WO2012024984A1 - 基于模块化多电平变换器的无变压器电池储能拓扑结构 - Google Patents

基于模块化多电平变换器的无变压器电池储能拓扑结构 Download PDF

Info

Publication number
WO2012024984A1
WO2012024984A1 PCT/CN2011/076859 CN2011076859W WO2012024984A1 WO 2012024984 A1 WO2012024984 A1 WO 2012024984A1 CN 2011076859 W CN2011076859 W CN 2011076859W WO 2012024984 A1 WO2012024984 A1 WO 2012024984A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
battery energy
power
modular multilevel
topology
Prior art date
Application number
PCT/CN2011/076859
Other languages
English (en)
French (fr)
Inventor
魏西平
李太峰
杨洋
赵淑玉
张坤
张跃平
胡涛
王振
Original Assignee
荣信电力电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣信电力电子股份有限公司 filed Critical 荣信电力电子股份有限公司
Publication of WO2012024984A1 publication Critical patent/WO2012024984A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the invention relates to a transformerless battery energy storage topology based on MMC (Modular Multilevel Converter) modular multilevel inverter, which can be used in the field of high voltage power system to make the grid supply reliable and high quality voltage.
  • MMC Modular Multilevel Converter
  • the power storage equipment is connected in parallel with the power grid through the transformer.
  • the transformer is used to make the equipment investment, occupy a large area, high cost and long production cycle. Summary of the invention
  • the object of the present invention is to provide a transformerless battery energy storage topology based on an MMC modular multilevel inverter, which is connected in parallel on the power grid, can suppress those power pollution of the power grid, and can compensate for photovoltaic or wind power generation. Stability, providing uninterrupted, clean, stable, frequency-free, high-quality sinusoidal voltage to the load on the grid.
  • a transformerless battery energy storage topology based on an MMC modular multilevel inverter comprising three phases, each phase being connected in series by a plurality of half bridge power modules and battery energy storage modules , connected to the grid via a buffered inductor.
  • the half-bridge power module is formed by connecting even numbers of n power units in series, and is divided into two groups, the number of power units in each group is n/2, and the number of output phase voltage levels is n/2+l.
  • the line voltage level is n+1; the output of each phase is at the midpoint of the two sets of cells, and the output is connected with each group of cells with a coupled or uncoupled inductor.
  • the power unit is a half-bridge structure, the switching device IGBT1 and IGBT2 are connected in series, and then the DC capacitor C is connected in parallel, and the switching devices IGBT1 and IGBT2 are respectively anti-parallel diodes D1 and D2; the common ends of IGBT1 and IGBT2, capacitor C and IGBT2 The common end is the output of each unit and is connected to other units.
  • the battery energy storage module is connected in series with the capacitor C by the battery pack E and the switch S.
  • the switch S also has a parallel resistor R'.
  • the switch S is a high-speed turn-off device, such as an IGBT, the resistor FT connected in parallel with it can be omitted.
  • the beneficial effects of the present invention are: 1) There is no transformer at the input end, so that the battery energy storage topology device is compared with the transformer with the same voltage and power level, the production cycle is reduced by half, the volume is reduced by half, the cost is reduced by half, and the floor space is reduced. Smaller half, easy to transport, simple structure;
  • Battery energy storage has high energy efficiency, fast charge and discharge, and long life.
  • the modulation method adopts the carrier phase shifting method, which can generate multi-step sine wave and obtain a good output voltage waveform with a small switching frequency;
  • Figure 1 is a transformerless battery energy storage topology based on MMC modular multilevel
  • Figure 2 is a basic unit structure diagram of a transformerless battery energy storage topology based on MMC modular multilevel. detailed description
  • FIG. 1 a transformerless battery energy storage topology based on an MMC modular multilevel inverter.
  • the topology includes three phases, each phase consisting of a plurality of half bridge power modules and a battery energy storage module.
  • the units are connected in series and connected to the grid via a buffer inductor L.
  • Inductor L is also connected to the snubber resistor R.
  • the snubber resistor R is connected in parallel with the switch K2 and connected to the circuit breaker K1.
  • the half-bridge power module consists of an even number of n power units connected in series, divided into two groups.
  • the number of power units in each group is n/2, and the output phase voltage level is n/2+l.
  • the number of levels is n+1; the output of each phase is at the midpoint of the two sets of cells, and the output is connected to each set of cells with coupled or uncoupled inductors L A , L B , L c .
  • the power unit is a half-bridge structure, the switching devices IGBT1 and IGBT2 are connected in series, and then the DC capacitor C is connected in parallel, and the switching devices IGBT1 and IGBT2 are respectively anti-parallel diodes D1 and D2; the common terminals of IGBT1 and IGBT2, capacitor C and IGBT2
  • the common end is the output of each unit and is connected to other units.
  • the battery energy storage module is connected in series with the battery unit E and the switch S, in parallel with the capacitor C, and the switch S is also connected in parallel with the resistor.
  • Switch S controls the battery to absorb or release electrical energy.
  • the switch S is a high-speed shutdown device, such as an IGBT, the resistor connected in parallel with it can be omitted.
  • Multi-level cell in series with an MMC-based battery energy storage topology can generate the multi-level variable sine wave voltage required by the power grid.
  • the battery energy storage topology is mainly composed of three phases, and each phase is formed by connecting n (n is an even number) power units in series.
  • the number of series cells is called the number of cell stages.
  • the output of each phase is at the midpoint of the upper and lower two sets of cells, and the output is connected with each group of cells with coupled or uncoupled inductors to make the output waveform smoother.
  • the battery energy storage topology is output directly from the B, C side to the high quality AC high voltage of the grid.
  • the switch S of each unit When the grid voltage spikes, the voltage is supplied to the DC side through the diode, and the switch S of each unit (as shown in FIG. 2) is turned on. At this time, the battery energy storage topology DC side capacitor C and the battery pack E of the present invention absorb the grid. Pointer Peaks, in turn, inhibit the impact of grid spikes on equipment on the grid.
  • the switch S When the grid voltage suddenly drops or is interrupted, the switch S is turned on by controlling the IGBT1 and IGBT2 of each unit (as shown in Fig. 2). At this time, the energy in the DC side capacitor C and the battery resistor E is fed back to the grid to make the grid output. Normal sine wave. When the grid voltage is normal, the IGBT1, IGBT2 are turned off, and the switch S is turned off. At this time, the energy is stored in the battery pack E.
  • the battery energy storage topology of the invention can be used as a reserve power source for the power grid of 1 ⁇ 500KV.
  • the battery energy storage topology outputs high voltage through the unit serial connection method, which saves the step-up transformer used when the grid is connected, which saves a lot of cost and topology.
  • the unit adopts an MMC unit, that is, a standard power unit.
  • the type unit is a half-bridge structure.
  • the upper and lower IGBTs are connected in series, and then a DC capacitor is connected in parallel, and a battery is connected in parallel with the capacitor.
  • the multi-cell series power unit outputs a high voltage
  • a multi-level waveform can be output by a modulation algorithm to generate a high-quality sine wave voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种基于模块化多电平变换器(MMC)的无变压器电池储能拓扑结构,其每相电路由多个半桥型功率模块与电池储能模块构成的子单元串联在一起,经缓冲电感接入电网。每相由偶数n个子单元串联而成,分为上下两组,每组的子单元个数为n/2个。该拓扑结构输出相电压电平阶梯数为n/2+1,线电压电平数为n+1。每相的输出端为两组单元的中点处,且输出端与每组单元之间以耦合或非耦合电感连接。该拓扑并联在电网上,可抑制电网的电力污染,可补偿光伏或风能发电的不稳定性,给电网上的负载提供不间断、干净、稳定、无频率突变、高质量的正弦波电压。

Description

基干模块化多电平变换器的无变压器电池储能拓扑结构 技术领域
本发明涉及一种基于 MMC ( Modular Multilevel Converter)模块化多电平逆变器 的无变压器电池储能拓扑可用于高压电力系统领域,使电网供给负载可靠, 高质量的 电压。 背景技术
目前, 电网至少存在以下九种问题: 断电、 雷击尖峰、 浪涌、 频率震荡、 电压突 变、 电压波动、 频率漂移、 电压跌落、 脉冲干扰等。 可再生能源例如光伏或风能所产 生的电能也极其的不稳定, 新能源并网应用的规模越大, 电网就越不安全, 根据国内 外风光电站并网的实践,借助储能技术可以实现新能源发电功率的平衡输出,使大规 模风电及太阳能电力方便可靠地并入常规电网。
目前电力储能设备都是通过变压器与电网相并联的, 采用变压器, 使设备投资 大、 占地多, 成本高, 生产周期长。 发明内容
本发明的目的是提供一种基于 MMC 模块化多电平逆变器的无变压器电池储能 拓扑结构, 该拓扑并联在电网上, 可抑制电网的那些电力污染, 可补偿光伏或风能发 电的不稳定性, 给电网上的负载提供不间断、 干净、 稳定、 无频率突变、 高质量的正 弦波电压。
为实现上述目的, 本发明通过以下技术方案实现:
一种基于 MMC模块化多电平逆变器的无变压器电池储能拓扑结构,该拓扑结构 包括三相,每相由多个半桥型功率模块与电池储能模块构成的子单元串联在一起, 经 缓冲电感接入电网。
所述的半桥型功率模块由偶数 n个功率单元串联而成, 分为上下两组,每组的功 率单元个数为 n/2个, 输出相电压电平阶梯数为 n/2+l, 线电压电平数为 n+1 ; 每相 的输出端为两组单元的中点处, 且输出端与每组单元之间以耦合或非耦合电感连接。
所述的功率单元为半桥结构, 开关器件 IGBT1和 IGBT2相串联, 再并联直流电 容 C, 并且开关器件 IGBT1和 IGBT2分别反并联二极管 Dl、 D2; IGBT1与 IGBT2 的公共端, 电容 C与 IGBT2的公共端作为每个单元的输出端, 与其他单元相连。
所述的电池储能模块由电池组 E及开关 S串联后,与电容 C并联。所述的开关 S 还并联电阻 R ', 当开关 S为高速可关断器件, 如 IGBT时, 还可省掉与其相并联的 电阻 FT 。
与现有技术相比, 本发明的有益效果是: 1 ) 输入端无变压器, 进而使该种的电池储能拓扑装置与同电压、 功率等级下的 有变压器的相比较, 生产周期减小一半, 体积减小一半, 成本降低一半, 占地面积减 小一半, 运输方便, 结构简单;
2) 电池储能具有能量效率高, 可实现快速充放电, 寿命长。
3 ) 调制方法采用载波移相的方法, 可以产生多阶梯正弦波, 以较小的开关频率 获得很好的输出电压波形;
4) 减小或提高容量等级比较简单, 只需减少或增多串联的单元数目即可。 附图说明
图 1是基于 MMC模块化多电平的无变压器电池储能拓扑结构;
图 2是基于 MMC模块化多电平的无变压器电池储能拓扑基本单元结构图。 具体实施方式
见图 1, 一种基于 MMC模块化多电平逆变器的无变压器电池储能拓扑结构, 该 拓扑结构包括三相,每相由多个半桥型功率模块与电池储能模块构成的子单元串联在 一起, 经缓冲电感 L接入电网。 电感 L还连接缓冲电阻 R, 缓冲电阻 R与开关 K2 并联后, 与断路器 K1连接。
半桥型功率模块由偶数 n个功率单元串联而成, 分为上下两组,每组的功率单元 个数为 n/2个, 输出相电压电平阶梯数为 n/2+l, 线电压电平数为 n+1 ; 每相的输出 端为两组单元的中点处, 且输出端与每组单元之间以耦合或非耦合电感 LA、 LB、 Lc 连接。
见图 2, 功率单元为半桥结构, 开关器件 IGBT1和 IGBT2相串联, 再并联直流 电容 C,并且开关器件 IGBT1和 IGBT2分别反并联二极管 Dl、 D2; IGBT1与 IGBT2 的公共端, 电容 C与 IGBT2的公共端作为每个单元的输出端, 与其他单元相连。
电池储能模块由电池组 E及开关 S串联后, 与电容 C并联, 开关 S还并联电阻
FT。 开关 S控制电池吸收或释放电能。 当开关 S为高速可关断器件, 如 IGBT时, 还可省掉与其相并联的电阻 。
见图 1,多电平单元串联一种基于 MMC的电池储能拓扑,结合一定的调制方法, 可产生电网需要的多电平可变正弦波电压。该电池储能拓扑结构主要由三相组成,每 相由 n (n为偶数) 个功率单元串联而成。 串联单元个数称为单元级数, 每相的输出 端处于上、下两组单元的中点处, 并且输出端与每组单元之间以耦合或非耦合电感连 接, 使输出波形更加平滑。 该电池储能拓扑直接从 、 B、 C侧输出给电网高质量的 交流高压。
当电网电压产生尖峰时, 电压通过二极管向直流侧供电, 开通每个单元 (如图 2 所示)的开关 S, 此时, 本发明的电池储能拓扑直流侧电容 C和电池组 E吸收电网尖 峰, 进而抑制了电网尖峰对电网上设备的影响。 当电网电压突然跌落或中断时, 通过 控制每个单元 (如图 2所示) 的 IGBT1、 IGBT2, 开通开关 S, 此时, 直流侧电容 C 和电池阻 E中的能量回馈电网, 使电网输出正常的正弦波。 当电网电压正常时, 关断 IGBT1、 IGBT2, 关断开关 S, 此时, 能量储存在电池组 E中。
本发明的电池储能拓扑可为 1〜500KV的电网做储备电源, 该电池储能拓扑通过 单元串联的方法, 输出高压, 省掉了并网时所用的升压变压器, 节约了大量成本且拓 扑结构简单, 易于拆卸和安装。 所述的单元采用 MMC单元, 即标准功率单元, 该类 型单元是半桥结构, 上下两个 IGBT串联, 再并联一个直流电容, 电容后又并联一个 电池。 当需要提高电压等级时, 只需要提高串联的单元数目即可。 另外, 由于采用多 单元串联功率单元输出高压, 可以通过调制算法输出多电平波形,产生高质量的正弦 波电压。

Claims

权 利 要 求 书
1、 一种基于 MMC模块化多电平逆变器的无变压器电池储能拓扑结构, 其特征 在于, 该拓扑结构包括三相,每相由多个半桥型功率模块与电池储能模块构成的子单 元串联在一起, 经缓冲电感接入电网。
2、 根据权利要求 1所述的基于 MMC模块化多电平逆变器的无变压器电池储能 拓扑结构, 其特征在于, 所述的半桥型功率模块由偶数 n个功率单元串联而成, 分为 上下两组, 每组的功率单元个数为 n/2个, 输出相电压电平阶梯数为 n/2+l, 线电压 电平数为 n+1 ; 每相的输出端为两组单元的中点处, 且输出端与每组单元之间以耦合 或非耦合电感连接。
3、 根据权利要求 2所述的基于 MMC模块化多电平逆变器的无变压器电池储能 拓扑结构, 其特征在于, 所述的功率单元为半桥结构, 开关器件 IGBT1和 IGBT2相 串联, 再并联直流电容 C, 并且开关器件 IGBT1和 IGBT2分别反并联二极管 Dl、 D2; IGBT1与 IGBT2的公共端, 电容 C与 IGBT2的公共端作为每个单元的输出端, 与其他单元相连。
4、 根据权利要求 1至 3中任一项所述的基于 MMC模块化多电平逆变器的无变 压器电池储能拓扑结构, 其特征在于, 所述的电池储能模块由电池组 E和开关 S串 联后, 再与电容 C并联。
5、 根据权利要求 4所述的基于 MMC模块化多电平逆变器的无变压器电池储能 拓扑结构, 其特征在于, 所述的开关 S还并联电阻 。
PCT/CN2011/076859 2010-07-22 2011-07-05 基于模块化多电平变换器的无变压器电池储能拓扑结构 WO2012024984A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010234081.3 2010-07-22
CN2010102340813A CN102013691A (zh) 2010-07-22 2010-07-22 一种基于mmc模块化多电平逆变器的无变压器电池储能拓扑结构

Publications (1)

Publication Number Publication Date
WO2012024984A1 true WO2012024984A1 (zh) 2012-03-01

Family

ID=43843758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076859 WO2012024984A1 (zh) 2010-07-22 2011-07-05 基于模块化多电平变换器的无变压器电池储能拓扑结构

Country Status (2)

Country Link
CN (1) CN102013691A (zh)
WO (1) WO2012024984A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN106849718A (zh) * 2017-02-17 2017-06-13 许继集团有限公司 一种子模块拓扑以及一种mmc换流器
CN107154631A (zh) * 2017-05-22 2017-09-12 上海电力学院 基于模块化多电平逆变器的动态电压调节装置及调节方法
WO2018038109A1 (ja) * 2016-08-23 2018-03-01 国立大学法人 長崎大学 パワーコンディショナ
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US10069430B2 (en) 2013-11-07 2018-09-04 Regents Of The University Of Minnesota Modular converter with multilevel submodules
CN108616143A (zh) * 2018-05-15 2018-10-02 华北电力大学 考虑电压载荷共享机制的柔性多状态开关可靠性建模方法
US10193469B2 (en) 2015-06-29 2019-01-29 Abb Schweiz Ag Multi-level power converter and a method for controlling a multi-level power converter
CN109742782A (zh) * 2019-02-12 2019-05-10 广州智光储能科技有限公司 一种适用于退役动力电池梯次利用的装置及方法
RU2693573C1 (ru) * 2015-11-13 2019-07-03 Сименс Акциенгезелльшафт Бестрансформаторный многоуровневый преобразователь среднего напряжения и способ для управления бестрансформаторным многоуровневым преобразователем среднего напряжения
CN110266018A (zh) * 2019-06-04 2019-09-20 中国科学院电工研究所 统一电能质量控制器及其控制方法和控制系统
CN111934572A (zh) * 2020-06-29 2020-11-13 中国电力科学研究院有限公司 一种超大规模储能mmc变换器装置及储能控制方法
CN114336701A (zh) * 2021-12-01 2022-04-12 国网江苏省电力有限公司盐城供电分公司 一种适用于高功率大容量的中压直挂式储能系统拓扑结构
DE102022109241B3 (de) 2022-04-14 2022-11-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Multilevelkonverter mit Drei-Schalter-Submodulen mit symmetrischer Halbbrückenschaltung und paralleler Konnektivität
CN116073690A (zh) * 2023-03-10 2023-05-05 闽南理工学院 一种mmc储能系统混合调制方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917016B (zh) * 2010-07-21 2012-10-31 北京交通大学 储能型级联多电平光伏并网发电控制系统
CN102013691A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc模块化多电平逆变器的无变压器电池储能拓扑结构
CN103248210B (zh) * 2013-04-23 2015-08-05 西安交通大学 一种用于减小直流侧电压二次波动的功率同步控制方法
CN103731019B (zh) * 2013-12-03 2015-12-30 南方电网科学研究院有限责任公司 一种模块化多电平换流站的过调制方法
CN104167760B (zh) * 2014-07-28 2016-03-30 湖南大学 一种模块化多电平光伏并网系统及其控制方法
CN104201726A (zh) * 2014-07-31 2014-12-10 华为技术有限公司 一种ups供电系统及其电流转换方法
CN104518518B (zh) * 2014-11-27 2016-11-16 国家电网公司 一种基于mmc拓扑结构的混合储能系统
CN104538982B (zh) * 2014-12-05 2016-08-17 西安交通大学 基于模块化多电平拓扑结构的分布式储能系统的控制方法
EP3254368B1 (en) 2015-02-04 2019-12-25 ABB Schweiz AG Multilevel converter with energy storage
WO2016150467A1 (de) * 2015-03-20 2016-09-29 Siemens Aktiengesellschaft Energiespeicheranordnung
CN104917418B (zh) * 2015-06-16 2017-10-27 北京亿利智慧能源科技有限公司 一种采用电池电流独立控制的储能型mmc变流器
CN105375515B (zh) * 2015-11-11 2019-11-22 武汉大学 一种结合光伏发电的模块化多电平综合补偿装置
CN105429177B (zh) * 2015-12-16 2019-03-12 国网青海省电力公司 一种模块化光伏储能系统
CN105445621A (zh) * 2015-12-22 2016-03-30 南京南瑞继保电气有限公司 一种柔性直流线路的故障检测装置及其充电方法、检测方法
CN106208396B (zh) * 2016-08-01 2019-05-31 浙江大学 一种基于mmc拓扑的分散式混合储能与电力补偿系统
CN106877726B (zh) * 2017-03-30 2019-05-03 上海交通大学 一种具有故障穿越能力的储能型变流器拓扑的控制方法
CN106877713B (zh) * 2017-03-30 2019-05-17 上海交通大学 一种具有故障穿越能力的储能型变流器拓扑
CN106981980A (zh) * 2017-04-14 2017-07-25 许继集团有限公司 一种全桥mmc启动控制方法及系统
TWI721621B (zh) 2019-10-29 2021-03-11 財團法人工業技術研究院 基於電池重組之可展延式三相交流系統及其控制方法
CN113270881B (zh) * 2021-04-23 2024-06-18 华为数字能源技术有限公司 一种储能系统、储能系统的均衡控制方法及光伏发电系统
CN113364320B (zh) * 2021-06-18 2023-08-01 浙江大学 一种升压式多电平逆变器电路及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642275A (en) * 1995-09-14 1997-06-24 Lockheed Martin Energy System, Inc. Multilevel cascade voltage source inverter with seperate DC sources
CN101268606A (zh) * 2005-09-21 2008-09-17 西门子公司 故障情况下用于实现带有分布储能器的多相变流器的冗余工作模式的控制方法
CN101611535A (zh) * 2007-03-13 2009-12-23 西门子公司 在直流电压中间电路短路时限制具有功率半导体的变流器损坏的方法
WO2010040388A1 (en) * 2008-10-07 2010-04-15 Abb Technology Ag Multilevel converter and method for compensating active and reactive power in a high voltage network
WO2010102667A1 (en) * 2009-03-11 2010-09-16 Abb Technology Ag A modular voltage source converter and an energy source unit
CN102013691A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc模块化多电平逆变器的无变压器电池储能拓扑结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018343A1 (de) * 2007-04-16 2008-10-30 Siemens Ag Aktivfilter mit einer Multilevel-Topologie
CN201774263U (zh) * 2010-07-22 2011-03-23 荣信电力电子股份有限公司 一种基于mmc模块化多电平逆变器的无变压器电池储能拓扑结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642275A (en) * 1995-09-14 1997-06-24 Lockheed Martin Energy System, Inc. Multilevel cascade voltage source inverter with seperate DC sources
CN101268606A (zh) * 2005-09-21 2008-09-17 西门子公司 故障情况下用于实现带有分布储能器的多相变流器的冗余工作模式的控制方法
CN101611535A (zh) * 2007-03-13 2009-12-23 西门子公司 在直流电压中间电路短路时限制具有功率半导体的变流器损坏的方法
WO2010040388A1 (en) * 2008-10-07 2010-04-15 Abb Technology Ag Multilevel converter and method for compensating active and reactive power in a high voltage network
WO2010102667A1 (en) * 2009-03-11 2010-09-16 Abb Technology Ag A modular voltage source converter and an energy source unit
CN102013691A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc模块化多电平逆变器的无变压器电池储能拓扑结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUAN, MINYUAN ET AL.: "Nearest Level Modulation for Modular Multilevel Converters in HVDC Transmission.", AUTOMATION OF ELECTRIC POWER SYSTEMS., vol. 34, no. 2, 25 January 2010 (2010-01-25), pages 48 - 52 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US10069430B2 (en) 2013-11-07 2018-09-04 Regents Of The University Of Minnesota Modular converter with multilevel submodules
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10680506B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10153685B2 (en) 2014-03-26 2018-12-11 Solaredge Technologies Ltd. Power ripple compensation
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10700588B2 (en) 2014-03-26 2020-06-30 Solaredge Technologies Ltd. Multi-level inverter
US10404154B2 (en) 2014-03-26 2019-09-03 Solaredge Technologies Ltd Multi-level inverter with flying capacitor topology
US10680505B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US10193469B2 (en) 2015-06-29 2019-01-29 Abb Schweiz Ag Multi-level power converter and a method for controlling a multi-level power converter
US10355617B2 (en) 2015-11-13 2019-07-16 Siemens Aktiengesellschaft Medium voltage transformerless multilevel converter and method for controlling a medium voltage transformerless multilevel converter
RU2693573C1 (ru) * 2015-11-13 2019-07-03 Сименс Акциенгезелльшафт Бестрансформаторный многоуровневый преобразователь среднего напряжения и способ для управления бестрансформаторным многоуровневым преобразователем среднего напряжения
WO2018038109A1 (ja) * 2016-08-23 2018-03-01 国立大学法人 長崎大学 パワーコンディショナ
CN106849718B (zh) * 2017-02-17 2019-01-29 许继集团有限公司 一种子模块拓扑以及一种mmc换流器
CN106849718A (zh) * 2017-02-17 2017-06-13 许继集团有限公司 一种子模块拓扑以及一种mmc换流器
CN107154631B (zh) * 2017-05-22 2024-01-23 上海电力学院 基于模块化多电平逆变器的动态电压调节装置及调节方法
CN107154631A (zh) * 2017-05-22 2017-09-12 上海电力学院 基于模块化多电平逆变器的动态电压调节装置及调节方法
CN108616143B (zh) * 2018-05-15 2021-02-12 华北电力大学 考虑电压载荷共享机制的柔性多状态开关可靠性建模方法
CN108616143A (zh) * 2018-05-15 2018-10-02 华北电力大学 考虑电压载荷共享机制的柔性多状态开关可靠性建模方法
CN109742782A (zh) * 2019-02-12 2019-05-10 广州智光储能科技有限公司 一种适用于退役动力电池梯次利用的装置及方法
CN110266018A (zh) * 2019-06-04 2019-09-20 中国科学院电工研究所 统一电能质量控制器及其控制方法和控制系统
CN111934572B (zh) * 2020-06-29 2022-10-04 中国电力科学研究院有限公司 一种超大规模储能mmc变换器装置及储能控制方法
CN111934572A (zh) * 2020-06-29 2020-11-13 中国电力科学研究院有限公司 一种超大规模储能mmc变换器装置及储能控制方法
CN114336701B (zh) * 2021-12-01 2023-11-24 国网江苏省电力有限公司盐城供电分公司 一种适用于高功率大容量的中压直挂式储能系统拓扑结构
CN114336701A (zh) * 2021-12-01 2022-04-12 国网江苏省电力有限公司盐城供电分公司 一种适用于高功率大容量的中压直挂式储能系统拓扑结构
DE102022109241B3 (de) 2022-04-14 2022-11-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Multilevelkonverter mit Drei-Schalter-Submodulen mit symmetrischer Halbbrückenschaltung und paralleler Konnektivität
CN116073690A (zh) * 2023-03-10 2023-05-05 闽南理工学院 一种mmc储能系统混合调制方法

Also Published As

Publication number Publication date
CN102013691A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2012024984A1 (zh) 基于模块化多电平变换器的无变压器电池储能拓扑结构
US11128236B2 (en) Multi-winding single-stage multi-input boost type high-frequency link's inverter with simultaneous/time-sharing power supplies
US11050359B2 (en) Single-stage multi-input buck type low-frequency link's inverter with an external parallel-timesharing select switch
Li et al. A new nine-level active NPC (ANPC) converter for grid connection of large wind turbines for distributed generation
Mechouma et al. Three-phase grid connected inverter for photovoltaic systems, a review
WO2012010055A1 (zh) 基于模块化多电平变换器的无变压器电感储能拓扑结构
WO2012010054A1 (zh) 基于模块化多电平变换器的无变压器太阳能逆变器拓扑结构
CN102097966A (zh) 级联型兆瓦级光伏并网逆变器
WO2012010052A1 (zh) 基于mmc的无变压器风力发电并网拓扑结构
CN102005957A (zh) 单电源级联多电平变流器
CN105429177B (zh) 一种模块化光伏储能系统
KR20140085555A (ko) 재생 가능한 에너지원들을 위한 전력 컨버전 시스템 및 방법
WO2012010056A1 (zh) 一种无变压器电池储能拓扑结构
CN102545664A (zh) 桥臂切换多电平换流器
WO2012010063A1 (zh) 基于h桥的无变压器风力发电并网拓扑结构
CN104242341A (zh) 基于mmc和双极式直流传输结构的直驱风电变流结构
WO2019136575A1 (zh) 内置并联分时选择开关电压型单级多输入高频环节逆变器
CN202455253U (zh) 一种桥臂切换多电平换流器
WO2012010068A1 (zh) 一种无变压器水轮发电机发电并网拓扑结构
CN108199603B (zh) 多绕组分时供电隔离反激直流斩波型单级多输入逆变器
CN110957912B (zh) 基于可控直流母线的分布式储能装置
CN113489326A (zh) 一种应用于能量路由器的两级式dc/ac双向变换装置
WO2012010057A1 (zh) 一种无变压器电感储能拓扑结构
CN105375515B (zh) 一种结合光伏发电的模块化多电平综合补偿装置
CN201774263U (zh) 一种基于mmc模块化多电平逆变器的无变压器电池储能拓扑结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819359

Country of ref document: EP

Kind code of ref document: A1