4400E-04 -3.8300E-05
S4 -4.4000E-01 1.4700E-02 -1.8700E-03 7.1700E-05 -1.3500E-04 4.3800E-05 -2.5900E-05
表2
图6示出了例子一的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图7示出了例子一的光学成像镜头的衍射元件的MTF。
根据图5至图7可知,例子一所给出的光学成像镜头能够实现良好的成像品质。
例子二
如图8至图10所示,描述了本申请例子二的光学成像镜头,在本例子及以下例子中,为简洁起见,将省略部分与例子一相似的描述。图8示出了例子二的光学成像镜头结构示意图。
如图8所示,光学成像镜头由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、衍射元件10、棱镜E4、滤光片E5和成像面S11。
第一透镜E1具有正光焦度,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面。第二透镜E2具负光焦度,第二透镜的物侧面S3为凸面,第二透镜的像侧面S4为凹面。第三透镜E3具有正光焦度,第三透镜的物侧面S5为凸面,第三透镜的像侧面S6为凸面。棱镜E4具有棱镜的物侧面S7和棱镜的像侧面S8,滤光片E7具有滤光片的物侧面S9和滤光片的像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本例子中,光学成像镜头的总有效焦距f为29.2091mm,光学成像镜头的最大视场角FOV为11.7°。
表3示出了例子二的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure BDA0003035769460000111
表3
表4给出了可用于例子二中各非球面镜面S1-S4的高次项系数A4、A6、A8、A10、A12、A14、A16。
面号 A4 A6 A8 A10 A12 A14 A16
S1 4.6400E-02 -1.0500E-03 5.1000E-04 8.4700E-05 -1.2200E-05 1.8700E-05 -4.7600E-06
S2 1.6200E-01 -1.6000E-02 9.0800E-04 -2.8600E-04 -2.4600E-04 -1.6100E-04 -1.1900E-04
S3 -2.5300E-01 6.3900E-03 -1.2000E-03 1.9300E-04 -1.1600E-04 -1.3200E-04 -6.0800E-05
S4 -4.3400E-01 6.6400E-03 -2.5000E-03 2.2300E-04 -4.0300E-05 -4.5900E-05 -3.7000E-06
表4
图9示出了例子二的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图10示出了例子二的光学成像镜头的衍射元件的MTF。
根据图8至图10可知,例子二所给出的光学成像镜头能够实现良好的成像品质。
例子三
如图11至图13所示,描述了本申请例子三的光学成像镜头,在本例子及以下例子中,为简洁起见,将省略部分与例子一相似的描述。图11示出了例子三的光学成像镜头结构示意图。
如图11所示,光学成像镜头由物侧至像侧依序包括:光阑STO、衍射元件10、第一透镜E1、第二透镜E2、第三透镜E3、棱镜E4、滤光片E5和成像面S11。
第一透镜E1具有正光焦度,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面。第二透镜E2具负光焦度,第二透镜的物侧面S3为凸面,第二透镜的像侧面S4为凹面。第三透镜E3具有正光焦度,第三透镜的物侧面S5为凸面,第三透镜的像侧面S6为凹面。棱镜E4具有棱镜的物侧面S7和棱镜的像侧面S8,滤光片E7具有滤光片的物侧面S9和滤光片的像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本例子中,光学成像镜头的总有效焦距f为29.21mm,光学成像镜头的最大视场角FOV为11.7°。
表5示出了例子三的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure BDA0003035769460000121
表5
表6给出了可用于例子三中各非球面镜面S1-S4的高次项系数A4、A6、A8、A10、A12、A14、A16。
面号 A4 A6 A8 A10 A12 A14 A16
S1 5.0800E-02 -2.4300E-04 5.1800E-04 -4.2300E-05 6.2600E-05 -1.0400E-05 -3.2800E-07
S2 1.5300E-01 -1.0600E-02 2.1000E-03 -3.0300E-04 1.6400E-04 -1.5000E-04 1.2100E-05
S3 -2.6900E-01 -4.0400E-03 1.4500E-03 -6.1600E-04 1.0700E-04 -1.8300E-04 3.5000E-05
S4 -4.2300E-01 -3.7500E-03 9.2800E-05 -3.1900E-04 7.0400E-05 -7.8600E-05 1.6900E-05
表6
图12示出了例子三的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图13示出了例子三的光学成像镜头的衍射元件的MTF。
根据图11至图13可知,例子三所给出的光学成像镜头能够实现良好的成像品质。
例子四
如图14至图16所示,描述了本申请例子四的光学成像镜头,在本例子及以下例子中,为简洁起见,将省略部分与例子一相似的描述。图14示出了例子四的光学成像镜头结构示意图。
如图14所示,光学成像镜头由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、衍射元件10、第三透镜E3、棱镜E4、滤光片E5和成像面S11。
第一透镜E1具有正光焦度,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面。第二透镜E2具负光焦度,第二透镜的物侧面S3为凸面,第二透镜的像侧面S4为凹面。第三透镜E3具有正光焦度,第三透镜的物侧面S5为凸面,第三透镜的像侧面S6为凹面。棱镜E4具有棱镜的物侧面S7和棱镜的像侧面S8,滤光片E7具有滤光片的物侧面S9和滤光片的像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本例子中,光学成像镜头的总有效焦距f为29.21mm,光学成像镜头的最大视场角FOV为11.7°。
表7示出了例子四的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure BDA0003035769460000131
Figure BDA0003035769460000141
表7
表8给出了可用于例子四中各非球面镜面S1-S4的高次项系数A4、A6、A8、A10、A12、A14、A16。
面号 A4 A6 A8 A10 A12 A14 A16
S1 5.1300E-02 -1.3200E-03 9.7800E-04 -9.8800E-05 5.3100E-05 -1.1400E-05 -1.1300E-06
S2 1.5300E-01 -9.9400E-03 3.6300E-03 -1.3600E-03 1.9400E-04 -2.3100E-04 1.2800E-05
S3 -2.6200E-01 2.7400E-04 9.3100E-04 -1.8500E-03 1.9500E-04 -2.5100E-04 3.1500E-05
S4 -4.3000E-01 1.0200E-03 -1.3000E-03 -8.8800E-04 7.7600E-05 -1.0300E-04 2.6200E-05
表8
图15示出了例子四的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图16示出了例子四的光学成像镜头的衍射元件的MTF。
根据图14至图16可知,例子四所给出的光学成像镜头能够实现良好的成像品质。
综上,例子一至例子四分别满足表9中所示的关系。
条件式/实施例 1 2 3 4
|f2/f1|+|f3/f1| 1.39 1.43 1.37 1.48
N3 1.75 1.75 1.75 1.75
V3-V2 11.50 14.65 11.50 11.50
f/f2 -1.41 -1.56 -1.54 -1.52
CT1/CT2 1.36 1.66 1.94 1.57
CT2/CT3 0.95 1.78 1.54 1.88
f/∑CT 7.50 7.92 8.52 8.07
f*tan(Semi-FOV) 3.00 3.00 3.00 3.00
表9
表10给出了例子一至例子四的光学成像镜头的有效焦距f,各透镜的有效焦距f1至f3,最大视场角FOV。
实施例参数 1 2 3 4
f1(mm) 28.85 27.08 28.24 27.34
f2(mm) -19.99 -18.67 -18.92 -19.26
f3(mm) 20.18 20.06 19.88 21.21
f(mm) 28.21 29.2091 29.21 29.21
FOV(°) 12.1 11.7 11.7 11.7
表10
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
显然,上述所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种光学成像镜头,其特征在于,沿光轴由所述光学成像镜头的物侧至所述光学成像镜头的像侧包括:
第一透镜,所述第一透镜具有正光焦度;
第二透镜,所述第二透镜具有负光焦度;
第三透镜,所述第三透镜具有正光焦度;
棱镜;
衍射元件(10),所述衍射元件(10)设置在所述棱镜与被射物之间,所述衍射元件(10)与所述光学成像镜头的透镜间隔设置,所述衍射元件(10)在可见光范围内的衍射效率ef≥80%;
所述光学成像镜头的有效焦距f和所述第一透镜、所述第二透镜和所述第三透镜的中心厚度的总和∑CT之间满足:7.0<f/∑CT<10。
2.根据权利要求1所述的光学成像镜头,其特征在于,所述衍射元件(10)包括:
基底层(11);
第一胶层(12),所述第一胶层(12)与所述基底层(11)一侧的表面连接;
第二胶层(13),所述第二胶层(13)与所述第一胶层(12)远离所述基底层(11)的一侧表面连接,所述第一胶层(12)与所述第二胶层(13)的折射率不同。
3.根据权利要求2所述的光学成像镜头,其特征在于,所述第一胶层(12)的至少一侧表面的光学有效区具有多个齿环,多个所述齿环同心设置,所述齿环由多个齿结构绕所述光轴的周向设置形成。
4.根据权利要求2所述的光学成像镜头,其特征在于,所述第一胶层(12)与所述第二胶层(13)之间的间隙d满足:d<1μm。
5.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜中的至少一个透镜为非球面透镜。
6.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的有效焦距f满足:f≥25mm。
7.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1、所述第二透镜的有效焦距f2和所述第三透镜的有效焦距f3之间满足:1<|f2/f1|+|f3/f1|<2。
8.根据权利要求1所述的光学成像镜头,其特征在于,所述衍射元件(10)的厚度T4满足:T4<0.6mm。
9.根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的折射率N3满足:1.70<N3<1.80。
10.一种光学成像镜头,其特征在于,沿光轴由所述光学成像镜头的物侧至所述光学成像镜头的像侧包括:
第一透镜,所述第一透镜具有正光焦度;
第二透镜,所述第二透镜具有负光焦度;
第三透镜,所述第三透镜具有正光焦度;
棱镜;
衍射元件(10),所述衍射元件(10)设置在所述棱镜与被射物之间,所述衍射元件(10)与所述光学成像镜头的透镜间隔设置,所述衍射元件(10)的厚度T4满足:T4<0.6mm;
所述光学成像镜头的有效焦距f和所述第一透镜、所述第二透镜和所述第三透镜的中心厚度的总和∑CT之间满足:7.0<f/∑CT<10。
CN202110443180.0A 2021-04-23 2021-04-23 光学成像镜头 Active CN113126258B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110443180.0A CN113126258B (zh) 2021-04-23 2021-04-23 光学成像镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110443180.0A CN113126258B (zh) 2021-04-23 2021-04-23 光学成像镜头

Publications (2)

Publication Number Publication Date
CN113126258A CN113126258A (zh) 2021-07-16
CN113126258B true CN113126258B (zh) 2023-05-02

Family

ID=76779657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110443180.0A Active CN113126258B (zh) 2021-04-23 2021-04-23 光学成像镜头

Country Status (1)

Country Link
CN (1) CN113126258B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100565250C (zh) * 2005-02-22 2009-12-02 株式会社尼康 衍射光学元件
CN101324697A (zh) * 2008-04-28 2008-12-17 深圳市大族激光科技股份有限公司 光学镜头
WO2012026239A1 (ja) * 2010-08-25 2012-03-01 株式会社ニコン 顕微鏡対物レンズ
CN108427183A (zh) * 2018-05-04 2018-08-21 浙江舜宇光学有限公司 投影镜头
CN109031592B (zh) * 2018-07-26 2020-12-08 华为技术有限公司 摄像镜头、摄像模组及终端

Also Published As

Publication number Publication date
CN113126258A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN107643586B (zh) 摄像透镜组
CN114114656B (zh) 光学成像镜头
CN108333725B (zh) 摄像镜头组
US11112585B2 (en) Optical imaging lens assembly
CN115480364A (zh) 光学镜头、摄像模组及电子设备
CN109270664B (zh) 一种光学成像镜头及应用该光学成像镜头的摄像装置
CN113433656B (zh) 一种成像系统、镜头模组及电子设备
CN117555112A (zh) 光学成像系统
CN113341539B (zh) 光学系统、镜头模组和电子设备
CN210775999U (zh) 光学系统、镜头模组和电子设备
CN112130286A (zh) 光学成像镜头
CN214669827U (zh) 光学成像镜头
CN113625434B (zh) 光学成像镜头
CN113009673B (zh) 摄像镜头
CN216133242U (zh) 摄像透镜组
CN113093371B (zh) 摄像透镜组
CN115586621A (zh) 光学镜头、摄像模组及电子设备
CN214174728U (zh) 光学成像镜头
CN113126258B (zh) 光学成像镜头
CN114460723A (zh) 光学系统、摄像模组及电子设备
CN114637094A (zh) 光学镜头、摄像模组及电子设备
CN211086762U (zh) 摄像镜头组
CN216210180U (zh) 摄像镜头
CN114442279B (zh) 成像系统
CN113885173B (zh) 光学成像镜头

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant